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ABSTRACT

Comparative genomics in general and orthology analysis in

particular are becoming increasingly important parts of gene

function prediction. Although not yet being in its final form, our

tool has the capacity to perform practical orthology analysis,

based on Fitch’s original definition, and more generally for

reconciling pairs of gene and species trees.

We introduce a probabilistic gene evolution model based on

a birth-death process in which a gene tree evolves “inside” a

species tree. Our gene evolution model is biologically sound (Nei

et al., 1997) and intuitively attractive. We develop a Bayesian

analysis based on MCMC which facilitates approximation of an

a posteriori distribution for reconciliations. That is, we can find

the most probable reconciliations and estimate the probability

of any reconciliation, given the observed gene tree. This also

gives a way to estimate the probability that a pair of genes

are orthologs. The main algorithmic contribution presented here

consists of an algorithm for computing the likelihood of a given

reconciliation. To the best of our knowledge, this is the first

successful introduction of this type of probabilistic methods,

which flourish in phylogeny analysis, into reconciliation and

orthology analysis.

The MCMC algorithm has been implemented and tests show

that it performs very well on synthetic as well as biological data.

Using standard correspondences, our results carry over to allele

trees as well as biogeography.

Contact: E-mail : {lottab,jensl}@nada.kth.se,
{bengt.sennblad,lars.arvestad}@sbc.su.se

INTRODUCTION

Orthology analysis provides the most fundamen-
tal correspondence between genes in different
genomes. It is such intergenomic correspondences
that provides comparative genomics with the
power to translate information from one organ-
ism to another, e.g. from model organisms to
human. Function prediction based on orthology
is ubiquitously used by biologists. The concept of
reconciliation is fundamental to orthology analysis.
Together with a gene tree a reconciliation explains

the evolution of a gene family in relation to a
species tree.

We provide tools with the capacity to perform
practical orthology analysis, based on Fitch’s origi-
nal definition of orthology (Fitch, 1970), and more
generally for reconciliation of a given gene tree with
a given species tree. The tools employ Bayesian in-
ference and rest on a general and sound mathemati-
cal framework; our particular instance of this frame-
work is mathematically non-trivial. The two most
fundamental questions that our approach allows us
to answer computationally are: (1) how many dupli-
cations and losses have occurred in the considered
gene family? and (2) which genes are orthologs?
In general, Bayesian analysis surpasses Maximum
Likelihood by providing alternative solutions and
the a posteriori distribution which yields the signif-
icance of the solutions.

There are a number of biological mechanisms with
the capacity of causing a gene tree to disagree
with a species tree. Among the examples of such
mechanisms are: gene duplication, gene loss, and
lateral gene transfers. Here the focus is on gene
duplication and gene loss. In the probabilistic
model we adopt, the gene tree evolves “inside”
the species tree according to a birth-death process,
where births model gene duplications and deaths
model gene losses. Previously, in phylogeny analysis
based on Maximum Likelihood as well as Bayesian
statistics, birth-death processes have been used as
a priori distributions for species trees (Rannala
and Yang, 1996; Huelsenbeck et al., 2001). Nei
et al. (1997) consider molecular data for the
Major Histocompatibility Complex genes as well
as the Immunoglobin genes, and conclude that the
evolutionary patterns are in agreement with a birth-
death process. There exists no good established
knowledge of how common duplications and losses
are, or how their frequencies relate. Nevertheless,
such parameters are needed when trying to detect
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these types of genomic events. We evade this
problem by applying a Bayesian approach that
allows parameters to be specified by a priori
distributions rather than exact values.

To the best of our knowledge, the problem studied
here has previously only been studied with respect
to deterministic parsimony models, see for instance
(Goodman et al., 1979; Guigó et al., 1996; Koonin
et al., 1998; Hallett and Lagergren, 2000a,b). Our
probabilistic gene evolution model and our likeli-
hood computation algorithm, enables us to apply
Bayesian analysis, but also paves the way for Max-
imum Likelihood methods. It is clear that Maxi-
mum Likelihood methods have had an enormous
impact on phylogeny. Also, Bayesian analysis per-
formed using Markov Chain Monte Carlo (MCMC)
techniques has with success previously been applied
to phylogeny (Huelsenbeck et al., 2001). There is
good reason to believe that probabilistic methods
will, in a similar fashion, play a very significant
role in reconciliation and orthology analysis. Recent
efforts where bootstrapping were applied to parsi-
mony methods for orthology analysis (Storm and
Sonnhammer, 2002; Zmasek and Eddy, 2002) cor-
roborates the importance of expressing uncertainty
in orthology analysis. As always, uncertainty is best
expressed in terms of probabilities.

