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ABSTRACT
We show that, assuming the Unique Games Conjecture, it is NP-
hard to approximate MAX 2-SAT withinα−

LLZ+ε, where 0.9401 <
α−
LLZ < 0.9402 is the believed approximation ratio of the algo-

rithm of Lewin, Livnat and Zwick [28].
This result is surprising considering the fact that balanced in-

stances of MAX 2-SAT, i.e., instances where each variable occurs
positively and negatively equally often, can be approximated within
0.9439. In particular, instances in which roughly 68% of the literals
are unnegated variables and 32% are negated appear less amenable
to approximation than instances where the ratio is 50%-50%.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems

General Terms
Theory
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1. INTRODUCTION
In their break-through paper [16], Goemans and Williamson used

semidefinite programming techniques to construct 0.8785-approx-
imation algorithms for MAX CUT and MAX 2-SAT, as well as a
0.7960-approximation algorithm for MAX DI-CUT. Since then,
improved approximation algorithms based on semidefinite program-
ming have been constructed for many other important NP-hard prob-
lems, including coloring of k-colorable graphs [22, 6, 17, 2], fairly
general versions of integer quadratic programming on the hyper-
cube [9] and MAX k-CSP [18, 7].
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Meanwhile, the study of inapproximabilityhas seen a perhaps
even bigger revolution, starting with the discovery of the PCP The-
orem [4, 3]. It has led to inapproximability results for many NP-
hard problems, several of them tight in the sense that they match the
best known algorithmic results up to lower order terms (for instance
SET COVER [13], CHROMATIC NUMBER [15], MAX CLIQUE [19],
and MAX 3-SAT [20]).

However, for constraint satisfaction problems in which each con-
straint acts on two variables, tight results have been more elusive.
In recent years, the so-called Unique Games Conjecture (UGC)
has proved to be a possible means for obtaining such results. The
UGC, which asserts the existence of a very powerful two-prover
system with some specific properties, was introduced by Khot, who
used it to show superconstant hardness for MIN 2-SAT-DELETION

[23]. Since then, the UGC has been shown to imply hardness
for several other problems, including 2 − ε hardness for VER-
TEX COVER [26], superconstant hardness for SPARSEST CUT [10,
27] and MULTICUT [10], coloring 3-colorable graphs with as few
colors as possible [12], approximating MAX INDEPENDENT SET

within d/poly log d in degree-d graphs [32], and approximation re-
sistance for random predicates [21].

Recently, thanks to both improved algorithms and improved hard-
ness results, we have seen several cases where the performance
of the best algorithm known, based on semidefinite programming,
exactly matches (up to lower order terms) the best hardness re-
sults based on the UGC. Examples include αGW + ε hardness for
MAX CUT [24] (where αGW ≈ 0.8785 is the approximation ra-
tio of the Goemans-Williamson algorithm), MAX CUT-GAIN [9,
25], Unique Games themselves [8, 24], and Θ(k2−k) approxima-
tion of MAX k-CSP [7, 32]. For some of these results, there is no
apparent connection between the best hardness result and the best
algorithm, apart from the fact that they yield matching approxima-
tion ratios. But in some cases, most notably Khot et al.’s hardness
for MAX CUT [24] and Khot and O’Donnell’s hardness for MAX

CUT-GAIN [25], the Long Code tests which are the core compo-
nents of the hardness results arise in a natural way when studying
the corresponding SDP relaxation.

In other words, there appears to be a very strong connection be-
tween the power of the semidefinite programming paradigm for de-
signing approximation algorithms, and the power of UGC-based
hardness of approximation results. However, this connection is not
yet very well understood, and this is still a very active topic of re-
search. The key question is of course whether the UGC is true, in-
dicating that the semidefinite programming paradigm captures the
power of polynomial-time computations (assuming P �= NP ), or
whether the UGC is false, indicating that we might be able to im-
prove upon existing algorithms, but that we would have to come up
with some completely new techniques in order to do so. However,



resolving this question appears to be well outside the reach of our
current techniques.

In this paper, we continue to explore this tight connection be-
tween semidefinite programming relaxations and the UGC, by show-
ing hardness of MAX 2-SAT that matches the approximation ratio
of the best algorithm known. As with the hardness results for MAX

CUT and MAX CUT-GAIN, the parameters for our hardness result
arise in the study of worst case configurations for a certain round-
ing method for the semidefinite relaxation of MAX 2-SAT. This
rounding method is significantly more complicated than the round-
ing method for MAX CUT, and it is interesting that it should yield
an apparently optimal approximation ratio.

For MAX 2-SAT and MAX DI-CUT, Goemans and Williamson’s
algorithms were improved first by Feige and Goemans [14], subse-
quently by Matuura and Matsui [29, 30], and then by Lewin, Livnat
and Zwick [28] who obtained a 0.9401-approximation algorithm
for MAX 2-SAT, and a 0.8740-approximation algorithm for MAX

DI-CUT. These stand as the current best results for both problems.
It should be pointed out that these two ratios arise as the solutions
of complex numeric optimization problems. As far as we are aware
of, it has not yet been proved formally that these are the actual op-
tima, though there seems to be little doubt that this is indeed the
case.

For both problems, better approximation algorithms are known
for the special case of so-called balanced instances. For MAX

2-SAT this corresponds to the case when every variable occurs
negated and unnegated equally often, and for MAX DI-CUT this
corresponds to each vertex having the same indegree as outdegree.
The approximation ratios achieved are ≈ 0.9439 and αGW respec-
tively, and they match the best known inapproximability ratios un-
der the UGC [24].1 The best current unconditional hardness results
are 21/22+ ε ≈ 0.9546 for MAX 2-SAT and 11/12+ ε ≈ 0.9167
for MAX DI-CUT [20].

It is natural to conjecture, especially considering these results,
that balanced instances should be the hardest (and indeed, Khot
et al. [24] do that), i.e., that we should always be able to use the
presence of bias as “hints” of how to set the variables. However, as
the main result of our paper shows, this might actually not be the
case:

THEOREM 1.1. Assuming the Unique Games Conjecture, for
anyε > 0 it is NP-hard to approximateMAX 2-SAT withinα−

LLZ+
ε, whereα−

LLZ ≈ 0.94017.

