Paper Review: Adversarial Regularizers in Inverse Problems

Jevgenija Rudzusika

KTH Royal Institute of Technology

November 20, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline

Lunz, S., Öktem, O. and Schönlieb, C.B., "Adversarial Regularizers in Inverse Problems", NIPS 2018.

- Introduction into CT
- Why end-to-end learning for CT reconstruction is problematic

(ロ) (同) (三) (三) (三) (○) (○)

Adversarial Regularizers

Introduction into CT Principle

Milan Zvolský. **Tomographic Image Reconstruction.An Introduction**, Lecture on Medical Physics 28.11.2014

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Introduction into CT Principle

Figure: There are two solutions

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Figure: Two trees seen on *both* views

Milan Zvolský. **Tomographic Image Reconstruction.An Introduction**, Lecture on Medical Physics 28.11.2014

Introduction into CT Principle

Milan Zvolský. **Tomographic Image Reconstruction.An Introduction**, Lecture on Medical Physics 28.11.2014

・ロット (雪) ・ (日) ・ (日)

ъ

Introduction into CT Sinograms

(a) Image

(b) Projections

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Beer-Lambert law

$$I = I_0 \exp\left\{-\mu \Delta x\right\} \tag{1}$$

Beer-Lambert law

►

$$I = I_0 \exp\left\{-\mu \Delta x\right\} \tag{1}$$

$$I = I_0 \exp\left\{-\int_L \mu(x) dx\right\}$$
(2)

Beer-Lambert law

►

►

$$I = I_0 \exp\left\{-\mu \Delta x\right\} \tag{1}$$

$$I = I_0 \exp\left\{-\int_L \mu(x) dx\right\}$$
(2)

$$-\ln\frac{l}{l_0} = \int_L \mu(x) dx \tag{3}$$

Beer-Lambert law

$$I = I_0 \exp\left\{-\mu \Delta x\right\} \tag{1}$$

$$I = I_0 \exp\left\{-\int_L \mu(x) dx\right\}$$
(2)

$$-\ln\frac{l}{l_0} = \int_L \mu(x) dx \tag{3}$$

Hsieh, Jiang. Computed tomography: principles, design, artifacts, and recent advances. Bellingham, WA: SPIE, 2009.

Reconstruction - Inverse problem

► $y = (y_{a,d,z})$ - projections

Reconstruction - Inverse problem

• $y = (y_{a,d,z})$ - projections

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

► $\mathbf{x} = (x_{i,j,k})$ - image

Reconstruction - Inverse problem

y = (y_{a,d,z}) - projections
 x = (x_{i,j,k}) - image

$$y = A(x)$$

$$x = A^{\dagger}(y)$$
(4)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Reconstruction - Inverse problem

y = (y_{a,d,z}) - projections
 x = (x_{i,j,k}) - image

$$y = A(x)$$

$$x = A^{\dagger}(y)$$
(4)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Ill-posed problem (unstable with respect to noise)

Reconstruction - Inverse problem

y = (y_{a,d,z}) - projections
 x = (x_{i,i,k}) - image

$$y = A(x)$$

$$x = A^{\dagger}(y)$$
(4)

- Ill-posed problem (unstable with respect to noise)
- But in practice we have

$$y = A(x) + noise$$
 (5)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Inverse problem

Variational approach:

$$\hat{x} = \arg \min_{x} \left\{ \|A(x) - y\|^2 + \lambda f(x) \right\}$$
(6)

Inverse problem

Variational approach:

$$\hat{x} = \arg \min_{x} \left\{ \|A(x) - y\|^2 + \lambda f(x) \right\}$$
(6)

• Prior f(x) - ?

Inverse problem

Variational approach:

$$\hat{x} = \arg \min_{x} \left\{ \|A(x) - y\|^2 + \lambda f(x) \right\}$$
(6)

Prior f(x) - ?

TV-regularisation:

$$\hat{x} = \arg \min_{x} \left\{ \|A(x) - y\|^2 + \lambda |\Delta(x)| \right\}$$
(7)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Inverse problem

Variational approach:

$$\hat{x} = \arg \min_{x} \left\{ \|A(x) - y\|^2 + \lambda f(x) \right\}$$
(6)

Prior f(x) - ?

TV-regularisation:

$$\hat{x} = \arg \min_{x} \left\{ \|A(x) - y\|^2 + \lambda |\Delta(x)| \right\}$$
(7)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• f(x) = NeuralNetwork(x)?