The Bayesian analysis performed using MCMC
techniques can be formulated as follows: Given a
gene tree G and a species tree S, where a labeling
of the leaves of G gives the association of genes to
species, compute the a posteriori distribution on the
set of reconciliations of G and S. Given a procedure
for the likelihood calculation, applying the MCMC
techniques is straightforward from a theoretical and
algorithmic point of view, although in practice it
requires craftsmanship and ingenuity. In our case,
the likelihood computations are algorithmically
intricate and the main theoretical contribution
of this paper is the solution of this problem.
Notice that the MCMC framework together with the
capacity to compute the likelihood and to sample
from a, so called, proposal distribution gives our
MCMC algorithm that estimates the a posteriori
distribution of reconciliations. The description of
the proposal distribution is omitted from the
present account.

The work presented here is a first step in a
program that has the potential to offer tools for
simultaneous analysis of multiple gene families.
One computational problem of this type is that
of, given sequence data for gene families, find a
species tree and gene trees. The “goodness” of a

solution should be based on how well the gene
trees can be reconciled with the species tree as
well as the likelihood of the sequence evolution
induced by these reconciliations. The next step in
this program is to introduce sequence evolution in
the problem considered here. Our algorithms have
been implemented and the experimental results are
very positive. Already without sequence evolution
our tool performs very well.

The rest of the paper is organized as follows. First,
some (mostly standard) definitions are introduced,
followed by a presentation of our probabilistic gene
tree evolution model. MCMC techniques are then
described briefly (a more detailed description can
be found in Gilks et al. (1996), where also standard
terms are defined) together with a brief review
of the general framework as well as how it is
instantiated in our case. Then follows a section
where a recursive algorithm for computing the
likelihood is given. Finally, experimental results are
presented, followed by a discussion.

DEFINITIONS AND NOTATION

A directed tree T consists of a set of vertices V (T )
and a set of arcs A(T ). The set of leaves of T
is denoted L(T ). The subforest of a directed tree
T , induced by a subset U of V (T ) is the forest
T \(V (T )\U). In a rooted tree T all arcs are directed
away from the root and the root is denoted r(T ).
Such a tree is binary if each non-leaf has out degree
two. For a directed rooted tree T and u ∈ V (T ), the
subtree rooted at u, denoted Tu, is the subtree of T
induced by all vertices reachable by directed paths
from u in T . Moreover, for 〈u, v〉 ∈ A(T ), the arc
subtree of T for 〈u, v〉 is Tv∪{〈u, v〉}. A species tree
S is a rooted directed arc-weighted binary tree S
with weight function wS : A(S) → R+. A gene tree
will only be given w.r.t. a species tree S. A gene
tree is a rooted directed binary tree given together
with a leaf labeling function σ : L(G) → L(S).
Intuitively, leaves in a gene tree G represent genes,
leaves in a species tree S represent species, and the
gene l ∈ L(G) belongs to the genome of the species
σ(l). An isomorphism between two directed trees
T and T ′ is a bijection f : V (T ) → V (T ′) such that,
〈x, y〉 ∈ A(T ) ⇐⇒ 〈f(x), f(y)〉 ∈ A(T ′) (i.e. there
is an isomorphism between two trees if and only if
one can be obtained by renaming the vertices of the
other).
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Fig. 1. Example of how a gene tree evolves inside a species tree. In (I), there is a species tree S (the same species tree as in
Figure 2). The root node of S is X, the parent of A and B is Y , and there is a single gene in X. While the processes inside
〈X, Y 〉 and 〈X, C〉 occur “simultaneously”, they are independent and we will describe them separately. In (II), the birth-death
process gives rise to a duplication, represented by a square vertex, from which two lineages start to evolve. In (III), another
duplication occurs in the leftmost of these two lineages, followed by yet another duplication shown in (IV). In (V), we see a
duplication followed by a gene loss of the leftmost lineage created in the duplication (losses are represented by filled circles).
In (VI), another duplication occurs followed by the loss of the right lineage. In (VII), no duplication occurs, but the two
rightmost lineages are lost. Finally, in (VIII), no duplication occurs, but the three leftmost lineages are lost. The resulting
(pruned) gene tree is the tree in (II) of Figure 2. The reconciliation induced by the evolution is the one in (III) of Figure 2.

