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Abstract— Object grasping is commonly followed by some
form of object manipulation — either when using the grasped
object as a tool or actively changing its position in the hand
through in-hand manipulation to afford further interaction. In
this process, slippage may occur due to inappropriate contact
forces, various types of noise and/or due to the unexpected
interaction or collision with the environment.

In this paper, we study the problem of identifying continuous
bounds on the forces and torques that can be applied on a
grasped object before slippage occurs. We model the problem
as kinesthetic rather than cutaneous learning given that the
measurements originate from a wrist mounted force-torque
sensor. Given the continuous output, this regression problem
is solved using a Gaussian Process approach.

We demonstrate a dual armed humanoid robot that can
autonomously learn force and torque bounds and use these
to execute actions on objects such as sliding and pushing. We
show that the model can be used not only for the detection of
maximum allowable forces and torques but also for potentially
identifying what types of tasks, denoted as manipulation affor-
dances, a specific grasp configuration allows. The latter can then
be used to either avoid specific motions or as a simple step of
achieving in-hand manipulation of objects through interaction
with the environment.

I. INTRODUCTION

Interaction with and manipulation of objects are essential
abilities of robots operating in realistic environments. As
humans, robots may need to grasp objects for simple tasks
such as moving them from one position to another. More
complex tasks, such as using objects as tools, requires a more
advanced ability of manipulating an object in the hand so
to achieve a suitable grasp configuration. In this process of
achieving and loosing contacts with the object in the hand,
events such as slippage commonly occur. The knowledge of
contacts and slippage provides important information about
the status of the task one is executing.

For both humans and robots, sense of touch is paramount
for safe and flexible interaction with objects and the environ-
ment. As reviewed in [1], components of tactile perception
in humans depend on the sensory inputs within muscles,
tendons and joints (kinesthetic) and stimulus mediated by
receptors in the skin (cutaneous). Most of the research in
robotic tactile sensing addressed the problem of finger-object
interactions and grasp stability assessment. If the contact
locations as well as the friction coefficients of the contacting
surfaces are known, the problem can be formulated in terms
of the Grasp Wrench Space (GWS) [2], [3]. However, it is
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Fig. 1 : A dual arm robot setup for estimating maximal allowable
forces and torques for a grasp.

difficult to construct the GWS in practice since it requires
the exact values of those parameters.

Besides planning stable grasps, the robot should also
acquire knowledge of the maximum forces and torques that
can be applied on the object before slippage occurs. Various
methods have been proposed for detecting slippage [1],
[4]-[6]. Apart from addressing the problem at the signal
processing level in terms of cutaneous tactile sensing, general
machine learning methods have proven adequate for analysis
in cases where noise and imperfect models are inherent to
the problem, [7], [8].

Our work follows the direction of using kinesthetic sensing
for slip detection in combination with machine learning
techniques. Autonomous learning and a physical model of
the friction forces are used to estimate the maximum static
friction forces and torques on objects the robot is interacting
with. We approach the problem through Gaussian Process
regression, resulting in a model that can predict forces and
torques that a grasp can tolerate before the held object starts
slipping. As such, the model can also be used to identify the
affordances of a specific grasp such as, for example, what
type of in-hand rotation can be applied to an object while
still keeping the object in the hand.

The learned bounds can be used as constraints at the
control level to avoid certain motions and thus prevent
slippage of the grasped object while executing the task. In
addition, the approach also identifies in which directions the
object might translate or rotate in the hand and thus be
exploited in tool use and in-hand manipulation to actively
change the pose of the object in the hand — either through
specific motion or interaction with the environment. This is
also commonly done by humans, for example prior to putting
a key in a keyhole we may change its orientation between
the fingers by pushing the key toward a surface.



Thus, differently from commonly addressed grasp affor-
dances [9], we facilitate the system to identify manipulation
affordances. Our method uses force-torque and propriocep-
tive feedback different from commonly used tactile or skin
sensors which in practice can be fragile and easily dam-
aged. However, when possible, the cutaneous and kinesthetic
methods can be integrated resulting in a more biologically
inspired approach [1]. Our approach also takes advantage
of the dual arm capabilities of humanoid robots since the
training actions can be executed autonomously through dual
arm manipulation procedures. Fig. 1 shows our dual-arm
robot as an example of a platform that can be used to
implement the method we propose in this paper.

