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Abstract

We continue the recent line of work on the connection between semidefinite programming-based approx-
imation algorithms and the Unique Games Conjecture. Given any bo®€&® (or more generally, any
nonnegative objective function on two boolean variables), we show how to reduce the search for a good
inapproximability result to a certain numeric minimization problem. The key objects in our analysis are
the vector triples arising when doing clause-by-clause analysis of algorithms based on semidefinite pro-
gramming. Given a weighted set of such triples of a certain restricted type, which are “hard” to round in
a certain sense, we obtain a Unigue Games-based inapproximability matching this “hardness” of round-
ing the set of vector triples. Conversely, any instance together with an SDP solution can be viewed as
a set of vector triples, and we show that we can always find an assignment to the instance which is at
least as good as the “hardness” of rounding the corresponding set of vector triples. We conjecture that
the restricted type required for the hardness result is in fact no restriction, which would imply that these
upper and lower bounds match exactly. This conjecture is supported by all existing results for specific
2-CSPs.

As an application, we show thatAX 2-AND is hard to approximate withif.87435. This improves
upon the best previous hardnessagfyy + € ~ 0.87856, and comes very close to matching the ap-
proximation ratio of the best algorithm knowt87401. It also establishes that balanced instances of
MAX 2-AND, i.e., instances in which each variable occurs positively and negatively equally often, are
not the hardest to approximate, as these can be approximated within adfagtor

1 Introduction

Predicates on two boolean variables are fundamental in the study of constraint satisfaction problems. Given

a set of constraints, each being a formula on two boolean variables, it is an easy task to find an assignment

satisfying all constraints, if such an assignment exists. However, determining the maximum possible number

of simultaneously satisfied constraints is well-known to be NP-hard. This problem is known asxhg-M

CSP problem. It also has some very interesting special cases, the two most well-studied of which are the

MAX CuT problem and the Mx 2-SAT problem. In the M\x CuT problem, each constraint is of the form

x; ® x4, i.e., itis true if exactly one of the inputs are true. In the2-SAT problem, each constraint is of

the formi; v 15, i.e., a disjunction on two literals, each literal being either a variable or a negated variable.
Given that the problem is NP-hard, much research has been focused on approximating the maximum

number of satisfied constraints to within some factor An algorithm achieves approximation ratoif

the solution found by the algorithm is guaranteed to have value atdetistes the optimum. We also

allow for randomized algorithms, in which we require that the expected value (over the randomness of
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the algorithm) of the solution found by the algorithmdgimes the optimum. The arguably most trivial
approximation algorithm is to simply pick a random assignment to the variables. For the gemera-M

CSP problem, this algorithm achieves an approximation ratib/éf For the special cases of At CuTt

and Max 2-SAT, it achieves ratios of /2 and3/4, respectively. For several decades, no substantial im-
provements were made over this result, until a seminal paper by Goemans and Williamson [16], where they
constructed &.7960-approximation algorithm for Mx 2-CSP, and).87856-approximation algorithms for

Max CuTt and Max 2-SAT. To do so, they relaxed the combinatorial problem at hand to a semidefinite
programming problem, to which an optimal solution can be found with high precision, and then used a very
clever technique to “round” the solution of the semidefinite programming back to a discrete solution for the
original problem. This approach has since been succesfully applied to several other hard combinatorial op-
timization problems, yielding significant improvements over existing approximation algorithms. Examples
include coloring graphs using as few colors as possible |20,16,] 17, £ BISECTION [15] and quadratic
programming over the boolean hypercube [9].

Some of the results by Goemans and Williamson were subsequently improved by Feige and Goe-
mans [13], who strengthened the semidefinite relaxation using certain triangle [16]. They olotaBied
approximation for Mux 2-SAT, and0.859-approximation for Max 2-CSP. These results were further im-
proved by Matuura and Matsui [27, |28], who obtaire€é35-approximation for Max 2-SAT and 0.863-
approximation for Max 2-CSP. Shortly thereafter, Lewin et al. [26] obtained further improvements, getting
a 0.94016-approximation algorithm for Mx 2-SAT and a0.87401-approximation algorithm for Mx 2-

CSP, and these stand as the current best algorithms. It should be pointed out that these last two ratios arise
as the minima of two complex numeric optimization problems, and, as far as we are aware, it has not yet
been proved formally that these are the actual ratios, though there seems to be very little doubt that this is
indeed the case.

Meanwhile, the study afapproximability has seen a lot of progress, emanating from the discovery of
the celebrated PCP theorem([4, 3]. In particular, Hastad [18] showed that the generalizatioxs 2fSAT
and Max CuT from 2 to 3 variables, Max 3-SAT and Max 3-LIN-M OD2, are NP-hard to approximate
within factors7/8 4+ ¢ and1/2 + ¢, respectively. This surprisingly demonstrates that the random assignment
algorithm is the best possible for these problems, assuiigg/N P. On the other hand, Mx 3-CSP can
be approximated to within a factay2 [34] which is tight by the result for Mx 3-LIN-MOD2.

For optimization problems with constraints acting on two variables, however, strong inapproximability
results have been more elusive. The best NP-hardness resulta fo2NLSP, Max 2-SAT, and Max CuT
are9/10+¢ ~ 0.900, 21/22+¢€ ~ 0.955, and16/17+¢ ~ 0.941, respectively[[33,18]. The most promising
approach to obtaining strong results for these problems is the so-called Unique Games Conjecture (UGC),
introduced by Khot[[21]. The UGC has established itself as one of the most important open problems
in theoretical computer science, because of the many strong inapproximability results that follow from it.
Examples of such results include— ¢ hardness for ¥RTEX COVER [24], superconstant hardness for
SPARSESTCUT [10,125] and MuLTICcUT [10], hardness of approximating AX INDEPENDENT SET within
d/poly(log d) in degreed graphsl[31], and approximation resistafibar random predicate$ [19].

For MAX 2-CSP problems, Khot et al. [22] showed that the UGC impliesy + ¢ hardness for
MAaXx CuT, whereagyw = 0.87856 is the performance ratio of the original Goemans-Williamson algorithm,
and in [5], we showed that the UGC implieg ;. + ¢ hardness for Mx 2-SAT, whereay 7 ~ 0.94016
is the performance ratio of the algorithm of Lewin et al. (modulo the slight possibility that the performance
ratio of their algorithm is smaller than indicated by existing analyses). It is interesting that the hardness
ratios yielded by the Unique Games Conjecture exactly match these somewhat “odd” constants obtained

!Linear equations mof, where every equation hasvariables.
2A predicate is approximation resistant if it is hard to do approximate the correspondixg@®&P problem better than a
random assignment.



from the complex numeric optimization problems arising from the SDP-based algorithms.

There are several other cases where the best inapproximability result, based on the UGC, matches
the best approximation algorithm, based on a semidefinite programming approach. Examples include the
MAX k-CSP problem[[8, 31] and WX CuT-GAIN [9],[23] (which is essentially a version of theA CuT
problem where unsatisfied constraints give negative contribution rather than zero). This line of results is not
a coincidence: in most cases, the choice of optimal parameters for the so called long code test (which is at
the heart of the hardness result) are derived by analyzing worst-case scenarios for the semidefinite relaxation
of the problem.

1.1 Our Contribution

In this paper, we continue to explore this tight connection between semidefinite programming relaxations
and the UGC. We consider a generalization of predicates on two variables to what fuezyggitredicates.

A fuzzy predicateP’ on two variables is a functiof : {true false}?> — [0, 1], rather than td0, 1} as would

be the case with a regular predicate. We investigate the approximability of the @SR P) problem.
Following the paradigm introduced by Goemans and Williamson, we relax this problem to a semidefinite
programming problem. We then consider the following approach for rounding the relaxed solution to a
boolean solution: given the SDP solution, we pick the “best” rounding from a certain class of randomized
rounding methods (based on skewed random hyperplanes), where “best” is in the sense of giving a boolean
assignment with maximum possible expected value. Informallyx(ét) denote the approximation ratio
yielded by such an approach. We then have the following theorem.

Theorem 1.1. For any fuzzy predicate P and € > 0, the MAx CSR P) problem can be approximated within
a(P) — e in polynomial time.

The reason that we lose an additaie that we are not, in general, able to find best rounding function,
but we can come arbitarily close.