Here, α−
LLZ is the believedapproximation ratio of Lewin et al.’s

MAX 2-SAT algorithm mentioned above. In other words, assuming
that their analysis of the algorithm is correct, Theorem 1.1 is tight.
The (in our opinion very remote) possibility that their analysis is
not correct, i.e., that the approximation ratio of their algorithm is
smaller than α−

LLZ , does not affect Theorem 1.1, it would just indi-
cate that it might not be tight, i.e., that MAX 2-SAT might be even
harder to approximate than indicated by our result. The reason that
the tightness of the result relies on the analysis of Lewin et al. being
correct is that our PCP reduction is controlled by a parameter cor-
responding to a worst-case vector configuration for Lewin et al.’s
algorithm. However, the reduction requires this vector configura-
tion to be of a specific form. Fortunately, the (apparently) worst
configurations for Lewin et al.’s algorithm are of this form.

A quite surprising part of this result is the “amount” of imbal-
ance: in our hard instances, every variable occurs positively more
than twice as often as negatively (the ratio is roughly 68-32).
1This is not very surprising, since the balanced versions of both
problems are equivalent to the MAX CUT problem with a linear
transformation on the scoring function.

The proof relies on a careful analysis of the algorithm of Lewin,
Livnat and Zwick. This analysis provides the optimal parameters
for a PCP reduction which is very similar to (but more involved
than) Khot et al.’s reduction for MAX CUT.

The paper is organized as follows. In Section 2 we set up nota-
tion and give some necessary background, including the MAX 2-
SAT problem, Fourier analysis, and the Unique Games Conjecture.
In Section 3, we discuss Lewin et al.’s MAX 2-SAT algorithm and
its approximation ratio. In Section 4 we reduce UNIQUE LABEL

COVER to MAX 2-SAT, establishing Theorem 1.1. In Section 5,
we conclude and discuss some related open problems.

A full version of this paper is available as [5].

2. PRELIMINARIES
We associate the boolean values true and false with −1 and 1,

respectively. Thus, −x denotes “not x”, and a disjunction x ∨ y is
false iff x = y = 1.

We denote by Φ−1 : [0, 1] → R the inverse of the normal dis-
tribution function. Furthermore, for ρ, µ1, µ2 ∈ [−1, 1], we define
the function

Γρ(µ1, µ2) = Pr[X1 ≤ t1 ∧X2 ≤ t2], (1)

where ti = Φ
−1

`
1−µi

2

´
and X1,X2 ∈ N(0, 1) with covariance

ρ. In other words, Γρ is the bivariate normal distribution function
with a transformation on the input. For convenience, we also define
Γρ(µ) = Γρ(µ, µ). The following nice property of Γρ will be very
useful to us.

PROPOSITION 2.1. For all ρ, µ1, µ2 ∈ [−1, 1], we have

Γρ(−µ1,−µ2) = Γρ(µ1, µ2) + µ1/2 + µ2/2 (2)

A proof can be found in the full version of the paper [5].

2.1 Max 2-Sat
A MAX 2-SAT instance Ψ on a set of n variables consists of a

set of clauses, where each clause ψ ∈ Ψ is a disjunction l1 ∨ l2
on two literals, where each literal is either a variable or a negated
variable, i.e., of the form b · xi for b ∈ {−1, 1} and some variable
xi. Additionally, each clause ψ has a nonnegative weight wt(ψ)
(by [11], weighted and unweighted MAX 2-SAT are equally hard
to approximate, up to lower order terms). The MAX 2-SAT prob-
lem is to find an assignment x ∈ {−1, 1}n of the variables such
that the sum of the weights of the satisfied clauses is maximized.
MAX 2-SAT can be viewed as an integer programming problem by
arithmetizing each clause (b1xi ∨ b2xj) as

3−b1xi−b2xj−b1b2xixj

4
.

Note that the latter expression is 1 if the clause is satisfied, and 0
otherwise. The value of an assignment x ∈ {−1, 1}n to Ψ is then

ValΨ(x) =X
ψ=(b1xi∨b2xj)∈Ψ

wt(ψ) · 3− b1xi − b2xj − b1b2xixj
4

,

and we can write a MAX 2-SAT instance Ψ as the (quadratic) inte-
ger program

Maximize ValΨ(x)
Subject to xi ∈ {−1, 1} ∀i (3)

In this paper, we will be especially interested in the family of
MAX 2-SAT instances consisting of the following two clauses for
every pair of variables xi, xj : the clause (xi ∨ xj) with weight
wtij · 1+∆

2
, and the clause (−xi ∨ −xj) with weight wtij · 1−∆

2
,

where the nonnegative weight wtij controls the “importance” of



the pair xi, xj (we allow wtij = 0), and ∆ ∈ [−1, 1] is a constant
controlling the “imbalance” of the instance. Note that if ∆ = ±1
every variable occurs only positively/negatively, and the instance is
trivially satisfiable, whereas if∆ = 0 the instance is balanced and
can be approximated within 0.9439. For our hard instances, we
will use a carefully chosen ∆ which will be approximately 0.3673
(in other words, the relative weight on the positive clauses will be
roughly 1+0.3673

2
≈ 68%).

We will use the terminology ∆-mixed clause (of weightwt) for
a pair of clauses (xi ∨ xj) with weight wt · 1+∆

2
and (−xi ∨−xj)

with weight wt · 1−∆
2

. For a MAX 2-SAT instance Ψ of the above
form (i.e. an instance that can be viewed as a set of∆-mixed clauses),
ValΨ(x) can be rewritten as

ValΨ(x) =
X
i<j

wtij
3−∆xi −∆xj − xixj

4
. (4)

Note that the effect of∆ on the integer program simply constitutes
a dampening of the linear terms.

