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Abstract

Popular Online Social Networks (OSNs), such as Facebook or Twitter,
are logically centralized systems. The massive information aggregation of
sensitive personal data at the central providers of these services is an inherent
threat to the privacy of the users. Leakages of these data collections happen
regularly – both intentionally, for example by selling of user data to third
parties and unintentionally, for example when outsiders successfully attack a
provider.

Motivated by this insight, the concept of Decentralized Online Social Net-
works (DOSNs) has emerged. In these proposed systems, no single, central
provider keeps a data collection of all users. Instead, the data is spread out
across multiple servers or is distributed completely among user devices that
form a peer-to-peer (P2P) network. Encryption is used to enforce access
rights of shared content and communication partners ideally connect directly
to each other. DOSNs solve one of the biggest privacy concerns of centralized
OSNs in a quite forthright way – by getting rid of the central provider. Fur-
thermore, these decentralized systems can be designed to be more immune
to censorship than centralized services. But when decentralizing OSNs, two
main challenges have to be met: to provide user privacy under a significantly
different threat model, and to implement equal usability and functionality
without centralized components.

In this work we analyze the general privacy-problems in DOSNs, espe-
cially those arising from the more exposed metadata in these systems. Fur-
thermore, we suggest three privacy-preserving implementations of standard
OSN features, i. e., user authentication via password-login, user search via a
knowledge threshold and an event invitation system with fine-grained privacy-
settings. These implementations do not rely on a trusted, central provider
and are therefore applicable in a DOSN scenario but can be applied in other
P2P or low-trust environments as well. Finally, we analyze a concrete at-
tack on a specific decentralized system, the Tor anonymization network, and
suggest improvements for mitigating the identified threats.
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Sammanfattning

Populära sociala nätverkstjänster som Facebook och Instagram bygger på
en logiskt centraliserad systemarkitektur. Tjänsteleverantörerna har därför
tillgång till omfattande ansamlingar av känsliga personuppgifter, vilket in-
nebär en oundviklig risk för integritetskränkningar. Med jämna mellanrum
läcks dessa informationsansamlingar till tredje part – antingen när tjänstele-
verantören själv säljer eller ger dem till externa aktörer, eller när obehöriga
får åtkomst till tjänsteleverantörens datasystem.

Decentraliserade sociala nätverkstjänster (eng. Decentralized Online So-
cial Networks, DOSNs) är en lovande utveckling för att minska denna risk
och för att skydda användarnas personliga information såväl från tjänsteleve-
rantören som från tredje part. Ett vanligt sätt att implementera ett DOSN är
genom en icke-hierarkisk nätverksarkitektur (eng. peer-to-peer network) för
att undvika att känsliga personuppgifter samlas på ett ställe som är under
tjänsteleverantörens kontroll. Kryptering används för att skydda kommuni-
kationen och för att realisera åtkomstkontrollen av information som ska delas
med andra användare.

Att inte längre ha en tjänsteleverantör som har tillgång till all data in-
nebär att den största riskfaktorn for integritetskränkningar tas bort. Men
genom att ersätta den centrala tjänsteleverantören med ett decentraliserat
system tar vi även bort ett visst integritetsskydd. Integritetsskyddet var en
konsekvens av att förmedlingen av all användarkommunikation skedde genom
tjänsteleverantörens servrar. När ansvaret för lagring av innehållet, hantering
av behörigheterna, åtkomst och andra administrativa uppgifter övergår till
användarna själva, blir det en utmaning att skydda metadata för objekt och
informationsflöden, även om innehållet är krypterat. I ett centraliserat system
är dessa metadata faktiskt skyddade av tjänsteleverantören – avsiktligt eller
som en sidoeffekt.

För att implementera de olika funktioner som ska finnas i ett integritets-
skyddande DOSN, är det nödvändigt både att lösa dessa generella utmaningar
och att hantera frånvaron av en betrodd tjänsteleverantör som har full tillgång
till all data. Användarautentiseringen borde till exempel ha samma använd-
barhet som i centraliserade system. Det vill säga att det är lätt att ändra
lösenordet, upphäva rättigheterna för en stulen klientenhet eller återställa ett
glömt lösenord med hjälp av e-post eller säkerhetsfrågor – allt utan att förlita
sig på en betrodd tredje part. Ett annat exempel är funktionen att kunna
söka efter andra användare. Utmaningen där är att skydda användarinfor-
mationen samtidigt som det måste vara möjligt att hitta användare baserad
på just denna informationen. En implementation av en sådan funktion i ett
DOSN måste klara sig utan en betrodd tjänsteleverantör som med tillgång
till alla användardata kan upprätthålla ett globalt sökindex.

I den här avhandlingen analyserar vi de generella risker för integritets-
kränkningar som finns i DOSN, särskilt de som orsakas av metadata. Där-
utöver föreslår vi tre integritetsskyddande implementationer av vanliga funk-
tioner i en social nätverkstjänst: lösenordsbaserad användarautentisering, en
användarsökfunktion med en kunskapströskel och en inbjudningsfunktion för
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evenemang med detaljerade sekretessinställningar. Alla tre implementationer-
na är lämpliga för DOSN-scenarier eftersom de klarar sig helt utan en betrodd,
central tjänsteleverantör, och kan därför även användas i andra sammanhang
såsom icke-hierarkiska nätverk eller andra system som måste klara sig utan
en betrodd tredje part. Slutligen analyserar vi en attack på ett specifikt de-
centraliserat system, anonymitetstjänsten Tor, och diskuterar hur systemet
kan skyddas mot de analyserade sårbarheterna.
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1

1. Introduction

The service providers of today’s popular Online Social Network (OSN) services,
such as Facebook, Twitter or Instagram, are driven by business models largely
based on targeted advertisement. These companies count hundreds of millions of
users of their services and have a vital interest in collecting as much information
about them as possible. And the possibilities are manifold. Service providers can
not only analyze all content that users actively publish or share with friends but also
leverage indirectly disclosed information such as online times of a user and correlate
information about one user with data they hold about all other users. This massive
aggregation of personal data of millions of users at very few, logically centralized
actors is seen as a fundamental threat to user privacy by many civil rights and
privacy advocates1. These concerns are fueled by the regular leakages of centrally
collected user data caused by security breaches2 or the deliberate distribution of
user data to third parties such as advertising companies3 or secret services4.

One approach to mitigate this inherent privacy issue of logically centralized OSN
services is decentralization. The basic idea of so called Decentralized Online Social
Networks (DOSNs) is to provide social network service functionalities without the
need of any central, trusted party. This is realized either by distributing the service
to multiple servers or by completely decentralizing the system, building on a peer-

1For example the Electronic Frontier Foundation (EFF) https://www.eff.org/
issues/social-networks, retrieved 2016-11-01, or Privacy International https://www.
privacyinternational.org/node/8, retrieved 2016-11-01.

2For example Twitter leaking data from 250 thousand users in February 2013 (http://blog.
twitter.com/2013/02/keeping-our-users-secure.html, retrieved 2016-11-01) or the theft of
500 million Yahoo user profiles in late 2014 (https://yahoo.tumblr.com/post/150781911849/
an-important-message-about-yahoo-user-security, retrieved 2016-11-01).

3For example Facebook selling user data (http://www.telegraph.co.uk/technology/
facebook/8917836/Facebook-faces-EU-curbs-on-selling-users-interests-to-advertisers.
html, retrieved 2016-11-01). Some consider this an inherent consequence of the providers’
business model and point out that for these providers, “people are not customers, but primarily
products” [65].

4As for example under the “PRISM” program that allows U.S. intelligence services access
to the user data of at least nine Internet companies (http://www.washingtonpost.com/wp-srv/
special/politics/prism-collection-documents/, retrieved 2016-11-01).

1
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http://www.telegraph.co.uk/technology/facebook/8917836/Facebook-faces-EU-curbs-on-selling-users-interests-to-advertisers.html
http://www.washingtonpost.com/wp-srv/special/politics/prism-collection-documents/
http://www.washingtonpost.com/wp-srv/special/politics/prism-collection-documents/
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to-peer (P2P) network formed by the user devices themselves. Cryptography is
commonly used in these systems to encrypt communication and enforce access
rights on content. Thus DOSNs avoid the aggregation of sensitive user data at
locations controlled by a single provider. The decentralization approach can even
support the scalability of the network – each new user does not only consume but
also contributes potential new communication and storage resources – and facilitate
censorship-resistance as shutting down a couple of servers is not enough to bring
the system down [4, 12]. So recruiting the participants for data management and
communication might not only be beneficial from the privacy perspective but also
advantageous for the scalability and resilience of a system.

While the absence of a single point of data aggregation solves one of the most
important privacy problems, the decentralization also removes some privacy protec-
tion afforded by the provider’s intermediation of all communication in a centralized
OSN. As content storage, access right management, retrieval and other adminis-
trative tasks of the service become the obligation of the users, it is non-trivial to
hide the metadata of objects and information flows, even when the content itself
is encrypted. In a centralized system the provider is protecting such metadata,
deliberately or as a side effect, from external adversaries.

So when decentralizing OSNs, two main challenges have to be met: To provide
user privacy under this significantly different threat model. And to implement equal
usability and functionality without centralized components.

An example for the first challenge – to ensure user privacy in a decentralized
system – is the problem of inferences from ciphertexts. Even when content is
encrypted only for the intended recipients, the size or structure of the ciphertext
may reveal information such as the number of elements in a list or even serve as an
invariant fingerprint of a specific content that can be used to track how it spreads
throughout the network. In Article A we give a systematic overview of these threats
arising from metadata generated in a DOSN and list possible countermeasures.

An example for the second challenge – to implement equal functionality without
central components – is the difficulty to implement a password-reset functionality
for users who forgot their password in a system without a trusted, central provider:
In a centralized system, the provider can send a new password to an e-mail address
or a phone number that the user provided earlier. In a decentralized system, no
single involved party can be trusted with this sensitive task, because everyone en-
dowed with that power will necessarily be able to access and compromise all user
data. In Article B we present a protocol that aims at implementing a similar func-
tionality and other password management tasks in a decentralized way. Another
example for the challenge of implementing OSN functionality without a central
provider is user search. There, the challenge is to protect user data while making
users findable at the same time. An implementation of such a feature in a DOSN
has to work without assuming a trusted provider having access to all user profiles
maintaining a global search index. In Article C we suggest an implementation of
such a decentralized user search.

This thesis aims at mapping out these new challenges to user privacy in the
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context of Decentralized Online Social Networks. It contributes to the DOSN re-
search with suggestions how to meet some of these challenges, suggests distributed
and privacy-preserving protocols for three specific OSN features and analyzes one
concrete attack on a deployed decentralized system.





2
2. Privacy

Privacy is a complex concept touching many disciplines, such as philosophy, so-
ciology, anthropology, law, politics and technology. It has a long history and its
roots can be traced back as far as to Aristotele’s distinction between the public
and private sphere [42]. In 1890, Warren and Brandeis published an influential law
review article [138], advocating for a “right to privacy” that by then was not yet
recognized as an explicit right on its own in the US. Their main concern was the
publication of details and photographs of the private lives of people, for example
in newspapers. Thus they conceptualized privacy as “the right to be let alone”,
i. e., the right to social retreat. Another influential work on the concept of pri-
vacy was published in 1967 by Westin [140], tracing privacy back to “a tradition
of limiting the surveillance powers of authorities over the private activities of indi-
viduals and groups”, and framing it in terms of informational self-determination,
i. e., the “claim of individuals, groups, or institutions to determine for themselves
when, how, and to what extent information about them is communicated to others.”
More recent conceptualizations of privacy view it as “control over an aspect of the
identity one projects to the world” and the “freedom from unreasonable constraints
on the construction of one’s own identity” [5], or a right to contextual integrity
[98], “demanding that information gathering and dissemination be appropriate to
that [specific] context and obey the governing norms of distribution within it”, thus
preventing unwanted information flow from one context to another.

Privacy in Online Social Networks

In the context of OSNs, Gross et al. [64] have identified several privacy threats
such as stalking, de-anonymization of medical records, identity theft, e. g., by social
insurance number reconstruction, user profiling and simplified social engineering.
Danezis et al. [40] pointed out that the position of a user in a social network reveals
characteristics about the person, without being stated explicitly in the published
content, such as their status and potential influence reach. Paul et al. [102] under-
line the consequences of massive central data aggregation in conjunction with an
advertising-based business model of major OSN providers. They warn against the

5
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risks of direct misuse or unintended leakage of this data that is not appropriately
protected and hard to anonymize.

Krishnamurthy and Wills [84] show how personally identifiable information was
leaked from different OSN services to third party servers via HTTP header infor-
mation and tracking cookies in 2010. Facebook, currently the OSN with the largest
number of active users1, was criticized for leaking personal information and pref-
erences with third party sites2, misleading people into accidentally sharing private
information with unintended audience due to confusing privacy settings3, tracking
browsing behaviour of users even when logged out or without explicit consent4 and
not complying with privacy regulations5.

The Different Tales of Privacy

Gürses and Diaz [66] make an important observation about the different concep-
tions of privacy that are used in OSN privacy research. They distinguish three
types of problem formulations: privacy as surveillance problem, social privacy and
institutional privacy. The different types make different assumptions, use different
definitions and methods, and differ in the suggested solutions. At the same time
they are obviously entangled.

The surveillance problem perspective, found often in Privacy Enhancing Tech-
nologys (PETs) research, focuses on protecting users from confidentiality breaches
or Denial of Service (DoS) attacks, with the typical example of activists engaged
in political dissent. Except for the intended recipients of shared information, all
other entities in the OSN context, including the OSN provider and state actors,
are considered to be adversarial. So any explicit or implicit data disclosure is tried
to be prevented. These approaches also often try to empower users to circumvent
censorship.

The social privacy approach considers the OSN provider to be a trusted entity.
It focuses on enabling the users to choose the correct audience when sharing con-
tent in order to prevent embarrassing or regrettable sharing of information with
unintended recipients. So this perspective focuses on social boundary negotiations,
the semantics of and the context in which published data appears, but pays less
attention to implicit data disclosures such as generated behavioral data observ-
able by a provider. A common method of this type of approach is to increase the

1http://www.ebizmba.com/articles/social-networking-websites, retrieved 2016-11-01
2https://www.eff.org/deeplinks/2010/04/handy-facebook-english-translator, retrieved

2016-11-01
3http://www.cbsnews.com/news/zuckerberg-family-pic-stirs-facebook-privacy-debate/,

retrieved 2016-11-01
4http://www.usatoday.com/tech/hotsites/2009-09-21-facebook-beacon_N.htm, retrieved

2016-11-01
5http://www.irishexaminer.com/ireland/facebook-wont-like-its-17th-complaint-165606.

html, retrieved 2016-11-01

http://www.ebizmba.com/articles/social-networking-websites
https://www.eff.org/deeplinks/2010/04/handy-facebook-english-translator
http://www.cbsnews.com/news/zuckerberg-family-pic-stirs-facebook-privacy-debate/
http://www.usatoday.com/tech/hotsites/2009-09-21-facebook-beacon_N.htm
http://www.irishexaminer.com/ireland/facebook-wont-like-its-17th-complaint-165606.html
http://www.irishexaminer.com/ireland/facebook-wont-like-its-17th-complaint-165606.html


2.3. PRIVACY PERSPECTIVE OF THIS THESIS 7

users’ awareness and control over the possible and actual spreading of the shared
information.

Figure 2.1: A specific privacy perspective makes explicit or implicit assumptions
about the trust relations between the actors involved in the OSN context.

The institutional privacy perspective does, like the surveillance perspective, not
trust the OSN provider, but considers, unlike the surveillance perspective, state
institutions as trusted control instances, being able to exercise regulatory power over
providers and other private sector actors involved in the management of personal
data. Thus it can be found mainly in research on technical solutions for compliance
and accountability with respect to privacy laws or policies, regulating data collection
and processing for organizations.

Privacy Perspective of this Thesis

The work presented in this thesis takes mainly the privacy as surveillance prob-
lem perspective. It is concerned about the extent of state level actors’ surveillance
practices, which has been speculated about already before, but got confirmed in
a worrying comprehensive way by the revelations of the former NSA contractor
Edward Snowden in 2013. The power of secret services that can observe virtually
every citizen’s online activities in real-time when targeted and the possibility of
automatically analyzing a large fraction of all Internet traffic is seen as a threat to
the development of free and democratic societies. Companies that operate popular
OSN services, such as Google and Facebook, are mentioned as being included in the
“PRISM” program, allowing secret service staff to search all available data of arbi-
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trary users of these services by collecting it directly from the companies’ servers.6
This is one motivation for not trusting central OSN providers. Approaches where
the provider only handles end-to-end encrypted data of users and therefore does
not need to be trusted have the problem of still centrally collecting metadata, e. g.,
inferred social graphs from analyzing which users access which other users’ data.
These providers might also be priority targets of censorship when state actors real-
ize that they cannot access the user data anymore. Therefore, the work presented in
this thesis is focusing on decentralization solutions to achieve more comprehensive
user privacy in OSNs and other distributed systems.

Even though having the main focus on the surveillance perspective, some of the
included work also takes the social privacy perspective. When in the decentralized
OSNs a friend’s device might take over data handling that before had been done by
the central provider, new social adversary models emerge and touch the questions
central to the social privacy perspective such as social boundary negotiation and
leakage of data to unintended recipients.

6http://www.washingtonpost.com/wp-srv/special/politics/prism-collection-documents/,
retrieved 2016-11-01

http://www.washingtonpost.com/wp-srv/special/politics/prism-collection-documents/


33. Decentralized Online Social Networks (DOSN)

In a centralized OSN the users must trust the provider to enforce access rights cor-
rectly, not to leak or misuse the content provided by the users, and to be sufficiently
secured against third-party attacks. Furthermore, the interests of the users might
not be aligned with those of the provider, for example users want their data to be
available even if it is not attractive for advertising any longer [118].

To move away from a system design with a central point of massive personal
data aggregation and to put the users back into control of their own data, the
decentralization of OSNs has been proposed already about ten years ago. Since
then, DOSNs have become the focus of a lively branch of research (for early work
on the topic see for example [10, 14, 26, 27, 39, 144], for surveys [35, 102, 103]).

(a) All communication is relayed by the
central provider.

(b) Besides direct peer communication,
several other nodes can be involved.

Figure 3.1: Logical communication flows in a) centralized and b) decentralized OSN
architectures.

There are many different proposals how to decentralize an OSN, but what they
have in common is the aim of making the system independent of a single, central
provider as illustrated in Figure 3.1. There is a wide range of designs, spanning from
more to less decentralized network architectures. In the completely decentralized
approaches, the users themselves form a peer-to-peer (P2P) network in order to

9
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Figure 3.2: Access right enforcement in a centralized OSN: The provider is trusted
both with the plaintext content and to correctly enforce the access rights that the
author defined.

collaboratively provide the storage and communication infrastructure for the OSN
service. Other proposals have a distributed servers model, keeping the client-server
paradigm but giving users more freedom to choose which server they want to trust
or even run their own server. Diaspora1 and Friendica2 are deployed examples of
this distributed servers model. The work in this thesis and the subsequent discus-
sion of DOSNs focuses, however, on approaches that are more on the completely
decentralized side of the scale, i. e., DOSNs with no or as few as possible centralized
components. For these approaches users neither need to trust any server nor have
to have the technical equipment and knowledge to run an own server.

Using encryption as access control mechanism and a P2P network as underlying
communication structure was already part of the first proposals for DOSN imple-
mentations [27]. In these proposals, access control for published content is enforced
by data encryption. So instead of having one party that is trusted with the plain-
text data and authenticates requests from other users (Figure 3.2), the data itself
is encrypted already before it is shared with anyone. The encrypted content can
only be decrypted by the recipients that the author intended to share the content
with. Therefore, it becomes less crucial where the data is stored and less trust is
required for storage nodes (Figure 3.3).

Furthermore, users keep the physical and legal ownership of their content to a
larger extent. They might store replicas on other nodes in the network to increase
redundancy and availability but also host their own data. This facilitates data
portability and can be beneficial for increasing censorship-resistance and resilience

1https://github.com/diaspora/diaspora/, retrieved 2016-11-01
2https://github.com/friendica/friendica/, retrieved 2016-11-01

https://github.com/diaspora/diaspora/
https://github.com/friendica/friendica/
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Figure 3.3: Access right enforcement in a DOSN: The author encrypts the content
for the intended recipients, so less trusted nodes can be used to store the data. In
this example, Alice encrypts the content with a symmetric key K and encrypts K
with the public keys of the intended recipients Bob and Carol.

with respect to network outages. In a centralized system it might be enough to
shut down a small number of important servers to take the whole system down
while in a DOSN the failure of a few servers will likely only effect a small part of
the network.

In the following I will discuss some basic components and aspects of DOSNs in
more detail to describe the context in which the research articles of this thesis are
located. This is neither a comprehensive survey of proposed DOSN systems nor a
complete overview of all DOSN components and functionality, but it aims to give
a brief overview of how distributed storage, content encryption, network communi-
cation, identity management and social relationship information management can
be implemented in DOSN systems and what challenges they face. Finally, I will
have a brief look at deployed systems and discuss their properties.

Distributed Storage

The requirements for a distributed storage that is suitable for a DOSN are chal-
lenging: in contrast to P2P file sharing applications it needs to be able to store a
high number of unpopular objects, for example like-indications or comments that
are only relevant for very few users, and, in contrast to for example P2P backup
systems, handle frequent read and write requests for these objects [103].

Distributed Hash Tables (DHTs) are key–value storage systems where the re-
sponsibility of storing a value for a given key is assigned to one or several out of
a usually high number of participating users. Furthermore, a DHT has a routing
mechanism, that allows all participating users to find the user who is responsible for
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storing the value for a certain key. As most DHT implementations do not rely on
any central component, they have been suggested to serve as a distributed storage
for DOSNs [6]. They can either be used to store smaller data objects directly or to
hold an index, containing pointers to the actual storage locations of possibly larger
content objects. DHTs face different challenges such as achieving high availabil-
ity even when old users are leaving and new users are joining the system (churn),
guaranteeing direct connectivity between arbitrary users even when they are located
behind firewalls or Network Address Translation (NAT) boxes, and Sibyl attacks
[113]. Sibyl attacks, i. e., attacks where an adversary pollutes a system with a large
number of fake users under her control, can be used to monitor requests in a DHT
or to manipulate the stored content, e. g., to serve a different value than the one
that was stored under a certain key, or to effectively delete objects [133]. When
being deployed in conjunction with a DOSN, the social relationship information
from the DOSN can be used to protect the DHT from Sibyl attacks [145] or to
inform the DHT routing mechanism to increase performance [96].

While general DHT approaches store data at random nodes in the network,
some authors suggest to store profile data at trusted friends, where trust is de-
fined as having chosen a privacy policy that allows this friend to view all data
[117]. Other suggested approaches, such as the DOSN “Safebook” [39], use trust
relations not only for storage placement strategies but also for routing to increase
communication anonymity. To increase availability of the DOSN system, some
authors propose hybrid solutions for the decentralization–centralization dimension,
i. e., having highly available “super peers” responsible for crucial tasks such as boot-
strapping new users, acting as a backup storage system while no other nodes are
available to replicate a user’s data [120].

Content Encryption

The choice of suitable cryptographic ciphers for data encryption in DOSNs is an-
other branch of research. It deals with finding efficient encryption methods for the
context of OSNs, where many small objects, such as like indications or small text
snippets, continuously need to be encrypted to varying sets of recipients. Efficiency
can be gained by leveraging the social structure of the communication parties, e. g.,
having group keys for frequently used audience sets. At the same time, encryption
headers, ciphertext structures and specific communication patterns that result from
the chosen encryption method should not give away sensitive information such as
the number of recipients or the type of the encrypted object. Attribute-based en-
cryption schemes [14] or broadcast encryption schemes [22] have been studied for
these purposes.
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Network Communication Strategies

Related to both the storage implementation and the choice of cryptographic ciphers
for content encryption is the design of the network communication. The strategies
for when to send, how to route, how to cache and where to store information can be
different for the different components of a DOSN, such as direct messaging, group
messaging, chats, search or file-sharing features. Unstructured routing strategies
such as flooding (recursively sending to all known peers) or gossip communication
(recursively sending to a subset of peers) can for example be used for disseminat-
ing search queries in the absence of a global search index. Structured approaches
such as DHT-based recipient address lookup can for example be used to locate the
responsible storage node for receiving asynchronous messages on behalf of a user
that is offline.

A common way to present the most recent publishing activities of a user’s friends
is the friend activity feed, also called “newsfeed” or “timeline”. This is an example
for an OSN feature that involves a network communication design choice: the
problem of how to distribute published user content, e. g., wall-posts, comments,
or pictures. On a high abstraction level, there are two different strategies: the
user who renders the friend activity feed can fetch the relevant information from all
friends (pull strategy), or these updates can be sent out by the users who publish
the content to all intended recipients (push strategy). Both strategies can have
many different possible implementations and strategies that mix both push and
pull aspects are possible as well, as shown in the example illustrated in Figure 3.4.

In this example, rendering time of a friend activity feed is reduced by pushing
small preview information objects (e. g., a thumbnail of a larger image together
with information where to retrieve the full image) to dedicated user inboxes. These
inboxes are made available by the distributed storage even when the user is offline.
Users can subscribe to different walls to specify where to get push-notifications
from. When logging in after having been offline for some time, a user’s client will
display all push notifications found in the user’s inbox first and then subsequently
pull the complete entries and entries that might not have been pushed to the user
inbox from all walls the user subscribed to. Access control can be added to the
push-queue to increase the privacy of the subscribers. In the above example, user
A could for example store the subscription information in the push-queue of WC

only in encrypted form, so that only A’s friends learn that A subscribed to WC .
When these friends publish content on that wall, they can decrypt the subscription
information and send push notifications to A’s inbox. This comes with the trade-off
that users that are not friends with A, but also publish onWC (for example because
they are friends with C but not with A), will not be able to send push notifications
to A. As the push-mechanism is only used for performance improvements, A will
eventually pull all content published on WC , but posts from direct friends will be
rendered first – which might be a reasonable priority policy for which entries are
relevant and to be displayed first.

The above example is an illustration of a solution using a structured overlay,
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Figure 3.4: Example for a conditional push-model: User A subscribes to user C’s
wallWC (1). When B publishes content on that wall (2), B can fetch the information
of subscribed users (3) and push a notification to user A’s inbox InA, user D’s inbox
InD, and so on (4).

i. e., a DHT or another distributed storage where direct addressing of user walls
and inboxes is possible. Some authors have discussed solutions to disseminate user
profile updates that work even in unstructured friend-to-friend networks, where
communication is only possible between directly connected friends. These net-
works have widely non-uniform clustering characteristics which poses challenges for
classical gossip protocols, but these protocols can be adapted to work efficiently
also in these situations [92].

Identity Management

Without a central provider, account creation cannot be implemented by the clas-
sical procedure of a user registering with a service provider. To come up with
suitable alternatives in a decentralized system is one of the challenges for a DOSN
identity management system. It includes granting registered users access to the
right resources at a later point in time, to allow them to access these resources
from different devices and to guarantee the uniqueness of user identifiers, so that
one username, for example, cannot be registered by more than one user.

For many distributed systems the identity of a user is simply a cryptographic
key. Usually, a keypair is generated at setup and the public key becomes the
user’s permanent identifier that is used to recognize the user after ephemeral session
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credentials have expired, for example, the next time the user connects to the system.
While this solution works well for many systems and has the advantage of offering
good security as long as reasonable key-lengths are chosen, it is not enough for
systems that feature social interactions and therefore require identifiers that can
be chosen by the user and that are more readable and memorable by humans than
a cryptographic key fingerprint. Public keys also become impractical as identifiers
for systems that allow users to log in from different devices, because there is no
straightforward method for manually transferring cryptographic key material to a
new device that is both easy to use and secure.

One partial solution can be to bind human-friendly usernames to cryptographic
keys in a secure way. The twister application [57] demonstrates how this can be
done in a completely decentralized system by leveraging the block-chain technology
that the crypto currency Bitcoin [95] is based on: the block-chain, a history of
events strictly sorted by time and with a consistent global view available to all
users, can be used to record mappings of usernames to public keys. Uniqueness
is guaranteed by a first-come–first-served policy that only considers the very first
registration of a username to be valid and that can be verified by all users because
of the registration history being public and non-malleable.

The problem of how to transfer credentials in a usable and secure way from one
device to another is one of the concerns of Article B contained in this thesis. The
proposed solution emulates the traditional username/password-login paradigm in a
decentralized system.

Social Relationship Information

Related to identity management is the management of social relationship informa-
tion, e. g., the list of “friends” of a user. Social relationship information can be
used for access control, data presentation, user-index structuring or relation an-
nouncements. For access control, users can use it for example to only allow friends,
a certain subset of them or friends of friends to access certain resources. Data
presentation policies can make use of it to show content from close friends more
prominently in friend activity feeds. By browsing the list of friends of a friend, users
get an implicitly structured view of the user-index of a social network. And finally,
users might want to share which friendships they have established with other users
for example by making a list of friends available to other users or announce these
relations in other ways.

There are several privacy–functionality trade-offs involved when implementing
social relationship information management. For example, when using social re-
lationship information for access control, the cryptographic headers of encrypted
objects might leak some information about social relations of a user, as mentioned
in the description of content encryption above.

Another research question is how to implement more complex social-graph based
access control policies, such as sharing content with friends-of-a-friend. The prob-
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lem with these policies is that they might clash with the privacy interest of other
users – if a friend of mine does not want to share her list of friends with me, how
can I share content with these friends of my friend? Backes et al. [13] designed
identity management and authentication protocols based on zero-knowledge proofs
that allow such complex social-graph based policies without compromising user pri-
vacy. Figure 3.5 illustrates an example: if user A is friend with user B, the protocol
allows a user C, who is friend with B to proof anyone (including A), that she is
friend of a friend of A in an anonymous manner, that is, the proof does neither give
away C’s identity nor that B is the common, connecting link.

Figure 3.5: User A and B are friends and user B and C are friends (solid lines).
User C is not a friend of A but a friend of a friend (dashed arrow).

Other authors have proposed to use a decentralized version of anonymous cre-
dentials to achieve similar goals [60].