Then, we turn our attention to hardness of approximation. Here, we are able to take instances which
are hard to round, in the sense that the best rounding (as described above) is not very good, and translate
them into a Unigue Games-based hardness result. There is, however, a caveat: in order for the analysis to
work, the instance needs to satisfy a certain “positivity” condition. Again, informally3(&t) denote the
approximation ratio when restricted to instances satisfying this condition. We then have

Theorem 1.2. If the Unique Games Conjecture is true, then for any fuzzy predicate P and ¢ > 0, the
MAaXx CSRP) problemis NP-hard to approximate within 5(P) + e.

Both «(P) and3(P) are the solutions to a certain numeric minimization problem. The function being
minimized is the same function in both cases, the only difference is that), the minimization is over
a larger domain, and thus, we could potentially hay®) < G(P). However, there are strong indications
that the minimum fora(P) is in fact obtained within the domain @f(P), in which case they would be
equal and Theorenis 1.1 andl1.2 would be tight.

Conjecture 1.3. For any fuzzy predicate P, we have o(P) = 3(P).

Because of the difficulty of actually computing the approximation raii@8) and 5(P), it may seem
to be somewhat difficult to compare these results to previous results. However, previous algorithms and
hardness results for M« Cut, MAX 2-SAT, and Max 2-CSP can all be obtained as special cases of
Theorems$ 111 and 1.2. In particular, fB(z1,22) = x1 @ x2, the XOR predicate, it can be shown that
a(P) = B(P) = acw.

We are also able to use Theoreml 1.2 to obtain new results, in the form of an improved hardness of
approximation for the Mx 2-AND problem, in which every constraint is arng of two literals. This also
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implies improved hardness for theAW 2-CSP problem — as is well-known, theAM k-CSP problem and
the MAX k-AND problem are equally hard to approximate for everfjolklore, or see e.gl [32]).

Theorem 1.4. For the predicate P(x1,z2) = x1 A x2, We have G(P) < 0.87435.

This comes very close to matching th&7401-approximation algorithm of Lewin et al. It also demon-
strates that balanced instances, i.e., instances in which each variable occurs positively and negatively equally
often, are not the hardest to approximate, as these can be approximatechwithiry 0.87856 [22].

Finally, as a by-product of our results, we obtain some insight regarding the possibilites of obtaining
improved results by strengthening the semidefinite program with more constraints. Traditionally, the only
constraints which have been useful in the design @fxM2-CSP algorithms are triangle inequalities of
a certain form (namely, those involving the vect@r coding the value false). It turns out that, for very
natural reasons, these are exactly the inequalities that need to be satisfied in order for the hardness result to
carry through. In other words, assuming Conjeckuré 1.3 is true, it is UG-hard to do better than what can be
achieved by adding only these triangle inequalities, and thus, it is unlikely that improvements can be made
by adding additional inequalities (while still using polynomial time).

1.2 Techniques and Related Work

The main new ingredients of this paper are the generalizations of the various quantities used in previous
results. In e.g. the case of Mt 2-SAT [5], one only had to consider one single angle, giving rise to two
configurations of a very special form, something which made the calculations a lot easier. In this paper, on
the other hand, we can have an arbitrary number of angles (and this is of course the reason why it is very
difficult to actually compute the approximation ratios obtained), and the “positivity” condition needed here
is significantly less restrictive than the special form used fax\2-SAT.

The proof of Theorerh 112 follows the same path as previous proofs for specific predicates [22, 5],
using the Majority Is Stablest theorem [29]. The main difference here is that we need a generalization of the
“correlation under noise” quantities involved, to functions on different probability distributions. The proof of
Theoren L1l primarily builds upon the work bf [26] forA® 2-SAT and Max Di-CuT, the main difference
being that a rounding function is chosen based on the semidefinite solution rather than beforehand, using a
discretization technique to make the search a good rounding function feasible.

1.3 Organization

This paper is organized as follows. In Secf{idn 2, we set up some notation, define constraint satisfaction prob-
lems and the Unique Games Conjecture. In Se€fion 3, we discuss the SDP relaxation aixti@IW P)

problem and define the constamt§P) and3(P). In Sectiorid, we prove Theordml.1. In Secfibn 5, we
prove Theorer 112. In Secti@h 6, we prove Theorerm 1.4. Finally, in Sédtion 7, we give some concluding
remarks on our results.

2 Preiminaries

We associate the boolean values true and false witand1, respectively. Thus, a disjunctianv y is true
if z = —1o0ry = —1, and a conjunction: A y is true ifr = y = —1. We denote bys™ = {v € R**! :
||v|]| = 1} then-dimensional unit sphere.

2.1 Constraint Satisfaction Problems

A predicate P on two boolean variables is a functidh : {—1,1}2 — {0,1}. We generalize this to the
notion offuzzy predicates.



Definition 2.1. A fuzzy predicate P on two boolean variables is a functidh: {—1,1}2 — [0, 1].

Note that, with general objective functions frdm 1, 1}2 to R in mind, the upper bound is without loss
of generality, since we can always scale down any nonnegative objective function so that it takes values in
[0, 1] and thus becomes a fuzzy predicate.

Definition 2.2. An instance¥ of the Max CSRP) problem, for a fuzzy predicat®, consists of a set of
clauses and a weight functiomt. Each clause) is a pair of literals(i,,l2) (a literal is either a variable
or a negation of a variable), and the weight function associates with each glaus®nnegative weight
wt(1). We abuse notation slightly by identifying with both the instance and the set of clauses. Given
an assignment = (x1,...,z,) to the variables occurring i, and a clause) = (siz;, s2x;) (Where
51,82 € {—1,1}), we denote the restriction afto ¢ by x|, = (s1z;, s2x;). The value of an assignment

to the variables occuring ifr is then given by

Valy (z) = > wt(¢)P(zy), (1)

Ypew

and the value of is the maximum possible value of an assignment
Val(¥) = max Valg (z). 2

For convenience, we will assume (without loss of generality) that the weights are normalized so that
wt(-) is just a probability distribution on the clauses, i.e., haf y, wt(¢) = 1 (so0 < Val(¥) < 1).

Definition 2.3. The Max CSP"(P) problem is the special case of At CSRP) where there are no
negated literals (i.e. each clause is a pair of variables).

An example of the Mx CSRP) problem which is of special interest for us is theakl2-AND prob-
lem, which is obtained by letting be the predicate which isif both of the inputs are true, aridotherwise.
A well-known example of the Mx CSP"(P) problem is the Mx CuT problem, which is obtained by let-
ting P be the predicate which ikif the inputs are different, analif they are equal.

Any fuzzy predlcateP can be arithmetized aB(z1,z2) = By + Pyzy + Pyxo + Pyzq24, for some
constants?, P;, P, and P;. Thus, the Mix CSR P) problem can be viewed as a certain special case of
the integer quadratic programming problem. Throughout the remainder of this paper, we fix some arbitrary
fuzzy predicate” and its corresponding coefficients . . . Ps.

2.2 TheUnique Games Conjecture

The Unique Games Conjecture was introduced by Khaot [21] as a possible means to obtain new strong
inapproximability results. As is common, we will formulate it in terms of a Label Cover problem.

Definition 2.4. An instance
X:(V7E7Wt [ ] {O-ev e}e {vw}EE)

of UNIQUE LABEL COVER is defined as follows: given is a weighted gragh= (V, E) (which may
have multiple edges) with weight functiont : £ — [0, 1], a set[L] of allowed labels, and for each edge
e = {v,w} € E two permutations?, ¢ € &, such thar® = (¢¥) ', i.e., they are each other’s inverse.
We say that a functiod : V' — [L], called a labelling of the vertices, satisfies an edge {v,w} if
ol (l(v)) = L(w), or equivalently, ife’ (¢(w)) = ¢(v). The value of is the total weight of edges satisfied

by it, i.e.,
Valy(0) = > wt(e) (3)

€.
¢ satisfiese
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The value ofX is the maximum fraction of satisfied edges for any labelling, i.e.,
Val(X) = max Valx (¢). 4)

Without loss of generality, we will always assume that wt(e) = 1, i.e., thatwt is in fact a probability
distribution over the edges of . We denote byZ(v) the subset of edges adjacentta.e., E(v) = {e|v €

e }. The probability distributionwt induces a natural probability distribution on the verticesXofvhere
the probability of choosing is % ZeeE(v) wt(e), andwt also induces a natural distribution on the edges of

E(v) where the probability of choosinge E(v) is s wi(e)

ceB(v) Wt(E)”

Whenever we speak of choosing a random elgrr(\e)ﬁt’,oE or E(v), it will be according to these
probability distributions, but to simplify the presentation, we will simply refer to it as a random element.
For the same reason we will refer to a fractioof the elements oV, £ or E(V') when in fact we mean a
set of vertices/edges with probability mass

A UNIQUE LAaBEL COVER problem whereZ is bipartite can be viewed as a two-prover (one-round)
game in which the acceptance predicate of the verifier is such that given the answer for one of the provers,
there is always a unique answer from the other prover such that the verifier accepts. The probability that the
verifier accepts assuming that the provers use an optimal strategy i¥4heX)). Hence the terminology
“Unigque Games”. We will be interested in the gap version of thedlWe LABEL COVER problem, which
we define as follows.

