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1 Introduction

Vertex Cover and Independent Set are two of the most well-studied NP-complete problems. Recall that an
independent set of a graph is a set of vertices no two of which are connected by an edge, and that a vertex
cover is a set of vertices that contains at least one endpoint of every edge (or equivalently, the complement
of an independent set). On general graphs (i. e., with unbounded degree), it is a notoriously difficult
problem even to approximate the solutions to these problems, and there is strong evidence that indeed no
good approximation is feasible. However, for graphs whose degree is bounded by a constant, significantly
better approximation guarantees are known. In this paper, we investigate whether one can obtain a tight
inapproximability result for graphs with bounded degree d as a function of d. We present a randomized
reduction from the Unique Games problem to each of these two problems, giving UG-hardness results
close to the approximation ratio of the best algorithms known. (See Section 2.1 for definitions of Unique
Games problem and UG-hardness of a problem.)

Our results

For the Vertex Cover problem, we prove:

Theorem 1.1. It is UG-hard (under randomized reductions) to approximate vertex cover in a degree d
graph within factor

2− (2+od(1))
log logd

logd
.

We note that Halperin [10] presents an efficient algorithm that approximates vertex cover in a degree-d
graph within essentially the same factor, up to the value of the od(1) error term. This improves on the
general well-known 2-approximation ratio for graphs of unbounded degree. In general graphs, the best
current approximation algorithm, due to Karakostas [12], has an approximation ratio of 2−Ω(1/

√
logn).

On the inapproximability side, Khot and Regev [16] showed 2− ε UG-hardness for any constant ε > 0,
whereas Dinur and Safra [6] showed a 1.36 NP-hardness result.

For the Independent Set problem, we prove:

Theorem 1.2. It is UG-hard (under randomized reductions) to approximate independent set in a degree-d
graph within factor O(d/log2 d).

This result is close to the best known algorithm for this problem that achieves O((d log logd)/logd)
approximation (see Halperin [10], or Halldórsson [9]). It is an intriguing question whether one can
improve the approximation algorithm, or improve on this inapproximability result (or both). Previously,
Samorodnitsky and Trevisan [21] showed d/logO(1) d UG-hardness for the problem. (Doing optimistic
estimates, it seems the best possible result their proof could yield is d/log3 d.) The same authors, in
an earlier work [20], gave a d/2O(

√
logd) NP-hardness result. For graphs with unbounded degree, the

best algorithm known, due to Feige [7], achieves an approximation ratio of O(n(log logn)2/(logn)3),
whereas the problem was shown to be hard to approximate within n1−ε for any constant ε > 0 by
Håstad [11] (assuming NP 6⊆ ZPP). Håstad’s result has been further improved and the current best
inapproximability result is n/2(logn)3/4+ε

by Khot and Ponnuswami [15] (assuming NP does not have
randomized quasi-polynomial time algorithms).
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It is interesting that we obtain a

2− (2+od(1))
log logd

logd

inapproximability result for vertex cover where even the constant in front of the (log logd)/logd term
is optimal. Also, we remark that the earlier result of Samorodnitsky and Trevisan [21], which gave
d/logO(1) d inapproximability for the independent set problem, requires the construction of a sophisticated
query-efficient PCP. We instead prove an improved result without relying on such a PCP.

Finally, we note that all known algorithms for the bounded degree case make no assumption that d is
constant and work also for the case d = n. In particular the best algorithms for bounded degree Vertex
Cover and Independent Set give algorithms for the general case with approximation ratios

2− (2−o(1))
log logn

logn
and O

(
n log logn

logn

)
,

respectively. It is natural to ask whether this is inherent, i. e., whether the approximability for the
unbounded degree case equals the approximability for the bounded degree case with the degree bound d
set to n. Using the best current algorithms for the two problems, we see that our hardness results do not
hold for d = n (unless the UGC is false). Previously known hardness results were not strong enough to
rule out this possibility.

Techniques

Showing an inapproximability result for Vertex Cover essentially amounts to showing the Independent
Set problem is hard to approximate even when the independent set is very large. For an inapproximability
ratio close to 2, this calls for showing that it is hard to distinguish between a graph with an independent
set of roughly half of the vertices, and a graph in which every independent set has negligible size.
Consequently, both our results follow from the same randomized reduction from the Unique Games
problem, albeit with different choices of parameters.