2.2 Fourier analysis and Majority is Stablest
In this section, we give an informal overview of some concepts

from Fourier analysis that are used to prove the soundness of the
PCP verifier, including the Majority is Stablest Theorem (or rather,
an extension of it). Formal definitions and statements can be found
in Appendix A.

The study of properties of the Fourier expansion of Boolean
functions has yielded many important results, both in computer sci-
ence and other fields. In particular, Fourier analysis has been a key
technique when analyzing the soundness of PCP verifiers.

The long codeof an integer i ∈ [n] is a bit string b1b2 . . . bN
of length N = 2n. Identifying an index I ∈ [N ] with a subset
S(I) ⊆ [n] bijectively in some canonical way, the I th bit of the
long code of i is −1 if i ∈ S(I), and 1 otherwise. Put another
way, we can view it as the table of a function f on n bits such that
f(x1, . . . , xn) = xi, i.e., a dictator function.

The low-degree influenceof a variable xi on a boolean function
f on n variables is, in a very loose sense, a measure of how close
the function f is to depending only on the variable xi, i.e., how
close f is to being the long code of i ∈ [n].

The noise stabilityof a Boolean function f is a measure of how
much the function tends to change when flipping a certain fraction
of the input bits.

For proving hardness of MAX CUT, Khot et al. [24] made a
conjecture called Majority Is Stablest, essentially stating that any
Boolean function with noise stability significantly higher than the
majority function must have a variable with high low-degree influ-
ence (and thus in a sense be close to a long code). Majority Is Sta-
blest was subsequently proved by Mossel et al. [31], using a very
powerful invariance principle which, essentially, allows for consid-
ering the corresponding problem over Gaussian space instead. For
our result, we use a generalization of Majority is Stablest due to
Dinur et al. [12].

2.3 The Unique Games Conjecture (UGC)
The Unique Games Conjecture was introduced by Khot [23] as a

possible means to obtain new strong inapproximability results. As
is common, we will formulate it in terms of a Label Cover problem.

DEFINITION 2.2. An instance

X = (V, E,wt, [L], {σve , σwe }e={v,w}∈E)

of UNIQUE LABEL COVER is defined as follows: given is a wei-
ghted graphG = (V,E) (which may have multiple edges) with

weight functionwt : E → [0, 1], a set[L] of allowed labels, and
for each edgee = {v, w} ∈ E two permutationsσve , σ

w
e ∈ SL

such thatσwe = (σ
v
e )

−1, i.e., they are each other’s inverse. We say
that a function" : V → [L] (called a labelling of the vertices)
satisfies an edgee = {v, w} if σve ("(v)) = "(w), or equivalently,
if σwe ("(w)) = "(v). The value of" is the total weight of edges
satisfied by it, i.e.,

ValX(") =
X
e

� satisfiese

wt(e) (5)

The value ofX is the maximum fraction of satisfied edges for any
labelling, i.e.,

Val(X) = max
�
ValX("). (6)

Without loss of generality, we will always assume that
P

e wt(e) =
1, i.e., that wt is in fact a probability distribution over the edges of
X. We denote by E(v) the subset of edges adjacent to v, i.e.,
E(v) = { e | v ∈ e }. The probability distribution wt induces
a natural probability distribution on the vertices of X where the
probability of choosing v is 1

2

P
e∈E(v)wt(e), andwt also induces

a natural distribution on the edges of E(v)where the probability of
choosing e ∈ E(v) is wt(e)P

e∈E(v) wt(e)
.

Whenever we speak of choosing a random element of V , E or
E(v), it will be according to these probability distributions, but to
simplify the presentation, we will simply refer to it as a random
element. For the same reason we will refer to a fraction c of the
elements of V , E or E(V ) when in fact we mean a set of ver-
tices/edges with probability mass c.

A UNIQUE LABEL COVER problem where G is bipartite can be
viewed as a two-prover (one-round) game in which the acceptance
predicate of the verifier is such that given the answer for one of the
provers, there is always a unique answer from the other prover such
that the verifier accepts. The probability that the verifier accepts
assuming that the provers use an optimal strategy is then Val(X).
Hence the terminology “Unique Games”. We will be interested in
the gap version of the UNIQUE LABEL COVER problem, which we
define as follows.

DEFINITION 2.3. GAP-UNIQUE LABEL COVERη,γ,L is the
problem, given aUNIQUE LABEL COVER instanceX with label
set[L], to determine whetherVal(X) ≥ 1− η or Val(X) ≤ γ.

Khot’s Unique Games Conjecture (UGC) then asserts that the gap
version is hard to solve for arbitrarily small η and γ, provided we
take a sufficiently large label set.

CONJECTURE 2.4 (UNIQUE GAMES CONJECTURE [23]).
For everyη > 0, γ > 0, there is a constantL > 0 such that
GAP-UNIQUE LABEL COVERη,γ,L is NP-hard.

Note that even if the UGC turns out to be false, it might still be the
case that GAP-UNIQUE LABEL COVERη,γ,L is hard in the sense of
not being solvable in polynomial time, and such a (weaker) hard-
ness would also apply to MAX 2-SAT and (as far as we are aware,
all) other problems for which hardness has been shown under the
UGC.

3. APPROXIMATING MAX 2-SAT
To approximate MAX 2-SAT, the common approach is to relax

the integer program Equation (3) to a semidefinite program by re-
laxing each variable xi to a vector vi ∈ R

n+1. In addition, we
introduce the variable v0 ∈ R

n+1, which is supposed to encode the



value “false”. The constraint xi ∈ {−1, 1} = S0 translates to the
constraint that vi ∈ Sn, i.e., that each vector vi should be a unit
vector. The value of an assignment v = (v0, . . . , vn) ∈ (Sn)n+1

to the relaxation is then

SDP-ValΨ(v) =X
ψ=(b1xi∨b2xj)

ψ∈Ψ

wt(ψ) · 3− b1vi · v0 − b2vj · v0 − b1b2vi · vj
4

,

where vi · vj is the standard inner product on vectors in R
n.

