
Towards Sharp Inapproximability For Any 2-CSP

Per Austrin∗

KTH – Royal Institute of Technology, Stockholm
austrin@kth.se

January 14, 2008

Abstract

We continue the recent line of work on the connection between semidefinite programming-based approx-
imation algorithms and the Unique Games Conjecture. Given any boolean2-CSP (or more generally, any
nonnegative objective function on two boolean variables), we show how to reduce the search for a good
inapproximability result to a certain numeric minimization problem. The key objects in our analysis are
the vector triples arising when doing clause-by-clause analysis of algorithms based on semidefinite pro-
gramming. Given a weighted set of such triples of a certain restricted type, which are “hard” to round in
a certain sense, we obtain a Unique Games-based inapproximability matching this “hardness” of round-
ing the set of vector triples. Conversely, any instance together with an SDP solution can be viewed as
a set of vector triples, and we show that we can always find an assignment to the instance which is at
least as good as the “hardness” of rounding the corresponding set of vector triples. We conjecture that
the restricted type required for the hardness result is in fact no restriction, which would imply that these
upper and lower bounds match exactly. This conjecture is supported by all existing results for specific
2-CSPs.

As an application, we show that MAX 2-AND is hard to approximate within0.87435. This improves
upon the best previous hardness ofαGW + ε ≈ 0.87856, and comes very close to matching the ap-
proximation ratio of the best algorithm known,0.87401. It also establishes that balanced instances of
MAX 2-AND, i.e., instances in which each variable occurs positively and negatively equally often, are
not the hardest to approximate, as these can be approximated within a factorαGW .

1 Introduction

Predicates on two boolean variables are fundamental in the study of constraint satisfaction problems. Given
a set of constraints, each being a formula on two boolean variables, it is an easy task to find an assignment
satisfying all constraints, if such an assignment exists. However, determining the maximum possible number
of simultaneously satisfied constraints is well-known to be NP-hard. This problem is known as the MAX 2-
CSP problem. It also has some very interesting special cases, the two most well-studied of which are the
MAX CUT problem and the MAX 2-SAT problem. In the MAX CUT problem, each constraint is of the form
xi ⊕ xj , i.e., it is true if exactly one of the inputs are true. In the MAX 2-SAT problem, each constraint is of
the formli ∨ lj, i.e., a disjunction on two literals, each literal being either a variable or a negated variable.

Given that the problem is NP-hard, much research has been focused on approximating the maximum
number of satisfied constraints to within some factorα. An algorithm achieves approximation ratioα if
the solution found by the algorithm is guaranteed to have value at leastα times the optimum. We also
allow for randomized algorithms, in which we require that the expected value (over the randomness of
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the algorithm) of the solution found by the algorithm isα times the optimum. The arguably most trivial
approximation algorithm is to simply pick a random assignment to the variables. For the general MAX 2-
CSP problem, this algorithm achieves an approximation ratio of1/4. For the special cases of MAX CUT

and MAX 2-SAT, it achieves ratios of1/2 and3/4, respectively. For several decades, no substantial im-
provements were made over this result, until a seminal paper by Goemans and Williamson [16], where they
constructed a0.7960-approximation algorithm for MAX 2-CSP, and0.87856-approximation algorithms for
MAX CUT and MAX 2-SAT. To do so, they relaxed the combinatorial problem at hand to a semidefinite
programming problem, to which an optimal solution can be found with high precision, and then used a very
clever technique to “round” the solution of the semidefinite programming back to a discrete solution for the
original problem. This approach has since been succesfully applied to several other hard combinatorial op-
timization problems, yielding significant improvements over existing approximation algorithms. Examples
include coloring graphs using as few colors as possible [20, 6, 17, 2], MAX BISECTION [15] and quadratic
programming over the boolean hypercube [9].

Some of the results by Goemans and Williamson were subsequently improved by Feige and Goe-
mans [13], who strengthened the semidefinite relaxation using certain triangle [16]. They obtained0.931-
approximation for MAX 2-SAT, and0.859-approximation for MAX 2-CSP. These results were further im-
proved by Matuura and Matsui [27, 28], who obtained0.935-approximation for MAX 2-SAT and0.863-
approximation for MAX 2-CSP. Shortly thereafter, Lewin et al. [26] obtained further improvements, getting
a 0.94016-approximation algorithm for MAX 2-SAT and a0.87401-approximation algorithm for MAX 2-
CSP, and these stand as the current best algorithms. It should be pointed out that these last two ratios arise
as the minima of two complex numeric optimization problems, and, as far as we are aware, it has not yet
been proved formally that these are the actual ratios, though there seems to be very little doubt that this is
indeed the case.

Meanwhile, the study ofinapproximability has seen a lot of progress, emanating from the discovery of
the celebrated PCP theorem [4, 3]. In particular, Håstad [18] showed that the generalizations of MAX 2-SAT

and MAX CUT from 2 to 3 variables, MAX 3-SAT and MAX 3-LIN-MOD2,1 are NP-hard to approximate
within factors7/8+ ε and1/2+ ε, respectively. This surprisingly demonstrates that the random assignment
algorithm is the best possible for these problems, assumingP �= NP . On the other hand, MAX 3-CSP can
be approximated to within a factor1/2 [34] which is tight by the result for MAX 3-LIN-MOD2.

For optimization problems with constraints acting on two variables, however, strong inapproximability
results have been more elusive. The best NP-hardness results for MAX 2-CSP, MAX 2-SAT, and MAX CUT

are9/10+ε ≈ 0.900, 21/22+ε ≈ 0.955, and16/17+ε ≈ 0.941, respectively [33, 18]. The most promising
approach to obtaining strong results for these problems is the so-called Unique Games Conjecture (UGC),
introduced by Khot [21]. The UGC has established itself as one of the most important open problems
in theoretical computer science, because of the many strong inapproximability results that follow from it.
Examples of such results include2 − ε hardness for VERTEX COVER [24], superconstant hardness for
SPARSESTCUT [10, 25] and MULTICUT [10], hardness of approximating MAX INDEPENDENTSET within
d/poly(log d) in degree-d graphs [31], and approximation resistance2 for random predicates [19].

For MAX 2-CSP problems, Khot et al. [22] showed that the UGC impliesαGW + ε hardness for
MAX CUT, whereαGW ≈ 0.87856 is the performance ratio of the original Goemans-Williamson algorithm,
and in [5], we showed that the UGC impliesαLLZ + ε hardness for MAX 2-SAT, whereαLLZ ≈ 0.94016
is the performance ratio of the algorithm of Lewin et al. (modulo the slight possibility that the performance
ratio of their algorithm is smaller than indicated by existing analyses). It is interesting that the hardness
ratios yielded by the Unique Games Conjecture exactly match these somewhat “odd” constants obtained

1Linear equations mod2, where every equation has3 variables.
2A predicate is approximation resistant if it is hard to do approximate the corresponding MAX CSP problem better than a

random assignment.
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from the complex numeric optimization problems arising from the SDP-based algorithms.
There are several other cases where the best inapproximability result, based on the UGC, matches

the best approximation algorithm, based on a semidefinite programming approach. Examples include the
MAX k-CSP problem [8, 31] and MAX CUT-GAIN [9, 23] (which is essentially a version of the MAX CUT

problem where unsatisfied constraints give negative contribution rather than zero). This line of results is not
a coincidence: in most cases, the choice of optimal parameters for the so called long code test (which is at
the heart of the hardness result) are derived by analyzing worst-case scenarios for the semidefinite relaxation
of the problem.

1.1 Our Contribution

In this paper, we continue to explore this tight connection between semidefinite programming relaxations
and the UGC. We consider a generalization of predicates on two variables to what we callfuzzy predicates.
A fuzzy predicateP on two variables is a functionP : {true, false}2 → [0, 1], rather than to{0, 1} as would
be the case with a regular predicate. We investigate the approximability of the MAX CSP(P ) problem.
Following the paradigm introduced by Goemans and Williamson, we relax this problem to a semidefinite
programming problem. We then consider the following approach for rounding the relaxed solution to a
boolean solution: given the SDP solution, we pick the “best” rounding from a certain class of randomized
rounding methods (based on skewed random hyperplanes), where “best” is in the sense of giving a boolean
assignment with maximum possible expected value. Informally, letα(P ) denote the approximation ratio
yielded by such an approach. We then have the following theorem.

Theorem 1.1. For any fuzzy predicate P and ε > 0, the MAX CSP(P ) problem can be approximated within
α(P ) − ε in polynomial time.

The reason that we lose an additiveε is that we are not, in general, able to find thebest rounding function,
but we can come arbitarily close.

Then, we turn our attention to hardness of approximation. Here, we are able to take instances which
are hard to round, in the sense that the best rounding (as described above) is not very good, and translate
them into a Unique Games-based hardness result. There is, however, a caveat: in order for the analysis to
work, the instance needs to satisfy a certain “positivity” condition. Again, informally, letβ(P ) denote the
approximation ratio when restricted to instances satisfying this condition. We then have

Theorem 1.2. If the Unique Games Conjecture is true, then for any fuzzy predicate P and ε > 0, the
MAX CSP(P ) problem is NP-hard to approximate within β(P ) + ε.

Bothα(P ) andβ(P ) are the solutions to a certain numeric minimization problem. The function being
minimized is the same function in both cases, the only difference is that inα(P ), the minimization is over
a larger domain, and thus, we could potentially haveα(P ) < β(P ). However, there are strong indications
that the minimum forα(P ) is in fact obtained within the domain ofβ(P ), in which case they would be
equal and Theorems 1.1 and 1.2 would be tight.

Conjecture 1.3. For any fuzzy predicate P , we have α(P ) = β(P ).

Because of the difficulty of actually computing the approximation ratiosα(P ) andβ(P ), it may seem
to be somewhat difficult to compare these results to previous results. However, previous algorithms and
hardness results for MAX CUT, MAX 2-SAT, and MAX 2-CSP can all be obtained as special cases of
Theorems 1.1 and 1.2. In particular, forP (x1, x2) = x1 ⊕ x2, the XOR predicate, it can be shown that
α(P ) = β(P ) = αGW .