The reduction produces an n-vertex degree-d graph, which, in case the Unique Games instance was
almost completely satisfiable—the completeness case—has a large independent set. Here large refers to(

1
2
−Θ

( log logd
logd

))
·n

for Theorem 1.1, and Θ(1/logd) ·n for Theorem 1.2. In contrast, if one can satisfy only a small fraction
of the constraints of the Unique Games instance—the soundness case—there is no independent set of size
even βn for an appropriately small constant β , where β = 1/logd for Theorem 1.1 and β = Θ(logd/d)
for Theorem 1.2.

The reduction proceeds in two steps: (1) the first step produces a graph G with unbounded degree and
(2) in the second step, we sparsify the graph so as to have all degrees bounded by d, yielding the final
graph G′. The sparsification step simply picks d ·n edges from G at random so that the average degree
(and hence the maximum degree after removing a small fraction of edges) is bounded by d.

THEORY OF COMPUTING, Volume 7 (2011), pp. 27–43 29

http://dx.doi.org/10.4086/toc


PER AUSTRIN, SUBHASH KHOT, AND MULI SAFRA

The second step clearly can only increase the size of the independent set, hence the completeness
proof is fine. For the soundness proof, we must show that the size of the independent set can only be
slightly increased. We prove that if G had no independent set of size βn, G′ does not have independent
set of size βn either. In order to prove this, we actually need the graph G to have a stronger property. In
the soundness case, we show that not only does G have no independent set of size βn, but we also have
a much stronger density property: every set of βn vertices contains a Γ(β ) fraction of the edges for an
appropriate function Γ(·). This stronger property allows us to prove the correctness of the sparsification
step by a simple union bound over all sets of size βn.

Now, let us elaborate on the first step of the reduction. This construction is almost the same as in
Khot and Regev’s paper [16]. Their reduction produces an n-vertex graph that has no independent set of
size βn. We show that one can in fact define an appropriate probability distribution on the edges of their
graph and prove the density property that every set of βn vertices contains Γ(β ) fraction of the edges.
The analysis of this step departs from that of Khot and Regev, and is instead inspired by that of Dinur
et al. [5] for showing UG-hardness for coloring problems. The density property follows from a quite
straightforward application of a Thresholds are Stablest type theorem [19], giving precise bounds on the
function Γ(·). Note that we also obtain an alternate proof of the 2− ε inapproximability result for vertex
cover that is arguably simpler than the Khot-Regev proof.

2 Preliminaries

We will consider graphs that are both vertex weighted and edge weighted. We will assume that the sum
of the vertex weights equals 1 and so does the sum of the edge weights so that the weights can be thought
of as probability distributions. For a weighted graph G and a subset of its vertices S, let w(S) denote the
weight of vertex set S and G(S) denote the induced subgraph on S. For vertex sets S and T , let w(S,T )
denote the weight of edges between vertex sets S and T . As a convention, an unweighted graph would
refer to a graph with uniform probability distributions over its vertices and edges.

Definition 2.1. A graph G is (δ ,ε)-dense if for every S⊆V (G) with w(S)≥ δ , the total weight w(S,S)
of edges inside S is at least ε .

2.1 Unique Games

In this section, we state the formulation of the Unique Games Conjecture that we will use.

Definition 2.2. An instance Λ = (U,V,E,Π, [L]) of Unique Games consists of an unweighted bipartite
multigraph G = (U ∪V,E), a set Π of constraints, and a set [L] of labels. For each edge e ∈ E there is a
constraint πe ∈ Π, which is a permutation on [L]. The goal is to find a labeling ` : U ∪V → [L] of the
vertices such that as many edges as possible are satisfied, where an edge e = (u,v) is said to be satisfied
by ` if `(v) = πe(`(u)).

Definition 2.3. Given a Unique Games instance Λ = (U,V,E,Π, [L]), let Opt(Λ) denote the maximum
fraction of simultaneously satisfied edges of Λ by any labeling, i. e.,

Opt(Λ) :=
1
|E|

max
`:U∪V→[L]

|{e : ` satisfies e}| .
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Let IndOpt(Λ) denote the maximum value α such that there is a subset V ′ ⊆V , |V ′| ≥ α|V | and a labeling
` : U ∪V ′→ [L] such that every edge in the induced subgraph G(U ∪V ′,E) is satisfied by the labeling `.

The Unique Games Conjecture of Khot [13] can be stated states as follows:

Conjecture 2.4. For every γ > 0, there is an L such that, for Unique Games instances Λ with label set
[L] it is NP-hard to distinguish between

• IndOpt(Λ)≥ 1− γ and

• Opt(Λ)≤ γ .

