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“Model compression”
Buciluǎ, C., Caruana, R., & Niculescu-Mizil, A. (2006)

• Pre Deep Learning era – Ensembles of naive classifiers

• Main idea: Model compression (for semi-supervised 

learning)

• Idea: Instead of using an ensemble, use the ensemble to 

created synthetic labeling and use that to train one single 

Neural Network.

• The Teachers will always perform better.



“Do deep nets really need to be deep?”
Ba, J., & Caruana, R. (2014)

• Idea 1: DNNs can be approximated by shallow networks

• Idea 2: Do not match the outputs, match the logits:

𝓛 = 𝑧𝑆 − 𝑧𝑇 2
2

• Why? 

– There is information loss when passing from logits
to probability space.

– The information loss is the relationship learned by 
the teacher model across all of the targets.

• Insights:

• “model compression” is a form of regularization

• More powerful Teacher        Better student



“Distilling the knowledge in a neural network”
Hinton, G., Vinyals, O., & Dean, J. (2015)

• Idea: raise the temperature of the final SoftMax until the 

cumbersome model produces a suitably soft set of targets.

𝑝𝑖 =
exp(𝑧𝑖/𝑡)

σ𝑗 exp(𝑧𝑗/𝑡)

• Matching logits is a special case of distillation

• Use both the true labels and the Teachers output

• Captures not only the information provided by the true 

labels 

• Emulates the internal structure that the complex teacher 

has learned

• 𝓛 = 𝐻𝑇=1(y,𝑃𝑆) + λ ∙ 𝐻𝑇>1 (𝑃Τ,𝑃S)



What have we learned so far about 
Distillation?

• Is not a compression technique

• Distillation is a regularization method 

– label augmentation

• Hard labeling is wrong – Logits are sub-optimal

• Better Teacher -> Better Student



“Born again neural networks”
Furlanello, T., Lipton, Z. C., Tschannen, M., Itti, L., & Anandkumar, A. (2018)

• Idea: Students parameterized identically to their Teachers

• Born-Again Networks

• The Students outperform the Teachers

• What is the effect of the teacher outputs?:

• Confidence-Weighted by Teacher Max (CWTM)

• Dark Knowledge with Permuted Predictions (DKPP)

• Experiments with:

• DenseNets, ResNets

• LSTM-based sequence models
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• They distilled:

• DenseNets to ResNets

• ResNets to DenseNets

• Distillation in multiple generations:

• the k-th model is trained, with knowledge transferred 
from the (k-1)-th student

– ResNets

– DenseNets

– LSTMs

• Born-Again Network Ensembles (BANE)

Born-Again Networks

This is literally the concept of 

Distillation for compression
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• Results:

• Simple KD with cross entropy is the best way to go

• Only KD without ground truth is better

– This is not true for LSTM models

• The Students outperform the Teachers in almost every 

experiment

– This should not be a surprise 

• Hint-Based Learning (see later)

Born-Again Networks
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Born-Again Networks

• ResNets perform better than DenseNets
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Born-Again Networks

• DenseNets perform better than ResNets
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Born-Again Networks

• ConvLSTM perform better than LSTM

– LSTM = 1 single layer LSTM with 1500 units

– ConvLSTM = convolutional layers, highway layers, 

and a 2-layer LSTM



WOW! BANs!!!! Oh wait….

Lets see some other works:

1. “Fitnets: Hints for thin deep nets” (2014)
Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., & Bengio, Y. 

2. “Temporal ensembling for semi-supervised learning” (2016)
Laine, S., & Aila, T.

3. “Mean teachers are better role models: Weight-averaged consistency targets improve 

semi-supervised deep learning results” (2018)
Tarvainen, A., & Valpola, H. 

4. “Deep mutual learning” (2017)
Zhang, Y., Xiang, T., Hospedales, T. M., & Lu, H.

In the BAN paper they mention:

“A gift from knowledge distillation: Fast optimization, network 

minimization and transfer learning” (2017)

Yim, J., Joo, D., Bae, J., & Kim, J.



“Fitnets: Hints for thin deep nets”
Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., & Bengio, Y. (2014)

• Idea: Deep networks generalize better

• Distillation from a big network to a thin and deep

• Thin and deep nets are hard to train

• Solution: 

– pretrain half of the Student with hints from the 

Teacher’s middle layers

– Annealing λ

• 1st time that the Student outperformed the Teacher!!!



“Temporal ensembling for semi-
supervised learning”

Laine, S., & Aila, T. (2016)

• Idea: Use self-ensembling for semi-supervised tasks

• The Π-model:

• Different augmentations and dropout for each epoch

• The loss has 2 components:

• Standard cross entropy (only labeled examples)

• L2 for distillation for all the samples

• The unsupervised loss weighting function ramps up 

along a Gaussian curve

• Temporal Ensembling:

• Evaluate the network only once and keep a moving 

average of the labels

AGAIN the Student outperforms the Teacher!!!



“Mean teachers are better role models: Weight-
averaged consistency targets improve semi-

supervised deep learning results”
Laine, S., & Aila, T. (2018)

• Idea: 

Temporal Ensembling becomes memory demanding when 

learning large datasets

• Solution:

• Don’t average the labels, average the weights

• Results:

Better test accuracy

AGAIN the Student outperforms the Teacher!!!



“Deep mutual learning”
Zhang, Y., Xiang, T., Hospedales, T. M., & Lu, H. (2017)

• Idea: Train a pool of Students that act as Teachers

– Similarities to Temporal Ensembling

• Implementation:

– Train all the models from scratch and let them 

distilled to each other

• The models of the pool outperform the powerful static 

Teachers!



Still trying to find the novelty in BANs…

• Compression ? 

• Distillation with same networks?

• Why distillation works?  
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• What distillation provides to the Student?

• Hinton et al. (2006) information on the wrong outputs

• Importance-weighting of the real labels

(teacher’s confidence in the correct prediction)

• KD gradient decomposition 

• Aim: Quantifying the contribution of each term to KD

CWTM - DKPP 
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The single-sample gradient of the cross-entropy 

Between the Student and the Teacher is:

KD gradient decomposition 

Student Teacher
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KD gradient decomposition 

Across all the b samples s of the mini-batch:

Information incoming from all the wrong outputs

(Hinton et al. (2015) hypothesis)

Importance-weighting of the real labels
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KD gradient decomposition 

Importance-weighting of the real labels

samples with lower confidence have reduced 

contribution to the overall training signal

relationship with importance

weighting of samples
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Confidence-Weighted by 

Teacher Max (CWTM)

• Is dark knowledge performing a kind of importance weighting?

• Experimental procedure:

Weight each example in the student’s loss function 

by the confidence of the teacher model on that example
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Dark Knowledge with

Permuted Predictions (DKPP)

• Does the success of dark knowledge owe to the information 

contained in the non argmax outputs of the teacher?

– i.e. Was Hinton et al. (2014) correct?

• Experimental procedure:

Permute the non-argmax outputs of  the teacher’s predicted 

distribution to destroy the pairwise similarities of the original 

output covariance matrix
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CWTM - DKPP 

• Results:

• CWTM leads to weak improvements

• DKPP leads to systematic improvement



BAN improvements

• “Knowledge Distillation in Generations: More Tolerant 

Teachers Educate Better Students” (2018)

Yang, C., Xie, L., Qiao, S., & Yuille, A.

– Models should preserve secondary information so 

that the students become stronger

– Compute the gap between the confidence scores of 

the primary class and other K-1

– Control the secondary information

We went so far with KD… Did we missed something in the process?
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Now let's talk about 
Distillation...

Thank you