Definition 2.5. GAP-UNIQUE LABEL COVER,, 4, is the problem, given a MIQUE LABEL COVER instance
X with label sef{L], of determining whethe¥al(X) > 1 — n or Val(X) < ~.

Khot’s Unique Games Conjecture (UGC) asserts that the gap version is hard to solve for arbitrarily small
and-~, provided we take a sufficiently large label set.

Conjecture 2.6 (Unique Games Conjecture [21]For every n > 0, v > 0, thereis a constant L > 0 such
that GAP-UNIQUE LABEL COVER, 1, isNP-hard.

Note that even if the UGC turns out to be false, it might still be the case thst BNIQUE LABEL
COVER,, 1, is hard in the sense of not being solvable in polynomial time, and such a (weaker) hardness
would also apply to all other problems for which hardness has been shown under the UGC.

2.3 Influence and Correlation Under Noise

Fourier analysis of Boolean functions is a crucial tool in most strong inapproximability results. As in
previous results [22,15], the key ingredient in the proof of our hardness result is (a generalization of) the so-
called Majority Is Stablest Theorem [29]. In this section, we describe this result and the exact formulation
we use. Since we need to work with biased distributions rather than the standard uniform ones, we will
review some important concepts. With the exception of Proposition 2.14, the propositions in this section are
well-known, and proofs can be found in e.g. [5], full version. We denotg/the probability distribution
on{-1,1}" where each bit is set te 1 with probability ¢, independently, and we |&; be the probability
space({—1,1}", uf).

We define a scalar product on the space of functions fi#jhto R by

(f9)= E [f(z)g(z)], (5)

z€By
and for eachs' C [n] the functionUC}9 : B} — R by Ugf(x) = [Lics Ug(x;) where
29 i gy = 1

i if$i::1



Proposition 2.7. The set of functions {Ucf }scin forms an orthonormal basisw.r.t. the scalar product (., -).

Thus, any functiory : By — R can be written as

where the coefficientfs = {f, Uf} = Em[f(x)U(f(:z:)] are the Fourier coefficients of the functigh
It is a straight-forward exercise to verify the basic identitigsg) = ngn] fsds, E.[f(x)] = f‘@ and

Varg[f(2)] = > 529 f2. We will also usd| f|| := +/(f, f) to denote the., norm of a functiony : B} — R,
and remind the reader of the Cauchy-Schwartz inequality

[ L < A1 Hlgll- (6)

Definition 2.8. Thelong code of an integeri € [n] is the functionf : {—1,1}" — {—1,1} defined by
f(@) = ;.

Definition 2.9. A function f : {—1,1}" — R is said to beolded over trueif f(z) = —f(—x) for everyz.

Definition 2.10. Theinfluence of the variable: on the functionf : B;' — Riis

Inf;(f) = IE; [\éfgr[f(x) |Z1, o i1, T 1y e oy T @)

The influence of the variableis a measure of how much the variable able to change the value ffonce
we have fixed the other — 1 variables randomly (according to the distributipgrl).

Proposition 2.11. A
Infi(f) = ) f3 (8)

SC[n]

ies
Motivated by the Fourier-representation formulation of influence, we define the slightly stronger concept of
low-degree influence, crucial to PCP applications.

Definition 2.12. Fork € N, thelow-degree influence of the variable: on the functionf : B} — R is

mf=*(f) =Y f2 9)
SCln]
i€S
|S|<k
A nice property of the low-degree influence is the fact that for functions|irfig 1], >, Inf?k(f) < k,
implying that the number of variables having low-degree influence more thary,sayst be small (think
of k andr as constants not depending on the number of variableSery informally, one can think of the
low-degree influence as a measure of how close the fungtierio depending on only a few variables, i.e.,
for the case of boolean-valued functions, how clgsge to being the long code af(or its negation). Note
that a long code is the extreme case of a function with large low-degree influence, in the sense that it has
one variable Witﬂnf?l(f) = 1, and all other variables having influenge
Next, we introduce theorrelation under p-noise between two functiong : B), — Randg : B;, — R.
For functions into{ —1, 1}, the correlation under noise measures how liklgnd g are to take the same
value on two random inputs with a certain correlation. Foe g, this is simply the well-studiedoise
stability of f.



z; | y; | Probability
1 1 14+&48+p
4

1 1| H&a-&-p

4
-1 1 1*51152*#’

16 &t
—11| =1 %2/1

Table 1: Distribution ofz andy

Definition 2.13. Thecorrelation under p-noise betweenf : By — R andg : B;, — R is given by
S5(f.9) = E[f@)g(w), (10)

where thei:th bits of z andy are drawn fromB; and B;, with correlation coefficienp (independently of
the other bits).

Note that we can write

(zi — Elz:])(yi — E[yi])
Var|z;] Var[y;]

_ p—&i&
V1-8yV1-6
where§; = E[z;] = 1 — 2q1, & = E[yi] = 1 — 22, andp = E[z;y;]. Thus, the distribution of thé&th bits

of z andy can be written out explicitly as in Taklé 1.
We defineS;(f) = S;(f, f) to be the noise stability of the functigh

(11)

Proposition 2.14. For = and y chosen asin Table[d, we have

ISl ifs =1

EUS@UED ={ ) hiratee (12)

The following proof was suggested by Marcus Isaksson.

Proof. The case whes' # T is immediately clear, sincE[U,, (x;)] = E[Uy,(y;)] = 0. FortheS =T
case, it suffices to prove th&{U,, (x;)Uqg, (yi)] = p. But this follows immedediately from the fact th,
can be written as

/Var[z;]’

and similarly forU,,, implying thatE[U,, (x;)U,, (v;)] equals the correlation coefficient betwegrandy;,
which, by definition, equals. O

Ugi (i) = (13)

Thus, we can write the correlation under noise betwgandg as

= > % fsgs (14)

SC[n]

S(f.9) = E {Z fsUs @)U )
o sT




2.4 Functionsin Gaussian Space

We denote by (z) = \/%76*12/2 the standard normal density function, byz) = [*_ ¢(t)dt the standard

normal distribution function, and b$ ! the inverse ofb.

As with functions on the hypercube, we define a scalar product on functignsR™ — R by (f, g) =
E.[f(z)g(x)] (we abuse notation slightly by using the same notation as for scalar products on functions
from the hypercube) where the expectation is over a standdaithensional Gaussian, i.e. each component
being a standardV (0, 1) random variable. Th@rnstein-Uhlenbeck operatorU, on functionsf : R” — R
is defined as:

Upf (@) = E [fpz+ V1= )] (15)

where the expected value is over a standamdimensional Gaussiap. Note thatpr + /1 — p?y is a
standard:-dimensional Gaussian where each coordinate has covapamitie the corresponding coordinate
inz. Forp € [—1, 1] we denote by, : R — [0, 1] the indicator function of an intervél-oo, t), wheret is

chosen so tha[y,] = 52, i.e.t = &1 (1*7“)
Definition 2.15. For p, 1, uo € [—1,1], define

Ly, p2) = (Xurs UpXp) = Pr[X1 <t A Xo < 1), (16)
wheret; = &1 (1‘7“) and whereX, Xy € N (0, 1) with covariancep.

In other words[',, is just the bivariate normal distribution function with a transformation on the input.
Analogously to noise stability, we defifg, (1) = I', (1, 11). The following properties of, will be useful.

Proposition 2.16 ([5], Lemma 2.1) For all p € [—1,1], u1, u2 € [—1, 1], we have
Lp(=pa, —p2) = Tp(p, p2) + pa/2 + po/2 17)
The following proposition is easily derived froml [5] (full version), Proposition D.1.