Moreover Λ is regular, i. e., all the left (resp. right) vertices have the same degree.

This formulation of the UGC differs from Khot’s original formulation, but was proved to be equivalent
by Khot and Regev [16]. (This version is necessary for the known proofs of inapproximability of Vertex
Cover and Independent Set.)

Now we define what we mean by a problem being UG-hard. We present a definition for a maximization
problem; a similar definition can be made for a minimization problem.

Definition 2.5. For a maximization problem P, let GapPc,s denote its promise version where every
instance I is guaranteed to satisfy either Opt(I)≥ c or Opt(I)≤ s and the goal is to distinguish between
the two. We say that GapPc,s is UG-hard if for some γ > 0 there is a polynomial time reduction mapping
Unique Games instances Γ to GapPc,s instances I such that

• IndOpt(Λ)≥ 1− γ =⇒ Opt(I)≥ c and

• Opt(Λ)≤ γ =⇒ Opt(I)≤ s.

In this case, we also say that P is UG-hard to approximate within ratio better than c/s.

Note that if the UGC holds then a problem being UG-hard is equivalent to the problem being NP-hard.

2.2 Influence, noise, and stability

For q ∈ [0,1], we use {0,1}n
(q) to denote the n-dimensional boolean hypercube with the q-biased product

distribution, i. e., if x is a sample from {0,1}n
(q) then the probability that the ith coordinate xi = 1 is q,

independently for each i ∈ [n]. Whenever we have a function f : {0,1}n
(q)→ R we think of it as a random

variable and hence expressions like E[ f ] (the expectation), Var[ f ] (the variance), etc., are interpreted as
being with respect to the q-biased distribution.

Definition 2.6. The influence of the ith variable on f : {0,1}n
(q)→ R is given by

Infi( f ) = E
(x j) j 6=i

[
Var

xi
[ f (x) |(x j) j 6=i]

]
.
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Definition 2.7. Let q ∈ (0,1/2] and ρ ∈ [−q/(1− q),1]. The Beckner operator Tρ acts on functions
f : {0,1}n

(q)→ R by
Tρ f (x) = E

y
[ f (y)] ,

where each bit yi of y has the following distribution, independently of the other bits: If xi = 1, then yi = 1
with probability q+ρ(1−q). If xi = 0, then yi = 1 with probability q−ρq. In other words, the joint
distribution of (xi,yi) is such that both coordinates are q-biased and that their correlation coefficient
equals ρ .

Throughout the paper, we will in fact only be using the case ρ =−q/(1−q). Note that for this choice
of ρ , the joint distribution of (xi,yi) is as follows:

Pr[xi = yi = 0] = 1−2q , Pr[xi = 0∧ yi = 1] = Pr[xi = 1∧ yi = 0] = q , Pr[xi = yi = 1] = 0 .

In particular the probability of having xi = yi = 1 equals 0.
We will use the following basic fact about the number of influential variables of Tρ f .

Fact 2.8. Let f : {0,1}n
(q)→R and ρ ∈ [−q/(1−q),1]. Then for every τ > 0, the number of i ∈ [n] such

that
Infi(Tρ f )≥ τ

is at most Var[ f ]
τe ln(1/|ρ|) .

For a proof see e. g., Lemma 3.4 in [8]. That statement is for a somewhat different setting but the
proof in our setting is identical.

Finally, we have the notion of noise stability.

Definition 2.9. Let f : {0,1}n
(q)→ R for q≤ 1/2, and ρ ∈ [−q/(1−q),1]. The noise stability of f at ρ

is given by
Sρ( f ) = E[ f ·Tρ f ] .

Alternatively, one can write Sρ( f ) = E[ f (x) f (y)], where the distribution of the pair of bits (xi,yi) is
given by Pr[xi = 1] = Pr[yi = 1] = q, and Pr[xi = yi = 1] = q · (q+ρ(1−q)) ∈ [0,q], independently for
each i.

2.3 Gaussian stability bounds

We use
φ(t) =

1√
2π

e−t2/2 and Φ(t) =
∫ t

x=−∞

φ(x)dx

to denote the probability density function and cumulative density function of the standard normal
distribution, respectively, and Φ−1 : [0,1]→ [−∞,∞] to denote the inverse of Φ.

Definition 2.10. Let ρ ∈ [−1,1]. We define Γρ : [0,1]→ [0,1] by

Γρ(µ) = Pr
[
X ≤Φ

−1(µ)∧Y ≤Φ
−1(µ)

]
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where X and Y are jointly normal random variables with mean 0 and covariance matrix(
1 ρ

ρ 1

)
.

