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Abstract. One common assumption when defining location privacy
metrics is that one is dealing with attackers who have the objective of
re-identifying an individual out of an anonymized data set. However, in
today’s communication scenarios, user communication and information
exchange with (partially) trusted peers is very common, e.g., in com-
munication via social applications. When disclosing voluntarily a single
observation to a (partially) trusted communication peer, the user’s pri-
vacy seems to be unharmed. However, location data is able to transport
much more information than the simple fact of a user being at a specific
location. Hence, a user-centric privacy metric is required in order to mea-
sure the extent of exposure by releasing (a set of) location observations.
The goal of such a metric is to enable individuals to estimate the pri-
vacy loss caused by disclosing further location information in a specific
communication scenario and thus enabling the user to make informed
choices, e.g., choose the right protection mechanism.

1 Introduction

Location information has recently become a popular but also valuable commu-
nication item. Ubiquitous and affordable mobile communication paired with a
new generation of so-called Smartphones has given rise to a large variety of lo-
cation based applications. However, exploitation of mobile location information
also brings new challenges to the users’ privacy.

Providing a proper definition of location privacy has proven to be a difficult
task. Many different definitions were published, all covering specific aspects. One
abstract definition, first defined by Westin [1] and modified by Duckham & Kulik
[2], describes location privacy as:

”[...] a special type of information privacy which concerns the claim of
individuals to determine for themselves when, how, and to what extent
location information about them is communicated to others.”

According to this definition the user should be in control of the dissemination of
his location information. Location sharing usually involves location data as co-
ordinates related to a sphere or map. Depending on the source, this information
might be error prone. For instance, the accuracy of GPS location determination
using a consumer device (Smartphone) might range from 1 to 50meters; location
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determination utilizing a GSM/3G infrastructure might have an error range of
50-250meters.

In today’s communication scenarios user communication and information ex-
change with (partially) trusted peers is very common, e.g., in communication
via social applications. In disclosing voluntarily a single observation to a (par-
tially) trusted communication peer, the user’s privacy seems to be unharmed
(using the aforementioned definition). However, location data is able to trans-
port much more information than the simple fact of a user being at a specific
location. In the long run, location data is able to describe what a user has done
and what he is currently doing.

For instance, a single location observation might have a different impact on
the user’s privacy depending on time and place but also on the observer. The
observer might be able to make exact conclusions about the user’s state and
intention, if the observer has good background knowledge about the user (e.g.,
wife, friends). Even observers with little or no background knowledge are able
to gain knowledge about the user. For example, by observing a user’s frequently
visited places, one can make conclusions about the user’s workplace or other
preferences. Using Westin’s definition, it is difficult for a user to measure the
extent of his location disclosure, especially with trusted communication peers
where an anonymity approach is unsuitable. Hence, a user-centric privacy metric
is required to measure the extent of exposure caused by releasing (a set of)
location observations. From a user’s perspective, with the goal of minimizing
exposure, only as little information as possible should be disclosed.

2 Related Work

Privacy metrics is an important field in research on mobile communication and
location based services, since they provide the fundamental model to evaluate a
privacy protecting scheme. One way of characterizing a (location) privacy metric
is the underlying adversary model: the metric describes how successfully one’s
privacy is protected against the defined adversary.

A popular model is an adversary that observes in some way generalized loca-
tion data and tries to reconstruct this data based on connected traces of a single
individual. In a second step the adversary may re-identify the traced individual
through his workplace or home by incorporating external knowledge (e.g. [3]).
For instance, Shorki et al. defined a location privacy metric that measures the
(in)ability of an adversary to accurately track a mobile user over space and time
[4]. A popular privacy metric is k-anonymity, developed in [5] and further ex-
tended for a location context (e.g. [6,7]). A single variable is able to determine
a user’s privacy level, i.e., being indistinguishable from k− 1 other agents. How-
ever, this metric may be misleading if all k users are within a region with only a
few plausible positions. l-diversity and road segment s-diversity avoid this issue
by only taking plausible positions into account [8]. Furthermore, k-anonymity
and similar methods imply that a suitable number of cooperative agents are
available for a specific service or listening group and global knowledge about the
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state of other agents is required. Thus, a user cannot determine or preserve a
desired privacy level in an autonomous manner. Neither does this metric cover
the sensitivity of a location at a given time [4], nor is it able to fully protect
specific movement patterns [9].