Deployed Systems

There are a couple of deployed systems that fall into the category of partly decen-
tralized OSNs, following a distributed server model. Among those are Diaspora3,
Friendica4, pump.io5 and GNU Social6, with Diaspora being more famous due
to mainstream media attention in 2010, when the initial developer team raised
$ 200,000 in a crowdfunding campaign, 20 times more than aimed for7. Today,
Diaspora, has at least 60,000 active users according to self-reported statistics from
servers that publish these statistics8. These systems consist of many distributed

3https://github.com/diaspora/diaspora/, retrieved 2016-11-01
4https://github.com/friendica/friendica/, retrieved 2016-11-01
5https://github.com/pump-io/pump.io, retrieved 2016-11-01
6formerly known as StatusNet, https://gnu.io/social/, retrieved 2016-11-01
7http://nyti.ms/1ROpxpi, retrieved 2016-11-01
8aggregated at https://the-federation.info/, retrieved 2016-11-01

https://github.com/diaspora/diaspora/
https://github.com/friendica/friendica/
https://github.com/pump-io/pump.io
https://gnu.io/social/
http://nyti.ms/1ROpxpi
https://the-federation.info/
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servers (called pods in Diaspora) that connect to each other. Each server can host
several user accounts that can be accessed via a web-interface that the server pro-
vides. Users can either operate an own server or choose an existing one to register
a user account. In contrast to centralized systems there is not one single provider,
but users have the freedom to choose their provider or become their own. Both
choices entail, however, significant drawbacks. If users choose to register on an
existing server, they need to trust the operator of the server who either stores user
data unencrypted or can gain access to the secret decryption key when the user
logs in. Operating an own server usually requires advanced technical knowledge
and a dedicated device that is permanently online. Even if the latter could be
a low-budget solution such as running the server software on a home-router or a
small single-board computer, it is still an investment and for most users a significant
hurdle to setup.

In the category of completely decentralized systems, which is the focus of this
thesis, Retroshare9 is an example of a deployed DOSN. It builds on a friend-to-
friend network structure where users establish SSL connections to all their online
friends. A DHT holds the IP addresses of friends to maintain connectivity even
when IP addresses of the friends change. It features file-sharing, direct messaging
and group chats and routes connections only via trusted links between friends,
using the Turtle protocol [106]. There is, however, no replication of user profiles
or persistent wall objects, so for most interactions between two users, both have to
be online. The strict security policy of only trusting friend-to-friend connections
provides good defenses against denial of service attacks and spam.

Another implemented system is a decentralized Twitter clone called Twister
[57]10. Twister is a completely distributed P2P microblogging platform, allowing
users to post tweets and follow other users or hashtags. It also features end-to-
end encrypted direct messaging between users that follow each other. Twister has
an innovative user registration that leverages the Bitcoin blockchain technology
to bind usernames to cryptographic keys, as mentioned earlier. Furthermore, it
uses a DHT that stores user profiles and serves as a tracker for follower swarms.
These swarms are sets of online users that follow one specific other user and a
BitTorrent11-like protocol is used to deliver instant notifications about new posts
and direct messages to these users. The DHT and local user storage serves as
backup for the posts of a user and guarantee their availability even for times when
no other user is following them. The plugin Sone for Freenet12 is another example
for a deployed decentralized social networking platform.

9https://retroshare.github.io/, retrieved 2016-11-01
10The software is available at http://twister.net.co/, retrieved 2016-11-01
11http://www.bittorrent.org/, retrieved 2016-11-01
12https://wiki.freenetproject.org/Sone, retrieved 2016-11-01

https://retroshare.github.io/
http://twister.net.co/
http://www.bittorrent.org/
https://wiki.freenetproject.org/Sone
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Focus of this Thesis

One main focus in research on DOSNs has been on content confidentiality and re-
moving the threat that the central provider poses. While this is an important part
of developing more privacy-preserving alternatives to centralized OSNs, the prob-
lematic effects of distributing the power of the provider over several entities and the
possibilities for inferences that persist despite content encryption have often been
neglected. Our first contribution in Article A is therefore a systematic overview of
the new adversary models and challenges for user privacy in this changed context.
It stresses the importance of metadata, that can endanger users’ privacy even if all
content is encrypted. Having these new threats in mind, we proceed in Articles B,
C and D with proposing DOSN protocols for common OSN functionalities such
as password management, user search and event invitations. With these contribu-
tions, we do not aim to build complete or self-contained DOSNs, but focus on one
functionality. We therefore make a range of assumptions for these articles, such
as a distributed storage with some properties being available and an identity man-
agement system being in place. Article E is a more applied contribution and takes
up a specific instance of metadata privacy issues in a deployed distributed system
– website fingerprinting attacks in the Tor anonymization network – and discusses
threats and countermeasures to this specific problem.



4
4. Article Overview and Contributions

This thesis is comprised of five articles, originally published in peer-reviewed confer-
ence and workshop proceedings. In this section I describe their research questions
and methodology, summarize the content of the articles and give account of the con-
tributions I have made to each of them. Finally, I list articles that I co-authored
during my PhD studies that are not included in this thesis.

General Research Question and Methodology

How can Internet-based services, in particular those of Online Social Networks, be
decentralized to improve user privacy? This is the overarching research question of
this thesis. It is broken down in more concrete questions for the different articles
that this thesis is comprised of.

Figure 4.1: Categorization of the articles included in this thesis.
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The included articles have varying degrees of generality and differ in how much
they focus on DOSNs or other decentralized systems. Figure 4.1 summarizes these
differences by roughly localizing the articles with respect to their relative positions
on these dimensions. The first one, Article A, is a problem statement, systemat-
ically listing the new challenges to user privacy that arise from decentralization.
Articles B, C and D, have a focus on protocol design, to show how different OSN
functionality can be implemented in a decentralized and privacy-preserving way.
The last one, Article E, analyzes a specific attack on a deployed system, the Tor
anonymization network, shedding light on a very concrete problem of a decentral-
ized system and possible solutions.

In the field of Computer Science, having roots in mathematics as well as en-
gineering, different cultures of research methodologies can be found. On the one
hand the ones inspired by mathematics with logical argumentation, formal models
and proofs, and on the other hand engineering approaches with case studies, ex-
periments and measurements [43]. The research methodology used for the work in
this thesis can be located more in the latter culture and is probably best described
by the design science research paradigm. While in social and natural science the
traditional research paradigm is a descriptive one of creating testable theories, the
design science research methodology aims at creating artifacts that are explicitly
applicable to a problem in research or practice. It can be described as a process with
six steps: problem identification and motivation, defining objectives of a solution,
design and development, demonstration, evaluation, and communication [104]. The
first article contained in this thesis, Article A, has a focus on the first two steps,
problem identification, motivation and defining the objectives of a solution. The
protocol designs in Articles B-D have their focus on the next three steps, design
and development, demonstration and evaluation. The last article, Article E, is
more self-contained and can either be seen to be a partial evaluation of the Tor
anonymization network or to be a process on its own of designing and evaluating
an attack on the system. The last step in the process, communication, was achieved
by publishing the conducted work.

Article A: The Devil is in the Metadata – New Privacy
Challenges in Decentralised Online Social Networks

originally published as B. Greschbach, G. Kreitz, and S. Buchegger, “The devil is in
the metadata – New privacy challenges in Decentralised Online Social Networks,”
in IEEE International Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops), March 2012, pp. 333–339. For this thesis,
Figure A.2 was enhanced both graphically and content-wise.

When moving from a centralized to a decentralized OSN design, the problem of
one central data aggregation point vanishes. At the same time, new challenges to
secure user privacy arise, that had not been there in centralized systems or were



4.3. ARTICLE B: PASSWORDS IN PEER-TO-PEER 21

not part of the threat model, because the central provider was assumed to be a
neutral and trusted party in these systems.

In this article, we map out these new challenges in a systematic way. We look
at possible privacy breaches stemming not from the content itself but from its
metadata (like size or structure) or data handling (such as communication flows).
Furthermore, we discuss the role of different adversaries in DOSNs. Finally, we list
possible countermeasures and general approaches to mitigate these problems.

Specific Research Question and Methodology
This article tries to answer which negative effects decentralization can have on user
privacy and how these effects can be mitigated. For mapping out the problem
space, episodic evidence of privacy problems stemming from decentralization were
gathered from related work (e. g., that already the existence of data can give away
sensitive information), and used to seed a general hierarchy of possible problems
(e. g., creating the main category “storage” with a subcategory “existence”). This
hierarchy was then complemented by our own analysis to map out the possible
problems as comprehensively as possible. For mapping out the different adversary
models a similar approach was taken. As no experiments were conducted and the
focus was on mapping out a problem space, this work can be seen as a theoretical
contribution to formulate a problem statement for further research.

My Contributions
The main idea for Article A evolved from joint discussions with Sonja Buchegger.
The classification of threats and adversaries was mainly developed by me with
helpful input from Sonja Buchegger and Gunnar Kreitz. I did the bulk part of
writing with substantial input from the co-authors.

Article B: Passwords in Peer-to-Peer

originally published as G. Kreitz, O. Bodriagov, B. Greschbach, G. Rodríguez-Cano,
and S. Buchegger, “Passwords in peer-to-peer,” in IEEE 12th International Con-
ference on Peer-to-Peer Computing (P2P), September 2012, pp. 167–178.

When decentralizing an OSN service, two challenges arise. First, to implement
the OSN functionality in a decentralized way without making use of centralized,
trusted third parties. Second, to guarantee user privacy under the changed threat
model, as outlined in Article A.

This article illustrates an instance of this two-folded challenge. We look at the
password login and management feature of common OSNs and discuss how this
can be realized in a DOSN. So we both have to come up with a decentralized
implementation of the different functionalities and take care to make it secure and
privacy-preserving under the threat model present in a P2P network.
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More specifically, we propose and evaluate distributed protocols for password
login, account registration, password change, remembered logins, logout of a remote
device, and password recovery using security questions or e-mail notifications.

Specific Research Question and Methodology

The research question behind this article is, how a classical username–password lo-
gin mechanisms can be transferred to a decentralized P2P system. Concerning the
research method, this is a protocol design and analysis article. We first assembled
a list of requirements, informed by standards for password-based authentication,
related work and additional requirements that we considered relevant for the decen-
tralized setting. Next we designed protocols that implement different functionalities
(e. g., password change or password recovery) and that fulfill the compiled require-
ments. We formalized these protocols in pseudo-code. Then we ran experiments
that simulated these protocols on DHT latency data to get performance benchmarks
and did calculations for analyzing the security guarantees of the suggested proto-
cols. We did not formally proof the security properties of the protocols, mainly
due to lack of time, but also because a comprehensive formal verification makes
more sense when deploying the protocols in a specific system where the concrete
properties of the underlying components are known and fixed, for example which
security guarantees the distributed storage provides.

My Contributions

The main work for this article was done by the first author Gunnar Kreitz. I
contributed with ideas in joint discussions and the pseudocode formalizations of
the protocols, proposing several improvements.

Article C: User Search with Knowledge Thresholds in
Decentralized Online Social Networks

originally published as B. Greschbach, G. Kreitz, and S. Buchegger, “User Search
with Knowledge Thresholds in Decentralized Online Social Networks,” in Privacy
and Identity Management for Emerging Services and Technologies, M. Hansen, J.-
H. Hoepman, R. Leenes, and D. Whitehouse, Eds. Springer Berlin Heidelberg,
2013, pp. 188–202.

In this article, we look at user search, another standard feature of OSNs. There
is a trade-off inherent in this feature, where user privacy has to be balanced with
the findability of a user. We use a user-defined knowledge threshold to allow users
to adjust this balance (“find me if you know enough about me”) and propose dis-
tributed protocols to implement this feature in a DOSN.
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We evaluate our protocols using real world data to relate the performance for
legitimate users who try to find another user, to the costs of an adversary who
attempts to acquire unknown information not intended for her.

Specific Research Question and Methodology
The lead question of this article is, how user search can be realized in a DOSN
where, in the absence of a central trusted party, the findability and privacy re-
quirements of users need to be balanced. This is another protocol design paper,
where we first defined the functionality that we want to implement in a DOSN (user
search with knowledge threshold) and then design protocols that implement this
feature. We first worked out one possible implementation of the protocol. Informed
by an analysis of this implementation we designed an alternative implementation
that solves some shortcomings of the first version. We formalized both protocol
implementations in pseudocode. As a result of an informal security analysis we
identified one likely attack. To show how the protocols protect users against it, we
conducted a brute-force simulation using real-world demographic data.

My Contributions
For this article, I was the first author and developed the ideas out of joint discussions
with the co-authors. Together with Gunnar Kreitz I developed the protocols and
evaluations, with important input from Sonja Buchegger. The people mentioned in
the acknowledgements contributed with helpful ideas.

Article D: Event Invitations in Privacy-Preserving
Decentralized Online Social Networks

originally published asG. Rodríguez-Cano, B. Greschbach, and S. Buchegger, “Event
Invitations in Decentralized Online Social Networks” in Privacy and Identity Man-
agement for the Future Internet in the Age of Globalisation 2014, Jan Camenisch,
Simone Fischer-Hübner, and Marit Hansen, Eds. Springer Berlin Heidelberg, 2015,
pp. 185–200. (received the Best Student Paper Award)

Another functionality that is more specific to OSNs is event invitations. That is
a feature that allows an organizer to invite a set of users and get feedback on who
of them committed to attend. In this article, we formalize desired properties for an
event invitation feature, such as who can see the identities, or only the number of
invited or attending users. We then develop a set of privacy-enhancing tools based
on cryptographic standard techniques that allow us to implement this feature in
a completely decentralized way. Storage location indirection is, for example, used
to control who can access the ciphertext of an encrypted object by storing only
an encrypted link at the object’s storage address. The encrypted object itself is
then stored at the obfuscated storage location pointed by the link. This discloses
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metadata about the encrypted content, such as size and modification history, only
to selected users. We further develop a commit-disclose protocol, that allows an
organizer to disclose some information only to users who committed to attend the
event. Using these protocols and tools we show how an event invitation feature can
be implemented with a wide range of possible privacy settings and in a decentralized
environment, that is without any central party and with minimal trust assumptions
in the involved parties.

Specific Research Question and Methodology
The research question behind this article is, how an event invitation feature can be
implemented in a DOSN, allowing for different privacy settings. This paper focuses
again on protocol design. We first formalize a set of security and privacy properties
for this more specific feature of event invitations. We then introduce a general
implementation framework and go exhaustively through all possible combinations
of privacy settings that can be chosen according to the defined privacy properties to
show how they can be implemented in this framework. We discuss a set of general
techniques that we designed for the protocol implementation and that might be
useful in other P2P applications as well. Finally we discuss the security of the
protocols.

My Contributions
Together with Guillermo Rodríguez-Cano, I developed the problem statement, the
formalizations, the cryptographic tools, protocols and analysis for this article. Sonja
Buchegger contributed with helpful feedback and writing.

Article E: The Effect of DNS on Tor’s Anonymity

accepted for publication as B. Greschbach∗, T. Pulls∗, L.M. Roberts∗, P. Winter∗,
and N. Feamster, “The Effect of DNS on Tor’s Anonymity” in Network and Dis-
tributed System Security (NDSS) Symposium 2017.
∗All four authors contributed substantially, and share first authorship. The names
are ordered alphabetically.

The Onion Router (Tor) is a decentralized, low-latency anonymization mix-
network that allows a user for example to browse to a website without anyone
learning both the user’s IP address and which website the user browsed to. A user’s
Tor client first establishes an encrypted connection to an exit relay of the network,
but redirects this connection through two other relays, an entry guard and a middle
relay, so that the exit relay does not learn the user’s IP address. The exit relay is
then instructed to establish a connection with the destination website, which only
learns the IP address of the exit relay. The Tor network is constantly improved to
protect against new attacks. One of these attacks is website fingerprinting, where
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a passive adversary analyzes the ciphertext of the user’s connection with the entry
guard to guess the requested website using machine learning techniques based on
features such as package inter-arrival times and package payload of the encrypted
connection.

In this article, we explore a new kind of website fingerprinting attack incorpo-
rating DNS data that adversaries might be able to observe from exit relays. We
first analyze how exposed Tor DNS traffic is: we determine which DNS resolvers
are used by exit relays and which autonomous systems (ASs) the DNS traffic tra-
verses. We found that for many websites DNS traffic traverses more than two times
more ASs then the corresponding TCP traffic and some organizations that operate
public DNS resolvers, such as Google, see almost 40% of all Tor DNS traffic. We
further analyze what impact these findings can have on the Tor users’ anonymity
by developing a set of correlation attacks that use observed DNS data. We find that
these attacks can increase an attacker’s precision significantly and discuss possible
counter-measures to mitigate this threat.

Specific Research Question and Methodology

The research question of this article was, how the handling of DNS requests in the
Tor anonymization network affects the anonymity of its users. Regarding research
methodology, this article is rather different from the other included articles as it
focuses on a specific attack on a concrete, deployed system. We start with analyzing
how DNS requests are handled in Tor (what resolvers are used by exit operators)
and what effect this has on possible adversaries (quantifying the exposure of DNS
requests to passive network adversaries by analysing the network routes the requests
take). We then explore how DNS traffic could be used by an attacker to improve
website fingerprinting attacks. To measure the effects of these combined attacks,
we simulate the Tor users’ website access patterns based on Tor statistics, our own
measurements on an exit relay under our control and figures from related work. We
evaluate the effects of the combined attack on precision and recall, investigating the
impact of different parameters such as Tor network size, weight-learning round for
the machine-learning algorithm or the popularity of the visited website. Based on
these results we finally discuss strategies how to mitigate the effect of this attack.

My Contributions

For this article, I mainly worked on the attack part (Section V) together with
Tobias Pulls. My main contributions were in joint discussions on the design of the
correlation attacks, and the modelling of the Tor network’s web traffic (Section V.A
and V.B).
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Articles not Included in this Thesis

During my PhD studies I additionally co-authored or authored the following pub-
lished articles that are not included in this thesis:

• Location Privacy in Relation to Trusted Peers. Klaus Rechert, Benjamin
Greschbach. 7th International Workshop on Security and Trust Management
2011 (STM’11).

• Assessing Location Privacy in Mobile Communication Networks. Klaus Rechert,
Konrad Meier, Benjamin Greschbach, Dennis Wehrle, and Dirk von Suchodoletz.
14th International Conference on Information Security 2011 (ISC’11).

• Location Privacy: User-centric Threat Analyis (student session abstract).
Benjamin Greschbach. 7th European Conference on Computer Network De-
fense 2011 (EC2ND’11).

• Friendly Surveillance - A New Adversary Model for Privacy in Decentralized
Online Social Networks. Benjamin Greschbach and Sonja Buchegger. 5th
interdisciplinary Conference on Current Issues in IT Security 2012.

• Exploring Decentralization Dimensions of Social Networking Services: Adver-
saries and Availability. Thomas Paul, Benjamin Greschbach, Sonja Bucheg-
ger, and Thorsten Strufe. First ACM International Workshop on Hot Topics
on Interdisciplinary Social Networks Research 2012 (HotSocial’12).

• Design of a Privacy-Preserving Document Submission and Grading System
(short paper). Benjamin Greschbach, Guillermo Rodríguez Cano, Tomas Er-
icsson, and Sonja Buchegger. 20th Nordic Conference on Secure IT Systems
(NordSec’15).

Finally, this doctoral thesis is based on and extending my licenciate thesis that
already included the first three articles, Article A, Article B, and Article C:

• Privacy Analysis and Protocols for Decentralized Online Social Networks.
Benjamin Greschbach. Licentiate Thesis, KTH Royal Institute of Technol-
ogy, 2015. ISBN 978-91-7595-546-9.
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Article A

The Devil is in the Metadata – New Privacy Challenges in
Decentralised Online Social Networks

Benjamin Greschbach, Gunnar Kreitz, and Sonja Buchegger

KTH Royal Institute of Technology
School of Computer Science and Communication

Stockholm, Sweden
{bgre, gkreitz, buc}@csc.kth.se

Abstract

Decentralised Online Social Networks (DOSN) are evolving as a promis-
ing approach to mitigate design-inherent privacy flaws of logically centralised
services such as Facebook, Google+ or Twitter. A common approach to build
a DOSN is to use a peer-to-peer architecture. While the absence of a sin-
gle point of data aggregation strikes the most powerful attacker from the list
of adversaries, the decentralisation also removes some privacy protection af-
forded by the central party’s intermediation of all communication. As content
storage, access right management, retrieval and other administrative tasks of
the service become the obligation of the users, it is non-trivial to hide the
metadata of objects and information flows, even when the content itself is
encrypted. Such metadata is, deliberately or as a side effect, hidden by the
provider in a centralised system.

In this work, we aim to identify the dangers arising or made more severe
from decentralisation, and show how inferences from metadata might invade
users’ privacy. Furthermore, we discuss general techniques to mitigate or solve
the identified issues.
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Introduction

As people use Social Network Services (SNS) to organise their social life, privacy
issues are an inherent concern in these services. Currently, a user must trust the SNS
provider to enforce access rights management, not to misuse the provided content,
and to be sufficiently secured against third-party attacks. For today’s popular SNS
providers, however, “people are not customers, but primarily products” [65]. Their
business model is based on targeted advertisements, and they have an infamous
history of data leakages and privacy breaches.

In response to these shortcomings, Decentralised Online Social Networks (DOSN)
have been proposed. There is a wide range of designs spanning from centralised to
decentralised network architectures. In the completely decentralised approaches,
the users themselves form a peer-to-peer (P2P) network in order to collaboratively
provide the storage and communication infrastructure for the social network ser-
vice. Access control for published content is enforced by cryptographic means so
that users need not rely on policies or the benignity of a central provider. In
addition, users keep the physical ownership of their content, which prevents censor-
ship, yields higher resilience with respect to network outages, and facilitates data
portability.

When solving the privacy issues of the centralised system by moving to a de-
centralised design, however, new privacy challenges arise. Simply encrypting the
content is not enough to hide all sensitive information from attackers, and although
a powerful central provider is not present in these kinds of systems, several other
adversary models become relevant.

We remark that although several of the issues raised in this paper have been pre-
viously mentioned in the literature, the focus in SNS privacy research has been on
content confidentiality and on removing the threat that central SNS providers pose.
While this was an important development, we believe that the logical next step is to
systematically study the effect of distributing the power of the provider over several
entities and examining the possibilities for inferences that persist despite content
encryption, including traffic analysis issues in this new context. Failing to protect
against even a single one of these threats can lead to serious privacy breaches in an
otherwise secure system.

Our Contributions
In this paper we highlight the new privacy challenges that arise once a centralised
SNS is replaced by a DOSN. Specifically, we systematically discuss possible privacy
breaches stemming not from the content itself but from its metadata (like size or
structure) or data handling (such as communication flows). Furthermore, we dis-
cuss the role of different adversaries in DOSNs. Finally, we summarise approaches
to mitigate these problems, including those suggested by proposed DOSN imple-
mentations. To the best of our knowledge there is no solution dealing with the
whole range of the problems we discuss.
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Paper Outline
The rest of the paper is organised as follows. After referring to related work in
Section A.2, we sketch the different models of SNS implementations including rele-
vant attackers in Section A.3. Next, Section A.4 lists the possible metadata privacy
leakages, that is sensitive information which can be inferred even when the con-
tent does not leak. Section A.5 discusses countermeasures to approach these new
challenges before Section A.6 concludes the paper.

Related Work

Research related to the scope of this paper can be found in mainly three areas:
privacy issues in SNS, decentralised online social networks, and metadata privacy
in general.

The impact of SNS on their users’ privacy has been extensively studied. Gross
et al. [64] have identified several threats of SNS usage such as stalking; de-anonymi-
sation of external sensitive sources such as anonymised medical records; identity
theft, e. g. by social insurance number reconstruction; user profiling by building
a digital dossier and simplified social engineering. Danezis et al. [40] point out
that the position of a user in a social network reveals characteristics about the
person, such as their status and potential influence reach. Paul et al. [102] under-
line the consequences of massive central data aggregation in conjunction with an
advertising-based business model of major SNS providers. They warn against the
risks of direct misuse or unintended leakage of this data that is not appropriately
protected and hard to anonymise. Krishnamurthy and Wills [84] show that relevant
leaks do occur in practice.

One main approach to address the privacy issues in SNS is decentralisation.
Buchegger et al. [27] propose the PeerSoN system where (encrypted) content is dis-
tributed using a P2P network formed by the users of the SNS. Aiello and Ruffo [6]
elaborate on a Distributed Hash Table (DHT) based architectural framework sup-
porting SNS functionality. They propose authentication on the routing level and
discuss implementations of SNS requirements such as access control, reputation
management and search operations. Cutillo et al. [39] introduce Safebook, an ar-
chitectural approach focusing on communication anonymisation. Content is stored
at trusted friend nodes and requests are routed through a mix-network formed by
social links to obfuscate information flow. Sharma and Datta [120] describe Super-
Nova, that is based on a hybrid network architecture where highly available “super
peers” are used for crucial tasks such as helping new users to join the network. The
Persona project by Baden et al. [14] proposes the use of an attribute-based encryp-
tion scheme for social network operations. Finally, Bodriagov and Buchegger [22]
scrutinise the proposals for DOSN-tailored encryption schemes and evaluate their
performance for SNS operations.

One instance of a metadata privacy leakage in the context of SNS is mentioned
by Anderson et al. [10]. They point out the threat of a friend learning about the
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existence of content she does not have access to. Chew et al. [34] identify three
possible leakages in SNS that are not caused directly by the disclosure of content:
entries in the user’s activity stream that were automatically generated based on
the user’s activities (also on third party sites); unwanted linkage of different sets
of user data; and identifying inferences by merging social graphs. Traffic analysis,
extracting and inferring information from network metadata, (see e. g. Danezis and
Clayton [40] for an overview) is one of the attack techniques we consider.

Decentralising Social Networks

On an abstract level and following a minimalistic definition (e. g. [85]), we assume an
SNS to be merely an integration of user generated content with social relationship
information.

The latter is used mainly for access control, data presentation, and friendship
announcements. Content comprises all active contributions of a user to the system,
static (such as profile attributes) as well as more dynamic ones (such as status
updates, text-, picture-, video- or link-posts). It also includes interactions such
as comments or simple like-indications in response to posts, enrichments of posts
with social links (e. g. tags in pictures) as well as asynchronous or synchronous
messaging (e. g. private messaging, chats). Timestamped notifications about this
data are usually automatically pushed to the user in a “news feed”.

In a concrete implementation of such a system, the degree of centralisation of
control over user data is an architectural design choice that impacts both possible
privacy leaks and types of attackers.

Architectures
Considering the proposed DOSN implementations in the literature, one can observe
a broad range of topologies rather than a bipartite division between fully centralised
and fully decentralised systems. Several hybrid approaches (e. g. Diaspora1) use
dedicated, semi-trusted nodes to address availability, bootstrapping and other issues
that are difficult to solve in a flat P2P network. For the rest of this paper, however,
we focus on the differences between the two extreme cases of logically centralised
designs (Facebook or Google+) and completely decentralised approaches (PeerSoN,
Safebook, or Persona).

In the centralised case, the relevant agents are the SNS provider and the users
of the SNS, with all communication between users relayed by the central provider.
In the decentralised approach, the provider is replaced by a P2P network formed
by the users.

P2P approaches are varied, but here we sketch a simplified example system.
A user herself hosts all content she posts. To ensure availability even when she
is offline, her content is also replicated by a number of storage nodes. Access

1http://diasporaproject.org/

http://diasporaproject.org/
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(a) All communication is relayed by the cen-
tral provider.

(b) Besides direct peer communication, sev-
eral nodes can be involved.

Figure A.1: Communication flows in a) centralised and b) decentralised SNS

control can be implemented either by having the user and storage nodes requiring
authorisation to serve data, or by encrypting objects such that only authorised
users can decrypt the content. We focus on the latter type of design, where any
user can request any encrypted data. This means that storage nodes need not be
trusted and need not be informed of ACL rules for the content they replicate.

Another type of service provided by nodes to each other in the P2P scenario is
relaying traffic in the overlay. This may include forwarding traffic for two nodes
who cannot directly connect due to firewall restrictions, implementing a DHT, or
to anonymise communication. We refer to nodes acting in such capacities as relay
nodes. We illustrate the different abstract communication flows in Figure A.1.

Privacy Advantages of Decentralisation

The most important privacy advantage of a decentralised system is the absence
of a central point of data aggregation. In the case of a centralised system with
unencrypted storage, the provider can mine the data without limitations and infer
information from both the content and metadata. In addition to deliberate privacy
infringements, also by disclosure to third parties, centralised data collections are
vulnerable to accidental leaks caused by inadvertent insider behaviour or attacks
on the system. In a centralised system that employs user-side encryption to protect
the content (e. g. Pidder2), the provider only observes metadata. When drawing
inferences from it, the provider is, however, in the best position possible as it has
a complete view of all users of the system at all times.

In a P2P system, data might be replicated by friends (e. g. Safebook) or random
strangers (e. g. SuperNova), but no systematic accumulation of user data occurs.

New Challenges from Decentralisation

While removing the single point of data aggregation constitutes a general advan-
tage of more decentralised architectures, there are also several drawbacks and new

2http://pidder.com/

http://pidder.com/
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privacy challenges when building on a P2P network. In a centralised system the
users’ content is entrusted to a single party that only gives access to entitled princi-
pals. Deliberately or as a side effect, this intermediation procedure hides metadata
information from requesting users. Thus, while the operator of a centralised system
can learn significant information from metadata (and content, if not encrypted),
such information is hidden from everyone else.

In the decentralised systems we consider, several parties are involved in storing
and communicating user content, and authorisation is performed via encryption of
the data. This aggravates the problem of metadata privacy leakage because more
parties can access such information as illustrated in several examples in Section A.4.
Unless the decentralised system is carefully designed, it may admit similar privacy
invasions from peers in the system or third parties requesting large amounts of data
as were possible by the central provider, thus weakening the privacy motivation for
selecting a decentralised design.

A new threat that arises from metadata in a decentralised system is that of a
more powerful friend adversary (an attacker that exploits its social ties to the user).
One feature of the friend adversary contributes eminently to this problem: friends
have more background knowledge related to the user – not necessarily acquired
only via SNS communication – that enables them to accomplish effective inference
attacks even on sparse raw data. If a friend for example knows about a couple of
preferred places the user usually visits, coarse IP address based location information
suffices to determine the user’s exact geographic location with high probability.

Additionally, traffic analysis yields more information in a decentralised system
where information is exchanged directly between communicating parties. The in-
termediation of very high volumes of communication via a few data centres by
centralised solutions serves to hide traffic patterns against outside adversaries (but
not against the provider).

In a fully decentralised setting, it is also more difficult to enforce a limit on
the rate at which data can be requested. This may allow multiple third parties
to collect significant amounts of public information from the DOSN. While such
information is by definition public, aggregating and indexing a massive amount of
it can constitute a privacy invasion.

Adversary Models
We distinguish between different adversaries in the context of SNS by their func-
tional power resulting from their role and position in the network.

Relay nodes and storage nodes can make use of their special role and posi-
tion in the network. Relay nodes can easily observe all traffic they forward for other
nodes, and storage nodes can analyse the data entrusted to them as well as log all
requests they receive. Friends of a user – or other socially close nodes like friends
of a friend – can try to obtain more information than what the user chose to share
with them. This can be done by exploiting the way data storage, encryption and
communication is implemented in a DOSN. Having additional background knowl-
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edge about the user and possibly incentives for targeted attacks can turn a friend
into a powerful attacker. Network sniffers who observe communication traffic at an
arbitrary location in the network constitute another category of possible attackers.
Harvesters are nodes that simply request data from the system to learn from the
metadata they receive.