Proposition 2.17. For any puq, p}, po, uh € [-1,1] and p € (—1,1), we have

1 — py| + |2 — p]
T (1, p2) — Tp(pay, )| < . : (18)

25 Thresholdsare Extremely Correlated Under Noise

For proving hardness of Mx CuT, Khot et al. [22] made a conjecture called Majority Is Stablest, essen-
tially stating that any boolean function with noise stability significantly higher than the majority function
must have a variable with high low-degree influence (and thus in a vague sense be similar to a Long Code).
Majority Is Stablest was subsequently proved by Mossel €t dl. [29], using a very powerful invariance princi-
ple which, essentially, allows for considering the corresponding problem over Gaussian space instead. For
our result, we will use a strengthening of Majority is Stablest to two functions on the biased hypercube.

Theorem 2.18. For anye > 0, ¢; € (0,1),¢92 € (0,1) and p € (—1,1) thereareT > 0, k € N such that
for any two functions f : By — [0,1] and g : By, — [0, 1] satisfying E[f] = 1*% Elg] = 1*2“9 and

min (Inffk(f), Inf;k(g)) <T
for all i € [n], the following holds:

Sp(fa 9)
Sp(fa 9)

<Xuf7 U\p\XMg> te (19)
<Xﬂf’ Ujp (1 = X*ug)> —€ (20)
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In the terminology ofi[12], the setting of Theorém 2.18 corresponds to the case of a reversible noise operator,
rather than a symmetric one as was studied there. It is known that the results also hold in the reversible case
[L1] (and in fact even in the non-reversible cdse [29]), but for completeness, we give a proof (following the
same lines as the proof of [12]) in Appendix A. Using elementary manipulations, we obtain the following
Corollary.

Corollary 2.19. Lete > 0, ¢1,92 € (0,1) and p € (—1,1). Thenthereare 7 > 0, k£ € N such
that for all functions f : By, — [-1,1], g : By, — [-1,1] satisfying E[f] = puy, Elg] = pg, and
min(Inf=F(f), nf=F(g)) < 7 for all i, we have

AD_ o) (peps prg) — € < Sp(fr9) — pp — pg + 1 <AL (1, 1g) + € (21)

Proof. Setf = 151, iy = E[f] = 124, and defingj and i, analogously. ThusS,(f,g) = 4S,(f,3) —
2jip — 2fig +1=48,(f,g) + py + pg — 1. By Theoreni 2.18,

So(£53) = (Xuy  Uppg (1 = X—ps)) — €/4 (22)

for any f, g where every variable has sufficiently small low-degree influence in at least one of the functions.
Now, note that

U1 = X )@) = Pr|lple+ V1= g2y 2 &7 (1~ fiy)|
= Pr[~lpla+ VI= Py < 7 ()| = Uy, (@):
Combining this with Equatiori(22) and the definitionlgf, we get

Sp(f,9) =40, (1) + pf+pg — 1 —€. (23)

The upper bound follows similarly, using Equatiéni(19). O

3  Semidefinite Relaxation

One approach to solving integer quadratic programming problems which has turned out to be remarkably
successful over the years is to relax the original problem to a semidefinite programming problem. This
approach was first used in the seminal paper by Goemans and Williamson [16] where they gave the first
approximation algorithms for kx CuT, MAX 2-SAT, and Max DI1-CuT with a non-trivial approximation
ratio (ignoring lower order terms).

For solving integer quadratic programming over the hypercube, where each variable is restricied to
the standard approach is to first homogenize the program by introducing a vatjaklech is supposed to
represent the value false and then replace eachtebyxox;. We then relax each variablg € {—1,1} =
SO with a vectory; € S™ (i.e. a unit vector inR"™1!), so that each terna;z; becomes the scalar product
(VA Uj.

In addition, we add the following inequality constraints to the program for all triples of vegtars vy

vi-vj+vj-vk+vi~vk2—1 —vi-vj—i—vj-vk—vi-vkz—l (24)
ViV —Vj U — VU > —1 —Vi U —Vj U+ ;v 2> —1 (25)

These are equivalent to triangle inequalities of the form— v;|12 + [|v; — vg|[* > ||v; — vi|[*, which
clearly hold for the case that all vectors lie in a zero-dimensional subsp&te(eb this is still a relaxation
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of the original integer program), but is not necessarily true otherwise. There are of course many other
valid inequalities which could also be added, considefirtgples of variables rather than just triples. In
particular, addingall valid constraints makes the optimum for the semidefinite program equal the discrete
optimum [14] (but there are an exponential number of constraints to consider). Such higher-order constraints
have not received much attention, and from what is known today, it seems that the only ones which actually
help are the triangle inequalities. In particular, the only inequalities which have been used when analyzing
the performance of approximation algorithms, are those of the triangle inequalities which involve the vector
vg. The results of this paper shed some light on why this is the case — these are exactly the inequalities we
need in order for the hardness of approximation to work out. Thus, assuming Conjecture 1.3 and the Unique
Games Conjecture, it is unlikely that adding other valid inequalities (while still being able to solve the SDP
in polynomial time) will help achieve a better approximation ratio, as that would irffply N P.

In general, we cannot find the exact optimum of a semidefinite program. It is however possible to find
the optimum to within an additive error efin time polynomial inlog 1/¢ [1]. We ignore this small point
for notational convenience and assume that we can solve the semidefinite program exactly.

Given a vector solutioqu; }7_, the relaxed value of a claugec ¥ depends only on the three (possibly
negated) scalar products- v;, vo - v;, andv; - v;, wherez; andzx; are the two variables occuring i Most
of the time, we do not care about the actual vectors, but only be interested in these triples of scalar products.

Definition 3.1. A scalar product configuration 6, or just aconfiguration for short, is a triple of real numbers
(&1, &9, p) satisfying

Gi+&t+p 2-1 G +&L—p 2-1 (26)
S—&—p =2-1 & —&+p >-1
A family of configurations © is a finite setX = {6, ..., 6;} of configurations, endowed with a probability

distribution P. We routinely abuse notation by identifyirtgy both with the sefX and the probability space
(X, P).

A configuration can be viewed as representing three veecgots , vo, Wherevy -v; = &;, andvy -vg = p.
Note that the inequalities in Equatidn {26) then correspond exactly to those of the triangle ineqlalities (24)
which involvevy. The important feature of these inequalities is that they precisely guarantee thaflTable 1
gives a valid probability distribution, which will be crucial in order for the hardness result to work out. It
can also be shown that these inequalities ensures the existence of wgctere, with the corresponding
scalar products.

Definition 3.2. The relaxed value of a configuration= (£, &2, p) is given by

Prelax(e) = Prelax(gla 527 P) = pO + P1§1 + P2§2 + p3p

Analogously to the notation|,, for discrete solutions, we denote bly, = (s1vo-v;, S2v0-v;, $1520;-0;)
the configuration arising from the clauge= (six;, sax;) for the vector solution = {v;}" ,. The relaxed
value of the claus@ is then simply given byPcjax (v]y)-

Often we view the solution to the SDP as just the family of configuratiéns {v|, | € ¥ } with
the probability distribution wherBrocg [0 = v|;] = wt(¢). The relaxed value of an assignment of vectors
{vi}1, is then given by

SDP_Val\II({Ui}) = Z Wt(w)Prelax(v’w)
Ypew

- HIEEG[Prelax(H)]- (27)

Given a vector solutioqv;}, one natural attempt at an approximation algorithm is tarsétue with
probability % (whereg&; = v; - vg), independently—the intuition being that the linear tefngives an

11



indication of “how true”z; should be. This assignment has the same expected value on the linear terms as
the vector solution, and the expected value of a quadratictermis £;£;. However, typically there is some
correlation between the vectarsandv;, so that the scalar product - v; contributes more thag¢; to the
objective function. To quantify this, write the vectgras

v; = &uo + 4/ 1 — E20;, (28)

whereg; = v; - vy, andy; is the part ofv; orthogonal tayy, normalized to a unit vector (& = £1, we define
; to be a unit vector orthogonal to all other vectog¥. Then, we can rewrite the quadratic teom v; as

vi-vj:§i§j+\/1—§§,/1—§§6i-ﬁj. (29)

As it turns out, the relevant parameter when analyzing the quadratic terms is the scalar produgct.e.
how much better we do than if the variables would have been independent (scaled by an appropriate factor).
Motivated by this, we make the following definition.

Definition 3.3. Theinner angle p() of a configuratiord = (&1, &2, p) is

p—&1&2 ‘
V1-E6/1 -6

In the case thag; = +1 or &, = +1, we defines(9) = 0.

p(o) =

(30)

Note that, in the notation above, the advantage is exactly the scalar pigdugt We are now ready to
define the “positivity condition”, alluded to in Sectibn1l.1.

Definition 3.4. A configurationd = (¢1, &, p) is positive if Ps - 5(8) > 0.

