Deformable Parts Model an overview

Hossein Azizpour

Outline

- Pictorial Structures and Deformable Parts Model
- A few extensions
- Our research line
- Sharing parts using Deformable Parts Model Framework

Pictorial Structure Felzenszwalb et al. IJCV05

INTRODUCTION

Pictorial Structure

- Energy Minimization
 - Appearance $L^* = \arg\min\left(\sum_{i=1}^{n} m_i(l_i)\right)$
 - Pairwise geometry

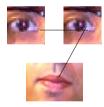
$$L^* = \arg\min_{L} \left(\sum_{i=1}^{n} m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j) \right)$$

- Simplify graph to tree
 - Dynamic programming
- Dynamic Programming
- Independence Assumption $\theta^* = \arg \max_{\theta} \prod_{k=1}^m p(I^k | L^k, \theta) \prod_{k=1}^m p(L^k | \theta).$
- Gaussian estimation

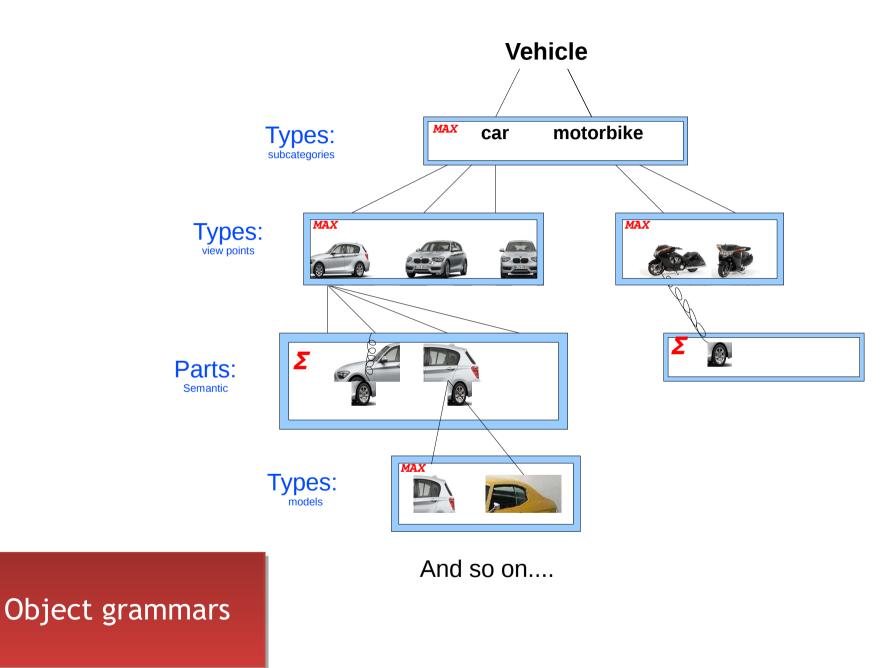
```
of pair-wise part relations
13/01/12 Presentation
```

Part Based Models Felzenszwalb et al. PAMI10

- Mixture model
- Discriminative training
 - save for not considering denser graphs
- Weak-supervision (Latent variables)
 - Latent SVM
- Grammar based model
- Harvesting hard negative
- Post processing
 - Bounding box prediction


13/01/92 Context rescoringresentation

Object Detection Grammer Felzenszwalb et al. TR10


- 4 aspects of modeling
 - Parts (recursively)
 - e.g. Eyes, mouth, ...
 - Sub-types
 - e.g. Smiling/Yawning eye
 - Geometric constellation
 - Appearance

Model Formulation Felzenszwalb et all PAMI10

score
$$(p_0, \ldots, p_n) =$$

$$\sum_{i=0}^n F'_i \cdot \phi(H, p_i) - \sum_{i=1}^n d_i \cdot \phi_d(dx_i, dy_i) + b,$$

$$\phi_d(dx, dy) = (dx, dy, dx^2, dy^2)$$

$$\beta = (F'_0, \dots, F'_n, d_1, \dots, d_n, b).$$

$$\psi(H, z) = (\phi(H, p_0), \dots, \phi(H, p_n), -\phi_d(dx_1, dy_1), \dots, -\phi_d(dx_n, dy_n), 1)$$