In order to compare the decentralised system architecture with the centralised
SNS, we also list the central SNS provider as an adversary. If present, it con-
stitutes the most powerful attacker possible because it observes all content and
communication from all users of the system. Even if the content is encrypted, the
provider still has a complete picture of communication traffic and content metadata.

The adversary types discussed here have access to different data. Here, we
consider five categories of data that an adversary may exploit. An adversary may
learn access patterns, that is information about when content is requested or
modified. She may be able to access ciphertext representations of content. She
may have intimate background knowledge about the victim. She may see all or
a fraction of the victim’s network traffic, and be able to relate it to the victim,
which we refer to as micro-scale network access. Finally, she may have a global
but incomplete view of network traffic in the system that we call macro-scale.

Table A.1: Adversary Capabilities

Relay Stor. Friend Sniff. Harv. Cent.
Access pattern X X
Ciphertexts X X X X
Backgr. know. X
Net, micro X X
Net, macro X X

We summarise the capabilities of adversaries in Table A.1. From this overview, it
can be seen that no single class of attacker is as powerful as the central adversary,
but unless the system design adequately addresses metadata concerns, the new
attackers may be as powerful as the central one. Moreover, it is significantly easier
to position oneself as an adversary in a decentralised system than in a centralised
one.

Collusions of several agents in the network also need to be considered. This
includes a single agent having several of the roles outlined above (e. g. being both
a friend and a storage node), and an adversary paying the cost to operate a large
number of nodes.

Inferences from Metadata

By metadata privacy leakages we mean disclosures of sensitive personal information
that do not stem from the content of published data but from properties of it (such
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as size or structure) or information generated while managing it (like communica-
tion flows).

Possible inferences from metadata can invade a user’s privacy in the same way as
sensitive personal information obtained from posted content. This includes identify-
ing information (directly or indirectly), general descriptive data (interests, political
attitudes, health condition, etc.) as well as more SNS-specific information such as
social relationship data (number of friends, nature of relations, etc.), or behavioural
data (activity, location, etc.).

While the DOSN approach is a substantial improvement compared to common
centralised systems, we want to illustrate which threats to the users’ privacy still
remain and which new challenges arise. In the following we assume the SNS to be
decentralised with all content and communication encrypted. We further assume
that it is correctly implemented and perfectly protects the content. Besides that,
we only consider a naïve design of the DOSN and individual worst cases in order
to give a comprehensive overview of the possible problems. That implies that there
are easy fixes for some of the raised issues – this, however, is discussed later in
Section A.5. We have chosen not to study any particular proposed system, as
source code for these is not generally available, or only in beta version.

Inferences from Stored Content

While encrypting the content solves many important privacy concerns, there still
remain possibilities of privacy leakages from the stored data. The size, structure,
and (implicit) modification time of the ciphertexts may reveal information that the
user originally intended to hide. In the following we give examples for each of these
properties.

Size

The size of an object’s ciphertext is an indicator for the content type of the stored
object (e. g. like-flag, text, image, video). Additionally, characteristics such as an
estimated word count or the length of a video can be inferred. Moreover, the size
of larger files, such as video, may be reasonably unique (at least among objects
posted during a given time period or from a specific region). Such uniqueness could
allow the ISP of a regime sniffing the network to trace which users have re-shared a
forbidden video on the DOSN by simply looking for posts of objects with the exact
same size as the video at issue. This type of attack requires access to ciphertexts
or network traffic, either micro-scale or macro-scale.

Structure

An adversary may infer not only the size of single objects, but also statistical
information about a set of objects of a certain kind, like the number of objects
in a list (e. g. unencrypted documents with data references in Persona). Linking
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this knowledge with information about the content type leads to another form of
metadata privacy leakage – revealing the number of pictures in an album or the
number of comments to a post. This attack requires access to ciphertexts.

Assume for example a user sharing pictures of her recent holidays with friends.
Being asked for them at work, she decides to grant access to a subset of them to
a colleague. Inferring from the data structure that there are more objects in the
album than he can decrypt, the colleague learns the exact number of pictures that
are hidden from him.

Modification History

Once the storage location of a specific object and some general information about
its type are identified by an adversary, monitoring the ciphertext for changes re-
veals possibly sensitive information. The modification history can for example tell
something about the frequency of a user’s status updates, the intensity of her com-
menting activity, or other general usage patterns. This attack requires access
pattern information, or, with polling, access to ciphertexts.

Assume a friend observes frequent modifications of an object, identified as the
user’s encrypted status update representation. While the version displayed to her
does not change, the friend learns that she is excluded from at least parts of the
user’s updates.

Inferences from Access Control Mechanisms

One reason for a user to provide social relationship information is the realisation of
fine-grained access control mechanisms. Depending on the implementation of these
mechanisms, the chosen access right settings might allow conclusions about a user’s
social relationships to be drawn, as we outline in this section.

Encryption Header

If an access control list (ACL) or other cryptographic key material is stored together
with the encrypted object – e. g. in a prepended header – the size of this header
can allow inferences about the identity or number of individuals who can access the
content. This attack requires access to ciphertexts.

Exploiting the same feature either for a central object of a user – like her wall
representation – or a representative set of content objects belonging to her, can
reveal the total number of friends the user has.

Key Distribution

Adding a new friend or revoking access rights of an existing friend will – depend-
ing on the encryption scheme and implementation – trigger re-keying and/or key
distribution mechanisms that can be observed even by users who are not subject
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to the relationship change itself. This attack requires micro-scale network ac-
cess. When combined with background knowledge, significantly more revealing
conclusions can be drawn.

Assume a user expels another user from her circle of friends. If a new group
key is sent to her remaining friends, an adversary observing this revocation can,
together with background information about the user’s social relationships, infer
the specific person that was removed.

Key Reutilisation

If the same key or encryption header is used for several objects, even adversaries who
cannot decrypt the content, trivially learn that the same access rights are in place
for these objects. This information can be exploited in several ways. Mapping out
relations for a large number of objects might allow inferences about the structure of
a user’s friend circle. A friend, who has access to the objects and observes another
user reacting to one of them (e. g. by a comment or a like-flag), immediately learns
that this user has access to all the other objects as well. This attack requires access
to ciphertexts. Background knowledge enhances the attack.

Inferences from Communication Flows
An adversary can gain additional insights into a user’s activities by capturing net-
work traffic that is related to the user. This might be performed by an external
network sniffer as well as persons related to the user, e. g. a node that is hosting
some of the user’s content and observes the access logs.

Direct Connections

SNS-related network traffic can already on a very low protocol level (e. g. IP header
information) reveal sensitive information. In the case of direct communication with
the user’s device – a common scenario in P2P architectures – the IP address of
this user is trivially obtained and can be tracked over time. This allows correlating
with activities of the user on other internet services like file sharing or voice-over-
IP (possible even when located behind a NAT, see [21]), determining geographic
location information about the user via geo-IP mappings, or inferring general us-
age patterns, such as the user’s online times or working habits (when does the
user connect from which device). This attack makes use of network access, ei-
ther micro-scale or macro-scale. Background knowledge allows more precise
conclusions to be drawn.

Content Requests

The access logs of content that an adversary is hosting or providing to the user
disclose the user’s requests for specific objects – therefore acting as implicit reading
receipts for new content – and might allow general profiling of the user’s interests.
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Moreover, observing a set of users’ access patterns has the potential to identify the
ownership as well as possible access rights of content objects. Companies may find
it profitable to operate a large number of storage nodes in order to monitor requests.
For instance, an insurance company may attempt to identify users accessing content
posted in groups related to cancer or other diseases. This attack requires access
pattern information, or network access, either micro-scale or macro-scale.

Content Sharing

Storage nodes as well as sniffers that capture traffic to these can easily observe
upload activity. This includes the frequency of changes to stored content and might
allow similar conclusions as sketched in Section A.4. Furthermore, timing-based
inferences are a possible way to infer access rights if, for example, the distribution
of key material to a set of other users is observed shortly after a new content object
was uploaded. By monitoring the upload activity of several users, sniffers might
moreover learn ownership relations between the stored content and the uploading
users. This attack requires access pattern information, or network access, either
micro-scale or macro-scale.

Control Messages

Depending on the protocol implementation, specific user operations such as login,
adding friends, search requests, etc. can yield certain patterns of control messages
a sniffer can observe and thus infer the kind of operation. The login procedure
of a user may comprise polling friends for updates that happened while the user
was offline, communicating with storage nodes or similar characteristic sequences
of administrative operations. This attack requires network access, either micro-
scale or macro-scale.

Countermeasures

There exist several approaches to mitigate the described metadata privacy leakages
but to the best of our knowledge no comprehensive concept to cope with them all.
In the following, we discuss solutions from the DOSN literature as well as from
other fields.

Stored Content
To hinder inferences based on the size of ciphertexts, padding is one way to obfus-
cate the exact content length. That might help against fingerprinting objects by size
but may still allow inferences about the content type from the order of magnitude.
Another strategy could be to split up content objects into blocks of uniform sizes
and hide their connection (e. g. [10]). The latter is, however, non-trivial especially
against an adversary performing communication flow analysis.
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To hide the structure of composite or related storage objects, an encryption
scheme that conceals not only the content of the single objects but also indices and
links is one solution. To not solely rely on encryption for authorisation, but use it
as one of several layers is another approach. If semi-trusted storage nodes perform
additional access right validations before delivering encrypted objects, adversaries
not involved in storage cannot retrieve the ciphertext or the metadata information.
However, this comes with the trade-off that the storage nodes must be given more
explicit access-right information about the objects they keep. Additionally, dummy
list entries and placeholder values for fixed fields can prevent an adversary from
determining if values have been set in a user profile.

Assuming an insider adversary model (e. g. the storage node itself), hiding the
modification history of a content object is very difficult. Baden et al. [14] propose
to obfuscate the role of a storage object (e. g. a status update document) for that
reason. Another way to conceal user-triggered changes can be the introduction of
noise in the modification process, but dummy-change operations can be quite costly
in terms of performance for an SNS system.

Access Control Mechanisms

Most of the presented access control related leakages can be approached with more
sophisticated cryptographic schemes. In Persona attribute-based encryption (ABE)
is used to realise group encryption without encrypting the symmetric content key
with the public keys of all recipients. Groups defined by one user can even be
reused by other users without them learning the explicit recipient list (and thereby
enabling friend-of-a-friend access schemes). The attribute access structure stored
with the object, however, might still allow inferences about the audience, e. g. by
the attribute names carrying semantic meaning. The PeerSoN project suggest to
use broadcast encryption schemes that have hidden access structures. Encryption
headers in that case do not reveal anything about the audience of the content.

Communication Flows

In the literature, several protection mechanisms against communication flow anal-
ysis can be found – general ones as well as some explicitly related to SNS. Mix-
network like communication anonymisation is a central part of the approach of the
Safebook project. Information flows are obfuscated by routing them through a mix
of socially related nodes, starting by those that are assumed to be most trusted.
Caching can also mitigate communication flow leakages by minimising message ex-
change in general and decorrelating it from specific user actions. Obfuscation by
noise – e. g. introducing dummy traffic – comes with the cost of higher network load
but might be required in situations where other means are not applicable or not
effective. Careful protocol design can help mitigate leakages as well by making con-
trol messages indistinguishable from content bearing messages. Another approach
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Figure A.2: Summary of metadata leakages and possible countermeasures.

is to make the DOSN protocol and communication patterns difficult to distinguish
from some existing high-volume P2P protocol, such as BitTorrent.

Conclusion

Figure A.2 summarises the critical metadata in DOSNs and possible privacy leak-
ages identified in Section A.4 as well as the approaches to tackle these problems
discussed in Section A.5.

We conclude that while DOSNs have great potential to mitigate inherent pri-
vacy flaws of today’s centralised SNS, simply encrypting the content is not sufficient.
Metadata information like inferences from storage objects, access control mecha-
nisms or traffic has the potential to expose the user to severe privacy threats. Fur-
thermore, new adversaries enter the stage when the SNS has no single provider, as
the decentralised network architecture exhibits more diverse points of attack. Some
of these attacks are easy to protect against but when implementing a DOSN, these
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issues have to be considered in a systematic manner in order to offer comprehensive
privacy protection.

For future work, we plan to further investigate the special characteristics of the
friend-adversary model. The aim is to gain a better insight into which inferences
are possible for a socially close attacker in a DOSN setting where only sparse
sensitive data but extensive background knowledge is available. Furthermore, we
plan to evaluate the efficacy of the discussed countermeasures for concrete DOSN
implementations when more mature code becomes available.
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Abstract

One of the differences between typical peer-to-peer (P2P) and client-server
systems is the existence of user accounts. While many P2P applications, like
public file sharing, are anonymous, more complex services such as decentral-
ized online social networks require user authentication. In these, the common
approach to P2P authentication builds on the possession of cryptographic
keys. A drawback with that approach is usability when users access the sys-
tem from multiple devices, an increasingly common scenario.

In this work, we present a scheme to support logins based on users knowing
a username-password pair. We use passwords, as they are the most common
authentication mechanism in services on the Internet today, ensuring strong
user familiarity. In addition to password logins, we also present supporting
protocols to provide functionality related to password logins, such as resetting
a forgotten password via e-mail or security questions. Together, these allow
P2P systems to emulate centralized password logins. The results of our per-
formance evaluation indicate that incurred delays are well within acceptable
bounds.
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Introduction

Most of the peer-to-peer (P2P) systems deployed today do not authenticate users.
While this is is often acceptable, or even preferable, there are some problems for
which user authentication is a requirement. These include P2P storage, backup,
and online social networks. In such applications, the data accessible to a client
depends on who is using it.

We discuss how to implement a username-password scheme for authentication
in P2P systems. Our goal is to construct an authentication component that can be
reused across different P2P applications, which we assume authenticate via posses-
sion of cryptographic keys. Thus, from an API perspective, the login system shall
allow a user entering a username and a password to recover a set of cryptographic
keys which can then be used by the actual application. These keys can also be
updated as needed by the application.

The goal from an end-user point of view is to emulate current behavior of cen-
tralized password-based login mechanisms. More specifically, we include schemes
to remember logins, change passwords, and provide recovery if a password is for-
gotten. We aim to follow best practice in password authentication, acknowledging
that users often re-use passwords between systems. By remembered logins, we mean
that a user can opt to have a device store information such that it can log in again
without storing the user’s password in plain text on the device. Similarly, password
change requires knowing the old password, and for password recovery, the user is
able to set a new password but does not learn her previous one.

Why password authentication?
There is a rich literature on various approaches to authentication, ranging from the
traditional username-password pair to hardware tokens and biometry. Of these, the
traditional view is that passwords should be replaced by some better mechanism.
However, as argued by Herley and van Oorschot [68], despite significant research
efforts into dislodging passwords, they are still by far the most common authenti-
cation mechanism today. Reasons for their prevalence include simplicity, price, and
very strong user familiarity.

When authentication is required in the P2P setting, it is typically done via
the security-wise stronger mechanism of generating and storing cryptographic keys
on a user’s machine. This approach is taken in systems such as OneSwarm [71],
Safebook [39], and Tribler [2]. This works well until the user wants to access the
service from a second device. To do so, she would need to transfer the keys, or
assume a new identity. This is an added complexity and user-perceived drawback
for P2P services competing against client-server systems.

One concern is that using passwords may lead to added security risks for skilled
and security-conscious users who can easily copy keys between devices. However,
nothing prevents such users from choosing passwords of similar strength as cryp-
tographic keys. Another issue pertains to remembered logins, where one must
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consider theft. We cannot prevent a thief from accessing the user’s account, but
with our protocols, the thief cannot change the user’s password, and the legitimate
user can always revoke the remembered credentials that are on the stolen device.

Our Contribution
We develop and describe a suite of protocols for password authentication in P2P
networks: account registration, login, password change, remembered logins, logout
also of a remote device, and password recovery, following best practices and adapt-
ing standardized criteria from centralized systems to P2P environments, and start
a discussion on usable authentication in P2P systems.

Our password authentication is based on standard cryptographic techniques
and can be used with standard P2P components. As a first step toward a security
analysis, we discuss the security implications of our protocols. Then, we evaluate
the performance of our protocols under various scenarios.

Paper Outline
We discuss related work in Section B.2, give a system overview in Section B.3
and outline our basic scheme for password-based login in Section B.4. We then
describe password recovery mechanisms as extensions to the basic login mechanisms
in Section B.5. Next, we discuss security in Section B.6 and report our evaluation
results in Section B.7 before concluding in Section B.8.

Related Work

The subject of securely establishing stable identities in P2P systems has been pre-
viously studied, for instance by Aberer, Datta and Hauswirth [3]. The need for
identities mainly arose from technical concerns, such as handling dynamic IP ad-
dress assignment, or avoiding Sybil attacks [46]. Authentication of a node is done
via a signature key, automatically generated and stored on the node.

As P2P systems began providing more complex functionality [71, 39, 2, 88],
the need to authenticate users, rather than nodes, arose. It seems that often,
authentication via a signature key has been carried over to this problem. While a
solution of automatic identification of a node is preferable as long as users use a
single device, equating a node with a user fails as users increasingly access services
from multiple devices.

Illustrative is the case of backup systems, where an important use case is to
restore data on a different system from where it was backed up. Here, two different
approaches to authentication have been taken. All approaches build on encrypting
backed up content, and the approaches vary in whether the keys are randomly
derived [88], or derived from a password [38]. In the former case, a user must
manually back the keys up, as these keys are required to restore the backup. The
systems deriving a key from a password are related to our proposed protocol, and
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use some related techniques. However, to the best of our knowledge, they do not
consider the additional protocols required surrounding password authentication,
such as remembered logins, and recovering lost passwords.

Some P2P storage systems also use techniques which are related to ours. For
example, the DHT-based systems GNUnet and Freenet use keyword strings to
derive a public-private key pair whose private key is used to sign data and the hash
of the public key to identify the data in the storage. Both of these systems use a
keyword string as a seed to a pseudo-random number generator that produces the
key pair [36, 19]. Knowing only the memorable keyword string the user can store
and retrieve information.

Related to forgotten passwords, recovery of information in a P2P scenario has
been studied by Vu et al. [132] who proposed a combination of threshold-based
secret sharing with delegate selection and encrypting shares with passwords.

Frykholm and Juels [58] proposed a password-recovery mechanism based on
security questions very similar to our protocol for the same task. They offer better,
information-theoretic security properties, something not applicable to our scenario.
We treat the subject of password change, which is not applicable to their scenario,
although their proposal could be extended to support password change using our
techniques.

System Overview and Assumptions

We have designed our system around standard primitives, as depicted in Figure B.1.
In particular, our protocols build on: a DHT [139, 74], for user lookup; a peer
sampling protocol [73, 23] for randomly choosing peers; and a distributed stor-
age [20, 110] for storing data required for our solution. Both the DHT and dis-
tributed storage are P2P protocols, run by the peers participating in the system.
The storage could be implemented as a DHT, or even be the same as the user
lookup DHT. However, we put different requirements on the user lookup DHT and
the distributed storage, as detailed below.

To make the system flexible across different implementations, we require as
few non-standard features as possible. The exception to this is the DHT that
handles account registration, mapping each registered username to a reference in
the storage. For resilience against account hijacking, we propose modifying the
DHT to be write-once on keys: once an account has been registered, nobody else
can register that username.

From the DHT we require two operations, put(key, value), and get(key). The
put operation associates the value with the key, and subsequent get operations on
that key will return the value. As the DHT is write-once, a second put operation
with the same key will not affect the system state.
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Figure B.1: Overview of the system.
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The distributed storage functions for data manipulation are similar to the DHT,
with three differences: we allow the distributed storage to select the “filename” for
us; we require that data can be updated; and we assume (minimalistic) access
control when writing. We refer to what is stored in the distributed storage as files,
to simplify our description. While the storage component can be implemented as a
distributed file system, we emphasize that our requirements are significantly weaker
than full file system semantics.

We formalize the API to the storage as having three operations.
First, create(data) which generates a new file and returns a filename. Second,
write(filename, data) that overwrites the file filename with content data. Third,
read(filename) which reads the content from a file. Our security does not re-
quire overwritten data to be inaccessible, so a solution similar to GNUnet [19] or
Freenet [36] where a new version is stored and pointed to suffice in our protocols.

We require the storage system to support some minimalistic access control. Each
stored file has an owner, which is the user who created the file. Only the owner can
perform the write operation. To authenticate ownership of files, we assume that a
public-key cryptographic system is used.

Finally, for the peer sampling component, we require a getPeer() method, re-
turning a randomly selected peer, with a distribution close to uniform.

Password-based P2P Login

For password-based authentication in P2P systems, the basic functionality involved
is registering an account, and logging in. We also consider password change and
remembered logins, allowing a device to store sufficient information to log in later
without asking for credentials anew. Following recommendations from the ISO
27002 standard [70], we define the following requirements for our login procedure
and add our own (preceded by a star) to account for several devices.

• passwords should neither be stored nor transmitted in clear text

• a user should be able to choose her own passwords and change them

• files with passwords should be stored separately from application data

? a user should use the same password to log in from any device

? it should not be possible to recover a password by stealing a device with
remembered credentials

? it should be possible to block access to the account from a stolen device

The standard also defines limitations for password login procedures that our system
cannot provide fully due to the lack of rate-limiting possibilities in P2P networks:
to limit the number of unsuccessful login attempts and the maximum and minimum
time allowed for the login procedure. Adapting a multi-party password hardening
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scheme [56] could, in future work, be a way to achieve similar properties in a P2P
network. Besides this limitation, our protocols fulfill the requirements as outlined
in the standard, and our own added requirements.

We now describe our protocols based on the system model from Section B.3.
Figure B.2 shows the information objects and their storage locations, with arrows
for the abstract flow of the login procedure, Table B.1 lists the terms used in the
algorithms.

Figure B.2: Storage Locations (boxes) and Login Procedure (arrows)

Account Registration

To register a new account (see Algorithm 1), the user first has to choose a user-
name uname and a password passwd. Next, the user creates a key store file FKS ,
containing all the keys used by the P2P application the user wants to log in to
(and an additional storage key, authenticating write operations on this file). The
user then creates a symmetric key KKS , encrypts the file content with this key
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Table B.1: Protocol Terminology

uname Username
passwd Password
salt Random byte string
KW Cryptographic key for write authentication
FKS Key store file
fKS File name of FKS

KKS Cryptographic key (used to encrypt FKS)
FLI , fLI ,KLI Login information file, its file name and key
FDL, fDL,KDL Device login information file, its file name and key
D,DID User device and the identifier of D
Kx1,Kx2, . . . Cryptographic keys for usage after logging in
devmap Mapping from device identifiers to device login infor-

mation files and corresponding keys

and puts the ciphertext into the storage, obtaining a file name fKS . Now, the user
creates a login information file FLI by creating a random byte string salt, deriving
a symmetric key KLI from the password passwd and the salt, encrypting fKS ,
KKS and KW (a generated storage key, required for overwriting FLI later) with
KLI . The salt and the three encrypted values are put into the storage, obtaining a
file name fLI . The salt is stored in plaintext, so that the user later can derive the
decryption key KLI by only providing the password. Finally, the user performs the
write-once operation put on the DHT with uname as key and fLI as value. If the
username was taken, the user is prompted for a new username. Once all operations
have succeeded, the user is registered in the system.

Algorithm 1 Account Registration
1: uname← User.input(“Choose username:”)
2: passwd← User.input(“Choose strong password:”)
3: KKS ← generateKey()
4: FKS ← encryptKKS

(Kx1||Kx2|| . . . )
5: fKS ← Storage.create(FKS)
6: salt← generateSalt()
7: devmap← createMap()
8: KLI ← KDF(salt,passwd)
9: KW ← generateKey() // suitable for the storage system
10: FLI ← salt||encryptKLI

(fKS ||KKS ||KW ||devmap)
11: fLI ← Storage.create(FLI) // using KW

12: while DHT.put(uname,fLI) fails
13: uname← User.input(“Choose new username:”)
14: end while
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Login
Once registered, a user is able to log in – that is, to retrieve the cryptographic keys
stored in the key store file FKS – from any device by only entering her username and
password (see Algorithm 2). A get request with the parameter uname to the DHT
results in the filename fLI for the login information file FLI . This file is retrieved
from the distributed storage and contains the salt in plaintext. The latter is fed
into a key-derivation function together with the user password to derive the key
KLI . This key allows the user to decrypt all other content of the login information
file, including the filename fKS of the key store file and the corresponding key
KKS . Finally, the user fetches the key store file FKS from the storage system and
decrypts it, using KKS . This concludes the login procedure as the user is now in
possession of the keys Kx1,Kx2, . . . , required by the P2P application.

Algorithm 2 Login
1: fDL,KDL ← Device.readLocalStore()
2: if fDL 6= NULL then // non-interactive login
3: FDL ← Storage.read(fDL)
4: fKS ,KKS ← decryptKDL

(FDL)
5: saveLoginLocally ← False
6: else // interactive login
7: uname← User.input(“Enter username:”)
8: passwd← User.input(“Enter password:”)
9: saveLoginLocally ← User.input(“Remember?”)
10: fLI ← DHT.get(uname)
11: FLI ← Storage.read(fLI)
12: salt← FLI .salt // stored in plaintext
13: KLI ← KDF(salt,passwd)
14: fKS ,KKS ,KW , devmap← decryptKLI

(FLI)
15: end if
16: FKS ← Storage.read(fKS)
17: Kx1,Kx2, · · · ← decryptKKS

(FKS)
18: if saveLoginLocally then
19: KDL ← generateKey()
20: FDL ← encryptKDL

(fKS ||KKS)
21: fDL ← Storage.create(FDL)
22: Device.writeLocalStore(fDL||KDL)
23: devmap.append(Device.ID, fDL||KDL)
24: FLI ← salt||encryptKLI

(fKS ||KKS ||KW ||devmap)
25: Storage.write(fLI ,FLI) // using KW

26: end if

If the user chose to remember the login information on the local device, a new
device login information file FDL is created and saved to the storage system (which
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returns a filename fDL). This file contains the filename fKS of the key store file
as well as the according key KKS and is encrypted with a new key KDL. On the
device, only the filename fDL and the key KDL are stored locally. Additionally, a
reference to the device login information file is stored in the devmap value of the
login information file FLI . It contains a mapping from a device identifier to the
filename and key of the device login information file, allowing password changes
and device revocation as described later.

When the user wants to log in from the same device again, the locally stored
values (fDL,KDL) are used to retrieve the device login information file, decrypt it,
and thereby gain access to the key store file. Thus, the remembered login feature
allows the user to log in without entering the password, while nothing password-
related is stored on the device. Furthermore, remembered logins remain valid even
if the P2P application changes keys in the key store file.

Password Change
Before the user can change the password, she must log in using her password to
obtain KLI . With this information, the password change can be accomplished (see
Algorithm 3): the user is asked for a new password and a new salt is generated.
The key-derivation function is used to generate a new key Knew

LI for the login infor-
mation file. Then, the content of the key-store file is fetched and decrypted (with
the old key). A new key Knew

KS is generated and used for encrypting the key-store
content again before it is saved to the storage system, obtaining a new filename
fnew

KS . Finally, the login information file is updated: fnew
KS ,Knew

KS , the write creden-
tial KW as well as a new empty device mapping devmapnew are encrypted with
the new key Knew

LI . Together with the new salt, this ciphertext is written to the
distributed storage, using the reference fLI and the credential KW , to authenticate
the write operation. Lastly, the keys stored in the key store should be updated
by the application using our P2P protocol. See Section B.6 for a discussion. At
this point, old device login information files can also be deleted from the storage to
reclaim space.

Logout
To log out from the system, the user does not have to interact with the DHT or the
storage system. Simply wiping her local cache from application data and all key
material restores the pre-login state. If the user chose to remember the login on
a device, the corresponding device login information file FDL can also be deleted
from the storage.

A problem related to logging out is revoking remembered credentials on another
device, e. g., a user’s stolen phone. To accomplish this, we first run the password
change operation, which locks out all devices with remembered logins, because the
key store key KKS changed (as well as the filename fKS). Next, we use the device
mapping devmap to inform all devices about the new key (and filename), except
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Algorithm 3 Password Change
Input: uname,Kold

LI

1: fLI ← DHT.get(uname)
2: F old

LI ← Storage.read(fLI)
3: fold

KS ,K
old
KS ,KW , devmapold ← decryptKold

LI
(F old

LI )
4: passwdnew ← User.input(“Enter new password:”)
5: saltnew ← generateSalt()
6: Knew

LI ← KDF(saltnew,passwdnew)
7: devmapnew ← createMap()
8: F enc−old

KS ← Storage.read(fold
KS)

9: FKS ← decryptKold
KS

(F enc−old
KS )

10: Knew
KS ← generateKey()

11: F enc−new
KS ← encryptKnew

KS
(FKS)

12: fnew
KS ← Storage.create(F enc−new

KS )
13: Fnew

LI ←
saltnew|| encryptKnew

LI
(fnew

KS ||Knew
KS ||KW ||devmapnew)

14: Storage.write(fLI ,Fnew
LI ) // using KW

15: Refresh keys stored in key store
16: Old device login information files may be deleted

the device that is to be revoked. To inform a device about the change, we update
the corresponding values in the device’s login information file FDL which can be
accessed from the device by using the locally stored credentials.

Algorithm 4 describes this necessary extension. After running the password
change operation, all devices that should not be revoked and that have remembered
logins (and therefore are referenced in the device mapping devmap) are processed.
The device login information filename fDL and its key KDL are read, and the new
key store key Knew

KS and filename fnew
KS are written to the device login information

file FDL, encrypted under the device key KDL. Finally, the modified devmap is
saved back to the login information file FLI .

Algorithm 4 Logout Other Device
1: ... // run Algorithm 3 (Password Change)
2: deviceToLogout← User.input(“Select device:”)
3: devmap.remove(deviceToLogout)
4: foreach DID in devmap // all devices to keep
5: fDL,KDL ← devmap.get(DID)
6: FDL ← encryptKDL

(fnew
KS ||Knew

KS )
7: Storage.write(fDL,FDL)
8: end
9: ... // save modified devmap back to FLI
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Password Recovery

An important part of password-based logins is the possibility for users to recover
their accounts if they forget their passwords. We refer to this as a password re-
covery mechanism. The goal of a password recovery mechanism is to provide a
secondary way of authenticating the user. There are a number of password recov-
ery mechanisms used in practice. In our experience, three of the most common
ones are password hints, security questions, and e-mail based recovery. Other ap-
proaches (beyond the scope of this paper) include vouching for identity by social
contacts [25], or using trusted devices.

Password hints means that the user may enter a hint at the same time as she
sets this password. The hint will be displayed to her if she forgets her password,
and should be selected such that it helps her recall her password, but does not
make it significantly easier for someone else to guess it. The hint is not truly a
secondary authentication mechanism, but rather a means to recovering the original
password-based authentication mechanism. A basic version of password hints would
be straightforward to implement in our system: the hint can be stored in plaintext
in the login information file. Security questions and e-mail based password recovery
are more complex to adapt. We described their implementation in detail after listing
requirements.

