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ABSTRACT
We prove that for any positive integer k, there is a constant
ck such that a randomly selected set of ckn

k log n Boolean
vectors with high probability supports a balanced k-wise
independent distribution. In the case of k ≤ 2 a more elabo-
rate argument gives the stronger bound ckn

k. Using a recent
result by Austrin and Mossel this shows that a predicate on
t bits, chosen at random among predicates accepting c2t

2

input vectors, is, assuming the Unique Games Conjecture,
likely to be approximation resistant.
These results are close to tight: we show that there are

other constants, c′k, such that a randomly selected set of
cardinality c′kn

k points is unlikely to support a balanced k-
wise independent distribution and, for some c > 0, a random
predicate accepting ct2/ log t input vectors is non-trivially
approximable with high probability.
In a different application of the result of Austrin and Mos-

sel we prove that, again assuming the Unique Games Con-
jecture, any predicate on t bits accepting at least (32/33) ·2t
inputs is approximation resistant.
The results extend from the Boolean domain to larger

finite domains.

Categories and Subject Descriptors
G.3 [Probability and Statistics]

General Terms
Theory

1. INTRODUCTION
The motivation of this paper comes from the approxima-

bility of maximum constraint satisfaction problems (Max-
CSPs). A problem is defined by a t-ary predicate P and an
instance is given by a list of t-tuples of literals over Boolean
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variables1. The task is to find an assignment to the vari-
ables such that as many as possible of the t-tuples of literals
satisfy the predicate P .
The most famous such problem is probably Max-3-Sat

where t = 3 and P is simply the disjunction of the three
bits. Another problem that (almost) falls into this category
is Max-Cut, in which t = 2 and P is non-equality. In tra-
ditional Max-Cut we do not allow negated literals and if we
do allow negation the problem becomes Max-2-Lin-2, linear
equations modulo 2 with two variables in each equation.
These two problems, as well as almost all Max-CSPs, are

NP-hard and the main focus of research on these problems
has been approximation algorithms. An algorithm is consid-
ered to be a C-approximation if it, on each input, finds an
assignment with an objective value that is within a factor
C of the optimal solution. We allow randomized algorithms
and in this case it is sufficient that the expected value of the
objective values satisfies the desired bound.
To define what is non-trivial is a matter of taste but hope-

fully there is some consensus that the following algorithm is
trivial: Without looking at the instance pick a random value
for each variable. We say that an approximation ratio C is
non-trivial if it is better than the ratio obtained by this triv-
ial algorithm. We call a predicate approximation resistant if
it is NP-hard to achieve a non-trivial approximation ratio.
It is perhaps surprising but many CSPs are approximation

resistant and one basic example is Max-3-Sat [12]. The fa-
mous approximation algorithm of Goemans and Williamson
[9] shows that Max-Cut is not approximation resistant and
this result can be extended in great generality to show that
no predicate that depends on two inputs from an arbitrary
finite domain can be approximation resistant [13].
Zwick [22] established approximability results for predi-

cates that depend on three Boolean inputs and from this it
follows that the only predicates on three inputs that are ap-
proximation resistant are those that are implied by parity or
its negation. Many scattered results on wider predicates do
exist [10, 19] and in particular Hast [11] made an extensive
classification of predicates on four inputs.
These results for predicates of small width give little guid-

ance on what to expect for a generic predicate. Generally
speaking there are several results pointing towards the di-
rection that predicates that accept more inputs are more
likely to be approximation resistant. We say that a predi-
cate P implies a predicate Q if any assignment that satisfies
P also satisfies Q. We say that a predicate P is heredi-

1Our results extend to larger domains but for simplicity in
the extended abstract we stay with the Boolean domain.



tarily approximation resistant if any predicate implied by P
is approximation resistant. Most predicates known to be
approximation resistant also turn out to be hereditarily ap-
proximation resistant. One of the few predicates that does
not have this property is P (x1, x2, x3, x4) which is satisfied
if x1 is true and x2 �= x3 or x1 is false and x2 �= x4. This
was proved approximation resistant by Guruswami et al.
[10] but implies NAE(x2, x3, x4) which admits a nontrivial
approximation algorithm, see for instance [22].
As a generic positive result Hast [11] proved that any

predicate on t bits that accepts fewer than 2�(t+ 1)/2� in-
puts does admit a nontrivial approximation algorithm. This
might at first seem like a rather weak result but evidence is
mounting that this is very close to the best possible result
of this type. Let us elaborate on this evidence.
The strongest inapproximability results depend on the

Unique Games Conjecture, UGC, of Khot [16]. The truth
of this conjecture is still very much open and probably the
most important open problem in the theory of approxima-
bility. Even if we should not take a hardness result based
on UGC as a final word it is a very valuable result. Despite
many strong efforts to disprove the conjecture [21, 6, 1], the
conjecture remains open. As these results appear to push
the currently available algorithmic techniques as far as they
can go, any negative result based on the UGC rules out an
algorithm using current techniques and thus it is a strong
indication that a problem is difficult.
Using the UGC, Samorodnitsky and Trevisan [20] proved

that when t is of the form 2r − 1, Hast’s result is tight
and there is an approximation resistant predicate that ac-
cepts t + 1 inputs. The proof extends to give hereditary
approximation resistance and using this H̊astad [14] proved
that a predicate chosen at random from all predicates that
accept s inputs is likely to be approximation resistant if
s = ω(2t/

√
t). For t = 2r − 1 the bound on s can be as low

as 2t/t but this is the lower limit of what can be obtained
using the predicates of Samorodnitsky and Trevisan.
Austrin and Mossel [3], using the machinery of Mossel

[18] extended the results of Samorodnitsky and Trevisan to
apply to a much wider class of predicates. To be more pre-
cise they proved that any predicate P for which there exists
a balanced pairwise independent distribution supported on
the inputs accepted by P is, assuming the UGC, hereditarily
approximation resistant. Using this they proved that with-
out assumptions on the form of t there are predicates that
accept t + o(t) inputs which satisfy this property. Further-
more if the famous conjecture on the existence of Hadamard
matrices is true their bound is 4�(t + 1)/4�, matching the
bounds of Hast for half of all values of t and being off by an
additive constant of 2 for other values.
The result of Austrin and Mossel is very powerful and we

use it as a tool to investigate the approximation resistance
of randomly chosen predicates. The technical question that
arises is to analyze the probability that s random Boolean
vectors of length t can support a balanced pairwise inde-
pendent distribution, and in particular for what values of
s this probability is 1 − o(1). Many properties of pairwise
independent distributions have been studied, but we have
not found any results on randomly supported pairwise inde-
pendent distributions. We feel that this is natural question
interesting in its own right and we study the question in some
generality, looking at the question of existence of a k-wise
independent distribution establishing the following result.