We will use the following “thresholds are stablest” type of corollary of the MOO Theorem [19]. The
formulation that we use here is equivalent to, e. g., the formulation that is used in [1].

Theorem 2.11. For every q ∈ (0,1/2), ρ ∈ [−q/(1−q),0) and ε > 0 there exist τ > 0 and δ > 0 such
that the following holds for every n: let f : {0,1}n

(q)→ [0,1] be a function with

Infi(T1−δ f )≤ τ

for each i ∈ [n]. Then
Sρ( f )≥ Γρ(E[ f ])− ε .

We will need asymptotic estimates of Γρ(µ) for small µ , in particular good lower bounds.

Lemma 2.12. For every sufficiently small µ > 0 and every −1 < ρ < 0 it holds that

Γρ(µ)≥
1
2

µ
2/(1+ρ)(1+ρ)3/2 .

Several similar estimates can be found in the literature (see, e. g., [4, 14]), but we need bounds for
the case where ρ is not bounded away from −1 as µ tends to 0, whereas the bounds we are aware of are
stated only for fixed ρ ∈ (−1,1) or ρ tending to 1 with µ . Thus, for the sake of completeness, we now
provide a proof of the lemma.

In the remainder of this section, we use A(x)
x→y∼ B(x) to denote that the ratio between A(x) and B(x)

tends to 1 as x tends to y. In what follows we shall repeatedly use the standard bound

Φ(x) x→−∞∼ −φ(x)/x .

We use the following lemma which is well-known in the case of fixed ρ ∈ (−1,1), but as with
Lemma 2.12, we are not aware of any reference for the case when ρ is not bounded away from −1, and
hence we also give a (straightforward but slightly tedious) proof.

Lemma 2.13. For any −1 < ρ := ρ(µ)≤ 0, it holds that

Γρ(µ)
µ→0∼ (1+ρ)

φ(t)
−t

Φ

(
t

√
1−ρ

1+ρ

)
,

where t := t(µ) = Φ−1(µ).

Proof. We can write

Γρ(µ) =
∫ t

x=−∞

φ(x)Φ

(
t−ρx√
1−ρ2

)
dx .
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Since t−ρx√
1−ρ2

tends to −∞ as µ tends to 0, we have

Γρ(µ)
µ→0∼

∫ t

x=−∞

φ(x)
φ

(
t−ρx√

1−ρ2

)
(ρx− t)/

√
1−ρ2

dx .

But φ(x)φ
(

t−ρx√
1−ρ2

)
= φ(t)φ

(
x−ρt√
1−ρ2

)
and hence

Γρ(µ)
µ→0∼ φ(t)

√
1−ρ2

∫ t

x=−∞

φ

(
x−ρt√
1−ρ2

)
ρx− t

dx . (2.1)

Let us denote the integral in (2.1) by f (µ). Performing the change of variables y = (x−ρt)/
√

1−ρ2,
we can simplify and obtain

f (µ) =
∫ t
√

1−ρ

1+ρ

y=−∞

φ(y)

ρy− t
√

1−ρ2
dy =

∫ t ′

y=−∞

φ(y)
ρy− t ′(1+ρ)

dy ,

where we defined t ′ = t
√

(1−ρ)/(1+ρ). We will show that f (µ)
µ→0∼ −Φ(t ′)/t ′. It is easy to see that

this is an upper bound on f (µ) (by using the lower bound on the denominator given by y = t ′), so let us
focus on the lower bound.

Pick ε > 0. We then have

f (µ)≥
∫ y=t ′

y=t ′(1+ε)

φ(y)
ρy− (1+ρ)t ′

dy≥ Φ(t ′)−Φ(t ′(1+ ε))

−t ′(1−ρε)
.

Using the fact that for α > 1 and sufficiently small x, Φ(αx)≤Φ(x)α , we see that

f (µ)≥ 1−Φ(t ′)ε

1−ρε
· Φ(t ′)
−t ′

.

As ε > 0 was arbitrary it follows that f (µ)
µ→0∼ −Φ(t ′)/t ′ (using that since t ′ ≤ t, t ′→−∞ as µ → 0).

Plugging this into (2.1), we obtain

Γρ(µ)
µ→0∼ −φ(t)

√
1−ρ2Φ(t ′)/t ′ = (1+ρ)

φ(t)
t

Φ

(
t

√
1−ρ

1+ρ

)
,

which concludes the proof.