Intuitively, positive configurations should be more difficult to handle, since they are the configurations
where we need to do something better than just setting the variables independently in order to get a good
approximation ratio.

What Goemans and Williamson |16] originally did to round the vectors back to boolean variables, was
to pick a random hyperplane through the origin, and decide the value of the variables based on whether their
vectors are on the same side of the hyperplane,a® not. Feige and Goemaris [13] suggested several
generalizations of this approach, using preprocessing (e.qg. first rotating the vectors) and/or more elaborate
choices of hyperplanes. In particular, consider a rounding scheme where we pick a random geRtor!
and then set the variablg to true if

- @i S T(Uo . Ui) (31)

for some threshold functiof’ : [—1,1] — R. This scheme (and more general ones) was first analyzed by
Lewin et al. [26].
To describe the performance ratio yielded by this scheme, we begin by setting up some notation.

Definition 3.5. A rounding function is a continuous functiom? : [—1,1] — [—1,1] which is odd, i.e.
satisfiesk(¢) = —R(—¢). We denote byR the set of all such functions.

The reason that we require a rounding function to be odd is that a negated-litgrahould be treated
the opposite way as;. A rounding R is in one-to-one corresponce with a threshold funciioas described
above by the simple relatioR(x) = 1 —2®(T'(x)), where® is the normal distribution function (it will turn
out to be more convenient to describe the rounding in ternig @ither than in terms df’).
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Definition 3.6. Therounded value of a configuratiort with respect to a rounding functioR € R is

Pround(ev R) = Prelax (R(El)v R(§2)7 4F[)(9) (R(ﬁl), R(§2)) + R(fl) + R(EQ) - 1) ) (32)

This seemingly arbitrary definition is motivated by the following lemma (which essentially traces back
to Lewin et al. [26], though they never made it explicit).

Lemma 3.7. Thereisa polynomial-time algorithm which, givena MAx CSR P) instance ¥, a semidefinite
solution {v; }}* , to ¥, and a (polynomial-time computable) rounding function R € R, finds an assignment
to ¥ with expected value

HéEG [Pround (‘97 R)] ) (33)

Proof. The algorithm works as described above: First, we pick a random veetdR"*! (i.e. each coor-
dinate ofr is a standardV (0, 1) random variable). Then, we set the variabldo true if

{)i T S T(UZ . Uo), (34)

where we define the threshold functi@nas

T(z) =1 <1_TR(“")> . (35)

To analyze the performance of this algorithm, we need to analyze the expectedialjies\dE|z;z;].

We begin with the linear terms. These are easy, becguseés just a standard (0, 1) random variable,
implying thatz; is set to true with probabilitﬁ%@“. Thus, we have that the expected valije;| = R(S;).

For the quadratic terms, we analyze the probability that two variableadz; are rounded to the same
value. Itis readily verified that the covariance between the two scalar praguetandy; - is p, and thus,
the probability that botly; < T'(v; - vo) andv; < T'(vj - vg) is simplyI'5(R(&;), R(§;)). By symmetry,
the probability that botlr; andz; are set to false is then;(—R(&;), —R(&;)). Using Proposition 2.16, the
expected value of;z; is then given by

Elz;z;] = 2(T5(R(&), R(&)) + T (—R(&), —R(E5))) — 1
= Al (R(&), R(&)) + R(&) + R(&5) — 1, (36)

Thus, the expected value of the solution found (over the random choigasogiven by

E [P+ PiR(E) + BR(&) + BUTH(R(€), R&)) + R(&) + R(E) - 1)]
(€1,62,0)€O

= 9?@ [Pround (‘97 R)] ) (37)

and we are done. O

We remark that the rounding procedure used in the proof of Lemrha 3.7 is from the class of roundings
Lewin et al. [26] called7 HRESH ™. The rounding functiom®? specifies an arbitrary rounding procedure
from THRESH 3

A statement similar to Lemnia3.7 holds foraM CSP"(P), the difference being that, since there are
no longer any negated literals, we can change the definition of a rounding function slightly and not require
it to be odd (which could potentially give us a better algorithm). Motivated by Lemma 3.7, we make the
following sequence of definitions

3In the notation of[[26], we havs(z) = T'(x)v/1 — x2, or equivalently,R(z) = 1 — 2®(S(z)/v1 — z2).
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Definition 3.8. The approximation ratio of a rounding for a family of configuration® is given by

EGG@ [Pround(‘ga R)]

ap(©,R) = 38
PO ) = g o [Pt 0)] (39)

Definition 3.9. The approximation ratio of a family of configuratiofsis given by
ap(©) = maxap(©, R). (39)

ReR

Definition 3.10. The approximation ratios aP for families of £ configurations and families df positive
configurations, respectively, are given by (recall the definition of a positive configuration from Definifion 3.4)

ap(k) = ‘f®H|iZDk ap(©), Bp(k) = ‘g}i:nk ap(©) (40)
everyf € O is positive

We would like to point out that we do not require that the family of configurati®nsan be derived
from an SDP solution to some Ak CSRP) instance¥ — we only require that each configuration@n
satisfies the inequalities in Equatidn26). In other words, we have a lot more freedom when searching for
a © which makesxp(k) or 5p(k) small, than we would have when searching for MCSR P) instances

and corresponding vector solutions.
Finally, we define

a(P) = lim ap(k), B(P) = lim SBp(k). (41)
k—o0 k—o0

These are the approximation ratios arising in Theorems 1.1 ahd 1.2. Ideally, of course, we would like to
prove hardness of approximatingAW CSR P) within «(P) rather than3(P), getting rid of the require-
ment that every) € © must be positive. The reason that we need it shows up when we do the proof of
soundness for the PCP constructed in Se¢tion 5, and we have not been able to get around this. However, as
we state in Conjectufe 1.3, we do rieve that this restriction affects the approximation ratio achieved:
by the intuition above, positive configurations seem to be the ones that are hard to round, so restricting our
attention to such configurations should not be a problem. And indeed, the configurations we use to show
hardness for Mx 2-AND are all positive, as are all configurations which have appeared in previous proofs
of hardness fo2-CSPs (e.g. for Mx CuT and MAX 2-SAT).

4 The Approximation Algorithm

The approximation algorithm for Mx CSR P) (Theoreni 1.1) is based on the following theorem.

Theorem 4.1. For any € > 0, the value of a MAX CSRP) instance on & clauses can be approximated
within ap(k) — € intime polynomial in k.

Note that this theorem immediately implies Theofem 1.1 singék) > «(P). We remark that the
exact value ofvp(k) is virtually impossible to compute for large making it somewhat hard to compare
Theoreni 41l with existing results. However, fond CuT, MAX 2-SAT and MaX 2-AND, it is not hard to
prove thatn(P) is at least the performance ratio of existing algorithms.

Proof. Let U be a Max CSRP) instance andv;}" , be an optimal solution to the semidefinite relaxation
of ¥. Note that, if we could find an optimal rounding functiéghfor ¥, the theorem would follow imme-
diately from Lemma317 (and we wouldn't need t)e However, since we can not in general hope to find
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an optimalR, we’ll discretize the set of possible angles and find the best rounding for the modified problem
(for which there will be only a constant number of possible solutions).

We will use the simple facts that we always ha¥d (V) > Py > max(|P,|,| |, | Ps|) (to see that the
second inequality holds, note that otherwise there would;be, such thatP(xz;, z2) < 0).

