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Abstract— In this paper, we propose an approach for vision-
based pose estimation of a robot hand or full-body pose. The
method is based on virtual visual servoing using a CAD model
of the robot and it combines 2-D image features with depth
features. The method can be applied to estimate either the
pose of a robot hand or pose of the whole body given that its
joint configuration is known. We present experimental results
that show the performance of the approach as demonstrated on
both a mobile humanoid robot and a stationary manipulator.

I. INTRODUCTION

Most of the object grasping and manipulation tasks require
the pose between the robot hand and the object to be known
prior to or during execution of the grasp. Although power
grasping may not need a precise pose of the robot hand rela-
tive to the object, precision grasps and in-hand manipulation
require a high level of accuracy [1]. In many cases, the exact
model of the robot arm may not be available and forward
kinematics is not accurate enough to guide grasping [2].
Vision-based hand pose estimation can alleviate this problem
and enable control without an extra step requiring position
or image-based visual servoing.

Similar requirements arise when grasping and manipula-
tion tasks are performed by several robots where the relative
position of the robots with respect to each other must be
known [3]. In this case, one robot can obtain its relative
position with respect to another robot by identifying the full
pose of the robot body or solely the pose of its hand.

In this paper, we propose an approach for vision-based
pose estimation of a robot hand or full-body pose. The
method is based on Virtual Visual Servoing that uses RGB-
D images together with a CAD model of the robot, to
continuously track the pose of a robot with respect to the
camera, or between different parts of a robot. The main
contributions of this work are:
• The integration of 2-D and 3-D information into the

Virtual Visual Servoing framework. Our method, given
an approximate initial pose estimate, refines it iteratively
to obtain a more precise estimate. We show that the use
of 3-D information improves the estimate in comparison
to using only 2-D images.

• A method for pose tracking of a robot in joint space
given that its configuration is known. This adds the
challenge of having to track each of the links of the
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robot, which places special requirements on rendering
for virtual visual servoing. As we will demonstrate, our
system allows us to treat each joint in the same way
that we treat each of the components of the motion of
the robot, thus making it suitable for complex models.

This paper is organized as follows: in Section II we review
related work. The proposed methodology is presented in
Section III and the results of the experimental evaluation are
presented in Section IV. We conclude the paper in Section V.

II. RELATED WORK

In general, it is possible to use any tracking method to
retrieve the pose of the manipulator. The existing methods
can be divided in two groups: appearance-based (also re-
ferred to as global) [6] and feature-based (also referred to as
local). These methods differ mostly from each other in the
kind of features that are used, the matching algorithm and
the optimization method. Appearance-based methods have
commonly been used for obtaining the pose of a moving
camera [7], [8] or for coarse pose estimation of objects
that occupy a substantial portion of the image or are easily
segmented [9]–[12]. There are also approaches that rely on
the use of fiducial markers [4], [5] that may limit the mobility
of the manipulator, due to the requierment of markers being
continuously in the visual field of the camera.

The features commonly employed for tracking are corners
or edges. These are extracted using some interest point detec-
tor [13], [14] and then encoded into a local descriptor [15]
to ease the matching of the features with the ones stored
in the model. These kinds of features usually work better
with textured objects, and can be problematic with robotic
manipulators, which usually consist of flat, shiny surfaces
which change with illumination. For the optimization part of
the method, if the points are correctly matched and detectable
in the views with arbitrary precision, three points are enough
to solve the problem [16]. In general, more points are needed,
and methods exist that are robust in the presence of noise due
to incorrect matches or inaccuracy in point detection [17]–
[19]. Most of the systems based on these methods use
features extracted from 2-D images as input, and are thus
highly sensitive to viewpoint changes. Our method, by using
a full 3-D CAD model of the tracked object, is more tolerant
to viewpoint changes. Some methods, such as [20], also use
a CAD model for tracking the object, but can only support
simple models, with a few hundreds of polygons, and lack
direct support for tracking a complete kinematic chain.

Virtual Visual Servoing (VVS) [21] is an iterative opti-
mization method where given a real image of the object for



which we want to track the pose and an initial estimation
of the pose, a model is projected into the image at the
estimated pose. Then, features are extracted both in the real
and model image, and the difference between the position
of the features is used to improve the pose estimation. In
our previous work [22], the original method is extended to
make use of a full 3D CAD model of the object. The real
image contains only color data (no depth information), so
the features chosen are the edges detected in the image.

