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DC (Dining Cryptographers) nets 
[Chaum 1988 ] 

Chaum, CACM 28(10), October 1985 



Who paid for the Dinner 
(anonymously)? (I) 

n  Equal number of differences ó NSA paid  
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Who paid for the Dinner 
(anonymously)? (II.a) 

n  Odd number of differencesó one cryptographer paid  
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Who paid for the Dinner 
(anonymously)? (II.b) 

n  Odd number of differencesó one cryptographer paid  
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DC-nets: Perfect sender anonymity 
through Binary superposed sending and 
broadcast 



Anonymity preserving multi-
access protocols 



Anonymity preserving multi-
access protocols (cont.) 



Implementation-Example: 
Local-Area Ring Networks  



DC nets - Review 
n  Protection properties: 

n  Perfect sender anonymity through superposed sending 
(message bits are hidden by one-time pad encryption) 

n  Message secrecy through encryption 
n  Recipient anonymity through broadcast and implicit 

addresses (addressee is user who can successfully decrypt 
message) 

n  Problems: 
n  Denial of Service attacks by DC-net participants (Defense: 

trap protocols) 
n  Random key string distribution 

  



Crowds for anonymous Web-
Transactions 

1.  User first joins a "crowd" of other users, where he is 
represented by a "jondo" process on his local machine  

2.   User configures his browser to employ the local jondo 
as a proxy for all new services 

3.   User´s request is passed by the jondo to a random 
member of the crowd 

4.  That member can either submit the request directly to 
the web server or forward it to another randomly (with 
pf> 1/2) chosen user. 

-> Request is eventually submitted by a random member 



Communication Paths in 
Crowds 
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Communications between jondos is encrypted with keys shared 
between jondos 



Anonymity degrees in Crowds 
n  Absolute Privacy: The attacker cannot distinguish the situations in 

which a potential sender sent a message and those in which he did not 

n  Beyond suspicion: sender appears no more likely to be originator of 
a message than any other potential sender in the system 

n  Probably innocense: sender appears no more likely to be originator 
than not to be the originator 

n  Possible innocense: There is a non-trival possibility that the sender 
is someone else 

n  Exposed: Attacker can identify sender 

 



Anonymity Properties in 
Crowds 

n: Number of Crowds members 



Crowds -Review 
n  Sender anonymity against: 

n  end web servers 
n  other Crowd members 
n  eavesdroppers 

n  Limitations: 
n  No protection against “global” attackers, timing/message length 

correlation attacks 
n  Web server´s log may record submitting jondo´s IP address as 

the request originator´s address 
n  Request contents are exposed to jondos on the path 
n  Anonymising service can be circumvented by Java Applets, Active 

X controls 
n  Performance overhead (increased retrieval time, network traffic 

and load on jondo machines) 
n  No defend against DoS-attacks by malicious crowd members 



Onion Routing 
n  Onion = Object with layers of public key encryption to produce 

anonymous bi-directional virtual circuit between communication 
partners and  to distribute symmetric keys 

n  Initiator's proxy constructs “forward onion” which encapsulates a 
route to the responder 

n  (Faster) symmetric encryption for data communication via the circuit 
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Forward Onion for route W-X-Y-Z: 

Each node N receives (PKN = public key of node N):  
n  {exp-time, next-hop, Ff, Kf, Fb, Kb, payload} PKN 
n  exp-time:  expiration time 
n  next_hop:  next routing node 
n  (Ff, Kf) :  function / key pair for symmetric encryption of data moving  

  forward in the virtual circuit 
n  (Fb, Kb) :  function/key pair for symmetric encryption of data moving  

  backwards in the virtual circuit 
n  payload:  another onion (or null for responder´s proxy) 

X exp-timex, Y, Ffx, Kfx, Fbx, Kbx 

Y exp-timey, Z, Ffy, Kfy, Fby, Kby, 

Z exp_timez, NULL, Ffz, Kfz, Fbz, Kbz, PADDING 
 



Virtual circuit creation and 
communication 

n  Create command accompanies an Onion: If node 
receives onion, it peels off one layer, keeps forward/
backward encryption keys, it chooses a virtual circuit 
(vc) identifier and sends create command+ vc identifier 
+ (rest of) onion to next hop.  