The paper is organized as follows: Section II presents the
related work, Section III our learning framework, including
the friction model and the use of Gaussian Process regression
while in Section IV we proceed to describe how our system
learns manipulation affordances from doing regression on the
static friction. Finally, we provide our experimental results
in Section V as well as the conclusions, discussion on the
results and future directions in Section VI.

II. RELATED WORK

Early works studying the physics of robotic grasping
and contact between rigid bodies are reviewed in [3]. The
review addressed the basic closure properties of grasps, force
and form closure, which describe the equilibrium condi-
tions of an object grasped by a robotic hand by assuming
frictional and frictionless point contacts respectively. Given
that friction forces play a central role in robotic grasping,
some of the works reported in the literature have focused
on studying their properties [5], [10]. These studies cover
not only the translational Coulomb friction, but also the
rotational friction. Moreover, by combining different sensor
modalities (tactile and force-torque) it is shown in [5] that
it is possible to detect and control both translational and
rotational slippage.

Besides modeling the physics of grasping and the friction
forces, quantifying the quality of grasps in terms of the
capability to counteract external disturbances has been one
of the main research questions in the grasping community.
In order to plan stable grasps with robotic hands, many grasp
planners have been proposed in the literature which optimize
these quality measures [2], [11], [12]. These planners are
constructed in terms of approximations of wrench spaces or
heuristic algorithms that consider a subset of a wrench space.

The main drawback of these methods is that these require
precise 3D models of the object as well as prior knowledge of
the friction coefficient and the location of the contact points
of the robot’s hand. To cope with this problem, [13] proposes
a set of manipulation actions to estimate properties such
as weight, stiffness and friction in order to set appropriate
grasping forces.

In order to overcome the uncertainties and problems with
modeling errors in grasping, learning approaches have also
been proposed. Example works of [7], [8], [14] consider

learning of grasp stability and grasp affordances. Our pre-
vious work on grasp stability assessment performs learning
mainly through tactile (cutaneous), proprioceptive and visual
feedback in order to predict the stability of the grasp prior
to lifting and manipulating the object [8], [14]. In [7] the
proposed system learns grasp affordances which are defined
as hand-object relative poses that lead to successful grasps
on a particular object. These affordance densities are learned
through exploration and visual features. The main strength
of these learning approaches originates from the fact that
these do not require prior knowledge of physical contact
parameters as the system is trained using supervised learning
without explicitly modeling the physics of grasping.
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Fig. 2 : Cutaneous and kinesthetic components of haptic sensing
and perception [1], [15]. Highlighted in bold are the kinesthetic
components which we consider in our approach.

Our work makes use of the physics models of friction
described in the seminal work of [5], [10]. However, instead
of employing geometrical, analytical or signal processing
based approaches [2], [4], [5], [11], [12] we follow a
kinesthetic learning approach for predicting slippage. In this
sense, our work follows more closely approaches in which
the robot first interacts with objects and assesses their contact
and friction properties prior to executing tasks [13]. Our
method also follows the motivation behind learning based
approaches in order to deal with the issue of modeling errors
and uncertainties in grasping [7], [8], [14].

Within the broader scope of haptic sensing, which consists
of both cutaneous and kinesthetic sensing as shown in Fig. 2,
our approach falls under the subcategory of kinesthetic sens-
ing and perception while most of the related work discussed
so far including our own work on grasp stability assessment
cover mostly the domain of cutaneous/tactile sensing [4], [6],
[8], [14].

III. PHYSICS AND LEARNING MODEL

The main objective of our system is learning the maximum
static friction forces and torques for various grasp configura-
tions through force-torque sensing. In this section we present



the modeling aspects of our framework, beginning with a
description of the friction model used and the selection of
input features for training. We finalize the section with a
brief overview of Gaussian Process regression and explain
how we apply it within our work.