We are now ready to prove the lower bound on Γρ(µ).
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Proof of Lemma 2.12. Lemma 2.13 implies that

Γρ(µ)
µ→0∼

(1+ρ) ·φ(t) ·φ
(

t
√

1−ρ

1+ρ

)
t2
√

1−ρ

1+ρ

=

√
(1+ρ)3

1−ρ

(
φ(t)
−t

)2/(1+ρ)(
−
√

2πt
)−2ρ/(1+ρ)

≥

√
(1+ρ)3

1−ρ
µ

2/(1+ρ) ≥ 1√
2

µ
2/(1+ρ)(1+ρ)3/2

where the first inequality used the bound −φ(t)/t > Φ(t) = µ and simply discarded the last factor as it is
larger than 1, and the second inequality used that 1/(1−ρ)≥ 1/2. It follows that for sufficiently small
µ ,

Γρ(µ)≥
1
2

µ
2/(1+ρ)(1+ρ)3/2 .

3 Main theorem

In this section, we give the main theorem upon which our results are based.

Theorem 3.1. Fix q ∈ (0,1/2) and ε > 0. Then for all sufficiently small γ > 0, there is an algorithm
which, on input a Unique Games instance Λ = (U,V,E,Π,L) outputs a weighted graph G with the
following properties:

• Completeness: If IndOpt(Λ)≥ 1− γ , G has an independent set of weight q− γ .

• Soundness: If Opt(Λ) ≤ γ and Λ is regular, then G is (β ,Γρ(β )− ε)-dense for every β ∈ [0,1],
where ρ =−q/(1−q).

Furthermore, the weight of every vertex in G is proportional to the sum of weights of its incident edges.
The running time of the algorithm is polynomial in |U |, |V |, |E| and exponential in L.

Proof. Let ν : {0,1}2→R be the probability distribution on {0,1}2 such that Pr[x1 = 1] = Pr[x2 = 1] = q,
and Pr[x1 = x2 = 1] = 0. Note that this distribution is exactly the joint distribution of two coordinates
(xi,yi) in the Definition 2.9 of Sρ( f ) for ρ =−q/(1−q).

For a string x ∈ {0,1}L and permutation π on [L], let x◦π denote the string in {0,1}L where the ith
coordinate is xπ(i).

The reduction is as follows: the vertex set of G is V ×{0,1}L. To describe the edges, we describe
how to sample a random edge of the graph (the probability distribution induced on pairs of vertices of G
by this sampling procedure give the weights of the edges):

1. Pick a uniformly random vertex u ∈U and two independent uniformly random edges e1 = (u,v1),
e2 = (u,v2) incident upon u.

2. Pick random x,y in {0,1}L where each pair of coordinates (xi,yi) is sampled from ν , independently.
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3. Output edge between (v1,x◦π−1
e1

) and (v2,y◦π−1
e2

).

Let the weight of a vertex (v,x) be 1/|V | times the probability mass of x ∈ {0,1}L
(q) under the q-biased

distribution. Thus the sum of all vertex weights equals 1. Note also that the marginal of the the distribution
ν(·, ·) (used to define the weights on edges) on either coordinate is the q-biased distribution on {0,1}
(used to define the weights on vertices). Therefore, the weight of every vertex is exactly 1/2 times the
sum of the weights of the edges incident on it.

It is clear that the running time of the reduction is as stated, so it remains to see that the reduction has
the desired completeness and soundness properties.

Completeness Suppose there is a subset V ′ ⊆V with relative size 1− γ and a labeling ` : U ∪V ′→ [L]
that satisfies every edge between U and V ′ in the Unique Games instance Λ.

Consider the set of vertices S = {(v,x) : v ∈V ′,x`(v) = 1} ⊆V (G). Its weight is

w(S)≥ (1− γ) ·q≥ q− γ .

We claim that S is an independent set. To see this, assume for contradiction that G has an edge
between (v1,x) ∈ S and (v2,y) ∈ S. Then there is a u ∈U and edges e1 = (u,v1), e2 = (u,v2) such that
`(v1) = πe1(`(u)) and `(v2) = πe2(`(u)). But then ν(xπe1 (`(u))

,yπe2 (`(u))
) = ν(x`(v1),x`(v2)) = ν(1,1) = 0,

contradicting the assumption that (v1,x) and (v2,y) are connected by an edge in G.