This semidefinite relaxation was studied by Goemans and Will-
iamson [16]. For their improved approximation algorithm, Feige
and Goemans [14] considered a strengthening of this semidefinite
program, by adding, for each triple {vi, vj , vk} ⊆ {v0, . . . , vn}
the triangle inequalities

vi · vj + vi · vk + vj · vk ≥ −1
−vi · vj + vi · vk − vj · vk ≥ −1
vi · vj − vi · vk − vj · vk ≥ −1

−vi · vj − vi · vk + vj · vk ≥ −1.
These are equivalent to inequalities of the form ||vi−vj ||2+ ||vj−
vk||2 ≥ ||vi−vk||2, which clearly holds for the case that all vectors
lie in a one-dimensional subspace of Sn (so this is still a relaxation
of the original integer program), but may not necessarily be true
otherwise.

In general, we cannot find the exact optimum of a semidefinite
program. It is however possible to find the optimum to within an
additive relative error of ε in time polynomial in log 1/ε [1]. Since
this error is small enough for our purposes, we will ignore this small
point for notational convenience and assume that we can solve the
semidefinite program exactly.

Given solution vectors (v0, . . . , vn)maximizing SDP-ValΨ(v),
we will produce a solution (x1, . . . xn) ∈ {−1, 1}n using some
rounding method, which will typically be randomized. For consis-
tency, we require that this rounding method always rounds vi and
−vi to opposite values. To determine the approximation ratio of
the algorithm, we analyze the worst possible approximation ratio
on the clause (xi ∨ xj) for any vector configuration.2 This gives a
lower bound on the approximation ratio:

min
v∈(Sn)n+1

E[3− xi − xj − xixj ]

3− v0 · vi − v0 · vj − vi · vj
, (7)

where the minimum is over all feasiblevector solutions to the SDP,
and the expected value is over the randomness of the rounding
method. Typically, the rounding of the vector vi will only depend
on v0 and vi, and so the minimum in Equation (7) only needs to be
taken over the three vectors v0, vi and vj .

3.1 The LLZ algorithm
The best approximation algorithm known for MAX 2-SAT is

due to Lewin, Livnat and Zwick [28] (hereafter referred to as the
LLZ algorithm). It uses the SDP relaxation described above, in-
cluding the triangle inequalities. In order to describe the round-
ing method, it is convenient to introduce some notation. Given
a solution (v0, . . . , vn) to the SDP, we define ξi = v0 · vi and
vi = ξiv0 +

p
1− ξ2

i ṽi, i.e., ṽi is the part of vi orthogonal to v0,
normalized to a unit vector.
2Note that because of the consistency requirement, the approxima-
tion ratio on, e.g., the clause (−xi ∨ xj) for some vector configu-
ration (v0, . . . , vn) equals the approximation ratio on the clause
(xi ∨ xj) with vi negated, and similarly for other clauses with
negated variables.

Lewin et al. consider the following general class of rounding
methods, which they call T HRESH−: First, a standard normal
random vector r is chosen in the n-dimensional subspace of R

n+1

orthogonal to v0. Then, the variable xi is set to true iff ṽi · r ≤
T (ξi), where the threshold function T (·) is (almost) arbitrary, and
it is convenient for us to have it on the form

T (x) = Φ−1

„
1− a(x)

2

«
, (8)

where a : [−1, 1] → [−1, 1] is an (almost) arbitrary function.3

The consistency requirement on the rounding method translates to
requiring that T is an odd function (or equivalently, that a is an odd
function).

The reason that it is natural to formulate T in terms of the func-
tion a becomes evident when we analyze the performance ratio of
the algorithm. Note that ṽi ·r is a standard N(0, 1) variable, imply-
ing that xi is set to true with probability 1−a(ξi)

2
. In other words,

the expected value of xi is simply E[xi] = a(ξi), and thus, we can
think of the function a as controlling exactly how much we lose
on the linear terms when we round the solution to the semidefinite
program.

In order to evaluate the performance of the algorithm, we also
need to analyze performance on the quadratic terms, which we
do by analyzing the probability that two variables xi and xj are
rounded to the same value. Let ρ := vi · vj and ρ̃ := ṽi · ṽj =

ρ−ξiξjq
(1−ξ2i )(1−ξ2j )

. It is readily verified that the scalar products ṽi · r

and ṽj · r are standard N(0, 1) variables with covariance ρ̃, and
thus, the probability that ṽi · r ≤ T (ξi) and ṽj · r ≤ T (ξj) is
simply Γρ̃(a(ξi), a(ξj)) (see Section 2 for the definition of Γ). By
symmetry, the probability that both xi and xj are set to false is
Γρ̃(−a(ξi),−a(ξj)). Using Proposition 2.1, we get that the ex-
pected value of the term xixj is

2Pr[xi = xj ]− 1 = 4Γρ̃(a(ξi), a(ξj)) + a(ξi) + a(ξj)− 1,

and the expected value of the clause xi ∨ xj becomes

3− E[xi]− E[xj ]− E[xixj ]

4

=
4− 2a(ξi)− 2a(ξj)− 4Γρ̃(a(ξi), a(ξj))

4

It turns out that to get the best approximation ratio, we should
choose a(x) := β·x to be a linear function, where β ≈ 0.94016567,
the apparent approximation ratio [33]. This is not quite the same
choice as originally described by Lewin et al., but is more nat-
ural and achieves a marginally better approximation ratio. See
Appendix C for details on the difference between the two choices
rounding functions. Next, define

αβ(ξi, ξj , ρ) =
4− 2β(ξi + ξj)− 4Γρ̃(βξi, βξj)

3− ξi − ξj − ρ
, (9)

i.e., the expected approximation ratio of the configuration (ξi, ξj , ρ),
using a specific choice of β. Let

α(β) = min
ξi,ξj ,ρ

αβ(ξi, ξj , ρ), (10)

i.e., a lower bound on the approximation ratio achieved by this al-
gorithm for a specific β, where (ξi, ξj , ρ) ranges over all configu-

3In the notation of [28], this corresponds to setting S(x) =

T (x)
√
1− x2, or a(x) = 1−2Φ

`
S(x)/

√
1− x2

´
(we may, with-

out loss of generality, assume that ξi �= ±1 for all i).



rations satisfying the triangle inequalities. Finally, let

αLLZ = max
β∈[−1,1]

α(β), (11)

i.e., a lower bound on the best possible approximation ratio when
letting a be any linear function.