Theorem 1.1. (informal) There are absolute constants
ck such that if we pick ckn

k log n random Boolean vectors
of length n, then with high probability there is a k-wise in-
dependent distribution supported on these points.

For the case k = 2, which is most important for our ap-
plication, we are able to remove the logarithmic factor, ob-
taining the following result.

Theorem 1.2. (informal) There is an absolute constant
c2 such that if we pick c2n

2 random Boolean vectors of length
n, then with high probability there is a pairwise independent
distribution supported on these points.

We remark that for the case of supporting an unbiased
probability distribution, i.e., the case k = 1, a sharp bound
of 2n on the threshold is already known by an elegant result
by Füredi [8].
The bounds for the case k ≤ 2 are asymptotically tight:

we prove that for any constant k, Ω(nk) random strings are
needed to have a good probability to be the support of a
k-wise independent probability distribution.
Through the result of Austrin and Mossel the existence

of a pairwise independent distribution gives approximation
resistance and we have the following immediate corollary.

Corollary 1.3. (informal) There is an absolute constant
c2 such that if we pick a random predicate P on t bits which
accepts c2t

2 of the 2t possible input strings then, assuming
the UGC, with high probability P is hereditarily approxima-
tion resistant.

Even though we have a tight answer for the number of
points needed to support a pairwise independent distribu-
tion this does automatically give an answer to the question
when a predicate is approximation resistant. Here we get
an almost tight result by showing that, for some constant
c > 0, a predicate that accepts a random set of size ct2/ log t
is likely to admit a nontrivial approximation algorithm.
This result follows by an application of an algorithm of

Hast [11]. Broadly speaking the algorithm looks at the
“quadratic part” of the predicate and applies a standard
semidefinite programming approach.
All these results have looked at very sparse sets. For

rather dense sets we can prove similar results with certainty.

Theorem 1.4. There is a constant c such that any sub-
set of size (1− ck)2n of the Boolean cube supports a k-wise
independent distribution.

For the case of k = 2 we are interested in an explicit value
of the constant and we have the following corollary.

Corollary 1.5. Any predicate on t bits that accepts more
than (32/33) · 2t inputs is, assuming the UGC, approxima-
tion resistant.

The best previous results of this form are that any pred-

icate accepting more than 2t(1 − 2−
√
t) inputs is resistant

assuming P �= NP [11], and that any predicate accepting
more than 2t(1 − (2t)−1) inputs is resistant assuming the
UGC [14].
The constant 32/33 in Corollary 1.5 is not tight. A lower

bound on the correct value of this constant is 13/16: Hast [11]
gives a non-trivially approximable predicate on 4 variables



which accepts 13 of the 16 assignments. For the correspond-
ing constant in Theorem 1.4 for k = 2, the correct value is
strictly larger than 13/16 (we elaborate on this in the full
version of the paper).
The results extend to arbitrary finite domains, and to non-

balanced k-wise independence and most proofs for the gen-
eral case can be found in [2].
An outline of the paper is as follows. After giving prelim-

inaries in Section 2 and Section 3 we establish Theorem 1.4
and Corollary 1.5 in Section 4. In Section 5 we prove the
upper bound on the size of random support for a k-wise
independent distribution and give the stronger bound for
pairwise independence in Section 6. For the reverse direc-
tions we give the lower bound on the number of random
points needed to support a k-wise independent distribu-
tion in Section 7 and the approximation result for sparse
predicates in Section 8. We end with some conclusions in
Section 9 and some standard proofs appears in an appendix.

2. PRELIMINARIES
We use {−1, 1}n to denote the n-dimensional Boolean hy-

percube, or equivalently, the set of binary strings of length
n (as is common, we use ±1 to represent bits rather than
0, 1, as this simplifies the computations). We denote by Un
the uniform distribution over {−1, 1}n.
For a function f : {−1, 1}n → R, and 1 ≤ p < ∞, we

denote its �p norm by ||f ||p = (Ex[|f(x)|p])1/p, where the
expected value is with respect to the uniform distribution
on {−1, 1}n. The �∞ norm of f is defined by ||f ||∞ =
maxx |f(x)|. We remind the reader of Hölder’s Inequal-
ity : let 1 ≤ p, q ≤ ∞ be such that 1/p + 1/q = 1, and
let f, g : {−1, 1}n → R. Then

E
x
[f(x)g(x)] ≤ ||f ||p · ||g||q

For a probability distribution µ over {−1, 1}n and subset
S ⊆ [n] of coordinates, we denote by µS the marginal distri-
bution of µ on the coordinates in S (i.e., the distribution on

{−1, 1}|S| induced by µ by only looking at the coordinates
in S). A distribution µ over {−1, 1}n is balanced k-wise in-
dependent if, for every S ⊆ [n] with |S| = k, it holds that
µS = Uk. For a probability distribution µ over {−1, 1}n, we
denote by Supp(µ) = {x : µ(x) > 0 } the support of µ.
For vectors u, v ∈ R

n, we denote by 〈u, v〉 =
Pn

i=1 uivi
their inner product. We denote by 0 = 0n ∈ R

n the all-
zeros vector in R

n, and always drop the subscript n as the
dimension will be clear from the context.
Given a set X ⊆ R

n, Conv(X) denotes the convex hull
of X, defined as the smallest convex set containing X. For
X = {x1, . . . , xm} finite, Conv(X) is the set of all points
which are convex combinations of x1, . . . , xm,

Conv(X) =

(
mX
i=1

αixi : αi ≥ 0,
mX
i=1

αi = 1

)
.

We will also need the following standard result on small
ε-nets of the unit sphere (see e.g. [17]):

Theorem 2.1. For every n and 0 < ε < 1/3, there exists
a set S of at most (5/ε)n unit vectors in R

n, such that, for
any unit vector u ∈ R

n, there is a v ∈ S satisfying

〈u, v〉 ≥ 1− ε.