A different method for measuring location privacy is to make use of the un-
certainty of an adversary to assign a new observation to a trace of a specific
individual, e.g., by assigning probabilities to movement patterns and thus com-
pensating changed pseudonyms [10]. A similar measurement was proposed as
time-to-confusion metric, the tracking time of an individual until the adversary
cannot determine the next position with sufficient certainty [3].

The aforementioned privacy metrics usually require full insight into the set of
all users to determine the level of privacy for a single user within this set, and
they usually are based on the assumption that the user requires full anonymity.
Hence, such measures are not suitable for communication with (semi-)trusted
peers (e.g., social contacts) or in ubiquitous communication networks which re-
quire a confirmed user identity. Furthermore, such models assume that for every
available service there is a sufficient number of cooperative agents nearby and
such an approach is usually applicable for a subset of location based service.

Cranshaw et al. developed an entropy-based approach for analyzing the social
context of a geographic region. The proposed model assigns a high entropy to
a place if a large variety of users was observed at that location, a low entropy
value if the place was visited by only a few users [11]. Based on the location
diversity measurement above, a user-study was conducted on presence-sharing
preferences. Toch et al. found that people are more comfortable sharing their
location in places which are visited by a large and diverse group of people in
contrast to places which are highly frequented but by a homogeneous group [12].
Diaz et al. introduced a measure of entropy to quantify the degree of anonymity
a mix-network provides [13]. Kamiyama et al. extended the entropy measure to
quantify information disclosure through various media [14]. The described mea-
surement quantifies the privacy loss caused by the disclosure of several (sensitive)
attributes.

3 User-Centric Location Privacy Metric

For a user-centric location privacy model, location privacy has to be seen from a
different angle. As the user is not always able to hide or remain anonymous, she
could still achieve insight on the possible knowledge base of the communication
peers involved and thus could achieve or increase location privacy (w.r.t. the
aforementioned definition) through informed decisions on when, how and to what
extent she discloses her location information. Hence, an evaluation of the user’s
location in the context of each listener group is necessary.

3.1 Adversary Model

In terms of (location) privacy, all communication peers are considered only
as partially trusted, because once data is exchanged, this information usually



Location Privacy in Relation to Trusted Peers 109

cannot be recalled by the user. Even when considering explicit (legal contract)
or implicit (social contract) based privacy policies, the control problem remains.
Hence, all partially trusted peers are also considered as adversaries. Furthermore,
from a user’s perspective, there is no certain knowledge on the capabilities of
the observing/listening adversary, especially how disclosed or observed location
data is used and what kind of conclusion the adversary is able to make based
on the information collected. Hence, the adversary model is limited to informa-
tion an adversary may have collected during a defined observation period. We
assume that an adversary A has a memory O = {o1, . . . , om} of observations
on the user’s movement history based on time-stamped location observations
ot = (c, ε)t ∈ O, which are tuples of a geographic coordinate c ∈ C and an
error estimate ε ∈ E of this coordinate. The index t is a timestamp describing
when the location observation was made, with om being the latest observation.
The function loc : O → C extracts the location information from the tuple and
err : O → E returns the error estimate. The choice of the geographic coordinate
system (C) and the concrete representation of the error (E) is not important in
the context of this paper.

In our scenario the user’s utility is positive in a communication relation
with communication peer (adversary) A. Otherwise a rational agent would not
share information. We make a similar assumption for the adversary’s utility
(UA(ot) ≥ 0). A separation of the user’s utility disclosing information and the
user’s level of privacy is required, as the utility of location information naturally
conflicts with the user’s privacy level. In order to benefit from location-aware ser-
vices, the user’s location disclosure is required. Thus, for any location disclosure
the user’s privacy might decrease. Hence, the adversary’s utility is negatively
correlated with the user’s privacy level in a communication relation with ad-
versary A denoted as PA ∈ [0,−∞), with PA = 0 as the maximal achievable
privacy level:

UA(O) � −PA(O), (1)

For instance, if the user does not disclose any location information, the user’s
privacy is maximal but the adversary’s utility is zero. Thereafter there is a utility
gain if the adversary extends his knowledge either on the user’s preferences or
on his (periodic) behavior. Accordingly, UA(O

′) ≥ UA(O), with O′ := O∪ o′, iff.
o′ reveals previously unknown information to the adversary A. Hence the user’s
privacy w.r.t. adversaryA can only decrease by disclosing additional information:
PA(O′) ≤ PA(O).

