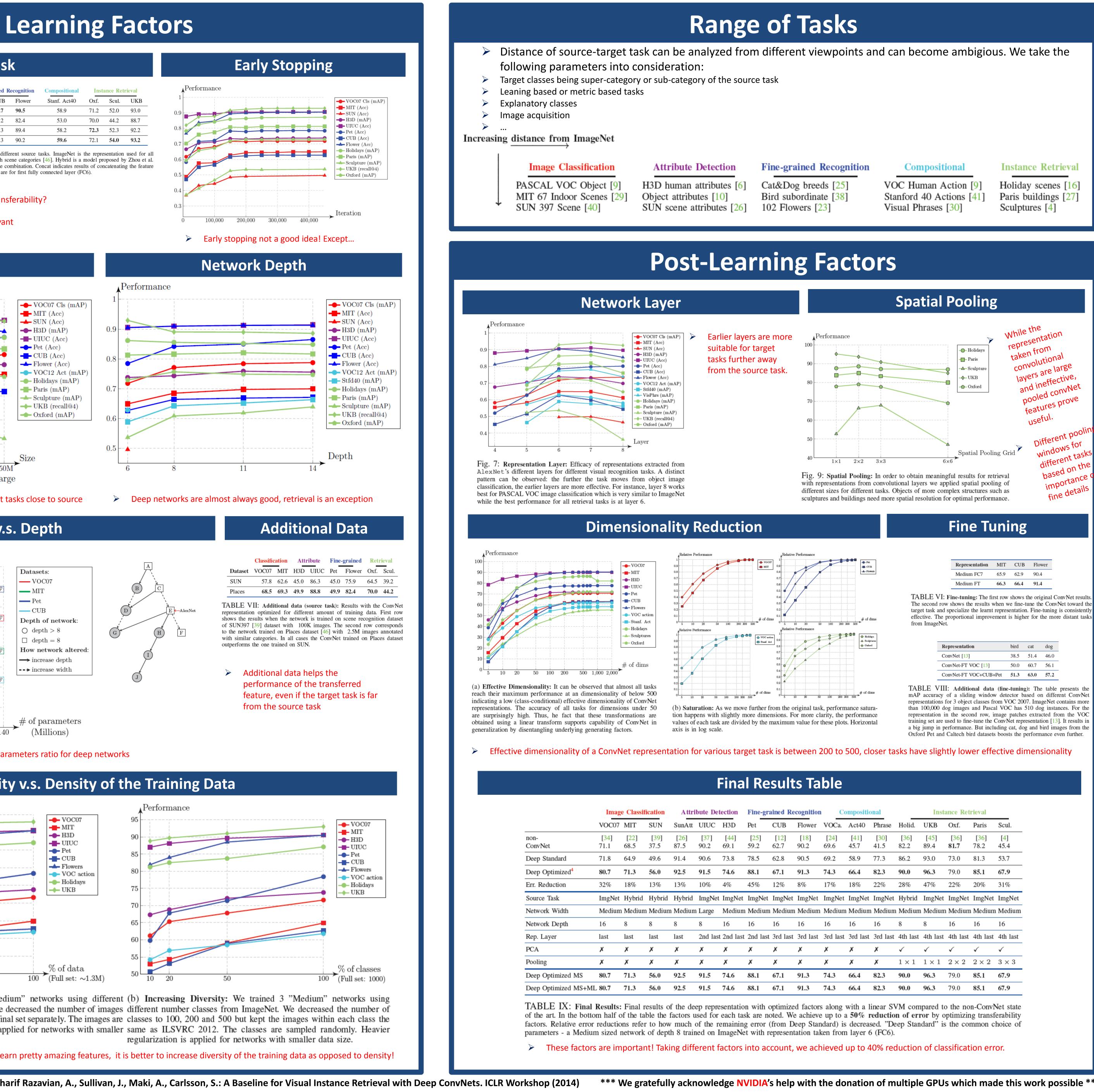

OF TECHNOLOGY

From Generic to Specific Deep Representations for Visual Recognition Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki, Stefan Carlsson

- > Understanding factors for transferability of a Generic ConvNet representation to different target tasks
- Analyze the correlation of the transferability factors and source to target tasks distance

- Numerous computer vision tasks are affected by deep learning
- Object detection
- Scene recognition
- Pose Estimation
- Semantic Segmentation
- Better ConvNet representation often beats more complicated reasoning/modeling
- *e.g.* Deeper networks rep. + SVM often outperforms shallow networks representation + complicated model