2.1 Multilinear Polynomials
We shall frequently work with multilinear polynomials f :

{−1, 1}n → R, defined in terms of

f(x) =
X
S⊆[n]

f̂(S)
Y
i∈S

xi,

for some set of coefficients {f̂S}S⊆[n]. It is well-known that
any function f : {−1, 1}n → R can be uniquely represented

as such a multilinear polynomial, and f̂(S) are the Fourier-
Walsh coefficients of f . Henceforth we shall refer to func-
tions f : {−1, 1}n → R as polynomials. We also introduce
the convenient shorthand

χS(x) =
Y
i∈S

xi

for the multilinear monomial corresponding to the set S ⊆
[n].
We say that a polynomial f : {−1, 1}n → R has degree d

if f̂(S) = 0 for every S with |S| > d. We let f=d denote the
part of f that is of degree exactly d.
As we frequently work with polynomials f of low degree,

say k, and constant coefficient f̂(∅) = 0, we introduce the
following notation for the set of all S ⊆ [n] with cardinality
1 ≤ |S| ≤ k:

Dk := Dk(n) = {S ⊆ [n] | 1 ≤ |S| ≤ k },
and denote by dk := dk(n) the cardinality dk = |Dk|. Note
that dk =

Pk
i=1

`
n
i

´ ≤ nk.
It is useful to view the monomials that can be input into

a low degree polynomial as a vector and towards this end
let us introduce the following notation.

Definition 2.2. Given a string x ∈ {−1, 1}n, we define
x:≤k: as

x:≤k: =
M
S∈Dk

χS(x) ∈ {−1, 1}dk ,

Here, ⊕ denotes the direct sum, e.g., a⊕ b⊕ c = (a, b, c).
In other words, x:≤k: is the vector obtained by writing down
the values of all non-constant monomials of degree at most
k, evaluated at x. For a set X ⊆ {−1, 1}n, we use X :≤k: ⊆
{−1, 1}dk ⊆ R

dk to denote the set {x:≤k: |x ∈ X }.
Note that every v ∈ R

dk is in 1–1 correspondence with
a degree-k polynomial fv : {−1, 1}n → R with E[fv ] = 0,
defined by fv(x) =

˙
v, x:≤k:

¸
for every x ∈ {−1, 1}n (i.e.,

we interpret v as the Fourier-Walsh coefficients of fv).

2.2 Hypercontractivity
The main analytic tool in all our upper bounds is hy-

percontractivity. A well-known consequence of the famous
Hypercontractivity Theorem [5, 4] can be stated as follows.

Theorem 2.3. Let f : {−1, 1}n → R be a degree-d poly-
nomial. Then, for every 1 ≤ p < q ≤ ∞, it holds that

||f ||p ≥
r
p− 1

q − 1

d

||f ||q .

The following stronger estimate for the case p = 2, q = 4,
and d = 2 (i.e., quadratic polynomials) is sometimes useful.

Theorem 2.4. Let f : {−1, 1}n → R be a degree-2 poly-
nomial. Then

||f ||2 ≥ 15−1/4||f ||4.



This estimate is not new, but as we do not know of a
reference for it, we include a proof. A (different) proof of
the same inequality for degree-2 multilinear polynomials in
Gaussian variables can be found in [15], Corollary 7.36 and
Remark 7.37.

Proof. We want to estimate E[f4] for a quadratic poly-
nomial f . We do this by expanding the fourth power and
looking at the expectation of each term. Any term that con-
tains a variable to an odd power gives zero contribution to
the expected value and thus we only care about terms of
even degree. Replacing any linear terms xi by x0xi for a
new variable x0 we get the same expected value and hence
we can assume that f is homogeneous of degree two. For
notation let us use f(x) =

P
e f̂exixj for edges e = (i, j)

and let us order the edges in the lexicographic order.
Let us look at the expansion of f4. We have the following

three types of terms that contribute to the expected value:

1. f̂4
e .

2. f̂2
e1 f̂

2
e2 with e1 < e2.

3. f̂e1 f̂e2 f̂e3 f̂e4 with all edges ei distinct and forming a
quadrilateral.

The first type of terms appear with coefficient 1, the sec-
ond type with coefficient 6 and the last with coefficient 24.
Let us apply the inequality ab ≤ 1

2
(a2+b2) for the terms of

type three with a the product of two edges without common
endpoints. This gives new terms of the form f̂2

e1 f̂
2
e2 . Given

e1 and e2 there are two ways to choose (e3, e4) to complete
the quadrilateral. Both of these choices gives a contribution
12f̂2

e1 f̂
2
e2 and thus we get the total estimateX

e

f̂4
e + 30

X
e1<e2

f̂2
e1 f̂

2
e2 ,

for E[f4]. This is clearly bounded by 15(
P

e f̂
2
e )

2 = 15E[f2]2

and the proof is complete.

For some of our proofs, we need that the �1 norm is related
to the �2 norm, which is not an immediate consequence of
Theorem 2.3. It does however follow from a classic “duality”
argument.

Theorem 2.5. Let f be a random variable. If f satisfies
||f ||2 ≥ δ||f ||p for some constants p > 2 and δ > 0, then

||f ||1 ≥ δp/(p−2)||f ||2.
Proof. Let r = (p − 2)/(2p − 2) ∈ (0, 1/2), and define

g(x) = f(x)2r, h(x) = f(x)2−2r. By Hölder’s Inequality,

||f ||22 ≤ ||g||1/2r · ||h||1/(1−2r) = ||f ||2r1 · ||f ||2−2r
(2−2r)/(1−2r)

= ||f ||2r1 · ||f ||2−2r
p ≤ δ2r−2 · ||f ||2r1 · ||f ||2−2r

2

Simplifying, we get ||f ||1 ≥ δ(1−r)/r||f ||2 = δp/(p−2)||f ||2 .
Combined with the Hypercontractivity Theorem, this gives

Theorem 2.6. Let f : {−1, 1}n → R be a degree-d poly-
nomial. Then

||f ||1 ≥ e−d||f ||2.
Proof. The Hypercontractivity Theorem combined with

Theorem 2.5 implies that for any p > 2,

||f ||1 ≥
“
(p− 1)

− p
2(p−2)

”d
||f ||2 .

Letting p → 2, this gives the desired bound.

2.3 Concentration Bounds
It is known that hypercontractivity implies good concen-

tration bounds for low-degree polynomials (see e.g. [7]). We
will need the following two results, the standard proofs of
which can be found in the appendix.

Theorem 2.7. Let f : {−1, 1}n → R be a degree-d poly-

nomial with ||f ||2 = 1 and any t > ed/2,

Pr[|f | > t] ≤ exp(−ct2/d),
where c := d

2e
.

Theorem 2.8. Let f : {−1, 1}n → R be a degree-2 poly-
nomial with ||f ||2 = 1, and let x1, . . . , xm be a sequence of m
independent uniformly random elements of {−1, 1}n. Then,
for every r > 0 satisfying r < 2e

√
m, it holds that

Pr

"˛̨̨
˛̨ mX
i=1

f(xi)−mE[f ]

˛̨̨
˛̨ > r

√
m

#
≤ 2 exp

„
− r2

8e2

«
.

Furthermore, this holds also if f is replaced by |f |.