An increase in the user’s privacy level is only possible if the user is intention-
ally lying about his location, because providing false information may degrade
the adversary’s knowledge base or may lead to false conclusions. However, by
providing false location information the user’s utility decreases as well. For in-
stance, in the case of location-based services a decrease in the user’s utility might
be caused by a decreased quality of service. In a communication scenario with
social contacts, getting caught lying might lead to negative social consequences.
For the rest of this paper we therefore assume that location observations reflect
the true positions of the user.
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Furthermore, the adversary’s utility as well as the user’s privacy depends on
the nature and magnitude of the error estimate ε. First, with more accurate
information more information might possibly be disclosed and thus, err(o′) <
err(o) ⇒ UA(o

′) ≥ UA(o), whereas the actual information gain is dependent,
e.g., on landscape and application characteristics. Second, the error value ε for
a given location sample is evaluated differently depending on the adversary and
the kind of observation. If the adversary determines the location by direct ob-
servation (oadv), e.g., through a WiFi/GSM/3G infrastructure, the adversary
knows the size and distribution of the expected error for the observed location
sample. If location information is given by the user (ousr), the adversary has
no information about the quality and thus the magnitude of the error ε of the
observed sample. The user might have altered the spatial and/or temporal ac-
curacy of the location information before submission. In general we can assume
that err(oadv) ≤ err(ousr) and therefore UA(o

adv) ≥ UA(o
usr), since a robust

error estimation reduces the adversary’s uncertainty and thus increases the po-
tential information gain for the same given error ε. But more importantly the
adversary chooses time and frequency of location observations.

3.2 Measuring Location Privacy

To measure the user’s privacy or privacy loss, the objective measurable com-
ponents defining PA w.r.t. location observations have to be identified. Taking
into account the aforementioned privacy definition and adversary model, the
evaluation of observations regarding new information about the user is required.
This information can be split into two parts: (1) gaining knowledge on the user’s
regular behavior and preferences (e.g., his neighborhood, occupation, leisure ac-
tivities or social contacts) and (2) deriving sensitive private information on his
current context (e.g., his activity or intention at an observed place).

We define the change of the user’s privacy level due to a new location observa-
tion o′ made by an adversary A who already has a location record O about the
user straightforwardly by ΔPA(O, o′) := PA(O ∪ o′)−PA(O). According to the
requirements from the adversary model with UA(O

′) ≥ UA(O) and UA � −PA

it follows that ΔPA(O, o′) ≤ 0.

Knowledge. In order to reflect the duration, density and quality of an obser-
vation, a model of all past disclosures, i.e., history or knowledge K, to a given
adversary is required. The user’s privacy is threatened by the discovery of his
regular behavior and preferences (i.e., movement pattern). Since a user cannot
change the knowledge an adversary already has, the user may evaluate the level
of completeness of an adversary’s information and the information gain as well
as privacy loss for disclosing a further location sample.

Based on the adversary’s utility function, we require that ΔK(O, o′) = K(O∪
o′)−K(O) ≥ 0. If no new information is released, ΔK = 0 and thus no privacy
loss is experienced by the user. Section 4 presents an example implementation
of K.
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Sensitivity. The second component threatening the user’s privacy w.r.t. his cur-
rent location is the sensitivity S of an observation ot. Due to diverse preferences
the individual subjective sensitivity of a certain location cannot be expressed
in a generic way. However, an objective measure of location sensitivity is the
level of the potential exposure caused by disclosing the user’s location at a given
time and date. The user is exposing himself by allowing or providing location
observations. As in daily life, such behavior may provide new, possibly sensitive
knowledge to any observer. However, in a crowded shopping or business district
during business hours the user’s exposure is limited. Even with knowledge of his
current location, the user is hard to spot and therefore it is hard to observe his
current activities or guess the user’s intention, because the number and diversity
of possible places where a user could be are rather high.