Problems

Compute Vision

Problems

Compute Vision

Computed Tomography

Problems

- Mayo dataset:
 - ► *X* ~ 512 * 512 * 559
 - $\blacktriangleright \ Y \sim 736*64*48000 \sim 10 \text{GB}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Problems

- Mayo dataset:
 - ▶ *X* ~ 512 * 512 * 559
 - $Y \sim 736 * 64 * 48000 \sim 10 GB$
 - Amount of data ~ 10 samples

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Problems

- Mayo dataset:
 - X ∼ 512 ∗ 512 ∗ 559
 - ▶ *Y* ~ 736 * 64 * 48000 ~ 10*GB*
 - Amount of data ~ 10 samples
- Zhu, Bo, et al. "Image reconstruction by domain-transform manifold learning." Nature 555.7697 (2018): 487.
 - Fully-connected layers followed by convolutional and de-convolutional layers

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Used down-sampled 2D image slices

Regularization functional as critic

• Learn if *x* belongs to the space of natural images.

$$\hat{x} = \arg \min_{x} \left\{ \|A(x) - y\|^2 + \lambda \Psi_{\Theta}(x) \right\}$$
(8)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Regularization functional as critic

Learn if x belongs to the space of natural images.

$$\hat{x} = \arg \min_{x} \left\{ \|A(x) - y\|^2 + \lambda \Psi_{\Theta}(x) \right\}$$
(8)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Distributions:
 - P_r ground truth images x_i
 - P_Y measurements y_i

$$\blacktriangleright P_n = A^{\dagger} P_Y$$

Regularization functional as critic

Learn if x belongs to the space of natural images.

$$\hat{x} = \arg \min_{x} \left\{ \|A(x) - y\|^2 + \lambda \Psi_{\Theta}(x) \right\}$$
(8)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Distributions:
 - P_r ground truth images x_i
 - P_Y measurements y_i

$$\blacktriangleright P_n = A^{\dagger} P_Y$$

Goal: tell apart P_n and P_Y

Regularization functional as critic

Minimize

 $\mathbb{E}_{X \sim P_r}[\Psi_{\Theta}(X)] - \mathbb{E}_{X \sim P_n}[\Psi_{\Theta}(X)] + \lambda(\|\Delta \Psi_{\Theta}(X)\| - 1)_+^2$ (9)

 which corresponds to Wasserstein distance between distributions

$$Wass(P_r, P_n) = \sup_{f \in 1-Lip} \mathbb{E}_{X \sim P_n}[f(X)] - \mathbb{E}_{X \sim P_r}[f(X)] \quad (10)$$

 Original WGANs used clipping to ensure Lipchitz continuity, but then paper¹ proposed a better way.

¹Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville AC. **Improved training of wasserstein gans**. InAdvances in Neural Information Processing Systems 2017 (pp. 5767-5777).

Regularization functional as critic

Algorithm 1: Learning a regularization functional $\Psi_{\Theta}(X)$

while Θ has not converged do for $i \in 1 \dots m$ do Sample $x_r \sim P_r$, $y \sim P_Y$ and $\epsilon \sim U[0, 1]$ $x_n \leftarrow A^{\dagger}y$ $x_i \leftarrow \epsilon x_r + (1 - \epsilon)x_n$ $L_i \leftarrow \Psi_{\Theta}(x_r) - \Psi_{\Theta}(x_n) + \mu(\|\Delta \Psi_{\Theta}(x_i)\| - 1)_+^2$ end for $\Theta \leftarrow Adam(\Delta_{\Theta} \sum_{i=1}^m L_i)$ end while

Regularization functional as critic

Algorithm 2: Applying the regularization functional $\Psi_{\Theta}(X)$ with gradient descent

(日) (日) (日) (日) (日) (日) (日)

 $x \leftarrow A^{\dagger}y$ while stopping criterion not satisfied do $x \leftarrow x - \epsilon \Delta[||Ax - y||^2 + \lambda \Psi_{\Theta}(x)]$ end while return x

Distributional Analysis

► Theorem 1: Application of Ψ_Θ minimizes Wasserstein distance between P_r and P_η.

(日) (日) (日) (日) (日) (日) (日)

- Assume:
 - $g_{\eta}(x) = x \eta \Delta \Psi_{\Theta}(x)$
 - P_{η} distribution after one gradient step
 - Ψ_{Θ} has been trained to perfection

Distributional Analysis

- ► Theorem 1: Application of Ψ_Θ minimizes Wasserstein distance between P_r and P_η.
- Assume:
 - $g_{\eta}(x) = x \eta \Delta \Psi_{\Theta}(x)$
 - P_{η} distribution after one gradient step
 - Ψ_{Θ} has been trained to perfection
- Then

$$\begin{aligned} \frac{d}{d\eta} Wass(P_r, P_\eta)|_{\eta=0} &= \frac{d}{d\eta} \mathbb{E}_{x \sim P_n} \Psi_{\Theta}(g_\eta(X))|_{\eta=0} \\ &= \mathbb{E}_{x \sim P_n} \frac{d}{d\eta} \Psi_{\Theta}(g_\eta(X))|_{\eta=0} \\ &= -\mathbb{E}_{x \sim P_n} \|\Delta \Psi_{\Theta}(X)\|^2 = -1 \end{aligned}$$
(11)

