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Motivation

 Numerous computer vision tasks are affected by deep learning

Goal

 Understanding factors for transferability of a Generic ConvNet
representation to different target tasks

 Analyze the correlation of the transferability factors and source
to target tasks distance

Contributions

 We propose a set of pre-training and post-training factors when 
transferring a generic ConvNet representation

 Categorically organize the different computer vision tasks
 Extensively study the proposed factors and their correlation with 

distance of source to target tasks 
 state of the art performance on various (=16) recognition tasks

 Object detection
 Scene  recognition
 Pose Estimation
 Semantic Segmentation

 Better ConvNet representation often beats more complicated 
reasoning/modeling

 e.g. Deeper networks rep. + SVM often outperforms 
shallow networks representation + complicated model
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Transferability Factors
 We divide the transferability factors into two groups

 We call the decisions involved before learning the generic ConvNet representation on 
the source task, learning factors

 We further identify factors which are relevant after optimizing the ConvNet on the 
source task: post-learning factors
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 Distance of source-target task can be analyzed from different viewpoints and can become ambigious. We take the 
following parameters into consideration:

 Target classes being super-category or sub-category of the source task
 Leaning based or metric based tasks
 Explanatory classes
 Image acquisition
 …

 How does changing the source task affect the transferability?
 Concatenation of features or Hybrid ConvNets?
 Cases where the source task is completely irrelevant

 Early stopping not a good idea! Except…

 Wide networks are good for source task and target tasks close to source  Deep networks are almost always good, retrieval is an exception

 Better transferred performance to number of parameters ratio for deep networks 

 Additional data helps the 
performance of the transferred 
feature, even if the target task is far 
from the source task

 Even using only 100K subset of ImageNet, one can learn pretty amazing features,  it is better to increase diversity of the training data as opposed to density!
 These factors are important! Taking different factors into account, we achieved up to 40% reduction of classification error. 

 Effective dimensionality of a ConvNet representation for various target task is between 200 to 500, closer tasks have slightly lower effective dimensionality

 Earlier layers are more 
suitable for target 
tasks further away 
from the source task.


