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Figure: There are two solutions

Figure: Two trees seen on both views

Milan Zvolsky. Tomographic Image Reconstruction.An
Introduction, Lecture on Medical Physics 28.11.2014
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Milan Zvolsky. Tomographic Image Reconstruction.An
Introduction, Lecture on Medical Physics 28.11.2014
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Introduction into CT

Beer—-Lambert law

>

I = lyexp{—pnAx} (1)
I = Iyexp {—/L,u(x)dx} (2)

g /
—InE = /LM(X)dX (3)

Hsieh, Jiang. Computed tomography: principles, design,
artifacts, and recent advances. Bellingham, WA: SPIE, 2009.
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Reconstruction - Inverse problem

>

>

>

v

v

Y = (Va,d,2) - Projections
X = (Xi,j,k) - image

y = A(x)
% T

lll-posed problem (unstable with respect to noise)
But in practice we have

y = A(x) + noise
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Introduction to CT

Inverse problem

» Variational approach:

% = arg min {HA(x) —yIP+ Af(x)}

» Prior f(x)-?
» TV-regularisation:

X =arg mxin {||A(X) — YH2 + )\‘A(X”}

» f(x) = NeuralNetwork(x) ?
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» Compute Vision

ConvNet

» Computed Tomography
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End-to-end learning

Problems

» Mayo dataset:
» X ~512%512 %559
» Y ~ 736 %64 x 48000 ~ 10GB
» Amount of data ~ 10 samples

» Zhu, Bo, et al. "Image reconstruction by
domain-transform manifold learning." Nature 555.7697
(2018): 487.

» Fully-connected layers followed by convolutional and
de-convolutional layers
» Used down-sampled 2D image slices
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Adversarial Regularizers

Regularization functional as critic

» Learn if x belongs to the space of natural images.

% =arg min {A(X) ~y?+2Ve(x)} (@)

» Distributions:

» P, - ground truth images x;
» Py - measurements y;
» P, = APy

» Goal: tell apart P, and Py



Adversarial Regularizers

Regularization functional as critic
» Minimize
Ex~p,[Vo(X)] = Exwp,[Vo(X)] + A(|AVe (X)| - 1)7 (9)

» which corresponds to Wasserstein distance between
distributions

Wass(P,, Pn) = f€S1u_pLipEXan[f(X)] — EXNP,[f(X)] (10)

» Original WGANSs used clipping to ensure Lipchitz
continuity, but then paper! proposed a better way.

'Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville AC. Improved
training of wasserstein gans. InAdvances in Neural Information Processing
Systems 2017 (pp. 5767-5777).



Adversarial Regularizers

Regularization functional as critic

Algorithm 1: Learning a regularization functional Wg(X)

while © has not converged do
for iel1...m do
Sample x, ~ P;, y~ Py and e~ U[0,1]
Xp < Aly
Xj < exr + (1 —€)Xp
Li < Wo(Xr) — Wo(Xn) + p(l|AVe (X))l — 1)
end for
© « Adam(LAe >, L))
end while



Adversarial Regularizers
Regularization functional as critic
Algorithm 2: Applying the regularization functional W (X) with
gradient descent
X — Aty
while stopping criterion not satisfied do

X X — e[| Ax — y|2 + AW (x)]
end while

return x
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Distributional Analysis

» Theorem 1: Application of Vg minimizes Wasserstein
distance between P, and P,,.
» Assume:

> On(X) = X —nAVe(X)
» P, distribution after one gradient step
» Vo has been trained to perfection

» Then

d
CTT]IE)an‘U@(Qn(x)) =0

d
“Exp, g Vo(G1(X))la0 (1)

= — Exep, [ AV (X)|? = —1

d
d—nWaSS(P,, Py)lp=0 =

» Vg gives the strongest decay of the Wasserstein loss
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Analysis under data manifold assumption
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dm(X) = minyer [|x = yll2
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Adversarial Regularizers

Analysis under data manifold assumption

» Theorem 2: Vg(x) takes form of
dpm(X) = minyer [IX = yll2
» Assume:
» P, supported on weakly compact set M
> Projp(Pn) = P,

» Then a maximizer to

sup EXNP,,f(X) — EXNP,f(X) = Wass(Pn, Pr) (12)
fel—Lip

is given by f(x) = dr(x) = minyerr X — yll2
» Assuming that perfectly trained Vg is also a maximizer,
does it prove that Wg(x) takes form of da(x)?



Adversarial Regularizers
Stability

» Theorem 3: The algorithm converges and is stable
» Assume:
» f-1 Lipchitz

> Yn—=Y
> Xp = arg miny ||AX — yal| + AMf(X)

» Then x, — x

X = arg mXin |Ax — y|| + Mf(x)



Adversarial Regularizers

Measures
» | - image, NI - noisy image
» "PSNR is an approximation to human perception of
reconstruction quality"?

(14)

2

MSE(NI, )
» “SSIM is a perception-based model that considers image

degradation as perceived change in structural
information.”®

SS/M(X, y) o (2:U‘X:U’,V + G )(zgxy + Cg)

= (15)
(12 + 12 + c1)(02 + 02 + c2)

2https://en.wikipedia.org/wiki/Peaksignal — to — noise;atio
Shttps://en.wikipedia.org/wiki/Structuralsimilarity



Adversarial Regularizers

Results, denoising

Table 1: Denoising results on BSDS dataset

Method PSNR (dB) SSIM

Noisy Image 203 534
MODEL-BASED

Total Variation 26.3 836
UNSUPERVISED

Adversarial Regularizer (ours) 28.2 .892
SUPERVISED

Denoising N.N. 28.8 908




Adversarial Regularizers

Results, CT
Table 2: CT reconstruction on LIDC dataset
(a) High noise (b) Low noise

Method PSNR (dB) SSIM Method PSNR (dB) SSIM
MODEL-BASED MODEL-BASED

Filtered Backprojection 14.9 227 Filtered Backprojection 23.3 604

Total Variation 277 .890  Total Variation 30.0 924
UNSUPERVISED UNSUPERVISED

Adversarial Reg. (ours) 30.5 927 Adversarial Reg. (ours) 32.5 946
SUPERVISED SUPERVISED

Post-Processing 31.2 936 Post-Processing 33.6 955

The data was simulated! (1018 images)
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» Regularize small patches to have more data.
» Add partially reconstructed images to the training set



Adversarial Regularizers

Extensions

» Regularize small patches to have more data.
» Add partially reconstructed images to the training set
» Anomaly detection?



Adversarial Regularizers

Conclusions

+ Unsupervised - means it is possible to take reconstructed
data from another scanner and projections from a new
scanner

- Not learning from the projection data
+ Good theoretical support
- Extensive experiments are necessary



Thank you!