As in Section B.4 for the login procedure, we define a set of functional require-
ments for password recovery, based on the ISO 27002 standard [70] as follows. We
also augment the list with requirements of our own (preceded by a star).

• establish methods to verify the identity of a user prior to allowing the user to
choose a new password

• communicate with those affected by or involved with recovery security inci-
dents

• have procedures to allow recovery and restoration of business operations and
availability of information in a time-scaled manner

• a legitimate user should be able to recover lost (forgotten) or broken (device’s)
keys

? the recovery procedure should allow a user to set a new password, not reveal
the old password

? the process of recovery should be easy to use

? sensitive information for recovery should be kept secret

Our protocols support these requirements. The sole exception is that if a password
is reset via security questions alone, the system would not “communicate with
those affected” (e.g., send an e-mail notification that the password had been reset,
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as is common in centralized services). We remark that the last item is a stronger
property than many centralized systems provide. In our system, no one learns the
answers to a user’s security questions. We consider this to be important, since
many systems use similar security questions.

The operations described in this section imply minor additions to the protocols
of Section B.4, i. e., invoking the update procedures after each password change
(to sustain transaction safety, the updates have to be included in the final write
operation of the password change operation).

Table B.2: Recovery Protocol Terminology

Security Question Recovery
qSi (n, k)-secret sharing share of KLI

Qi Security challenge question
Ai Answer to question Qi

qsalti Random byte string
qKi Key to encrypt the share qSi

E-mail Based Recovery
KR Long-term recovery key
eSi (n, k)-secret sharing share of KR

email Recovery e-mail address of the user
peeri Randomly selected peer
esalti Random byte string (to seed the e-mail commitment)
ksalti Random byte string (to seed the key eKi)
Ci Cryptographic commitment to the e-mail address
eKi Key to encrypt the share eSi

Security Questions

Security questions is a password recovery technique that relies on answers to ques-
tions the user is asked during registration. The answers should be such that they
cannot be easily guessed or researched by an attacker, but still stable over time,
memorable, and definite [119]. Rabkin [108] underlines the importance to choose
good questions especially in the era of social networks. Frykholm and Juels [58]
discuss a related technique that is similar to our adaption of this scheme.

We assume that the user provides n answers Ai to suitable security questions
Qi. In order to recover the password, we require the user to answer any k out
of these n questions correctly. The choice of k constitutes an obvious trade-off
between security and usability. A successful recovery yields the key KLI to the
login information file, allowing the user to change the password, using Algorithm 3.
Our implementation does not require the user to provide new answers after a reg-
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ular password change. Additionally, we avoid storing the plaintext answers to the
security questions.

For the setup of the question based recovery mechanism (Algorithm 5), we first
create n shares qS1, . . . , qSn of the key KLI under an (n, k)-secret sharing scheme.
For each of these shares, we create a salt qsalti, derive a key qKi from this salt
and the answer Ai, and use it to encrypt the share, yielding qSenc

i . Furthermore
we encrypt the key qKi with the login information file key KLI , for the update
procedure described later. Finally, the login information file is extended with all
questions Qi, the salts qsalti, the encrypted shares qSenc

i and the encrypted keys
qKenc

i . When recovering, the user has to reproduce at least k answers, which
together with the stored salts can be used to derive k keys qKi, which in turn can
decrypt k shares qSi.

When KLI changes (e. g., due to a regular password change), we update the
recovery information as in Algorithm 6: for the new key Knew

LI , a new set of shares
is created. Next, the keys qKi are decrypted and used to encrypt the new shares.
Neither the keys qKi nor the salts salti change, so the user can still use the same
answers for recovery. Finally, the updated shares (and re-encrypted keys, to allow
further updates) are saved back to the login information file.

Algorithm 5 Security Questions Setup
1: qS1, . . . , qSn ← createShares(n,k,KLI)
2: for i← 1, n do
3: Qi ← User.input(“Enter question i:”)
4: Ai ← User.input(“Enter answer i:”)
5: qsalti ← generateSalt()
6: qKi ← KDF(qsalti,Ai)
7: qSenc

i ← encryptqKi
(qSi)

8: qKenc
i ← encryptKLI

(qKi)
9: end for
10: add to FLI : qSenc

i , qKenc
i and the plaintext values of Qi, qsalti ∀i ∈ {1, . . . , n}

Algorithm 6 Security Questions Update (on KLI change)
1: qSnew

1 , . . . , qSnew
n ← createShares(n,k,Knew

LI )
2: for i← 1, n do
3: qKi ← decryptKLI

(qKenc
i )

4: qSnew−enc
i ← encryptqKi(qSnew

i )
5: qKnew−enc

i ← encryptKnew
LI

(qKi)
6: end for
7: update in FLI : qSnew−enc

i , qKnew−enc
i ∀i ∈ {1, . . . , n}
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E-mail Based

In e-mail based password recovery, the user is sent an e-mail containing some in-
formation, typically a link with a token, by which she can reset her password. This
link is sent to an e-mail address she has registered with her account.

We adapt this scheme by randomly choosing a number of peers, that collab-
oratively provide this functionality to the user. We use (n, k)-secret sharing to
enable password recovery even if not all of the involved peers are online when the
user wants to recover the password. We discuss parameter choices of k and n in
Section B.7.

To provide persistence of the recovery mechanism independent of a changing key
KLI (e. g., due to a password change), the result of the recovery process is a recovery
key KR, that always encrypts the current version of KLI . Algorithm 7 describes the
setup procedure: From the recovery key KR, n shares eS1, . . . , eSn are generated
using (n, k)-secret sharing. For each share, a random peer peeri is picked, two salts
esalti and ksalti are created and a cryptographic commitment Ci is derived from
the salt esalti together with the email. This commitment will be used to authorize
the user to the peer, and bind it to this specific e-mail address. Next, a key eKi,
to encrypt the share eSi, is derived in the same way as the commitment, but with
salt ksalti. A different salt is needed so that the peer cannot decrypt the share
(before learning the address). The commitment and the encrypted share are stored
at the peer. The login information FLI file is extended with a list of the chosen
peers peeri and the according salts esalti, ksalti, as well as Kenc

LI , encrypted with
the recovery key, and the recovery key, encrypted with KLI (to allow for password
changes).

Algorithm 7 E-mail Recovery Setup
1: KR ← generateKey() // long-term recovery key
2: Kenc

LI ← encryptKR
(KLI)

3: eS1, . . . , eSn ← createShares(n,k,KR)
4: email← User.input(“Enter recovery e-mail address:”)
5: for i← 1, n do
6: peeri ← getPeer()
7: esalti ← generateSalt()
8: ksalti ← generateSalt()
9: Ci ← KDF(esalti,email) // commitment
10: eKi ← KDF(ksalti,email)
11: eSenc

i ← encrypteKi
(eSi)

12: store at peeri: Ci, eS
enc
i

13: end for
14: Kenc

R ← encryptKLI
(KR)

15: add to FLI : Kenc
LI ,K

enc
R and the plaintext values of peeri, esalti, ksalti ∀i ∈

{1, . . . , n}
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To recover the password (Algorithm 8), the user looks up the available infor-
mation in the login information file, including the list of peers to be requested for
assistance. Each request is authorized by the commitment Ci, that the peer can
derive from the salt esalti and the e-mail address, that the user provided (Algo-
rithm 9). If the request was legitimate, the peer sends the encrypted share to the
e-mail address. As soon as the user collected k answers, she can recover KLI .

Algorithm 8 E-mail Recovery: User
1: uname← User.input(“Enter username:”)
2: email← User.input(“Enter e-mail:”)
3: fLI ← DHT.get(uname)
4: FLI ← Storage.read(fLI)
5: Kenc

LI ;∀i : peeri, esalti, ksalti ← FLI // plaintext part
6: ∀i : send (email, esalti) to peeri // send n requests
7: eSenc

1 , . . . , eSenc
k ← read e-mail // wait for k e-mails

8: for i← 1, k do
9: eKi ← KDF(ksalti,email)
10: eSi ← decrypteKi

(eSenc
i )

11: end for
12: KR ← useShares(eS1, . . . , eSk)
13: KLI ← decryptKR

(Kenc
LI )

14: ... // run Algorithm 3 (Password Change)

Algorithm 9 E-mail Recovery: Peer
Stored: Ci, eS

enc
i // stored at peer

Input: email, esalti // provided by the user request
1: if Ci = KDF(esalti,email) then // legitimate request
2: sendMail(email,eSenc

i )
3: end if

To provide long-term persistence of this recovery mechanism, Kenc
LI has to be

updated whenever KLI changes. Algorithm 10 describes the necessary steps, in-
cluding updating Kenc

R to allow subsequent updates.

Algorithm 10 E-mail Recovery Update (on KLI change)
1: KR ← decryptKold

LI
(Kenc

R )
2: Kenc−new

LI ← encryptKR
(Knew

LI )
3: Kenc−new

R ← encryptKnew
LI

(KR)
4: update in FLI : Kenc−new

LI ,Kenc−new
R
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Combining Approaches

The approaches presented above can be composed, either sequentially or in paral-
lel. By sequential composition, we mean that the user must both correctly answer
security questions and receive e-mail. By parallel composition, we mean that either
mechanism can be used alone to recover the password. The latter is achieved by
using both systems in parallel.

For sequential composition, the user picks a uniformly random string r of the
same length as KLI . The user stores r in one of the mechanisms, and KLI⊕r in the
second mechanism, where ⊕ denotes the exclusive-OR operation. If one recovers
both of these, KLI can be computed. If one learns only one of the pieces, nothing is
gained, as both r and KLI ⊕r are uniformly random. More generally, to combine n
mechanisms in arbitrary ways, (n, k)-secret sharing can be used. What we describe
here are two trivial such schemes for n = 2.

Security

The goal we set is to emulate the security provided by a centralized solution. Some
security risks are inherent to the password functionality, and apply regardless of
implementation technique. For instance, in e-mail based recovery, an attacker com-
promising the victim’s e-mail account can reset her password.

In this section, we elaborate on security concerns of our protocols. We do
not have full cryptographic security proofs of our protocols, something which is
important future work.

Concerning safety, we have designed our protocols such that persistently stored
data remains in a consistent state if the protocol is aborted at any point. Some
protocols may, if an operation fails, leave orphan files in the storage. If our protocol
for revoking remembered credentials is interrupted, it may revoke more devices than
intended. Apart from this, our operations have transactional semantics, assuming
small writes (both creation, and updates) to the storage are atomic operations and
that operations block until successful.

Adversary Model

To capture the concept of collusions, we consider an adversary that corrupts a
number of nodes. Upon corruption, the adversary gains all information known
to that node, and in the case of an active adversary, can also control its future
actions. The adversary can also make requests to the underlying system, e. g., read
files from the distributed storage. As almost all our protocols mainly operate on
publicly readable (encrypted) data, this ability is important. The only computation
made by nodes different from the one logging in are in verifying write operations,
and in e-mail based password recovery.
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Risks in Used Components

As our protocols make use of several standard components, vulnerabilities in those
components can also affect our system. For instance, an adversary may prevent a
user from logging in by attacking the victim’s ability to read her login information
file from the distributed storage. We note that there are many security techniques
in DHTs that can mitigate such threats, and refer to Urdaneta et al. [129] for a
recent survey.

Offline Guessing

An issue in password authentication based on a (distributed) file system is that
the information required to verify a password attempt is inherently exposed. This
means that in our scheme, we cannot prevent an attacker from mounting an offline
attack against our encrypted passwords. This is a considerable drawback from
centralized schemes, where the encrypted password database is kept protected.

As a partial mitigation, we utilize a KDF with a per-user salt. This forces
an attacker to evaluate the KDF individually for each user on a password guess,
defeating parallel attacks against multiple users. We recommend the system be
instantiated with a slow KDF, such as bcrypt [107] to throttle offline guessing. The
protocol could be modified to reduce storage by using the username as a salt, but
we recommend against that as it would be vulnerable to pre-computation (before
the system is started, or between instances using the same KDF) attacks against
common username-password pairs.

The problem of a server performing offline attacks against its password database
was treated by Ford and Kaliski [56]. Their techniques are client-server based, and
require all servers to be online for a login. We leave it as future work to investigate
modifying their protocol to be applicable also in a P2P setting. This would prevent
offline guessing attacks.

Colluding Nodes in E-mail Based Recovery

In the mechanism for e-mail based recovery, we employ (n, k)-secret sharing, and
secrets are stored on n random nodes in the system. If an attacker controls k or
more of these nodes, she can recover the secret and access the victim’s account. In
Section B.7 we discuss the choice of these parameters.

A peer sampling protocol is used to select the n nodes where the shares are
stored. An active attacker may influence this protocol, in order to ensure that she
controls k out of the selected nodes. This can be mitigated by a peer sampling
protocol designed to tolerate active attacks, such as Brahms [23].

The protocol is designed to reveal only minimal information to the peers. Thus,
even when colluding, peers have to get hold of both, the salt ksalti and the recovery
e-mail address email to mount an attack. The e-mail address will be revealed to a
peer only when the user initiates the recovery process. Malicious peers might try to
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guess it earlier, but to verify guesses either ksalti or esalti are required. These are
stored in the login information file of the user, which can only be found knowing
the username. Therefore the setup process should be anonymous, where the peer
does not learn the username of the user for whom it stores the share.

Updating Application Keys

When a password is changed, or device is revoked, access is effectively revoked from
future updates to the key store. However, a malicious device may have stored the
last keys it was able to access. Thus, in the password update procedure (which
is also used for device revocation), the keys for the P2P application itself need to
be updated, and then these new keys need to be written to the key store. How to
update them, if possible, is beyond the scope of this paper, as it is a functionality
of the application protocol.

Denial-of-Service

An adversary may mount a DoS attack by writing many user names into the DHT,
thus blocking those from registration by legitimate users. This attack is also possi-
ble in centralized systems, but there detection and counter-measures (e.g., removing
the fake accounts) is significantly easier. One can solve this issue by assuming a
lightweight CA dealing only with checking user identification before account cre-
ation, similar to Safebook [39]. We remark that this attack only target the avail-
ability of registration of a new user account, it does not affect existing users.

A related attack can occur when an adversary can prevent a user from accessing
some of the data required to log in (e.g., by controlling all replicas holding the
victim’s entry in the DHT). In such attacks, existing users can be prevented from
logging in, possibly permanently by overwriting or deleting the key. This illustrates
the importance of applying security techniques for underlying components [129] and
indicates a large replication factor should be chosen.

Security Summary

Aside from the concerns outlined, we believe that our schemes produce a similar
level of security as client-server based password authentication schemes. The cryp-
tographic design of our protocols relies on relatively standard techniques. This
leads us to be confident that the security of our protocols can be formally proven
using cryptographic techniques.

We also provide some features which are not commonly present in centralized
systems. One of these is the ability to revoke stored credentials from only some
specific devices. A second one is the ability to set up e-mail based password recovery
without revealing your e-mail address before recovery actually occurs, offering an
additional privacy protection.
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Evaluation

We developed two lightweight custom simulators, one to evaluate the efficiency and
security of our protocols, and one to assist in setting the n and k parameters for
e-mail based password recovery. For the performance analysis, we take as input
the time to perform required cryptographic operations, as well as the time of our
network operations. For the analysis of n and k parameters, we need data on node
uptime to evaluate the availability of the password recovery system for a given
choice. We used latency data from Jiménez et al. [74], and node availability data
from Rzadca et al. [116].

To measure the computational cost of the necessary cryptographic operations
in a prototype implementation, we used OpenSSL’s built-in benchmark function
on a 2.26GHz Core 2 Duo running Mac OS X, as well as an ARM 1GHz Cortex-
A8, similar to modern smart phones. The times for all required cryptographic
operations (using DSA as a public-key scheme) was negligible, below 5ms (2ms on
the faster CPU).

As our protocols can be applied with any DHT and file storage combination,
we used the BitTorrent Mainline DHT as an example for our numeric performance
evaluation. Jiménez et al. [74] recently ran experiments to evaluate the performance
of their proposed algorithmic improvements. From their measurements, we received
a CDF for the latency of real-world DHT lookups. We assume that all our network
operations, writes and reads, both from DHT and distributed storage, take the
same amount of time as a DHT lookup in their study. This can be motivated, as
our distributed storage could be implemented via a DHT. We remark that their
measurements are performed with a “warmed up” client with filled routing tables
for the DHT. Thus, these numbers may be overly optimistic for a newly started
client.

Finally, we believe, node availability will vary considerably between applications.
As a representative case, we considered a distributed storage system by Rzadca
et al. [116], which featured such data in their evaluation. In the distribution, 10%
of nodes have availability 95%, 25% have availability 87%, 30% have availability
75%, and 35% have availability 33%. To this rough distribution, Gaussian noise
with σ = .1 is added, and the resulting availability is capped between 3% and 97%.

Performance
We believe that the main performance-critical operation is logging in [115]. We
believe that for all other operations, latency on the order of a few seconds can be
acceptable, and even a minute if they are run in the background. Thus, we only
present results for logging in, but note that as the operations for other protocols are
similar, results are expected to be similar. The performance cost of our protocols
is dominated by network operations. However, to slow down password guessing
attempts, one may wish to force the key derivation procedure to be slow, to the
point of making that cost dominant.
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Figure B.3: CDF for login latency in three modes: First time login, remembered
logins, and first time login after password entry (pre-fetch). Network operations
are assumed to have costs of BitTorrent mainline DHT lookups, using NR128-A
(solid lines) or µTorrent strategy (dashed lines) [74].

Table B.3: Latencies of protocols, in milliseconds.

Network Op. [74] First Login Remem. Login
DHT median 99th median 99th median 99th

NR128-A 164 567 650 1362 346 915
µTorrent 647 5140 3299 10154 1456 7148

When evaluating the protocols, we parallelized network operations where possi-
ble. Logging in for the first time and remembering the credentials for future logins
is then a sequence of two network operations, followed by key derivation, followed
by three parallel network operations. In a password login, it is also possible to
pre-fetch some of the information after the user has entered her username, but be-
fore she enters her password. In particular, as soon as the username is known, the
filename FLI can be retrieved from the DHT, and the file can be read. Decryption
of the file and further processing is then only possible after the user enters her
password. To evaluate this speed-up, we computed the time it takes to finish the
login after the user has entered her password. The time to fetch the two files is
identical to the time to do a remembered login, and it is sufficiently small that the
data can realistically be retrieved while the user is typing her password.

To determine the sensitivity of our performance to implementation characteris-
tics, we evaluated our protocol for two different client strategies in the BitTorrent
Mainline DHT: The NR128-A algorithm [74], and the µTorrent client’s implementa-
tion. We present these performance numbers in Figure B.3 and Table B.3. Firstly,
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we observe that with a fast storage, our login protocol is very fast, with a median
login time of 650ms the first time, and 346ms for remembered logins. Comparing
the results, we observe that our protocols are indeed sensitive to storage latency.
While performance results building on µTorrent data are slightly above recom-
mended levels [127], we still consider them within range of acceptability for P2P.

When evaluating these numbers, we assumed that the run-time of the KDF
function is negligible. As a system designer, one may wish to pick a slow KDF
(e. g., bcrypt [107]), as this slows down password guessing attempts. Any latency
intentionally added via the KDF would affect the first-time login (after the password
entry) times.

Parameters for E-mail Password Recovery

There are trade-offs between availability, security, and storage space in our e-mail
based password recovery protocol.

For the selection of k, the minimum number of peers required to recover the
password, there is a direct trade-off between security and availability. Lower choices
of k increase the risk of an adversary, controlling a significant number of nodes, to
break into the user’s account. A higher k reduces the availability of the recovery
functionality, which reflects the chances of a user to immediately succeed with the
password recovery. However, if the user does not instantly receive k answers, she
can simply wait until enough peers are online.

We believe a reasonable choice of parameters is n = 16 and k = n/2. With
these numbers, using the availability data from Rzadca et al. [116], there is a
96% probability of immediate recovery of a lost password. A very strong attacker,
corrupting 25% of the nodes in the system, would still only be able to access the
user’s account with probability 3%. The analysis of parameter choice here is similar
to any P2P system using secret sharing, and we refer to e.g., Vu et al. [132] for a
more in-depth discussion.

Scalability

The latency of our protocols will scale similarly to DHTs or other distributed stor-
age systems. The data we used for evaluation is based on measurements on the
largest deployed DHT, demonstrating that performance is good with extremely
large user numbers. Performance may in fact be worse for a small system, as there
are then fewer nodes, meaning that it is less likely to find data at a nearby node.
To bootstrap the system with good performance when it is small, a very simple
distributed storage using one or a few super-nodes would be one approach. Storage
requirements per user are also small, with a few files per user and small file sizes.
From this, we conclude that our system is likely to scale well with the number of
users.
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Conclusions and Future Work

The pros and cons of password-based authentication have been extensively de-
bated. We believe that for some applications, a username-password pair provides
an appropriate level of security. We argue that incorporating a well-known au-
thentication scheme may assist in user adoption of P2P systems for more complex
tasks than file sharing. To the best of our knowledge, ours is the first work to
focus on password-based logins in a P2P setting, including mechanisms to recover
a forgotten password. Our protocols are new (but our security questions are similar
to [58]), relatively straightforward, and we believe, they are an important first step
towards usable authentication in P2P.

The performance of our mechanisms in terms of delay varies according to the
underlying DHT or P2P system in general and in relation to how much intentional
delay is added by parameterizing cryptographic functions. Overall, however, our
evaluation results show that for user satisfaction [115], the delays can be kept at a
very acceptable level [127].

While we have provided an initial discussion of the security properties of our
protocol here, future work will include a thorough security analysis. Our scheme
allows offline password guessing attacks, which will also be addressed in future
work.
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Abstract

User search is one fundamental functionality of an OSN. When building
privacy-preserving DOSNs, the challenge of protecting user data and making
users findable at the same time has to be met. We propose a user-defined
knowledge threshold ("find me if you know enough about me") to balance the
two requirements. We present and discuss protocols for this purpose that
do not make use of any centralized component. An evaluation using real
world data suggests that there is a promising compromise with good user
performance and high adversary costs.

Introduction

Popular Online Social Networks (OSNs) are logically centralized systems. The
massive information aggregation at the central provider inherently threatens user-
privacy. Data leakages, whether intentional (e. g., selling of user data to third
parties) or unintentional (e. g., by attacks from outsiders), happen regularly1. Mo-

1To name only two examples: Twitter leaking data from 250K users in Febru-
ary 2013 (http://blog.twitter.com/2013/02/keeping-our-users-secure.html), Face-
book selling user data (http://www.telegraph.co.uk/technology/facebook/8917836/
Facebook-faces-EU-curbs-on-selling-users-interests-to-advertisers.html).
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tivated by this insight, Decentralized Online Social Networks (DOSNs) have been
proposed to mitigate the threats. When decentralizing a system, two challenges
have to be met: to implement equal functionality without centralized components,
and to provide user privacy under a significantly different threat model.

Here, we look at the functionality of user search, i. e., the lookup of a system-
specific user identifier (e. g., a URI of a profile) based on information about the
user (e. g., name, city, affiliation). The ability to search for users, in conjunction
with other ways of traversing the social graph (e. g., friendlist of friends), is a basic
building block of an OSN that allows users to find each other and thereby establish
links.

Our Contribution

We propose and evaluate protocols to support user search in a decentralized OSN
that shield user data from parties who know less than a user-specified threshold
amount of information about the target. To our knowledge, formalizing the use of
this consideration is a novel application of knowledge-based access control. This
type of restriction was inspired by an observation by Fong et al. [55] that being
able to reach a user in an OSN is an integral part of access control in such systems.

We evaluate our protocols using real world data from the U.S. census to relate
the performance for legitimate users to the costs of an adversary attempting to
guess unknown information.

Related Work

To the best of our knowledge the privacy-findability tradeoff has not been formally
investigated in this context. The closest example is user search in Skype. However,
as far as we know, their protocol has not been described in detail, but only via
external measurement studies, such as one by Baset and Schulzrinne [17].

Most user search functionalities, including ours, search for users within the
global user database of the OSN, independently of who searches. In contrast, we
note that recently, Facebook has debuted Graph search [48], which ties searching
to the social graph, and where the goal is not only to find users, but also content.
Several other approaches of personalized searching for content in an OSN have also
be discussed, e. g., by Bai et al. [15] in a decentralized setting.

Although designed specifically to search for users in a DOSN, some challenges
are shared with constructing a general purpose search in a peer-to-peer (P2P)
setting. This has been studied by e. g., Li et al. [86], and Bender et al. [18].
There is also a commercial search engine using P2P, Faroo [50]. Two differences
are our focus on access control and privacy, and the significantly smaller amount
of information to be indexed in our setting. Similar to these proposals, we also
build upon a Distributed Hash Table (DHT) as a core component to realize our
functionality.
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Figure C.1: System overview: The search protocols are one component of the DOSN
and makes use of a DHT.

Decentralized User Search Protocol

As we design search protocols for a decentralized system, we cannot assume any
trusted third party or central search provider to be available. Instead, we use a
DHT to register and look up search terms, as it is a common component of DOSNs.
As the DHT runs on nodes participating in the system, we must also protect the
privacy of the participants against these nodes.

We propose two protocols, both designed to index and retrieve information in
a DHT in a protected way. Our protocols provide two operations. A register
operation, where users enter information that allows others to find them based on
certain attributes, and a search operation that, given a set of search terms, returns
the set of matching user identifiers. In a next step, out of the scope of the search
protocols described here, these user identifiers can be used to view public profiles,
and to send a message or friend request to the found user. Figure C.1 illustrates
the search functionality.

Protocol Specification

We consider a searcher, who wants to find a searchee. The searchee registers search-
able information about herself in the DHT by choosing a number n of attribute
labels li (e. g., lastname, firstname, city) and assigning each one2 value vi. This
label-value pair (denoted as attribute ai) is mapped to a user identifier uid of the
searchee. Upon registration the searchee specifies a threshold number t of attributes
which the searcher must know in order to obtain the user identifier.

Storing Values in the DHT

The DHT holds a mapping from user attributes to user identifiers, but this mapping
must be protected, also against the nodes in the DHT. To this end, we propose

2For simplicity we assume that each attribute can be assigned only exactly one value.
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a protocol that alters how values are added and retrieved from the DHT. The
required property is to retain standard DHT functionality, while nodes in the DHT
do not learn plaintexts of keys or values.

When storing a key-value pair the key is fed into a Key Derivation Func-
tion (KDF) together with a global salt gSalt, yielding the DHT-key for the put and
get operations of the DHT. The value is encrypted using a secret that is derived
from a random salt salt and the key (the attribute information, in our case). The
salt is stored together with the ciphertext on the right hand side of the mapping.
In short, the mapping of a key-value pair in the DHT looks like this:

KDF(gSalt,key) 7→ salt||encryptKDF(salt,key)(value)

The gSalt has to be publicly available for all users to allow the lookup of any
attributes. This invalidates the purpose of a salt, as pre-computing tables to reverse
the left hand side becomes possible again. Nevertheless, we suggest to keep the
gSalt as it at least requires the pre-computation attack to be targeted to each
specific instance of our system and off-the-shelf pre-computed tables for the used
KDF cannot be employed.

The salt is an individual random number different for every entry. Note that
it in particular has to be different from gSalt as otherwise any DHT node could
decrypt the value of items it stores, using the left hand side (without knowing the
key).

Scheme 1: Storing all Allowed Attribute Combinations

We want a searcher to prove knowledge of a threshold number of attributes before
obtaining the user identifier. One direct approach to achieve this is to map the
user identifier only from attribute concatenations of the threshold length. If the
searchee registered e. g., seven attributes and specified that at least four of them
are necessary to find her uid, we would store the following

(7
4
)

= 35 combinations:
a1||a2||a3||a4 7→ uid
a1||a2||a3||a5 7→ uid
...
a4||a5||a6||a7 7→ uid

where ai = (ui, vi), ui attribute labels and vi attribute values. We assume there is
a canonical order of attributes (e. g., a lexicographic order of labels), and attributes
are sorted by this order before concatenation.

Algorithms 11 and 12 describe the protocol in more detail. For registration, all
attribute combinations of length t are mapped to the user identifier and stored in
the DHT according to the procedure described in Section C.2. When searching,
all provided search attributes are ordered and used to query the DHT (after the
Section C.2 transformation). If the result is empty or does not contain what the user
was looking for, all subsets of the provided search attributes are subsequently tried,
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Algorithm 11 Registration (Scheme 1)
1: l1, . . . , ln ← User.input(“Choose searchable attribute labels (e. g.,

name,city,...)”)
2: v1, . . . , vn ← User.input(“Enter values (your name, your city,...)”)
3: ai ← li||vi // for i = 1 . . . n
4: t← User.input(“Enter threshold number of attributes necessary to find you.”)
5: for all ordered sequences ap|| . . . ||aq of length t do
6: key ← ap|| . . . ||aq

7: dhtkey ← KDF(gSalt,key)
8: salt← generateSalt()
9: value← uid
10: dhtvalue← salt|| encryptKDF(salt,key)(value)
11: DHT.put(dhtkey,dhtvalue)
12: end for

ordered by decreasing number of elements. The final result will contain the user
identifier of the searchee (and possibly more hits from other users that registered
the same attributes) if the number of attributes searched for is greater or equal
than the threashold specified by the searchee.

Algorithm 12 Search (Scheme 1)
1: l1, . . . , ls ← User.input(“Choose attribute labels to search for (e. g.,

name,city,...)”)
2: v1, . . . , vs ← User.input(“Enter attribute values (a name, a city,...)”)
3: ai ← li||vi // for i = 1 . . . s
4: for i← s, . . . , 1 do // while result set is empty or the user requests more

results
5: for all ordered sequences ap|| . . . ||aq of length i do
6: key ← ap|| . . . ||aq

7: dhtkey ← KDF(gSalt,key)
8: for salt, ciphertext in DHT.get(dhtkey) do
9: uid← decryptKDF(salt,key)(ciphertext)
10: add uid to result set if decryption was successful
11: end for
12: end for
13: end for

One shortcoming of this scheme is that for sufficiently large numbers of n and t,
the number of combinations might become infeasible for storage space constraints
and KDF computation latencies during registration. Requiring e. g., 5 out of 20
registered attributes would yield 15504 combinations.
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Scheme 2: Storing Each Attribute Individually
An alternative approach, overcoming the large number of combinations generated
by Scheme 1, is to store each attribute individually. In order to require a threshold
number of attributes to find the user identifier, a single attribute does not map
directly to the uid but to an encrypted version. The key used for the encryption is
based on a secret sharing scheme and one share is stored with each of the attributes.
Instead of using the shared key directly, it is fed into a KDF together with an
individual salt. This indirection allows us to independently tune the costs for
requesting shares for one attribute (determined by the DHT latency and the KDF
described in Section C.2) and for trying to combine them (determined by the KDF
used here). Furthermore, a bloom filter bfi is attached to each share, to help finding
the right shares to combine with, which is important for popular attributes with
large response sets:
a1 7→ share1||bf1||salt1|| encryptKDF(salt1,sk)(uid)
...
an 7→ sharen||bfn||saltn|| encryptKDF(saltn,sk)(uid)
where sk can be recovered with t of the shares share1 . . . sharen.