3. LIMITED INDEPENDENCE AND LOW-
DEGREE POLYNOMIALS

We now characterize the sets X ⊆ {−1, 1}n which sup-
port k-wise independent distributions, in terms of degree-k
polynomials over {−1, 1}n.

Theorem 3.1. Let X ⊆ {−1, 1}n be a set of binary strings.
Then, the following conditions are equivalent:

(1) There exists a balanced k-wise independent distribution
µ over {−1, 1}n such that Supp(µ) ⊆ X.

(2) 0 ∈ Conv(X :≤k:).

(3) There is no degree k polynomial f : {−1, 1}n → R such
that f(x) > E[f ] for every x ∈ X.

This characterization is most likely already known, but as
we have not been able to find it in the literature, we give a
proof here.

Proof. (1) ⇔ (2). We view Conv(X :≤k:) as the set
of probability distributions over {−1, 1}n supported on X.
Any convex combination

P
x∈X αx · x:≤k: ∈ Conv(X :≤k:)

corresponds to the probability distribution µα over {−1, 1}n
in which

µα(x) =


αx if x ∈ X
0 otherwise

.

Thus, it suffices to prove that, for every convex combina-
tion {αx}x∈X , the corresponding distribution µα has all
k-dimensional marginals being the uniform distribution iffP
αx ·x:≤k: = 0. This follows from the well known fact that

a set of bits has the uniform distribution iff the exclusive-or
of any subset is unbiased.

(2) ⇔ (3). Without loss of generality, we can restrict
our attention to f such that E[f ] = 0. Now, 0 is not in the
convex hull of X :≤k: if and only if there exists a separating
hyperplane v ∈ R

dk such that
˙
v, x:≤k:

¸
> 0 for every x ∈ X.

The equivalence now follows by the correspondence between
v ∈ R

dk and degree-k polynomials f with E[f ] = 0.



4. POLYNOMIALS ARE SOMEWHAT BAL-
ANCED

In this section we prove that low-degree polynomials must
exceed their expectation by a constant amount on a constant
fraction of inputs.

Theorem 4.1. There is a universal constant c such that
for any degree-d polynomial f : {−1, 1}n → R with E[f ] = 0
and Var[f ] = 1,

Pr[f > cd] > cd.

A similar statement can be found in [7]. They lower bound
Pr[f > 0] rather than Pr[f > cd], but this difference is
superficial, and their proof (which is quite different from the
one below) can be adapted to a proof of Theorem 4.1 as well.

Proof. We are going to use the relation between the �1
norm and the �2 norm given by Theorem 2.6. Let c = (4e)−2

and define g : {−1, 1}n → R by

g(x) = 1f>cd(x) · f(x) =

f(x) if f(x) > cd

0 otherwise
.

We will lower bound Pr[f > cd] = Pr[g > 0] by the second
moment method:

Pr[g > 0] ≥ E[g]2

E[g2]
> ||g||21, (1)

where the last inequality follows from E[g2] < E[f2] = 1. For
||g||1, note that, since E[f ] = 0, we have E[1f>0 ·f ] = 1

2
||f ||1 ,

implying that

||g||1 = E[g] =
1

2
||f ||1 − E[10<f≤cdf ] ≥ 1

2
||f ||1 − cd,

which, by Theorem 2.6, is lower-bounded by

||g||1 ≥ 1

2
e−d||f ||2 − cd ≥ 1

2
e−d − 1

4
e−2d ≥ 1

4
e−d ≥ cd/2

so that Pr[g > 0] > ||g||21 ≥ cd, as desired.

As an easy corollary, we see that for every k, any set
X ⊆ {−1, 1}n of sufficiently large constant density supports
a k-wise independent distribution.

Corollary 4.2. Every set X ⊆ {−1, 1}n of size |X| ≥
2n(1− e−2k/4) supports a balanced k-wise independent dis-
tribution.

The proof is a direct consequence of Theorem 3.1 and (the
proof of) Theorem 4.1. As the corollary only needs a bound
on Pr[f > 0] we define g to be the positive part of f . Then

||g||1 =
1

2
||f ||1 ≥ 1

2
e−k||f ||2 =

1

2
e−k

and the corollary follows from (1).
We note that the exponential dependence on the degree

(i.e., the amount of independence) in both Theorem 4.1 and
Corollary 4.2 is tight. To see this, consider a scaled version
of the degree-d polynomial f : {−1, 1}n → R defined by

f(x) =

dY
i=1

(1− xi)− 1,

which takes the value 2d − 1 with probability 2−d, and the
value −1 with probability 1− 2−d.

The bound in Corollary 4.2 is based on the relation be-
tween the �2 norm and the �1 norm. Using Theorems 2.4
and 2.5 one gets the bound ||f ||1 ≥ 15−1/2||f ||2 for degree-2
polynomials. This in turn improves the bound for k = 2
in Corollary 4.2 from 1 − e−4/4 to 59/60. As an alterna-
tive approach Ryan O’Donnell has suggested the following
proof along the lines of the proof [7] for their variant of
Theorem 4.1, giving an even better bound of 32/33.

Theorem 4.3. Let f : {−1, 1}n → R be a degree-2 poly-
nomial with E[f ] = 0, Var[f ] = 1. Then Pr[f > 0] > 1/33.

Proof. The proof is based on the inequality 1x>0 ≥
0.13x+0.062x2−0.0021x4, where 1x>0 is the indicator func-
tion of the event x > 0. Hence, we have that

Pr[f(x) > 0] = E[1f(x)>0] ≥ 0.062E[f2]− 0.0021E[f4].

Using Theorem 2.4 to bound the �4 norm in terms of the �2
norm and plugging in ||f ||2 = 1, we have that

Pr[f(x) > 0] ≥ 0.062 − 15 · 0.0021 = 0.0305 > 1/33

We remark that choosing the coefficients more carefully,
the lower bound of 0.0305 can be marginally improved (to
roughly 0.0309401).

Combining the proof above with the result of Austrin and
Mossel [3] we get the following theorem.

Theorem 4.4. Let P be any predicate on t bits that ac-
cepts at least (32/33) · 2t input strings. Then, assuming the
UGC, P is approximation resistant.

Theorem 4.3 uses the relation between �2 norm and �4
norm given by Theorem 2.4, and that bound is tight, so it is
not clear whether the constant can be improved using this
method. The first approach, giving 59/60, uses the relation

between �1 norm and �2 norm, for which our constant 15−1/2

is probably not the best possible. It is quite possible that
that constant can be taken larger than (33/4)−1/2 , which
would result in a better constant in Theorem 4.4.

