
Anonymous Communication:
DC-nets, Crowds, Onion Routing

Simone Fischer-Hübner
PETs PhD course

Spring 2012

DC (Dining Cryptographers) nets
[Chaum 1988]

Chaum, CACM 28(10), October 1985

Who paid for the Dinner
(anonymously)? (I)

n  Equal number of differences ó NSA paid

T
T

T

T
T

H

=

=

=

=

≠ ≠

Who paid for the Dinner
(anonymously)? (II.a)

n  Odd number of differencesó one cryptographer paid

T
T

T

T
T

H

=

As I paid, I
say the
opposite: ≠

= ≠

As I paid,
I say the
opposite:
≠

As I paid, I
say the
opposite: ≠

≠

Who paid for the Dinner
(anonymously)? (II.b)

n  Odd number of differencesó one cryptographer paid

T
T

T

T
T

H

=

As I paid, I
say the
opposite: ≠

=

=

≠
As I paid, I
say the
opposite: =

As I paid, I
say the
opposite: ≠

DC-nets: Perfect sender anonymity
through Binary superposed sending and
broadcast

Anonymity preserving multi-
access protocols

Anonymity preserving multi-
access protocols (cont.)

Implementation-Example:
Local-Area Ring Networks

DC nets - Review
n  Protection properties:

n  Perfect sender anonymity through superposed sending
(message bits are hidden by one-time pad encryption)

n  Message secrecy through encryption
n  Recipient anonymity through broadcast and implicit

addresses (addressee is user who can successfully decrypt
message)

n  Problems:
n  Denial of Service attacks by DC-net participants (Defense:

trap protocols)
n  Random key string distribution

Crowds for anonymous Web-
Transactions

1.  User first joins a "crowd" of other users, where he is
represented by a "jondo" process on his local machine

2.  User configures his browser to employ the local jondo
as a proxy for all new services

3.  User´s request is passed by the jondo to a random
member of the crowd

4.  That member can either submit the request directly to
the web server or forward it to another randomly (with
pf> 1/2) chosen user.

-> Request is eventually submitted by a random member

Communication Paths in
Crowds

1

3

6

2
5

4

3

5

1

6

2

4

Communications between jondos is encrypted with keys shared
between jondos

Anonymity degrees in Crowds
n  Absolute Privacy: The attacker cannot distinguish the situations in

which a potential sender sent a message and those in which he did not

n  Beyond suspicion: sender appears no more likely to be originator of
a message than any other potential sender in the system

n  Probably innocense: sender appears no more likely to be originator
than not to be the originator

n  Possible innocense: There is a non-trival possibility that the sender
is someone else

n  Exposed: Attacker can identify sender

Anonymity Properties in
Crowds

n: Number of Crowds members

Crowds -Review
n  Sender anonymity against:

n  end web servers
n  other Crowd members
n  eavesdroppers

n  Limitations:
n  No protection against “global” attackers, timing/message length

correlation attacks
n  Web server´s log may record submitting jondo´s IP address as

the request originator´s address
n  Request contents are exposed to jondos on the path
n  Anonymising service can be circumvented by Java Applets, Active

X controls
n  Performance overhead (increased retrieval time, network traffic

and load on jondo machines)
n  No defend against DoS-attacks by malicious crowd members

Onion Routing
n  Onion = Object with layers of public key encryption to produce

anonymous bi-directional virtual circuit between communication
partners and to distribute symmetric keys

n  Initiator's proxy constructs “forward onion” which encapsulates a
route to the responder

n  (Faster) symmetric encryption for data communication via the circuit

Z Y

X
U

Z
Y

X Z Y Z

Forward Onion for route W-X-Y-Z:

Each node N receives (PKN = public key of node N):
n  {exp-time, next-hop, Ff, Kf, Fb, Kb, payload} PKN
n  exp-time: expiration time
n  next_hop: next routing node
n  (Ff, Kf) : function / key pair for symmetric encryption of data moving

 forward in the virtual circuit
n  (Fb, Kb) : function/key pair for symmetric encryption of data moving

 backwards in the virtual circuit
n  payload: another onion (or null for responder´s proxy)