Presentation

7

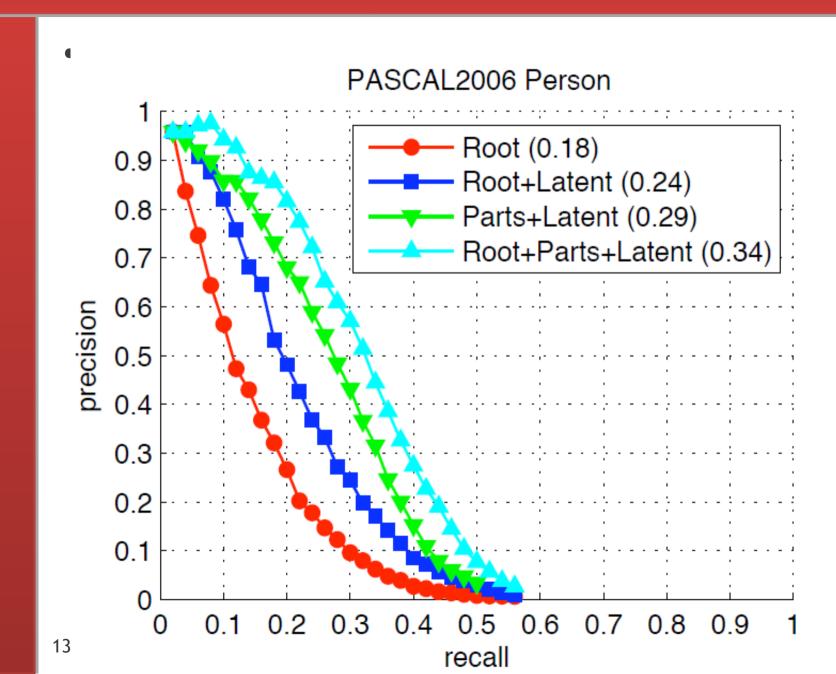
13/01/12

Learning (LSVM) Felzenszwalb et all PAMI10

SVM Optimization

$$L_D(\beta) = \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^n \max(0, 1 - y_i f_\beta(x_i)),$$
$$f_\beta(x) = \beta \cdot \Phi(x)$$

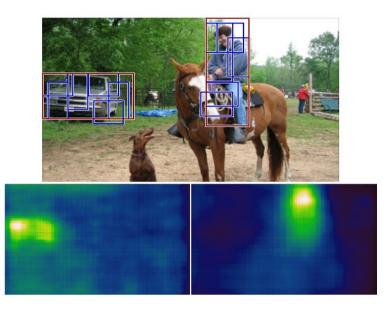
Linear SVMLatent SVM


$$f_{\beta}(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z).$$

- Semi-Convexity
- Coordinate-Descent
 - Relabel positive examples: Optimize L_D(β, Z_p) over Z_p by selecting the highest scoring latent value for each positive example,

 $z_i = \operatorname{argmax}_{z \in Z(x_i)} \beta \cdot \Phi(x_i, z).$

Optimize beta: Optimize L_D(β, Z_p) over β by solving the convex optimization problem defined by L_{D(Z_p)}(β).


Results

9

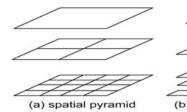
Cascade Object Detection with Deformable Part Models Felzenszwalb et al. CVPR10

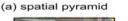
- 10 times Faster
- Same performance
- Simplified Part Appearance Model
- General Grammar Model

	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	inria
Speedup factor	22.7	22.1	16.5	11.6	22.1	36.0	13.3	25.6	23.4	23.2	29.8	15.2	16.2	32.6	12.7	23.3	32.8	18.1	23.3	27.2	13.5
Baseline AP	21.1	43.1	10.6	12.2	24.0	42.2	48.0	15.9	13.4	19.0	7.1	10.7	31.3	32.9	34.4	12.0	20.3	20.8	29.3	36.3	80.1
Cascade AP	21.1	42.9	10.4	12.4	24.1	42.5	48.1	15.5	13.4	19.0	8.0	10.7	31.3	33.0	34.8	12.0	20.3	20.2	28.8	36.5	80.1

Modeling Temporal Structure of Decomposable Motion Segments for Activity Classification

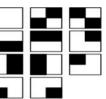
Juan Carlos Niebles, Chih-Wei Chen, Li Fei-Fei ECCV10


- Complex actions: temporal composition of simple action
- BOF X² RBF t_1 : anchor location Time t₂ Algorithm **KTH** Perf. τ_1 : displacement 91.3%Ours penalty Segment Time Scale Wang et al. [28] 92.1%Laptev et al. [5] 91.8%Output Wong et al. [8] 86.7%A1: Motion Segment 1 Score Schuldt et al. [27] 71.5% Kim et al. [29]95%A2 Olympic dataset 52.4%74.6%61.1% high-jump 68.9% javelin-throw 74.8% 66.8% hammer-throw 77.5% 65.1% long-jump 37.4% triple-jump 52.3%36.1%discus-throw 58.5% pole-vault 82.0% 47.8%87.2% 91.5% diving-platform 86.1% diving-springboard 77.2% 80.7% gymnastics-vault 88.6% 62.1%56.2%basketball-layup 77.9% 75.8% shot-put 69.2%bowling 72.7% 66.7% snatch 41.8% 84.1% 83.2% tennis-serve 49.1% 39.6% clean-jerk Average (AAP) 72.1% 62.0%