5. OBTAINING K-WISE INDEPENDENCE
In this section, we give an upper bound of (cn)k log(nk) on

the threshold for randomly supported independence. This
comes relatively close to matching our lower bound of Ω(nk)
for constant k, being only a logarithmic factor off from being
tight. In the next section, we prove our main theorem, that
in the case k = 2, this logarithmic factor can be removed.

Theorem 5.1. There are universal constants c, δ > 0 such
that the following holds. Let x1, . . . , xm ∈ {−1, 1}n be a se-
quence of m independent uniformly random elements from
{−1, 1}n. Then, if m > (cn)k log(nk), the probability that
X = {x1, . . . , xm} contains a balanced k-wise independent
distribution is at least 1− exp(−δkm)

Proof. By Theorem 3.1, x1, . . . , xm does not support a
k-wise independent distribution if and only if there is a
degree-k polynomial f : {−1, 1}n → R with E[f ] = 0 such
that f(xi) < 0 for every i ∈ [m].
For any fixed f , Theorem 4.1 gives that the probabil-

ity that f(xi) < τk for every xi is at most (1 − τk)m ≤
exp(−τkm), where τ is the constant from Theorem 4.1. Thus,
it is clear that any fixed f has a very small probability of



witnessing that x1, . . . , xm does not support a k-wise inde-
pendent distribution.
To bound the probability that any f witnesses that x1,

. . ., xm supports a k-wise independent distribution, we con-
struct a net of degree-k polynomials as follows: let Fε denote
the set of degree-k polynomials f : {−1, 1} → R such that
E[f ] = 0, Var[f ] ≤ 2 and every coefficient of f is an integer
multiple of ε.
We then have that |Fε| ≤ (1/ε)O(dk) = exp(c1n

k log 1/ε)
for some universal constant c1. Then Theorem 4.1 and a
union bound gives that the probability that there exists an
f ∈ Fε such that f(xi) < τk for every xi, is bounded by

|Fε|(1− τk)m ≤ exp(c1n
k log(1/ε)− τkm) ≤ exp(−τkm/2),

provided m ≥ 2c1(n/τ )
k log(1/ε).

Now, given an arbitrary degree-k polynomial f with E[f ] =

0, denote by f̃ the polynomial in Fε which is closest to f
in �∞ norm. Then, if ||f − f̃ ||∞ ≤ τk for every degree-
k polynomial f , we would be done, since the existence of
f : {−1, 1}n → R such that f(xi) < 0 for every xi then

implies the existence of f̃ ∈ Fε such that f̃(xi) ≤ f(xi) +

|f̃(xi)−f(xi)| < τk, which happens with probability at most
exp(−τkm/2) ≤ exp(−δkm) for δ = τ/2.
We have the following easy bound on the distance ||f −

f̃ ||∞.

Claim 5.2. For every f with ||f ||2 = 1,

||f − f̃ ||∞ ≤ εnk,

provided this quantity is smaller than 1.

Proof. Let f ′ be the result of rounding every coefficient
of f to its nearest multiple of ε. Then, for any x ∈ {−1, 1}n,

|f(x)− f ′(x)| =
˛̨̨
˛̨̨ X
S∈Dk

(f̂(S)− f̂ ′(S))χS(x)

˛̨̨
˛̨̨ ≤ εnk,

where we used that |Dk| ≤ nk. It remains to show that
f ′ ∈ Fε, i.e., that Var[f

′] ≤ 2. But this follows immediately
since

Var[f ′] = ||f ′||2 ≤ ||f ||2 + ||f − f ′||2 ≤ 1 + ||f − f ′||∞ ≤ 2

provided the bound on ||f − f ′||∞ ≤ 1.

To finish the proof of Theorem 5.1, we thus conclude that
in order to have ||f − f̃ ||∞ ≤ τk, it suffices to take

ε = (τ/n)k.

Plugging this into the bound

m ≥ 2c1(n/τ )
k log(1/ε)

we see that it suffices to take m = (cn)k log(nk) for c a
constant depending only on τ , which in turn is a universal
constant.

6. PAIRWISE INDEPENDENCE
In this section, we give our main theorem.

Theorem 6.1. There are constants c, δ > 0 such that the
following holds. Let x1, . . . , xm ∈ {−1, 1}n be a sequence of
m independent uniformly random elements from {−1, 1}n.
Then, if m > cn2, the probability that X = {x1, . . . , xm}
contains a balanced pairwise independent distribution is at
least 1− exp(−δ√n).

We get an immediate corollary.

Corollary 6.2. There are constants c, δ > 0 such that
the following holds. Let x1, . . . , xs ∈ {−1, 1}t be a sequence
of s independent uniformly random elements from {−1, 1}t.
Let P be the predicate that accepts exactly the strings (xi)

s
i=1.

Then, assuming the UGC, if s > ct2, the probability that P
is approximation resistant is at least 1− exp(−δ√t).
Before proceeding with the proof of Theorem 6.1, let us

briefly describe the intuition behind it. The idea is to look
at the convex hull K of the set of all ±1 combinations of
x:≤2:

1 , . . . , x:≤2:
m , and compare this to the sum x = x:≤2:

1 +. . .+
x:≤2:
m . By an application of Theorem 3.1, it suffices to prove

that the latter sum lies strictly inside K with high probabil-
ity. Intuitively, since x is a sum of m independent vectors
with expected value 0 and length

√
d2, the total length of x

should be around
√
m · d2. On the other hand, K consists of

all [−1, 1]-valued linear combinations of x:≤2:
1 , . . . , x:≤2:

m and
as an easy consequence of hypercontractivity it will turn out
that, in every direction v, each x:≤2:

i contributes a constant
to the expected width ofK in direction v. Thus one can hope
that the size of K grows linearly in m so that if m is a suffi-
ciently large multiple of d2, K contains any vector of length
||x|| ≈ √

m · d2. It turns out that this is indeed the case, but
in order to be able to show that the size of K grows linearly
in every direction, we need to use the concentration inequal-
ity Theorem 2.8 for quadratic polynomials. It is this part
which breaks down when one tries to repeat the same proof
for k-wise independence in general—the necessary analogue
of Theorem 2.8 is simply not true. We feel that this limi-
tation to pairwise independence is a limitation of our proof
rather than an inherent limitation in the problem, and that
the analogue of Theorem 6.1 (where we require m > (cn)k)
should be true also for higher independence.