We are also able to use Theorem 1.2 to obtain new results, in the form of an improved hardness of
approximation for the MAX 2-AND problem, in which every constraint is an AND of two literals. This also
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implies improved hardness for the MAX 2-CSP problem – as is well-known, the MAX k-CSP problem and
the MAX k-AND problem are equally hard to approximate for everyk (folklore, or see e.g. [32]).

Theorem 1.4. For the predicate P (x1, x2) = x1 ∧ x2, we have β(P ) ≤ 0.87435.

This comes very close to matching the0.87401-approximation algorithm of Lewin et al. It also demon-
strates that balanced instances, i.e., instances in which each variable occurs positively and negatively equally
often, are not the hardest to approximate, as these can be approximated withinαGW ≈ 0.87856 [22].

Finally, as a by-product of our results, we obtain some insight regarding the possibilites of obtaining
improved results by strengthening the semidefinite program with more constraints. Traditionally, the only
constraints which have been useful in the design of MAX 2-CSP algorithms are triangle inequalities of
a certain form (namely, those involving the vectorv0, coding the value false). It turns out that, for very
natural reasons, these are exactly the inequalities that need to be satisfied in order for the hardness result to
carry through. In other words, assuming Conjecture 1.3 is true, it is UG-hard to do better than what can be
achieved by adding only these triangle inequalities, and thus, it is unlikely that improvements can be made
by adding additional inequalities (while still using polynomial time).

1.2 Techniques and Related Work

The main new ingredients of this paper are the generalizations of the various quantities used in previous
results. In e.g. the case of MAX 2-SAT [5], one only had to consider one single angle, giving rise to two
configurations of a very special form, something which made the calculations a lot easier. In this paper, on
the other hand, we can have an arbitrary number of angles (and this is of course the reason why it is very
difficult to actually compute the approximation ratios obtained), and the “positivity” condition needed here
is significantly less restrictive than the special form used for MAX 2-SAT.

The proof of Theorem 1.2 follows the same path as previous proofs for specific predicates [22, 5],
using the Majority Is Stablest theorem [29]. The main difference here is that we need a generalization of the
“correlation under noise” quantities involved, to functions on different probability distributions. The proof of
Theorem 1.1 primarily builds upon the work of [26] for MAX 2-SAT and MAX DI-CUT, the main difference
being that a rounding function is chosen based on the semidefinite solution rather than beforehand, using a
discretization technique to make the search a good rounding function feasible.

1.3 Organization

This paper is organized as follows. In Section 2, we set up some notation, define constraint satisfaction prob-
lems and the Unique Games Conjecture. In Section 3, we discuss the SDP relaxation of the MAX CSP(P )
problem and define the constantsα(P ) andβ(P ). In Section 4, we prove Theorem 1.1. In Section 5, we
prove Theorem 1.2. In Section 6, we prove Theorem 1.4. Finally, in Section 7, we give some concluding
remarks on our results.

2 Preliminaries

We associate the boolean values true and false with−1 and1, respectively. Thus, a disjunctionx∨ y is true
if x = −1 or y = −1, and a conjunctionx ∧ y is true ifx = y = −1. We denote bySn = { v ∈ R

n+1 :
||v|| = 1 } then-dimensional unit sphere.

2.1 Constraint Satisfaction Problems

A predicate P on two boolean variables is a functionP : {−1, 1}2 → {0, 1}. We generalize this to the
notion of fuzzy predicates.
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Definition 2.1. A fuzzy predicate P on two boolean variables is a functionP : {−1, 1}2 → [0, 1].

Note that, with general objective functions from{−1, 1}2 to R in mind, the upper bound is without loss
of generality, since we can always scale down any nonnegative objective function so that it takes values in
[0, 1] and thus becomes a fuzzy predicate.

Definition 2.2. An instanceΨ of the MAX CSP(P ) problem, for a fuzzy predicateP , consists of a set of
clauses and a weight functionwt. Each clauseψ is a pair of literals(l1, l2) (a literal is either a variable
or a negation of a variable), and the weight function associates with each clauseψ a nonnegative weight
wt(ψ). We abuse notation slightly by identifyingΨ with both the instance and the set of clauses. Given
an assignmentx = (x1, . . . , xn) to the variables occurring inΨ, and a clauseψ = (s1xi, s2xj) (where
s1, s2 ∈ {−1, 1}), we denote the restriction ofx to ψ by x|ψ = (s1xi, s2xj). The value of an assignmentx
to the variables occuring inΨ is then given by

ValΨ(x) =
∑
ψ∈Ψ

wt(ψ)P (x|ψ), (1)

and the value ofΨ is the maximum possible value of an assignment

Val(Ψ) = max
x

ValΨ(x). (2)

For convenience, we will assume (without loss of generality) that the weights are normalized so that
wt(·) is just a probability distribution on the clauses, i.e., that

∑
ψ∈Ψ wt(ψ) = 1 (so0 ≤ Val(Ψ) ≤ 1).

Definition 2.3. The MAX CSP+(P ) problem is the special case of MAX CSP(P ) where there are no
negated literals (i.e. each clause is a pair of variables).

An example of the MAX CSP(P ) problem which is of special interest for us is the MAX 2-AND prob-
lem, which is obtained by lettingP be the predicate which is1 if both of the inputs are true, and0 otherwise.
A well-known example of the MAX CSP+(P ) problem is the MAX CUT problem, which is obtained by let-
ting P be the predicate which is1 if the inputs are different, and0 if they are equal.

Any fuzzy predicateP can be arithmetized asP (x1, x2) = P̂0 + P̂1x1 + P̂2x2 + P̂3x1x2, for some
constantsP̂0, P̂1, P̂2 andP̂3. Thus, the MAX CSP(P ) problem can be viewed as a certain special case of
the integer quadratic programming problem. Throughout the remainder of this paper, we fix some arbitrary
fuzzy predicateP and its corresponding coefficientŝP0 . . . P̂3.

2.2 The Unique Games Conjecture

The Unique Games Conjecture was introduced by Khot [21] as a possible means to obtain new strong
inapproximability results. As is common, we will formulate it in terms of a Label Cover problem.

Definition 2.4. An instance
X = (V,E,wt, [L], {σv

e , σ
w
e }e={v,w}∈E)

of UNIQUE LABEL COVER is defined as follows: given is a weighted graphG = (V,E) (which may
have multiple edges) with weight functionwt : E → [0, 1], a set[L] of allowed labels, and for each edge
e = {v,w} ∈ E two permutationsσv

e , σ
w
e ∈ SL such thatσw

e = (σv
e )

−1, i.e., they are each other’s inverse.
We say that a function� : V → [L], called a labelling of the vertices, satisfies an edgee = {v,w} if
σv
e (�(v)) = �(w), or equivalently, ifσw

e (�(w)) = �(v). The value of� is the total weight of edges satisfied
by it, i.e.,

ValX(�) =
∑
e

� satisfiese

wt(e) (3)
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The value ofX is the maximum fraction of satisfied edges for any labelling, i.e.,

Val(X) = max
�

ValX(�). (4)

Without loss of generality, we will always assume that
∑

e wt(e) = 1, i.e., thatwt is in fact a probability
distribution over the edges ofX. We denote byE(v) the subset of edges adjacent tov, i.e.,E(v) = { e | v ∈
e }. The probability distributionwt induces a natural probability distribution on the vertices ofX where
the probability of choosingv is 1

2

∑
e∈E(v) wt(e), andwt also induces a natural distribution on the edges of

E(v) where the probability of choosinge ∈ E(v) is wt(e)P
e∈E(v) wt(e)

.

Whenever we speak of choosing a random element ofV , E or E(v), it will be according to these
probability distributions, but to simplify the presentation, we will simply refer to it as a random element.
For the same reason we will refer to a fractionc of the elements ofV , E or E(V ) when in fact we mean a
set of vertices/edges with probability massc.

A UNIQUE LABEL COVER problem whereG is bipartite can be viewed as a two-prover (one-round)
game in which the acceptance predicate of the verifier is such that given the answer for one of the provers,
there is always a unique answer from the other prover such that the verifier accepts. The probability that the
verifier accepts assuming that the provers use an optimal strategy is thenVal(X). Hence the terminology
“Unique Games”. We will be interested in the gap version of the UNIQUE LABEL COVER problem, which
we define as follows.

Definition 2.5. GAP-UNIQUE LABEL COVERη,γ,L is the problem, given a UNIQUE LABEL COVER instance
X with label set[L], of determining whetherVal(X) ≥ 1 − η or Val(X) ≤ γ.

Khot’s Unique Games Conjecture (UGC) asserts that the gap version is hard to solve for arbitrarily smallη
andγ, provided we take a sufficiently large label set.

Conjecture 2.6 (Unique Games Conjecture [21]). For every η > 0, γ > 0, there is a constant L > 0 such
that GAP-UNIQUE LABEL COVERη,γ,L is NP-hard.

Note that even if the UGC turns out to be false, it might still be the case that GAP-UNIQUE LABEL

COVERη,γ,L is hard in the sense of not being solvable in polynomial time, and such a (weaker) hardness
would also apply to all other problems for which hardness has been shown under the UGC.

2.3 Influence and Correlation Under Noise

Fourier analysis of Boolean functions is a crucial tool in most strong inapproximability results. As in
previous results [22, 5], the key ingredient in the proof of our hardness result is (a generalization of) the so-
called Majority Is Stablest Theorem [29]. In this section, we describe this result and the exact formulation
we use. Since we need to work with biased distributions rather than the standard uniform ones, we will
review some important concepts. With the exception of Proposition 2.14, the propositions in this section are
well-known, and proofs can be found in e.g. [5], full version. We denote byµn

q the probability distribution
on{−1, 1}n where each bit is set to−1 with probabilityq, independently, and we letBn

q be the probability
space

(
{−1, 1}n, µn

q

)
.