X exp-timex, Y, Ffx, Kfx, Fbx, Kbx

Y exp-timey, Z, Ffy, Kfy, Fby, Kby,

Z exp_timez, NULL, Ffz, Kfz, Fbz, Kbz, PADDING

Virtual circuit creation and
communication

n  Create command accompanies an Onion: If node
receives onion, it peels off one layer, keeps forward/
backward encryption keys, it chooses a virtual circuit
(vc) identifier and sends create command+ vc identifier
+ (rest of) onion to next hop.

n  It stores the vc identifier it receives and the one that it
sent out as a pair.

n  Until circuit is destroyed -> whenever it receives data on
one connection, it sends it off to the other

n  Forward encryption is applied to data moving in the
forward direction, backward encryption is applied in the
backward direction

Example: Virtual Circuit with
Onion Routing

Send data by the use of send
command:
Data sent by the initiator is ”pre-
encrypted” prepeatedly by his proxy.
If W receives data sent back by Z, it
applies the inverse of the backward
cryptographic operations (outermost first).

Onion Routing - Review
n  Functionality:

n  Hiding of routing information in connection oriented
communication relations

n  Nested public key encryption for building up virtual
circuit

n  Expiration_time field reduces costs of replay detection
n  Dummy traffic between Mixes (Onion Routers)

n  Limitations:
n  First/Last-Hop Attacks by

n  Timing correlations
n  Message length (No. of cells sent over circuit)

TOR (2nd Generation Onion
Router – www.torproject.org)

First Step
n  TOR client obtains a list of TOR nodes from a directory server
n  Directory servers maintain list of which onion routers are up,

their locations, current keys, exit policies, etc.

Directory
server

TOR client

TOR circuit setup

n  Client proxy establishes key + circuit with Onion Router 1

TOR client

TOR circuit setup
n  Client proxy establishes key + circuit with Onion Router 1

n  Proxy tunnels through that circuit to extend to Onion Router 2

TOR client
proxy

TOR circuit setup
n  Client proxy establishes key + circuit with Onion Router 1
n  Proxy tunnels through that circuit to extend to Onion Router 2

n  Etc.

TOR client
proxy

TOR circuit setup
n  Client proxy establishes key + circuit with Onion Router 1
n  Proxy tunnels through that circuit to extend to Onion Router 2

n  Etc.
n  Client applications connect and communicate over TOR circuit

TOR client
proxy

TOR circuit setup
n  Client proxy establishes key + circuit with Onion Router 1
n  Proxy tunnels through that circuit to extend to Onion Router 2

n  Etc.
n  Client applications connect and communicate over TOR circuit

TOR client
proxy

TOR circuit setup
n  Client proxy establishes key + circuit with Onion Router 1
n  Proxy tunnels through that circuit to extend to Onion Router 2

n  Etc.
n  Client applications connect and communicate over TOR circuit

TOR client
proxy

TOR circuit setup
n  Client proxy establishes key + circuit with Onion Router 1
n  Proxy tunnels through that circuit to extend to Onion Router 2

n  Etc.
n  Client applications connect and communicate over TOR circuit

TOR client
proxy

TOR circuit setup
n  Client proxy establishes key + circuit with Onion Router 1
n  Proxy tunnels through that circuit to extend to Onion Router 2

n  Etc.
n  Client applications connect and communicate over TOR circuit

TOR client
proxy

TOR circuit setup
n  Client proxy establishes key + circuit with Onion Router 1
n  Proxy tunnels through that circuit to extend to Onion Router 2

n  Etc.
n  Client applications connect and communicate over TOR circuit

TOR client
proxy

TOR circuit setup
n  Client proxy establishes key + circuit with Onion Router 1
n  Proxy tunnels through that circuit to extend to Onion Router 2

n  Etc.
n  Client applications connect and communicate over TOR circuit

TOR client
proxy

TOR: Building up a two-hop
circuit and fetching a web page

Alice Link is TLS-encrypted OR 1 OR 2 Link is TLS-encrypted Web site Unencrypted

Create c1, E (g x1)