A. Friction Model

According to the Coulomb friction model, when an exter-
nal force is applied parallel to the surface of contact between
two bodies, there is a reaction friction force fy which relates
to the normal force f,, according to the following inequality

fr < psfn (D

where ps is the static coefficient of friction. This equation
holds until the external force exceeds the maximum static
friction force. The object then starts slippping when Eq. (1)
becomes an equality. From this point, a dynamic friction
force with a lower friction coefficient starts acting on the
object as depicted in Fig. 3. The peak of this curve corre-
sponds to the maximum static friction force fq;, given by

fslip = ,usfn (2)

The static torsional friction typically displays a nonlinear
behavior given by

Totip = Bs fol? 3)

where (5 depends on geometric and elasticity factors of the
contact [5]. However, slippage still occurs at the point in
which the friction torque reaches its maximum value, which
we denote as 7).
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Fig. 3 : Translational friction force exerted on an object held in
a robot hand. The peak of the signal, fsi;, denotes the maximum
static friction force at which the object begins to slip.

In order to achieve a more general physical model for
prediction, we take into consideration the effect of both
rotational and translational friction forces as discussed in
[5], [16]. When an object is subject to both rotational and
translational shears, the translational and rotational friction
components become correlated as shown in Fig. 4. The curve
ft = h(ry), where f; is the component of the force tangent
to the contacting surfaces and 7,, the component of the torque
in the normal direction, represents the boundary at which the

object starts slipping due to the loads exerted on the object.
If the tangential force f; applied on the object is above the
curve for a given applied torque 7,,, then the object will slip
and the grasp is thus unstable.

fslip
5

h7)

Slip region

Zo
.
ol
4 Nor_w—sllp
region
Tslip
00 0.‘1 0‘.2 0.‘3 014 0.5

7o [Nm]

Fig. 4 : Slippage boundaries: f: = h(7,) represents the boundary
for slippage of objects under combined translational and rotational
shear while fi = hyin(7,) represents a linear approximation of h
as proposed in [5].

A number of mathematical approximations have been for-
mulated in the literature to describe this slippage boundary.
We will use the linear approximation described in [5] that
defines a conservative bound on the magnitude of the forces
and torques that cause slippage on an object. This linear
bound is denoted by f;(7,,) = hyin(7,) in Fig. 4 and can be
expressed using the following equation:

ft Tn
- - —Jn 4
s + 3 f 4)

B. Learning Framework

Our goal is to learn the mapping between a set of
input features (X) and the resulting maximum friction
forces and torques (Y), which is a regression problem
due to the continuous outputs. While there are several
types of regression techniques that could be used within
our framework, we have chosen Gaussian Process (GP)
regression which can capture the nonlinearity in the data
and provide estimates for uncertainty in the predictions.

1) Gaussian Processes: Given a dataset D = {x;,y; };
with n observations where x; € ®Y and y; € R is a scalar
output, regression analysis aims at learning a model for the
relationship y = f(x) + € which is composed of a latent
function of the input and a noise component €. As a result
of this learning, given a new input x*, the aim is to obtain
the predictive distribution for y*.

A GP [17] defines a distribution over functions and is
parametrized by a mean and a covariance function as

GP ~ (m(x), k(x,x")) 5)

The mean function is assumed to be zero. The covariance
function expresses how similar two outputs, f(x;) and f(x;)



are given the inputs x; and x;. Our covariance function is
based on the squared exponential, which is given by

(xi — x;)?
212
The hyperparameters of the covariance function, (o, 0y, 1),
are optimized based on D, where oy denotes the signal
variance, o, is for the noise variance and [ is the length-
scale which determines how relevant an input is, i.e., if [
has a large value the covariance will be independent of that

input.

We are interested in the conditional probability
p(y*|D,x*) as we want to find how likely is a certain
prediction for y*, given the data and the new input. Based
on a trained GP model, the estimate for y* is given by the
mean value at the test point with the confidence being the
variance. The interested reader can refer to the literature
[17] for additional details on Gaussian Processes.

2) Feature Selection: As an input to the regressor, we
need a set of informative features X, that can reliably
represent the behavior of the maximum static friction forces
and torques. In our case, we have selected the x component
of the hand H pose with respect to the object O as shown
in Fig. 5

k(x;,%x;) = ajzr exp[— |4 026(x;, x5).  (6)

X = Oy | )

We have selected this feature for illustration purposes, yet
more features can easily be incorporated into the system,
such as for example the joint angles of the fingers and their
grasping force which can modify the friction forces present
in a grasp. If more features are incorporated into the system,
a preprocessing stage with dimensionality reduction would
be necessary [18].

Fig. 5 : Grasp preshape used for training on the maximum static
friction forces and torques, with the corresponding reference frames
of the hand and the object used for training.