We define a scalar product on the space of functions fromBn
q to R by

〈f, g〉 = E
x∈Bn

q

[f(x)g(x)], (5)

and for eachS ⊆ [n] the functionUS
q : Bn

q → R by US
q (x) =

∏
i∈S Uq(xi) where

Uq(xi) =

 −
√

1−q
q if xi = −1√

q
1−q if xi = 1

.
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Proposition 2.7. The set of functions {US
q }S⊆[n] forms an orthonormal basis w.r.t. the scalar product 〈·, ·〉.

Thus, any functionf : Bn
q → R can be written as

f(x) =
∑
S⊆[n]

f̂SU
S
q (x),

where the coefficientŝfS =
〈
f, US

q

〉
= Ex[f(x)US

q (x)] are the Fourier coefficients of the functionf .

It is a straight-forward exercise to verify the basic identities〈f, g〉 =
∑

S⊆[n] f̂S ĝS , Ex[f(x)] = f̂∅ and

Varx[f(x)] =
∑

S �=∅ f̂
2
S . We will also use‖f‖ :=

√
〈f, f〉 to denote theL2 norm of a functionf : Bn

q → R,
and remind the reader of the Cauchy-Schwartz inequality

| 〈f, g〉 | ≤ ‖f‖ · ‖g‖. (6)

Definition 2.8. The long code of an integeri ∈ [n] is the functionf : {−1, 1}n → {−1, 1} defined by
f(x) = xi.

Definition 2.9. A function f : {−1, 1}n → R is said to befolded over true if f(x) = −f(−x) for everyx.

Definition 2.10. Theinfluence of the variablei on the functionf : Bn
q → R is

Infi(f) = E
x

[
Var
xi

[f(x) |x1, . . . , xi−1, xi+1, . . . , xn]
]

(7)

The influence of the variablei is a measure of how much the variablei is able to change the value off once
we have fixed the othern− 1 variables randomly (according to the distributionµn−1

q ).

Proposition 2.11.
Infi(f) =

∑
S⊆[n]
i∈S

f̂2S. (8)

Motivated by the Fourier-representation formulation of influence, we define the slightly stronger concept of
low-degree influence, crucial to PCP applications.

Definition 2.12. Fork ∈ N, thelow-degree influence of the variablei on the functionf : Bn
q → R is

Inf≤k
i (f) =

∑
S⊆[n]
i∈S
|S|≤k

f̂2S. (9)

A nice property of the low-degree influence is the fact that for functions into[−1, 1],
∑

i Inf≤k
i (f) ≤ k,

implying that the number of variables having low-degree influence more than, say,τ , must be small (think
of k andτ as constants not depending on the number of variablesn). Very informally, one can think of the
low-degree influence as a measure of how close the functionf is to depending on only a few variables, i.e.,
for the case of boolean-valued functions, how closef is to being the long code ofi (or its negation). Note
that a long code is the extreme case of a function with large low-degree influence, in the sense that it has
one variable withInf≤1i (f) = 1, and all other variables having influence0.

Next, we introduce thecorrelation under ρ̃-noise between two functionsf : Bn
q1 → R andg : Bn

q2 → R.
For functions into{−1, 1}, the correlation under noise measures how likelyf andg are to take the same
value on two random inputs with a certain correlation. Forf = g, this is simply the well-studiednoise
stability of f .
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xi yi Probability

1 1 1+ξ1+ξ2+ρ
4

1 −1 1+ξ1−ξ2−ρ
4

−1 1 1−ξ1+ξ2−ρ
4

−1 −1 1−ξ1−ξ2+ρ
4

Table 1: Distribution ofx andy

Definition 2.13. Thecorrelation under ρ̃-noise betweenf : Bn
q1 → R andg : Bn

q2 → R is given by

Sρ̃(f, g) = E
x,y

[f(x)g(y)], (10)

where thei:th bits ofx andy are drawn fromBn
q1 andBn

q2 with correlation coefficient̃ρ (independently of
the other bits).

Note that we can write

ρ̃ = E
xi,yi

[
(xi − E[xi])(yi − E[yi])√

Var[xi] Var[yi]

]
=

ρ− ξ1ξ2√
1− ξ21

√
1 − ξ22

(11)

whereξ1 = E[xi] = 1 − 2q1, ξ2 = E[yi] = 1 − 2q2, andρ = E[xiyi]. Thus, the distribution of thei:th bits
of x andy can be written out explicitly as in Table 1.

We defineSρ̃(f) = Sρ̃(f, f) to be the noise stability of the functionf .

Proposition 2.14. For x and y chosen as in Table 1, we have

E[US
q1(x)U

T
q2(y)] =

{
ρ̃|S| if S = T
0 otherwise

(12)

The following proof was suggested by Marcus Isaksson.

Proof. The case whenS �= T is immediately clear, sinceE[Uq1(xi)] = E[Uq2(yi)] = 0. For theS = T
case, it suffices to prove thatE[Uq1(xi)Uq2(yi)] = ρ̃. But this follows immedediately from the fact thatUq1

can be written as

Uq1(xi) =
xi − E[xi]√

Var[xi]
, (13)

and similarly forUq2 , implying thatE[Uq1(xi)Uq2(yi)] equals the correlation coefficient betweenxi andyi,
which, by definition, equals̃ρ.

Thus, we can write the correlation under noise betweenf andg as

Sρ̃(f, g) = E
x,y

∑
S,T

f̂SU
S
q1(x)ĝTU

T
q2(y)

 =
∑
S⊆[n]

ρ̃|S|f̂S ĝS (14)
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2.4 Functions in Gaussian Space

We denote byφ(x) = 1√
2π
e−x2/2 the standard normal density function, byΦ(x) =

∫ x
−∞ φ(t)dt the standard

normal distribution function, and byΦ−1 the inverse ofΦ.
As with functions on the hypercube, we define a scalar product on functionsf, g : R

n → R by 〈f, g〉 =
Ex[f(x)g(x)] (we abuse notation slightly by using the same notation as for scalar products on functions
from the hypercube) where the expectation is over a standardn-dimensional Gaussian, i.e. each component
being a standardN(0, 1) random variable. TheOrnstein-Uhlenbeck operatorUρ on functionsf : R

n → R

is defined as:
Uρf(x) = E

y

[
f(ρx+

√
1 − ρ2y)

]
, (15)

where the expected value is over a standardn-dimensional Gaussiany. Note thatρx +
√

1 − ρ2y is a
standardn-dimensional Gaussian where each coordinate has covarianceρ with the corresponding coordinate
in x. Forµ ∈ [−1, 1] we denote byχµ : R → [0, 1] the indicator function of an interval(−∞, t), wheret is

chosen so thatE[χµ] = 1−µ
2 , i.e.t = Φ−1

(
1−µ
2

)
.

Definition 2.15. Forρ, µ1, µ2 ∈ [−1, 1], define

Γρ(µ1, µ2) = 〈χµ1 , Uρχµ2〉 = Pr[X1 ≤ t1 ∧X2 ≤ t2], (16)

whereti = Φ−1
(
1−µi
2

)
and whereX1,X2 ∈ N(0, 1) with covarianceρ.

In other words,Γρ is just the bivariate normal distribution function with a transformation on the input.
Analogously to noise stability, we defineΓρ(µ) = Γρ(µ, µ). The following properties ofΓρ will be useful.

Proposition 2.16 ([5], Lemma 2.1). For all ρ ∈ [−1, 1], µ1, µ2 ∈ [−1, 1], we have

Γρ(−µ1,−µ2) = Γρ(µ1, µ2) + µ1/2 + µ2/2 (17)

The following proposition is easily derived from [5] (full version), Proposition D.1.

Proposition 2.17. For any µ1, µ′
1, µ2, µ

′
2 ∈ [−1, 1] and ρ ∈ (−1, 1), we have∣∣Γρ(µ1, µ2) − Γρ(µ′

1, µ
′
2)
∣∣ ≤ |µ1 − µ′

1| + |µ2 − µ′
2|

2
(18)

2.5 Thresholds are Extremely Correlated Under Noise

For proving hardness of MAX CUT, Khot et al. [22] made a conjecture called Majority Is Stablest, essen-
tially stating that any boolean function with noise stability significantly higher than the majority function
must have a variable with high low-degree influence (and thus in a vague sense be similar to a Long Code).
Majority Is Stablest was subsequently proved by Mossel et al. [29], using a very powerful invariance princi-
ple which, essentially, allows for considering the corresponding problem over Gaussian space instead. For
our result, we will use a strengthening of Majority is Stablest to two functions on the biased hypercube.

Theorem 2.18. For any ε > 0, q1 ∈ (0, 1), q2 ∈ (0, 1) and ρ ∈ (−1, 1) there are τ > 0, k ∈ N such that
for any two functions f : Bn

q1 → [0, 1] and g : Bn
q2 → [0, 1] satisfying E[f ] = 1−µf

2 , E[g] = 1−µg

2 and

min
(
Inf≤k

i (f), Inf≤k
i (g)

)
≤ τ

for all i ∈ [n], the following holds:

Sρ(f, g) ≤
〈
χµf

, U|ρ|χµg

〉
+ ε (19)

Sρ(f, g) ≥
〈
χµf

, U|ρ|(1 − χ−µg )
〉
− ε (20)
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In the terminology of [12], the setting of Theorem 2.18 corresponds to the case of a reversible noise operator,
rather than a symmetric one as was studied there. It is known that the results also hold in the reversible case
[11] (and in fact even in the non-reversible case [29]), but for completeness, we give a proof (following the
same lines as the proof of [12]) in Appendix A. Using elementary manipulations, we obtain the following
Corollary.

