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Introduction to Tor



What is it?

I Tor is a low-latency anonymity network (as opposed to
high-latency networks, such as mix networks) consisting of
thousands of relays

I The most widely used and deployed anonymity network

I Client bundles available for Linux, Windows, Mac and Android



How Does it Work?

I Tor implements 3rd (sometimes called 2nd) generation onion
routing

I Clients build circuits consisting of relays and route TCP
streams through them

I Relays are listed in consensus which is published by
directory authorities

I Directory authorities and their keys are hard-coded into the
Tor binaries



What Does an Attacker See?

https://www.eff.org/pages/tor-and-https

https://www.eff.org/pages/tor-and-https


Facts

As of June 2012, approximately...

I 450.000 daily users

I 3000 relays contributed by volunteers

I 1000 bridges also contributed by volunteers

I Rough statistics available at: https://metrics.torproject.org

https://metrics.torproject.org


Try it!

I All that is needed: Tor Browser Bundle

I Zero-install, zero-configuration Tor bundle

I Contains Firefox without all the privacy assaults

I Vidalia, the GUI, allows the configuration of hidden services
and a bridge

https://www.torproject.org/download/download-easy.html.en


Hidden Services



In a Nutshell

I Tor’s purpose is to provide sender anonymity

I Hidden services add responder anonymity

I That way, we can run a TCP service without revealing our IP
address!

I Therefore: Anonymous clients can communicate with
anonymous servers!

I In addition: DoS and censorship protection



How it is Used in Practice

I Whistleblowing websites need censorship resistance against
mad governments

I Activist sites need to stay anonymous to resist against data
center raids

I Resistance against social graph analysis (possible with data
retention)



Hidden Services by Example: Bob

I Bob is a journalist who wants to publish sensitive
information

I He wants to publish his articles anonymously and without
getting censored

I So Bob decides to set up a hidden service (HS) in the Tor
network

I There are 6 steps ranging from announcing the HS to using it



Step 0: Installation and Configuration

I Before Bob starts using Tor, he has to install the service

I So Bob sets up his own lighttpd web server which is not
accessible over the Internet

I Also, Bob downloads the Tor binary and configures the
hidden service



Step 1: Announcing Existance

I Bob’s HS needs to advertise its existance in the Tor network

I The HS randomly picks relays , so called introduction
points , in the network and establishes circuits to them

I Then, the HS asks these relays to act as introduction points
by giving them its public key



Step 1: Announcing Existance



Step 2: Upload of Hidden Service Descriptor

I Now, a hidden service descriptor must be built

I The descriptor maps the name of a HS to its reachability
information

I It is uploaded to the directory servers

I Clients reach the HS by accessing KEY.onion where KEY (i.e.
the name) is derived from the HSes public key

I Now, the HS is set up and ready to receive connections!

descriptor 7→ (PKhs , IP1, IP2, ..., IPn)SigPKhs



Sample Onion Addresses

I http://idnxcnkne4qt76tg.onion/ — The Tor Project web site

I http://xqz3u5drneuzhaeo.onion/ — InspecTor

I http://eqt5g4fuenphqinx.onion/ — core.onion

I http://ci3hn2uzjw2wby3z.onion/ — Anonymous posting
board

http://idnxcnkne4qt76tg.onion/
http://xqz3u5drneuzhaeo.onion/
http://eqt5g4fuenphqinx.onion/
http://ci3hn2uzjw2wby3z.onion/


Step 2: Upload of Hidden Service Descriptor



Step 3: Alice Prepares a Connection

I Alice now wants to connect to Bob’s HS to read his
articles

I Alice somehow learns about the onion address
ynjeqmhe5j5tnzph.onion

I Alice’s client downloads the descriptor from the directory
authorities

I That way she obtained the public key and the
introductory points !