Soundness Fix an arbitrary S⊆V (G) and let β = w(S). We will prove that if w(S,S) is even slightly
smaller than Γρ(β ), then Opt(Λ) must be significantly large. For this part, let EΛ(u) denote the set of
neighbors of u in Λ.

For v ∈V , let Sv : {0,1}L
(q)→ {0,1} be the indicator function of S restricted to v, i. e., Sv(x) = 1 if

(v,x) ∈ S, and Sv(x) = 0 otherwise. For u ∈U , define Su : {0,1}L
(q)→ [0,1] by

Su(x) = E
e=(u,v)∈EΛ(u)

[Sv(x◦π
−1
e )] .

Now, the weight w(S,S) can be written as

w(S,S) = E
u∈U

e1,e2∈EΛ(u)

[
E

(x,y)∼ν⊗L
[Sv1(x◦π

−1
e1

)Sv2(y◦π
−1
e2

)]

]

= E
u∈U

[
E
x,y
[Su(x)Su(y)]

]
= E

u∈U
[Sρ(Su)] , (3.1)

where ρ := ρ(q) =−q/(1−q) (since this is the correlation coefficient between the bits xi and yi under
the distribution ν).

Let µu = Ex[Su(x)]. The regularity of Λ implies that

E
u∈U

[µu] = β .
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Suppose that for a fraction ≥ 1− ε/2 of all u ∈U it is the case that Sρ(Su)≥ Γρ(µu)− ε/2. If this holds,
we have that

w(S,S)≥ E
u∈U

[Γρ(µu)]− ε ≥ Γρ(E
u
[µu])− ε = Γρ(β )− ε , (3.2)

where the second inequality follows from the fact that Γρ is convex.1

Hence, if w(S,S) ≤ Γρ(β )− ε , there must be a set U∗ ⊆ U of size at least |U∗| ≥ ε|U |/2, such
that for every u ∈U∗ it holds that Sρ(Su)< Γρ(µu)− ε/2. By Theorem 2.11 (with parameters q, ρ(q)
and ε/2, applied to the function Su) we conclude that for each u ∈U∗ there exists an i ∈ [L] such that
Infi(T1−δ Su)≥ τ for some τ > 0, δ > 0 depending only on q and ε . Since Su is the average of functions
{Sv | e = (u,v) ∈ EΛ(u)} (via appropriate πe), for at least τ/2 fraction of neighbors v of u, there must
be j = j(u,v) ∈ [L] such that πe(i) = j and Inf j(T1−δ Sv)≥ τ/2 (here we used the well-known fact that
Infi(·) is convex).

Now, define for every v ∈ V , a candidate set of labels to be the set of all b ∈ [L] such that
Infb(T1−δ Sv)≥ τ/2. By Fact 2.8, this set has size at most

1
τ

2 e ln(1/(1−δ ))
.

Finally, pick one label at random from this set to be the label of v ∈V , and for every u ∈U , let its label
be the projection of the label of a randomly selected neighbor.

To analyze the value of this labelling, let u ∈U∗ and let i ∈ [L] be a label such that Infi(T1−δ Su)≥ τ .
As mentioned above, for a τ/2 fraction of edges e= (u,v)∈Λ(u) we have Infπe(i)(T1−δ (Sv))≥ τ/2. Thus,
for a random edge e=(u,v)∈Λ(u), the probability that v is assigned the label πe(i) is Ω(τ2 ln(1/(1−δ )))
(since each of the τ/2 fraction of “good” neighbors has a Ω(τ ln(1/(1−δ ))) probability of getting the
right label). Note that this is also the probability that u gets the label i.

As U∗ constitutes an ε fraction of U , it follows that this randomized labeling satisfies, in expectation,
at least Ω

(
ετ4 ln2(1/(1−δ ))

)
fraction of the edges of the Unique Games instance. This is a contradiction

if the soundness γ of the Unique Games instance was chosen to be sufficiently small to begin with.

4 Post-processing

Note that in the soundness case of Theorem 3.1, we obtain a graph that is (β ,Γρ(β )− ε)-dense. In
particular, there is no independent set of weight β as long as Γρ(β ) > ε . The graph is both vertex-
weighted as well as edge-weighted. In this section, we show that we can make the graph unweighted (in
other words, weights are uniform) and then sparsify it so that the degree is bounded by d, preserving the
maximum size of the independent set during the process. In particular, we have:

Theorem 4.1. For every sufficiently small β > 0 and every q ∈ (0,1/2) it is UG-hard (under randomized
reductions) to distinguish graphs with an independent set of size q−β from graphs with no independent
set of size 2β , even on graphs of maximum degree 32β log(1/β )/Γρ(β ), where ρ =−q/(1−q).