The bloom filter that is stored with each share is created using all other n− 1
shares belonging to the same key sk. To avoid the case in which two bloom filters
for a related set of shares look similar, we introduce an individual salt for each
bloom filter, which is used to modify elements before insertion. Thus, with each
bloom filter bfi, we store a salt bfsalti, and when adding or querying for an element
(a share in our case) in bloom filter bfi, we first hash the element together with the
bfsalti. E. g. instead of bfi.add(share), we do bfi.add(hash(bfsalti, share)),
where hash() is a cryptographically strong keyed hash function.

Algorithms 13 to 16 describe the protocol in more detail. When combining the
shares in the search protocol, the bloom filter information is used to reduce the
number of possible combinations. Note that for two sets of shares (and attached
bloom filters) two reductions are possible: First a share in set one is fixed and its
bloom filter is used to reduce set two. Then, for all remaining shares in set two, their
bloom filters can be used to determine if they fit to the fixed share of set one. If not,
they are removed from set two as well. This generalizes; for n sets, in expectancy the
number of matches will be reduced by a factor of exp(bloomfactor,

∑
i∈1...n 2(i−1)),

where bloomfactor is the false positive probability of the bloom filter.

Extensions
Weighting of attributes. Some attributes might be easier to guess for an at-
tacker than others because they have a lower entropy or represent more public
information that is easy to research from system external sources. We therefore
want to give the users the ability to weight attributes, that is, differentiating their
contribution for reaching the threshold number t. In Scheme 1, this is straightfor-
ward to implement: instead of registering all attribute combinations with a certain
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Algorithm 13 Registration (Scheme 2)
1: l1, . . . , ln ← User.input(“Choose searchable attribute labels (e. g.,

name,city,...)”)
2: v1, . . . , vn ← User.input(“Enter values (your name, your city,...)”)
3: ai ← li||vi // for i = 1 . . . n
4: t← User.input(“Enter minimum number of attributes necessary to find you.”)
5: sk ← generateKey()
6: share1, ..., sharen ← createShares(t,n,sk)
7: for i← 1, . . . , n do
8: key ← ai

9: dhtkey ← KDF(gSalt,key)
10: bf ← createBloomFilter({sharej |j 6= i}) // using salted bloom filter
11: salt← generateSalt()
12: kE , kS ← KDF(salt,sk) // derive keys to encrypt and sign
13: ciphertext← encryptkE

(uid)
14: value← sharei||bf ||salt||ciphertext|| MACkS

(ciphertext)
15: dhtsalt← generateSalt()
16: dhtvalue← dhtsalt|| encryptKDF(dhtsalt,key)(value)
17: DHT.put(dhtkey,dhtvalue)
18: end for

number of attributes, we only register combinations whose weighted sum meets the
threshold.3 For Scheme 2, more work has to be done, to implement this function-
ality. A possible approach is, to first pick a granularity number g for the weighting
factor (the number of discrete values the weighting factor can take). Instead of
storing only one share with each attribute, 1 to g shares will be stored with each
attribute depending on the weight for this attribute. The threshold number will be
adjusted accordingly (e. g., multiplied by g). To hide the weight of an attribute, all
attributes with less than maximum weight will store dummy shares. Following a
convention to first store the real shares and than append dummy shares, the addi-
tional work (for legitimate users as well as adversaries) – when trying combinations
of share values – is guessing this split-point between real and dummy shares for
each attribute (e. g., for g = 10 and 4 shares, a factor of 10000).

Dummy-attributes for Plausible Deniability. Introducing plausible denia-
bility for leaked personal information can mitigate the consequences of privacy
breaches. This can be accomplished by adding random dummy-attributes along
with the real attributes. Thus, the adversary cannot be sure if an attribute that
she found to be related to a user is a real one or a generated fake entry. Dummy-

3More precisely: only those combinations where the weighted sum is greater or equal the
threshold and the removal of any included attribute would yield a weighted sum less than the
threshold.
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Algorithm 14 Search (Scheme 2)
1: l1, . . . , ls ← User.input(“Choose attribute labels to search for (e. g.,

name,city,...)”)
2: v1, . . . , vs ← User.input(“Enter attribute values (a name, a city,...)”)
3: ai ← li||vi // for i = 1 . . . s
4: setOfShareSets← ∅
5: for i← 1, . . . , s do
6: key ← ai

7: dhtkey ← KDF(gSalt,key)
8: shareSet← ∅
9: for each (dhtSalt, dhtCiphertext) ∈ DHT.get(dhtkey) do // more than

one result possible
10: share||bf ||salt||uidCiphertext||mac ←

decryptKDF(dhtSalt,key)(dhtCiphertext)
11: shareSet.add((share, bf)) // also remember salt, uidCiphertext, mac
12: end for
13: setOfShareSets.add(shareSet)
14: end for
15: sk ← reduceAndCombineShares(setOfShareSets, ∅) // recovers sk iff s ≥ t
16: salt, uidCiphertext,mac← lookup values for successful shares // see line 11
17: kE , kS ← KDF(salt,sk)
18: uid← decryptkE

(uidCiphertext) // and validate mac using kS

attributes come, however, with the trade-off of increasing false positive matches
for legitimate users. Furthermore, they can be debunked by adversaries with back-
ground knowledge. Finally, they might make brute-force attacks easier, as dummy-
attributes increase the total number of attributes but not the threshold number of
required attributes.

Threat Model

All information that the user gives away or generates while interacting with the
system has to be considered as possibly sensitive. This comprises general admin-
istrative information (existence in system, date of registration, user-identifiers),
entered information during registration (attributes, i. e., label-value pairs), search
query data (who searches for whom, which previously unknown attributes are used
to specify search-target) and behavioural data (online times, frequency of search-
ing/registering/updating information).
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Algorithm 15 reduceAndCombineShares (Scheme 2)
Input: setOfShareSets, chosenShares
Output: sk
1: if |setOfShareSets| = 0 then// base case: try to recombine candidate shares
2: sk ← useShares(chosenShares)
3: if sk valid then
4: return sk // for simplicity, return only the first valid key
5: end if
6: return None
7: else // otherwise recurse
8: S ← setOfShareSets[0]
9: SRest← setOfShareSets \ S
10: for (share, bf) ∈ S do
11: SRestReduced← reduceShareSets(share, bf, SRest)
12: result←

reduceAndCombineShares(SRestReduced, chosenShares||share)
13: if result 6= None then
14: return result
15: end if
16: end for

// if nothing was returned yet, try not to pick any share from the current set
17: return reduceAndCombineShares(SRest, chosenShares)
18: end if

Algorithm 16 reduceShareSets (Scheme 2)
Input: share, bf, setOfShareSets
Output: reducedShareSets
1: reducedShareSets← ∅
2: for S ∈ setOfShareSets do
3: for share′, bf ′ ∈ S do
4: if not checkBloomFilter(share′, bf) then
5: S.remove(s′)
6: end if
7: if not checkBloomFilter(share, bf ′) then
8: S.remove(share′)
9: end if
10: end for
11: reducedShareSets.append(S)
12: end for
13: return reducedShareSets
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Adversaries and Their Capabilities
All agents in the system can possibly act in malicious ways. This comprises nodes
involved in the DHT storage, passive traffic observers and active adversaries, i. e.,
malicious users that can perform search and register operations. Their capabilities
range from sniffing traffic and performing traffic analysis (e. g., analyzing query
sizes), crawling the DHT (performing massive search operations) or analyzing data
they might store, to actively inserting data into the DHT.

Example instances of these adversary models are curious users of the system,
targeted attacks from parties with background knowledge about the target user
(e. g., testing specific attributes of this user, also learning from negative results), or
crawling attacks that aim to harvest information for e. g., spammers, targeted ad-
vertisement or insurance companies. We cannot perform a comprehensive security
and privacy analysis of the protocols, taking into account all mentioned user assets
and adversary capabilities. Instead, we will focus on several specific attacks and
present one of them in more detail.

Subset Crawling Attack Scenario
The proposed protocols are trying to balance findability and privacy. Thus, they
cannot provide perfect protection. In the worst-case of a targeted attack, an adver-
sary with profound background knowledge about the target user will likely succeed.
For example protecting the user identifier cannot be accomplished if the adversary
knows as many attributes about the target user as legitimate users do. At the
same time we assume that both schemes protect the users fairly well from large-
scale crawling attacks as the search space of all possible attribute combinations is
too large to brute-force and the protocols transform the registered user data in a
way that inferences from the publicly stored data are infeasible. If an adversary
chooses to constrain her effort to only crawl the data of a specified subset of the
user-base, her chances might be better. We therefore focus on what we call a Subset
Crawling Attack. In this scenario, the adversary chooses a number of sensitive at-
tributes and tries to identify all users of the system that registered that attributes.
For example, the adversary could try to identify all users working at a specific com-
pany by fixing the attribute "workplace" and then brute-forcing a set of identifying
attributes such as "name", "firstname" and "city".

Privacy Evaluation

In the following we will evaluate the costs for an adversary to perform a Subset
Crawling Attack and compare this to the search costs of legitimate users. We
assume that a person’s first name, last name, and the city the person is located
at are identifying attributes and at the same time among the most popular search
attributes. These attributes might be rather public information or easy to research,
so we assume that users combine them with other, less public attributes. According
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to the Subset Crawling Attack scenario we assume that the adversary fixes at least
one of the other attributes and tries to brute-force the identifying attributes.

Data sources

To get evaluation results reflecting realistic distributions of values for identifying
attributes, data from the U.S. census was used as input for the following calcula-
tions.

Distributions of U.S. last names were taken from [143, Table 1]. The data
shows that there are 4 Million last names in total. 7 last names occur more than
1 Million times in the U.S. population. The top 3012 last names are shared by
55% of the population, the top 1 Million names are shared by 98.5%. The last
name frequencies roughly resemble a power law distribution. Frequencies of U.S.
first names were taken from [130]. The data is split into "male" and "female" first
names. For our calculations we merged them assuming an equal distribution of
the two categories. For U.S. cities, we used a dataset listing the population of all
cities with more than 50000 inhabitants [131]. The data closely resembles a Zipf
distribution. For the remaining population, we made a worst-case assumption of
being distributed equally to cities with 50000 inhabitants (worst-case in the sense
of getting less diversity for this attribute).

The validity of the evaluation results is therefore based on the assumption that
the system’s user base is a representative subsample of the U.S. population. In
the following calculations we furthermore assume that all users registered all three
attributes. A source of errors in our evaluation is that we treat these attributes as
independent, because we were not able to find any statistics on joint distributions.

Brute-force Probabilities Scheme 1

We investigate the success probability of an adversary, when trying to guess iden-
tifying attributes by brute-force, i. e., searching the whole value space. We assume
the adversary will try most likely values (those registered by most users according
to the value distribution in the population) first. Figure C.2 shows the number
of combinations to test in order to cover a certain percentage of the user popula-
tion. This corresponds to the costs of an adversary, as in Scheme 1, to try one
combination, one KDF operation plus one DHT get operation are necessary. For
single attributes between 180 and 3000 combinations are enough to find a target
with 50% success probability (4600 to 60 Million combinations for 100%). When
the combination of two attributes has to be guessed, this increases to around 107

combinations for 50% success probability and up to 1015 combinations to search
the whole value space.
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Figure C.2: CDF of brute-force success after trying a certain number of combina-
tions (most likely ones first) for different attributes.

Brute-force Probabilities Scheme 2

In Scheme 2, bruteforcing works slightly differently. We assume, that the adver-
sary knows some attributes (the fixed attributes that specify the subset to crawl,
e. g., "workplace") and tries to guess other attributes (the identifying attributes).
For each known attribute the adversary can issue a query and gets back a set
of shares, each share having one bloom filter attached. Each share stems from
a user who registered this specific attribute, i. e., a label-value combination (e. g.,
"workplace":"KTH") – several shares occur if several users registered the same com-
bination (e. g., one from each user that registered their workplace as "KTH"). For
an unknown attribute, the adversary will enumerate all possible values of the label-
value combination (e. g., all possible lastname values for the attribute "lastname")
and issue one DHT query each (after having performed a KDF operation to com-
pute the DHT-key). This will result in one set of shares for each of the queries,
again each share having one bloom filter attached. To know which share in each set
should be picked, the bloom filters can be used to reduce the possible combinations.
To test one combination, a second KDF operation (that might be tuned differently)
has to be performed.

Figure C.3 shows the work to be done for a legitimate user searching for three at-
tributes and an adversary, who knows one attribute and tries to guess two unknown
attributes. Additionally, the ratio of the legitimate user’s cost to the adversary’s
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Figure C.3: Legitimate user searching for 3 attributes vs. adversary guessing 2 of
them. Ratios depending on the adversaries strategy to search the value space.

cost is plotted, distinguishing two strategies of the adversary to search the value
space: Either less popular values are tested first ("ratio") or more popular values
first ("ratio biggest first").

Other Attacks

Existence Testing i. e., finding out if a user is registered in the system or not
(without knowing enough attributes) is not possible in Scheme 1 and actively pre-
vented in Scheme 2: Encrypting the user identifier under different keys (due to dif-
ferent salts) yields different ciphertexts and the bloom filters are salted differently.
This is important as otherwise, searching e. g., for a certain firstname-lastname com-
bination and getting the same ciphertext on the right hand side or similar bloom
filters, reveals that there is a person with that firstname-lastname combination reg-
istered in the system, even if the person specified that more than two attributes
are necessary to find her.

Search Query Data can give away information about the searcher (e. g., whom
she is interested in) as well as previously unknown information about the searchee.
A worst case example for the latter would be search queries that contain more
information about the searchee than the searchee herself registered in the system.
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An adversary observing these queries can at least probabilistically learn more in-
formation about the searchee.

This attack does, however, require the adversary to reverse the KDF operation
that transformed the plaintext attribute combination (denoted key in the pseu-
docode) into a derived dhtkey. For Scheme 1, the search protocol tries longer com-
binations first, which are harder to reverse. For successful search operations, this
prevents the searcher from issuing queries with a lower number of attributes than
specified by the searchee as threshold. Unsuccessful search operations will, however,
issue eventually queries with only one attribute in the key. For Scheme 2, every
DHT-query is derived from only one attribute, so successfully reversing the KDF
might be more likely in this case. One mitigation would be to obfuscate the query
origin (e. g., by using a different Tor circuit for each query), but time-correlation
attacks could still be successful.

Replaying an observed search query does not help an adversary if she is not able
to reverse the KDF operation (transforming a dhtkey value back in a key value),
because without the key value, she cannot decrypt the result of the search query.

Impersonation is not prevented by our protocols as they do not try to solve the
general authentication problem. Although the uid should be signed by the searchee
and its signature validated by the searcher after it was found (not described by our
protocols), this does not keep an adversary from setting up a fake profile for John
Doe and register the attributes "firstname:john", "lastname:doe" into the DHT,
mapping it to the uid of the fake profile.

Discussion

The results presented in the previous section describe the gap between the search
effort of a legitimate user and the cost of an adversary trying to find user identifiers
despite knowing fewer attributes than required. For Scheme 1, the former is con-
stant in terms of DHT operations, the latter depends on the number and kind of
unknown attributes, as shown in Figure C.2. The adversary’s costs for only one at-
tribute are rather low, as expected. They can be tuned by KDF parameters but this
will also affect the performance for legitimate users. The gap increases, however,
combinatorially with the number of attributes the adversary has to guess. Already
for two unknown attributes this might frustrate an attack: When tuning the KDF
operations to take one second (delay for a legitimate user), an adversary with the
same computational power as the user would need about 6 weeks to find the correct
combination with 50% probability. The gap is not a global system parameter but
can be tuned by each user individually (by choosing an individual threshold t for
the registered information) but also depends on the adversary’s knowledge about a
target user. Scheme 2 can be tuned to achieve adversary costs comparable to that
of Scheme 1, at the cost of slightly more work for legitimate users.
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Apart from that, Scheme 1 has several advantages, compared to Scheme 2. It
does not leak partial negative results, while Scheme 2, independently of any user
thresholds, can reveal that a certain attribute combination is not registered in the
system. For example, when searching for a certain lastname and workplace, and
none of the shares of the two result sets are compatible according to the bloom
filters, one learns that no user with this lastname registered this workplace. Fur-
thermore, in Scheme 1 the adversary cannot make use of knowledge about other
attributes of the user to decrease the search space for the identifying attributes.
In Scheme 2, each additional attribute the adversary knows about the user, pro-
vides additional bloom filters to reduce the size of the result sets for the identifying
attributes. Moreover, in Scheme 1 the user can specify even more fine-grained re-
strictions than only a minimum number of attributes. This makes weighting of
attributes straightforward (see Section C.2), but can even be used to explicitly
exclude certain attribute combinations that the user does not want to be found by.

The advantage of Scheme 2 is the lower number of items to store in the DHT
for each user. In Scheme 1, besides the higher storage load for the DHT, this is
mainly a problem for registering a user, as for each of the attribute combinations
also one KDF has to be computed. While this could be solved by accepting a longer
delay for the registration operation and let it run in the background, the higher
number of combinations might, however, also incur problems for search queries in
certain cases. When over-specifying the search target in Scheme 1 (i. e., providing
a number of attributes that is greater than the searchee’s threshold t), successively
all subsets of the attributes have to be queried while in Scheme 2 the number of
DHT queries is always equal to the number of specified search attributes.

Conclusion and Future Work

We presented two approaches to realize a targeted user search in a DOSN. The
search protocols implement a knowledge threshold, allowing the users to protect
their user identifier from adversaries that do not possess enough information about
them while legitimate users, who know enough about the searchee, are able to find
her. We described the protocols in detail, sketched a threat model, and evalu-
ated selected properties using real world data. The evaluation yielded insights into
the brute-force costs of an adversary, which depend on the user defined knowledge
threshold and the knowledge of the adversary about the target user. The results
suggest that for a subset crawling attack, the proposed protocols offer promising
protection against an adversary that tries to brute-force at least two or three iden-
tifying attributes.

One open problem to be investigated in future work is the possibility of com-
bining the two presented approaches. Building on Scheme 2, several attributes that
have a rather small value space could be combined in the way it is done in Scheme 1,
thus avoiding the high number of combinations while still leveraging the advantages
of Scheme 1.
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Abstract

Online social networks have an infamous history of privacy and security
issues. One approach to avoid the massive collection of sensitive data of all
users at a central point is a decentralized architecture.

An event invitation feature – allowing a user to create an event and invite
other users who then can confirm their attendance – is part of the stan-
dard functionality of online social networks. We formalize security and pri-
vacy properties of such a feature like allowing different types of information
related to the event (e. g., how many people are invited/attending, who is
invited/attending) to be shared with different groups of users (e. g., only in-
vited/attending users).

Implementing this feature in a privacy-preserving Decentralized Online
Social Networks (DOSN) is non-trivial because there is no fully trusted bro-
ker to guarantee fairness to all parties involved. We propose a secure decen-
tralized protocol for implementing this feature, using tools such as storage
location indirection, ciphertext inferences and a disclose-secret-if-committed
mechanism, derived from standard cryptographic primitives.

The results can be applied in the context of privacy-preserving DOSNs,
but might also be useful in other domains that need mechanisms for coopera-
tion and coordination, e. g., collaborative working environment and the corre-
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sponding collaborative-specific tools, i. e., groupware, or computer-supported
collaborative learning.

Introduction

The most common form of Online Social Networks (OSNs) are run in a logically
centralized manner (although often physically distributed), where the provider op-
erating the service acts as a communication channel between the individuals. Due
to the popularity of these services, the extent of information the providers oversee
is vast and covers a large portion of the population. Moreover, the collection of
new types of sensitive information from each individual simply keeps increasing
[122]. Users of these centralized services not only risk their own privacy but also
the privacy of those they engage with. Whether intentional, or unintentional, data
leakages [121], misuse [89] or censorship are some of the issues affecting the users.

Decentralization has been proposed to reduce the effect of these privacy threats
by removing the central provider and its ability to collect and mine the data up-
loaded by the users as well as behavioral data. A Decentralized Online Social
Network (DOSN) should provide the same features as those offered in centralized
OSNs and at the same time it must preserve the privacy of the user in this different
scenario. The latter is not straightforward, as in addition to the decentralization
challenge itself, new privacy threats arise when the gatekeeper functionality of the
provider that protects users from each other disappears [62].

One of the standard features of OSNs is the handling of event invitations and
participation, i. e., a call for an assembly of individuals in the social graph for a
particular purpose, e. g., a birthday celebration, demonstration, or meeting. There
is usually metadata related to each event, such as date, location and a description.
An implementation of this feature must provide security properties to the partic-
ipants, e. g., that a user can verify that an invitation she received was actually
sent by the organizer. Furthermore, it must support certain privacy settings. For
example, an organizer could choose that only invited users learn how many other
users were invited and that only after a user has committed to attend the event,
she learns the identities of these other invited users.

Realizing this in a decentralized scenario is non-trivial because there is no
Trusted Third Party (TTP) which all involved users can rely on. This is a problem,
especially for privacy properties where information shall only be disclosed to users
with a certain status, because any user should be able to verify the results to detect
any possible cheating. In the example above, a neutral, trusted broker could keep
the secret information (the identities of invited users) and disclose it only to users
who committed to attend the event. This would guarantee fairness to both the
organizer and the invited users. It becomes more challenging to implement this
without a central TTP and still allowing different types of information about the
event to be shared with different groups of users in a secure way.
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Our contribution
We describe and formally define two basic and five more complex security and
privacy properties for the event invitations feature.

We propose and discuss a distributed and privacy-preserving implementation of
the event invitations feature without using a TTP. The suggested protocols cover
all of our defined properties, considering 20 different parameter combinations for
the tunable privacy properties.

We also describe three privacy-enhancing tools that we use in our implemen-
tation: storage location indirection, controlled ciphertext inference and a commit-
disclose protocol. They are based on standard cryptographic techniques such as
public key encryption, digital signatures and cryptographic hashes, and can be
useful for other applications as well.

Paper Outline
We discuss related work in Section D.2, describe the problem of implementing the
event invitation feature in a decentralized way and formalize security and privacy
properties in Section D.3. Our proposed implementation together with privacy-
enhancing tools follow in Section D.4, and we discuss this solution in Section D.5.
We conclude with a summary and future work in Section D.6.

Related work

Groupware tools have been widely researched since they were first defined in 1978 by
Peter and Trudy Johnson-Lenz [77]. Choosing between centralized and distributed
implementations has been a major concern for these applications as pointed out
in [109]. While the traditional model uses the client-server architecture [128, 87],
there have been some projects on decentralized collaborative environments: Peer-
to-pEer COLlaborative Environment [47], a P2P multicast overlay for multimedia
collaboration in real-time, although synchronous; YCab [28], a mobile collaborative
system designed for wireless ad-hoc networks; or a hybrid P2P architecture with
centralized personal and group media tools in [146].

Security features in collaborative applications were already introduced in the
popular client-server platform for businesses, IBM Notes/Domino (formerly Lotus
Notes/Domino), to allow for usable authentication, and digital signature and en-
cryption by means of a Public Key Infrastructure (PKI) to end-users [148]. Control
policies in computer-supported collaborative work are considered in [112], including
distributed architectures.

Protocol design guidelines in collaboration scenarios, where the privacy of a
group member does not lessen by participating in the environment, have been
studied and proposed in [82]. These guidelines aim at minimizing the amount of
information a member has to provide to the group for the common activities, and
making the protocols and the tasks transparent to everyone in the group.
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Another type of related work lies within the domain of DOSNs [14, 39, 49]. To
the best of our knowledge the event invitations feature has not been investigated
in a privacy-preserving manner in this decentralized scenario.

Decentralizing The Event Invitation Feature

We already described the intuition of an event, where a group of people gathers
with the intention of carrying out some activity. Now we more formally model the
event invitation feature and desirable security and privacy properties. We denote
the set of users as U = u1, . . . , un. The event invitation happens in three main
stages:

• Creation: When a user ui ∈ U decides to create a new event ek, she be-
comes the organizer oek

and creates the event object eventk including different
information, e. g., a description, date, time and location.

• Invitation: The organizer oek
selects the set of users to be invited to the

event ek, denoted by Iek
, crafts the invitation objects iuj

ek for each of these
invitees, and sends them to the respective users.

• Commitment: The invitees Iek
have the chance of confirming the invitation,

i. e., “commit” to attend the event ek, by issuing commitment objects cuj
ek . We

denote the set of all attendees, i. e., the users who committed to the event ek,
as Cek

.

Figure D.1 shows an example with eight users, u1 . . . u8, where one of them, u1,
is the responsible organizer oek

of the event ek. The organizer issues invitations
to u2 . . . u6, depicted with a dashed line. These users form the group of invitees,
denoted with Iek

. Invited users who confirm their attendance, (u2, u4 and u6 in
this example), provide a commitment to the organizer, depicted with a continuous
line. They form the group of attendees, denoted with Cek

.
A possible privacy setting could specify that invited users learn how many other

users are invited but only attending users learn their identities. That is, u3 and u5
would learn that five users are invited (while this is kept secret from u7 and u8).
u2, u4 and u6 would additionally learn the identities of Iek

= u2 . . . u6.

System Model and Assumptions
In the following, we assume basic functionalities of popular OSNs to be available in
a decentralized manner, such as user search [63] and user messaging [114]. We also
assume that users are identified by a public key and the ability to verify the identity
of other users via some sort of PKI, which can be realized in a decentralized manner,
e. g., a “Web of Trust” model or a Bitcoin block-chain binding friendly usernames
to public keys [57]. Moreover, we rely on a distributed storage featuring access right
management, e. g., that a certain storage object is only writeable by a specific user,
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Figure D.1: Example of one event invitation.

and “append-only” storage objects, where new data can be appended, but existing
data cannot be modified or removed without notice. The latter can be realized
in a decentralized fashion, e. g., in a similar manner as the Bitcoin block-chain is
secured against modifications [95].

Threat Model

We assume that users in all roles, e. g., invited users or the organizer of an event,
might act maliciously, i. e., become adversaries. The capabilities of an adversary
range from passively learning information accessible in that role (e. g., an invited
user might have access to a list of all other invited users, depending on the pri-
vacy settings for the event), to actively interacting with other parties, e. g., writing
arbitrary data to accessible storage objects or sending arbitrary messages to other
users. We also assume that powerful adversaries might have the possibility to per-
vasively monitor a large fraction of the network traffic. While we try to mitigate
threats like traffic analysis and correlation attacks arising from this, we cannot
completely protect against them and come back to this in the discussion section.
We do not assume that adversaries can subvert the storage layer. So we assume
the availability of a secure distributed storage including features like append-only
lists and authorization mechanisms, as mentioned above.

We want to keep malicious users from undermining the reliability of the event
invitation feature for legitimate users. This means that an adversary should not
be able to violate the security and privacy properties that we define in the next
section. This comprises guaranteeing the authenticity and non-repudiation of state-



88 ARTICLE D. EVENT INVITATIONS IN DOSNs

ments made by the involved parties, such as issued invitations or commitments.
Furthermore it includes keeping information such as the identities of invited/at-
tending users, the number of invited/attending users or a private event description
secret from unauthorized users while guaranteeing its availability and authenticity
for legitimate users. An example for the latter would be to keep an organizer from
withholding or lying about the number of attending users. We do not focus on
denial-of-service attacks and leave them for future work.

Security and Privacy Properties
A protocol for event invitations can comply with different security and privacy
properties. We first list the following basic security properties:

• A user uj can prove that she was invited to the event ek if and only if the
organizer oek

invited uj, i. e., issued an invitation iuj
ek .

This property is two-sided and guarantees that a user cannot forge an invita-
tion she did not get, while an organizer cannot deny that she invited a user.
This implies that an invitation iuj

ek is tied to a user uj that was chosen by the
organizer oek

and cannot be transferred to another user.

• An organizer oek
can prove that the invited user uj committed to attend the

event ek if and only if uj actually committed, i. e., issued a commitment cuj
ek .

This property also has two sides. The organizer cannot forge a commitment
of a user that did not commit to the event. And a user cannot deny that she
committed to an event once she did so.

More challenging properties are those defining which groups of users are allowed to
see what information, namely,

Invitee Identity Privacy (IIP)

For an event ek, only a chosen set of users (e. g., U , Iek
, Cek

or only oek
) learns

who else is invited (i. e., sees all members of Iek
).

This property defines who can see information about who is invited to an event.
This can be all users (U) or be restricted so that only other invited users see
who else is invited (Iek

). Another possibility is that even an invited user first
learns who else is invited when she committed to attend (Cek

). Finally, this
information could be kept completely secret, so only the organizer oek

knows the
complete list of invited users.
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Invitee Count Privacy (ICP)

For an event ek, only a chosen set of users (e. g., U , Iek
, Cek

or only oek
) learns

how many users are invited (i. e., learns |Iek
|).

This property is a variant of property IIP where the number of the invited people
Iek

is disclosed to a set of users (while the identities of the invited people might
remain hidden).

Property IIP and ICP are closely related in the sense that if IIP holds for a certain
set of users, then ICP trivially holds for the same set (and all its subsets – note the
subset relation of the possible sets to choose from, U ⊇ Iek

⊇ Cek
).

This constrains the possible combinations of these two properties’ parameters. If,
for example, for a certain event all invited users Iek

should see who else was invited,
i. e., property IIP with parameter choice Iek

, then it does not make sense to choose
that only the attendees Cek

should learn the number of invited people, i. e., property
ICP with parameter choice Cek

, because the invited users can already derive this
information from what they learn from property IIP.

Attendee Identity Privacy (AIP)

For an event ek, only a chosen set of users (e. g., U , Iek
, Cek

or only oek
) learns

who is attending (i. e., sees all members of Cek
).

Attendee Count Privacy (ACP)

For an event ek, only a chosen set of users (e. g., U , Iek
, Cek

or only oek
) learns

how many users are attending (i. e., learns |Cek
|).

Similarly to properties IIP and ICP, these two properties specify who can see infor-
mation about the users who committed to attend an event. Property AIP defines
who can see the identities of the attendees while property ACP defines to whom
the number of attendees is disclosed. The same relation, regarding the possible
parameter choices, as described for properties IIP and ICP, also holds here.

Attendee-only Information Reliability (AIR)

An invited user uj can only get access to the private description dS
ek

of the event
ek once committed and the organizer oek

can only claim the attendance of the
user uj once the private description dS

ek
is available to uj .