The outputs Y of the regression system are the maximum
static friction force and torque

_ fslip
Y= |: Tslip :| (8)

which can be measured through force-torque sensors by
interacting with the object. We isolate the components of
Y and train two GPs, one for the translational friction f;p
and one for the rotational friction 7. In our case, we learn

friction forces fs;p in the yp — 2z plane and friction torques
Tstip around the x axis of the tip of the hand reference
frame as shown in Fig. 5, given that these are the directions
in which the object can move within the hand. Forces and
torques around the remaining axes are trivial to learn since
they will be constrained by the operational safety limits of
the hand, given the geometry of the grasp.

IV. TOWARDS LEARNING MANIPULATION
AFFORDANCES

Once the robot has interacted with an object and learned
the maximum friction forces Y = [fsip, Tsiip)” for a range
of grasp configurations, it can use this information to infer
what type of motions the object can withstand given the
current grasp. The details of the training data generation for
learning are provided in the next section.

For a given wrench w™* measured by the robot while
executing a task, the robot can detect how close the object is
to slipping according to the model discussed in Section III-
A. In order for the object to remain fixed in the robot’s hand
the measured force should lie below the torque dependent
slippage boundary h(7)

fi < h(7;) 9
where f; and 77 are the tangential force and normal torque
components of the wrench measured by the robot.

In the training stage we isolate the translational and
rotational components of the friction and thus we can approx-
imate h(7,) linearly with hy;, (7,) by joining the end points
(ft;™) = (fs1ip,0) and (ft,7) = (0, 7siip). In the case
of a linear approximation the following condition ensures a
stable grasp in terms of zero relative motion between the
object and the hand #vo = 0:

fi < hgn ()
(10)
fr< =Lty o

Tslip

Thus, our approach makes it possible to identify stable
grasps through identification of forces and torques that can
be applied on an object before slippage occurs. In a broader
sense, the methodology also identifies directions of motion
constraints — that is, in which directions the object is more
likely to translate or rotate.

In the case of the grasp studied in this work, see Fig. 5,
the model would inform that the object can translate in the
yg — zp plane and rotate around the zy axis. Moreover, if
a large torque is detected around the xz axis with relatively
low forces in the y — 2 plane then we can expect the object
to rotate around the fingertips rather than translate once the
force-torque measurements reach the slippage boundary of
Eq. (4).

This knowledge is necessary for manipulation tasks where
a predicted slippage of the object may be facilitated to
complete a task. An example scenario is shown in Fig. 6,
in which the robot exploits the rotational slippage to pour
the contents of the cereal box into the bowl by letting the
box rest against an edge of the bowl and allowing it to rotate
slightly in the hand while the manipulator moves upwards.
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Fig. 7 : Sliding action for training on the maximum static linear friction fg;;, and its corresponding force and torque profiles.

V. EXPERIMENTAL EVALUATION

Our experimental setup consists of a dual arm robot as
shown in Fig. 1. Each manipulator has 7 DOF and these
are equipped with ATI Mini45 6-DOF force/torque sensors
mounted at the wrists and they are sampled at a 650 Hz
frequency. We start by describing the training data collection
process.

A. Training Data Collection

For collecting training data autonomously with the robot
we use three dual arm manipulation procedures: one sliding
action for measuring the maximum static linear friction fq;,
and the other two are a rotational motion and pushing action
for measuring the rotational friction 7).

Fig. 7 shows an illustration of the sliding action along
with the forces and torques measured during the execution.
In this case the robot holds the object firmly with the parallel
gripper shown on the right while the hand on the left, which
is the one we train for, slides up in the yg direction of the
hand. The y-component of the force signal f, measured in
the force-torque sensor of the arm is then similar to the one
shown in Fig. 3, and f;, is obtained from the peak of the
signal.

For obtaining training data for the maximum static friction
torque 74;p, we used the pushing action shown in Fig. 8. This
action is performed by grasping the object with the hand we
train for, while the parallel gripper shown on the right pushes

the object on a corner so that the object rotates around the
g axis of the tip of the robotic hand. We selected this action
given that we expect collisions with the environment to be a
source of rotational slippage when the robot performs tasks
with the object.