THE PROBABILISTIC GENE EVOLUTION
MODEL

In this section, we describe the gene evolution
model and introduce reconciliations. We will focus
on how, given the parameters of the birth-death
process, a gene tree evolves “inside” a given species
tree S and how this induces a reconciliation. How-
ever, the a priori distributions for the parameters
of the birth-death process are also a part of the
model and we start by specifying those. Uniform
distributions on intervals of bounded size are used
as a priori distributions for the birth rate λ and
death rate µ.

We will in the rest of this paper consider a
fixed species tree S. The gene evolution model is
described as follows. Again, the gene tree evolves
“inside” the species tree according to a birth-death
process. Over arcs of the species tree this is modeled
by a standard birth-death process (Kendall, 1948;
Nee et al., 1994) with birth rate λ and death rate
µ. When the process reaches the end of an arc,
i.e. a species tree vertex x, it is split into two
identical copies. One of the processes evolves down
the left outgoing arc of x and the other evolves
down the right outgoing arc of x; moreover, this
evolution continues recursively down towards the
leaves of S where it stops. After the recursive
process has stopped, the gene tree is pruned by
removing vertices that have no descendants in the

leaves of the species tree and finally by short-
cutting vertices of degree two (i.e., removing the
vertex and connecting its neighbors in the natural
way). A leaf l of the resulting gene tree is labeled,
in the natural way, i.e. with the unique leaf of S to
which l reached in the evolution process. This ends
the description of how the gene evolution model
generates gene trees. In Figure 1, an example is
provided of how a gene tree evolves inside a species
tree. The resulting gene tree can be found in (II) of
Figure 2.

To facilitate the introduction of reconciliations,
some additional definitions will now be made.
As mentioned, the gene evolution process also
induce a reconciliation. This is explained after
the definition. Let T be a rooted directed tree.
For u ∈ V (T ), the descendants of u in T are the
vertices of Tu (this means that u is a descendant
of u). That v is a descendant of u in T is denoted
v ≤T u. A set A ⊆ V (T ) is a ≤T -antichain if
for each pair u, v ∈ A it holds that u 6≤T v and
v 6≤T u, i.e., there are no two different members u
and v of A such that v is a descendant of u. If T is
the tree in (I) of Figure 2, then the ≤T -antichains
are: ∅, {X}, {Y }, {A}, {B}, {C}, {Y, C}, {A,B}
{A,C}, {B,C}, and {A,B, C}. Notice that, al-
though the example provids antichains in a species
tree, we will only use antichains in gene trees.

A reconciliation of a species tree S and a gene tree
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Fig. 2. Example of: (I) The species tree from panel (I) in Figure 1. (II) The pruned gene tree from (VIII) in Figure 1. The
root is u. The parent of b is called d. (III) A possible reconciliation of the species tree and the gene tree (where γ(X) = {u},
γ(Y ) = ∅, γ(A) = {a1, a2}, γ(B) = {b}, and γ(C) = {c}). One speciation is associated to the root of the species tree.
Circles represent vertices of the gene tree that are speciations. (IV) The most parsimonious reconciliation of the species tree
and the gene tree (i.e., the one explaining the disagreement between the gene and species tree using a minimum number of
duplications, where γ(X) = {u}, γ(Y ) = {d}, γ(A) = {a1, a2}, γ(B) = {b}, and γ(C) = {c}). Here also d is a speciation and
it is also associated with Y .

G, with leaf labeling σ, is a function γ : V (S) →
2V (G) such that:

1. l ∈ γ(σ(l)) for each l ∈ L(G).

2. γ(x) is a ≤G-antichain, for any x ∈ V (S).

3. If u ≤G v, u ∈ γ(x), and v ∈ γ(y), then
x ≤S y.

In Figure 2, two examples of reconciliations can
be found. The above conditions have the following
intuitive explanations. The first condition demands
that a gene should be associated with the species
in which genome it can be found. The last two
conditions demand that the gene tree should evolve
“downwards” in the species tree.

The evolution of the gene tree inside the species
tree also induces a reconciliation of the two trees as
follows: u ∈ γ(x) if and only if u is a “leaf” of the
birth-death process when it reaches x, and u at the
end of the process has a descendant in a leaf of the
species tree below the left as well as the right child
of x.