• Ψ_{Θ} gives the strongest decay of the Wasserstein loss

Analysis under data manifold assumption

- **Theorem 2**: $\Psi_{\Theta}(x)$ takes form of $d_{\mathcal{M}}(x) = \min_{y \in \mathcal{M}} ||x y||_2$
- Assume:
 - *P_r* supported on weakly compact set *M*
 - $Proj_{\mathcal{M}}(P_n) = P_r$
- Then a maximizer to

$$\sup_{f \in 1-Lip} \mathbb{E}_{X \sim P_n} f(X) - \mathbb{E}_{X \sim P_r} f(X) = Wass(P_n, P_r)$$
(12)

(ロ) (同) (三) (三) (三) (○) (○)

is given by
$$f(x) = d_{\mathcal{M}}(x) = \min_{y \in \mathcal{M}} \|x - y\|_2$$

Analysis under data manifold assumption

- **Theorem 2**: $\Psi_{\Theta}(x)$ takes form of $d_{\mathcal{M}}(x) = \min_{y \in \mathcal{M}} ||x y||_2$
- Assume:
 - *P_r* supported on weakly compact set *M*
 - $Proj_{\mathcal{M}}(P_n) = P_r$
- Then a maximizer to

$$\sup_{f \in 1-Lip} \mathbb{E}_{X \sim P_n} f(X) - \mathbb{E}_{X \sim P_r} f(X) = Wass(P_n, P_r)$$
(12)

is given by $f(x) = d_{\mathcal{M}}(x) = \min_{y \in \mathcal{M}} \|x - y\|_2$

Assuming that perfectly trained Ψ_Θ is also a maximizer, does it prove that Ψ_Θ(x) takes form of d_M(x)?

Stability

- Theorem 3: The algorithm converges and is stable
- Assume:
 - f 1 Lipchitz

•
$$y_n \rightarrow y$$

• $x_n = \arg \min_x ||Ax - y_n|| + \lambda f(x)$

• Then $x_n \rightarrow x$

$$x = \arg \min_{x} \|Ax - y\| + \lambda f(x)$$
(13)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Measures

- I image, NI noisy image
- "PSNR is an approximation to human perception of reconstruction quality"²

$$PSNR = 10 \log_{10} \left(\frac{MAX(I)^2}{MSE(NI, I)} \right)$$
(14)

 "SSIM is a perception-based model that considers image degradation as perceived change in structural information."³

$$SSIM(x,y) = \frac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$
(15)

 2 https://en.wikipedia.org/wiki/Peak_signal – to – noise_ratio

³https://en.wikipedia.org/wiki/Structural_s*imilarity* ← □ → ← ∂ → ← ≡ → ← ≡ → へ ?

Results, denoising

8					
Method	PSNR (dB)	SSIM			
Noisy Image	20.3	.534			
MODEL-BASED Total Variation 23 UNSUPERVISED	26.3	.836			
Adversarial Regularizer (ours) SUPERVISED	28.2	.892			
Denoising N.N. 28	28.8	.908			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Table 1: Denoising results on BSDS dataset

Results, CT

Table 2: CT reconstruction on LIDC dataset

(a) High noise

(b) Low noise

Method	PSNR (dB)	SSIM	Method	PSNR (dB)	SSIM
MODEL-BASED			MODEL-BASED		
Filtered Backprojection	14.9	.227	Filtered Backprojection	23.3	.604
Total Variation [18] UNSUPERVISED	27.7	.890	Total Variation 18 UNSUPERVISED	30.0	.924
Adversarial Reg. (ours) SUPERVISED	30.5	.927	Adversarial Reg. (ours) SUPERVISED	32.5	.946
Post-Processing 15	31.2	.936	Post-Processing 15	33.6	.955

The data was simulated! (1018 images)

Extensions

- Regularize small patches to have more data.
- Add partially reconstructed images to the training set

(ロ) (同) (三) (三) (三) (○) (○)

Extensions

- Regularize small patches to have more data.
- Add partially reconstructed images to the training set

(ロ) (同) (三) (三) (三) (○) (○)

Anomaly detection?

Conclusions

+ Unsupervised - means it is possible to take reconstructed data from another scanner and projections from a new scanner

(ロ) (同) (三) (三) (三) (○) (○)

- Not learning from the projection data
- + Good theoretical support
- Extensive experiments are necessary

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●