For verification purposes we also trained a separate GP
for 74, by applying a different type of training action as
shown in Fig. 9. This training action consists of performing
a rotational motion with the grasping hand while the object
is kept on a fixed grasp with the parallel gripper shown on
the right. Even though in this case we also train for 7, as
with the pushing action, we can expect different outcomes
from the learning given that each training action represents
a different kind of interaction with the environment. The
pushing action gives 7y, for tasks in which the object
is grasped by the robot’s hand and it collides with the
environment while being grasped by the robot hand, whereas
the rotational motion models a task in which the object is
fixed with respect to the environment and the robot’s hand
rotates around the object.

B. Experimental results

We collected 14 training examples for the friction force
and 10 training examples for the torque by varying the rela-
tive pose between the robot hand and the manipulated object
along one dimension as described in Section V-A. To learn
the Gaussian Processes and obtain the hyperparameters we
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Fig. 9 : Rotational motion for training on the maximum static rotational friction 7.

used Rasmussen and Nickisch’s Gaussian Process Regression
and Classification Toolbox [17]. The hyperparameters were
calculated by maximizing a Gaussian likelihood function.

Fig. 10 shows the resulting learned Gaussian Process for
fsiip. This plot shows the mean function of the learned GP
(solid blue line) which follows the training points, along
with the two standard deviation confidence bounds (dashed
red lines) enveloping it. Given this result, we take the lower
confidence bound as stability boundary for fg;, given that
the Gaussian Process predicts that 95% of the points of the
process will lie above this boundary.
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Fig. 10 : Learned GP of fs;, with two-standard deviation

confidence bounds. The solid blue line is the mean function of
the GP while the dashed red lines are the confidence bounds. The
green square markers correspond to the training data, while the
yellow triangular markers correspond to the test set.

For testing and validating the learned GP, we manually
pushed the object while it was being grasped by the robot
in different configurations compared to the ones used for
training. Fig. 10 confirms that the sliding action performed
on the object is valid for training fs;;, as most of the test
points lie above the lower confidence bound of the Gaussian
Process.
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Fig. 11 : Learned GP of 74, trained by using the pushing action
shown in Fig. 8.

Fig. 11 shows the learned Gaussian Process for 7,;, when
using the pushing action. Once again, we manually pushed
the object while it was grasped by the robot in order to collect
the test points shown in the figure. These test points show
that the pushing action and the learned Gaussian Process
succeeded in capturing the behavior of 7, with respect to
the object to hand relative pose.

Fig. 12 shows the result of learning 74, by using the
rotational motion, while we collected test points by manually
pushing the object as in the previous case. The clear offset
between the learned GP and the test points shows that
the training and testing actions are not anymore physically
consistent. In the case of the rotational training motion, the
interaction between the active robot hand and the object
involves both forces and torques, while pushing actions,
performed either by the robot hand or manually by ourselves
for testing, exert only forces on the object. This result can
thus be used to inform the system that the action is not
proceeding according to the model and provide the basis
for replanning. This is something we plan to adress in the
subsequent work.
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Fig. 12 : Learned GP of 74, with two-standard deviation
confidence bounds trained with the rotational motion shown in Fig.
9.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have presented a learning framework
for prediction of slippage of grasps through kinesthetic
perception which provides a basis for learning manipulation
affordances. Our method uses Gaussian Process regression
and the training is performed by isolating the translational
and rotational components of the friction. The novelty of the
approach lies on using a machine learning approach together
with a physical model of the friction to determine continuous
bounds on the forces and torques that a grasped object can
withstand before slipping for a set of different object-hand
relative poses. The experimental results show that our system
is able to generate reliable predictions which agree with tests
performed by manually pushing the object in the hand of the
robot for previously unencountered grasp configurations.

Future directions of work include expanding our sensor
modalities from kinesthetic perception to cover a wider
spectrum of haptic perception (see Fig. 2) by use of tactile
sensing. We also aim to incorporate into our system the
estimation of the axis of rotation of the object in the hand
of the robot as it can improve the results shown here.
We have assumed a constant axis of rotation around the
fingertips of the hand that might not correspond precisely
with the actual axis around which the object rotates when it is
manipulated. In order to cope with this issue, we aim to use
adaptive control techniques previously used for estimating
the kinematic constraints of hinged doors [19] and treat the
object as a virtual hinge. We are also interested in coupling
this work with probabilistic grasp assessment techniques and
object categorization as demonstrated in our previous work
in [20], [21].
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