Construct a new SDP solutiofu; }}* , by lettingug = vg, and, for eacl < i < n, letting u; be the
vectorv; rotated towards or away fromy so thatug - u; is an integer multiple of’ (wheree’ will be chosen
small enough). In other words, we havg - u; —vg-v;| < € /2. For the quadratic terms, Feige and Goemans
[13] proved that for, j > 1, we have

wi - ug = G+ pij /1= G /1=, (42)

where we defing; := ug - u; andp;; == _vivi=&i&i  |n other words, the rotation does not affect the value
V1-€2, /175]2.

of p;;. Thus, we have

Vi = g = &85 = GG + g (Jl —e\i-g—\1i-¢\/i- cf) . (43)

Sincel¢; — ¢;| < € /2, we have thatg;&; — (;¢;| < 2€¢/, and since

Vimg-yi-e

iy Wl —gi-g-\1-¢\1i- cf)\ < 4|V < 4Ve. (45)

<V1-(1-¢€/2)2< Ve, (44)

we have

Thus, we get that
‘UZ‘ CV; — Uy Uj‘ < 26/ + 4\/? (46)

However, the vector$u, }7_, could possibly violate some of the triangle inequalities. To remedy this, we
adjust it slightly, by again defining a new SDP solutiari}?_, as follows ¢” will be chosen momentarily)

Ug = \/1——6”’1/,1 + \/?wi, (47)

fori € {0,...,n}. Here, eachy; is a unit vector which is orthogonal to every othey, and to all thev!
vectors (such a set af; vectors is trivial to construct by embedding all vectorsii#f*t1)). These new
vectors satisfy; - v; = (1 — €”)u; - u; for all i # j. And since the original SDP solutiojv; };., satisfies
the triangle inequalities, we have that

Ui - Uj + Uy - U+ Up - U > —1—6¢ —12V¢ (48)
R R A S —(146€ +12Ve)(1 —€"). (49)

Letting ¢/ = 6€¢' + 12v/¢, the right hand side is at leastl, and this triangle inequality is satisfied. The
other three sign combinations are handled identically. In other wérdls,_ is a feasible SDP solution. Its
value can be lower-bounded by

|Py|(€ /24 €) + | Po|(€ /2 4 €") + | P3| (2€ + 4V + €)

SDP-Val({v;}) — SDP-Val({v]}) <
< |By|(21€ + 40V e"). (50)

Choosinge’ small enough (e.g = (¢/122)?), this is bounded by, Val(¥).
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Now, consider an optimal rounding functiddfor {v;}, and construct a new rounding functiéti by
letting R’ (£) be the nearest integer multiple ©f8 (so that| R(£) — R/(£)| < €/16 for all £). We then have
for any configuratiord’ = (&, &5, p)

Pround(0', R) — Prouna(0', R') < |P1]e/16 + | P2|e/16 + | P3| (4€/16 + €/16 4 €/16) < %v&u(m. (51)
To see this, we refer to Propositibn 2.17, which implies that
ITA(R(£1), R(&)) — TH(R'(£1), R'(&))] < €/16 (52)

Note that the number of possibl is constant, roughly16/¢)'/<'. Thus, we can find a rounding which
is at least as good d®' in polynomial time by simply trying all possible choices &f, evaluating each one,
and picking the best function found. Using Lemimd 3.7, this means that we can find a soluffonitio
expected value at least

It > / _ €
9’?@’ [Pround(‘g 7R )] = H/IGEG/ [Pround(‘g ,R)] B V&l(\I/)
= ap(©)SDP-Val({v}) — %Val(\ll)
> ap(©')SDP-Val({v;}) — e Val(¥)
> (ap(k) —¢€) Val(¥), (53)
where®’ denotes the set of configurations arising from the SDP solyti)_. O

We remark that the running time of the algorithm has a quite bad dependengy scales a$1/e)9(1/€2).

5 ThePCP Reduction

TheoreniI.R2 immediately follows from the following TheoreEml5.1 below. Takidgrge enough so that
Bp(k) < B(P)+eand invoking Theorern 5.1 gives hardness of approximatingc NE SR P) within 3(P)+
2e.

Theorem 5.1. Assuming the Unique Games Conjecture, it is NP-hard to approximate MAX CSR P) within
Bp(k) + eforanye > 0andk € N.

We prove Theorem5l1 by constructing a PCP verifier which checks a supposed long coding of a good
assignment to a MIQUE LABEL COVER instance, and decides whether to accept or reject based on the
evaluation of the predicat® on certain bits of the long codes. The verifier is parametrized by a family
of k positive configuration® = {61,...,60;} and a probability distribution o®. Again, we point out
that the requirement that the configurationsaohre positive is by necessity rather than by choice, and if
we could get rid of it, the hardness of approximation yielded would exactly match the approximation ratio
from Theoreni 1L.I1. The sé corresponds to a set of vector configurations for the semidefinite relaxation of
MAax CSRP). When proving soundness, i.e., in the case that there is no good assignment ta e U
LABEL COVER instance, we prove that the best strategy for the prover corresponds to choosing a good
rounding functionR for the family of configuration®. Choosing a set of configurations which are hard to
round, we obtain the desired result.

Since we can negate variables freely, we will assume that the purported long codes are folded over true
(by selecting, for each pair:, —x) of inputs one representative, sayand then look up the value atz by
reading the value at and negating the answer). Intuitively, this ensures that the prover’s rounding function
is odd, i.e. thatR(¢) = —R(—¢). For a permutation € &, and a bitstringe € {—1,1}%, we denote by
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Algorithm 1. The verifierVg

V@(X: Y= {fv}ve\/)

(1) Pick a random configuratioh= ({1, &2, p) € © according to the distribution o8.

(2) Pickarandom € V.

(3) Picke; = {v, w1} andey = {v, w9} randomly fromE(v).

(4) Pickxy,z9 € {—1,1}F such that each bit of; is picked independently with expected
value¢; and that the:th bits ofx; andz- arep-correlated forj = 1,..., L.

(5) Fori=1,2,letb; = f.,,(of,x;) (folded over true).

(6) Accept with probabilityP (b, b2).

ox € {—1,1}" the stringz permuted according te, i.e.,oczx = To(1)To(2) - - - To(r)- The verifier is given
in Algorithm 1. Note that, becauskis a configuration, Equatioh (26) guarantees that we can chocsed
o With the desired distribution in step (4).
We now analyze the completeness and soundness of the verifier. Arithmetizing the acceptance predicate,
we find that the acceptance probabilityla§ can be written as

0cO |v,e1,e2,21,22

E [ E [P0+]51fwl(aglx1)+]52fwg(a§2:r2)—|—]53fw1(021x1)fw2(021:r2) ’ 9]:| (54)

5.1 Completeness
Lemma 5.2 (Completeness)If Val(X) > 1 — 7, then thereis a proof X such that

Pr[Ve (X, ) accepts] > (1 — 27) Hgg[Prelax(e)] (55)
Proof. Fix a labelling? of the vertices ofX such that the fraction of satisfied edges is at l@astr, and
let f, : {—1,1}* — {—1,1} be the Long Code of the label of the vertexNote that for a satisfied edge
{v,w} and an arbitrary biststring € {—1,1}", f,(¢x) equals the value of th&v):th bit of z.

Fix a choice off = (&1,&2,p). By the union bound, the probability that any of the two edgese:
chosen byg are not satisfied is at mogf. For a choice of edges thate satisfied, the expected value of
fw; (0, x;) is the expected value of thév):th bit of z;, i.e.&;, and the expected value 6f, (o7, 1) fuw, (00, 22)
is the expected value of th¢v):th bit of z1 24, i.e. p.

Thus, the probability thate accepts is at least

E [0 —2m(Po+ Pigi+ Poo + Pp)| = (1= 20) E [Ptax(0)) (56)
and the proof is complete. O
5.2 Soundness

Lemma 5.3 (Soundness)For every e > 0 thereisa~ > 0 such that if Val(X) < ~, then for any proof 3,
we have

Pr[Ve (X, ) accepts] < max B [Bowa(f, B)] + €. (57)
Proof. For¢ € [~1,1] andv € V, defineg : B, , — {~1,1} by

£ — v
9y (x) - e:{v,EEE(v) [fw(O'e.T)] ’ (58)
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and define the functio®, (&) := E [gg(x)]. Note that since we fold the purported Long Codes over true,

we have that bottqg and R, are odd functions, and in particular thdt € R. We remark that for a fixed
v and different values of, the functionSg§ are the same function, but since the probability distributions
of their inputs have an almost disjoint support (in the probabilistic sense), we might as well treat them as
independent of each other.
We can now writé/g:s acceptance probability as

Pr[Ve accept

E [ E {Po + Plg51 (x1) + P29§2 (x2) + ]3391)1 (951)952 (x2) | HH

0 |v,x1,22
= HE;} [130 + PiR,(&1) + PaRy(&) + P35S (9)(% ,952)} ) (59)
Assume that the probability th¥# accepts is at least
Pr[Ve accepts > 9E [Prouna (0, Ry)] + €

= E [P+ PRu(&) + PoRul(€) + Pa(AT5(Ru(61), Ro(€2)) + Rol€1) + Ro(2) = 1) + .(60)

U

Combining this with Equatior _(59), this implies that there exisis=a (&1, &2, p) € O such that
E s+ (Sp0)(95,95) — ATa00) (Ro(€1), Ro(€2)) — Rul€) = Ro(&2) + 1) 2 e (6D)

Using the fact that the absolute value of the expression in the expectancy is bourizié|bthis implies
that for a fractiore’ :=