Corollary 2.19. Let ε > 0, q1, q2 ∈ (0, 1) and ρ ∈ (−1, 1). Then there are τ > 0, k ∈ N such
that for all functions f : Bn

q1 → [−1, 1], g : Bn
q2 → [−1, 1] satisfying E[f ] = µf , E[g] = µg, and

min(Inf≤k
i (f), Inf≤k

i (g)) ≤ τ for all i, we have

4Γ−|ρ|(µf , µg) − ε ≤ Sρ(f, g) − µf − µg + 1 ≤ 4Γ|ρ|(µf , µg) + ε (21)

Proof. Setf̃ = 1−f
2 , µ̃f = E[f̃ ] = 1−µf

2 , and definẽg andµ̃g analogously. Thus,Sρ(f, g) = 4Sρ(f̃ , g̃) −
2µ̃f − 2µ̃g + 1 = 4Sρ(f̃ , g̃) + µf + µg − 1. By Theorem 2.18,

Sρ(f̃ , g̃) ≥
〈
χµf

, U|ρ|(1 − χ−µg)
〉
− ε/4 (22)

for anyf, g where every variable has sufficiently small low-degree influence in at least one of the functions.
Now, note that

(U|ρ|(1 − χ−µg ))(x) = Pr
y

[
|ρ|x +

√
1 − ρ2y ≥ Φ−1(1 − µ̃g)

]
= Pr

y

[
−|ρ|x +

√
1− ρ2y ≤ Φ−1(µ̃g)

]
= U−|ρ|χµg (x).

Combining this with Equation (22) and the definition ofΓρ, we get

Sρ(f, g) ≥ 4Γ−|ρ|(µ) + µf + µg − 1 − ε. (23)

The upper bound follows similarly, using Equation (19).

3 Semidefinite Relaxation

One approach to solving integer quadratic programming problems which has turned out to be remarkably
successful over the years is to relax the original problem to a semidefinite programming problem. This
approach was first used in the seminal paper by Goemans and Williamson [16] where they gave the first
approximation algorithms for MAX CUT, MAX 2-SAT, and MAX DI-CUT with a non-trivial approximation
ratio (ignoring lower order terms).

For solving integer quadratic programming over the hypercube, where each variable is restricted to±1,
the standard approach is to first homogenize the program by introducing a variablex0 which is supposed to
represent the value false and then replace each termxi byx0xi. We then relax each variablexi ∈ {−1, 1} =
S0 with a vectorvi ∈ Sn (i.e. a unit vector inRn+1), so that each termxixj becomes the scalar product
vi · vj.

In addition, we add the following inequality constraints to the program for all triples of vectorsvi, vj , vk.

vi · vj + vj · vk + vi · vk ≥ −1 −vi · vj + vj · vk − vi · vk ≥ −1 (24)

vi · vj − vj · vk − vi · vk ≥ −1 −vi · vj − vj · vk + vi · vk ≥ −1 (25)

These are equivalent to triangle inequalities of the form||vi − vj ||2 + ||vj − vk||2 ≥ ||vi − vk||2, which
clearly hold for the case that all vectors lie in a zero-dimensional subspace ofSn (so this is still a relaxation
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of the original integer program), but is not necessarily true otherwise. There are of course many other
valid inequalities which could also be added, consideringk-tuples of variables rather than just triples. In
particular, addingall valid constraints makes the optimum for the semidefinite program equal the discrete
optimum [14] (but there are an exponential number of constraints to consider). Such higher-order constraints
have not received much attention, and from what is known today, it seems that the only ones which actually
help are the triangle inequalities. In particular, the only inequalities which have been used when analyzing
the performance of approximation algorithms, are those of the triangle inequalities which involve the vector
v0. The results of this paper shed some light on why this is the case – these are exactly the inequalities we
need in order for the hardness of approximation to work out. Thus, assuming Conjecture 1.3 and the Unique
Games Conjecture, it is unlikely that adding other valid inequalities (while still being able to solve the SDP
in polynomial time) will help achieve a better approximation ratio, as that would implyP = NP .

In general, we cannot find the exact optimum of a semidefinite program. It is however possible to find
the optimum to within an additive error ofε in time polynomial inlog 1/ε [1]. We ignore this small point
for notational convenience and assume that we can solve the semidefinite program exactly.

Given a vector solution{vi}ni=0, the relaxed value of a clauseψ ∈ Ψ depends only on the three (possibly
negated) scalar productsv0 ·vi, v0 ·vj , andvi ·vj, wherexi andxj are the two variables occuring inψ. Most
of the time, we do not care about the actual vectors, but only be interested in these triples of scalar products.

Definition 3.1. A scalar product configuration θ, or just aconfiguration for short, is a triple of real numbers
(ξ1, ξ2, ρ) satisfying

ξ1 + ξ2 + ρ ≥ −1
ξ1 − ξ2 − ρ ≥ −1

−ξ1 + ξ2 − ρ ≥ −1
−ξ1 − ξ2 + ρ ≥ −1

(26)

A family of configurations Θ is a finite setX = {θ1, . . . , θk} of configurations, endowed with a probability
distributionP . We routinely abuse notation by identifyingΘ both with the setX and the probability space
(X,P ).

A configuration can be viewed as representing three vectorsv0, v1, v2, wherev0 ·vi = ξi, andv1 ·v2 = ρ.
Note that the inequalities in Equation (26) then correspond exactly to those of the triangle inequalities (24)
which involvev0. The important feature of these inequalities is that they precisely guarantee that Table 1
gives a valid probability distribution, which will be crucial in order for the hardness result to work out. It
can also be shown that these inequalities ensures the existence of vectorsv0, v1, v2 with the corresponding
scalar products.

Definition 3.2. The relaxed value of a configurationθ = (ξ1, ξ2, ρ) is given by

Prelax(θ) = Prelax(ξ1, ξ2, ρ) = P̂0 + P̂1ξ1 + P̂2ξ2 + P̂3ρ

Analogously to the notationx|ψ for discrete solutions, we denote byv|ψ = (s1v0 ·vi, s2v0 ·vj , s1s2vi ·vj)
the configuration arising from the clauseψ = (s1xi, s2xj) for the vector solutionv = {vi}ni=0. The relaxed
value of the clauseψ is then simply given byPrelax(v|ψ).

Often we view the solution to the SDP as just the family of configurationsΘ = { v|ψ |ψ ∈ Ψ } with
the probability distribution wherePrθ∈Θ[θ = v|ψ] = wt(ψ). The relaxed value of an assignment of vectors
{vi}ni=0 is then given by

SDP-ValΨ({vi}) =
∑
ψ∈Ψ

wt(ψ)Prelax(v|ψ) = E
θ∈Θ

[Prelax(θ)]. (27)

Given a vector solution{vi}, one natural attempt at an approximation algorithm is to setxi true with
probability 1−ξi

2 (whereξi = vi · v0), independently—the intuition being that the linear termξi gives an
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indication of “how true”xi should be. This assignment has the same expected value on the linear terms as
the vector solution, and the expected value of a quadratic termxixj is ξiξj . However, typically there is some
correlation between the vectorsvi andvj , so that the scalar productvi · vj contributes more thanξiξj to the
objective function. To quantify this, write the vectorvi as

vi = ξiv0 +
√

1− ξ2i ṽi, (28)

whereξi = vi ·v0, andṽi is the part ofvi orthogonal tov0, normalized to a unit vector (ifξi = ±1, we define
ṽi to be a unit vector orthogonal to all other vectorsvj). Then, we can rewrite the quadratic termvi · vj as

vi · vj = ξiξj +
√

1− ξ2i

√
1− ξ2j ṽi · ṽj . (29)

As it turns out, the relevant parameter when analyzing the quadratic terms is the scalar productṽi · ṽj, i.e.
how much better we do than if the variables would have been independent (scaled by an appropriate factor).
Motivated by this, we make the following definition.

Definition 3.3. Theinner angle ρ̃(θ) of a configurationθ = (ξ1, ξ2, ρ) is

ρ̃(θ) =
ρ− ξ1ξ2√

1 − ξ21
√

1 − ξ22
. (30)

In the case thatξ1 = ±1 or ξ2 = ±1, we defineρ̃(θ) = 0.

Note that, in the notation above, the advantage is exactly the scalar productṽi · ṽj . We are now ready to
define the “positivity condition”, alluded to in Section 1.1.

Definition 3.4. A configurationθ = (ξ1, ξ2, ρ) is positive if P̂3 · ρ̃(θ) ≥ 0.

Intuitively, positive configurations should be more difficult to handle, since they are the configurations
where we need to do something better than just setting the variables independently in order to get a good
approximation ratio.

What Goemans and Williamson [16] originally did to round the vectors back to boolean variables, was
to pick a random hyperplane through the origin, and decide the value of the variables based on whether their
vectors are on the same side of the hyperplane asv0 or not. Feige and Goemans [13] suggested several
generalizations of this approach, using preprocessing (e.g. first rotating the vectors) and/or more elaborate
choices of hyperplanes. In particular, consider a rounding scheme where we pick a random vectorr ∈ R

n+1

and then set the variablexi to true if
r · ṽi ≤ T (v0 · vi) (31)

for some threshold functionT : [−1, 1] → R. This scheme (and more general ones) was first analyzed by
Lewin et al. [26].

To describe the performance ratio yielded by this scheme, we begin by setting up some notation.

Definition 3.5. A rounding function is a continuous functionR : [−1, 1] → [−1, 1] which is odd, i.e.
satisfiesR(ξ) = −R(−ξ). We denote byR the set of all such functions.

The reason that we require a rounding function to be odd is that a negated literal−xi should be treated
the opposite way asxi. A roundingR is in one-to-one corresponce with a threshold functionT as described
above by the simple relationR(x) = 1−2Φ(T (x)), whereΦ is the normal distribution function (it will turn
out to be more convenient to describe the rounding in terms ofR rather than in terms ofT ).
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Definition 3.6. Therounded value of a configurationθ with respect to a rounding functionR ∈ R is

Pround(θ,R) = Prelax
(
R(ξ1), R(ξ2), 4Γρ̃(θ)(R(ξ1), R(ξ2)) + R(ξ1) +R(ξ2) − 1

)
, (32)

This seemingly arbitrary definition is motivated by the following lemma (which essentially traces back
to Lewin et al. [26], though they never made it explicit).

