Anonymous Communication:
DC-nets, Crowds, Onion Routing

Simone Fischer-Hubner
PETs PhD course
Spring 2012

DC (Dining Cryptographers) nets
[Chaum 1988]

7'
Since | paid,
I will say

the opposite

»
»
-
<

e

Since | didn't pay, T~
I will say the ~~— Now | know ™
true side. one of them paid—but \
since | can’t see which side

the coin landed on, | don't
| know which one of them paid. |

TN

Chaum, CACM 28(10), October 1985

Who paid for the Dinner
(anonymously)? (I)

UnN

,\v»o QO
<&

“ »
~ »
@ -
< ~
£ ~

Equal number of differences < NSA paid

Who paid for the Dinner
(anonymously)? (II.a)

Odd number of differences< one cryptographer paid

//7;:;pakLI
say the +
\\\Sfffske:i
’ -
g , x
o)

UnN

«?’0 /p
&

“ »
~ »
@ -
< ~
% ~

S

As I paid,
I say the
opposite:

UnN

«?’0 /p
&

“ »
~ »
@ -
< ~
% ~

Odd number of differences< one cr
paid, I

say the

site: +

As I paid, 1
say the
opposite: =

Who paid for the Dinner
(anonymously)? (I1.b)

ptographer paid

DC-nets: Perfect sender anonymity
e through Binary superposed sending and
/ broadcast

Station 1:
M: 10101

Ky 00011
K> 10110

\

Station 2:

M, 00000
K, 00011 %a

Ks 01011 i M & Mo @ Ms (mod 2).

10101 = /)

Station 3: 14101
M; 00000 \

Anonymity preserving multi-
access protocols

Message: fixed number ¢ of characters (containing also an implicit address)

U N
» 0 Iy

»
»
-

<

slot: ¢ consecutive rounds, in which a message is transferred

a.) Slotted ALOHA:

- If Pj wants to send a message, he does so in the next slot

- f Pj also sends a message
=> Pj (as well as Pj) detects collision (S = M;).

P; retransmits his message after a random number of slots.

Retransmitted messages should be differently end-to-end encrypted.
Otherwise:

If attacker monitors output messages X+Y, X, Y
=>» attacker assumes: X and Y were sent by different participants

Anonymity preserving multi-
access protocols (cont.)

UN
«?’D ’p
(5 <&
- d
= »
< ~
< ~

b.) Reservation map technique:

Reservatlion frame: slot of r rounds, used to reserve the following up to r slots

| I |

123 r

1 message by P;j| message by Py

P{ P[\Jk /

Message slots with reservation character = 1
are skipped

Implementation-Example;
Local-Area Ring Networks

UnN
«»D &
- &
- d
< w
< ~
£ ~

First cycle: ——
Each participant adds his own output to the input he receives,
forwards sum to the next participant

Result (global sum) is sent around to each participant

U N
«‘\0 &
&
% »
-4 —
< ~

DC nets - Review

Protection properties:

« Perfect sender anonymity through superposed sending
(message bits are hidden by one-time pad encryption)

= Message secrecy through encryption

= Recipient anonymity through broadcast and implicit
addresses (addressee is user who can successfully decrypt
message)
Problems:

« Denial of Service attacks by DC-net participants (Defense:
trap protocols)

= Random key string distribution

Crowds for anonymous Web-
Transactions

1. User first joins a "crowd" of other users, where he is
represented by a "jondo" process on his local machine .".'."'.'.’

2. User configures his browser to employ the local jondo
as a proxy for all new services vy

3. User s request is passed by the jondo to a random
member of the crowd

4. That member can either submit the request directly to
the web server or forward it to another randomly (with \
pf> 1/2) chosen user.