Best non-ConvNet
Deep Standard
Deep Optimal



- > We propose a set of pre-training and post-training factors when transferring a generic ConvNet representation
- Categorically organize the different computer vision tasks
- Extensively study the proposed factors and their correlation with

- > We divide the transferability factors into two groups
- > We call the decisions involved before learning the generic ConvNet representation on the source task, *learning factors*
- > We further identify factors which are relevant after optimizing the ConvNet on the source task: *post-learning factors*

Training of Source ConvNet from scratch Random ConvNet Backprop with Source images & labels Source ConvNet	⇒	image ConvNet Representation
source task? network architecture? early stopping?		fine-tuning? dim. reduction?

Fig. 2: Transferring a ConvNet Representation ConvNet representations are effective for visual recognition. The picture above shows the pipeline of transferring a source ConvNet representation to a target task of interest. We define several factors which control the transferability of such representations to different tasks (questions with blue arrow). These factors come into play at different stages of transfer. Optimizing these factors is crucial if one wants to

					Sour	ce	las	K				
	Image Classification			Attribute Detection		Fine-grained Recognition			Compositional	Instance Retrieval		
Source task	VOC07	MIT	SUN	H3D	UIUC	Pet	CUB	Flower	Stanf. Act40	Oxf.	Scul.	UK
ImageNet	71.6	64.9	49.6	73.8	90.4	78.4	62.7	90.5	58.9	71.2	52.0	93.
Places	68.5	69.3	55.7	68.0	88.8	49.9	42.2	82.4	53.0	70.0	44.2	88.
Hybrid	72.7	69.6	56.0	72.6	90.2	72.4	58.3	89.4	58.2	72.3	52.3	92.
Concat	73.8	70.8	56.2	74.2	90.4	75.6	60.3	90.2	59.6	72.1	54.0	93.

Deep Learning in Computer Vision 2015

Representation	MIT	CUB	Flower
Medium FC7	65.9	62.9	90.4
Medium FT	66.3	66.4	91.4

Representation	bird	cat	dog
ConvNet [13]	38.5	51.4	46.0
ConvNet-FT VOC [13]	50.0	60.7	56.1
ConvNet-FT VOC+CUB+Pet	51.3	63.0	57.2

Classification Attribute Detection			Fine-grained Recognition			Compositional			Instance Retrieval						
IT	SUN	SunAtt	UIUC	H3D	Pet	CUB	Flower	VOCa.	Act40	Phrase	Holid.	UKB	Oxf.	Paris	Scul.
22] 3.5	[<mark>39</mark>] 37.5	[<mark>26</mark>] 87.5	[37] 90.2	[44] 69.1	[25] 59.2	[12] 62.7	[18] 90.2	[24] 69.6	[41] 45.7	[30] 41.5	[36] 82.2	[45] 89.4	[36] 81.7	[36] 78.2	[4] 45.4
1.9	49.6	91.4	90.6	73.8	78.5	62.8	90.5	69.2	58.9	77.3	86.2	93.0	73.0	81.3	53.7
1.3	56.0	92.5	91.5	74.6	88.1	67.1	91.3	74.3	66.4	82.3	90.0	96.3	79.0	85.1	67.9
3%	13%	13%	10%	4%	45%	12%	8%	17%	18%	22%	28%	47%	22%	20%	31%
ybrid	Hybrid	Hybrid	ImgNet	ImgNet	ImgNet	ImgNet	ImgNet	ImgNet	ImgNet	ImgNet	Hybrid	ImgNet	ImgNet	ImgNet	ImgNet
ledium	Medium	Medium	Large	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium
	8	8	8	16	16	16	16	16	16	16	8	8	16	16	16
st	last	last	2nd last	2nd last	2nd last	3rd last	3rd last	3rd last	3rd last	3rd last	4th last				
	X	X	X	x	X	X	X	X	X	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	X	X	X	x	X	X	X	X	x	X	1×1	1×1	2×2	2×2	3×3
1.3	56.0	92.5	91.5	74.6	88.1	67.1	91.3	74.3	66.4	82.3	90.0	96.3	79.0	85.1	67.9
1.3	56.0	92.5	91.5	74.6	88.1	67.1	91.3	74.3	66.4	82.3	90.0	96.3	79.0	85.1	67.9