Lemma 3.7. There is a polynomial-time algorithm which, given a MAX CSP(P ) instance Ψ, a semidefinite
solution {vi}ni=0 to Ψ, and a (polynomial-time computable) rounding function R ∈ R, finds an assignment
to Ψ with expected value

E
θ∈Θ

[Pround(θ,R)] , (33)

Proof. The algorithm works as described above: First, we pick a random vectorr ∈ R
n+1 (i.e. each coor-

dinate ofr is a standardN(0, 1) random variable). Then, we set the variablexi to true if

ṽi · r ≤ T (vi · v0), (34)

where we define the threshold functionT as

T (x) = Φ−1
(

1−R(x)
2

)
. (35)

To analyze the performance of this algorithm, we need to analyze the expected valuesE[xi] andE[xixj ].
We begin with the linear terms. These are easy, becauseṽi · r is just a standardN(0, 1) random variable,

implying thatxi is set to true with probability1−R(ξi)
2 . Thus, we have that the expected valueE[xi] = R(ξi).

For the quadratic terms, we analyze the probability that two variablesxi andxj are rounded to the same
value. It is readily verified that the covariance between the two scalar productsṽi · r andṽj · r is ρ̃, and thus,
the probability that both̃vi ≤ T (vi · v0) and ṽj ≤ T (vj · v0) is simplyΓρ̃(R(ξi), R(ξj)). By symmetry,
the probability that bothxi andxj are set to false is thenΓρ̃(−R(ξi),−R(ξj)). Using Proposition 2.16, the
expected value ofxixj is then given by

E[xixj] = 2 (Γρ̃ (R(ξi), R(ξj)) + Γρ̃ (−R(ξi),−R(ξj))) − 1
= 4Γρ̃ (R(ξi), R(ξj)) + R(ξi) + R(ξj) − 1, (36)

Thus, the expected value of the solution found (over the random choice ofr) is given by

E
(ξ1,ξ2,ρ)∈Θ

[
P̂0 + P̂1R(ξ1) + P̂2R(ξ2) + P̂3(4Γρ̃(R(ξ1), R(ξ2)) + R(ξ1) + R(ξ2) − 1)

]
= E

θ∈Θ
[Pround(θ,R)] , (37)

and we are done.

We remark that the rounding procedure used in the proof of Lemma 3.7 is from the class of roundings
Lewin et al. [26] calledT HRESH−. The rounding functionR specifies an arbitrary rounding procedure
from T HRESH−.3

A statement similar to Lemma 3.7 holds for MAX CSP+(P ), the difference being that, since there are
no longer any negated literals, we can change the definition of a rounding function slightly and not require
it to be odd (which could potentially give us a better algorithm). Motivated by Lemma 3.7, we make the
following sequence of definitions

3In the notation of [26], we haveS(x) = T (x)
√

1 − x2, or equivalently,R(x) = 1 − 2Φ(S(x)/
√

1 − x2).
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Definition 3.8. The approximation ratio of a roundingR for a family of configurationsΘ is given by

αP (Θ, R) =
Eθ∈Θ [Pround(θ,R)]

Eθ∈Θ [Prelax(θ)]
(38)

Definition 3.9. The approximation ratio of a family of configurationsΘ is given by

αP (Θ) = max
R∈R

αP (Θ, R). (39)

Definition 3.10. The approximation ratios ofP for families ofk configurations and families ofk positive
configurations, respectively, are given by (recall the definition of a positive configuration from Definition 3.4)

αP (k) = min
|Θ|=k

αP (Θ), βP (k) = min
|Θ|=k

everyθ ∈ Θ is positive

αP (Θ) (40)

We would like to point out that we do not require that the family of configurationsΘ can be derived
from an SDP solution to some MAX CSP(P ) instanceΨ – we only require that each configuration inΘ
satisfies the inequalities in Equation (26). In other words, we have a lot more freedom when searching for
aΘ which makesαP (k) or βP (k) small, than we would have when searching for MAX CSP(P ) instances
and corresponding vector solutions.

Finally, we define

α(P ) = lim
k→∞

αP (k), β(P ) = lim
k→∞

βP (k). (41)

These are the approximation ratios arising in Theorems 1.1 and 1.2. Ideally, of course, we would like to
prove hardness of approximating MAX CSP(P ) within α(P ) rather thanβ(P ), getting rid of the require-
ment that everyθ ∈ Θ must be positive. The reason that we need it shows up when we do the proof of
soundness for the PCP constructed in Section 5, and we have not been able to get around this. However, as
we state in Conjecture 1.3, we do notbelieve that this restriction affects the approximation ratio achieved:
by the intuition above, positive configurations seem to be the ones that are hard to round, so restricting our
attention to such configurations should not be a problem. And indeed, the configurations we use to show
hardness for MAX 2-AND are all positive, as are all configurations which have appeared in previous proofs
of hardness for2-CSPs (e.g. for MAX CUT and MAX 2-SAT).

4 The Approximation Algorithm

The approximation algorithm for MAX CSP(P ) (Theorem 1.1) is based on the following theorem.

Theorem 4.1. For any ε > 0, the value of a MAX CSP(P ) instance on k clauses can be approximated
within αP (k) − ε in time polynomial in k.

Note that this theorem immediately implies Theorem 1.1 sinceαP (k) ≥ α(P ). We remark that the
exact value ofαP (k) is virtually impossible to compute for largek, making it somewhat hard to compare
Theorem 4.1 with existing results. However, for MAX CUT, MAX 2-SAT and MAX 2-AND, it is not hard to
prove thatα(P ) is at least the performance ratio of existing algorithms.

Proof. Let Ψ be a MAX CSP(P ) instance and{vi}ni=0 be an optimal solution to the semidefinite relaxation
of Ψ. Note that, if we could find an optimal rounding functionR for Ψ, the theorem would follow imme-
diately from Lemma 3.7 (and we wouldn’t need theε). However, since we can not in general hope to find
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an optimalR, we’ll discretize the set of possible angles and find the best rounding for the modified problem
(for which there will be only a constant number of possible solutions).

We will use the simple facts that we always haveVal(Ψ) ≥ P̂0 ≥ max(|P̂1|, |P̂2|, |P̂3|) (to see that the
second inequality holds, note that otherwise there would bex1, x2 such thatP (x1, x2) < 0).

Construct a new SDP solution{ui}ni=0 by lettingu0 = v0, and, for each1 ≤ i ≤ n, letting ui be the
vectorvi rotated towards or away fromv0 so thatu0 · ui is an integer multiple ofε′ (whereε′ will be chosen
small enough). In other words, we have|u0 ·ui−v0 ·vi| ≤ ε′/2. For the quadratic terms, Feige and Goemans
[13] proved that fori, j ≥ 1, we have

ui · uj = ζiζj + ρ̃ij ·
√

1 − ζ2i

√
1 − ζ2j , (42)

where we defineζi := u0 ·ui andρ̃ij := vi·vj−ξiξj√
1−ξ2i

q
1−ξ2j

. In other words, the rotation does not affect the value

of ρ̃ij . Thus, we have

vi · vj − ui · uj = ξiξj − ζiζj + ρ̃ij

(√
1 − ξ2i

√
1 − ξ2j −

√
1 − ζ2i

√
1 − ζ2j

)
. (43)

Since|ξi − ζi| ≤ ε′/2, we have that|ξiξj − ζiζj| ≤ 2ε′, and since∣∣∣∣√1 − ξ2i −
√

1 − ζ2i

∣∣∣∣ ≤ √
1 − (1 − ε′/2)2 ≤

√
ε′, (44)

we have ∣∣∣∣ρ̃ij (√1− ξ2i

√
1− ξ2j −

√
1− ζ2i

√
1 − ζ2j

)∣∣∣∣ ≤ 4|ρ̃ij |
√
ε′ ≤ 4

√
ε′. (45)

Thus, we get that
|vi · vj − ui · uj | ≤ 2ε′ + 4

√
ε′. (46)

However, the vectors{ui}ni=0 could possibly violate some of the triangle inequalities. To remedy this, we
adjust it slightly, by again defining a new SDP solution{v′i}ni=0 as follows (ε′′ will be chosen momentarily)

v′i =
√

1 − ε′′ui +
√
ε′′wi, (47)

for i ∈ {0, . . . , n}. Here, eachwi is a unit vector which is orthogonal to every otherwj, and to all thev′i
vectors (such a set ofwi vectors is trivial to construct by embedding all vectors inR

2(n+1)). These new
vectors satisfyv′i · v′j = (1 − ε′′)ui · uj for all i �= j. And since the original SDP solution{vi}ni=0 satisfies
the triangle inequalities, we have that

ui · uj + uj · uk + uk · ui ≥ −1− 6ε′ − 12
√
ε′ (48)

v′i · v′j + v′j · v′k + v′k · v′i ≥ −(1 + 6ε′ + 12
√
ε′)(1 − ε′′). (49)

Letting ε′′ = 6ε′ + 12
√
ε′, the right hand side is at least−1, and this triangle inequality is satisfied. The

other three sign combinations are handled identically. In other words,{v′i}ni=0 is a feasible SDP solution. Its
value can be lower-bounded by

SDP-Val({vi}) − SDP-Val({v′i}) ≤ |P̂1|(ε′/2 + ε′′) + |P̂2|(ε′/2 + ε′′) + |P̂3|(2ε′ + 4
√
ε′ + ε′′)

≤ |P̂0|(21ε′ + 40
√
ε′′). (50)

Choosingε′ small enough (e.g.ε′ = (ε/122)2), this is bounded byε2 Val(Ψ).
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Now, consider an optimal rounding functionR for {v′i}, and construct a new rounding functionR′ by
lettingR′(ξ) be the nearest integer multiple ofε/8 (so that|R(ξ) − R′(ξ)| ≤ ε/16 for all ξ). We then have
for any configurationθ′ = (ξ′1, ξ

′
2, ρ

′)

Pround(θ′, R) − Pround(θ′, R′) ≤ |P̂1|ε/16 + |P̂2|ε/16 + |P̂3|(4ε/16 + ε/16 + ε/16) ≤ ε

2
Val(Ψ). (51)

To see this, we refer to Proposition 2.17, which implies that∣∣Γρ̃(R(ξ′1), R(ξ′2)) − Γρ̃(R′(ξ′1), R
′(ξ′2))

∣∣ ≤ ε/16 (52)

Note that the number of possibleR′ is constant, roughly(16/ε)1/ε
′
. Thus, we can find a rounding which

is at least as good asR′ in polynomial time by simply trying all possible choices ofR′, evaluating each one,
and picking the best function found. Using Lemma 3.7, this means that we can find a solution toΨ with
expected value at least

E
θ′∈Θ′

[
Pround(θ′, R′)

]
≥ E

θ′∈Θ′

[
Pround(θ′, R)

]
− ε

2
Val(Ψ)

= αP (Θ′) SDP-Val({v′i}) −
ε

2
Val(Ψ)

≥ αP (Θ′) SDP-Val({vi}) − εVal(Ψ)
≥ (αP (k) − ε)Val(Ψ), (53)

whereΘ′ denotes the set of configurations arising from the SDP solution{v′i}ni=0.