III. METHODOLOGY

As stated, our approach is based on VVS where a rendered
model of the object is aligned with the object as seen in
the current camera image. We now provide the notation,
followed by an overview of the method and a detailed
description of each component.

Fig. 1. Coordinate systems and some transformations between them.

The problem we deal with is the estimation of the homo-
geneous transformation between two coordinate frames, He

o ,
relating the corresponding coordinates of a point qe and qo
through qe = He

oqo, see Fig. 1. Vision-based pose estima-
tion provides us with a means of obtaining the transformation
Hc

x between a coordinate frame x and the coordinate frame
c of the camera. By obtaining these for e and o, we can
obtain the transformation He

o = Hc
e
−1Hc

o between the two
original frames. The robot arm is assumed to consist of
several links. In general, the relationships between links form
a kinematic tree, where the transformation Ha

li
between the

root link and link i is Ha
li

= Mji(1)Mji(2) . . .Mji(n)

where Mk is the transformation corresponding to joint k
and ji is the sequence of indices of the joints that sep-
arate the root link and link i in the kinematic tree. The
transformation between the camera and each of the links
is then: Hc

li
= Hc

aMji(1)Mji(2) . . .Mji(n) which is
what we wish to estimate. Hc

a is the rigid transformation
between the camera and the root of our kinematic tree,
composed of a rotation Rc

a and a translation tca. If the
kinematics and joint configuration of our robot are fully
known, Mk will be known, so we only need to estimate
the rotation and translation of the base. When the kinematics
is known but the joint configuration is not, determining the
joint transformation will be equivalent to determining some

parameter φk for the joint (usually an angle). We can then

write Hc
li
=Hc

a(Rc
a, t

c
a)

n∏
s=1

Mji(s)(φji(s)) where Rc
a, tca

and φ = {φ1, φ2, . . . φm} are the parameters to estimate.

A. System overview

The outline of the system is shown in Fig. 2. To achieve
the alignment, we can formalize it by either controlling the
pose of the virtual object or moving the virtual camera
so that the image perceived by the camera corresponds to
the current camera image, denoted as real camera image.
In this paper, we adopt the first approach achieved through
rendering synthetic images by incrementally changing virtual
the pose of the robot hand/arm. A rough initial estimate
of the pose is given by forward kinematics. Image features
are then extracted from the rendered image and matched to
the features of the current image of the hand. We define
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Fig. 2. Outline of the proposed model-based tracking system.

an error vector based on the differences between the image
features in the rendered and current real camera image. The
error vector is used for the pose estimation process using
VVS formalization. Images Ir(u, v) are captured with the
Kinect sensor at 30fps. The sensor provides also a depth
map Dr(u, v).

B. Synthetic image generation

For rendering, we assume that a CAD model of the robot
is available. We developed a new scenegraph engine focusing
on rendering offline images and associated maps at a very
high speed, using custom shaders with OpenGL. Since our
matching is based solely on the edge data, the model is
rendered without any texture or lighting, which allows us to
obtain more than 1000 fps in modern consumer GPU hard-
ware, for a model containing more than 100000 polygons.
For each real image, several iterations of VVS need to be
applied before convergence, thus fast rendering is necessary
for real-time performance. Typically, 10 to 30 iterations are
needed, depending on the initial offset in the pose thus
requiring rendering at about 1000 fps when real images are
being captured at 30 fps. Our CAD model is broken into
Nlink meshes, one for each link of the manipulator that can
move independently. Each point pli = [xli , yli , zli , 1]

T in
mesh i can be transformed into the camera coordinate system



using
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where we make it explicit that this transformation depends
on the current estimation of the position and rotation of
the manipulator and the joint configuration. To project the
resulting point into the image plane, we use the projection
matrix P , which must correspond with the projection matrix
for the camera model of the real camera. The point (u, v) in
the image can then be obtained as:

pp =
[
xp yp zp wp

]T
= Ppc,

[
u
v

]
=

[
xp/wp

yp/wp

]
(2)

Using this transformation we generate three different maps.
Is(u, v) contains 1 where a point was rendered and 0 for
the background. Ds(u, v) contains the depth of the rendered
point. It is also used during the rendering process for
occlusion culling. Finally, Ts(u, v) contains the index of the
link for the corresponding pixel.