n  It stores the vc identifier it receives and the one that it 
sent out as a pair. 

n  Until circuit is destroyed -> whenever it receives data on 
one connection, it sends it off to the other 

n  Forward encryption is applied to data moving in the 
forward direction, backward encryption is applied in the 
backward direction 

  



Example: Virtual Circuit with 
Onion Routing 

Send data  by the use of send 
command: 
Data sent by the initiator is ”pre-
encrypted” prepeatedly by his proxy. 
If W receives data sent back by Z, it 
applies the inverse of the backward 
cryptographic operations (outermost first).  

 



Onion Routing - Review 
n  Functionality: 

n  Hiding of routing information in connection oriented 
communication relations 

n  Nested public key encryption for building up virtual 
circuit 

n  Expiration_time field reduces costs of replay detection 
n  Dummy traffic between Mixes (Onion Routers) 

n  Limitations: 
n  First/Last-Hop Attacks by  

n  Timing correlations 
n  Message length (No. of cells sent over circuit) 



TOR (2nd Generation Onion 
Router – www.torproject.org) 



First Step 
n  TOR client obtains a list of TOR nodes from a directory server 
n  Directory servers maintain list of which onion routers are up, 

their locations, current keys, exit policies, etc. 

Directory 
server 

TOR client 



TOR circuit setup 

n  Client proxy establishes key + circuit with Onion Router 1   

TOR client 



TOR circuit setup 
n  Client proxy establishes key + circuit with Onion Router 1 

n  Proxy tunnels through that circuit to extend to Onion Router 2   

TOR client 
proxy 
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TOR: Building up a two-hop 
circuit and fetching a web page 

Alice Link is TLS-encrypted OR 1 OR 2 Link is TLS-encrypted Web site Unencrypted 

Create c1, E (g x1) 

Created c1, g y1, H(K1) 

Relay c1 {Extend, OR2, E (g x2)} 

Relay c1 {Extended, g y2, H(K2)} 

Relay c1 {{Begin <website<:80}} 

Relay c1 {{Connected}} 

Relay c1 {{Data, HTTP Get...}} 

Relay c1 {{Data, (response)}} 

Create c2, E (g x2) 

Created c2, g y2, H(K2) 

Relay c2 {Begin <website<:80} 

Relay c2 {Connected} 

Relay c2 {Data, HTTP Get...} 

Relay c2 {Data, (response)} 

(TCP handshake) 

HTTP Get... 

(response) 

Legend: 
E(x): RSA encryption 
{X}: AES encryption 
cN: a circuit ID 



TOR - Review 
n  Some improvemnets in comparision with Onion Routing: 

n  Perfect forward secrecy  
n  Resistant to replay attacks 
n  Many TCP streams can share one circuit 
n  Seperation of ”protocol cleaning” from anonymity:  

n  Standard SOCKS proxy interface (instead of having a seperate 
application proxy for each application) 

n  Content filtering via Privoxy  
n  Directory servers 
n  Variable exit policies 
n  End-to-end integrity checking 
n  Hidden services 

n  Still vulnerable to end-to-end timing and size correlations 
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Repetition: Diffie-Hellman Key 
exchange 
Global Public Elements: 
q: prime number 
α:  α < q and α is a primitive root of q 

   [If α is a primitive root of  prime number p, then the numbers: 
   α mod p, α2 mod p,…, αp-1 mod p  
   are distinct and are a permutation of {1..p-1}. 

   For any integer b<p, primitive root α of prime number p, one can find 
unique exponent i (discrete logarithm),  

   such that b= αi mod p,   0≤ i ≤ (p-1)   

   For larger primes, calculating discrete logarithms is considered as 
practically infeasible    ] 



Diffie-Hellman Key Exchange 

K = α XA XB mod q 

q: prime number,  
α: primitive root of q 