We remark that the running time of the algorithm has a quite bad dependency onε; it scales as(1/ε)Ω(1/ε
2).

5 The PCP Reduction

Theorem 1.2 immediately follows from the following Theorem 5.1 below. Takingk large enough so that
βP (k) ≤ β(P )+ε and invoking Theorem 5.1 gives hardness of approximating MAX CSP(P ) within β(P )+
2ε.

Theorem 5.1. Assuming the Unique Games Conjecture, it is NP-hard to approximate MAX CSP(P ) within
βP (k) + ε for any ε > 0 and k ∈ N.

We prove Theorem 5.1 by constructing a PCP verifier which checks a supposed long coding of a good
assignment to a UNIQUE LABEL COVER instance, and decides whether to accept or reject based on the
evaluation of the predicateP on certain bits of the long codes. The verifier is parametrized by a family
of k positive configurationsΘ = {θ1, . . . , θk} and a probability distribution onΘ. Again, we point out
that the requirement that the configurations ofΘ are positive is by necessity rather than by choice, and if
we could get rid of it, the hardness of approximation yielded would exactly match the approximation ratio
from Theorem 1.1. The setΘ corresponds to a set of vector configurations for the semidefinite relaxation of
MAX CSP(P ). When proving soundness, i.e., in the case that there is no good assignment to the UNIQUE

LABEL COVER instance, we prove that the best strategy for the prover corresponds to choosing a good
rounding functionR for the family of configurationsΘ. Choosing a set of configurations which are hard to
round, we obtain the desired result.

Since we can negate variables freely, we will assume that the purported long codes are folded over true
(by selecting, for each pair(x,−x) of inputs one representative, sayx, and then look up the value at−x by
reading the value atx and negating the answer). Intuitively, this ensures that the prover’s rounding function
is odd, i.e. thatR(ξ) = −R(−ξ). For a permutationσ ∈ SL and a bitstringx ∈ {−1, 1}L, we denote by
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Algorithm 1: The verifierVΘ
VΘ(X, Σ = {fv}v∈V )
(1) Pick a random configurationθ = (ξ1, ξ2, ρ) ∈ Θ according to the distribution onΘ.
(2) Pick a randomv ∈ V .
(3) Picke1 = {v,w1} ande2 = {v,w2} randomly fromE(v).
(4) Pickx1, x2 ∈ {−1, 1}L such that each bit ofxi is picked independently with expected

valueξi and that thej:th bits ofx1 andx2 areρ-correlated forj = 1, . . . , L.
(5) Fori = 1, 2, let bi = fwi(σ

v
ei
xi) (folded over true).

(6) Accept with probabilityP (b1, b2).

σx ∈ {−1, 1}L the stringx permuted according toσ, i.e.,σx = xσ(1)xσ(2) . . . xσ(L). The verifier is given
in Algorithm 1. Note that, becauseθ is a configuration, Equation (26) guarantees that we can choosex1 and
x2 with the desired distribution in step (4).

We now analyze the completeness and soundness of the verifier. Arithmetizing the acceptance predicate,
we find that the acceptance probability ofVΘ can be written as

E
θ∈Θ

[
E

v,e1,e2,x1,x2

[
P̂0 + P̂1fw1(σ

v
e1x1) + P̂2fw2(σ

v
e2x2) + P̂3fw1(σ

v
e1x1)fw2(σ

v
e1x2) | θ

]]
(54)

5.1 Completeness

Lemma 5.2 (Completeness). If Val(X) ≥ 1− η, then there is a proof Σ such that

Pr[VΘ(X,Σ) accepts] ≥ (1 − 2η) E
θ∈Θ

[Prelax(θ)] (55)

Proof. Fix a labelling� of the vertices ofX such that the fraction of satisfied edges is at least1 − η, and
let fv : {−1, 1}L → {−1, 1} be the Long Code of the label of the vertexv. Note that for a satisfied edge
{v,w} and an arbitrary biststringx ∈ {−1, 1}L, fw(σv

ex) equals the value of the�(v):th bit of x.
Fix a choice ofθ = (ξ1, ξ2, ρ). By the union bound, the probability that any of the two edgese1, e2

chosen byVΘ are not satisfied is at most2η. For a choice of edges thatare satisfied, the expected value of
fwi(σ

v
ei
xi) is the expected value of the�(v):th bit ofxi, i.e.ξi, and the expected value offw1(σ

v
e1x1)fw2(σ

v
e2x2)

is the expected value of the�(v):th bit of x1x2, i.e.ρ.
Thus, the probability thatVΘ accepts is at least

E
θ∈Θ

[
(1 − 2η)(P̂0 + P̂1ξ1 + P̂2ξ2 + P̂3ρ)

]
= (1 − 2η) E

θ∈Θ
[Prelax(θ)], (56)

and the proof is complete.

5.2 Soundness

Lemma 5.3 (Soundness). For every ε > 0 there is a γ > 0 such that if Val(X) ≤ γ, then for any proof Σ,
we have

Pr[VΘ(X,Σ) accepts] ≤ max
R∈R

E
θ∈Θ

[Pround(θ,R)] + ε. (57)

Proof. For ξ ∈ [−1, 1] andv ∈ V , definegξv : Bn
(1−ξ)/2 → {−1, 1} by

gξv(x) = E
e={v,w}∈E(v)

[fw(σv
ex)] , (58)
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and define the functionRv(ξ) := E

[
gξv(x)

]
. Note that since we fold the purported Long Codes over true,

we have that bothgξv andRv are odd functions, and in particular thatRv ∈ R. We remark that for a fixed
v and different values ofξ, the functionsgξv are the same function, but since the probability distributions
of their inputs have an almost disjoint support (in the probabilistic sense), we might as well treat them as
independent of each other.

We can now writeVΘ:s acceptance probability as

Pr[VΘ accepts] = E
θ

[
E

v,x1,x2

[
P̂0 + P̂1g

ξ1
v (x1) + P̂2g

ξ2
v (x2) + P̂3g

ξ1
v (x1)gξ2v (x2) | θ

]]
= E

θ,v

[
P̂0 + P̂1Rv(ξ1) + P̂2Rv(ξ2) + P̂3 Sρ̃(θ)(g

ξ1
v , gξ2v )

]
, (59)

Assume that the probability thatVΘ accepts is at least

Pr[VΘ accepts] ≥ E
θ,v

[Pround(θ,Rv)] + ε

= E
θ,v

[
P̂0 + P̂1Rv(ξ1) + P̂2Rv(ξ2) + P̂3(4Γρ̃(Rv(ξ1), Rv(ξ2)) + Rv(ξ1) + Rv(ξ2) − 1)

]
+ ε.(60)

Combining this with Equation (59), this implies that there exists aθ = (ξ1, ξ2, ρ) ∈ Θ such that

E
v

[
P̂3 ·

(
Sρ̃(θ)(g

ξ1
v , gξ2v ) − 4Γρ̃(θ)(Rv(ξ1), Rv(ξ2)) −Rv(ξ1) −Rv(ξ2) + 1

)]
≥ ε. (61)

Using the fact that the absolute value of the expression in the expectancy is bounded by2|P̂3|, this implies
that for a fractionε′ := ε

3|P̂3| of all v ∈ V , we have

P̂3 · Sρ̃(θ)(g
ξ1
v , gξ2v ) ≥ P̂3

(
4Γρ̃(θ)(Rv(ξ1), Rv(ξ2)) + Rv(ξ1) + Rv(ξ2) − 1

)
+ ε′. (62)

Let Vgood be the set of all suchv. Using thatθ is a positive configuration (i.e.̂P3ρ̃(θ) ≥ 0), we then get that
for v ∈ Vgood,

Sρ̃(θ)(g
ξ1
v , gξ2v ) ≥ 4Γ|ρ̃(θ)|(Rv(ξ1), Rv(ξ2)) + Rv(ξ1) + Rv(ξ2) − 1 + ε′/|P̂3| (63)

if P̂3 > 0, or

Sρ̃(θ)(g
ξ1
v , gξ2v ) ≤ 4Γ−|ρ̃(θ)|(Rv(ξ1), Rv(ξ2)) + Rv(ξ1) + Rv(ξ2) − 1 − ε′/|P̂3| (64)

if P̂3 < 0. In either case, Majority is stablest (Corollary 2.19) implies that there are constantsτ andk
(depending only onε, θ, andP ) such that for anyv ∈ Vgood we haveInf≤k

i (gξ1v ) ≥ τ (and also that
Inf≤k

i (gξ2v ) ≥ τ , though we will not use that). Fixingθ and dropping the bias parameterξ1 for the remainder
of the proof, we have that for anyv ∈ Vgood,

τ ≤ Inf≤k
i (gv) ≤ E

e={v,w}

[
Inf≤k

σv
e (i)

(fw)
]
, (65)

and sinceInf≤k
σv

e (i)
(fw) ≤ 1 for all e, this implies that for at least a fractionτ/2 of all edgese = {v,w} ∈