3.2 Simple configurations
We represent a vector configuration for the SDP by the three

scalar products (ξi, ξj , ρ), where ρ = vi · vj . When showing hard-
ness of MAX 2-SAT, we will reduce UNIQUE LABEL COVER to
MAX 2-SAT. The reduction is parametrized by a configuration
(ξi, ξj , ρ) of the SDP, yielding a hardness result matching the per-
formance of the LLZ algorithm on this configuration. However, the
reduction needs this configuration to be of a specific form.

First, it needs the configuration to satisfy ξi = ξj , in other words,
that both vi and vj have the same angle to v0. This restriction is
not entirely artificial; considering the symmetry of the linear terms
in the quadratic program, it seems intuitive that the weight on the
two linear terms should be distributed fifty-fifty for a worst case
configuration, i.e., that ξi = ξj .

Second, the reduction needs the configuration to satisfy −2|ξi|+
ρ = −1, in other words, that we have equality in one of the triangle
inequalities. This restriction is quite natural; the triangle inequal-
ities cut away a part of the configuration space in which there are
extremely bad configurations, and sticking as close as possible to
this part of the configuration space would intuitively seem like a
good approach for finding bad configurations.

We will refer to a configuration satisfying these two criterions,
i.e., a configuration of the form (ξ, ξ,−1 + 2|ξ|) for some ξ ∈
[−1, 1], as a simple configurationξ. Extensive numerical compu-
tations, both our own and those of Lewin et al., indicate that the
worst case configurations for the LLZ algorithm are indeed simple.

Motivated by this restriction to simple configurations, we define

α−
β (ξ) = αβ(ξ, ξ,−1 + 2|ξ|) =

2− 2βξ − 2Γρ̃(βξ)
2− ξ − |ξ| (12)

to be the expected approximation ratio on a specific simple config-

uration ξ, where ρ̃ = −1+2|ξ|−ξ2

1−ξ2
= |ξ|−1

|ξ|+1
is the value of ρ̃ for the

simple configuration ξ. Analogously to α(β) and αLLZ , let

α−(β) = min
ξ∈[−1,1]

α−
β (ξ) (13)

α−
LLZ = max

β∈[−1,1]
α−(β), (14)

i.e., lower bounds on the approximation ratio for a specific choice
of β and the best approximation ratio for any choice of β, when
only considering simple configurations. Clearly, we have αLLZ ≤
α−
LLZ , and unless Lewin et al.’s analysis is wrong, we have equal-

ity. In Appendix B, we briefly discuss the actual numeric value of
α−
LLZ ≈ 0.94017.
It is possible to show that the right hand side of Equation (14) is

indeed maximized by setting β = α−
LLZ (a proof is given in the

full version of this paper [5]), and in fact, this will be needed in
order to obtain an expression for α−

LLZ that exactly matches the
inapproximability yielded by the reduction from UNIQUE LABEL

COVER.

4. REDUCTION FROM UNIQUE LABEL
COVER

In this section, we reduce UNIQUE LABEL COVER to MAX 2-
SAT. Let ε > 0. We will show hardness of approximating MAX

2-SAT within α−
LLZ + O(ε). Let η > 0 and γ > 0 be parameters

ith bit
x1 x2 Probability
1 1 (|ξ|+ ξ)/2 = 0

-1 1 (1− |ξ|)/2 = (1 + ξ)/2

1 -1 (1− |ξ|)/2 = (1 + ξ)/2

-1 -1 (|ξ| − ξ)/2 = −ξ

Table 1: Distribution of the ith bit of x1 and x2 (recall that
ξ < 0).

which will be chosen sufficiently small and let L be the correspond-
ing label size given by the UGC. We will reduce GAP-UNIQUE LA-
BEL COVERη,γ,L to the problem of approximating MAX 2-SAT via
a PCP verifier whose queries correspond to checking a ∆-mixed
MAX 2-SAT clause. The reduction is controlled by a parameter
ξ ∈ (−1, 0) and an imbalance parameter ∆ ∈ (−1, 1), the values
of which will be chosen later.

Given is a UNIQUE LABEL COVER instance

X = (V,E, [L], {σve}e={v,w}∈E).

A proof Σ that X is (1 − η)-satisfiable will consist of supposed
long codes of the labels of all v ∈ V . Denote by fv : {−1, 1}L →
{−1, 1} the purported long code of the label of vertex v. For a
permutation σ ∈ SL and x = x1 . . . xL ∈ {−1, 1}L, we let σx =
xσ(1) . . . xσ(L). The PCP verifier V is described in Algorithm 1.

Algorithm 1: The verifier V
V(X, Σ = {fv}v∈V )
(1) Pick a random v ∈ V .
(2) Pick e1 = {v, w1} and e2 = {v, w2} randomly

from E(v).
(3) Pick x1, x2 ∈ {−1, 1}L such that each bit of xj is

picked independently with expected value ξ and that
the ith bits of x1 and x2 are (−1 + 2|ξ|)-correlated
(see Table 1).

(4) For i = 1, 2, let bi = fwi(σ
v
ei
xi).

(5) With probability 1+∆
2

, accept iff b1 ∨ b2.
(6) Otherwise, i.e., with probability 1−∆

2
, accept iff

−b1 ∨ −b2.

The completeness and soundness of V are as follows.

LEMMA 4.1 (COMPLETENESS). If Val(X) ≥ 1 − η, then
there is a proofΣ that makesV accept with probability at least

(1− 2η)2−∆ξ − |ξ|
2

(15)

LEMMA 4.2 (SOUNDNESS). For anyε > 0, ξ ∈ (−1, 0) and
∆ ∈ (−1, 1) there exists aγ > 0, such that ifVal(X) ≤ γ, then
for any proofΣ, the probability thatV accepts is at most

max
µ∈[−1,1]

2− (1 + ∆)µ− 2Γρ̃(µ)
2

+ ε, (16)

whereρ̃ = |ξ|−1
|ξ|+1

.