C. Image features

As mentioned before, the rendered and real images are
compared using image features. In our previous work [22],
we used only edges in the 2D image as a feature. Here, image
edges are still used, but they are combined with new features
to increase the robustness and accuracy of the system.

1) Image edges: We use a Canny operator for edge
detection. We extract edges in both the real and virtual
images, and the vector between an edge point in one image
and the closest edge point in the other image gives us a
directed error vector. For efficiency, this is implemented
using the distance transform method: for each real image,
a map is created which assigns to each point in the map,
the position of the closest edge point. Then, for each edge
point in the virtual image, the error vector can be obtained
by a simple lookup in that map. Since our method assumes
an initial pose estimate, edges should only be matched when
their orientations are similar. To enforce that, 8 maps are
generated, which record the closest edge within a certain
range of orientations. Then, for each edge point in the virtual
image, the lookup is performed only in the map which best
corresponds to the orientation of the edge point.

2) Image depth: One of the important parts of the system
is the choice of appropriate features for the raw depth infor-
mation. SIFT-like 3-D features, such as the one introduced
in [24] are a possibility, but they suffer from the same
drawbacks as SIFT for the 2-dimensional case. Robotic
surfaces are often flat, and the matching of features is an
expensive operation that would need to be performed for
every frame. It is also possible to use the depth information
directly as a feature. In [25], the depth map is assumed to be
smooth, and the difference between the depths of each point
in the source and target images is used as a feature. The
main drawback of this approach is that it leads to incorrect

values in the edges of the object, and is extremely sensitive
to small occlusions, such as the ones that can be caused by
cables in robotic environments. Also, we do not have depth
information for the whole scene, but only for the manipulator,
which will usually only cover a small part of the depth map.

The approach we apply is to use the distance from one
3-D point obtained from the virtual image to the closest
point obtained in the real image. The 3-D image is actually
an edge image, in the sense that each point corresponds to
what would be an edge in fronto-parallel 2-D cuts of the
scene, so this method has similar advantages to the one we
adopted for the 2-D information. We implement it again
using a 3-D version of the distance transform, where we
create, for the real image, a 3-D map of the distance from
each point in space to the nearest extracted point. Then, for
each depth point in the virtual image, we just need to perform
a lookup for the nearest point in the 3-D map, and we obtain
a directed error vector. Another practical advantage of using
this method is that it is very similar to the one used for 2-D
edges, so it can be easily integrated into our framework.

3) SURF features: The previous features meet the key
requirements of speed and work well with textureless objects,
but their main drawback is that since each point in one
image is compared to the closest point in the other image,
the performance degrades when the initial pose is bad. To
improve the performance in such cases, we need features that
can be robustly matched between the images and we chose
to use SURF [26]. Since our CAD models are not textured,
we cannot directly detect SURF features in the rendered
image. We could generate texture maps for our CAD models,
but even then, detecting SURF features for every generated
virtual image would be prohibitively expensive. Instead, we
enrich our CAD model with pre-detected SURF features. In
an offline process, we detect SURF features in different parts
of our model, and for each feature we record its 3D position
within the CAD model, together with information about the
viewpoint, the detection size and the feature descriptor. Then,
during the pose estimation loop, SURF features are detected
in each captured image, and their descriptors matched against
the database of stored features. Matches that are not consis-
tent in terms of viewpoint and detection size are discarded.
The distance between the feature as detected in the real image
and the projection of the recorded position into the rendered
image is then used as the feature to minimize.

D. Visual Servoing

The basic idea behind visual servoing is to create an
error vector which is the difference between the desired
and measured values for a series of features, and then map
this error directly to robot motion. Let s(t) be a vector
of feature values which are measured in the image. In our
case, it is constructed, at each iteration, with the distances
d between the detected points in the real and synthetic
images as s(t) =

[
d1, d2, . . . , dn

]T
. Then ṡ(t) will be the

rate of change of these distances with time as Hc
a(R

c
a, t

c
a)

is updated to improve the fit between real and synthetic
images. The change in this transformation can be described



TABLE I
ESTIMATION ERRORS IN THE RETRIEVED POSE FOR KUKA ARM AND NAO ROBOT.