This property has two sides. First, a user uj can only get access to information
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exclusive to the attendees Cek
, i. e., the private description dS

ek
from the organizer

oek
for an event ek, if she has committed to attend. Second, and conversely, the

organizer oek
can only claim that user uj has committed to attend if she has

made it possible for uj to access the private description dS
ek
.

Implementation

We now propose an implementation of the event invitation feature described in
Section D.3 in a privacy-preserving DOSN. We assume that user identifiers ui are
public keys, and we will denote their corresponding private keys as uS

i (where S
stands for “secret”).

System Components
The main components of the system are event objects, invitation objects and com-
mitment objects as depicted in Figure D.2.

• Event object: When a user wants to create a new event, she first generates
a public/private keypair ek/eS

k . The public key will become the identifier for
the event and the user will be denoted as organizer oek

. She then assembles
the event object eventk: She writes a public event description dek

and a
private description dS

ek
that will be encrypted with a symmetric key PDK.

She creates one list to store the invitation objects (invite-list) encrypted with
a symmetric key ILK, another list for the commitment objects (commit-list)
and one for disclosing secret information to committed users (disclose-list).
The event object contains links ILL, CLL and DLL, pointing to the storage
locations of these three lists. Additionally the organizer creates a list of
public/private keypairs rk1/rk

S
1 , . . . , rkn/rk

S
n , to encrypt the entries on the

commit-list, and includes the public keys in the event object. Moreover, the
event object contains information about the chosen privacy settings.
The organizer signs the public key of the event with her own user key to
confirm that she is the organizer and signs the whole event object eventk
with the event’s private key eS

k . Therefore, an event object is composed as
follows:

eventk = SigneS
k
(SignuS

i
(ek)||ui||dek

||EncP DK(dS
ek

)

||ILL||ILK||CLL||DLL||rk1, . . . , rkn||privacy settings)

Some of the elements of the event object might, however, be encrypted with
additional keys or only be hashes (made with a cryptographic hash function
H, e. g., SHA-2 [61]) of the actual values. This depends on the chosen privacy
settings and will be explained in more detail later.
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Figure D.2: Overview of the actors, system components and their relations.

• Invitation object: An invitation object is composed of the invitee’s identi-
fier uj (her public key), signed by the organizer oek

with the event’s private
key eS

k :
iuj
ek

= SigneS
k
(uj)

• Commitment object: A commitment object is composed of the invitation
object iuj

ek and the cryptographic hash of the event object eventk, both signed
by the attending user uj with her private key uS

j as follows,

cuj
ek

= SignuS
j
(H(eventk)||iuj

ek
)

Privacy Enhancing Tools

Before describing the implementation, we introduce tools that we will use several
times.

Storage Location Indirection and Controlled Ciphertext Inference

If we want to make the size of a list, i. e., the number of its elements, available to
a subset of users, but not the content of the list elements (in our scenario because
each element contains a user identifiers), we can use storage location indirection
and ciphertext inference: The list will not be stored together with the event object,
but at a secret location in the distributed storage such that it can only be reached
if the link to it is known. Additionally, the elements of the list will be encrypted so
that the stored content can only be accessed if the encryption key is known.
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This provides the possibility of a controlled information disclosure depending on
the knowledge of a user: Users who do not know the link, learn nothing, neither the
size nor the content of the list. Making the link to the list but not the encryption
key available to a subset of users, enables these users to learn the size of the list
(assuming a constant ciphertext size for each entry), while it does not give them
any details about the contents stored. Users that received both the link and the
encryption key, learn the content and can act as verifiers, checking that there are no
invalid entries that incorrectly increase the perceived number of elements as seen
by those users holding only the link but not the key.

Commit-Disclose Protocol

The organizer may want to share some information only with users who have com-
mitted to attend the event (attendees). To ensure fairness, the invited users need
some guarantee that they can expect to receive the promised information when
they commit to attend.

While this is easy to solve if both parties, the organizer and the invited users,
trust a neutral third party that can act as broker, it becomes more difficult in our
setting where we do not assume the existence of any TTP. So we base our solution
on a significantly weaker trust assumption: the availability of append-only storage
objects as described in Section D.3.

The aim of the protocol is to provide an invitee uj who commits to the event ek

with a secret S held by the organizer oek
. It is composed of three main components,

provided by the organizer of the event:

• Commit-List, a public and append-only storage object where invited users
store their (encrypted) commitments.

• Disclose-List, a public readable, but only writeable by the organizer, append-
only storage object where the organizer discloses (encrypted) secrets for the
committed users.

• Anchor Point, a storage object (in our case the event object) serving as
common entry point, referencing the commit-list and the disclose-list either
directly by providing their storage locations, i. e., a commit-list link CLL
and a disclose-list link DLL or indirectly by holding salted hashes of these
storage locations (where DLL and CLL together with the salts are shared
with a subset of users in another way). Additionally, a list of public keys
rk1, . . . , rkn, called row-keys, used to encrypt the entries on the commit-list
are also stored here. All this information is signed by the organizer.

Each key in the row-keys list is intended for encrypting one entry of the commit-
list. The corresponding private keys rkS

1 , . . . , rk
S
n , are held by the organizer. The

protocol runs in three phases:
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• Commit Phase: If the user uj wants to commit to attend the event ek, she
looks up the commit-list and finds the next free row – let this have index l.
She then looks up the corresponding row key rkl in the event object.
Finally, she crafts a commitment cuj

ek , creates a fresh keypair dkP
l /dk

S
l (dis-

close key, later used by the organizer to encrypt the secret information) and
writes the following entry to row l of the commit-list: Encrkl

(cuj
ek )||dkP

l that
is the commitment, encrypted with the row-key, together with the public dis-
close key in plain.

• Disclose Phase: When the organizer oek
sees that a new row l has been

added to the commit-list, she tries to decrypt the first entry, using the secret
row key rkS

l . If this succeeds and the commitment is valid the organizer writes
the secret information, encrypted with the provided disclose key to row l of
the disclose-list, i. e., EncdkP

l
(S). If the decryption fails or the commitment is

invalid, the organizer publishes the secret row-key of row l in the disclose-list
instead, i. e., rkS

l , thus proving to everybody who can access the lists that she
was not obliged to disclose the secret information to the creator of row l.

• Blame Phase: If the organizer misbehaves and does not provide a protocol-
abiding user with the secret information after a reasonable amount of time,
the user can blame the organizer. She does this by publishing a blame-entry
in the commit-list, referring to the row l and disclosing the secret disclosure
key dkS

l . Thus everybody who can access the lists can see that she did not
receive the secret information encrypted to the disclosure key she provided in
row l. It can be assumed that the commitment (which cannot be decrypted
by the verifying public) was correct, as otherwise the organizer would have
published the secret row-key of row l.

In this way, the commit-disclose protocol does not keep the organizer from cheating,
but it allows the user to reliably blame the organizer if it is the case.

Basic Security Properties
The basic security properties are fulfilled by the construction of an event, invitations
and commitments described in Section D.4 and the guarantees of the PKI. The first
basic security property is fulfilled because an invitation iuj

ek for a user uj is created
by using the event’s private key eS

k , owned by the organizer oek
to sign the invited

user’s identifier. The invitee cannot forge the event’s key and the organizer cannot
deny having issued the invitation because the signature used to sign the invitation
is publicly verifiable. The second basic security property is also fulfilled because
an organizer oek

cannot forge a commitment cuj
ek as she is not able to forge another

users’ signature. A user uj , having sent the commitment cuj
ek to the organizer
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oek
, cannot deny the commitment as her signature is again publicly verifiable and

binding to the event ek.

Invitee Identity Privacy and Invitee Count Privacy (ICP)

In order to implement properties IIP and ICP, we let the organizer oek
store all

invitation objects for the event in the invite-list. Retrieving the list requires knowl-
edge of the invite-list link ILL, and in order to decrypt it, the symmetric invite-list
key ILK must be known beforehand.

Knowledge of the link ILL is equivalent to learning the total number of invita-
tions, even if the decryption key ILK is unknown because the number of invitations
can be inferred from the size of the ciphertext in the list. Knowledge of the en-
cryption key ILK allows learning the identities of the invited users Iek

because the
invitations iuj

ek store the user identifiers in plain text.

If the organizer oek
wants to make the identifiers of the invitees Iek

, or the
amount of them, i. e., |Iek

|, available to all users U , she will publish ILL or ILK
in plain text together with the event object eventk. Making this information avail-
able only for invitees Iek

can be realized by the organizer privately sharing it with
the invited users. In order to share the decryption key ILK only with the com-
mitted users Cek

, the commit-disclose protocol can be used, while the link ILL is
then either available publicly (i. e., choosing U for property ICP), shared only with
the invitees (i. e., choosing Iek

for ICP) or kept secret and only shared with the
committed users together with ILK (i. e., choosing Cek

for ICP).

It is also possible to avoid sharing any information about the invitations by
keeping ILL and ILK secret, i. e., choosing oek

both for properties IIP and ICP.
When the identities should not be known to anyone but the number of invitees
should be made public to a subset of users (i. e., choosing oek

for property IIP),
the link ILL will be shared with the respective users and a particular encryption
scheme for the invite-list is employed: Instead of encrypting the invite-list as a
whole, we encrypt its individual entries with the public keys of the recipient of the
invitation stored at each entry. Thus, the invited users can verify that their own
invitation is included in the list. However, this only allows for a weak verification
of the correctness of the list, i. e., it provides an upper-bound of the size of the list,
because the organizer oek

can add invalid or dummy entries (e. g., to artificially
increase the perceived number of invitees to the event).

A summary of how ILL and ILK are shared depending on the choice of parame-
ters for properties IIP and ICP is shown in Table D.1. Note that the row describing
the privacy settings IIP: Cek

, ICP: Iek
corresponds to the example mentioned in the

introduction and Section D.3.



D.4. IMPLEMENTATION 95

Table D.1: Sharing of ILL and ILK as per the IIP and ICP settings. P = publicly
available in eventk, I = privately shared with Iek

, C = shared only with Cek
(via

the commit-disclose protocol), S = fully secret (only oek
knows about it) and S∗ =

special encryption scheme for the invite-list.

Settings Implementation
IIP ICP ILL ILK

U U P P

Iek

U P I
Iek

I I

Cek

U P C
Iek

I C
Cek

C C

oek

U P S∗
Iek

I S∗
Cek

C S∗
oek

S S

Attendee Identity Privacy (AIP) and Attendee Count Privacy
(ACP)

To implement the AIP and ACP properties, we mainly use the commit-disclose
protocol. The link to the commit-list CLL can be shared publicly in the event
object eventk except for those cases where the count of attendees |Cek

| must be
kept private. In this situation, if the invitees Iek

are allowed to learn |Cek
|, CLL

is shared privately with them. Alternatively, the organizer can add dummy entries
in the list to hinder inferences from the number of (encrypted) entries. When not
even attendees should learn how many other users are attending, dummy entries in
the commit-list are the only solution as the CLL must always be shared with all
invitees, so that they can commit if they want to attend.

Dummy entries follow the pattern of usual entries, i. e., random data with a spe-
cific size to fake an encrypted commitment object and a public key in the commit-
list, and random data in the disclose-list to fake an encrypted secret. All users
who hold the private row-keys can identify them because the first part of a dummy
entry in the commit-list cannot be decrypted with the respective row-key, while
those users without the private row-keys cannot distinguish dummy entries from
real ones as the ciphertext structure looks the same for all of them.

When the link CLL should not be shared publicly in the event object eventk,
a salted hash of the link will be stored instead so that the organizer oek

cannot
cheat by sharing different links with different groups of users. As the event object
is unique per event and group of invitees, the invited users can check they all got
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Table D.2: Sharing of CLL and rkS
1 . . . rk

S
n as per the AIP and ACP settings. P =

publicly available in eventk, I = privately shared with Iek
, C = shared only with

Cek
(via the commit-disclose protocol), S = fully secret (only oek

knows about it).

Settings Implementation
AIP ACP CLL rkS

1 ...rk
S
n dummies notes

U U P P -

Iek

U P I -
Iek

P/I I if CLL public

Cek

U P C -
Iek

P/I C if CLL public
Cek

P C necessary

oek

U P S -
Iek

I S -
Cek

- - - not possible
oek

P S necessary

the same link from the organizer by comparing it with the hash value in eventk.
Otherwise the implementation varies only in how the private row-keys are dis-

closed, as they protect the commitments in the commit-list: If all users U are
allowed to learn who is attending, the private row-keys will be public, i. e., the rows
do not need to be encrypted. If only the invited users Iek

should see the identities
of the attendees, the private row-keys will be shared with the invitees directly. And
if only the attending users should learn about the identities of other attendees, the
private row-keys are disclosed using the commit-disclose protocol.

This way we are able to implement all possible parameter combinations of the
AIP and ACP properties, except for the combination AIP: oek

, ACP: Cek
. For

this case, i. e., AIP: oek
, nobody except the organizer should learn the identities of

the committed users, so the private row-keys have to be kept secret. And as not
even invitees (who need to know CLL to be able to commit to the event) should
learn the count of attendees, the organizer would need to add dummy entries on
the commit-list to hide the count of attendees from the invitees. But this will also
hide it from the attendees, as they do not have the private row-keys to tell apart
dummy entries from normal entries, so ACP: Cek

is not fulfilled.
A summary of how CLL and the private row-keys rkS

1 . . . rk
S
n are shared de-

pending on the settings for properties AIP and ACP is shown in Table D.2.

Attendee-only Information reliability (AIR) Property

To implement this property, we will again use the commit-disclose protocol. The
organizer oek

shares a private description dS
ek
, encrypted with the key PDK, with
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the committed users Cek
. The key is shared with these users in the disclose-list

as soon as they store a valid commitment cuj
ek in the commit-list. The organizer

oek
cannot have different private descriptions for groups of attendees of the same

event ek because they will all see the same ciphertext in the event object eventk.
A cheating organizer oek

will be caught in the same manner as described above: if
a user uj commits and receives an invalid decryption key PDK, she will publish
the private disclose key dkS

i to prove that she did not receive the promised private
description dS

ek
.

Discussion

The implementation presented realizes the event invitation feature in a decentral-
ized system and fulfills the requirements of all of the defined security and privacy
properties. Except for one parameter combination of the attendee identity/count
privacy properties we were able to present implementation solutions for all possible
choices of the tunable properties IIP, ICP, AIP and ACP.

An honest but curious user does not learn anything more than what is specified
by the privacy settings.

A general limitation of our approach is, however, that for all properties based
on the commit-disclose protocol, a malicious organizer is still able to cheat. But
it disincentives her to do so as it provides a reliable cheating detection mechanism
and offers the affected users the possibility to blame a cheating organizer – either
publicly or in front of a chosen set of users, e. g., only other invitees of the event. We
consider this an effective protection in the social scenarios that we see as possible
application contexts of the event invitation feature. User identifiers are long-lived
there and costly to change (as all friends have to be informed about a new iden-
tity), so we assume users care about their reputation and will try to avoid being
exposed as misbehaving. Another limitation of our approach is the general problem
of information usage control, i. e., insiders can always leak information to parties
that should not learn this information according to a chosen privacy setting. For
example, if only the invitees should learn the identities of other invited users, this
can be violated by an invitee simply publishing the invite-list.

Some of the privacy protections are not secure against very powerful adver-
saries. For example the link obfuscation technique described in Section D.4 relies
on the unlinkability of the encrypted list object and the event object. This will be
decreased by access patterns of invited users (if they are known), the structure/size
of the list object (if distinguishable from other storage objects) and the entropy
of the addressing scheme for storage objects. An adversary with the capability to
pervasively monitor a large fraction of network traffic might be able to correlate
requests for a certain event object and related list objects.

Finally, depending on the choice of privacy settings, the protocols not only allow
the participants, i. e., organizer, invitees and attendees, to verify each others’ claims,
but also, to show the proof to an outsider. Such a process can be implemented in
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a client and used as one of the inputs for a reputation system, although this is out
of the scope of this work.

Conclusion and Future Work

We have described and formalized a set of security and privacy properties for the
event invitations feature in DOSNs, such as invitee/attendee identity privacy (who
learns the identities of the invitees/attendees), invitee/attendee count privacy (who
learns the count of invitees/attendees), and Attendee-only Information Reliability
(availability of information exclusive to the attendees).

We described privacy enhancing tools, such as storage location indirection (to
control not only who can decrypt an object but also who can see the ciphertext),
controlled ciphertext inference (to allow a controlled information leak, e. g., about
the size of an encrypted object to parties not able to decrypt the content) and
a commit-disclose protocol to disclose a secret only to users who committed to
attend an event and to detect a misbehaving party. Using these tools together
with standard cryptographic primitives, we proposed a TTP-free architecture and
decentralized protocols to implement the event invitation feature in a DOSN and
analyzed the usability and privacy implications.

The results can be applied in the context of privacy-preserving DOSNs, but
might also be useful in other domains such as collaborative working environment
and their corresponding collaborative-specific tools, i. e., groupware, for example, to
perform tasks on shared documents. Another relevant domain is Massive Open On-
line Courses (MOOC), for example, when restricting the access to lecture material
of an online course to the registered students.

Possible future work includes evaluation of the performance, extending the secu-
rity and privacy properties to include plausible deniability, anonymity or revocation,
and extending the functionality of the feature to consider transferable invitation-
rights or multiple organizers. Plausible deniability properties can be important
when organizing political events. At the same time, it will probably introduce
trade-offs with respect to the authenticity guarantees provided by the properties
presented in this paper, e. g., the correctness of the attendee-count. Transferable
invitation-rights would allow the organizer to specify a set of initially invited users,
who then in turn can invite their friends to the event as well (but maybe limited
to a certain number of hops in the social graph).

Acknowledgments

This research has been funded by the Swedish Foundation for Strategic Research
grant SSF FFL09-0086 and the Swedish Research Council grant VR 2009-3793.



E

Article E

The Effect of DNS on Tor’s Anonymity

Benjamin Greschbach∗1, Tobias Pulls∗2, Laura M. Roberts∗3, Philipp Winter∗3,
Nick Feamster3

1KTH Royal Institute of Technology, 2Karlstad University, 3Princeton University
∗All four authors contributed substantially, and share first authorship. The names

are ordered alphabetically.

Abstract

Previous attacks that link the sender and receiver of traffic in the Tor
network (“correlation attacks”) have generally relied on analyzing traffic from
TCP connections. The TCP connections of a typical client application, how-
ever, are often accompanied by DNS requests and responses. This additional
traffic presents more opportunities for correlation attacks. This paper quan-
tifies how DNS traffic can make Tor users more vulnerable to correlation
attacks. We investigate how incorporating DNS traffic can make existing cor-
relation attacks more powerful and how DNS lookups can leak information
to third parties about anonymous communication. We (i) develop a method
to identify the DNS resolvers of Tor exit relays; (ii) develop a new set of
correlation attacks (DefecTor attacks) that incorporate DNS traffic to im-
prove precision; (iii) analyze the Internet-scale effects of these new attacks
on Tor users; and (iv) develop improved methods to evaluate correlation at-
tacks. First, we find that there exist adversaries that can mount DefecTor
attacks: for example, Google’s DNS resolver observes almost 40% of all DNS
requests exiting the Tor network. We also find that DNS requests often tra-
verse ASes that the corresponding TCP connections do not transit, enabling
additional ASes to gain information about Tor users’ traffic. We then show
that an adversary that can mount a DefecTor attack can often determine the
website that a Tor user is visiting with perfect precision, particularly for less
popular websites where the set of DNS names associated with that website
may be unique to the site. We also use the Tor Path Simulator (TorPS) in
combination with traceroute data from vantage points co-located with Tor

99
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exit relays to estimate the power of AS-level adversaries that might mount
DefecTor attacks in practice.

Introduction

We have yet to learn how to build anonymity networks that resist global adver-
saries, provide low latency, and scale well. Remailer systems such as Mixmaster [93]
and Mixminion [41] eschew low latency in favor of strong anonymity. In contrast,
Tor [45] trades off strong anonymity to achieve low latency; Tor therefore enables
latency-sensitive applications such as web browsing but is vulnerable to adver-
saries that can observe traffic both entering and exiting its network, thus enabling
deanonymization. Although Tor does not consider global adversaries in its threat
model, adversaries that can observe traffic for extended periods of time in multiple
network locations (i.e., “semi-global” adversaries) are a real concern [51, 76]; we
need to better understand the nature to which these adversaries exist in operational
networks and their ability to deanonymize users.

Past work has quantified the extent to which an adversary that observes TCP
flows between clients and servers (e.g., HTTP requests, BitTorrent connections,
and IRC sessions) can correlate traffic flows between the client and the entry to the
anonymity network and between the exit of the anonymity network and its ultimate
destination [76, 94]. The ability to correlate these two flows—a so-called correlation
attack—can link the sender and receiver of a traffic flow, thus compromising the
anonymity of both endpoints. Although TCP connections are an important part
of communications, the Domain Name System (DNS) traffic is also quite revealing:
for example, even loading a single webpage can generate hundreds of DNS requests
to many different domains. No previous analysis of correlation attacks has studied
how DNS traffic can exacerbate these attacks.

DNS traffic is highly relevant for correlation attacks because it often traverses
completely different paths and autonomous systems (ASes) than the subsequent
corresponding TCP connections. An attacker that can observe occasional DNS
requests may still be able to link both ends of the communication, even if the
attacker cannot observe TCP traffic between the exit of the anonymity network and
the server. Figure E.1 illustrates how an adversary may monitor the connection
between a user and the guard relay, and between the exit relay and its DNS resolvers
or servers. This territory—to-date, completely unexplored—is the focus of this
work.

We first explore how Tor exit relays resolve DNS names. By developing a new
method to identify all exit relays’ DNS resolvers, we learn that Google currently
sees almost 40% of all DNS requests exiting the Tor network. Second, we investigate
which organizations can observe DNS requests that originate from Tor exit relays.
To answer this question, we emulate DNS resolution for the Alexa top 1,000 domains
from several ASes. We find that DNS resolution for half of these domains traverses
numerous ASes that are not traversed for the subsequent HTTP connection to
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User Tor network

Exit relay

Web server

DNS server

Adversary

DNS
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Figure E.1: Past traffic correlation studies have focused on linking the TCP stream
entering the Tor network to the one(s) exiting the network. We show that an
adversary can also link the associated DNS traffic, which can be exposed to many
more ASes than the TCP stream.

the web site. Next, we show how the ability to observe DNS traffic from Tor exit
relays can augment existing website fingerprinting attacks, yielding perfectly precise
DefecTor1 attacks for unpopular websites. We further introduce a new method to
perform traceroutes from the networks where exit relays are located, making our
results significantly more accurate and comprehensive than previous work. Finally,
we use the Tor Path Simulator (TorPS) [75] to investigate the effects of Internet-
scale DefecTor attacks.

We demonstrate that DNS requests significantly increase the opportunity for
adversaries to perform correlation attacks. This finding should encourage future
work on correlation attacks to consider both TCP traffic and the corresponding
DNS traffic; future design decisions should also be cognizant of this threat. Our
work (i) serves as guidance to Tor exit relay operators and Tor network developers,
(ii) improves state-of-the-art measurement techniques for analysis of correlation
attacks, and (iii) provides even stronger justification for introducing website fin-
gerprinting defenses in Tor. To foster future work and facilitate the replication of
our results, we publish both our code and datasets.2 In summary, we make the
following contributions:

• We show how existing website fingerprinting attacks can be augmented with
observed DNS requests by an AS-level adversary to yield perfectly precise
DefecTor attacks for unpopular websites.

• We develop a method to identify the DNS resolver of exit relays. We find
that Tor exit relays comprising 40% of Tor’s exit bandwidth rely on Google’s
public DNS servers to resolve DNS queries.

1The acronym is short for DNS-enhanced fingerprinting and egress correlation on Tor.
2Our project page is available at https://nymity.ch/tor-dns/.

https://nymity.ch/tor-dns/
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• We quantify the extent to which DNS resolution exposes Tor users to addi-
tional AS-level adversaries who are not on the path between the sender and
receiver. We find that for the Alexa top 1,000 most popular websites, many
ASes that are on the paths between the exit relay and the DNS servers re-
quired to resolve the sites’ domain names are not on the path between the
exit relay and the website.

• We develop a new measurement method to evaluate the extent to which ASes
are on-path between exit relays and DNS resolvers. We use the RIPE At-
las [111] platform to achieve previously unprecedented path coverage and
accuracy for evaluating the capabilities of AS-level adversaries.

The rest of this paper is organized as follows. Section E.2 presents background,
and Section E.3 relates our study to previous work. In Section E.4, we shed light
on the landscape of DNS in Tor. Section E.5 discusses our DefecTor attacks, which
we evaluate in Section E.6. We then model the Internet-scale effect of our attacks
in Section E.7. Finally, we discuss our work in Section E.8 and conclude the paper
in Section E.9.

Background

We now provide an introduction to the Tor network, website fingerprinting attacks,
as well as how the Tor network implements DNS resolution.

The Tor network The Tor network is an overlay network that anonymizes TCP
streams such as web traffic. As of August 2016, it comprises approximately 7,000
relays and about two million users. The hourly published network consensus sum-
marizes all relays that are currently online. Clients send data over the Tor network
by randomly selecting three relays—typically called the guard, middle, and exit
relay—that then form a virtual tunnel called a circuit. The guard relay learns the
client’s IP address, but not its web activity, while the exit relay gets to learn the
client’s web activity, but not its IP address. Relays and clients talk to each other
using the Tor protocol, which uses 512-byte cells. Finally, each relay is uniquely
identified by its fingerprint—a hash over its public key.

Website fingerprinting attacks The Tor network encrypts relayed traffic as it
travels from the client to the exit relay. Therefore, intermediate parties such as
the user’s Internet service provider (ISP) cannot read the contents of any packet.
Tor does not, however, protect other statistics about the network traffic, such as
packet inter-arrival timing, directions, and frequency. The ISP can analyze these
properties to infer the destinations that a user is visiting. The literature calls this
attack website fingerprinting.

Past work evaluated website fingerprinting attacks in two settings: a closed-
world setting consists of a set of n monitored websites, and the attacker tries to
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learn which among all n sites the user is visiting with the notable restriction that
the user can only browse to one of the n websites. The open-world setting is more
realistic: the user can browse to unmonitored sites in addition to the monitored
sites. Unmonitored sites are, per definition, not known to the attacker; thus, the
attacker’s traffic classifier cannot train on unmonitored sites the user visits. The
attacker’s classifier can train on whatever unmonitored sites it chooses, as long as
the classifier has not trained on an unmonitored site used for testing. Two relevant
metrics in the open-world setting are recall and precision. Recall measures the
probability that a visit to a monitored site will be detected, while precision measures
the probability that a classification by the classifier of a visit to a monitored site
(positive test outcome) is the correct one. Consider a classifier with 0.25 recall and
0.5 precision: on average, every fourth visit by the user to a monitored site will
be detected, and half of the classifications by the classifier will be wrong. Errors
can either classify a monitored site as unmonitored (lowering recall) or vice versa
(lowering precision). Mistaking one monitored site for another is less likely [134].

Wa-kNN is a website fingerprinting attack by Wang et al. [135] that uses a k-
nearest neighbor classifier with a custom weight-learning algorithm, WLLCC [134,
§ 3.2.5]. From packet traces between a Tor client and its guard, Wa-kNN extracts a
number of features to classify each website. Useful features include the number of
outgoing packets and bursts of packets in the same direction. In the training phase,
WLLCC adjusts weights of features extracted from sites of known classes such that
the distance between instances of the same site (class) are minimized (collapsed).
In the testing phase, Wa-kNN determines the distance of a testing traffic trace to
all known training traces. The distance calculation results in the k nearest classes:
if all classes are the same, then the testing trace is classified as that class, otherwise
it is classified as unmonitored. In the open-world setting, one class represents all
unmonitored sites both during training and testing. By increasing k, Wa-kNN can
trade decreased recall for increased precision. We set k = 2 when using Wa-kNN
for higher recall since DefecTor is a highly precise attack.

Tor could eliminate website fingerprinting attacks with encrypted, constant-
bitrate channels between a Tor client and its guard; other anonymity networks
could use a similar technique. Unfortunately, the Tor network’s limited spare ca-
pacity does not allow for such a throughput-intensive defense, but some research
has worked on making this type of defense more efficient [29, 79, 134, 105].

How Tor resolves DNS requests Tor clients must send DNS requests over
Tor to prevent DNS leakage (i.e., having a DNS request travel over an unencrypted
channel as opposed to over Tor itself). Tor does not transport UDP traffic, but it
implements a workaround to wrap DNS requests into Tor cells. Using the SOCKS
protocol, applications can instruct the Tor client to establish a circuit to a given
domain and port.3 After the user types in a domain, say example.com, the Tor

3The SOCKS versions 4a and 5 support connection initiation using domain names in addition
to IP addresses.
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browser establishes a connection to the SOCKS proxy exposed by the local Tor
client. The Tor client then selects an exit relay whose exit policy supports ex-
ample.com and port 443. Next, the client sends a RELAY_BEGIN Tor cell to the
exit relay, instructing it to first resolve example.com, and then establish a TCP
connection to the resolved address at port 443 [44, § 6.2]. After successfully es-
tablishing a connection, the exit relay responds with a RELAY_CONNECTED cell. The
client can then exchange data with its intended destination. Another type of cell,
RELAY_RESOLVE, supports pure name resolution, without establishing a subsequent
TCP connection [44, § 6.4]. The exit relay responds with a RELAY_RESOLVED cell.

Exit relays send their DNS requests to the system resolver, which Linux systems
read from /etc/resolv.conf. Tor does not modify the system resolver and uses
whatever the exit relay operator configured, such as the ISP’s resolver, or public
resolvers such as Google’s public DNS resolver 8.8.8.8. As of August 2016, exit
relays cache DNS responses to speed up repeated lookups. The caching layer for
Tor clients, however, is off by default to prevent tracking attacks due to modified
DNS responses [91].

Related Work

This paper combines traffic analysis methods for correlation attacks with website
fingerprinting attacks; we discuss related work in each of these two areas.

Traffic analysis and correlation attacks

Tor’s threat model excludes global adversaries [45], but the practical threat of
such adversaries is an important question that the research community has spent
considerable effort on answering. In 2004, when the Tor network comprised only
33 relays, Feamster and Dingledine investigated the practical threat that AS-level
adversaries pose to anonymity networks [52]. The authors considered an attacker
that controls an AS that is traversed both for ingress and egress traffic, allowing the
attacker to correlate both streams. Using AS path prediction [59], Feamster and
Dingledine found that powerful tier-1 ISPs reduce location diversity of anonymity
networks. In 2007, Murdoch and Zieliński drew attention to IXP-level adversaries,
a class of adversaries that was missing in Feamster and Dingledine’s work [94].
Murdoch and Zieliński showed that IXP adversaries are able to correlate traffic
streams, even in the presence of packet sampling rates as low as one in 2,000.