13/01/12

Active Mask Hierarchies for Object Detection Yuanhao Chen,

Long Zhu, Alan Yuille, William Freeman CVPR10 and ECCV10


- HOG + BOF
- Shape Masks
- iCCP
- $MKL + X^2$

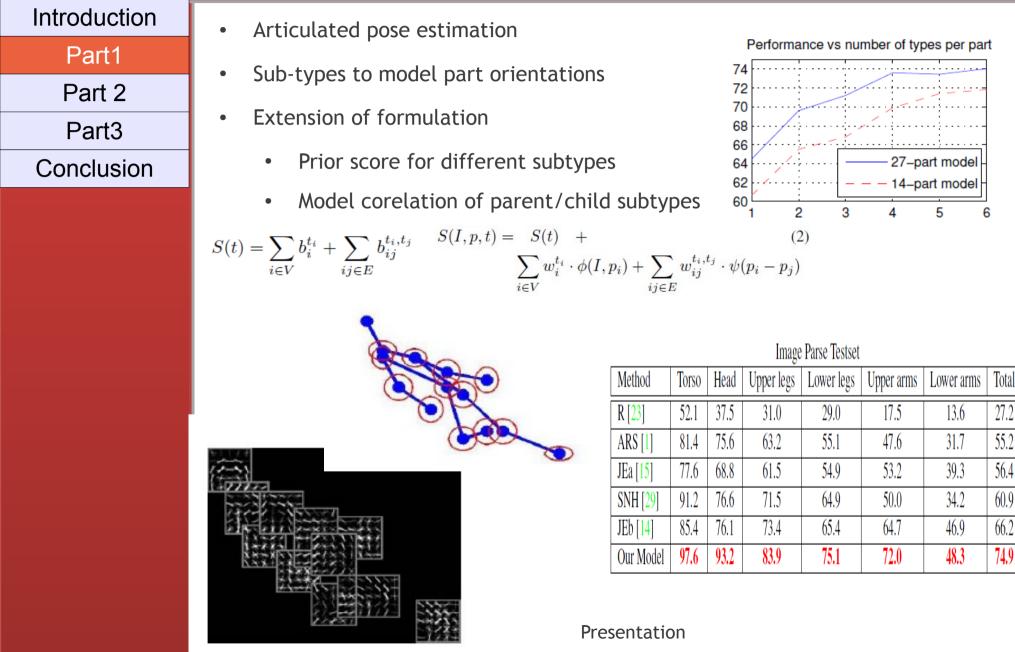
(c) shape masks



Spatial Pyramid + Parts based models

1	Δ		1 1	1 • 1	1 4	11	1			1 .	
class	Ave.	aero	bike	bird	boat	bottle	bus	car	cat	chair	COW
Active Mask Hierarchies (AMH)	.338	.348	.544	.155	.146	.244	.509	.540	.335	.206	.228
Hierarchy without masks [8]	.296	.294	.558	.094	.143	.286	.440	.513	.213	.200	.193
UoCTTI-1 (Part-based) [2]	.268	.290	.546	.006	.134	.262	.394	.464	.161	.163	.165
UoCTTI-2 (Part-based) [2]	.298	.328	.568	.025	.168	.285	.397	.516	.213	.179	.185
MKL-1 (Pyramid-based) [1]	.292	.366	.425	.128	.145	.151	.464	.459	.255	.144	.304
MKL-2 (Pyramid-based) [1]	.321	.376	.478	.153	.153	.219	.507	.506	.300	.173	.330
V07 [9]		.262	.409	.098	.094	.214	.393	.432	.240	.128	.140
	Ave.	table	dog	horse	mbike	person	plant	sheep	sofa	train	\mathbf{tv}
Active Mask Hierarchies	Ave338		dog .241	horse .556	mbike .473	person .349	plant .181	sheep .202	sofa .303		tv .433
Active Mask Hierarchies Hierarchy without masks [8])			~					
	.338	.344	.241	.556	.473	.349	.181	.202	.303	.413	.433
Hierarchy without masks [8]	.338 .296	.344 .252	.241 .125	.556 .504	.473 .384	.349 .366	.181 .151	.202 .197	.303 .251	.413 .368	.433 .393
Hierarchy without masks [8] UoCTTI-1 (Part-based) [2]	.338 .296 .268	.344 .252 .245	.241 .125 .050	.556 .504 .436	.473 .384 .378	.349 .366 .350	.181 .151 .088	.202 .197 .173	.303 .251 .216	.413 .368 .340	.433 .393 .390
Hierarchy without masks [8] UoCTTI-1 (Part-based) [2] UoCTTI-2 (Part-based) [2]	.338 .296 .268 .298	.344 .252 .245 .259	.241 .125 .050 .088	.556 .504 .436 .492	.473 .384 .378 .412	.349 .366 .350 .368	.181 .151 .088 .146	.202 .197 .173 .162	.303 .251 .216 .244	.413 .368 .340 .392 .426	.433 .393 .390 .391