The reconciliation induced by the example of the
gene evolution process in Figure 1 can be found in
(III) of Figure 2.

In the general version of the process a part of
the gene tree can have evolved previous to the
speciation represented by the root of the gene tree.
The description of the general version, as well as
how to compute the likelihood in this case, is
omitted because of space limitations.

MCMC GIVEN A PROCEDURE FOR
LIKELIHOOD

This section contains a brief introduction to the
MCMC framework as well as a brief description

of how this framwork is applied in the present
case. For a more thorough account of MCMC and
standard MCMC terminology, we refer to the book
by Gilks et al. (1996).

MCMC is a technique that facilitates estimation
of the stationary distribution of a Markov Chain. It
provides a uniform framework to design transition
probabilities of a Markov Chain so that a sought
stationary probability distribution is obtained. A
random walk is performed in the Markov Chain
according to the transition probabilities. In the
present case, a state in the Markov chain is a
triple (γ, λ, µ) where γ is a reconciliation, λ a
birth rate, and µ is a death rate (in order to
simplify the description, we describe the Markov
chain as if λ and µ were discrete parameters). The
sought stationary distribution is the a posteriori
distribution

Pr[γ, λ, µ|Gobs] =
Pr[Gobs, γ|λ, µ] Pr[λ, µ]

Pr[Gobs]

=
Pr[Gobs, γ|λ, µ]∑

γ

∑
λ

∑
µ Pr[Gobs, γ|λ, µ]

,

where the last equality holds, since uniform a priori
distributions are used for λ, and µ. This distribu-
tion assigns to a state (γ, λ, µ) the probability that,
in the gene evolution process: γ was the reconcil-
iation, λ was the birth rate, and µ was the death
rate, conditioned by the observed gene tree Gobs. In
the limit, the fraction of visits to a state during the
simulation, in relation to the total number of visits,
is the stationary probability. In practice, frequen-
cies are collected after a period of burn in (the time
it takes for the chain to “forget” its starting state)
and up to an estimated stopping time (sufficiently
late to make the estimation of the stationary dis-
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tribution reliable), see Gilks et al. (1996). The gene
tree vertices associated with species tree vertices by
a reconciliation are speciations; all other gene tree
vertices are duplications. According to the original
definition by Fitch (1970), two genes are orthologs
if and only if their least common ancestor in the
gene tree is a speciation. By summing the proba-
bility assigned to the triples with a reconciliation
according to which gene x and y are orthologs, we
can estimate the probability that x and y are or-
thologs.

In each iteration of an MCMC simulation a new
state is proposed according to a specific proposal
distribution. We omit the description of the pro-
posal distribution that we use. The new state is ac-
cepted, i.e. becomes the current state, or rejected,
in which case no change is made of the current
state, according to an acceptance distribution. In
the present case, a symmetric proposal distribution
is used, which means that the algorithm proposed
here is an instance of the Metropolis method (Gilks
et al., 1996). Consequently, when the present state
is (γ, λ, µ), the acceptance probability for a pro-
posed state (γ′, λ′, µ′) is αij = Pr[Gobs, γ|λ, µ]

Pr[Gobs, γ′|λ′, µ′]
.

Again, notice that the MCMC framework to-
gether with the capacity to compute the likelihood,
Pr[Gobs, γ|λ, µ], and to sample from the pro-
posal distribution gives our MCMC algorithm
that estimates the a posteriori distribution of
reconciliations.

COMPUTING THE LIKELIHOOD

In this section, we briefly describe our main
algorithmic contribution; namely, the algorithm
that computes the likelihood

Pr[γ, G|λ, µ], (1)

i.e., the likelihood of a reconciliation γ and a gene
tree G, or equivalently the probability that the gene
evolution model produces this pair for a birth rate
λ and a death rate µ (recall that we are considering
a fixed species tree S). We concentrate on an
operational description, i.e., what is computed,
and exclude motivations and proofs why these
computations give the likelihood. The algorithm is
recursive and runs in time O(|V (S)| + |V (G)|2).
Its recursive structure follows that of the gene
evolution model. We will describe the subproblems
considered in the algorithm and how they are
divided into smaller subproblems, but no pseudo-
code will be given. An example of how a subproblem
can be divided into smaller subproblems will also be
given.

