# **Cost-optimal and Net-benefit Planning - A Parameterised Complexity View**

Meysam Aghighi and Christer Bäckström

Linköping University, Linköping, Sweden email: {meysam.aghighi, christer.backstrom}@liu.se

#### Introduction

• The usage of *zero-cost* or *rational-cost* actions **does** change the parameterised complexity of planning

• Analysis of a large number of subclasses, using both PUBS restrictions and restricting the number of preconditions and effects

#### **Results - PUBS Restrictions**

Positive Integers:  $COP(C, \mathbb{Z}_+)$ 





 $\operatorname{COP}(C, \mathbb{Q}_+)$ 

**Problem Definition** INSTANCE:  $\mathbb{P} = \langle V, A, I, G, c, U \rangle$ 

 $\bullet \left< V, A, I, G \right> \in C \subseteq \mathbf{SAS^+}$ 

V, A, I and G are the set of variables, the set of actions, initial state and goal state, respectively.

- $c: A \to \mathbb{D}$  (numeric) is a cost function
- $U : \operatorname{vars}(G) \to \mathbb{D}$  is a utility function

PARAMETER: A non-negative integer k. QUESTIONS:

**COST-OPTIMAL PLANNING**  $(COP(C, \mathbb{D}))$ : Does  $\mathbb{P}$  have a plan  $\omega$  of cost  $c(\omega) \leq k$ ? **NET-BENEFIT PLANNING**  $(NBP(C, \mathbb{D}))$ : Is there a state  $s \in S(V)$  and a plan  $\omega$  from I to ssuch that  $U(s) - c(\omega) \geq k$ ?

Restrictions on C:

- **P** (**post-unique**): No two actions change the same variable to the same value.
- U (unary): Each action has only one effect.
- **B** (binary): Each variable takes only two values.

#### Non-negative Integers: $COP(C, \mathbb{Z}_0)$



Positive Rationals:  $COP(C, \mathbb{Q}_+)$ 



# $\begin{array}{c|c} & eff \\ \hline 1 & \geq 2 & * \\ \hline 0 & P & para-NP-hard & para-NP-hard \\ \geq 1 & para-NP-hard & para-NP-hard & para-NP-hard \\ \hline * & para-NP-hard & para-NP-hard & para-NP-hard \\ \end{array}$

 $NBP(C, \mathbb{Z}_+), NBP(C, \mathbb{Z}_0), NBP(C, \mathbb{Q}_+)$ 

|     |          | eff          |              |              |
|-----|----------|--------------|--------------|--------------|
|     |          | 1            | $\geq 2$     | *            |
| pre | 0        | Р            | ?            | ?            |
|     | $\geq 2$ | para-NP-hard | para-NP-hard | para-NP-hard |
|     | *        | para-NP-hard | para-NP-hard | para-NP-hard |
| ?:  | Oper     | n cases      | ·            |              |

#### Observation

Instead of ordinary polynomial-time reductions, an *fpt reduction* is used in parameterised complexity. An *fpt reduction* from a parameterised language  $L \subseteq \Sigma^* \times \mathbb{Z}_0$  to another parameterised language  $L' \subseteq \Pi^* \times \mathbb{Z}_0$  is a mapping  $R : \Sigma^* \times \mathbb{Z}_0 \to \Pi^* \times \mathbb{Z}_0$  such that:

(1)  $\langle \mathbb{I}, k \rangle \in L \Leftrightarrow \langle \mathbb{I}', k' \rangle = R(\mathbb{I}, k) \in L'$ 

**S** (single-valued): When two actions have v as their precondition but not as effect, then they require the same value from v.

### **Parameterised Complexity Theory**

**Standard Complexity** measures complexity as a function of the input size (n). *Tractable:* solvable in time  $O(n^c)$  for some constant c.

**Parameterised Complexity** measures complexity as a function of both input size (n) and a parameter (k) which is independent of n. *Fixed-parameter tractable:* solvable in time  $O(f(k) \cdot n^c)$ .

#### **Parameterised Complexity Classes:**

**FPT:** Fixed-parameter tractable problems **W[i]:** Defined by WEIGHTED SATISFIABILITY PROBLEM (weight  $\leq k$ , literal alterations  $\leq i$ ) **W[P]:** Same as **W**[i] but with with unbounded alternations.  $NBP(C, \mathbb{Z}_+), NBP(C, \mathbb{Z}_0), NBP(C, \mathbb{Q}_+)$ 



(2) There is a computable function f and a constant c such that R can be computed in time  $f(k) \cdot |\mathbb{I}|^c$ 

(3) There is a computable function g such that  $k' \leq g(k)$ 

A COP(SAS<sup>+</sup>,  $\mathbb{Q}_+$ ) instance can be polynomially reduced to a COP(SAS<sup>+</sup>,  $\mathbb{Z}_+$ ) instance by multiplying all costs and the parameter with a suitable value  $\alpha$ . This is, however, **not an fpt reduction** since  $\alpha$  will typically not depend on the parameter (only), which contradicts condition (3) for fpt reductions. Hence, the membership results for COP( $C, \mathbb{Z}_+$ ) do not transfer to COP( $C, \mathbb{Q}_+$ ).

#### References

• Christer Bäckström, Yue Chen, Peter Jonsson, Sebastian Ordyniak, and Stefan Szeider. The complexity of planning revisited - a parameterized analysis. In *Proc. 26th AAAI Conf. Artif. Intell. (AAAI-12), Toronto, ON, Canada,* pages 1735–1741, 2012.

**para-NP:** Problems solvable in non-deterministic time  $f(k) \cdot n^c$ .

**XP:** Problems solvable in time  $n^{f(k)}$ .



## **Results - Pre/Eff Restrictions**

In this section, results based on restricting the number of preconditions and effects are brought.



• Meysam Aghighi and Peter Jonsson. Oversubscription planning: Complexity and compilability. In *Proc. 28th AAAI Conf. Artif. Intell.* (*AAAI-14*), *Québec City, QC, Canada.*, pages 2221–2227, 2014.

• Christer Bäckström and Bernhard Nebel. Complexity results for SAS<sup>+</sup> planning. *Comput. Intell.*, 11:625–656, 1995.