Active Mask Hierarchies for Object Detection Yuanhao Chen,


Long Zhu, Alan Yuille, William Freeman CVPR10 and ECCV10

13/01/12

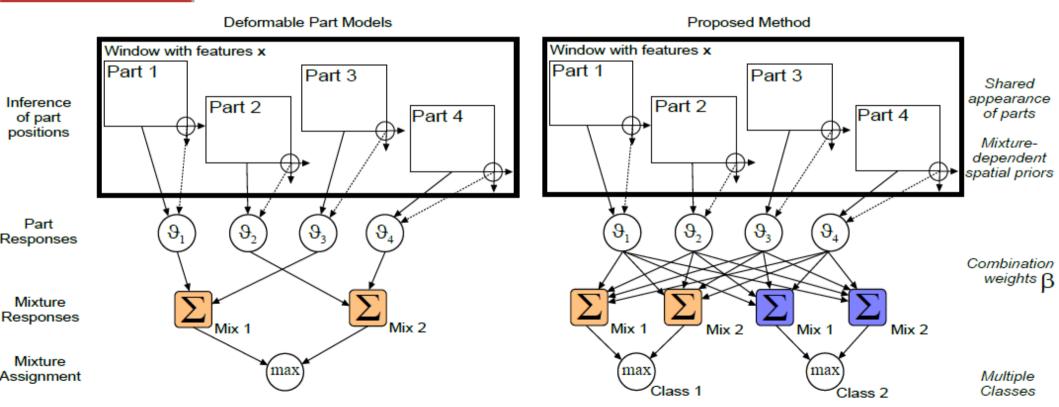
Articulated Pose Estimation using Flexible Mixtures of Parts

Y. Yang, D. Ramanan CVPR11

14

Shared Parts for Deformable Part-based Models

Builds on Felzenswalb Deformable Parts Model


- Motivation: problems with adding more mixture components and parts to model
 - Increase in number of parameters and decrease in number of training per component -> poor generalization
 - Necessary resources increase linearly

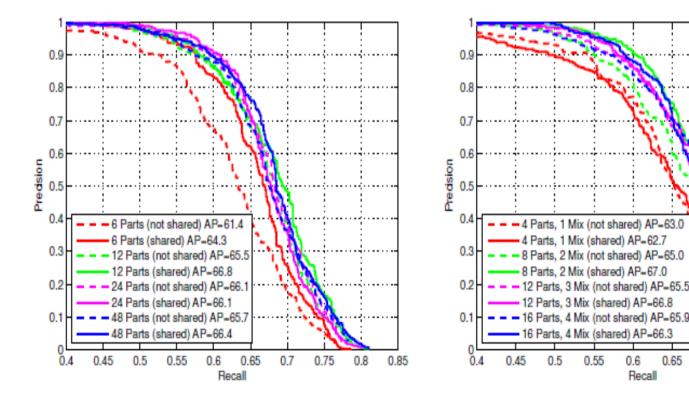
Results

- Share parts between mixtures and classes
 - Increasing training examples available to each class by sharing
 - Less parameters -> more compact models
 - Less expensive training and testing

Model - Share parts within a class

- Natural to have the same appearance over different viewpoints
- Intermediate visual modes can be captured

Model - Share parts within a class


- Appearance shared among components
- Spatial configuration can vary
- Different weights in different mixtures
 - Decides whether a part is visible in a component
 - Decides how discriminative is each part (relative to others) contributing to a component

$$g^{l}\left(x
ight) = b_{l} + \sum_{i=1}^{p} \beta_{i}^{l} \vartheta\left(x, w^{i}, v^{l,i}, a^{l,i}\right)$$

Results

U.	,

ſ			aero	bike	bird	boat	bott	tle l	ous	car	cat	chair	COW
	not sha	ared	26.7	34.9	0.2	0.5	0.1	1 3	2.5	32.4 37.7	5.1	4.2	6.5
	shar	ed	24.7	38.2	0.0	1.2	0.	2 3	3.3	37.7	7.3	1.4	4.6
Τ	table	dog	horse	mbike	e pe	rs p	lant	sheep	so	fa train	i tv	1	nean
T	4.7	5.5	15.9							1 9.7			3.2
	8.1	8.1	21.5	31.8	3 11	.5 6	3.3	17.0	5.	1 9.6	23.	9 1	4.6

Presentation

0.55

0.65

0.6

Recall

0.7

0.75

0.8

Thank You!