To aid the recursive decomposition of G, we will,
without loss of generality, assume that no arc of G
stretches over more than one arc of S, w.r.t. γ; we
formally express this as follows, if 〈u, v〉 ∈ A(G) and
u ∈ γ(x), then there is an arc 〈x, y〉 ∈ A(S) such
that v ∈ γ(y). In (III) of Figure 2 a pair without
this property can be found and in (I) of Figure 3 a
for our purposes equivalent pair with this property
can be found.

Throughout this section, we will consider a fixed
gene tree G, a fixed birth rate λ, and a fixed death
rate µ. During the computation a table eV is filled
in. After the computation the sought likelihood, i.e.,
the value of (1), is given by eV (r(S), r(G)). For the
case where γ(r(S)) is a set, some extra steps have
to be performed, but we will not describe those.

After some additional definitions, which are
illustrated in Figure 3, have been made, formulae
will be given which show how to compute eV . If u ∈
V (T ) and U ⊆ V (T ), then Tu,U denotes the subtree
of T induced by {v : ∃u′ ∈ U, u′ ≤T v ≤T u}. We
call this a sliced subtree. Let u be a vertex of G
such that u ∈ γ(x) and let Sx,y be the arc subtree
of S for 〈x, y〉. The tree Gx,y

u is the subtree of Gu

induced by {v ∈ V (Gu) : ∃z ∈ V (Sx,y), v ∈ γ(z)}.
That is, the part of Gu that has evolved in the arc
subtree of S for 〈x, y〉. Let γu : V (Sx) → 2V (Gu) be
defined by γu(z) = γ(z)∩V (Gu), for any z ∈ V (Sx).
Similarly, let γx,y

u : V (Sx,y) → 2V (Gx,y
u ) be defined by

γx,y
u (z) = γ(z) ∩ V (Gx,y

u ).
Define eV (x, u) as the probability that Gu and γu

have evolved from u starting at x in Sx. Similarly,
define eA(x, y, u) as the probability that Gx,y

u and
γx,y

u has evolved from u starting at x in Sx,y.
Assume that x has children y and y′ in S. Obviously
eV (x, u) = eA(x, y, u)eA(x, y′, u); moreover, if v is a
leaf of G and z a leaf of S such that v ∈ γ(z),
then eV (z, v) = 1. Without loss of generality,
assume that the set of descendants of u in γ(y)
is [c] (for any integer c, we use [c] to denote the
set {1, . . . , c}). We now give formulae that can
be used to compute eA(x, y, u) (and analogously
eA(x, y′, u)); afterwards we explain how to compute
the factors occurring in the formula. For c > 0,

eA(x, y, u) = AB, (2)

where A equals

f1(Gu,γ(y))f2(Gu,γ(y), [G1, γ1]∼=, . . . , [Gc, γc]∼=)

and B equals

P (t)(1− ut)uc−1
t

(1−Dyut)c+1

c∏
i=1

eV (y, i).
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Fig. 3. (I) The reconciliation from a (II) Figure 2 with vertices added to the gene tree. The additional vertices are, from
left to right, v, v′, and w. (The names in the species trees are as in previous examples). The reconciliation is γ(X) = {u},
γ(Y ) = {v, v′, w′}, γ(A) = {a1, a2}, γ(B) = {b}, and γ(C) = {c}. (II) The trees GX,Y

u and and GX,C
u , where G is the gene

tree and S is the species tree of Figure 2 which are related by the reconciliation γ in (I). (III) Gu,γ(Y ) and Gv, Gv′ , Gw′ for
the same gene tree, species tree, and reconciliation as above.

The probability that a lineage starting in x does
not reach any leaf in the species tree is denoted
Dx and can be computed using the equality Dx =
eA(x, y, u)eA(x, y′, u), where for y as well as y′ it
holds that c = 0 (Dy has an analogous meaning
and can be computed analogously). For c = 0,

eA(x, y, u) = 1− P (t) +
P (t)(1− ut)Dy

1− utDy

. (3)

Let t be the time for the arc 〈x, y〉, i.e., t =
wS(x, y). The probability, Pr1{c, t}, of having c
surviving lineages at time t0+t from the birth-death
process, starting at time t0, can be expressed by two
functions of time, ut and P (t). Closed expressions
for all three of these functions can be found in Nee
et al. (1994). These results have previously been
used to express the probability of generating a
certain tree (Yang and Rannala, 1997). Using the
same techniques we can express the probability that
“the birth-death process starting with a vertex u
produces a rooted directed tree T such that for a
certain set of c leaves W it holds Tu,W = Gu,γ(y)”
conditioned by that the “process yielded c+d leaves
in T”, where c, d ≥ 0.