Similarly, S describes how difficult it is for an observer to observe or derive
the user’s real-life activity for a given (set of) location observation(s). Note
that the observer may have good background knowledge about the user and
therefore be able to derive the user’s activity with little or rough and error
prone location data. More formally S(O, ot) ∈ [0, 1] expresses the probability
of an adversary being able to derive the current activity of the user, i.e., the
reason for her visiting location loc(ot), taking previously visited locations O into
account (especially the latest, om ∈ O). For S(O, ot) = 0 the adversary does not
learn anything about the user’s activity or motivation for being located at ot,
while in the case of S(O, ot) = 1 the adversary can derive this information from
the location data without any doubts. Due to the spatiotemporal error ε ∈ E,
ot describes only an area in C where the user might be located. Let c′t be the
actual precise location of the user at time t. If caet is the adversary’s estimate
of the location of the user at time t (making use of background knowledge of
the user and external map knowledge), then S(O, ot) = Pr(c′t = caet ). Hence,
with a growing spatiotemporal error and/or a dense and diverse landscape, the
number of possible locations where a user could be increases and thus also the
adversary’s uncertainty regarding the user’s action.

In section 5 an example implementation of location sensitivity is discussed.

Trust Relation. Third, the level of trust (denoted as θ) for a given adversary
has to be modeled. In our communication scenario, the level of trust is defined
as the estimated personal background knowledge a specific adversary already
has about the user, based on the assumption that the user has trusted a peer
to a certain extent, such that he has previously disclosed a certain amount of
personal information, possibly through a different channel.

For instance, while communicating with social peers θ is more important, as
with growing personal trust social contacts already have a good knowledge from
other sources than mobile or social applications of the user’s behavior in partic-
ular. Hence, the sensitivity of the current location might cause the individual to
be more exposed, e.g., it might trigger uncomfortable questions, since these peers
are able to infer subjectively sensitive places by using their background knowl-
edge. In a communication relation with less trusted adversaries, e.g., location
based services without (or with pseudonymous) registration, the protection of
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the user’s daily routines is more important as there is usually little or no personal
background knowledge. By disclosing regular patterns, the user might be iden-
tified (cf. [15,16]). By contrast, a single location sample without context on the
observed individual has only little or no information value regarding the user’s
preferences or habits. The value of θ can be either predefined per classification
of the listener class A or can be used as a user-parameter.

Definition of Privacy Loss. To formalize the discussion above, the privacy
loss ΔPA w.r.t. an adversary A, a set of m past location observations O of this
adversary and a new location sample o′ is

−ΔPA(O, o′) = (1− θA)ΔKA(O, o′) + θASA(O, o′) (2)

which is the weighted knowledge gain on the user’s preferences ΔKA and the
location sensitivity SA. This proposed location privacy metric captures the rela-
tive privacy loss, instead of measuring a privacy level. Especially in environments
with (partially) trusted peers, the comparison of privacy levels is difficult because
of the different relations and knowledge between users. By measuring only the
relative privacy loss, different adversaries can be compared. Furthermore, the
sensitivity measure is bound to a certain context. Thus, there is no absolute
level of location sensitivity over time.

Comparison with Anonymity Metrics. In the case of a full anonymity
scenario, we assume no trust relation at all to be existent between the user
and the observer. Therefore we expect no background knowledge about the user
on the observer’s side and choose θ = 0 accordingly. That implies that only the
level ofK matters for the privacy (or anonymity) level. By definition K describes
the length, density and quality of the adversary’s observations. In the case of an
anonymity metric it describes the length of the observation of a single pseudonym
and the level of knowledge gained about the user by observation. Thus, for any
ΔK > 0 the probability of being anonymous decreases. For instance, a simple
user-centric estimation on the level of anonymity could be calculated based on
the results by Golle and Partridge [15].

4 Example Implementation of K

In order to calculate the user’s privacy level the adversary’s knowledge (gain) has
to be modeled. We assumed a knowledge gain / privacy loss only if the adversary
learns some previously unknown information. For a user it is important to know
what extra information the disclosure of a single location sample o′ gives to an
adversary A w.r.t. the adversary’s observation history.

In a study on movement patterns of mobile phone users, Gonzalez et al. found
a characteristic strong tendency of humans to return to places they visited before.
Furthermore, the probability of returning to a location depends on the number
of location samples for that location. A rough estimation can be denoted as
Pr(lk) ∼ k−1 where k is the rank of the location l based on the number of
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observations [17]. In a similar study it was shown that the number of significant
places is limited (≈ 8-15). A user spends about 85% of the time at these places.
However, there is a long tail area with several hundred places which are visited
less than 1% of the time but make up about 15% of the user’s total observation
time [18]. For the proposed privacy model we concentrate on the top-L popular
places (with L being in the range of about 8-15), as these places are likely to be
revisited and therefore are considered as significant places in a user’s routine. If
we assume that the attacker’s a-priori knowledge about the observed location
sample o′ is limited to the generic probability distribution describing human
mobility patterns and the accumulated knowledge so far, then we can model
the adversary’s knowledge as the uncertainty assigning the observed location
information to a top-L place. Entropy can be used to express the uncertainty
of the adversary and therefore the user’s privacy. In the following we consider
a location l ∈ C

