
Tor Hidden Services

Privacy Enhancing Technologies

Philipp Winter
4096R/2D081E16

June 8, 2012

http://www.cs.kau.se/philwint/pk.asc


Introduction to Tor



What is it?

I Tor is a low-latency anonymity network (as opposed to
high-latency networks, such as mix networks) consisting of
thousands of relays

I The most widely used and deployed anonymity network

I Client bundles available for Linux, Windows, Mac and Android



How Does it Work?

I Tor implements 3rd (sometimes called 2nd) generation onion
routing

I Clients build circuits consisting of relays and route TCP
streams through them

I Relays are listed in consensus which is published by
directory authorities

I Directory authorities and their keys are hard-coded into the
Tor binaries



What Does an Attacker See?

https://www.eff.org/pages/tor-and-https

https://www.eff.org/pages/tor-and-https


Facts

As of June 2012, approximately...

I 450.000 daily users

I 3000 relays contributed by volunteers

I 1000 bridges also contributed by volunteers

I Rough statistics available at: https://metrics.torproject.org

https://metrics.torproject.org


Try it!

I All that is needed: Tor Browser Bundle

I Zero-install, zero-configuration Tor bundle

I Contains Firefox without all the privacy assaults

I Vidalia, the GUI, allows the configuration of hidden services
and a bridge

https://www.torproject.org/download/download-easy.html.en


Hidden Services



In a Nutshell

I Tor’s purpose is to provide sender anonymity

I Hidden services add responder anonymity

I That way, we can run a TCP service without revealing our IP
address!

I Therefore: Anonymous clients can communicate with
anonymous servers!

I In addition: DoS and censorship protection



How it is Used in Practice

I Whistleblowing websites need censorship resistance against
mad governments

I Activist sites need to stay anonymous to resist against data
center raids

I Resistance against social graph analysis (possible with data
retention)



Hidden Services by Example: Bob

I Bob is a journalist who wants to publish sensitive
information

I He wants to publish his articles anonymously and without
getting censored

I So Bob decides to set up a hidden service (HS) in the Tor
network

I There are 6 steps ranging from announcing the HS to using it



Step 0: Installation and Configuration

I Before Bob starts using Tor, he has to install the service

I So Bob sets up his own lighttpd web server which is not
accessible over the Internet

I Also, Bob downloads the Tor binary and configures the
hidden service



Step 1: Announcing Existance

I Bob’s HS needs to advertise its existance in the Tor network

I The HS randomly picks relays , so called introduction
points , in the network and establishes circuits to them

I Then, the HS asks these relays to act as introduction points
by giving them its public key



Step 1: Announcing Existance



Step 2: Upload of Hidden Service Descriptor

I Now, a hidden service descriptor must be built

I The descriptor maps the name of a HS to its reachability
information

I It is uploaded to the directory servers

I Clients reach the HS by accessing KEY.onion where KEY (i.e.
the name) is derived from the HSes public key

I Now, the HS is set up and ready to receive connections!

descriptor 7→ (PKhs , IP1, IP2, ..., IPn)SigPKhs



Sample Onion Addresses

I http://idnxcnkne4qt76tg.onion/ — The Tor Project web site

I http://xqz3u5drneuzhaeo.onion/ — InspecTor

I http://eqt5g4fuenphqinx.onion/ — core.onion

I http://ci3hn2uzjw2wby3z.onion/ — Anonymous posting
board

http://idnxcnkne4qt76tg.onion/
http://xqz3u5drneuzhaeo.onion/
http://eqt5g4fuenphqinx.onion/
http://ci3hn2uzjw2wby3z.onion/


Step 2: Upload of Hidden Service Descriptor



Step 3: Alice Prepares a Connection

I Alice now wants to connect to Bob’s HS to read his
articles

I Alice somehow learns about the onion address
ynjeqmhe5j5tnzph.onion

I Alice’s client downloads the descriptor from the directory
authorities

I That way she obtained the public key and the
introductory points !

I Finally, Alice randomly picks a rendezvous point and sends
a one-time secret to it

http://ynjeqmhe5j5tnzph.onion/


Step 3: Alice Prepares a Connection



Step 4: Alice Informs the Hidden Service

I Now Alice’s client prepares an introduce message encrypted
with the HSes public key

I The message contains the address of the rendezvous
point and a one-time secret

I Alice sends this message to one of the HSes introductory
points and they forward it to the HS

I Alice does all this over a Tor circuit so she remains
anonymous



Step 4: Alice Informs the Hidden Service



Step 5: The Hidden Service Prepares a Connection

I The HS decrypts Alice’s introduce message and obtains the
rendezvous point’s address as well as the one-time secret

I The HS creates a circuit to the rendezvous point and sends
the secret to it



Step 5: The Hidden Service Prepares a Connection



Step 6: The Connection is Established

I Finally, the rendezvous point notifies Alice of the successful
connection

I The rendezvous point now simply forwards data between
Alice and the HS



Step 6: The Connection is Established



Why Rendezvous Points?