1See, e. g., the full version of [1]—the definition of Γρ there differs slightly from the one used here, but only by an affine
transformation of the input argument, and this does not affect convexity.
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Proof. We begin with applying Theorem 3.1 with parameter ε = Γρ(β )/2 and γ = β , giving a weighted
graph G0. In the completeness case, G0 has an independent set of size q− γ = q−β . In the soundness
case,

1. G0 is (β ′,Γρ(β
′)− ε)-dense for every β ′ ∈ [0,1].

2. The sum of weights of edges incident upon any vertex is proportional to the weight of that vertex.

The process of converting G0 to a graph of bounded degree with similar properties is done in three
steps.

Step 1: Removing vertex and wdge weights First we remove the vertex weights. Without loss of
generality, we may assume that each edge weight w(e) is of the form w′(e)/W for some integers w′(e)
and W , and similarly for the vertex weights. To achieve this, let W = poly |V (G0)| be large enough and
round the edge weights accordingly. Then update the vertex weights so that they are still proportional
to the weight of incident edges. This rounding can cause a difference of order poly |V (G0)|/W in the
weights of vertex and edge sets, but this arbitrarily small error is easily handled by making ε and γ slightly
smaller in the invocation of Theorem 3.1.

We replicate every vertex so that the number of its copies is proportional to its weight. If {ui}r
i=1 and

{v j}s
j=1 are copies of vertices u and v respectively, and (u,v) is an edge of the original graph, then we

introduce an edge between every pair (ui,v j) and distribute the weight of the edge (u,v) evenly among
the new r · s edges. Call the new graph G′0.

We claim that if the original graph G0 is (β ′,Γρ(β
′)− ε)-dense for every β ′ ∈ [0,1], then so is G′0.

To see this, consider a subset S′ of vertices of G′0, and construct a random subset S of vertices of G0 where
if a δ fraction of the copies of v are included in S′, we include it in S with probability δ , independently.
Note that E[w(S)] = w(S′) and that E[w(S,S)] = w(S′,S′). Hence,

w(S′,S′) = E[w(S,S)]≥ E[Γρ(w(S))− ε]≥ Γρ(E[w(S)])− ε = Γρ(w(S′))− ε ,

where the first inequality used that G is (β ′,Γρ(β
′)− ε)-dense for every β ′ ∈ [0,1], and the second

inequality used the convexity of Γρ as in (3.2).
Property (2) of G0 implies that in G′0, the weight of edges incident on every vertex is exactly the same.

We now remove edge weights, by simply replacing each edge by a number of parallel edges proportional
to its weight. This yields an unweighted graph G1 with the same density properties as G′0 except that it is
unweighted and regular (though its degree is unbounded).

From now on, the only density property of G1 that we will use is that, in the soundness case, G1 is
(β ,Γρ(β )/2)-dense.

Step 2: Sparsification Let n be the number of vertices of the graph G1 constructed in the previous
section. We now construct a new graph G2 by picking dn edges of G1 at random (with repetition). If G1
is (β ,α)-dense (in our application, α = Γρ(β )/2), then the probability that G2 has an independent set of
size βn is bounded by (

n
βn

)
(1−α)dn ≤ en(2β ln(1/β )−dα),
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so that if d > 2β ln(1/β )
α

(say, d = 4β log(1/β )/α), with high probability G2 does not have any independent
set of size βn.

Step 3: Small average degree to bounded degree In the sparsification step, we pick dn edges of G1
at random. This yields a graph G2 with average degree 2d. Call a vertex bad if it has degree more than
4d. It can be easily shown, using the regularity of G1 and Chernoff bounds, that the probability of a
vertex being bad is 2−Ω(d), and hence with constant probability the fraction of bad vertices is at most
2−Ω(d). In our choice of parameters, we have that 2−Ω(d) = β Ω(β/Γρ (β )) = β Ω(1/β )� β (where the last
equality used that for ρ ≤ 0 we have Γρ(β ) < β 2). We remove all edges of G2 that are incident upon
a bad vertex, giving a graph G3. It is clear that the maximum degree of G3 is bounded by 4d, that the
independence number of G3 is at least that of G2, and that, with constant probability the independence
number of G3 is at most 2−Ω(d) larger than that of G2. In particular, if G0 was (β ,Γρ(β )/2)-dense, then
with constant probability it holds that G3 does not contain any independent set of size 2β , whereas if G0
had an independent set of weight q−β , then so does G3.