Proofs of Lemmas 4.1 and 4.2 can be found in Appendix D. Com-
bining the Lemmas and picking η small enough, we get that, as-
suming the UGC, it is NP-hard to approximate MAX 2-SAT within
a factor

max
µ∈[−1,1]

2− (1 + ∆)µ− 2Γρ̃(µ)
2−∆ξ − |ξ| +O(ε) . (17)



As a final step, we show that, choosing the right ξ and ∆, the first
term is exactly α−

LLZ .

PROPOSITION 4.3. There areξ ∈ (−1, 0) and∆ ∈ (−1, 1)
such that

α−
LLZ = max

µ∈[−1,1]

2− (1 + ∆)µ− 2Γρ̃(µ)
2−∆ξ − |ξ| , (18)

whereρ̃ = |ξ|−1
|ξ|+1

.

A proof is given in the full version of this paper [5]. Applying
Proposition 4.3 to Equation (17), we obtain Theorem 1.1.

The values of ξ and ∆ given by Proposition 4.3 are roughly
ξ ≈ −0.1625, ∆ ≈ 0.3673. The large value of ∆ in particular is
interesting, since the weights on positive and negative occurences
of variables are 1+∆

2
and 1−∆

2
, which is roughly 68% vs. 32%.

We find it remarkable that so greatly imbalanced instances should
be the hardest to approximate. We remark that the choice of sign
for ξ is arbitrary (it corresponds to the choice of whether most of
the variable occurences in our hard MAX 2-SAT instance should be
positive or negative), the proposition holds for ξ ∈ (0, 1) as well.

Also, note the strong connection between the LLZ algorithm and
the PCP reduction. On a high level, the PCP verifier chooses some
configuration of vectors, and in the soundness case, a good strat-
egy for the prover is essentially just a rounding method (from the
class of rounding methods considered by Lewin et al.) which has a
good performance on the SDP configurations chosen by the verifier.
Chosing a configuration of vectors which is particularly difficult to
round, we get a good verifier.

5. CONCLUDING REMARKS
We have shown that it is hard to approximate MAX 2-SAT within

α−
LLZ+ε. The constant α−

LLZ ≈ 0.94017 is the guaranteed perfor-
mance ratio of the LLZ algorithm on vector configurations which
are of a certain form which we call simple configurations. Further-
more, all numerical evidence (both that of Lewin et al., and our
own computations), heavily indicates that the worst possible con-
figurations for the LLZ algorithm are simple – in other words that
the approximation ratio of the LLZ algorithm is α−

LLZ , and that our
result is tight.

5.1 Open problems and further work
Beside the obvious importance of resolving the Unique Games

Conjecture, there are a few other, quite possibly easier, questions
that would be nice to settle.

• Given the result in this paper and previous works on inte-
grality gap for e.g. MAX CUT [27], it seems likely that we
should be able to show a matching integrality gap for the SDP
relaxation of MAX 2-SAT (since otherwise, the UGC would
be false, and it seems unlikely that a careful analysis of the
MAX 2-SAT SDP should be enough to disprove the conjec-
ture). So far, however, our attempts at showing this has been
elusive.

• It would be nice to have a proof that there are worst config-
urations for the LLZ algorithm that are simple, i.e., that the
performance ratio is indeed α−

LLZ .

• It would be interesting to determine how the hardness of ap-
proximating MAX 2-SAT depends on the imbalance of the
instances considered (for a suitable definition of imbalance
for general instances and not just instances consisting only
of ∆-mixed clauses). For instance, how large can we make

the imbalance and still have instances that are hard to approx-
imate within, say, 0.95?
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APPENDIX

A. FOURIER ANALYSIS AND MAJORITY
IS STABLEST

Fourier analysis (of Boolean functions) is a crucial tool in most
strong inapproximability results. Since we need to work with bi-
ased distributions rather than the standard uniform ones, we will
review some important concepts. The facts in this section are well-
known, and proofs can be found in e.g. [5]. We denote by µnq the
probability distribution on {−1, 1}n where each bit is set to −1
with probability q, independently, and we let Bn

q be the probability

xi b Pr[yi = b |xi]
1 1 1− q(1− ρ)

1 -1 q(1− ρ)

-1 1 (1− q)(1− ρ)

-1 -1 1− (1− q)(1− ρ)

Table 2: Distribution of yi depending on xi.

space
`
{−1, 1}n, µnq

´
. We define a scalar product on the space of

functions from Bn
q to R by

〈f, g〉 = E
x∈Bn

q

[f(x)g(x)], (19)

and for each S ⊆ [n] the function US
q : B

n
q → R by US

q (x) =Q
i∈S Uq(xi) where

Uq(xi) =

8<
: −

q
1−q
q

if xi = −1q
q

1−q
if xi = 1

.

It is a well known fact that the set of functions {US
q }S⊆[n] forms

an orthonormal basis w.r.t. the scalar product 〈·, ·〉, and thus, any
function f : Bn

q → R can be written as

f(x) =
X
S⊆[n]

f̂SU
S
q (x).

The coefficients f̂S =
˙
f, US

q

¸
are the Fourier coefficients of the

function f . A concept that is very important in PCP applications is
that of low-degree influence.

DEFINITION A.1. For k ∈ N, the low-degree influence of the
variablei on the functionf : Bn

q → R is

Inf≤k
i (f) =

X
S⊆[n]
i∈S

|S|≤k

f̂2
S . (20)

A nice property of the low-degree influence is the fact that for
f : Bn

q → {−1, 1}, we have
P

i Inf
≤k
i (f) ≤ k, implying that

the number of variables having low-degree influence more than τ
must be small (think of k and τ as constants not depending on the
number of variables n). Informally, one can think of the low-degree
influence as a measure of how close the function f is to depending
onlyon the variable i, i.e., for the case of boolean-valued functions,
how close f is to being the long code of i (or its negation).