KUKA arm NAO
simulation real data simulation real data

2-D
features

2-D and 3-D
features

2-D
features

2-D and 3-D
features

2-D
features

2-D and 3-D
features

2-D
features

2-D and 3-D
features

Translation error
parallel to image plane

11.3 mm 9.8 mm 15.8 mm 12.1 mm 10.2 mm 9.7 mm 17.1 mm 11.7 mm

Translation error
perpendicular to image plane

40.1 mm 9.2 mm 46.3 mm 9.7 mm 30.7 mm 9.9 mm 39.3 mm 9.6 mm

Rotation error 1.01 ◦ 0.63 ◦ 1.43 ◦ 0.93 ◦ 1.23 ◦ 0.79 ◦ 1.17 ◦ 1.08 ◦

by a translational velocity T (t) = [Tx(t), Ty(t), Tz(t)]
T and

a rotational velocity Ω(t) = [ωx(t), ωy(t), ωz(t)]
T , which

form a velocity screw: ṙ(t) =
[
Tx, Ty, Tz, ωx, ωy, ωz

]T
. We

can then define the image jacobian or interaction at a certain
instant as J so that ṡ = Jṙ where

J =

[
∂s

∂r

]
=


∂d1

∂Tx

∂d1

∂Ty

∂d1

∂Tz

∂d1

∂ωx

∂d1

∂ωy

∂d1

∂ωz

∂d2

∂Tx

∂d2

∂Ty

∂d2

∂Tz

∂d2

∂ωx

∂d2

∂ωy

∂d2

∂ωz

...
...

...
...

...
...

∂dn

∂Tx

∂dn

∂Ty

∂dn

∂Tz

∂dn

∂ωx

∂dn

∂ωy

∂dn

∂ωz

 (3)

which relates the motion of the (virtual) manipulator to the
variation in the features. The method used to calculate the
jacobian is described in detail below.

However, what we need to be able to correct our pose
estimation is the opposite, that is, we need to compute ṙ(t)
given ṡ(t). When J is square and nonsingular, it is invertible,
and then ṙ = J−1ṡ. This is not generally the case, so we
have to compute a least squares solution, which is given by
ṙ = J+ṡ where J+ is the pseudoinverse of J calculated as
J+ = (JTJ)−1JT . The goal for our task is for all the edges
in our synthetic image to match edges in the real image, so
the target value for each feature is 0, and we can define the
error function as e(s) = ṡ− 0 which leads us to the simple
proportional control law ṙ = −KJ+ṡ where K is the gain
parameter.

E. Estimation of the jacobian

To estimate the jacobian we need to calculate the partial
derivatives of the feature values di with respect to each of
the components of the motion we are estimating (Rc

a, tca and
φ). When features are the position of points or lines, it is
possible to find analytical solutions for the derivatives. Here,
however, the features are the distances from the edges of the
synthetic image to the closest edge in the real image, so we
approximate the derivative by calculating how a change in
the motion component affects the value of the feature.

Each of the feature values di is the distance between a
point psi (u, v) in the synthetic image and the corresponding
point pri (u, v) in the real image. We want to find the point
psi
′(u, v) which results from applying the small change in

the motion component to psi (u, v). We can use the depth
map Ds(u, v) to find the corresponding 3D point in camera
coordinates, and then use the inverse of the matrix that we

used to render the point from the model to find the point
pmi (x, y, z) in the coordinate system of the model. Different
points in the image will correspond to different links in the
robot, but we can obtain the link for each point, and thus its
corresponding projection matrix from map Ts(u, v).

Once we have pmi (x, y, z), we can reproject it using the
new transformation matrix which would result from applying
the small change in motion component, obtaining, as we
wanted, psi

′(u, v). We then compute the new distance d′i
to the corresponding point in the real image, and we can
estimate the derivative as (d′i− di)/ε, where ε is the change
in motion component.