∗ to be an arbitrarily shaped area in C and denote the spatial
inclusion of a precise coordinate c ∈ C in area l by writing c ∼= l. To comply
with the characteristics of human mobility patterns, we define the probability
of an observed location sample o′ belonging to one of the top-L locations (li,
i ∈ {1, . . . , L}) as pli := Pr(loc(o′) ∼= li) = τ

i where τ ∈ (0, 1] is chosen in

a way such that
(∑L

i=1 pli
)
+ γ = 1 with γ ∈ [0, 1) representing the summed

probability for o′ belonging to one of the many seldom visited places in the
long tail distribution observed by Bayir et al. [18]. Assuming that the adversary
A has already discovered the top k locations of the user (by making use of
the previously observed user locations in O), we make a distinction between
two cases: (A) o′ belongs to a frequently visited location already known to the
adversary (∃i ∈ {1, . . . , k} : loc(o′) ∼= li), or (B) the adversary is not able to
unambiguously connect the location observation to an already detected top-L
location.

In case (A) no information about new frequently visited places is revealed. For
case (B) we measure privacy as the uncertainty (i.e., entropy) on assigning o′ to
one of the remaining unknown top L locations. We denote with psk :=

∑k
i=1 pli

the summed probability for the k top locations known to the adversary and
accordingly psu :=

∑L
i=k+1 pli the summed probability for the unknown top

locations. Given that o′ does not belong to one of the k known places, the
probability for the remaining places lk+1 . . . lL changes to pkli = pli · (1 + psk

psu
),

which yields the following entropy calculation:

K
L(B)
A (O, o′) = −(

L∑

i=k+1

pkli log p
k
li)− γ log γ , (3)

where γ denotes the summed probability of location samples which do not belong
to the top L locations. The overall uncertainty level of the adversary is the
weighted sum of the two cases (A) and (B) described above:

KL
A(O, o′) = p(A) ·KL(A)

A (O, o′) + p(B) ·KL(B)
A (O, o′) , (4)
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where p(A) = psk is the probability of case (A) and p(B) = 1−p(A) the probability
of case (B). Integrating the two formulas of the two cases, the overall uncertainty
of an adversary for connecting o′ with a top location is:

KL
A(O, o′) = (1− psk) ·

(

−(

L∑

i=k+1

pkli log p
k
li)− γ log γ

)

. (5)

4.1 Uncertainty of a Location Observation

In order to get a robust reflection of a user’s frequently visited places, using
a clustering approach leads to an efficient but also abstract representation of
the user’s regular behavior. Several studies (e.g. [3,19]) have demonstrated that
clustering is an effective tool for identification of a user’s significant places.

However, the estimated or given horizontal positioning error has to be taken
into account. Location information is usually expressed as inaccurate data, re-
gardless of the error source, which is either data degraded on purpose or due
to technical issues like an error prone positioning determination. Until now,
we assumed a simple binary decision as to whether a location sample belongs
to a regularly visited place (i.e., cluster) or not, hence ε ∼= 0 and a function
CO(l) = |{o ∈ O | loc(o) ∼= l}| counting the number of times a user was observed
at a given location l ∈ C∗ (see section 4 above), making it possible to rank the
places by their popularity (l1, l2, . . . lL, with CO(li) ≥ CO(li+1) – which means
that l1 is the most frequently visited location). In a more realistic setting loca-
tion information is error prone. Depending on the nature of the observation, the
effect of ε > 0 is different. If the user performs the location determination, the
estimated error based on the technology used is known to the user but not to
the adversary. Furthermore, users might deliberately increase ε to protect their
privacy.

If the location is directly observed by the adversary, both user and adversary
have knowledge on the possible error distribution depending on the technology
used. Depending on the communication infrastructure used, users can make as-
sumptions about the physical limitations of the technology involved and thus
can estimate a best case value for ε. In order to model the adversary’s uncer-
tainty we introduce pc as the probability of function CE assigning o′ correctly
to a location l ∈ C

∗, taking ε = err(o′) into account (and pc := 1 − pc). As the
precise definition of pc depends on the implementation of CE , we only assume a
correlation between the error and this probability: pc ∼ ε−1.