In 2013, Johnson et al. [76] presented the first large-scale study on the risk of Tor
users facing relay-level and AS-level adversaries. The authors developed TorPS [75]
that simulates Tor circuits for a number of user models. By combining TorPS with
AS path prediction, Johnson et al. could answer questions such as the average time
until a Tor user’s circuit is deanonymized by an AS or IXP. Most recently in 2016,
Nithyanand et al. [99] used AS path prediction to evaluate the practical threat faced
by users in the top ten countries using Tor. In 2015, Juen et al. [80] examined the
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accuracy of path prediction algorithms that prior work [76, 52] used to estimate the
threat of correlation attacks. The authors compared AS path predictions to millions
of traceroutes, initiated from 25% of Tor relays by bandwidth at the AS level, and
found that only 20% of predicted paths matched the paths observed in traceroutes.
Juen et al. could not consider the reverse path in traceroutes. In 2015, Sun et
al. [123] addressed this shortcoming; although past work treated routing as static,
Sun et al. showed that the dynamic nature of Internet routing makes AS-level
adversaries stronger than previous work had considered.

We improve on previous work in two significant ways: (i) we are the first to
evaluate how DNS traffic exacerbates traffic correlation attacks, both in concept
and in practice; and (ii) we develop and deploy a scalable, sustainable version
of the measurement method proposed by Juen et al. [80]. Our method uses the
volunteer-run RIPE Atlas measurement platform [111], as opposed to relying on
relay operators to run third-party scripts. This approach allows us to fully automate
our method and achieve previously unprecedented scale.

Website fingerprinting
In 2009, Herrmann et al. [69] demonstrated the first website fingerprinting attack
against anonymity systems—including Tor—in a closed-world setting. In 2011,
Panchenko et al. [101] greatly improved on Herrmann et al.’s detection rate and
provided insight into an open-world setting. In 2012, Cai et al. [31] improved on
previous work by proposing an attack that used Hidden Markov Models to de-
termine whether a sequence of page requests all come from the same site. The
authors used an open-world setting for their evaluation. Wang and Goldberg [136]
proposed an improved attack that employed a new method for data gathering. In
2014, Wang et al. [135] further improved on their results with a k-nearest neighbor
classifier Wa-kNN and a custom weight-learning algorithm (WLLCC [134, § 3.2.5])
that in several rounds determine the optimal weights for features extracted from
traffic traces. Cai et al. [30] determined which traffic features provide the most pre-
dictive power to detect websites, proved a lower bound of any defense that achieves
a certain level of security, and provided a framework to investigate the performance
of website fingerprinting attacks. Juarez et al. [78] showed that all previous at-
tacks made several simplifying assumptions; the work suggested that attacks are
still difficult to run outside a lab setting as an attacker will have to consider oper-
ating system differences, page changes, and background traffic. Recently, in 2016,
Wang and Goldberg addressed many practical roadblocks to website fingerprinting,
such as noisy data and maintaining a training set, further highlighting the need for
website fingerprinting defenses in Tor [137].

Panchenko et al. [100] showed that webpage fingerprinting (i.e., fingerprint-
ing of any page on a site) is significantly harder than website fingerprinting (i.e.,
fingerprinting of only the start page of a site). Hayes and Danezis proposed k-
fingerprinting, an attack with notably better performance than Wa-kNN even in
the face of defenses [67]. Their attack retains 30% accuracy in a closed-world set-



106 ARTICLE E. THE EFFECT OF DNS ON TOR’S ANONYMITY

ting against the WTF-PAD defense by Juarez et al. [79]—a prime candidate for
deployment in Tor [105]—at the cost of 50% bandwidth overhead. Juarez et al.
used Wa-kNN to evaluate WTF-PAD and set k = 5, as recommended by Wang et
al. for an optimal trade-off between recall and the false positive rate.

In our work, we show how to correlate and use observed DNS requests in con-
cert with website fingerprinting attacks, which significantly improves precision for
website fingerprinting. In scenarios where precision is paramount, DefecTor attacks
pose an even bigger threat than website fingerprinting attacks from attackers that
can observe even a modest fraction of DNS traffic from the Tor network. Mitigating
the two DefecTor attacks that we present has implications for the design of web-
site fingerprinting defenses: open-world evaluations of the website fingerprinting
defense should minimize recall even when the website fingerprinting attack is tuned
to sacrifice precision for recall. In the case of Wa-kNN, this means a low k: our
results are based on k = 2.

Understanding the Landscape

Before explaining our attack, we need to better understand how Tor performs DNS
resolution. We begin by investigating how common it is for adversaries to be
able to observe DNS requests but not subsequent TCP connections of Tor users
(Section E.4). We then seek to understand how these results connect to the Tor
network by determining the DNS resolvers used by exit relays (Section E.4).

Quantifying the additional AS exposure of DNS queries

Adversaries that can observe both DNS and subsequent TCP traffic (e.g., the ISP of
an exit relay) gain no benefit from seeing the client’s DNS traffic, since TCP traffic
is sufficient to mount correlation attacks [94]. In this work, we consider adversaries
that can observe traffic entering the Tor network and some DNS requests exiting
the network—such as requests addressed to DNS root servers—but not subsequent
TCP traffic from exit relays. We first determine the prevalence of these adversaries
by measuring the number of ASes that DNS queries traverse versus the number of
ASes subsequent web traffic traverses.

We quantify the exposure of DNS traffic versus TCP traffic as follows. We begin
with Alexa’s top 1,000 [9], a list of the 1,000 most popular web sites as estimated by
Alexa. For each site, we conducted two experiments. First, we ran a TCP tracer-
oute to the site, targeting port 80 to mimic web traffic. Second, we determined the
DNS delegation path for the website’s DNS name using the dig command’s +trace
feature. The delegation path of a domain name, say www.example.com, is a hierar-
chy of authoritative DNS servers, such as the authoritative server for .com pointing
to the authoritative server for example.com, which in turn points to the authori-
tative server responsible for www.example.com. We also ran UDP traceroutes to



E.4. UNDERSTANDING THE LANDSCAPE 107

AS 1653 (SE)

AS 16276 (FR)

AS 29169 (FR)

AS 7922 (US)

AS 99 (US)

0.00 0.25 0.50 0.75
Exposure metrics λ

Va
nt

ag
e 

po
in

t

Figure E.2: Five box plots capturing the AS exposure metric λ for Alexa’s top 1,000
web sites. The box plots represent five autonomous systems in three countries.

each server in the delegation path, targeting port 53 to mimic DNS resolution.4
For both experiments, we then mapped all IP addresses in the traceroutes to AS
numbers [124], generating both a set of traversed ASes for DNS traceroutes (D)
and a set of traversed ASes for web traceroutes (W). Given these two sets for each
of Alexa’s top 1,000, we compute the fraction of ASes that are only traversed for
DNS traffic, but not for web traffic (λ):

λ ∈ [0, 1] = |D \W|
|D ∪W|

. (E.1)

The metric approaches 1 as the number of ASes that are only traversed for DNS in-
creases. For example, if D = {1, 2, 3} andW = {2, 3, 4}, then λ = |{1,2,3}\{2,3,4}|

|{1,2,3}∪{2,3,4}| =
|{1}|

|{1,2,3,4}| = 1
4 = 0.25. We determined λ for each site in the Alexa top 1,000 from

five autonomous systems in three countries.5 One of our vantage points, the French
OVH, is the most popular AS by exit bandwidth as of August 2016. It sees 10.98%
of exit traffic, closely followed by AS 12876 (owned by the French Online) that
sees 9.33% of exit traffic. Our experiment consisted of 5,000 traceroute runs, 4,773
(95.5%) of which succeeded, and 227 (4.5%) failed.

The result is illustrated in Figure E.2, which shows five box plots capturing λ
values for Alexa’s top 1,000 sites. The median of all 4,773 λ values is 0.571, so for
half of all runs, DNS-only ASes account for 57% or more of all traversed ASes. This
result only applies to exit relays that do their own DNS resolution; for relays that
use a third-party resolver, the ASes that are traversed between the exit relay and

4The tool we developed for this purpose is available online at https://github.com/
NullHypothesis/ddptr.

5The ASes are: OVH (France), Gandi (France), Karlstad University (Sweden), Princeton
University (U.S.), and Comcast (U.S.).

https://github.com/NullHypothesis/ddptr
https://github.com/NullHypothesis/ddptr
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its DNS resolver is the metric of interest. We further believe that relays in regions
other than Western Europe or North America are likely to witness significantly
different exposure of DNS queries because many websites outsource their DNS
setup to providers such as Cloudflare whose points of presence are centered around
Western Europe and North America. We conclude that adversaries that are unable
to observe a Tor user’s TCP connection still have many opportunities to see a
TCP connection’s corresponding DNS request. Such adversaries include (i) popular
open DNS resolvers such as Google and OpenDNS, (ii) DNS root servers, and (iii)
network adversaries located on the path to the previous two entities.

Determining how Tor exit relays resolve DNS queries
Having shown that the Internet provides ample opportunity for AS-level adversaries
to snoop on DNS traffic from exit relays, we now investigate how the exit relays in
the Tor network resolve DNS queries in practice. Before this study, we only had
anecdotal evidence (e.g., from OpenDNS-powered error messages [142, § 4.1]) that
some exit relays would occasionally show.

We identify the DNS resolver of all exit relays by using exitmap [141], a scanner
for Tor exit relays. Exitmap automates running a task such as fetching a webpage
over all one thousand exit relays, making it possible to see the Internet through the
“eyes” of every single exit relay. Using exitmap, we resolve unique, relay-specific
domains over each exit relay, to a DNS server under our control. Figure E.3 il-
lustrates this experiment. To improve reliability, we configured exitmap to use
two-hop circuits instead of the standard three-hop circuits. The first hop was a
guard relay under our control. Over each exit relay, we resolved a unique domain
PREFIX.tor.nymity.ch. The prefix consisted of the relay’s unique 160-bit finger-
print, concatenated to a random 40-bit string whose purpose is to prevent caching,
so exit relays indeed resolve each query instead of responding with a cached element.
We controlled the authoritative DNS server of tor.nymity.ch, so we could capture
both the IP address and packet content of every single query for tor.nymity.ch.

An exit relay can either run its own resolver, as shown in the left exit relay in
Figure E.3; or rely on a third-party resolver, such as the one provided by its ISP,
as shown in the right exit relay in Figure E.3. If an exit relay runs its own resolver,
we expect to receive a DNS request from the exit relay’s IP address, but if an exit
relay uses a third-party resolver, we expect to receive a request from an unrelated
IP address. Having encoded relay-specific fingerprints in the query names, we are
able to map queries to exit relays in such cases. We ran this experiment from
September 2015 to May 2016, at least once a day.

Figure E.4 illustrates the fraction of DNS requests that four of the most popular
organizations could observe. Google averages at 33%, but at times saw more than
40% of all DNS requests exiting the Tor network—an alarming number for a single
organization. Second to Google is “Local”—exit relays that run their own resolver,
averaging at 12%. Next is OVH, which used to be as popular as local resolvers, but
slowly lost its share over time. Note that in contrast to Google, OVH does not run
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Figure E.3: Our method to identify the DNS resolvers of exit relays. Over each
exit relay, we resolve relay-specific domain names that are under our control. By
inspecting our DNS server logs, we can then identify the IP address of all exit relay
resolvers.
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Figure E.4: The popularity of some of the most popular DNS resolvers of exit relays
over time. The y axis depicts the fraction of exit bandwidth that the respective
resolver is responsible for. Google’s DNS resolver is by far the most popular, at
times serving more than 40% of all DNS requests coming out of the Tor network.
Google is followed by local resolvers, which average at around 12%. Once serving a
fair amount of traffic, OVH dropped in popularity, and is now close to OpenDNS,
an organization that runs an open resolver.

a public DNS server; the company’s resolvers are only accessible to its customers.
Finally, there is OpenDNS, which also runs public DNS resolvers. OpenDNS saw
occasional spikes in popularity but always remained in the single digits. Apart
from the illustrated top resolver setups, the distribution has a long tail, presumably
consisting of many ISP resolvers.

DefecTor Attacks

As with conventional correlation attacks, an attacker must observe traffic that is
both entering and exiting the Tor network; in contrast to threat models from pre-
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Figure E.5: An overview of the DefecTor attack. An adversary must monitor
both ingress (encrypted Tor traffic) and egress (DNS request) traffic. A AS-level
adversary between the client and its guard monitors ingress traffic. The same
adversary monitors egress traffic between the exit and a DNS server, or the DNS
server itself. Both ingress and egress traffic then serve as input to the DefecTor
attack.

vious work, we incorporate DNS instead of only TCP traffic. Figure E.5 illustrates
our correlation attack; it requires the following building blocks:

• Ingress sniffing: An attacker must observe traffic that is entering the Tor
network. The attacker can operate on the network level, as a malicious ISP
or an intelligence agency. In addition, the attacker can operate on the relay
level by running a malicious Tor guard relay. In both cases, the attacker can
only observe encrypted data, so packet lengths and directions are the main
inputs for website fingerprinting [100].

• Egress sniffing: To observe both ends of the communication, an attacker must
also observe egress DNS traffic. We expect the adversary either to be on the
path between exit relay and a DNS server or to run a malicious DNS resolver
or server. We do not expect an attacker to run an exit relay because in this
case conventional end-to-end correlation attacks are at least as effective as
those we describe here [94].

We combine a conventional website fingerprinting attack operating on traffic
from ingress sniffing with DNS traffic observed by egress sniffing, creating DefecTor
attacks. Our attacks correlate the websites observed by the website fingerprinting
attack in ingress traffic with the websites identified from DNS traffic.6 Next, we
describe how we simulate the DNS traffic from Tor exits, how we map DNS requests
to websites, and finally present our two DefecTor attacks.

6Our work can be understood as DNS-enhanced traffic correlation attack, or as DNS-enhanced
website fingerprinting attack.
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Approximating DNS traffic from Tor exits

We first investigate the type and volume of DNS traffic that Tor’s exit relays send.
There are no logs of outgoing traffic from Tor exit relays available to us, and ethical
considerations kept us from trying to collect them (e.g., by operating exit relays and
recording all the outgoing traffic). We therefore opt to approximate the DNS traffic
emerging from Tor exit relays by (i) building a model of typical Tor users’ website
browsing patterns, (ii) collecting a minimally invasive dataset of DNS traffic, and
(iii) accounting for the effects of DNS caching.

Modeling which sites Tor users visit

We first build a model to approximate which websites Tor users visit. As of July
2016, there are about 173 million active websites [97]; the Alexa ranking [9] gives
insights into their popularity based on the browsing behavior of a sample of all
Internet users. The distribution of the popularity of these websites has previously
been fit to a power-law distribution based on the rank of the website [7, 37, 90].
For the pageview numbers of the Alexa top 10,000 websites, we found a power-law
distribution to be a good fit as neither a log-normal nor a power-law distribution
with exponential cutoff (i.e., a truncated power-law distribution) offered signifi-
cantly better fits. We used the Python powerlaw package [8] for fitting and picked
a power-law distribution with an α parameter of 1.13. When varying the fitting
parameter xmin that determines beyond which minimum value the power-law be-
havior should hold in the provided data, we can get different α values. We made
a conservative choice of picking this smaller α value as it underestimates the pop-
ularity of popular websites and therefore performs worse for the attacker.7 Thus,
we use a power-law distribution to model what websites Tor users visit. On the
one hand, this might overestimate the popularity of higher-ranked websites such as
Facebook and YouTube because we believe that Tor users—who tend to be privacy-
conscious—are more likely to seek out alternatives than the typical Internet user.
On the other hand, highly sensitive sites tend to be offered as onion services. We
will discuss the implications of our model for browsing behavior later.

Modeling how often Tor users visit each site

Next, we determine how many websites Tor users visit in a certain time span. We
approximated this number by setting up an exit relay whose exit policy included
only the ports 80 and 443, so our relay would only forward web traffic. We then
used the tool tshark to capture the timestamps of DNS requests—but no DNS
responses. We made sure that our tshark filter did not capture packet payloads
or headers, so we were unable to learn what websites Tor users were visiting. In

7Alexa’s page-view numbers ignore multiple visits by the same user on the same day (see
https://support.alexa.com/hc/en-us/articles/200449744), so the ranking might be slightly
off when modeling website visit patterns.

https://support.alexa.com/hc/en-us/articles/200449744
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Figure E.6: The number of DNS requests per five-minute interval on our exit re-
lay for May 25, 2016. Using a privacy-preserving measurement method, we only
determined approximate timestamps and no content.

addition, we patched tshark to log timestamps at a five-minute granularity. The
coarse timing granularity allows us to publish this dataset with minimal privacy
implications; Section E.8 discusses the ethical implications of this experiment in
more detail. We ran the experiment for two weeks, from May 15, 2016 to May
31, 2016, which allowed us to determine the number of DNS requests for 4,832
five-minute intervals. Figure E.6 shows this time series, but for clarity we only plot
May 25, 2016. The distribution’s median is 105. The time series features several
spikes; the most significant one counts 1,410 DNS requests. We repeated the same
experiment with the so-called reduced exit policy8 because it contains several dozen
more ports and it is more popular among Tor relay operators; as of August 2016, it
is used by 7.8% of exit relays by capacity. In comparison, the exit policy containing
only port 80 and 443 only accounts for 1.5%. The reduced exit policy resulted in
a median of 102 DNS requests per five minutes, so the difference between both
policies is only three DNS requests.

We then interpolate these numbers to all Tor exit relays based on their published
bandwidth statistics. While we measured a median of 105, the mean of the distri-
bution was 119.3 per five minutes during a two-week period. From DNS statistics of
the Alexa top one million websites (see Section E.5) we know that one website visit
causes outgoing DNS requests for 10.3 domains on average (assuming a power-law
distribution of site popularity as described above, and taking into account Tor’s
caching of pending DNS requests, ensuring that multiple requests sent by clients
for the same domain name only result in one outgoing request by the exit). This
means that our exit relay saw an average of 23.2 website visits per ten minutes.
Assuming that the two main factors influencing the volume of DNS requests are a

8The reduced exit policy is available online at https://trac.torproject.org/projects/tor/
wiki/doc/ReducedExitPolicy.

https://trac.torproject.org/projects/tor/wiki/doc/ReducedExitPolicy
https://trac.torproject.org/projects/tor/wiki/doc/ReducedExitPolicy
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relay’s bandwidth and its exit policy, and having shown that the exit policy does
not significantly impact the number of DNS requests, we can scale this number up
to the whole Tor network using the self-reported bandwidth statistics of exit relays.
In particular, we use the bandwidth information reported in the extra-info descrip-
tors that are available on CollecTor [125] and estimate the number of website visits
on each of the about 1,200 exit relays active at that time. The resulting average
number of websites visited through the Tor network is 288,000 per ten minutes.
However, this number is merely an estimate because the interpolation is based on
a single exit relay, and the bandwidth data of exit relays is self-reported and might
therefore be incorrect.

Recently, Jansen and Johnson measured that the average number of active web
(port 80 and 443) circuits in Tor amounts to about 700,000 per ten minutes [72,
§ 5.3]. Tor Browser, The Tor Project’s fork of Firefox, builds one circuit per website
entered in the URL bar. How long the circuit remains active depends on Tor
Browser settings (primarily MaxCircuitDirtiness currently set to ten minutes) and
how long TCP streams in the circuit are active: as long as at least one stream is
active, the circuit remains active. Each time a new stream is attached to a circuit,
the circuit’s dirtiness timeout is reset. The number of active circuits serves as an
upper bound for the number of websites visited over Tor: visiting different pages
of a website will use the same circuit, and visiting a new website will construct
a new circuit. Users visiting several pages of a website and websites with long-
lived reoccuring connections, like Twitter and Facebook with continuously updating
feeds, all lower the number of websites visited in Tor relative to the number of active
circuits. For our model we consider the upper bound of 700,000 to be the number
of websites visited through the Tor network per ten minutes. This is a conservative
choice as more website visits increase the anonymity set of websites possibly visited
by a Tor user—and therefore reduces the information an attacker can gain from
observed DNS traffic. Later, we revisit the implications of our choice by both scaling
the Tor network up to ten times its estimated size, and scaling it down to the size
of 288,000 website visits per ten minutes that we got from our own interpolation
described above.

Modeling the effects of DNS caching at Tor exits

To learn what DNS requests the adversary can see, we need to take into account
caching of DNS responses. We ignore client-side DNS caching since it is disabled by
default, as described in Section E.2. Exit relays, however, do cache DNS requests
and we take it into account because all Tor clients using the same exit relay share
its cache. In addition to their resolver’s cache, exit relays maintain their own DNS
cache9 and enforce a minimum TTL of 60 seconds and a maximum TTL of 30

9The code is available online at https://gitweb.torproject.org/tor.git/tree/src/or/dns.
c?id=tor-0.2.9.1-alpha.

https://gitweb.torproject.org/tor.git/tree/src/or/dns.c?id=tor-0.2.9.1-alpha
https://gitweb.torproject.org/tor.git/tree/src/or/dns.c?id=tor-0.2.9.1-alpha
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minutes.10 We refer to this as Tor’s TTL clipping. However, due to a bug that we
identified,11 the TTL of all DNS responses is set to 60 seconds.

If a Tor client attempts to resolve a domain that an exit relay has cached, the
adversary will be unable to observe this request. However, the adversary can record
all observed DNS requests over the past x seconds, where x is the maximum TTL
value (i.e., maintain a sliding window of length x). If a Tor client is attempting
to resolve a domain name, the request is either cached or not. If it is not cached,
the adversary will see it as a new, outgoing DNS request from the exit relay. If it
is cached, it must have been resolved by the exit relay in the last x seconds, and
will therefore be in the sliding window. The sliding window technique allows the
attacker to capture all relevant DNS requests, regardless of if they are cached or
not. We assume that an adversary applies this sliding window technique and models
the observable DNS traffic accordingly. The attacker observes a fraction of Tor’s
exit bandwidth for a specific window length, and together with our website visit
frequency estimation, this triggers a number of website visits in our simulation. For
each visit event, we randomly draw a website using the power-law website popularity
distribution described above and put its DNS requests into the window. As we will
see next, we do not need to simulate or consider the fact that the observed fraction
of Tor exit bandwidth corresponds to many different exits with individual caches.

Inferring website visits from DNS requests
Given a sliding window full of DNS requests, we investigate how this information
can help determine whether a user has visited a website of interest. In April 2016, we
visited the Alexa top one million websites five times, and collected all DNS requests
that each visit of a website’s frontpage generated. We refer to the data collected
for one visit as a sample. We performed these measurements in five rounds from
Karlstad University. Each round browsed all one million websites in random order
before visiting the same website again. We used Tor Browser 5.5.4 and configured it
not to browse over Tor: Tor Browser ensures that the browser behavior is identical
to a Tor Browser user over Tor. By not using Tor, we can bypass IP blacklists
and CAPTCHAs that Tor users are frequently struggling with. Table E.1 shows
the percentage of websites in our dataset that are hosted by Cloudflare or Akamai.
We might not be able to access these websites programatically over Tor because
they block or filter exit relays, as identified by Khattak et al. [81]. We also include
Google, which is prevalent in our dataset and restricts access to Tor users for
Google’s search.

We collected 2,540,941 unique domain names from a total of 60,828,453 DNS
requests. The dataset contains 2,260,534 domains that are unique to a particular
website, i.e., are not embedded on any other top million site; we call these domains
unique domains. Unique domains are particularly interesting because they reveal

10The code is available online at https://gitweb.torproject.org/tor.git/tree/src/or/dns.
c?id=tor-0.2.9.1-alpha#n209.

11The bug report is available online at https://bugs.torproject.org/19025.

https://gitweb.torproject.org/tor.git/tree/src/or/dns.c?id=tor-0.2.9.1-alpha#n209
https://gitweb.torproject.org/tor.git/tree/src/or/dns.c?id=tor-0.2.9.1-alpha#n209
https://bugs.torproject.org/19025
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Table E.1: The percentage of websites in Alexa’s top 1 million that use providers
that restrict access from Tor [81].

Description Percentage
Website behind Cloudflare IP address 6.44
Domain on website uses Cloudflare 25.81
Domain on website uses Akamai 33.86
Domain on website uses Google 77.43
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Figure E.7: The fraction of websites in Alexa’s top one million that have at least one
unique domain. We grouped all domains into 1,000 consecutive, non-overlapping
bins of size 1,000. The vast majority of sites (96.8%) have unique domains.

to the adversary what sites among the top million the user has visited. This is not
possible for domains such as youtube.com, simply because many websites embed
YouTube videos. Figure E.7 shows the fraction of sites with unique domains for
websites up to Alexa’s top one million. We grouped all domains into 1,000 consecu-
tive, non-overlapping bins of size 1,000. For 96.8% of all sites on the Alexa top one
million there exists at least one unique domain. Interestingly, more popular web-
sites are less likely to have a unique domain associated with them: only 77% of the
first bin—the most popular 1,000 domains—contain at least one unique domain.

Table E.2 shows summary statistics for the number of domains per website.
At least half of the sites have ten domains per website, two of them are unique,
suggesting that an adversary can identify many website visits by observing a single
unique DNS request.

To evaluate the feasibility of mapping DNS requests to websites, we construct
a naïve website classifier that maps the unique domains in a set of DNS requests to
the corresponding website that contains a matching set of domains. With five-fold
cross-validation on our Alexa top one million dataset (with five samples per site),
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Table E.2: Summary statistics for the number of domains per website in the Alexa
top 1 million. More than half of the sites embed two domains that are unique to
that site.

Domains Median Mean ± Stddev Min. Max.
Per site 10 12.2± 11.2 1 397
Unique per site 2 2.3± 1.8 0 363

we consider a closed world and an open world. In the closed world, the attacker can
use samples from all sites in training; in the open world, some sites are unmonitored
and therefore unknown (as per the fold). The closed-world evaluation yields 0.955
recall. In the open-world evaluation, we monitor the Alexa top 500,000 with five
samples each and consider 433,000 unmonitored sites. The number of unmonitored
sites is determined by our power-law distribution to represent a realistic base rate
(for the entire Tor network) for evaluating our classifier: on average, for sites in the
Alexa top 500,000 to be visited 2.5 million times, there will be about 433,000 visits
to sites outside of Alexa’s top 500,000. Our classifier does not take into account
the popularity of websites. The open-world evaluation yields a recall of 0.947 for
a precision of 0.984. By accounting for request order, per-exit partitioning of DNS
requests, TTLs, and website popularity, we expect that classifying website visits
from DNS requests can be made even more accurate. Further, a closed world
is realistic in our setting: determining the DNS requests made by all 173 million
active websites on the Internet is practical, even with modest resources. We use the
conservative open world results when simulating the Tor network and the attacker’s
success in mapping DNS requests to websites. We conclude that for the purpose
of identifying websites, observing DNS requests coming out of Tor is almost as
effective as observing the web traffic itself.

Classifiers for DefecTor attacks
We extend Wa-kNN from Wang et al. [135] (described in Section E.2) by having it
take as input a list of sites derived from observing DNS requests. In particular, we
implement two DefecTor attacks:

ctw We “close the world” on a Wa-kNN classifier that we modified to consider only
the distance to observed sites when calculating the k-nearest neighbors. The
classifier still considers the distance to all unmonitored sites.

hp When Wa-kNN classifies a trace as a monitored site, confirm that we observed
the same site in the DNS traffic (ensuring high precision). If not, make the
final classification unmonitored.

These approaches apply to any website fingerprinting attack. The ctw attack in-
creases the effectiveness of conventional website fingerprinting attacks by making



E.6. EVALUATING DEFECTOR ATTACKS 117

them more akin to a closed-world setting, where websites have known fingerprints
and the world is often of limited size. Conceptually, the attack could also include a
custom weight-learning run—training only on observed sites—but our initial results
showed little to no gain, despite significant increases in testing time. We assume
that this is due to the fact that some features of traffic traces are more useful than
others, regardless of the training data [67]. The hp attack only produces a positive
classification if both ingress and egress traffic are consistent, resulting in a simple
but effective classifier.

Evaluating DefecTor Attacks

Attack precision and recall

To evaluate our DefecTor attacks, we collected traffic traces in May 2016 using
Tor Browser 5.5.4. We modified Tor Browser to not generate network traffic on
launch (i.e., check for updates, extensions, etc.), and we modified Tor (bundled
with Tor Browser) to log incoming and outgoing cells. We then performed 100
downloads for each site in the Alexa top 1,000 and one download for each site in
the Alexa top (1k,101k]. We randomly distributed these measurement tasks to a
Docker fleet; each download used a fresh circuit without guard relay, and a fresh
copy of Tor Browser for up to 60 seconds, in line with the recommendations by
Wang and Goldberg [136, § 4]. We cached Tor’s network consensus to minimize
load on the network. We labeled a measurement as successful if we managed to
resolve the domain of the site; we did not prune our dataset further, neglecting
issues like Cloudflare CAPTCHAs, outliers, control cells, and localized domains [78].
Presumably, this means that we will underestimate the effectiveness of our attack,
but we are primarily interested in the difference between website fingerprinting
attacks and DefecTor attacks [136].

We perform ten-fold cross-validation for all of our experiments in the open world
setting, monitoring 1,000 sites with 100 instances each, and 100,000 unmonitored
sites. The 1:1 ratio between monitored traces and unmonitored traces is to ensure
that for the classifier there is equal probability in the testing phase that a trace
is a monitored or unmonitored site. In other words, the base rate is 0.5 in our
experiments. Furthermore, for all experiments we specify the starting Alexa rank
of the monitored sites when simulating sites visited over the Tor network. We always
use the same sample data for website fingerprinting. The popularity of monitored
sites is a key factor in the effectiveness of our attacks.

Figure E.8 shows the recall and precision of our DefecTor attacks as a function
of the percentage of observed Tor exit bandwidth by the attacker monitoring Alexa
sites for sites whose ranks is 10,000 or less. For recall, both ctw and hp are bound
by the percentage of exit bandwidth observed by the attacker (the percentage is
an upper bound). It is simply not possible to identify a monitored site in the DNS
traffic that the attacker does not see. At 100% of exit bandwidth, ctw sees better
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Figure E.8: Recall and precision for an open-world dataset with monitored sites at
Alexa rank 10k and lower. We compare our DefecTor attacks (ctw and hp) to a
conventional website fingerprinting attack (wf) for different percentages of observed
exit bandwidth.

recall than wf. For hp the results suggest that:

recallhp = recallwf ∗ pct. (E.2)

This relationship only holds when observing DNS requests gives a clear advantage
to hp in terms of precision over wf (see the following paragraph). For precision,
the hp attack has an immediate gain over wf as soon as the attacker can observe
any exit bandwidth. Although the hp attack has near-perfect precision, the ctw
attack benefits from observing increasingly more exit traffic, nearly reaching the
same levels as hp at 100% of the exit bandwidth.