This concludes the proof of Theorem 4.1.

5 Choice of parameters

In this section, we show how to choose the parameters appropriately, so as to achieve Theorems 1.1 and
1.2.

5.1 Vertex cover

We will use Theorem 4.1 with parameters chosen as follows. Let q = 1/2−δ , where δ is chosen so that

(2δ )−1 =
logd

log logd
− c

for a sufficiently large constant c (e. g., c = 10 suffices) and β = 1/ logd. The inapproximability we get
for Vertex Cover is then

1−2β

1− (q−β )
=

2−4β

1+2δ +2β
≤ 2−4δ +O(β +δ

2) = 2− (2+od(1))
log logd

logd
,

in graphs with maximum degree 32β log(1/β )/Γρ(β ). It remains to see that this maximum degree is at
most d. Using Lemma 2.12 to approximate Γρ(β ), we have that

Γρ(β )≥
1
2

β
2/(1+ρ)(1+ρ)3/2 = 4β

1
2δ
+1
(

δ

1+2δ

)3/2
≥ β

1
2δ
+1

δ
3/2 .

The maximum degree is then bounded by

32log(1/β )

β 1/(2δ )δ 3/2 = d · (logd)−c ·poly logd ,

which is at most d if c is a sufficiently large constant.
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5.2 Independent set

For Independent Set, we use Theorem 4.1 with the following choices of parameters: q = Θ(1/ logd) and
β = Θ(logd/d). We then get a hardness of approximating Independent Set within

q−β

2β
= Θ

(
d

log2 d

)
,

in graphs of maximum degree 32β log(1/β )/Γρ(β ). Again using Lemma 2.12 to estimate this quantity,
we have

Γρ(β )≥
1
2

β
2/(1+ρ)(1+ρ)3/2 = β

2+Θ(1/ log(d)) ·Θ(1) = Θ(β 2).

Hence, the maximum degree is at most

32β log(1/β )

Γρ(β )
≤Θ

(
log(1/β )

β

)
.

Making sure that β is a sufficiently large multiple of log(d)/d, we see that the maximum degree becomes
bounded by d.

6 Concluding remarks

It would be interesting to determine whether our methods can also yield tight results for the Vertex Cover
problem in bounded degree k-uniform hypergraphs. Here the best algorithm, by Halperin [10], has an
approximation ratio of

k− k(k−1)(1+od(1))
log logd

logd
.

The crux of the matter would be to find a suitable probability distribution on {0,1}k with small “correlation”
(in the sense of [18]).

Another interesting open question is the approximability of Vertex Cover (and Independent Set) in
degree-d-bounded graphs for small, concrete values of d (whereas our results are asymptotic in d). For
instance, what is the approximability of Vertex Cover in cubic graphs? It seems that answering this
question would require new ideas.

In independent and subsequent papers, Bansal and Khot [2, 3] gave new hardness results for Vertex
Cover in graphs (and hypergraphs, though we’ll restrict attention to graphs for this discussion). Their
results are stronger in that, in the Yes case, the graphs are almost bipartite. However, their results are
weaker in that, in the No case, they do not get the strong density property that we crucially rely on. (In
the first paper they get no density at all and in the subsequent paper they get some density bound but it is
not clear whether this density is enough to yield the tight inapproximability that we get.)

In a recent manuscript, Kumar et al. [17] give hardness results and algorithms for a large class of
problems called strict-CSPs, which contains both the Vertex Cover and Independent Set problems. They
relate the approximability to the integrality gap of a certain canonical linear programming relaxation.
In their result, the approximation ratio of both the algorithm and the hardness result have a common
explanation—the existence of an integrality gap. In our result on the other hand, the matching ratios for
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Vertex Cover appear somewhat accidental (even though both appear because of certain normal distribution
estimates). However, the results of [17] do not yield anything for bounded-degree graphs and it is
somewhat doubtful whether this can be done. Specifically, Halperin’s algorithm for bounded-degree
Vertex Cover uses (and appears to need) the additional power of semidefinite programming so it is quite
possible that the integrality gap for the linear program does not capture the optimal approximation ratio
for the bounded-degree case. In general, it remains an interesting open question to come up with a
characterization which captures approximability of (strict or non-strict) constraint satisfaction problems
in the bounded occurrence setting.
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