3| Py
Py Sy (95.65) = P3 (4T 50)(Ro(&1), Ro(&2)) + Ru(&1) + Ry(&2) — 1) + €. (62)

Let Vyooa be the set of all such. Using that) is a positive configuration (i.d?gﬁ(e) > 0), we then get that
for v € Vgoods

S0y (95", 952) = AT 50y (Ru(&1), Ru(&)) + Ru(&1) + Ru(&2) — L+ €/| P3| (63)
if 3> 0,or

Sae) (95, 952) < AT 50 (Ru(&1), Ro(&)) + Ro(&1) + Ry(&2) — 1 — €/| P3| (64)

if P; < 0. In either case, Majority is stablest (Corollary 2.19) implies that there are constaartd &
(depending only ore, #, and P) such that for any € Vyo0q We haveInffk(ggl) > 7 (and also that

Inff"’(gSQ) > 7, though we will not use that). Fixinggand dropping the bias parametgirfor the remainder
of the proof, we have that for anyc V04,

<ttt < B (i ()] (65)

and smcdnfav( (fw) < 1forall e, this implies that for at least a fractiary2 of all edgese = {v,w} €
E(v), we havelnf<f( \(fw) = 7/2. Forv € V, let

C(v) = {i € L| If=*(f,) > 7/2 v Inf=F(g,) > 7}. (66)
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Intuitively, the criterionInffk( fv) = 7/2 means that the purported Long Codes of the label ©iggests
as a suitable label far, and the criteriorInffk(gv) > 7 means that many of the purported Long Codes for
the neighbors ob suggests that should have the labél By the fact thaf) _; Inf?k(fv) < k, we must have
|C(v)| < 2k/7 + k)T = 3k/T.

We now define alabelling by picking independently for each V' a (uniformly) random label € C'(v)
(or an arbitrary label in cas€'(v) is empty). For a labeb € V,,,q With Inf;k(gy) > 7, the probability
thatv is assigned labelis 1/|C(v)| > 7/3k. Furthermore, by the above reasoning and the definitiafi, of
at least a fractiorr /2 of the edges = {v, w} from v will satisfy ¢? (i) € C(w). For such an edge, the
probability thatw is assigned the labei’ (:) is 1/|C(w)| > 7/3k. Thus, the expected fraction of satisfied
edges adjacent to anye Vu.q is at leastr/2 - (7/3k)?, and so the expected fraction of satisfied edges in

totaﬂ is at leask’ - % and thus there is an assignment satisfying at least this total weight of edges. Note

that this is a positive constant that depends only andd, and P. Making sure thaty < % we get a

contradiction on the assumption of the acceptance probability (Equhitibn (60)), implying that the soundness
is at most

Pr[Vo accepts] < E [Prouna(f, 12)] + € (67)
<
> %137}2( OgG [Pround(07 R)] + €, (68)
and we are done. O

5.3 Wrapping It Up
Combining the two lemmas and pickimgsmall enough, we get that it is Unique Games-hard to approximate
MAx CSRP) within
a EHE@[Pround(ea R)]
ReR EHE@[Prelax(‘g)]

Picking a© with |©| = k that minimizesup(©), we obtain Theoreiin 5.1.

+ O(e) = ap(®) + O(e) . (69)

6 Application to MAX 2-AND

Using the machinery developed in Sectibhs 3[dnd 5, we are able to obtain an upper béURY €f(0.87435
for the case whe® (1, x2) = z1Ax2, i.€., the MaX 2-AND problem, establishing Theordm1l.4. We do this
by exhibiting a se® of k& = 4 (positive) configurations of distinct non-zerc-values (and a probability
distribution on the elements 6f), such thatvp(0) < 0.87435.

Before doing this, let us start with an even simpler set of configurations, sufficient to give an inapprox-
imability of 0.87451, only marginally worse thaf.87435. This set of configuration® = {6, 6} contains
only one non-zer@-value, and is given by

01 = (0,—¢§,1—¢) with probability 0.64612
0 = (0,§,1—¢)  with probability0.35377,

where¢ = 0.33633.

“We remind the reader of the convention of Secfiom 2.2 that the choices of random vertices and edges are according to the
probability distributions induced by the weights of the edges, and so choosing a randoi and then a randora € E(v) is
equivalent to just choosing a randaene E.
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Figure 1: Approximation ratio as a function &f

To compute the hardness factor given by this set of configurations, we must compute

. EGE@[Pround(ev R)]
ap(®) = ReR Egco[Prelax(0)] 70

SinceP(zq, z9) = 1=H1=2212122 e have that for an arbitrary configuratién= (&1, &2, p),

1-&§ -8 +p
4
1 — R(&) — R(&) + 4L 50) (R(§1), R(§2)) + R(&1) + R(§2) — 1
4

Prelax(e) =

Pround(97 R) =

L50)(R(&1), R(&2))-

In our case, using the two configurations given abdvés completely specified by its value on the angle
¢ (sinceR(0) = 0 andR(—¢&) = —R(&)). Figurel gives a plot of the right-hand side of Equation (70), as
a function of the value oR(¢). The maximum turns out to occur &(£) ~ 0.29412, and gives a ratio of
approximately0.87450517. Thus, we see thatp(0) < 0.87451. We remark that it is not very difficult to
make this computation rigorous—it can be proven analytically that the curve of Figure 1 is indeed convex,
and so the only maximum can be computed to within high precision (using easy bounds on the derivative)
using a simple ternary search.

Let us now turn to the larger set of configurations, based on four configurations, mentioned earlier. This
set of configuration® = {01, 02, 03,0,4} is as follows:

01 = (0,—€a,1—¢4) with probability 0.52850
O = (0,€a,1—¢4) with probability 0.05928
0s = (€a,—EB,1— &4 —E&p) with probability 0.29085
0y = (—€a,&B,1—&a—&p)  with probability 0.12137,

whereé 4 = 0.31988 and&p = 0.04876.
As before, to compute the approximation ratio givendaywe need to find the bedt for ©, and again,
such anR is completely specified by its values on the non-zem@lues. In other words, we now need to
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specify the values aR on the two angle§4 and¢g. Figure[2(d) gives a contour plot of approximation ratio,
as a function of the values dt({4) and R({p). There are now two local maxima, one around the point
(R(€a),R(¢B)) =~ (0.27846,0.044376), and one around the poifit, —1). Figure[2(D) gives a contour plot
of the area around the first point. This maximum turns out to be approximagly34075. At the point

(1, —1) (which is indeed the other maximum), the approximation ratio is approxim@i&hit34007. Thus,

we haveap(©) < 0.87435.

In general, giver® (and a probability distribution on its elements), the very problem of computing
ap(0) is a difficult numeric optimization problem. However, for tBewe use, the number of distingt
values used is small, so that computing(©) in this case is a numeric optimization problentivariables,
which we are able to handle.

It seems likely that additional improvements can be made by using more and{mahaes, though
these improvements will be quite small. Indeed, using laéy&re are able to improve upon Theorém|1.4,
but the improvements we have been able to make are minute (of thde), and it becomes a lot more
difficult to verify them. Note that; andé, used in the larger set of configurations are very similar to the
first set of configurations—they are of the same form, and¢thalue used is only slightly different. It
appears that it is useful to follow this pattern when adding even more configurations: the vajuesnof
¢p are adjusted sligtly, and we add two configurations of the fottp, ¢, 1 — g — &c). Essentially
this type of sequence of configurations has appeared before, see e.g. the analysis of lower bounds for certain
MAXx Di1-CuT algorithms inl[[35].

7 Concluding Remarks

We remark that it is a fairly straightforward task to adapt these results to ke 5P (P) problem,
obtaining statements analogous to Theorends 1.L ahd 1.2. The only difference is that we drop the requirement
that a rounding function has to be odd (since we cannot fold the long codes over true anymore, we would not
be able to enforce such a constraint). However, in doing so, we also lose the possibility to force a rounding
function R to satisfy R(0) = 0. The configurations that we use for proving hardness ak\2-AND rely

heavily on this property, and it is for this reason that those results do not apply toAkRéM CuT problem

directly. In other words, we are not able to obtain a statement similar to Théarem 1.4 fornthéMCuT

problem. Whether this is because tha¥DI-CuT problem is easier to approximate thamk2-AND, or
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whether we just have to spend some more time searching for a “bad” set of configurations, we do not know,
but we conjecture that the latter is true and that they are equally hard. However, today we do not even know
whether balanced instances of theMDiI-CuT problem are the hardest or not.