For a tree T with leaves [c] and labels m1, . . . ,mc,
the factor f2(T,m1, . . . ,mc) is the number of
different leaf labelings L : [c] → {m1, . . . ,mc} such
that there is an automorphism f : V (T ) → V (T )
(i.e., an isomorphism from T to itself) satisfying
mi = L(f(i)). Also f2 can be computed within
the available time using a slight modification of
the standard tree isomorphism algorithm. In the
formula above the labels are isomorphism classes
introduced below.

An isomorphism f between Gi and Gj is said to
respect γi and γj if and only if, for any u ∈ V (Gi)

and x ∈ V (S), it holds that u ∈ γi(x) ⇔ f(u) ∈
γj(x). For any i ∈ [c], let [Gi, γi]∼= denote the
set of ordered pairs 〈Gj, γj〉 such that there is an
isomorphism f between Gi and Gj that respects
γi and γj (i.e., [Gi, γi]∼= is an isomorphism class).
Whether [Gi, γi]∼= equals [Gj, γj]∼= can be computed
within the available time using a slight modification
of the standard tree isomorphism algorithm.

This completes the description of how to compute
the likelihood, i.e., (2) and (3).

EXPERIMENTAL RESULTS

We have performed experiments to verify that the
probabilistic gene duplication model is useful in
the context of reconciliation and orthology analysis.
That is, when combined with sequence evolution, it
will contribute information not only by providing
a translation of time in the species tree into
time in the gene tree but also by its a posteriori
distribution. The experiments clearly allow us to
draw this conclusion.

To enable experiments a generator was imple-
mented, which for a given species tree generates
pairs consisting of a gene tree and a reconciliation
according to the gene evolution model. We used
“The 90%-test”, i.e., statistics concerning the frac-
tion of the total number of experiments in which
the generated reconciliation was among best 90% of
the reconciliations in the a posteriori distribution
(ties were broken using a probabilistically sound
method). For a sufficiently large number of ex-
periments, the better the a posteriori distribution
has been estimated the closer the expected value
of this fraction will be to 0.9. Another important
statistics is the fraction of experiments in which
the generated reconciliations differ from the most
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Fig. 4. The MHC class I gene trees for primate sequences extracted from Nei et al. (1997); the MHC class I genes for cat is
included as an outgroup. The two homolog groups of interest are boxed and the status of the least common ancestor, v, of
these two groups as interpreted by parsimony reconciliation is indicated. (I) The gene tree including all sequences from Nei
et al. (1997). Parsimony reconciliation correctly identifies v as a duplication (indicated by a square). (II) The tree from (I),
but with all human sequences removed, simulating that the human genome was not sampled. Parsimony reconciliation now
erroneously identifies v as a speciation (indicated by a circle).

Table 1. Results from the 90% test.

λ µ Pr(γtrue 6= γ∗) Diagnostic

0.06 0.05 0.01 0.92
0.15 0.18 0.14 0.88

parsimonious. The species trees used here have 10
taxa, and branch lengths between 0.03 and 13.11.
Various birth and death rates where used, which
gave up to 42 genes (i.e., gene tree leaves). The
experiments can be divided into two groups, one
where the generated reconciliations almost always
is the most parsimonious (γtrue = γ∗) and one
where this quite often is not the case. For some
values Pr[γtrue 6= γ∗] is as high as 0.4. One result
from each group is described in Table 1. In both
cases we are close to the expected result for the
90% test.

The histocompatibility complex (MHC) multigene
family: The phylogenetic tree of MHC class I genes
from Gorilla, Orangutan, Tamarin and Cat was
used. This is a subtree of the gene tree described
in Nei et al. (1997). For illustrative purposes we
have removed the Human MHC class I genes from
this subtree. When included, these reveal that pairs

of genes that in the subtree can be paralogs or
orthologs, are in fact paralogs (cf. Figure 4). Thus,
it is interesting to see if our method, in contrast to
the parsimony method, indicates that they may be
paralogs. We used a species tree with divergence
time estimates from Arnason and Janke (2002).
The MCMC ran for 5000000 iterations with samples
taken at every 1000th iteration. The Markov chain
converged after approximately 500000 iterations,
and the first 500 samples were discarded. The
orthology probability for the pairs of genes is
0.89, allowing a significant fraction for the correct
answer.