Modeling the adversary’s uncertainty based on ε is in practice both difficult
and possibly harmful to the user, since the adversary’s capabilities might be
underestimated, resulting in a higher and misleading privacy level. Due to limited
user knowledge, a default value of ε = 0 is used to simulate worst case knowledge
and to avoid a possibly dangerous false sense of privacy. Still, ε remains an
optional variable to the user.
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4.2 Determining an Adversary’s Knowledge Gain

With the uncertainty value before and after disclosure of o′, an adversary only
gains new information if a new frequently visited location is uncovered and can
be calculated as ΔKL

A(O, o′) = KL
A(O, o′)−KL

A(O \ {om}, om), where om is the
latest location observation in O (and therefore the direct predecessor of o′).

If o′ can be assigned to a known location li ∈ L, then ΔKL
A = 0, as by defi-

nition no information about new frequently visited places is revealed. However,
the weight of already determined frequently visited places can change due to
such an observation. People’s preferences are not static and hence neither are
their preferences regarding frequently visited places. For instance, people change
employer (or workplace) and/or move from time to time. Such changes in regu-
lar behavior cause private information to be disclosed and thus harm the user’s
privacy. To model these changes, the observation horizon can be limited and any
information older than a certain amount of time is discarded.

To model changes in the frequency of the user’s top locations and a user’s
regular behavior, we measure the change in distribution made by a new obser-
vation. The adversary’s a-priori knowledge is the distribution of the time spent
at all known locations and hence their relative importance to the user. Thus, an
adversary gains extra knowledge if the distribution of time spent has changed,
i.e., the user’s preferences have changed. For every detected location we as-
sume that the true probability q(O, o′, li) := PrO(loc(o

′) ∼= li) is the relative
observed importance of location li derived from the previous observations in O
(e.g. PrO(loc(o

′) ∼= li) ∼ CO(l)). We define the information gain as the difference
between the observed distribution before and after the disclosure of additional
data. One simple method to measure the information gain is the relative entropy
using KL-divergence [20]

KC
A (O, o′) = −

k∑

i=1

q(O, o′, li) log
q(O, o′, li)

q((O ∪ o′), o′, li)
, (6)

where q(O, o′, li) denotes the probability of returning to li before and q((O ∪
o′), o′, li) the new probability after the new observation o′. Finally, we express
the privacy loss as

ΔKA(O, o′) = ΔKL
A(O, o′) +KC

A (O, o′). (7)

The privacy metric component ΔKA, expressing knowledge about the user’s
preferred places, only measures the relative distribution of the times a user was
observed at a specific place. Thus it is applicable for location based services
without continuous observation or traces (e.g., location updates through an SNS
are usually not continuous traces and appear infrequently).

4.3 Example

For our experiments we implemented a location cluster function based on a radius
filter. For periodic and gap based location data (e.g., GSM) such a filter simply
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reflects how often a user was observed at a specific place. Additionally, for GPS
data a gap filter was used to cover periods without GPS reception. Throughout
the experiments a value of τ = 0.3 was used, which roughly represents the results
from the aforementioned studies on human mobility patterns. Furthermore, 12
clusters were expected. Figure 1(a) and 1(b) show 10 detected clusters from a
17-day GPS trace from a single user with a total of 17744 recorded GPS points.
To measure the knowledge gain the data was segmented into daily data sets.
After about 11 days the values of the final result of 10 clusters were discovered
and remained constant afterwards.

The user’s privacy level, based on the KL
A, decreases almost linearly with the

detection or disclosure of regularly visited places. The privacy loss caused by
disclosing a low ranked place and thus with a low probability of being revisited
is almost equal to that caused by disclosing a high ranked place. Especially
for a setting with semi-trusted adversaries, this result reflects the (commercial)
importance of lower ranked clusters w.r.t. the completeness of a user’s profile.
Since lower ranked clusters are harder to detect, uncovering such a place reflects
the density and/or the length of observation of an adversary and thus the user’s
exposure.
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Fig. 1. A user’s privacy profile to a single adversary A based on a 17-day GPS trace.
The data for KL

A was normalized to 1.0. (a) shows the cluster result after 17 days;
radius of each cluster denotes its relative importance; (b) shows detected clusters and
calculated privacy gain/level.