Proof of Theorem 6.1. Let m > cd2, where c is a con-
stant that will be chosen sufficiently large. We will prove
that, with probability at least 1 − exp(−δ√n), for some
δ > 0, we have 0 ∈ Conv(X :≤2:). By Theorem 3.1 this im-
plies that X contains a pairwise independent distribution.
This then implies Theorem 6.1, since d2 ≤ n2.
Let

K =

(
mX
i=1

aix
:≤2:
i : |ai| ≤ 1

)
,

and define

x =

mX
i=1

x:≤2:
i ∈ R

d2 .

Then, it suffices to prove that x lies in the interior of K,
since if x =

P
i aix

:≤2: with not all ai = 1, we can rearrange
and write 0 as the convex combination

0 =

mX
i=1

1− aiP
j(1− aj)

x:≤2:
i ∈ Conv(X :≤2:).

For a unit vector v ∈ R
dk , let

Width(K, v) = sup
x∈K

{〈x, v〉}

be the width of K in the direction v.
We will prove that, with high probability, the minimum

width of K is larger than ||x|| (where || · || denotes the stan-
dard Euclidean norm in R

dk). In particular, we have the
following two lemmas.



Lemma 6.3. There are constants c1 ∈ R, c2 > 0 and δ1 >
0 such that, if m > c1d2, the probability that

inf
v
Width(K, v) < c2m (2)

is at most exp(−δ1m).

Lemma 6.4. There is a constant δ2 > 0 such that if m ≥
|D2|, the probability that

||x|| > 2
√
md2 (3)

is at most exp(−δ2√n).

Before proving the lemmas, let us see how they suffice to
finish the proof of the theorem. Let c = max(c1, (2/c2)

2),
and m > cd2. Then by a union bound there is a δ such that
with probability at least 1−exp(−δ√n), neither Equation (2)
nor Equation (3) holds, and we have

inf
v
Width(K, v) ≥ c2m > 2

√
md2 ≥ ||x||.

This implies that x lies strictly inside K, as desired. Hence,
if m > cn2 ≥ c0d2, the probability that 0 ∈ Conv(X :≤2:) is
at least 1− exp(−δ√n), and we are done.

It remains to prove the two lemmas. We begin with
Lemma 6.4 as this is the easier of the two.

Proof of Lemma 6.4. Let

l = ||x||2 =
X
S∈D2

 
mX
i=1

χS(xi)

!2

be the squared length of x. We can then view l as a de-
gree 4 polynomial over {−1, 1}mn. Our goal is to apply the
concentration bound Theorem 2.7 to l. To be successful in
this, we need that the variance Var[l] is of a lower order than
E[l]2. The expectation of l is easily seen to be E[l] = d2m.
To compute the variance of l, we compute

l2 =
X
S1,S2

 
mX
i=1

χS1(xi)

!2 mX
i=1

χS2(xi)

!2

=
X
S1,S2

X
i1,i2,i3,i4∈[m]

χS1(xi1)χS1(xi2)χS2(xi3)χS2(xi4).

Define

A(S1, S2) =
X

i1,i2,i3,i4∈[m]

χS1(xi1)χS1(xi2)χS2(xi3)χS2(xi4),

and let us analyze E[A(S1, S2)]. If S1 �= S2, the expected
value of

χS1(xi1)χS1(xi2)χS2(xi3)χS2(xi4)

is 0 unless i2 = i1 and i4 = i3. Hence for S1 �= S2, we have

E[A(S1, S2)] =
X
i1,i3

E[χS1(xi1)
2χS2(xi3)

2] = m2,

since each term equals 1. Now let S1 = S2 := S, and con-
sider the expected value of

χS(xi1)χS(xi2)χS(xi3)χS(xi4).

If for any j ∈ [m] it is the case that only one of the ik:s equal
j, this expectation is 0, and otherwise the expectation is 1.
Thus the only tuples (i1, i2, i3, i4) for which the expectation

is not 0 are those where the values are paired up in the sense
that i1 = i2 and i3 = i4, or i1 = i3 and i2 = i4, or i1 = i4
and i2 = i3. There are exactly 3m(m−1)+m ways to choose
i1, i2, i3, i4 in such a paired way and hence in this case

E[A(S, S)] = 3m(m− 1) +m.

After these lengthy computations we thus find that

E[l2] =
X
S1,S2

E[A(S1, S2)] = d2
2m

2 + 2d2m(m− 1)

so that

Var[l] = 2d2m(m− 1) ≤ 2d2m
2,

Applying Theorem 2.7 to the polynomial (l−E[l])/
p
Var[l],

we have

Pr[||x|| > 2
√
d2m] = Pr[l − E[l] > 3d2m]

≤ exp(−c(3d2m/
p
Var[l])1/2) ≤ exp(−δ2d1/4

2 ),

for δ2 = c(9/2)1/4. Since d2 ≥ n2, the lemma follows.

We now move on to the proof of Lemma 6.3. By a stan-
dard argument the width is of K in any fixed direction is
likely to be close to its expectation. Applying this to an
ε-net of points we first prove that the maximum width of
K is bounded and then proceed to establish also that the
minimum is of the same order of magnitude.

Lemma 6.5. There are constants c3 and τ > 0 such that
the following holds: for every v ∈ R

d2 with ||v|| = 1, the
probability that

c3m ≤ Width(K, v) ≤ (1 + c3)m

is at least 1− exp(−τm).

Proof. Set 2c3 = e−2. For v ∈ R
d2 with ||v|| = 1, let

fv : {−1, 1}n → R be the corresponding degree-2 polynomial
such that fv(x) =

˙
v, x:≤2:

¸
.

By definition,

Width(K, v) = max
a∈[−1,1]m

mX
i=1

ai
D
v, x:≤2:

i

E
.

The maximum is clearly attained by setting

ai = sgn
“D
v, x:≤2:

i

E”
so that

Width(K, v) =

mX
i=1

˛̨̨D
v, x:≤2:

i

E˛̨̨
=

mX
i=1

|fv(xi)|.

Applying Theorem 2.8 with r = c3
√
m, the probability thatP

i |fv(xi)| deviates by more than c3m from its expectation

is at most exp(−τm) for some constant τ > 0 (e.g., τ ≤ c23
8e2

−
ln 2
m

). But the expectation of
P

i |fv(xi)| equals ||fv ||1 · m,
which is trivially upper bounded by ||fv ||2 ·m = m, and by
Theorem 2.6 lower bounded by 2c3||fv ||2 ·m = 2c3m.
Hence, with probability at least 1− exp(−τm), we have

(||fv||1 − c3)m ≤ Width(K, v) ≤ (||fv ||1 + c3)m

c3m ≤ Width(K, v) ≤ (1 + c3)m.



We now prove the lower bound on the minimum width of
K.