The 60s ribosomal domain family: As a case study
of including information from sequence data with
our method as well as considering alternative
gene trees, the following test was conducted. The
object was to estimate the posterior probability of
orthology between two genes without being certain
of the gene tree. The idea was to multiply the
probability of a reconciliation with the probability
of the gene tree it was based on. Although this
approach is attractive, particularly with respect to
its simplicity, it is unfortunately flawed. Posterior
reconciliation probabilities are conditioned on a
gene tree and a species tree, but species trees
are disregarded in available software for computing

7



Table 2. Probabilities and bootstrap support values for RLA1

and RLA2 using three different methods.

RLA1 RLA2

OrthoStrapper 0.35 0.46

RIO 0.12 0.21

Our method 0.88 0.91

gene-tree probabilities. Hence, we cannot view this
technique as more than a first approximation of the
true likelihood.

Both human and fly have several domains in
the 60s ribosomal domain family, and we wanted
to estimate the probability that the RLA1 and
RLA2 domains from human were orthologous to
their counterparts in fly. In a recent investigation
(Christian Storm, personal communication) using
OrthoStrapper (Storm and Sonnhammer, 2002)
and RIO (Zmasek and Eddy, 2002), the orthology
support was found low (Table 2), even though
a phylogenetic analysis including related domains
strongly suggests orthology (Figure 5).

All genes in the 60s ribosomal domain family
(PF00428) for a set of five species (Figure 6) were
taken from Pfam 7.2 Bateman et al. (2002) yielding
23 genes. MrBayes (Huelsenbeck and Ronquist,
2001) was used for the phylogenetic analysis. From
an initial neighbour-joining tree, 10000 iterations of
MCMC were run and every tenth tree was sampled.
This run resulted in 89 sampled trees, of which the
first three had 50% and the first 37 had 90% of the
probability mass.

For each of the 89 trees sampled by MrBayes,
105 iterations of our MCMC algorithm were run,
sampling reconciliations every 100 iterations and
with the first 300 samples discarded as burn in. The
posterior probabilities of orthology of the domains
of interest were then registered and multiplied
with the posterior probability of the gene tree.
In a last step, the orthology probabilites from
each gene tree were summed. The results are
summarised in Table 2, and assigns a considerably
higher probability for the expected orthologies than
previously noted.

DISCUSSION AND FUTURE DIRECTIONS

The experimental results for our method are en-
couraging. The method shows self-consistent be-
haviour for synthetic data that are generated with
the same model as that used in the analysis. It also
produces reasonable results using biological data

Yeast
Worm
Fly
Mouse

Human

1576
1177

993
110

Fig. 6. Species tree for the 60s ribosomal testcase. Numbers
indicate million years ago and are taken from Wang et al.
(1999).

and clearly provides important additional informa-
tion for orthology analysis to that of standard par-
simony reconciliation.

In addition, our method performs well in terms
of speed: The largest problem instance we have
run the algorithm on consists of a species tree
with 100 leaves and a gene tree with 228 leaves.
106 MCMC iterations, each requiring a likelihood
computation (which has quadratic running time),
were performed in 1686 CPU seconds on a 1100
MHz processor. We are currently porting the
implementation to a cluster, which will allow more
extensive experimental investigations.

The obvious next step is to add sequence evolu-
tion to the probabilistic model. The input would
then be a species tree and a set of sequences repre-
senting a gene family, where each sequence is asso-
ciated to a species.

In this setting, the aim would be to find pairs
consisting of a gene tree and a reconciliation, or
an a posteriori distribution over such pairs. The
a posteriori probability of a solution should reflect
how well the gene tree can be reconciled with the
species tree according to our gene evolution model
as well as the likelihood of the sequence evolution
induced by the gene tree and the reconciliation.
Our experimental results clearly show that the gene
evolution model will have a significant and correct
impact on this a posteriori distribution.

Lastly, it is worth noting that, using standard
correspondences, our results also carry over to
other areas of biology such as allele mapping and
biogeography.
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Fig. 5. Consensus tree for the 60s ribosomal protein domain family as computed by MrBayes (Huelsenbeck et al., 2001). The
investigated nodes are marked by filled circles. The numbers indicate the posterior probability of branchings beeing correct.
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