I Finally, Alice randomly picks a rendezvous point and sends
a one-time secret to it

http://ynjeqmhe5j5tnzph.onion/


Step 3: Alice Prepares a Connection



Step 4: Alice Informs the Hidden Service

I Now Alice’s client prepares an introduce message encrypted
with the HSes public key

I The message contains the address of the rendezvous
point and a one-time secret

I Alice sends this message to one of the HSes introductory
points and they forward it to the HS

I Alice does all this over a Tor circuit so she remains
anonymous



Step 4: Alice Informs the Hidden Service



Step 5: The Hidden Service Prepares a Connection

I The HS decrypts Alice’s introduce message and obtains the
rendezvous point’s address as well as the one-time secret

I The HS creates a circuit to the rendezvous point and sends
the secret to it



Step 5: The Hidden Service Prepares a Connection



Step 6: The Connection is Established

I Finally, the rendezvous point notifies Alice of the successful
connection

I The rendezvous point now simply forwards data between
Alice and the HS



Step 6: The Connection is Established



Why Rendezvous Points?

I Rendezvous points only forward connection information
and no actual traffic

I So they don’t seem to be “responsible” for a hidden service

I Also, the traffic load could become too high if they would
also forward traffic



What the Involved Parties Know

The Client...

I Does not know the location of the HS

I Knows the location of the rendezvous point

The rendezvous point...

I Does not know the location of both, the HS and the client

I Knows nothing about the nature of the HS or the data being
transfered

The hidden service...

I Does not know the location of the client

I Knows the location of the rendezvous point



Accessing Hidden Services Without Tor

I The Tor2Web project provides access over the plain web

I To access Bob’s articles, Alice can invoke
ynjeqmhe5j5tnzph.tor2web.org

I Note that the sender anonymity is not the same as when
accessed over Tor!

I Tor2Web trades off security for convenience

http://www.tor2web.org
http://ynjeqmhe5j5tnzph.tor2web.org


A More Practical Point of View

How Bob operates his HS...

I Bob runs lighttpd which is listening to localhost:80 and is
hence unreachable to the wide Internet

I lighttpd is not aware of the fact that it is used as hidden
service!

I The Tor process running on the same machine is accepting
connections to the HS and forwards them to localhost:80

I The client application can also be unaware of Tor if it is
used together with torsocks (e.g. torsocks ssh

u73zzkakuscok7zq.onion)

I So client and server could be communicating completely
anonymous over Tor without even knowing



Attacks on Hidden Services



First Attack: Øverlier & Syverson

I In 2006, Øverlier and Syverson demonstrated how the
location (i.e. IP address) of a HS can be revealed

I Attacker only needed a Tor client and a relay (trivial
requirements) and the attack could work within minutes

I Core vulnerability : HS chose relays for its circuit at
random

I Goal of attacker : Get chosen by HS as the first hop in
the circuit



Øverlier & Syverson: How it Works in Practice

I Eve uses her Tor client to connect to the HS and she also
runs a relay

I Eve continuously establishes connections to the HS and
checks every time whether her relay was selected as first hop
in the circuit HS → RP

I As soon as her relay was chosen by the HS as first hop, she
has the IP address!

I She can confirm whether her relay was selected by doing
traffic pattern analysis using statistics

I Solution : Guard nodes for HSes



Øverlier & Syverson: Visualized



Second Attack: Murdoch

First we have to know...

I Computing devices have a so called clock skew , the ratio
between the computer’s actual and the nominal clock
frequency

I So after x days, a computer’s clock drifted off by y
milliseconds

I Clock skew is a very small value but can even be
measured over a network

I Computer’s (even identical models) have different clock
skews because the manufactoring process is not perfectly
accurate → the clock skew can be seen as a hardware
fingerprint



Second Attack: Murdoch

Clock skew and CPU load...

I Clock skew changes with temperature of the CPU
(differences in 1–1.5◦C are already measurable)

I The CPU’s temperature can be influenced by controlling the
load

I High load can be induced remotely by making the HS busy
(e.g. fetching many websites)



Murdoch: How it Works in Practice

I Eve suspects several IP addresses to be the HS she wants to
deanonymize

I She sends alternating traffic bursts through Tor to the HS and
measures the clock skew of the suspected IPs (directly and
not over Tor)

I Using correlation techniques , she can identify the HS if
the IP addresses was in the set of suspects



Murdoch: Visualized



Conclusions



What You Should Keep in Mind

I HSes provide responder anonymity as well as DoS and
censorship protection

I HSes can (and should) be accessed over Tor but they are
also accessible over the web

I HSes are fairly flexible and do not require modifications of
the underlying service (e.g. apache or sshd)
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