Proof of Lemma 6.3. Let V = {v1, . . . , vL} be an ε-net
of the unit sphere in R

d2 , i.e., a set of vectors such that, for
every v ∈ R

d2 with ||v|| = 1, there is a vector vi ∈ V such
that 〈v, vi〉 ≥ 1− ε. As stated in Theorem 2.1 such a set can

be constructed of size at most L = (5/ε)|d2|.
For any vi ∈ V , Lemma 6.5 tells us that

c3m ≤ Width(K, vi) ≤ (1 + c3)m

except with probability at most exp(−τm). By a union
bound, these inequalities then hold for every vi ∈ V except
with probability

L exp(−τm) = exp(−τm+ ln(5/ε)d2) = exp(−τm/2),
provided m is a sufficiently large multiple of d2 · ln(1/ε).
Let Wmax = sup||v||=1 Width(K, v). We now prove that

Wmax is small.
For any w ∈ R

d2 with ||w|| = 1, we can write w = (1 −
ε′)vi +

p
1− (1− ε′)2w′ for some ε′ ≤ ε, vi ∈ V and unit

vector w′. We then have for any u ∈ K

〈u,w〉 = (1− ε′) 〈u, vi〉+
p
ε′(2− ε′)

˙
u,w′¸

≤ Width(K, vi) +
√
2εWidth(K,w′)

≤ (1 + c3)m+
√
2εWmax.

Taking the supremum over all u ∈ K and unit vectors w ∈
R
d2 , we obtain

Wmax ≤ (1 + c3)m+
√
2εWmax

Wmax ≤ 1 + c3

1−√
2ε
m ≤ (1 + 2c3)m,

provided ε is chosen sufficiently small compared to c3.
Having established that K is not too wide in any direction

we can now prove that it is not too narrow completing the
proof of Lemma 6.3.
We have, again for any w = (1− ε′)vi+

p
ε′(2− ε′)w′ and

u ∈ K,

〈u, w〉 = (1− ε′) 〈u, vi〉+
p
ε′(2− ε′)

˙
u, w′¸

≥ (1− ε)c3m−
√
2εWidth(K,w′)

≥ ((1− ε)c3 −
√
2ε(1 + 2c3))m ≥ c3m/2,

again provided ε is sufficiently small compared to c3.
Hence, with probability at least 1 − exp(−δm), we have

inf ||v||=1 Width(K, v) ≥ c3m/2 := c2m, provided that m is
a sufficiently large multiple c1d2 of d2.

7. A LOWER BOUND FOR RANDOM SUP-
PORT SIZE

In this section we give a lower bound on the threshold for
randomly supported independence.

Theorem 7.1. There exists a universal constant δ such
that the following holds. Let x1, . . . , xm be a sequence of
m independent uniformly random samples from {−1, 1}n.

Then, if m < nk

6k2 , the probability that x1, . . . , xm can sup-

port a balanced k-wise independent distribution is at most

exp(−Ω(δkn)).

Proof. We will prove that, if m ≤ nk

6k2 , then with high

probability x:≤k:
1 , . . . , x:≤k:

m are linearly independent. In par-

ticular, this implies that any convex combination of x:≤k:
1 ,

. . ., x:≤k:
m is non-zero, so that, by Theorem 3.1, x1, . . . , xm

does not support a k-wise independent distribution.
The main component of the proof is the following lemma.

Lemma 7.2. Let m ≤ nk

6k2 , and let y1, . . . , ym ∈ R
dk be m

arbitrary points. Then, the probability that a uniformly ran-
dom point x ∈ {−1, 1}n has x:≤k: lying in the space spanned
by y1, . . . , ym is at most exp

`− n
2k2k

´
.

Before proving the lemma we finish the proof of the the-

orem. Let m = nk

6k2 , and let x1, . . . , xm be m uniformly

random points of {−1, 1}n. Using Lemma 7.2, we conclude

that the probability that x:≤k:
1 , . . . , x:≤k:

m are linearly inde-
pendent is at least

1−m exp
“
− n

2k2k

”
≥ 1− exp(−Ω(δkn)),

for δ = 1/3 (say), which proves Theorem 7.1.

Next, we turn to the proof of the lemma.

Proof of Lemma 7.2. Let S ⊆ R
dk be the space spanned

by the vectors y1, . . . , ym. Then S has dimension at most
m and hence is determined by at least dk − m linearly in-
dependent equations v1, . . . , vdk−m ∈ R

dk such that y ∈ S
iff 〈vi, y〉 = 0 for every i ∈ [dk − m]. Equivalently, for
x ∈ {−1, 1}n, we have x:≤k: ∈ S iff vi(x) = 0 for every i,
where we again interpret vi as a degree-k polynomial. We
will prove that only an exponentially small fraction of all
points x ∈ {−1, 1}n satisfy these conditions.
In what follows, we explicitly refer to dk as a function of

n, i.e.,

dk(n) :=

kX
i=1

 
n

i

!
≥
“n
k

”k
,

Let T (n,m) be the maximum possible number of solutions
x ∈ {−1, 1}n to a system of at least dk(n) − m linearly
independent degree-k polynomial equations v1(x) = 0, . . .,
vdk(n)−m(x) = 0. We will prove that

T (n,m) ≤ (2k − 1)n/k · exp(km1/k). (4)

If dk(n) ≤ m so that n ≤ m1/kk, we have the trivial

bound T (n,m) ≤ 2n ≤ exp(km1/k), so let dk(n) > m and
assume inductively that Equation (4) holds for all n′ < n.
Assume that there is a vi which has degree exactly k (if all
vi have degree at most k − 1, we would get an even better
bound). Without loss of generality, we can take v1 to have
degree exactly k, and having [k] as a non-zero coefficient,
i.e., v̂1([k]) �= 0.
Next, eliminate (by standard Gaussian elimination) all

coordinates S with S∩ [k] �= ∅. As there are exactly dk(n)−
dk(n− k) such values of S, the resulting system has at least
(dk(n)−m)−(dk(n)−dk(n−k)) = dk(n−k)−m equations,
and hence has at most T (n−k,m) solutions. Let us, for each
such solution x∗ ∈ {−1, 1}n−k, consider the number of ways
of extending it to a solution for the original system. Plugging
in x∗ in the equation v1(x) = 0, this equation becomes an
equation of the form

p(x[k]) = 0,



for some function p : {−1, 1}k → R. Furthermore, the func-
tion p is not identically zero, since p̂([k]) �= 0. This implies
that the number of ways of extending x∗ is at most 2k − 1,
and hence we have

T (n,m) ≤ (2k − 1) ·T (n− k,m) ≤ (2k − 1)n/k · exp(km1/k).