Created c1, g y1, H(K1)

Relay c1 {Extend, OR2, E (g x2)}

Relay c1 {Extended, g y2, H(K2)}

Relay c1 {{Begin <website<:80}}

Relay c1 {{Connected}}

Relay c1 {{Data, HTTP Get...}}

Relay c1 {{Data, (response)}}

Create c2, E (g x2)

Created c2, g y2, H(K2)

Relay c2 {Begin <website<:80}

Relay c2 {Connected}

Relay c2 {Data, HTTP Get...}

Relay c2 {Data, (response)}

(TCP handshake)

HTTP Get...

(response)

Legend:
E(x): RSA encryption
{X}: AES encryption
cN: a circuit ID

TOR - Review
n  Some improvemnets in comparision with Onion Routing:

n  Perfect forward secrecy
n  Resistant to replay attacks
n  Many TCP streams can share one circuit
n  Seperation of ”protocol cleaning” from anonymity:

n  Standard SOCKS proxy interface (instead of having a seperate
application proxy for each application)

n  Content filtering via Privoxy
n  Directory servers
n  Variable exit policies
n  End-to-end integrity checking
n  Hidden services

n  Still vulnerable to end-to-end timing and size correlations

Further reading
n  Andreas Pfitzmann, Marit Hansen, Anonymity. Unlinkability, Undetectability, Unobservability,
Pseudonymity, and Identity Management – A Consolidated Proposal for Terminology, Version
v0.31,Feb. 15, 2008.
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.31.doc#_Toc64643839.

n Andreas Pfitzmann et al. ”Communication Privacy”, in: Aquisti et al. (Eds.), Digital Privacy – Theory,
Technologies, and Practices, Auerbach Publications, 2008

n D.Chaum, "Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms", Communications
of the ACM, 24 (2). 1981, pp. 84-88, http://world.std.com/~franl/crypto/chaum-acm-1981.html

n P. Syverson, D. Goldschlag, M. Reed, "Anonymous Connections and Onion Routing", Proceedings of the
1997 Symposium on Security and Privacy, Oakland, 1997,
http://www.itd.nrl.navy.mil/ITD/5540/projects/onion-routing/OAKLAND_97.ps ,
http://www.onion-router.net/Publications.html

n  Roger Dingledine and Nick Mathewson, The Free Haven Project; Paul Syverson, Naval Research Lab,
“Tor: The Second-Generation Onion Router”, 13th USENIX Security Symposium, 2004,
http://static.usenix.org/event/sec04/tech/full_papers/dingledine/dingledine.pdf

n M.Reiter, A.Rubin, "Anonymous Web Transactions with Crowds", Communications of the ACM, Vol.42,
No.2, February 1999, pp. 32-38.

n , Simone Fischer-Hübner, "IT-Security and Privacy - Design and Use of Privacy-Enhancing Security
Mechanisms", Springer Scientific Publishers, Lecture Notes of Computer Science, LNCS 1958, May
2001, ISBN 3-540-42142-4 (chapter 4)

Repetition: Diffie-Hellman Key
exchange
Global Public Elements:
q: prime number
α: α < q and α is a primitive root of q

   [If α is a primitive root of prime number p, then the numbers:
   α mod p, α2 mod p,…, αp-1 mod p
   are distinct and are a permutation of {1..p-1}.

   For any integer b<p, primitive root α of prime number p, one can find
unique exponent i (discrete logarithm),

   such that b= αi mod p, 0≤ i ≤ (p-1)

   For larger primes, calculating discrete logarithms is considered as
practically infeasible]

Diffie-Hellman Key Exchange

K = α XA XB mod q

q: prime number,
α: primitive root of q

