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I y = (ya,d ,z) - projections
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I Ill-posed problem (unstable with respect to noise)
I But in practice we have

y = A(x) + noise (5)
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(2018): 487.

I Fully-connected layers followed by convolutional and
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I Used down-sampled 2D image slices
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I Learn if x belongs to the space of natural images.

x̂ = arg min
x

{
‖A(x)− y‖2 + λΨΘ(x)

}
(8)

I Distributions:
I Pr - ground truth images xi
I PY - measurements yi
I Pn = A†PY
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Adversarial Regularizers
Regularization functional as critic

I Minimize

EX∼Pr [ΨΘ(X )]− EX∼Pn [ΨΘ(X )] + λ(‖∆ΨΘ(X )‖ − 1)2
+ (9)

I which corresponds to Wasserstein distance between
distributions

Wass(Pr ,Pn) = sup
f∈1−Lip

EX∼Pn [f (X )]− EX∼Pr [f (X )] (10)

I Original WGANs used clipping to ensure Lipchitz
continuity, but then paper1 proposed a better way.

1Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville AC. Improved
training of wasserstein gans. InAdvances in Neural Information Processing
Systems 2017 (pp. 5767-5777).



Adversarial Regularizers
Regularization functional as critic

Algorithm 1: Learning a regularization functional ΨΘ(X )

whi le Θ has not converged do
f o r i ∈ 1 . . .m do

Sample xr ∼ Pr , y ∼ PY and ε ∼ U[0,1]

xn ← A†y
xi ← εxr + (1− ε)xn

Li ← ΨΘ(xr )−ΨΘ(xn) + µ(‖∆ΨΘ(xi)‖ − 1)2
+

end f o r
Θ← Adam(∆Θ

∑m
i=1 Li)

end whi le



Adversarial Regularizers
Regularization functional as critic

Algorithm 2: Applying the regularization functional ΨΘ(X ) with
gradient descent

x ← A†y
whi le s topp ing c r i t e r i o n not s a t i s f i e d do

x ← x − ε∆[‖Ax − y‖2 + λΨΘ(x)]
end whi le
r e t u r n x



Adversarial Regularizers
Distributional Analysis

I Theorem 1: Application of ΨΘ minimizes Wasserstein
distance between Pr and Pη.

I Assume:
I gη(x) = x − η∆ΨΘ(x)
I Pη distribution after one gradient step
I ΨΘ has been trained to perfection

I Then

d
dη

Wass(Pr ,Pη)|η=0 =
d
dη

Ex∼Pn ΨΘ(gη(X ))|η=0

=Ex∼Pn

d
dη

ΨΘ(gη(X ))|η=0

=− Ex∼Pn‖∆ΨΘ(X )‖2 = −1

(11)

I ΨΘ gives the strongest decay of the Wasserstein loss
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Adversarial Regularizers
Analysis under data manifold assumption

I Theorem 2: ΨΘ(x) takes form of
dM(x) = miny∈M ‖x − y‖2

I Assume:
I Pr supported on weakly compact setM
I ProjM(Pn) = Pr

I Then a maximizer to

sup
f∈1−Lip

EX∼Pn f (X )− EX∼Pr f (X ) = Wass(Pn,Pr ) (12)

is given by f (x) = dM(x) = miny∈M ‖x − y‖2

I Assuming that perfectly trained ΨΘ is also a maximizer,
does it prove that ΨΘ(x) takes form of dM(x)?
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Adversarial Regularizers
Stability

I Theorem 3: The algorithm converges and is stable
I Assume:

I f - 1 Lipchitz
I yn → y
I xn = arg minx ‖Ax − yn‖+ λf (x)

I Then xn → x

x = arg min
x
‖Ax − y‖+ λf (x) (13)



Adversarial Regularizers
Measures

I I - image, NI - noisy image
I "PSNR is an approximation to human perception of

reconstruction quality"2

PSNR = 10 log10

(
MAX (I)2

MSE(NI, I)

)
(14)

I “SSIM is a perception-based model that considers image
degradation as perceived change in structural
information.”3

SSIM(x , y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(15)

2https://en.wikipedia.org/wiki/Peaks ignal − to − noiser atio
3https://en.wikipedia.org/wiki/Structurals imilarity
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Results, denoising



Adversarial Regularizers
Results, CT

The data was simulated! (1018 images)
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Extensions

I Regularize small patches to have more data.
I Add partially reconstructed images to the training set

I Anomaly detection?
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Adversarial Regularizers
Conclusions

+ Unsupervised - means it is possible to take reconstructed
data from another scanner and projections from a new
scanner

- Not learning from the projection data
+ Good theoretical support
- Extensive experiments are necessary



Thank you!