Thus, the probability that x:≤k: lies inside S for a uni-
formly random point x ∈ {−1, 1}n is at most

(2k − 1)n/k exp(km1/k)/2n = (1− 2−k)n/k exp(km1/k)

≤ exp
“
− n

k2k
+ km1/k

”
.

Plugging inm ≤ nk

6k2 , we have km
1/k ≤ n

2k2k , and the lemma

follows.

8. APPROXIMATING A RANDOM PREDI-
CATE

In this section we let P be a predicate constructed by ran-
domly choosing O(t2/ log t) t-bit strings and making these
be the inputs accepted by P . We have the following theo-
rem.

Theorem 8.1. There is a constant c > 0 such that the
following is true. Suppose s ≤ ct2/ log t and suppose P :
{−1, 1}t �→ {0, 1} is a predicate chosen randomly among all
predicates that accept s inputs. Then, with probability 1− 1

t
,

P is not approximation resistant.

In the analysis we assume that the s strings accepted by
P are chosen with replacement and hence are independent.
Since the strings are distinct with probability 1− O(t42−t)
this is sufficient to prove the theorem.
As discussed in Section 2, P can be represented by a mul-

tilinear polynomial and in this section the quadratic part,
denoted by P=2, is of special importance.
The following lemma is a special case of Theorem 4.9 (us-

ing C = 0) of [11].

Lemma 8.2. Suppose P=2(y) > 0 for any y ∈ P−1(1),
then P is not approximation resistant.

The key technical lemma to apply the above lemma is the
following.

Lemma 8.3. Suppose P is constructed as in the hypothe-
sis of Theorem 8.1, then for any y ∈ P−1(1),

Pr[P=2(y) ≤ 0] ≤ t−3.

Using an application of the union bound it is easy to see
that Lemma 8.2 and Lemma 8.3 jointly imply Theorem 8.1
and thus all we need to do is to establish Lemma 8.3.

Proof of Lemma 8.3. P=2 is the quadratic form

P=2(x) =
X
i<j

P̂ijxixj

where

P̂ij = 2−t
X

z∈P−1(1)

zizj .

Now for y ∈ P−1(1) we see that

P=2(y) = 2−t
X
i<j

X
z∈P−1(1)

zizjyiyj .

= 2−t

0
BB@
 
t

2

!
+

X
z∈P−1(1)

z 
=y

X
i<j

zizjyiyj

1
CCA (5)

The sum in Equation (5) is of the form
P

z Py(z) where
Py is a quadratic polynomial such that E[Py(z)] = 0 and
E[(Py(z))

2] =
`
t
2

´
. As we are summing Py at s − 1 random

points we have, if r ≤ 2e
√
s− 1, by Theorem 2.8, that

Pr

2
4
˛̨̨
˛̨X

z

Py(z)

˛̨̨
˛̨ ≥ r

vuut(s− 1)

 
t

2

!35 ≤ exp(−Ω(r2)).

Setting r =
q`

t
2

´
/(s− 1), this implies, for s = ω(t), that

Pr

"˛̨̨
˛̨X

z

Py(z)

˛̨̨
˛̨ ≥

 
t

2

!#
≤ exp(−Ω(t2/s)) ≤ 1/t3 (6)

for an appropriately chosen s = Θ(t2/ log t) and the proof
of the lemma is complete.

9. CONCLUDING REMARKS
Assuming the UGC we have established rather tight bounds

on the density at which a random predicate is likely to be-
come approximation resistant. This indicates that approxi-
mation resistance is the typical property of a predicate and
only very sparse or very special predicates can be efficiently
approximated in a non trivial way.
It is difficult not to view this paper as yet another reason

that we must, if possible, settle the Unique Games Conjec-
ture in the close future. Another road ahead is of course to
prove the results without the UGC but it is not obvious that
this is significantly easier.
On a detailed technical level, although our results are

rather tight we have two annoying logarithmic gaps that
should be closed.
We feel that it is likely that O(nk) random points are

sufficient to support a k-wise independent distribution with
good probability. For the case of the density at which a
random predicate becomes approximation resistance we feel
less convinced of the correct answer but our inclination is to
believe that the correct answer is Θ(t2).
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APPENDIX

A. PROOFS OF CONCENTRATION BOUNDS

Proof of Theorem 2.7. Set p = t2/d · 1
e
. By Markov’s

inequality, we have

Pr[|f | > t] = Pr[|f |p > tp] ≤ ||f ||pp
tp

. (7)

Now, since t > ed/2, p is at least 1. This implies, using
Theorem 2.3 for p > 2 and the monotonicity of �p norms for
1 ≤ p ≤ 2, that

||f ||p ≤ √
pd||f ||2 = te−d/2.

Plugging this into Equation (7) we get

Pr[|f | > t] ≤
„
te−d/2

t

«p

= exp(−pd/2) = exp

„
− d

2e
t2/d

«
.

Proof of Theorem 2.8. ByMarkov’s inequality and the
standard Chernoff method, we have

Pr

"
mX
i=1

f(xi)−mE[f ] > r
√
m

#
≤

Qm
i=1 E[exp(λf(xi))]

exp(λmE[f ] + λr
√
m)

.

(8)
We use the Taylor expansion of exp(x) =

P∞
k=0 x

k/k! and
Theorem 2.3 to bound the expression E[exp(λf(xi))]:

E[exp(λf(xi))] =

∞X
k=0

E
ˆ
(λf(xi))

k
˜

k!

≤ 1 + λE[f ] +

∞X
k=2

(λk)k

k!
≤ 1 + λE[f ] +

∞X
k=2

(λk)k

(k/e)k

= 1 + λE[f ] +
(λe)2

1− λe
≤ exp(λE[f ] + 2λ2e2),

where the last two steps assume that λ is small enough so
that λ ≤ (2e)−1. Hence, the bound in Equation (8) becomesQm

i=1 E[exp(λf(xi))]

exp(λmE[f ] + λr
√
m)

≤ exp(2λ2e2m− λr
√
m)

This is minimized for λ = r
√
m

4e2m
= r

4e2
√
m

(the bound r <

2e
√
m guarantees that the assumption λ ≤ (2e)−1 is satis-

fied). Plugging in this value of λ gives the bound

Pr

"
mX
i=1

f(xi)−mE[f ] > r
√
m

#
≤ exp

„
− r2m

8e2m

«

= exp

„
− r2

8e2

«
.

The bound on Pr
ˆPm

i=1 f(xi)−mE[f ] < −r√m˜ follows by
applying the first inequality to the function −f . That the
bounds hold also when f is replaced by |f | follows by the
fact that the only property of f that was used was that its
moments are bounded, and taking absolute value does not
change moments.
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