-> Request is eventually submitted by a random member

¥

<=, Communication Paths in
&8 Crowds

1 L > 3
NS
X
v :
/o I“
L7 5 — 1
2 ~ .
| \\
: =
3

Communications between jondos is encrypted with keys shared
between jondos

) Anonymity degrees in Crowds

Absolute Privacy: The attacker cannot distinguish the situations in
which a potential sender sent a message and those in which he did not

Beyond suspicion: sender appears no more likely to be originator of
a message than any other potential sender in the system

Probably innocense: sender appears no more likely to be originator
than not to be the originator

Possible innocense: There is a non-trival possibility that the sender
iS someone else

absolute beyond probable possible exposed provably
privacy suspicion Innocence innocence exposed

Anonymity Properties In
Crowds

Attacker Sender anonymity Receiver anonymity
local eavesdropper Exposed P(beyond suspicion) -> 1
n=-> o0
¢ collaborating members, probable innocence, P(absolute privacy) -> 1
n > [pf/ (pf- 1/2)] * (c+1) P(absolute privacy) -> 1 n-> o
n-> <0
end servers beyond suspicion N/A

n: Number of Crowds members

UN
S 7
o b@
»

[
-
~

Crowds -Review

Sender anonymity against:
= end web servers
=« other Crowd members
= eavesdroppers

Limitations:

= No protection against “globa
correlation attacks

= Web server s log may record submitting jondo “s IP address as
the request originator "s address

= Request contents are exposed to jondos on the path

= Anonymising service can be circumvented by Java Applets, Active
X controls

« Performance overhead (increased retrieval time, network traffic
and load on jondo machines)

=« No defend against DoS-attacks by malicious crowd members

III

attackers, timing/message length

Onion Routing

Onion = Object with layers of public key encryption to produce
anonymous bi-directional virtual circuit between communication
partners and to distribute symmetric keys

Initiator's proxy constructs “forward onion” which encapsulates a
route to the responder

(Faster) symmetric encryption for data communication via the circuit

o @%@/’
§ @ (2

Forward Onion for route W-X-Y-Z:

X exp-timeX, Y, FfX’ KfX’ FbX’ KbX

Y exp-timev, Z, FfV’ KfV’ FbV’ KbV’
Z exp_time,, NULL, F¢,, K¢, Fp, Kpg, PADDING

Each node N receives (PKy = public key of node N):
{exp-time, next-hop, Fy, K¢, Fpy, Kp, payload} PKy

exp-time: expiration time

next_hop: next routing node

(Fs, Ke) - function / key pair for symmetric encryption of data moving
forward in the virtual circuit

(Fp, Kp) : function/key pair for symmetric encryption of data moving

backwards in the virtual circuit
payload: another onion (or null for responder ’s proxy)

<= Virtual circuit creation and
& communication

Create command accompanies an Onion: If node
receives onion, it peels off one layer, keeps forward/
backward encryption keys, it chooses a virtual circuit
(vc%) identifier and sends create command+ vc identifier
+ (rest of) onion to next hop.

It stores the vc identifier it receives and the one that it
sent out as a pair.

Until circuit is destroyed -> whenever it receives data on
one connection, it sends it off to the other

Forward encryption is applied to data moving in the
forward direction, backward encryption is applied in the
backward direction

A
&
© »
v
-
<

Example: Virtual Circuit with
Onion Routing

Secure " Internet Send data by the use of send
command:

Data sent by the initiator is ”pre-

encrypted” prepeatedly by his proxy.

If W receives data sent back by Z, it

applies the inverse of the backward

cryptographic operations (outermost first).

U N
(S Iy

Site

Initiator | | N) o Koy Responder
Machine| | Machine

: Data Flow (with Function / Key if crypted), : Unsecured Socket connection

. Virtual circuit through link-encrypted connections between routing nodes

i

. Link encrypted connections between routing nodes

f) : Routing Node, O: Routing/ Proxy Node

&% Onion Routing - Review

Functionality:

= Hiding of routing information in connection oriented
communication relations

= Nested public key encryption for building up virtual
circuit

= Expiration_time field reduces costs of replay detection

« Dummy traffic between Mixes (Onion Routers)

Limitations:

= First/Last-Hop Attacks by

= Timing correlations
= Message length (No. of cells sent over circuit)

Anonymity Online
Protect your privacy. Defend yourself
against network surveillance and traffic

analysis.

Download Tor

What is Tor?