If Pis monotone, the Mx CSP"(P) problem is trivially solvable, so there are cases wherexNCSP' (P)
is easier than Mx CSRP). Lacking results on Mx Di-CuT, it would be interesting to determine whether
there are other examples than these trivial ones. A good candidate would probably be an “almost monotone”
P (recall thatP is real-valued.).

Recently, O’'Donnell and Wu have done a complete analysis of the “approximability curve” of the
Max CuT problem, exhibiting an algorithm, integrality gap, and UGC-based hardness result which all
match [30]. It will be interesting to see whether their results can be extended to othe2MCSP prob-
lems.
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A Proof of Theorem[2.18

In this section, we prove Theordm2118. The proof is essentially the same as the proof of Dinurét al. [12]
for a similar theorem. They consider a more general class of noise operators than the ones we need and
functions over then-ary hypercube rather than just the Boolean hypercube. On the other hand, they only
consider functions on the uniform distribution.

Theorem (Theoreni 2.1B restatedfor any e > 0, ¢; € (0,1),¢2 € (0,1) andp € (—1,1) thereisat > 0,
k € N such that for any two functions f : By, — [0,1] and g : By, — [0, 1] satisfying E[f] = ﬂ,

2
E[g] = 52 and

min (Inf;k(f), Inffk(g)) <7
for all i € [n], the following holds:

So(f>9) (Xs» U\p\Xug> te (71)
Sp(f,9) <Xuf’ Upp (1 = X*ug)> — € (72)

Proof. First, note that it suffices to prove Equatiénl(71), since if it is true, we have
Sp(f,g) = Sp(f71)_Sp(f71_g)

2 <Xuf’ U\p\1> - <Xuf’ U\p\X*ug> —€
= <X/Lf7 U\p\(l - X*ug)> -6 (73)

where we note thal, (f,1) = (x,,, Uj,1) = ~£L.
The proof will be based on the following Lemma:

<
>

LemmaA.l Letg; € (0,1),¢92 € (0,1)andp € (—1,1). Thenforanye > 0,7 < 1, thereexistsT > 0 and

k > 0 such that for any functions f : B} — [0,1],9 : By, — [0, 1] satisfying E[f] = 1*% Elg] = 1‘%

max (Inf;k(f),lnffk(g)> <7 Vi (74)
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and

S < > gy < vd (75)
EE |S|>d
it holds that
Sp(fvg) S <X;Lf7U|p|Xug> + € (76)

Note that the Fourier coefficients gfand g are with respects to different measures. Before proving
LemmdA.1, we show how to use it to complete the proof of Thedreni 2.18.

Pick < 1 large enough so thdp|’(1 — n*/) < ¢/4 for all j, and letr’, k¥’ be the values given by
LemmdA.1 with the parametegs, g2, p, ¢/4 andn. Setk large enough so that botp|* < ¢/4 andk > k.
Let

Sp={i| Wmf=F(f) >}, S, ={i| mf=F(g) > 7"} (77)

Define /' : By — [0,1] andg’ : BJ, — [0,1] by

o= ¥lisus (78)
SC[n]
SﬂSfZ@
g = > n¥lgsUy (79)

SC[n]
SNSg=0

Now, fori € Sy, we havelnf=*'(f’) = 0, whereas foi & 5, we havelnf=F (') < Inf=*(f) < 7/, and
similarly for ¢. Thus, we have thahax(Inf="(f’), Inf=*(¢')) < 7/ for everyi. Furthermore,

~92 N
Mo Fls <ty fa <™, (80)

|5]>d s

and similarly forg’, so LemmaA.ll gives that

Sp(fla g,) < <X;Lf7 U|p|Xug> + 6/4 (81)

What remains is to bound the difference betwBg(yf, g) andS,(f’, ¢’). We have

1So(£,9) =Sp(f ) =] > 5l (1—772'5‘) fsas+ > P fsgs

SNS =0 SN(SpUSy)#£0
SNSg=0
€ 2 ~ F A r A
< > 7l/s9s]+ S fsasl+ D] ‘Pkfsgs‘
SNS ;=0 SN(S;USg)#0 SN(SpUSy)#D
SNSg=0 |S|<k |S|>k
€ 7 A~ F oA
< > S lfsgsl+ > |fsdsl (82)
SC[n] SN(S5USg)#0
IS|<k

By Cauchy-Schwartz, the first term is boundedy|| f|| - [|g|| < €/2. The second term is bounded by
(again using Cauchy-Schwartz)

SN fsasl< S et /mist(g) (83)

1€SrUS, €S 1€SUS
f gIS\Sk P9
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Now, we have that bothS;| and|S,| are bounded bgk/7’. Furthermore, at least one hﬁffk(f) and

Inffk(g) is bounded by (the value of which we have not yet determined), and since both are bounded by
1 we have

> \/ Inf=F( f)\/ Inf:F(g) < 4k/r’ - /7 (84)

iESfUSg
! 2 . .
Settingr < (%) , this is at most /4. Thus, we conclude that

Sp(f7 g) < Sp(flag,) + 36/4 < <X[Lf7 U\p\Xug> + €, (85)

and we are done. O

A.1 Proof of LemmalA.l

What remains is the proof of Lemrha A.1. Before proceeding with this, we have to introduce some new
notation.

Definition A.2 (Real analogue of a functionlet f : B; — R be a function with Fourier expansion
F=>" fsUf (86)
SCln]

We define the real analogyfe: R™ — R to be

Fzm) = fsU%(z1,. .0 2), (87)

SCl[n]
whereU%(z1,. .., 2,) = [Lics #i-
Note that the set of function{sﬁs}sg[n} forms an orthonormal basis (w.r.t. the scalar product defined in
Sectiori 2.4). Itis a fairly straightforward exercise to verify that
(F.05) = 3 #isas = S,(/.9) (88)
SCl[n]
foranyp € [-1,1].
Definition A.3. For any functionf with rangeR define

{ f(z) i fz) €[0,1]

chop(f)(x) =4 0 if f(z) <O (89)

1 if f(x)>1

The proof of Lemm&All relies on two powerful theorems. The first is a version of Mossel et al.'s
invariance principle.

Theorem A.4 (Mossel et al.[[29], Theorem 3.20 under hypothddi8). For any ¢ € (0,1), 7 > 0 and
0<n<llet K=log(l/min(q,1—q)), k =log(1/7)/K. Thenfor any f : Uy — [0,1] satisfying

W) <r Vi and Y f2<n® v, (%0)
|S|>d
the following holds: _ B
If — chop(f)|| < 7¥O=n/K) 1)
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The second is the following powerful theorem of Boréll. [7]

Theorem A 5 (Borell [7]). Let p € [0,1] and F,G : R” — [0, 1] with E[F] = 2L E[G] = 5. Then

(F,UpG) < Xy UpXiry ) (92)

Note that Theorer Al5 implies thaf’, U_,G) < (xu;,U,Xy,). To see this, také&’(z) = G(—xz),
so that(F,U_,G) = (F,U,G’) andE[G] = E[G]). Thus, we havéF,U,G) < (x,;, U, xu,) for any
pe[-1,1].

We are now ready to prove the Lemma.

Proof of Lemmal& Let py = =EGeeWl yr — 1EIqep@l - sete! = ¢/3. Pick T small enough so that

TheoreniAX gives that bothchop(f) — f|| < € and|| chop(j) — §|| < €, and pickk accordingly. Now,
we have

Sp(f,g) = <faUp§>

(F — chop(f), U, chop(9) ) + (Up .5 — chop(3)) (93)
where we used tha(tf‘, U,,g> = <Upf‘, §>. By Cauchy-Schwartz, the last two terms are bounded by

I|f = chop(f)| - [|U, chop(§)|| + U, £] - [|g — chop(d) ]I, (94)

which in turn is bounded be’, since both|U, chop(9)|| and||Upf‘|| are at most. Thus,

Sy(f.9) < (chop(), U, chop(9)) +2¢ (95)

Applying Borell's theorem tehop(f) andchop(g), we have

<Ch0p(f)7 Up Chop(§)> < <Xu}7 U\p\XM;]> (96)
To relate this tox ., U}, xu, ), Note that we have
[ELf — chop(7)]|/2 = | F — chop(f), 1) /2
< |If = chop(f)ll/2 < €/2, 97)

and similarly for|u, — 1| Applying Propositioi 2,17, this gives

by — 1]

A

<Xu'f’ U\p\X%> < Xug Ulpl Xy ) +€/2, (98)

In conclusion, we havB,(f, g) < (xu;,U|p Xy, ) + 3¢, as desired. O
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