E(v), we haveInf≤k
σv

e (i)
(fw) ≥ τ/2. Forv ∈ V , let

C(v) = { i ∈ L | Inf≤k
i (fv) ≥ τ/2 ∨ Inf≤k

i (gv) ≥ τ }. (66)
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Intuitively, the criterionInf≤k
i (fv) ≥ τ/2 means that the purported Long Codes of the label ofv suggestsi

as a suitable label forv, and the criterionInf≤k
i (gv) ≥ τ means that many of the purported Long Codes for

the neighbors ofv suggests thatv should have the labeli. By the fact that
∑

i Inf≤k
i (fv) ≤ k, we must have

|C(v)| ≤ 2k/τ + k/τ = 3k/τ .
We now define a labelling by picking independently for eachv ∈ V a (uniformly) random labeli ∈ C(v)

(or an arbitrary label in caseC(v) is empty). For a labelv ∈ Vgood with Inf≤k
i (gv) ≥ τ , the probability

thatv is assigned labeli is 1/|C(v)| ≥ τ/3k. Furthermore, by the above reasoning and the definition ofC,
at least a fractionτ/2 of the edgese = {v,w} from v will satisfy σv

e (i) ∈ C(w). For such an edge, the
probability thatw is assigned the labelσv

e (i) is 1/|C(w)| ≥ τ/3k. Thus, the expected fraction of satisfied
edges adjacent to anyv ∈ Vgood is at leastτ/2 · (τ/3k)2, and so the expected fraction of satisfied edges in

total4 is at leastε′ · τ3

18k2 and thus there is an assignment satisfying at least this total weight of edges. Note

that this is a positive constant that depends only onε andθ, andP . Making sure thatγ < ε′τ3

18k2 , we get a
contradiction on the assumption of the acceptance probability (Equation (60)), implying that the soundness
is at most

Pr[VΘ acceptsΣ] ≤ E
θ,v

[Pround(θ,Rv)] + ε (67)

≤ max
R∈R

E
θ∈Θ

[Pround(θ,R)] + ε, (68)

and we are done.

5.3 Wrapping It Up

Combining the two lemmas and pickingη small enough, we get that it is Unique Games-hard to approximate
MAX CSP(P ) within

max
R∈R

Eθ∈Θ[Pround(θ,R)]
Eθ∈Θ[Prelax(θ)]

+ O(ε) = αP (Θ) + O(ε) . (69)

Picking aΘ with |Θ| = k that minimizesαP (Θ), we obtain Theorem 5.1.

6 Application to MAX 2-AND

Using the machinery developed in Sections 3 and 5, we are able to obtain an upper bound ofβ(P ) ≤ 0.87435
for the case whenP (x1, x2) = x1∧x2, i.e., the MAX 2-AND problem, establishing Theorem 1.4. We do this
by exhibiting a setΘ of k = 4 (positive) configurations on2 distinct non-zeroξ-values (and a probability
distribution on the elements ofΘ), such thatαP (Θ) < 0.87435.

Before doing this, let us start with an even simpler set of configurations, sufficient to give an inapprox-
imability of 0.87451, only marginally worse than0.87435. This set of configurationsΘ = {θ1, θ2} contains
only one non-zeroξ-value, and is given by

θ1 = (0,−ξ, 1 − ξ) with probability0.64612
θ2 = (0, ξ, 1 − ξ) with probability0.35377,

whereξ = 0.33633.

4We remind the reader of the convention of Section 2.2 that the choices of random vertices and edges are according to the
probability distributions induced by the weights of the edges, and so choosing a randomv ∈ V and then a randome ∈ E(v) is
equivalent to just choosing a randome ∈ E.
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Figure 1: Approximation ratio as a function ofR

To compute the hardness factor given by this set of configurations, we must compute

αP (Θ) = max
R∈R

Eθ∈Θ[Pround(θ,R)]
Eθ∈Θ[Prelax(θ)]

. (70)

SinceP (x1, x2) = 1−x1−x2+x1x2
4 we have that for an arbitrary configurationθ = (ξ1, ξ2, ρ),

Prelax(θ) =
1 − ξ1 − ξ2 + ρ

4

Pround(θ,R) =
1 −R(ξ1) −R(ξ2) + 4Γρ̃(θ)(R(ξ1), R(ξ2)) + R(ξ1) + R(ξ2) − 1

4
= Γρ̃(θ)(R(ξ1), R(ξ2)).

In our case, using the two configurations given above,R is completely specified by its value on the angle
ξ (sinceR(0) = 0 andR(−ξ) = −R(ξ)). Figure 1 gives a plot of the right-hand side of Equation (70), as
a function of the value ofR(ξ). The maximum turns out to occur atR(ξ) ≈ 0.29412, and gives a ratio of
approximately0.87450517. Thus, we see thatαP (Θ) ≤ 0.87451. We remark that it is not very difficult to
make this computation rigorous—it can be proven analytically that the curve of Figure 1 is indeed convex,
and so the only maximum can be computed to within high precision (using easy bounds on the derivative)
using a simple ternary search.

Let us now turn to the larger set of configurations, based on four configurations, mentioned earlier. This
set of configurationsΘ = {θ1, θ2, θ3, θ4} is as follows:

θ1 = (0,−ξA, 1 − ξA) with probability0.52850
θ2 = (0, ξA, 1 − ξA) with probability0.05928
θ3 = (ξA,−ξB , 1 − ξA − ξB) with probability0.29085
θ4 = (−ξA, ξB , 1 − ξA − ξB) with probability0.12137,

whereξA = 0.31988 andξB = 0.04876.
As before, to compute the approximation ratio given byΘ, we need to find the bestR for Θ, and again,

such anR is completely specified by its values on the non-zeroξ-values. In other words, we now need to
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Figure 2: Approximation ratio as a function ofR

specify the values ofR on the two anglesξA andξB. Figure 2(a) gives a contour plot of approximation ratio,
as a function of the values ofR(ξA) andR(ξB). There are now two local maxima, one around the point
(R(ξA), R(ξB)) ≈ (0.27846, 0.044376), and one around the point(1,−1). Figure 2(b) gives a contour plot
of the area around the first point. This maximum turns out to be approximately0.87434075. At the point
(1,−1) (which is indeed the other maximum), the approximation ratio is approximately0.87434007. Thus,
we haveαP (Θ) ≤ 0.87435.

In general, givenΘ (and a probability distribution on its elements), the very problem of computing
αP (Θ) is a difficult numeric optimization problem. However, for theΘ we use, the number of distinctξ-
values used is small, so that computingαP (Θ) in this case is a numeric optimization problem in2 variables,
which we are able to handle.

It seems likely that additional improvements can be made by using more and moreξ-values, though
these improvements will be quite small. Indeed, using largerΘ we are able to improve upon Theorem 1.4,
but the improvements we have been able to make are minute (of order10−5), and it becomes a lot more
difficult to verify them. Note thatθ1 andθ2 used in the larger set of configurations are very similar to the
first set of configurations—they are of the same form, and theξ-value used is only slightly different. It
appears that it is useful to follow this pattern when adding even more configurations: the values ofξA and
ξB are adjusted sligtly, and we add two configurations of the form(±ξB ,∓ξC , 1 − ξB − ξC). Essentially
this type of sequence of configurations has appeared before, see e.g. the analysis of lower bounds for certain
MAX DI-CUT algorithms in [35].

7 Concluding Remarks

We remark that it is a fairly straightforward task to adapt these results to the MAX CSP+(P ) problem,
obtaining statements analogous to Theorems 1.1 and 1.2. The only difference is that we drop the requirement
that a rounding function has to be odd (since we cannot fold the long codes over true anymore, we would not
be able to enforce such a constraint). However, in doing so, we also lose the possibility to force a rounding
functionR to satisfyR(0) = 0. The configurations that we use for proving hardness of MAX 2-AND rely
heavily on this property, and it is for this reason that those results do not apply to the MAX DI-CUT problem
directly. In other words, we are not able to obtain a statement similar to Theorem 1.4 for the MAX DI-CUT

problem. Whether this is because the MAX DI-CUT problem is easier to approximate than MAX 2-AND, or

21



whether we just have to spend some more time searching for a “bad” set of configurations, we do not know,
but we conjecture that the latter is true and that they are equally hard. However, today we do not even know
whether balanced instances of the MAX DI-CUT problem are the hardest or not.

If P is monotone, the MAX CSP+(P ) problem is trivially solvable, so there are cases where MAX CSP+(P )
is easier than MAX CSP(P ). Lacking results on MAX DI-CUT, it would be interesting to determine whether
there are other examples than these trivial ones. A good candidate would probably be an “almost monotone”
P (recall thatP is real-valued.).

Recently, O’Donnell and Wu have done a complete analysis of the “approximability curve” of the
MAX CUT problem, exhibiting an algorithm, integrality gap, and UGC-based hardness result which all
match [30]. It will be interesting to see whether their results can be extended to other MAX 2-CSP prob-
lems.
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A Proof of Theorem 2.18

In this section, we prove Theorem 2.18. The proof is essentially the same as the proof of Dinur et al. [12]
for a similar theorem. They consider a more general class of noise operators than the ones we need and
functions over them-ary hypercube rather than just the Boolean hypercube. On the other hand, they only
consider functions on the uniform distribution.