5 Example Implementation of S

The last component of a user-centric privacy metric is the sensitivity of a given
location and time. In contrast to the knowledge about the user’s regular behavior
which an adversary could extract from frequently visited places, users might
evaluate the sensitivity of certain locations w.r.t. location privacy differently at
different times, depending both on the type of place and the actual listener group.
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However, the sensitivity of a location at a certain time can only be measured in
objective terms. Personal preferences are too diverse and a generic formalization
of possible subjective measures is difficult.

5.1 Static Location Sensitivity

Based on the ideas of location l-diversity [8] and related variants we define the
sensitivity of a location l ∈ C∗ as the user’s plausible deniability of being at a
(possible) subjectively sensible location l̂, w.r.t. the knowledge of time t and the
estimated location error ε. This definition can also be rewritten as the probability
of an individual being at location l∗ but observed at location l. Thereby l∗ is
an alternative plausible location in C∗, which is not considered as subjectively
sensitive.

However, taking only into account the number of plausible positions is not
always sufficient. The number, distribution and especially the nature of the pos-
sible locations matter as well. For instance, if a person is in an area with a high
density of landmarks (points of interest (POIs)), an adversary’s uncertainty is
high regarding the user’s motivation in visiting the observed area. Furthermore,
with a greater number of people nearby or visiting an area, a user’s privacy
increases (cf. [12]). Therefore, a discounting factor ρ ∈ (0..1] is introduced, de-
scribing the nature of a given area, i.e., decreasing the ”plausibility” depending
on the listener and/or time of day. The static location sensitivity is defined as

SS
A(ot) =

1

numloc(ot)ρ(ot)
. (8)

The size of the area is defined by the maximum possible horizontal (deliberate or
technical) location error ε and the maximum velocity at which a user can move.
Function numloc : O → N returns the number of plausible positions for a given
location sample, based on map-data. While numloc is a static measurement (i.e.,
the geographic features are considered static), ρ is time dependent, because the
use cases for the landscape change depending, for example, on the time of the
day, the day of the week, the season, etc..

5.2 Dynamic Location Sensitivity

A static measurement only captures an isolated observation. In most cases peo-
ple move and submit their location continuously or frequently. Therefore, the
sensitivity evaluation should also contain a dynamic, time-dependent compo-
nent. For instance, the adversary only knows the published positions but not
the exact route in between. The adversary may use a routing algorithm to de-
termine a likely route a user could have taken. If there is only a single route, the
adversary gains perfect knowledge. Consequently, the user gains privacy if the
ambiguity of possible routes increases and thus the uncertainty of the adversary
regarding the locations where a user could have been between two consecutive
location disclosures.
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Fig. 2. A user trace of 1160 seconds, traveling 8.24 km showing the number of plausible
locations and reachable POIs within one minute

We extend the static definition by including the time frame between two
consecutive location disclosures as

SD
A (O, ot) =

1

numreach(om, ot)ρ(om, ot)
, (9)

with a function numreach : O × O → N calculating the number of plausi-
ble locations in the reachable area between two consecutive location disclosures
om ∈ O (the latest in O) and ot, and at a given velocity. Thus, the sensitivity
component reflects the objectively measurable sensitivity of the user’s current
position by incorporating accuracy of the location determination, time, density
of measurements and landscape.

5.3 Example

The sensitivity metric measures the information gain of an adversary knowing
the user’s current location. In contrast to the metric on cyclic behavior, we as-
sume the adversary’s information gain is derived from direct inference of the
current location and the incorporation of external knowledge (e.g., map data).
For our experiments we used data from OpenStreetmap (OSM). 1 The project
provides accurate and deep map data for the evaluated region and allows the
characterization of possibly sensible locations (e.g., public buildings, medical fa-
cilities, banks, etc. are marked through various attributes). Furthermore, the
data can be downloaded and stored on a mobile device in order to make au-
tonomous decisions without network access.

Two simple example components of calculating ρ by exploiting map features
are the density of reachable landmarks or POIs and the expected population
density for a given location and time. Figure 2 shows a sample trace of about
19 minutes traveling 8.24 km through the city. The trace was started in a busi-
ness/industrial area, went through a residential area (around 150 - 250 and from
500) before entering the city center (around 750 - 1000). While the number of
reachable plausible positions remains roughly at the same level, the number of
reachable POIs increases in the city center significantly.

1 The OpenStreetmap Project, http://openstreetmap.org, [1/15/2011].

http://openstreetmap.org
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Fig. 3. Day-time dependent expected person density for a user trace of 1160 seconds,
traveling 8.24 km. Calculation based on area classification based on OpenStreetmap
data.