Next, we define the Beckner operator Tρ on a function f : Bn
q →

R. For the unbiased distribution q = 1/2, Tρf(x) is simply the ex-
pectation of f(y) over a random variable y that is ρ-correlated with
x. For biased distributions, the definition is a bit more complicated.

DEFINITION A.2. Givenρ ∈ [−1, 1] satisfyingρ ≥ − q
1−q

and

ρ ≥ − 1−q
q

, the Beckner operatorTρ on a functionf : Bn
q → R is

defined by

Tρf(x) = E
y
[f(y)]. (21)

where the expectation is over ann-bit string y in which each bit
yi is picked independently as follows: ifxi = 1 thenyi = −xi
with probability q(1 − ρ), and if xi = −1 thenyi = −xi with
probability (1− q)(1− ρ) (see Table 2).

Note that the lower bound on ρ is needed to make this a valid prob-
ability distribution. For ρ ≥ 0, the probability distribution of yi
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can be formulated as follows: with probability ρ, we let yi = xi,
and with probability 1− ρ, we pick yi from B1

q .
The effect of Tρ on f can also be expressed using the Fourier

representation of f as follows:

Tρf(x) =
X
S⊆[n]

ρ|S|f̂SU
S
q (x). (22)

DEFINITION A.3. Thenoise stability of f : Bn
q → R is

Sρ(f) = 〈f, Tρf〉 =
X
S⊆[n]

ρ|S|f̂2
S (23)

Finally, we state a simplified version of Dinur et al.’s generalization
of the Majority is Stablest theorem [12].

THEOREM A.4. Let ε > 0, q ∈ (0, 1) andρ ∈ (−1, 0). Then
there is aτ > 0 and ak ∈ N such that for every functionf :
Bn
q → [−1, 1] satisfyingE[f ] = µ andInf≤k

i (f) ≤ τ for all i, we
have

Sρ(f) ≥ 4Γρ(µ) + 2µ− 1− ε. (24)

B. THE NUMERIC VALUE OF α−
LLZ

In this section we will (very briefly) discuss the actual numeric
value of α−

LLZ . Let b = 0.9401656724. To give a feel for α−
b (ξ),

Figure 1 gives a plot of this function in the interval ξ ∈ [−1, 1],
along with the line y = b (dashed). The one-dimensional optimiza-
tion problem

min
ξ

αb(ξ) (25)

can be solved numerically to a high level of precision. This gives
a lower bound α−

LLZ ≥ 0.9401656724. The two minima seen in
Figure 1 turn out to be roughly ξ1 = −0.1624783294 and ξ2 =
0.1624783251. In order to obtain an upper bound on α−

LLZ , we
can then solve the one-dimensional optimization problem

max
β
min

`
α−
β (ξ1), α

−
β (ξ2)

´
(26)

numerically to a high level of precision. This results in an up-
per bound of α−

LLZ ≤ 0.9401656725. In conclusion, we have
|α−

LLZ − 0.94016567245| ≤ 5 · 10−11.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1(x)
a2(x)

Figure 2: a1(x) vs. a2(x)

C. THE TALE OF THE TWO ROUNDING
FUNCTIONS

The rounding function of the LLZ algorithm that is used in this
paper is due to Zwick [33], and differs from the rounding function
originally used by Lewin et al. [28]. The rounding function we use
is a1(x) = β ·x, where β = α−

LLZ ≈ 0.94016567 (see Section 3.1
for further details). The rounding function used in [28] is a2(x) =
1−2Φ(S(x)/

√
1− x2). Here, S(x) = −2 cot(f(arccos x))

√
1− x2

where f is a linear function given by

f(θ) ≈ 0.58831458θ + 0.64667394. (27)

a2(x) can be simplified to

a2(x) = 1− 2Φ(−2 cot(f(arccos x)))
= 2Φ(2 cot(f(arccos x)))− 1. (28)

Figure 2 gives plots of the functions a1(x) and a2(x) for the inter-
val x ∈ [0, 1] (both functions are odd, so we restrict our attention
to positive x). As can be seen, the functions are fairly close to each
other. Most importantly, the functions behave almost the same in
the critical interval x ∈ [0.1, 0.2]. Nevertheless, there is a small
difference between the functions in this interval as well, and this
causes the worst simple configurations ξ ≈ ±0.1625 when using
a1(x) to be slightly different from the worst simple configurations
ξ ≈ ±0.169 when using a2(x). This small difference results in a
marginally better approximation ratio when using a1(x) than when
using a2(x), but the improvement is very small.

For large x, the functions a1(x) and a2(x) differ noticeably, but
here the particular choice of rounding function is not crucial since
these are configurations that are in some sense easy to round, and
any function with a reasonable behaviour suffices to get a suffi-
ciently good approximation ratio.

D. PROOFS OF COMPLETENESS AND
SOUNDNESS FOR THE VERIFIER

In this section, we prove Lemmas 4.1 and 4.2, providing the com-
pleteness and soundness of the PCP verifier constructed in Section 4.

Arithmetizing the acceptance predicate of V , we get that the
probability that V accepts a proof is

E
v,e1,e2,x1,x2

»
3−∆(b1 + b2)− b1b2

4

–
, (29)



where bi = fwi (σ
v
ei
xi) and v, e1, e2, x1, x2 are picked with the

same distribution as by the verifier.

PROOF OF LEMMA 4.1 (COMPLETENESS). Suppose there is an
assignment of labels to the vertices of X such that the fraction
of satisfied edges is at least 1 − η. Fix such a labelling, and let
fv : {−1, 1}L → {−1, 1} be the long code of the label of v. Note
that for a satisfied edge e = {v, w}, fw(σvexi) equals the value of
the lv:th bit of xi (where lv is the label of vertex v)

By the union bound, the probability that any of the two edges e1

and e2 are not satisfied is at most 2η. For a choice of edges e1,
e2 that are satisfied, the expected value of fwi(σ

v
ei
xi) is simply

the expected value of the lv:th bit in xi, i.e. ξ, and the expected
value of fw1(σ

v
e1x1)fw2(σ

v
e2x2) is the expected value of the lv:th

bit of x1x2, i.e. −1 + 2|ξ|. Thus, for such a choice of edges, the
acceptance probability becomes

3− 2∆ξ − (−1 + 2|ξ|)
4

=
2−∆ξ − |ξ|

2
, (30)

and we are done.