Tor is free software and an open network that
helps you defend against a form of network
surveillance that threatens personal freedom and
privacy. confidential business activities and
relationships. and state security known as traffic
analysis

Learn more about Tor »

% Tor prevents anyone from
learning your location or
browsing habits.

#» Tor is for web browsers,
instant messaging clients,
remote logins, and more.

» Tor is free and open source
for Windows, Mac,
Linux/Unix, and Android

Why Anonymity Matters
Tor protects you by bouncing your
communications around a distributed network of
relays run by volunteers all around the world: it
prevents somebody watching your Internet
connection from learning what sites you visit.
and it prevents the sites you visit from learning
your physical location. Tor works with many of
your existing applications, including web
browsers, instant messaging clients, remote
login, and other applications based on the TCP
protocol.

Get involved with Tor »

TOR (2nd Generation Onion
Router — www.torproiect.org)

Who Uses Tor?

o~ Family & Friends

People like you and your family use
Tor to protect themselves, their
children, and their dignity while using

the internet.

Businesses
" Businesses use Tor to research

competition. keep business
J strategies confidential, and facilitate

internal accountability.

Activists

Activists use Tor to anenymously
| report abuses from danger zones.
Whistleblowers use Tor to safely

report on corruption.

Media
Journalists and the media use Tor to
| protect their research and sources

\ N online.

Military & Law Enforcement
Militaries and law enforcement use
' Tor to protect their communications,

First Step

TOR client obtains a list of TOR nodes from a directory server

Directory servers maintain list of which onion routers are up,
their locations, current keys, exit policies, etc.

TOR client
e

4

Directory
server

& TOR circuit setup

Client proxy establishes key + circuit with Onion Router 1

@w/
=0

TOR client

©
~

& TOR circuit setup

Client proxy establishes key + circuit with Onion Router 1

Proxy tunnels through that circuit to extend to Onion Router 2

TOR client
proxy

©
~

& TOR circuit setup

Client proxy establishes key + circuit with Onion Router 1
Proxy tunnels through that circuit to extend to Onion Router 2

Etc.

/
[mo
o
TOR client
proxy

U N
,\bo Iy
. &

»
v
3

<

Client proxy establishes key + circuit with Onion Router 1
Proxy tunnels through that circuit to extend to Onion Router 2

Etc.
Client applications connect and communicate over TOR circuit

TOR circuit setup

/
[mo
o
TOR client
proxy

U N
,\bo Iy
. &

»
v
3

<

Client proxy establishes key + circuit with Onion Router 1
Proxy tunnels through that circuit to extend to Onion Router 2

Etc.
Client applications connect and communicate over TOR circuit

TOR circuit setup

~&C
TOR client
proxy

TOR circuit setup

Client proxy establishes key + circuit with Onion Router 1
Proxy tunnels through that circuit to extend to Onion Router 2

Etc.
Client applications connect and communicate over TOR circuit

TOR client
proxy

U N
,\bo Iy
. &

»
v
3

<

Client proxy establishes key + circuit with Onion Router 1
Proxy tunnels through that circuit to extend to Onion Router 2

Etc.
Client applications connect and communicate over TOR circuit

TOR circuit setup

/
[mo
o
TOR client
proxy

U N
,\bo Iy
. &

»
v
3

<

Client proxy establishes key + circuit with Onion Router 1
Proxy tunnels through that circuit to extend to Onion Router 2

Etc.
Client applications connect and communicate over TOR circuit

TOR circuit setup

/
[mo
o
TOR client
proxy

TOR circuit setup

Client proxy establishes key + circuit with Onion Router 1
Proxy tunnels through that circuit to extend to Onion Router 2

Etc.
Client applications connect and communicate over TOR circuit

/
[mo
o
TOR client
proxy

TOR circuit setup

Client proxy establishes key + circuit with Onion Router 1
Proxy tunnels through that circuit to extend to Onion Router 2

Etc.
Client applications connect and communicate over TOR circuit

/
[mo
o
TOR client
proxy

Link is TLS-encrypted

Alice

Create c1, E (g X1)

OR1

»
P

Created c1, g Y1, H(K1)