Theorem (Theorem 2.18 restated). For any ε > 0, q1 ∈ (0, 1), q2 ∈ (0, 1) and ρ ∈ (−1, 1) there is a τ > 0,
k ∈ N such that for any two functions f : Bn

q1 → [0, 1] and g : Bn
q2 → [0, 1] satisfying E[f ] = 1−µf

2 ,

E[g] = 1−µg

2 and

min
(
Inf≤k

i (f), Inf≤k
i (g)

)
≤ τ

for all i ∈ [n], the following holds:

Sρ(f, g) ≤
〈
χµf

, U|ρ|χµg

〉
+ ε (71)

Sρ(f, g) ≥
〈
χµf

, U|ρ|(1 − χ−µg )
〉
− ε (72)

Proof. First, note that it suffices to prove Equation (71), since if it is true, we have

Sρ(f, g) = Sρ(f,1) − Sρ(f,1 − g)
≥

〈
χµf

, U|ρ|1
〉
−
〈
χµf

, U|ρ|χ−µg

〉
− ε

=
〈
χµf

, U|ρ|(1 − χ−µg)
〉
− ε, (73)

where we note thatSρ(f,1) =
〈
χµf

, U|ρ|1
〉

= 1−µf

2 .
The proof will be based on the following Lemma:

Lemma A.1. Let q1 ∈ (0, 1), q2 ∈ (0, 1) and ρ ∈ (−1, 1). Then for any ε > 0, η < 1, there exists τ > 0 and
k > 0 such that for any functions f : Bn

q1 → [0, 1], g : Bn
q2 → [0, 1] satisfying E[f ] = 1−µf

2 , E[g] = 1−µg

2 ,

max
(
Inf≤k

i (f), Inf≤k
i (g)

)
≤ τ ∀i (74)
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and ∑
|S|≥d

f̂2S ≤ η2d,
∑
|S|≥d

ĝ2S ≤ η2d ∀d (75)

it holds that
Sρ(f, g) ≤

〈
χµf

, U|ρ|χµg

〉
+ ε (76)

Note that the Fourier coefficients off andg are with respects to different measures. Before proving
Lemma A.1, we show how to use it to complete the proof of Theorem 2.18.

Pick η < 1 large enough so that|ρ|j(1 − η2j) < ε/4 for all j, and letτ ′, k′ be the values given by
Lemma A.1 with the parametersq1, q2, ρ, ε/4 andη. Setk large enough so that both|ρ|k ≤ ε/4 andk ≥ k′.
Let

Sf = { i | Inf≤k
i (f) ≥ τ ′ }, Sg = { i | Inf≤k

i (g) ≥ τ ′ } (77)

Definef ′ : BS
q1 → [0, 1] andg′ : BS

q2 → [0, 1] by

f ′ =
∑
S⊆[n]

S∩Sf=∅

η|S|f̂SUS
q1 (78)

g′ =
∑
S⊆[n]

S∩Sg=∅

η|S|ĝSUS
q2 (79)

Now, for i ∈ Sf , we haveInf≤k′
i (f ′) = 0, whereas fori �∈ Sf , we haveInf≤k′

i (f ′) ≤ Inf≤k
i (f) ≤ τ ′, and

similarly for g′. Thus, we have thatmax(Inf≤k
i (f ′), Inf≤k

i (g′)) ≤ τ ′ for everyi. Furthermore,∑
|S|≥d

f̂ ′2
S ≤ η2d

∑
S

f̂2S ≤ η2d, (80)

and similarly forg′, so Lemma A.1 gives that

Sρ(f ′, g′) ≤
〈
χµf

, U|ρ|χµg

〉
+ ε/4 (81)

What remains is to bound the difference betweenSρ(f, g) andSρ(f ′, g′). We have

|Sρ(f, g) − Sρ(f ′, g′)| =

∣∣∣∣∣∣∣∣∣
∑

S∩Sf=∅
S∩Sg=∅

ρ|S|
(
1 − η2|S|

)
f̂S ĝS +

∑
S∩(Sf∪Sg)�=∅

ρ|S|f̂S ĝS

∣∣∣∣∣∣∣∣∣
≤

∑
S∩Sf=∅
S∩Sg=∅

ε

4
|f̂S ĝS | +

∑
S∩(Sf∪Sg)�=∅

|S|≤k

|f̂S ĝS | +
∑

S∩(Sf∪Sg)�=∅
|S|≥k

∣∣∣ρkf̂S ĝS∣∣∣
≤

∑
S⊆[n]

ε

2
|f̂S ĝS | +

∑
S∩(Sf∪Sg)�=∅

|S|≤k

|f̂S ĝS | (82)

By Cauchy-Schwartz, the first term is bounded byε
2 · ‖f‖ · ‖g‖ ≤ ε/2. The second term is bounded by

(again using Cauchy-Schwartz)∑
i∈Sf∪Sg

∑
i∈S
|S|≤k

|f̂S ĝS | ≤
∑

i∈Sf∪Sg

√
Inf≤k

i (f)
√

Inf≤k
i (g) (83)
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Now, we have that both|Sf | and |Sg| are bounded by2k/τ ′. Furthermore, at least one ofInf≤k
i (f) and

Inf≤k
i (g) is bounded byτ (the value of which we have not yet determined), and since both are bounded by

1 we have ∑
i∈Sf∪Sg

√
Inf≤k

i (f)
√

Inf≤k
i (g) ≤ 4k/τ ′ ·

√
τ (84)

Settingτ ≤
(
ετ ′
k

)2
, this is at mostε/4. Thus, we conclude that

Sρ(f, g) ≤ Sρ(f ′, g′) + 3ε/4 ≤
〈
χµf

, U|ρ|χµg

〉
+ ε, (85)

and we are done.

A.1 Proof of Lemma A.1

What remains is the proof of Lemma A.1. Before proceeding with this, we have to introduce some new
notation.

Definition A.2 (Real analogue of a function). Let f : Bn
q → R be a function with Fourier expansion

f =
∑
S⊆[n]

f̂SU
S
q (86)

We define the real analoguẽf : R
n → R to be

f̃(z1, . . . , zn) =
∑
S⊆[n]

f̂SŨ
S(z1, . . . , zn), (87)

whereŨS(z1, . . . , zn) =
∏

i∈S zi.

Note that the set of functions{ŨS}S⊆[n] forms an orthonormal basis (w.r.t. the scalar product defined in
Section 2.4). It is a fairly straightforward exercise to verify that〈

f̃ , Uρg̃
〉

=
∑
S⊆[n]

ρ|S|f̂S ĝS = Sρ(f, g) (88)

for anyρ ∈ [−1, 1].

Definition A.3. For any functionf with rangeR define

chop(f)(x) =


f(x) if f(x) ∈ [0, 1]
0 if f(x) < 0
1 if f(x) > 1

(89)

The proof of Lemma A.1 relies on two powerful theorems. The first is a version of Mossel et al.’s
invariance principle.

Theorem A.4 (Mossel et al. [29], Theorem 3.20 under hypothesisH3). For any q ∈ (0, 1), τ > 0 and
0 < η < 1, let K = log(1/min(q, 1 − q)), k = log(1/τ)/K. Then for any f : Un

q → [0, 1] satisfying

Inf≤k
i (f) ≤ τ ∀i and

∑
|S|≥d

f̂2S ≤ η2d ∀d, (90)

the following holds:
‖f̃ − chop(f̃)‖ ≤ τΩ((1−η)/K) (91)

26



The second is the following powerful theorem of Borell. [7]

Theorem A.5 (Borell [7]). Let ρ ∈ [0, 1] and F,G : R
n → [0, 1] with E[F ] = 1−µf

2 , E[G] = 1−µg

2 . Then

〈F,UρG〉 ≤
〈
χµf

, Uρχµg

〉
(92)

Note that Theorem A.5 implies that〈F,U−ρG〉 ≤
〈
χµf

, Uρχµg

〉
. To see this, takeG′(x) = G(−x),

so that〈F,U−ρG〉 = 〈F,UρG
′〉 andE[G] = E[G′]). Thus, we have〈F,UρG〉 ≤

〈
χµf

, U|ρ|χµg

〉
for any

ρ ∈ [−1, 1].
We are now ready to prove the Lemma.

Proof of Lemma A.1. Let µ′
f = 1−E[chop(f̃)]

2 , µ′
g = 1−E[chop(g̃)]

2 . Setε′ = ε/3. Pick τ small enough so that

Theorem A.4 gives that both‖ chop(f̃) − f̃‖ ≤ ε′ and‖ chop(g̃) − g̃‖ ≤ ε′, and pickk accordingly. Now,
we have

Sρ(f, g) =
〈
f̃ , Uρg̃

〉
=

〈
chop(f̃), Uρ chop(g̃)

〉
+〈

f̃ − chop(f̃), Uρ chop(g̃)
〉

+
〈
Uρf̃ , g̃ − chop(g̃)

〉
, (93)

where we used that
〈
f̃ , Uρg̃

〉
=
〈
Uρf̃ , g̃

〉
. By Cauchy-Schwartz, the last two terms are bounded by

‖f̃ − chop(f̃)‖ · ‖Uρ chop(g̃)‖ + ‖Uρf̃‖ · ‖g̃ − chop(g̃)‖, (94)

which in turn is bounded by2ε′, since both‖Uρ chop(g̃)‖ and‖Uρf̃‖ are at most1. Thus,

Sρ(f, g) ≤
〈
chop(f̃), Uρ chop(g̃)

〉
+ 2ε′ (95)

Applying Borell’s theorem tochop(f̃) andchop(g̃), we have〈
chop(f̃), Uρ chop(g̃)

〉
≤

〈
χµ′

f
, U|ρ|χµ′

g

〉
(96)

To relate this to
〈
χµf

, U|ρ|χµg

〉
, note that we have

|µf − µ′
f | = |E[f̃ − chop(f̃)]|/2 =

∣∣∣〈f̃ − chop(f̃),1
〉∣∣∣ /2

≤ ‖f̃ − chop(f̃)‖/2 ≤ ε′/2, (97)

and similarly for|µg − µ′
g|. Applying Proposition 2.17, this gives〈

χµ′
f
, U|ρ|χµ′

g

〉
≤
〈
χµf

, U|ρ|χµg

〉
+ ε′/2, (98)

In conclusion, we haveSρ(f, g) ≤
〈
χµf

, U|ρ|χµg

〉
+ 3ε′, as desired.

27


	Introduction
	Our Contribution
	Techniques and Related Work
	Organization

	Preliminaries
	Constraint Satisfaction Problems
	The Unique Games Conjecture
	Influence and Correlation Under Noise
	Functions in Gaussian Space
	Thresholds are Extremely Correlated Under Noise

	Semidefinite Relaxation
	The Approximation Algorithm
	The PCP Reduction
	Completeness
	Soundness
	Wrapping It Up

	Application to Max 2-And
	Concluding Remarks
	Acknowledgements

	Proof of Theorem 2.18
	Proof of Lemma A.1