PROOF OF LEMMA 4.2 (SOUNDNESS). As is common, the proof
is by contradiction. Assume that the value of X is at mostVal(X) ≤
γ. Take any proof Σ = {fv}v∈V . Define

gv(x) := E
e={v,w}∈E(v)

[fw(σ
v
ex)], (31)

and µv := Ex[gv(x)]. Assume that the probability that the verifier
accepts this proof is at least

Pr[V accepts Σ] ≥ E
v

»
2− (1 + ∆)µv − 2Γρ̃(µv)

2
+ ε

–
. (32)

We will show that in that case, it is possible to satisfy a constant
(that depends only on ξ and ε) fraction of the edges of X. Setting
γ smaller than this constant will yield the desired result.

Note that the probability distribution of x1, x2 is the same as that
induced by first picking x1 at random in Bn

q and then constructing
x2 from x1 in the same way y is constructed from x in the Beckner
operator Tρ̃, for q = 1−ξ

2
and ρ̃ = − 1−q

q
= |ξ|−1

|ξ|+1
. Thus, the ex-

pected value of gv(x1)gv(x2) equals Sρ̃(gv). So by the definition
of gv and µv , we can rewrite the probability that the verifier accepts
as

Pr[V accepts Σ]

= E
v,x1,x2

»
3−∆(gv(x1) + gv(x2))− gv(x1)gv(x2)

4

–

= E
v

»
3− 2∆µv − Sρ̃(gv)

4

–
Plugging in Equation (32), this gives

E
v

»
3− 2∆µv − Sρ̃(gv)

4

–

≥ E
v

»
2− (1 + ∆)µv − 2Γρ̃(µv)

2
+ ε

–
,

which simplifies to

E
v
[4Γρ̃(µv) + 2µv − 1− Sρ̃(gv)] ≥ 4ε.

Note that 4Γρ̃(µv)+2µv−1−Sρ̃(gv) = 2(Γρ̃(µv)+Γρ̃(−µv))−
1 − Sρ̃(gv) ≤ 2− 1− (−1) = 2, so it must be the case that for a
fraction of at least 3ε

2−ε
≥ ε of the vertices v ∈ V , we have

Sρ̃(gv) ≤ 4Γρ̃(µv) + 2µv − 1− ε. (33)

Let Vgood be the set of all such v. Since ρ̃ < 0 we have by (ex-
tended) Majority Is Stablest (Theorem A.4) that for all v ∈ Vgood

there must be some i ∈ [L] such that Inf≤k
i (gv) ≥ τ , where τ

and k are constants depending only on ε and ξ.4 Thus, for any
v ∈ Vgood, we have

τ ≤
X
i∈S

|S|≤k

d(gv)2S = X
i∈S

|S|≤k

E
e={v,w}

h
(cfw)σv

eS

i2

≤
X
i∈S

|S|≤k

E
e={v,w}

h
(cfw)2σv

eS

i
= E

e={v,w}

h
Inf≤k

σv
e (i)(fw)

i
.

This, and the fact that Inf≤k
σv

e (i)
(fw) ≤ 1 for all i, implies that for a

fraction of at least τ−τ/2
1−τ/2

≥ τ
2

of the edges e = {v, w} ∈ E(v),

we have Inf≤k
σv

e (i)(fw) ≥ τ/2.
For v ∈ V , let

C(v) = { i ∈ L | Inf≤k
i (fv) ≥ τ/2 ∨ Inf≤k

i (gv) ≥ τ }. (34)

Intuitively, the criterion Inf≤k
i (fv) ≥ τ/2 means that the pur-

ported Long Codes of the label of v suggests i as a suitable label
for v, and the criterion Inf≤k

i (gv) ≥ τ means that many of the pur-
ported Long Codes for the neighbours of v suggests that v should
have the label i. By the fact that

P
i Inf

≤k
i (fw) ≤ k, we must have

|C(v)| ≤ 2k/τ + k/τ = 3k/τ .
We now define a labelling by picking independently for each v ∈

V a (uniformly) random label i ∈ C(v) (or an arbitrary label in
case C(v) is empty). For a vertex v ∈ Vgood with Inf≤k

i (gv) ≥
τ , the probability that v is assigned label i is 1/|C(v)| ≥ τ/3k.
Furthermore, by the above reasoning and the definition of C, at
least a fraction τ/2 of the edges e = {v, w} from v will satisfy
σve (i) ∈ C(w). For such an edge, the probability that w is assigned
the label σve (i) is 1/|C(w)| ≥ τ/3k. Thus, the expected fraction of
satisfied edges adjacent to any v ∈ Vgood is at least τ/2 · (τ/3k)2,
and so the expected fraction of satisfied edges in total5 is at least
ε · τ3

18k2 (note that this is a positive constant that depends only on ε
and ξ) and thus there is an assignment satisfying at least this total
weight of edges. Making sure that γ < ετ3

18k2 , we get a contradiction
on the assumption of the acceptance probability (Equation (32)),
implying that the soundness is at most

Pr[V accepts Σ] ≤ E
v

»
2− (1 + ∆)µv − 2Γρ̃(µv)

2
+ ε

–

≤ max
µ∈[−1,1]

2− (1 + ∆)µ− 2Γρ̃(µ)
2

+ ε,

as desired.

4The dependency on ξ stems from the fact that gv is a function
from Bn

q to R, where q = 1−ξ
2

.
5We remind the reader of the convention of Section 2.3 that the
choices of random vertices and edges are according to the prob-
ability distributions induced by the weights of the edges, and so
choosing a random v ∈ V and then a random e ∈ E(v) is equiva-
lent to just choosing a random e ∈ E.
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