>l
l

Relay c1 {Extend, OR2, E (g x2)}

Link is TLS-encrypted

Create c2, E (g X2)

A 4

Relay c1 {Extended, g Y2, H(K2)}

Created c2, g Y2, H(K2)

Relay c1 {{Begin <website<:80}

Relay c2 {Begin <website<:80}

A 4

Relay c1 {{Connected}}

>l
l

Relay c1 {{Data, HTTP Get...}}

Relay c1 {{Data, (response)}}

OR 2

TOR: Building up a two-hop
circuit and fetching a web page

Unencrypted

Web site

« Relay c2 {Connected} [*~~ T T >
Relay c2 {Data, HTTP Get...} HTTP Get...
Relay c2 {Data, (response)?} (response)
Legend:

E(x): RSA encryption
{X}: AES encryption
cN: a circuit ID

U N
«vo &
&
“ »
w
3
<

TOR - Review

Some improvemnets in comparision with Onion Routing:
= Perfect forward secrecy
= Resistant to replay attacks
= Many TCP streams can share one circuit

= Seperation of "protocol cleaning” from anonymity:

= Standard SOCKS proxy interface (instead of having a seperate
application proxy for each application)

» Content filtering via Privoxy
= Directory servers
=« Variable exit policies
=« End-to-end integrity checking
=« Hidden services

Still vulnerable to end-to-end timing and size correlations

Further reading

Andreas Pfitzmann, Marit Hansen, Anonymity. Unlinkability, Undetectability, Unobservability,
Pseudonymity, and Identity Management — A Consolidated Proposal for Terminology, Version
v0.31,Feb. 15, 2008.
http://dud.inf.tu-dresden.de/literatur/Anon Terminology v0.31.doc# Toc64643839.

Andreas Pfitzmann et al. "Communication Privacy”, in: Aquisti et al. (Eds.), Digital Privacy — Theory,
Technologies, and Practices, Auerbach Publications, 2008

D.Chaum, "Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms”, Communications
of the ACM, 24 (2). 1981, pp. 84-88, http://world.std.com/~franl/Crypto/chaum-acm-1981.html

P. Syverson, D. Goldschlag, M. Reed, "Anonymous Connections and Onion Routing", Proceedings of the
1997 Symposium on Security and Privacy, Oakland, 1997,
http://www.itd.nrl.navy.mil/ITD/5540/projects/onion-routing/OAKLAND 97.ps ,
http://www.onion-router.net/Publications.html

Roger Dingledine and Nick Mathewson, The Free Haven Project; Paul Syverson, Naval Research Lab,
“Tor: The Second-Generation Onion Router”, 13th USENIX Security Symposium, 2004,
http://static.usenix.org/event/sec04/tech/full_papers/dingledine/dingledine.pdf

M.Reiter, A.Rubin, "Anonymous Web Transactions with Crowds", Communications of the ACM, Vol.42,
No.2, February 1999, pp. 32-38.

, Simone Fischer-Hlibner, "IT-Security and Privacy - Design and Use of Privacy-Enhancing Security
Mechanisms", Springer Scientific Publishers, Lecture Notes of Computer Science, LNCS 1958, May
2001, ISBN 3-540-42142-4 (chapter 4)

Repetition: Diffie-Hellman Key
exchange

Global Public Elements:
d: prime number
o. o < and ais a primitive root of g

[If o is a primitive root of prime number p, then the numbers:

o mod p, a*mod p, ..., o mod p
are distinct and are a permutation of {1..p-1}.

For any integer b<p, primitive root a of prime number p, one can find

unique exponent i (discrete logarithm),
such that b= o' mod p, 0<i< (p-1)

For larger primes, calculating discrete logarithms is considered as
practically infeasible]

Diffie-Hellman Key Exchange

User A d: prime number, User B
o.. primitive root of g
(zenerate
random Xy <g:
Calculate
Yy =0t modg Y-"!- Generate
) random Xy < g;
Calculate
1= ™8 mod {:
Y | Calculate
Calculate K=(Yy)'emod g

K = (Yp)™ mod g