I Rendezvous points only forward connection information
and no actual traffic

I So they don’t seem to be “responsible” for a hidden service

I Also, the traffic load could become too high if they would
also forward traffic



What the Involved Parties Know

The Client...

I Does not know the location of the HS

I Knows the location of the rendezvous point

The rendezvous point...

I Does not know the location of both, the HS and the client

I Knows nothing about the nature of the HS or the data being
transfered

The hidden service...

I Does not know the location of the client

I Knows the location of the rendezvous point



Accessing Hidden Services Without Tor

I The Tor2Web project provides access over the plain web

I To access Bob’s articles, Alice can invoke
ynjeqmhe5j5tnzph.tor2web.org

I Note that the sender anonymity is not the same as when
accessed over Tor!

I Tor2Web trades off security for convenience

http://www.tor2web.org
http://ynjeqmhe5j5tnzph.tor2web.org


A More Practical Point of View

How Bob operates his HS...

I Bob runs lighttpd which is listening to localhost:80 and is
hence unreachable to the wide Internet

I lighttpd is not aware of the fact that it is used as hidden
service!

I The Tor process running on the same machine is accepting
connections to the HS and forwards them to localhost:80

I The client application can also be unaware of Tor if it is
used together with torsocks (e.g. torsocks ssh

u73zzkakuscok7zq.onion)

I So client and server could be communicating completely
anonymous over Tor without even knowing



Attacks on Hidden Services



First Attack: Øverlier & Syverson

I In 2006, Øverlier and Syverson demonstrated how the
location (i.e. IP address) of a HS can be revealed

I Attacker only needed a Tor client and a relay (trivial
requirements) and the attack could work within minutes

I Core vulnerability : HS chose relays for its circuit at
random

I Goal of attacker : Get chosen by HS as the first hop in
the circuit



Øverlier & Syverson: How it Works in Practice

I Eve uses her Tor client to connect to the HS and she also
runs a relay

I Eve continuously establishes connections to the HS and
checks every time whether her relay was selected as first hop
in the circuit HS → RP

I As soon as her relay was chosen by the HS as first hop, she
has the IP address!

I She can confirm whether her relay was selected by doing
traffic pattern analysis using statistics

I Solution : Guard nodes for HSes



Øverlier & Syverson: Visualized



Second Attack: Murdoch

First we have to know...

I Computing devices have a so called clock skew , the ratio
between the computer’s actual and the nominal clock
frequency

I So after x days, a computer’s clock drifted off by y
milliseconds

I Clock skew is a very small value but can even be
measured over a network

I Computer’s (even identical models) have different clock
skews because the manufactoring process is not perfectly
accurate → the clock skew can be seen as a hardware
fingerprint



Second Attack: Murdoch

Clock skew and CPU load...

I Clock skew changes with temperature of the CPU
(differences in 1–1.5◦C are already measurable)

I The CPU’s temperature can be influenced by controlling the
load

I High load can be induced remotely by making the HS busy
(e.g. fetching many websites)



Murdoch: How it Works in Practice

I Eve suspects several IP addresses to be the HS she wants to
deanonymize

I She sends alternating traffic bursts through Tor to the HS and
measures the clock skew of the suspected IPs (directly and
not over Tor)

I Using correlation techniques , she can identify the HS if
the IP addresses was in the set of suspects



Murdoch: Visualized



Conclusions



What You Should Keep in Mind

I HSes provide responder anonymity as well as DoS and
censorship protection

I HSes can (and should) be accessed over Tor but they are
also accessible over the web

I HSes are fairly flexible and do not require modifications of
the underlying service (e.g. apache or sshd)



Literature

Dingledine, R., Mathewson, N., and Syverson, P.
Tor: The Second-Generation Onion Router.
In USENIX Security Symposium (San Diego, CA, 2004),
USENIX Association, pp. 303–320.

Murdoch, S. J.
Hot or Not: Revealing Hidden Services by their Clock Skew.
In Computer and Communications Security (Alexandria, VA,
2006), ACM, pp. 27–36.

Øverlier, L., and Syverson, P.
Locating Hidden Servers.
In IEEE Symposium on Security and Privacy (Oakland, CA,
2006), IEEE, pp. 100–114.

The Tor Project.
Tor: Hidden Service Protocol.
https://www.torproject.org/docs/hidden-services.html.en.

https://www.torproject.org/docs/hidden-services.html.en