IV. EXPERIMENTAL EVALUATION

We test the performance of the method with respect to the
choice of 3D features. We then give a more extensive eval-
uation of the method’s performance in different situations,
demonstrating hand-eye calibration or robot pose estimation.

A. Accuracy evaluation and comparison to previous method

We first evaluated the accuracy in the pose estimation in
tracking two robots: A KUKA industrial arm and a NAO
humanoid robot. We performed tests both with imagery
from a simulator and with real-world data obtained from a
Kinect camera. The results, which include a comparison with
our previous method which used only 2-D information are
summarized in Table III-D. Each value is the average error
over 1000 runs. We used 5 different joint configurations for
each robot and 10 different initial estimates for the pose,
giving the total of 50 starting conditions. Examples of initial
and final position for a run are shown in Figures 3 and 4.

To evaluate the error in the real-world experiments, we
needed ground truth. We chose to compare the results to
how a human would manually align the input point cloud
with the rendered CAD model, using the same information
available to the robot. For the position error, we distinguish
between errors that are parallel or perpendicular to the image
plane, and we observe that the errors in the estimation of the
depth of the object are greatly reduced.

B. Convergence of the method

To evaluate the robustness of the method, we estimate
the maximum error in the initial pose estimation for which
the method will still converge, using the KUKA industrial
arm and real-world imagery. In this set of experiments,



Fig. 3. A few examples of the initial (upper row) and final poses (lower row) for a Nao robot in several different configurations. The blue outline
represents the current estimation of the pose. Best viewed in color.

Fig. 4. Initial poses with (a) errors in the joint positions (b) errors in the transformation for the whole manipulator. (c) Converged result. Red outline
represents the current estimation. Best viewed in color.

Fig. 5. Convergence results for (a) only rotational error (b) only translational error (c) both rotational and translational error. Best viewed in color.

we also assume that the joint configuration is known. We
performed a total of 30000 runs of the method, using five
different joint configurations for the manipulator. The results
for different kinds of errors, including a decision boundary
for convergence can be seen in Figure 5.

We can observe that for translational errors of less than
10 cm and rotational errors of less than 10 degrees, the
method converges with high probability. Also, we can see
that translational errors along the axis perpendicular to the
image plane and rotational errors around that same axis, a



larger error is tolerated.

C. Estimation of joint configuration

Until now, we have assumed a known joint configuration.
While this is the case in our system, it is not true for many
robotic manipulators. In the following set of experiments, we
assume that the transformation with respect to the base of the
manipulator is known, but there is some error in the initial
estimate of the joint configuration. Having the real values as
provided by our system allows us to compare the results of
our method with the true values.

We ran our method 10000 times for the KUKA arm
using real-world images, with 5 different target (real) joint
configurations, and each time introducing an error of between
-5 and 5 degrees to each of the 6 joints of our arm. A total
of 91% of the runs converged, and the average mean-square-
error over the joints for each run was 0.83 degrees.

V. CONCLUSION AND FUTURE WORK

We have proposed an approach for vision based pose
estimation of a robot hand or full body pose. The method is
based on virtual visual servoing using a CAD model of the
robot. The method combines 2-D image features with depth
features. The method can be applied to estimate either the
pose or the full configuration of a robot. We presented exper-
imental, demonstrating the performance of the approach on
both a mobile humanoid robot and a stationary manipulator.

Our experiments show that considering three-dimensional
features which can be easily obtained from RGB-D images
significantly improves performance when tracking robots,
especially with respect to the perception of the distance from
the camera to the robot. We have successfully applied the
method to the tracking of a walking humanoid, as can be
seen in the accompanying video. We also showed that the
method can be used to refine the estimation for the joints
of a robotic manipulator, where limitations in the hardware
introduce uncertainties.

However, when combining both errors in the transforma-
tion for the base and in the joint configuration, the current
method is stable only for limited ranges of errors. We
need further studies on the relative benefits of 3D features
depending on how large these errors are. Preliminary tests
show that the 3D features used are complimentory. Whereas
SURF features are most valuable for large errors, edges are
important when errors are small. This leads to the conclusion
that a system could benefit from varying the contribution
of different features depending on how far you are from
converging. Our plan is to continue in this direction, and
gradually increase the radius of convergence, while keeping
the same high accuracy.
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