As a second example for the same trace, the expected person density was
calculated. For each OSM landuse-tag2 attribute a non-empirical estimation of
expected person density was made. For instance, residential areas were assigned
a high value for every time of day; for commercial and industrial areas a high
value during business hours but otherwise a low value seems appropriate. For
future work, empirical values need to be adopted. Figure 3 shows that during
the day there is little variation, basically due to the fact that the trace never
left city boundaries. However, at night there is a noticeable drop while crossing
a business/industrial area (to 150 from 350).

(a) (b)

Fig. 4. (a) Reachable area between two published locations (4min 56 sec). The radius
of the circles indicate the possible waiting time to reach the final goal in time. The
red line shows the actual route the user took. (b) The marked areas indicate possible
visited POIs; the radius indicates the possible length of stay.

2 http://wiki.openstreetmap.org/wiki/Map_Features#Landuse, [1/15/2011].

http://wiki.openstreetmap.org/wiki/Map_Features#Landuse
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The dynamic measurement can be refined by incorporating all possible reach-
able plausible positions within a given timespan and velocity. Another possibility
is to include all reachable POIs and the maximum possible length of stay. Fig-
ure 4(a) illustrates a possible implementation of numreach(), i.e., calculating
all reachable plausible positions between two consecutive location disclosures. In
this example the assumption about the potential travel speed was held static.
This restriction can be lifted by using a more sophisticated route-planning al-
gorithm and further external information. Figure 4(b) shows possible reachable
POIs and the possible duration of stay.

6 Conclusion and Outlook

As today’s communication scenarios get more diverse, the assumption of the
anonymity of a user when sharing location data seems inadequate in many cases.
As location information gains in importance, every entity involved in the com-
munication process has to be considered as an adversary, since communication
peers are usually considered as partially trusted.

We have proposed a theoretical user-centric privacy metric to allow a user to
uncover the extent of information disclosure and to evaluate autonomously his
privacy level in a communication relation with semi-trusted listener groups. The
model makes no assumptions about the adversary’s knowledge, capabilities or
intention. The goal of such a metric is to enable an individual to estimate the
knowledge gain caused by disclosing further location information in a specific
communication scenario and thus enabling the user to make informed choices,
e.g., choose the right protection mechanism. We divided the location privacy level
into different subcomponents, reflecting the user’s trust level, periodic habits
leading to re-identification or to uncovering personal preferences, the evaluation
of the user’s exposure at a given time and differentiated between different kinds
of location samples. Finally, some examples of an implementation for the main
components were discussed.

For future work an implementation in a real-world application has to be devel-
oped together with a simple visualization of the privacy metric result. Therewith
(location) privacy becomes for the user a more concrete fact instead of simply
an abstract definition.

References

1. Westin, A.F.: Privacy and Freedom, 1st edn., Atheneum, New York (1967)
2. Duckham, M., Kulik, L.: Location privacy and location-aware computing, pp. 35–

51. CRC Press, Boca Rator (2006)
3. Hoh, B., Gruteser, M., Xiong, H., Alrabady, A.: Achieving guaranteed anonymity

in gps traces via uncertainty-aware path cloaking. IEEE Transactions on Mobile
Computing 9(8), 1089–1107 (2010)

4. Shokri, R., Freudiger, J., Jadliwala, M., Hubaux, J.P.: A distortion-based metric
for location privacy. In: WPES 2009: Proceedings of the 8th ACM workshop on
Privacy in the Electronic Society, pp. 21–30. ACM, New York (2009)



Location Privacy in Relation to Trusted Peers 121

5. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst. 10(5), 557–570 (2002)

6. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through
spatial and temporal cloaking. In: MobiSys 2003: Proceedings of the 1st Interna-
tional Conference on Mobile Systems, Applications and Services, pp. 31–42. ACM,
New York (2003)

7. Gedik, B., Liu, L.: Protecting location privacy with personalized k-anonymity:
Architecture and algorithms. IEEE Transactions on Mobile Computing 7(1), 1–18
(2008)

8. Liu, L.: Privacy and location anonymization in location-based services.
SIGSPATIAL Special 1, 15–22 (2009)

9. Bettini, C., Wang, X.S., Jajodia, S.: Protecting Privacy Against Location-Based
Personal Identification. In: Jonker, W., Petković, M. (eds.) SDM 2005. LNCS,
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