Figure E.9 shows recall and precision at 100% of observed Tor exit bandwidth
as a function of the starting Alexa rank of monitored sites (we still monitor 1,000
sites). For popular websites (i.e., websites with a high Alexa ranking), there is
no difference between our attacks and the wf attack. This is because even with a
window of only 60 seconds, it is almost certain that at least one user visited any of
the most popular sites over Tor. For sites that rank 1,000 or lower (i.e., less popular
sites), both DefecTor attacks show a clear improvement in precision while ctw also
shows improved recall—but only at 100% observed exit bandwidth, as shown in
Figure E.8. These results paint a bleak picture: an attacker that observes the vast
majority of exit bandwidth can use the ctw attack as a perfectly precise attack with
increased recall over a traditional wf attack. On the other hand, an attacker that
can observe a small fraction of exit bandwidth can use the hp attack as a perfectly
precise attack on relatively unpopular sites such as wikileaks.org, which had Alexa
rank 10,808 on April 15, 2016. However, Equation E.2 suggests that recall will be
low.
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Figure E.9: The recall and precision when varying the starting Alexa rank of mon-
itored sites for 100 percentage of exit bandwidth.

Sensitivity analysis

To better understand the extent and limitations of our attacks, we now study the
sensitivity of our DefecTor attacks to website fingerprinting defenses, TTL clipping,
the growth of the Tor network, and website popularity distribution. In this section,
we assume that an adversary can observe Tor exit relays representing 33% of exit
bandwidth (as observed on average by Google) and consider only precision (where
we see clear gain from both our attacks). Note that the following results largely
also apply to weaker attackers that observe a smaller fraction of exit bandwidth
for the hp attack, but that the ctw attack is more sensitive in terms of precision
to different bandwidth fractions, as shown above. Unless stated otherwise, we
(i) perform our evaluation on websites starting from Alexa rank 10,000 upwards,
(ii) use 2,500 weight-learning rounds, (iii) have a 60-second window size, (iv) a
Tor network scale of 1.0, and (v) use the conservative power-law distribution from
Section E.5.

Effect of website fingerprinting defenses

The Tor Project is working on a website fingerprinting defense [105]. Most de-
fenses produce bandwidth and/or latency overhead, with a significant increase in
overhead as the defense becomes stronger. For example, Juarez et al. observe an
exponential increase in bandwidth overhead as the protection of the WTF-PAD
defense increases [79, § 4.3]. The goal is to find an optimum that provides strong
protection while keeping the overhead tolerable for Tor users. To approximate the
effect of fingerprinting defenses on DefecTor attacks, we use Wa-kNN with random
weights and no weight-learning, which significantly reduces the effectiveness of the
attack since some features (like indices of outgoing packets) are several orders of
magnitude more useful than others [79].
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(a) Estimating the effect of website fin-
gerprinting defenses.
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(b) Effect of increasing the analysis time
window due to TTL clipping.
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(c) Effect of Tor network scale for Alexa
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(d) Effect of different website popularity
distributions.
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Figure E.10: The effect on attack precision. The defaults are: Alexa from top
10,000, 2,500 weight-learning rounds, 60-second window size, Tor network scale
1.0, and the conservative power-law distribution (pc) with α = 1.13.

Figure E.10a shows the effect of weight-learning between 0 and 3,000 rounds.
At few to no rounds, the precision for the wf attack is below 50%—the classification
is more likely to be wrong than right—while there is no impact on the hp attack
and a relatively small decrease for the ctw attack. For recall, which is not shown in
the figure, the bound and relationship is as in Equation E.2: for wf, at zero rounds,
recall is 0.055; for hp at zero rounds, recall is 0.019. These results suggest that for
website fingerprinting defenses to be effective against DefecTor attacks, the defense
must be tuned to cause low recall even if the parameters of website fingerprinting
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Table E.3: Median and mean DNS TTL values across Alexa top one million sites.
Raw TTLs are unprocessed, as they appear in DNS lookup traces. Tor TTLs adhere
to Tor’s TTL clipping. Unique refers to the TTLs for unique domains; min unique
only considers the unique domains with the minimum TTL for each website.

TTLs Median TTL (sec) Mean TTL (sec) ± Stddev
Raw 255 9,780.0± 42,930.5
Tor 701.5± 755.3
Unique raw 900 13,022.2± 35,054.4
Unique Tor 1,005.3± 789.6
Min unique raw 60 3,833.9± 11,073.6
Min unique Tor 644.2± 763.8

attacks are optimized for high recall.

Effect of Tor’s TTL clipping

As discussed in Section E.5, due to a bug in Tor, all exit relays cache DNS responses
for 60 seconds, regardless of the DNS response’s TTL. Therefore, a sliding window
covering the last 60 seconds of observed DNS requests suffices to capture all mon-
itored sites through Tor (subject to the fraction of observed Tor exit bandwidth,
and mapping DNS requests to sites).

Table E.3 shows the TTL of DNS records in our Alexa top one million dataset
from Section E.5 both for the TTL as-is (raw) and when clipped (Tor). We calculate
the intended values for TTL clipping, assuming that The Tor Project will fix the
aforementioned bug. For each of these cases, we also consider TTLs for all unique
domains, and for only the unique domain for each website with the lowest TTL.
About half of all sites on Alexa’s top one million have a unique domain with a TTL
of 60 seconds or less; 48% of the raw unique TTLs are below 60 seconds and only
26% above 30 minutes. Fixing the Tor clipping bug is therefore not sufficient; to
mitigate DefecTor attacks, the minimum TTL should be significantly increased. In
this case, we find that Tor’s TTL clipping has no effect on the median TTL, but
significantly reduces the mean TTL.

Suppose that Tor eventually fixes the DNS TTL bug, requiring the attacker to
monitor DNS lookups for a time interval equal to the maximum TTL of all unique
domains for any monitored site. Figure E.10b shows the effect on precision for differ-
ent time intervals from 60 seconds to 30 minutes (Tor’s MAX_DNS_ENTRY_AGE
for keeping entries in an exit’s DNS resolver cache), and for Alexa starting rank
10,000 and 100,000. For ctw, the time interval has a significant effect on both
Alexa starting ranks, while hp is only affected for sites ranked 10,000 or higher; for
less popular sites, the DNS lookup data still significantly improves fingerprinting
precision, even with the larger window size.
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Effect of Tor network growth

Figure E.10c scales the size of the Tor network with respect to site visits from the es-
timated status quo to ten times its size, for Alexa starting rank 10,000 and 100,000.
At twice its current size, the impact on DefecTor attacks is smaller than increasing
the minimum TTL for DNS caching to three minutes, as shown in Figure E.10b.
These results indicate that DefecTor attacks will remain practical for many sites in
the Alexa top one million, even as the Tor network grows. If we overestimated the
current Tor network size in the analysis in Section E.5, our DefecTor attacks would
have even higher precision, as shown by the data points to the left of the gray line
in Figure E.10c.

Sensitivity to website popularity distribution

To explore the sensitivity of our results to different distributions in how users visit
websites, we now evaluate the effectiveness of DefecTor attacks with four different
website distributions:

pc A conservative power-law distribution (with α = 1.13) that we manually fitted
to the Alexa top 10,000 data, slightly underrepresenting the popularity of top
Alexa sites. We described this distribution in Section E.5.

pr A realistic power-law distribution (with α = 1.98) that is the best fit according
to the Python powerlaw library by Alstott et al. [8] for the Alexa top 10,000
data.

uc A conservative uniformly random distribution that only considers one million
active websites browsed over Tor.

ur A realistic uniformly random distribution that considers 173 million active web-
sites, as reported by Netcraft in July 2016 for the Internet [97].

Figure E.10d shows the effect on the precision of the hp attack for the different
distributions as we vary the starting Alexa rank. The uniform distributions always
have nearly perfect precision. The difference between the two power-law distribu-
tions is about one order of magnitude in terms of starting Alexa rank: the realistic
distribution gets near perfect at 1,000 and the conservative at 10,000. We conclude
that DefecTor attacks are perfectly precise for unpopular sites because it is un-
likely that more than one person is browsing a monitored site within the timeframe
determined by the window length.

Internet-scale analysis

In the preceding sections we have presented our DefecTor attacks and evaluated
their effectiveness, but we have yet to understand what entities can mount them.
In this section, we aim to quantify the likelihood that any AS is in a position to
mount DefecTor attacks.
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Figure E.11: The relation among our simulation components. Our goal is to de-
termine the ASes a Tor user’s traffic traverses into and out of the Tor network.
Duplicate ASes on both sides can deanonymize streams.

Approach
Figure E.11 summarizes our simulation approach, which we detail in the next sec-
tion. In short, we model the activity of Tor users and simulate their path selection
using TorPS [75]. TorPS returns guard and exit relays, which we then feed as
input—together with source ASes and destination addresses—into our framework
that runs traceroutes from RIPE Atlas nodes. The rest of this section describes
our approach in detail.

Attack model

We assume that an AS can mount DefecTor attacks if it can see both traffic entering
the Tor network and DNS traffic exiting the Tor network. Recall that an exit relay
can perform DNS resolution in two ways; by running a local resolver, or by relying
on a third-party resolver, such as its ISP’s or Google’s public resolver. In the case
of exit relays that perform local resolution, an effective position for an attacker is
both (i) anywhere on the AS path between a Tor client and its guard relay; and
(ii) anywhere on the path between an exit relay and any of the name servers the
exit has to communicate with to resolve a domain. These name servers include the
full DNS delegation path, i.e., a root name server plus subsequent name servers
in the DNS hierarchy. All ASes along the path from the exit relay to the name
servers will be able to see the domain names that the exit relay is querying. For
exit relays that rely on third-party resolvers, the adversary instead has to be on
the path between the exit relay and its DNS resolver.

Simulating Tor user activity with TorPS

To measure the likelihood that an AS can be in a position to perform a DefecTor
attack, we use TorPS [75]—short for Tor Path Simulator—which mimics how a
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Tor client constructs circuits (see “TorPS” in Figure E.11). TorPS takes as input
archived Tor network data [125] and usage models, which are sets of IP addresses
that Tor clients talk to—e.g. web servers. Given this input, TorPS then simulates
for a configurable number of “virtual” Tor clients the way they would select guard
and exit relays. TorPS is based on the Tor stable release in version 0.2.4.23. For
each simulated client, TorPS uses one guard; this guard selection expires after 270
days. We use TorPS to simulate the behavior of 100,000 Tor clients for the entire
month of March 2016.

We need to place our simulated Tor clients into an AS (see “Client models”
in Figure E.11). We selected clients in major ISPs in the top-five most popular
countries of Tor usage according to Tor Metrics [126]. As of August 2016, the top
five countries are the U.S., Russia, Germany, France, and the U.K. For the U.S.,
we chose Comcast (AS 7922); for Russia, Rostelecom (AS 42610); for Germany,
Deutsche Telekom (AS 3320); for France, Orange (AS 3215); and for the U.K.,
British Telecom (AS 2856).

Having placed simulated Tor clients into ASes, we now model their activity
over Tor (see “Usage models” in Figure E.11). We model each client to have
visited several websites every day in March 2016.12 At 9 a.m. EST, the client
visits mail.google.com and www.twitter.com. At 12 p.m. EST, the client vis-
its calendar.google.com and docs.google.com. At 3 p.m. EST, the client visits
www.facebook.com and www.instagram.com. Finally, at 6 p.m. EST, the client vis-
its www.google.com, www.startpage.com, and www.ixquick.com, and at 6:20 p.m.
EST, the client visits www.google.com, www.startpage.com, and www.ixquick.com
again. Each of the 100,000 simulated Tor clients thus had 12 · 31 = 372 opportu-
nities to be compromised given 31 days and 12 site visits per day. TorPS provided
a new circuit every ten minutes, regardless of how many distinct connections the
client made to different sites; it did not provide a new circuit for different websites
if the client visited the group of sites within the same ten-minute window.

For simplicity, we assume that only one DNS request occurs every time a client
visits a site. For example, in our model, at 9 a.m. one DNS request will occur for
mail.google.com and one DNS request will occur for www.twitter.com. At 6 p.m.
three DNS requests will occur, and at 6:20 p.m. those same three DNS requests
will occur again. For now, we do not take embedded requests (i.e. for embedded
website content such as YouTube videos) or caching into account.

Inferring AS-level paths using traceroutes and pyasn

Our Internet-scale analysis also requires learning the AS-level paths from each client
to its guard, and from its exit to the destination (see “RIPE Atlas traceroutes” in
Figure E.11). We decided against the commonly applied AS path inference because
Juen et al. showed that it can be quite inaccurate [80]. Traceroutes, in contrast,

12We modeled our client behavior off of the “Typical” model that Johnson et al. [76, § 5.1.2]
used.
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Table E.4: The coverage of RIPE Atlas nodes that are co-located with Tor guard
and exit relays as of May 2016.

Atlas probe coverage Tor guard ASes Tor exit ASes
By bandwidth 73.59% 57.53%
By number 50.69% 52.25%

yield significantly more accurate paths, but are difficult to run from Tor relays:
Past work involved asking relay operators to run traceroutes on behalf of the re-
searchers [80, § 4]. This approach yielded traceroutes from relays representing 26%
of exit bandwidth, but does not scale well. Instead of running traceroutes from
Tor relays, we leverage the RIPE Atlas [111] platform, a volunteer-run network
measurement platform consisting of thousands of lightweight and geographically
spread probes that can be used as vantage points for traceroutes. Our key obser-
vation is that RIPE Atlas has probes in many ASes that also have Tor relays. We
leverage this observation by designing measurements to run traceroutes from Atlas
probes that are located in the same AS as exit relays, to each of the destinations
in question.

Table E.4 shows that for a day in May 2016, we found that RIPE Atlas had
probes in 52% of ASes that contain exit relays, and in 51% of ASes that contain
Tor guard relays. More importantly, we found that Atlas ASes cover 58% of exit
bandwidth and 74% of guard bandwidth. This statistic is important given that Tor
clients select relays weighted by their bandwidth, and the bandwidth of Tor relays
is not uniformly distributed. Given the growth of both Tor and Atlas, we expect
these numbers to increase in the future. In addition to Atlas, we also considered
using PlanetLab [1] to initiate traceroutes, but unfortunately most PlanetLab nodes
are located in research and education networks [16], and are thus not suited for
performing our measurements.

We performed traceroutes from the five Tor client ASes outlined above to all
their respective guard relay IP addresses that TorPS determined. To measure the
paths from exit relays to their DNS resolvers, we performed the following tracer-
outes, simulating four different DNS configurations:

• ISP DNS: To investigate the scenario in which an exit relay uses its ISP’s
resolver, we chose to represent this as the resolver being in the same AS as
the exit relay. Thus, no traceroutes were necessary for this experiment. We
acknowledge that this is not necessarily the case, but assume that it holds for
the majority of exit relays.

• Google DNS: This scenario represents an exit relay using Google’s public
resolver. To measure the AS path, we perform traceroutes from a RIPE Atlas
node in the AS of the exit relay to Google’s public DNS resolver, i.e., 8.8.8.8.
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• Local DNS: To measure the paths that would be traversed if an exit relay were
running its own, local resolver (e.g., the popular service unbound), we used
the command line tool dig with the +trace option to determine the iterative
resolution process. We tracked all name server IP addresses from referrals
at each level of the delegation path, and performed traceroutes to those IP
addresses.

• Status quo: This scenario represents the state of the Tor network as of March
2016, a combination of the above three configurations. Recall that in Sec-
tion E.4, we determined the IP addresses of the resolvers that exit relays
use. We ran traceroutes to these very IP addresses. For the exit relays that
used several resolvers during March, we randomly assigned one to the relay.
We ended up having data for 73% of the exit relays that TorPS ended up
picking.13

We then mapped each IP address in every traceroute to its corresponding AS
(see “Analysis” in Figure E.11). The Python module pyasn [11] relies on BGP
routing tables to perform these mappings; by using a routing table that coincides
with the time when we performed our traceroutes, we can obtain accurate AS-level
mappings. This method is subject to inaccuracies due to BGP route hijacks or
leaks, but we expect those events to be relatively unlikely for the time period and
IP prefixes that we are concerned with.

Putting it all together

We consider the same two security metrics that Johnson et al. [76, § 4.2] originally
proposed; we aim to estimate (i) the fraction of compromised streams per simulated
Tor user, and (ii) the amount of time it would take for the first compromise to occur.
For both metrics, we consider the four DNS configurations outlined above. Our
simulation can reveal the respective average threat that a given DNS configuration
poses for Tor users.

Each traceroutes run yielded two sets of ASes, one from the Tor clients’ ASes to
their guard relays, and one from approximately half of the exit relays’ ASes to the
different destinations, which depend on the exit relays’ DNS configurations. We
intersect both AS sets (the “ingress” and “egress” hops of Figure E.11) and classify
a website visit as compromised if the intersection is non-empty. As stated earlier,
for some exit relays we did not have associated AS-level paths to a particular
destination, either due to a lack of co-located RIPE Atlas probes, or because of
missing traceroute information. In these cases, we checked if the exit AS had
the potential to launch an attack by itself, and if not, we labelled the stream as
uncompromised to err on the conservative side.

13The missing 27% are due to the churn in exit relays. Since we did not run our exitmap
experiment each hour, we were bound to miss some exit relays.
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To compute the fraction of compromised streams, we counted the streams that
were compromised for every simulated user out of a possible maximum of 372. To
compute the time until first compromise, we determined the first stream in which
the user was compromised, took its timestamp, and calculated the offset from the
beginning of March 1, 2016. For users that were not compromised during the
month of March, we assigned the maximum value of 31 days as the time until
first compromise, which is reflected in the plots in our next section. Users who
were compromised immediately would have a value of 0, signifying that they were
compromised at the very beginning of March 1.

Results
Figures E.12a and E.12b illustrate our results as box plots. Each figure contains
four subfigures, one for each DNS configuration. Each box plot contains five rows,
one for each Tor client AS. For clarity, we did not plot any outliers beyond the box
whiskers. For the fraction of compromised streams, an ideal setup has its median
at 0. For the time until first compromise, an ideal median is 31. Both figures show
that the “ISP DNS only” setup is the safest for Tor users, i.e., it exhibits on average
the least number of compromised streams while also on average counting the most
days until compromise. This setup is closely followed by “Google DNS only,” the
status quo, and finally “Local DNS only,” which fares worse than all other setups.
We expected “ISP DNS only” to do best because if all exit relays use their ISP’s
resolvers, there is only one AS to contend with on the egress side—the exit re-
lay’s. The Google setup fares similarly well; most likely because of Google’s heavily
anycast infrastructure which minimizes the number of AS hops. The status quo
does significantly better than the “Local DNS” results, presumably because only
around 12% of Tor exit relays actually do their own resolution. The large variance
observed in Figure E.12b for “ISP DNS” and “Google DNS” is due to using 31
days as a placeholder for simulated clients who were never compromised. However,
a safe configuration against AS-level adversaries, which our figures capture, is not
necessarily the best setup for Tor users. For example, ISP-provided DNS resolvers
can be misconfigured, subject to censorship, or simply be a forwarder to Google’s
resolver, which already serves numerous exit relays and whose centralization poses
a threat to the anonymity of Tor users. We will explore this trade-off in greater
detail in Section E.8.

Interestingly, we find differences in our five client ASes. These differences are
particularly striking in Figure E.12b. For “Google DNS only,” the median time until
compromise differs by around seven days between DE and UK, and around eight
days between DE and FR. For “ISP DNS only,” the median time until compromise
differs by around six days between US and DE, and around five days between
US and FR. Also, we notice that DE fares worse than the others in the “Google
DNS only” scenario and better than the others in the “ISP DNS only” scenario.
We conclude that the location of Tor clients matters and should be considered in
future traffic correlation studies.
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(a) The fraction of compromised streams of simulated Tor clients.

Google DNS only ISP DNS only Local DNS only Status quo

DE
FR
RU
UK
US

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
Fraction of compromised streams

To
r c

lie
nt

 IS
P

(b) The time until simulated Tor clients got first compromised.
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Figure E.12: The fraction of compromised streams and the time until first compro-
mise for our simulated Tor clients. We placed these clients in five popular client
ASes in the U.S., the U.K., Russia, France, and Germany. For exit relays, we con-
sider the status quo (on the very right) plus three hypothetical DNS configurations
for all exit relays. We do not plot outliers beyond the box plots’ whiskers. In both
experiments, the safest configuration is “ISP DNS only,” i.e. have all exit relays
use their ISP’s DNS resolver.

Discussion

In this section, we briefly discuss the ethics of our research and ways to defend
against DefecTor attacks.

Ethical considerations
In Section E.5, we discussed setting up an exit relay to determine the number of
DNS requests per five minute interval. Since our exit relay was forwarding traffic
of Tor users, we contacted Princeton University’s institutional review board (IRB)
before running the experiment. Our IRB deemed that this research did not fall
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within the realm of human subjects research. In addition to contacting our IRB,
we adhered to The Tor Project’s ethics guidelines [83]. Specifically, (i) we ensured
that we only collected data that is safe to publish, (ii) we only collected data we
needed, and (iii) we limited the granularity of the data to minimize the likelihood
of reidentification. The risk to Tor users of this experiment is negligible. As for the
benefits, by conducting this experiment, we can improve our understanding of the
risks that DNS poses to the anonymity of Tor users and use this understanding to
improve protection for Tor users in the future. Thus, we believe that the benefits
of our experiment outweigh the risks.

Defending against DefecTor attacks
We now discuss ways to defend against DefecTor attacks. We distinguish between
short-term solutions that can be implemented quickly (Section E.8), and long-
term solutions that need significantly more work (Section E.8). Our discussion of
countermeasures is not comprehensive, and we defer a more detailed analysis to
future work.

Short-term solutions

Exit relay operators face a dilemma: they must either operate their own resolver,
which exposes DNS queries to network adversaries; or, they must use a third-party
DNS resolver, which exposes DNS queries to a third party. Clearly, the goal is to
minimize exposure of DNS requests, but there are several dimensions to this. In
lieu of substantial DNS protocol improvements, we envision three extreme design
points, in which all exit relays use (i) Google’s DNS resolver; (ii) their own, local
resolver; or (iii) the resolver provided by their ISP.

If all exit relays were to use Google’s public resolver, the company would obtain
metadata about the activity of all Tor users, which runs counter to Tor’s design
goal of distributing trust. We clearly should avoid this scenario. Fifield et al.’s [54]
censorship circumvention system meek used to use Google’s cloud infrastructure to
tunnel the traffic of censored users up until May 2016 [53]. While the system was
operational, thousands of meek clients selected exit relays that use Google’s public
resolver, which means that Google saw both traffic entering and, partially, exiting
the Tor network, allowing the company to mount DefecTor attacks. Next, consider
a Tor network that only uses local resolvers. In this case, Tor is fully independent
of third-party resolvers, at the cost of each iterative DNS query being exposed to
a diverse set of ASes in the network, allowing several parties to learn the DNS
queries of Tor users. Finally, all exit relays could simply use their ISP-provided
resolver. This would minimize the network exposure of DNS requests as resolvers
are frequently in the same AS as exit relays, and AS-level adversaries would be
unable to distinguish between DNS requests from exit relays and unrelated ISP
customers. However, this setup introduces the possibility of misconfigured and
censored DNS resolvers [142, § 4.1]. Besides, just a few ASes—OVH, for example—
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host a disproportionate amount of exit relays, turning them into the very centralized
data sinks that Tor aims to avoid.

Considering the above, we believe that exit relay operators should avoid public
resolvers such as Google and OpenDNS. Instead, they should either use the resolvers
provided by their ISP, or run their own, particularly if the operator’s ISP already
hosts many other exit relays. Local resolvers can further be configured to minimize
information leakage, by enabling QNAME minimization [24]. There likely is a
measurable performance difference between a local resolver and Google’s resolver,
but we believe that this difference pales in comparison to other performance issues
in Tor such as head-of-line blocking.

Finally, Tor can fix the Tor clipping bug we discovered and consider significantly
increasing the minimum TTL for the DNS cache at exit relays to make DefecTor
attacks less precise. This adjustment requires finding the longest acceptable TTL
that does not have a notable negative detriment to user experience. Further, as
soon as the clipping bug is fixed, website operators of sensitive websites can opt to
increase the TTL of their DNS records.

Long-term solutions

Additional practical defenses are on the horizon. Zhu et al. [147] proposed T-
DNS, which employs several TCP optimizations to transport the DNS protocol
over TLS and TCP. The TLS layer provides confidentiality between exit relays and
their resolvers. Finally, site operators whose users are particularly concerned about
safety should offer an onion service as an alternative. Facebook, for example, set up
facebookcorewwwi.onion. When connecting to the onion service, Tor users never
leave the Tor network, and hence do not need DNS—as long as the onion service
does not embed non-onion service content.

Deploying defenses against website fingerprinting attacks in Tor should be an
important long-term goal, as well. Although growing the Tor network will help
defend against DefecTor attacks to some degree, the most important change is to
deploy defenses against these attacks. Since DefecTor attacks significantly increase
precision of website fingerprinting attacks, defenses should be designed to signif-
icantly reduce the recall of website fingerprinting attacks, even when the website
fingerprinting attack is configured to sacrifice precision for recall.

Conclusion

In this paper, we have demonstrated how AS-level adversaries can use DNS traffic
from Tor exit relays to launch more effective website fingerprinting attacks, to learn
what websites Tor users are visiting. Mapping DNS traffic to websites is highly
accurate even with simple techniques, and improves the precision when monitoring
relatively unpopular websites. We further developed a method to identify the DNS
resolver for each Tor exit relay, and found that a set of exit relays comprising
40% of all Tor exit relay bandwidth use the Google public DNS servers. Although
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this concentration of DNS query traffic reduces the expanse of ASes that can see
DNS query traffic emanating from exit nodes, this configuration nonetheless gives
a single administrative entity considerable visibility into the traffic that is exiting
the Tor network. Tor relay operators should take steps to ensure that the network
maintains more diversity into how exit relays resolve DNS domains. To mitigate
the risk of website fingerprinting attacks in light of our work, we suggest that local
DNS resolvers on Tor exit relays implement privacy-preserving techniques such as
DNS QNAME minimization, which minimizes the amount of information about
the domain name that each iterative query contains. We publish all our code,
data, and replication instructions on our project page, which is available online at
https://nymity.ch/tor-dns/.
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5. Concluding Remarks

This thesis addressed the questions how Online Social Networks can be decentral-
ized to improve user privacy and what new privacy issues emerge in Decentralized
Online Social Networks and other decentralized systems. It contributes to the re-
search in the field by designing several protocols for OSN functionalities that do
not rely on central system components and by analyzing the threats to user privacy
caused by metadata. It also presents a concrete attack based on metadata from a
deployed decentralized system, the Tor anonymization network, and discusses how
the attack can be mitigated to better preserve user anonymity.

From the security and privacy analysis in Article A we conclude that DOSNs,
while bearing a great potential for improving user privacy, have to be implemented
carefully not to reveal sensitive user data that had been protected in a centralized
system with a trusted provider. New adversaries or those that had limited capabili-
ties in a centralized setting become relevant in the DOSN context. Only encrypting
the content is not enough to protect user privacy. The decentralized architectures,
based on P2P networks and DHTs, exhibit more diverse points of attack such
as inferences from encrypted storage objects, encryption headers, key distribution
mechanisms or traffic analysis. They might leak more sensitive metadata informa-
tion than what was exposed to external attackers in centralized systems. We listed
some general techniques to mitigate these privacy threats. Some of the possible at-
tacks are straightforward to protect from, while other information leaks are harder
to avoid and protection techniques depend on the concrete DOSN implementation.

In Articles B, C and D, we presented implementations for OSN functionalities
in decentralized systems that take these new threats into account. In our work
on password authentication features for P2P systems, presented in Article B, we
show how the well-known username–password paradigm for authentication can be
transferred to systems without any central components. It allows user logins on
multiple devices and shows how password management tasks, such as password
change, blocking of lost devices or password recovery can be implemented in a
user-friendly and secure way. The implementations entail several usability–security
trade-offs that need to be re-evaluated individually for each system where the pass-
word authentication feature is to be deployed. Also the implementation proposal
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for a user search feature discussed in Article C has to balance usability and pri-
vacy requirements. Using a knowledge threshold, it allows legitimate users to find
others while adversaries that do not possess enough information about the tar-
get user do not learn any information about them. Our evaluation results suggest
that this might be an effective protection at least against crawling attacks. The
work on event invitations for decentralized systems in Article D presents a pos-
sible implementation of this functionality, featuring fine-grained privacy settings.
It also introduces several techniques that might be useful in other contexts, such
as a “commit-disclose” protocol that allows to share private data only with users
who give a certain commitment, or a “controlled ciphertext inference” protocol that
allows eligible users to derive the size but not the content of a datastructure.

In contrast to the other included articles, Article E focuses on a concrete at-
tack of a specific deployed system, the Tor anonymization network. The website-
fingerprinting-attack that is discussed in this work illustrates the larger attack sur-
face of decentralized systems: traffic analysis of encrypted connections can leak
sensitive data. This can be seen as one instance of metadata leakage, as discussed
in Article A even if the investigated system is not a DOSN. The evaluation of
the vulnerability illustrates the power of an adversary that can combine different
sources of information – encrypted ingress traffic with outgoing DNS requests in this
case. The analysis of different countermeasures shows that further decentralization
– of the DNS resolution in this case – can be part of the solution.

There are several possible directions for future work. One possible path to
proceed on is to explore the OSN functionalities we have looked at in more depth.
The work presented on password login mechanisms for a decentralized system leaves
several open problems, such as formal security proofs of the protocol properties
and protection against offline password guessing attacks. To achieve the latter,
distributed password verification [32, 33] or other password-hardening techniques
could be incorporated into the protocol. Using these techniques, no single node
would store information that could be used to mount brute-force attacks against a
user password. Only if a certain amount of nodes collude or get compromised, offline
attacks would be possible. For the user search protocols, it might be interesting to
combine the two different implementation approaches described in the article and
for the event invitation feature, extensions like transferable invites, where invited
users can invite other users, but only to a certain degree of indirection, might be
interesting to explore. For the analysis of the attack on the Tor network it would be
interesting to quantify different proposed countermeasures, for example the effect
of query name minimization and to investigate how well the attack works in more
challenging settings such as multi-tab browsing, that are known to be hard for
classical website fingerprinting attacks.

Another possible path for future work is to look at other OSN functionalities in
the same way as we did for password management, user search and event invitations.
There might be similar challenges and interesting problems to solve for features such
as a friend activity feeds, direct messaging or group chats in the context of a DOSN
where no trusted third party is available.
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Finally, it might be interesting to look at interaction effects on implementation
constraints and privacy guarantees when combining the functionalities that we have
looked at in isolation, into one comprehensive DOSN system. This might for ex-
ample exacerbate the metadata privacy problem outlined in Article A and require
new protection mechanisms.

The work in this thesis only touches on some of the technical aspects of the
complex endeavor of building a full-featured and privacy-preserving DOSN. But
we hope that the metadata privacy analysis, the feature implementation proposals
and the attack analysis are building blocks that are not only helpful in DOSN
research but applicable to other contexts of decentralized systems as well.
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