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Abstract— One of the big challenges for robots working
outside of traditional industrial settings is the ability to robustly
and flexibly grasp and manipulate tools for various tasks. When
a tool is interacting with another object during task execution,
several problems arise: a tool can be partially or completely
occluded from the robot’s view, it can slip or shift in the robot’s
hand - thus, the robot may lose the information about the exact
position of the tool in the hand. Thus, there is a need for online
calibration and/or recalibration of the tool. In this paper, we
present a model-free online tool-tip calibration method that
uses force/torque measurements and an adaptive estimation
scheme to estimate the point of contact between a tool and the
environment. An adaptive force control component guarantees
that interaction forces are limited even before the contact point
estimate has converged. We also show how to simultaneously
estimate the location and normal direction of the surface being
touched by the tool-tip as the contact point is estimated. The
stability of the the overall scheme and the convergence of
the estimated parameters are theoretically proven and the
performance is evaluated in experiments on a real robot.

I. INTRODUCTION

The ability to robustly grasp and manipulate tools intended
for human use and employ these for various tasks (as in
Fig. 1) remains one of the big challenges for robots working
outside of traditional industrial settings. The application
areas range from flexible industrial robots working with
tools intended for human use to domestic service robots
that perform household chores [1]. In order to provide the
input for the control loop guiding the execution of a task,
the knowledge of the position of the tool-tip is necessary.

In contrast to classical industrial or other robots with
fixed and a priori known tools, it is not realistic to assume
that service robots have precise beforehand calibrations of
the positions of the tool-tips. Even if they did, the tool
may slip and move relative to the gripper while it is being
used. Therefore, there is a need for online calibration and/or
recalibration of the position of the tip of the tool the
robot is using. Current approaches mostly rely on vision-
based methods for calibrating the pose and are therefore not
applicable in scenarios where the tools or relevant parts of
it are occluded.

In this paper, we present an online tool-tip calibration
method that uses force/torque measurements and an adaptive
estimation scheme to find the point of contact between a tool
and the environment. This estimation can be carried out in
real-time while the robot is using the tool to perform some
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Fig. 1 : Robot manipulating a tool intended for human use.

arbitrary task, and does not require any predefined model of
the shape, size or initial position of the tool being used.

An adaptive force control component guarantees that in-
teraction forces are limited even before the contact point
estimate has converged. We also show how to simultaneously
estimate the location and normal direction of the surface be-
ing touched by the tool-tip as the contact point is estimated.

The paper has the following structure: Section II reviews
the state of the art in related work, Section III formalizes the
problem in terms of statics and kinematics, Section IV de-
scribes the proposed approach and motivates it theoretically,
giving stability and convergence proofs, while Section V
describes the experimental implementation of the method on
a real robot and the experimental results. Finally, conclusions
are presented in Section VI.

II. RELATED WORK

The problem of resolving uncertainties in the end-effector
or the tool positioning is well-studied and has been a relevant
topic in robotics since the advent of the first manipulators.
Early work focused on solving the problem of calibrating
the position of the manipulators and end-effectors them-
selves [2], and this has been extended to also include objects
grasped by the robot [3].

Some works treat the problem without explicitly modelling
the position of a tool or its point of interaction with the



environment, but focus rather on robust performance of a
well-defined task under positioning uncertainties. Examples
of this includes work by Bruyninckx et al. that estimates
the alignment error between the peg and the hole for an
insertion task [4], work by Hovland and McCarragher that
uses a neural network approach to estimate the contact states
between two work pieces [5], and work by Koeppe and
Hirzinger that learns the appropriate interaction forces for
a peg-in-hole task [6].

Some work treats tool-tip position estimation as a cali-
bration problem that can be performed offline prior to using
the tool. Yang et al. use an iterative least squares approach
to calibrate the relationship between tool-tip position and
joint angles, using measurements from a known external
reference [7]. Cheah et al. use adaptive control for tracking
a kinematically uncertain manipulator chain, including a tool
grasped by the end-effector, but only estimate the kinematics
— the position of the end-effector and the tool are measured
externally [3].

Others use a particle filter approach to fit a model to
the object pose by collecting measurements from touching
the object before grasping it [8], [9]. Hebert et al. use a
fusion approach with vision, force/torque measurements and
proprioception to estimate the position of an object with
a known model, held in the end-effector [10]. Păiş et al.
learn relations between a held object and an external tool it
interacts with using gaussian mixture models [11].

Atkeson et al. have proposed a method for estimating
inertial parameters of a grasped object based on force/torque
measurements [12], and Kubus et al. have used sensor
fusion combining measurements of acceleration, velocities,
position, forces, and torques to estimate inertial parameters
and principal moments of inertia of a grasped object, fit-
ting parameters to estimate object pose [13]. Both these
approaches require free motion in a prespecified trajectory,
and can not be applied to estimate the contact point of a tool
online as it is being used.

Muto and Shimokura have shown a method for estimating
contact points given a known tool fixed in the end-effector,
using force measurements [14]. Lei et al. propose a method
that learns model parameters to estimate the position and
external force load on a specific non-rigid grinding tool,
using proprioception and force/torque measurements [15].

The literature on vision-based object pose estimation and
tracking is far too vast to summarize here, but some examples
of tool pose estimation based on computer vision methods
include work by Kemp and Edsinger who use visual gra-
dients to detect tool-tip positions [16], Krainin et al. who
simultaneously build an object model and track it in the
robot hand [17], and Beetz et al., who use repeated visual
template matching to find the location of a spatula in the
robot hand [18].

In our previous work, we have shown how an adaptive es-
timator, integrating proprioception and force/torque measure-
ments can be used to estimate the location of hinges on doors,
or the direction of unconstrained motion for drawers that the
robot is opening [19], and to estimate slopes on surfaces

the robot is in contact with [20]. We have also shown how
to learn manipulation affordances and slippage behaviors of
held objects by using combined measurements of wrist-based
force/torque measurements and grasp forces [21].

In the present paper, we build on these ideas and propose
an adaptive controller that estimates the point of contact of
the tool with the environment, along with estimating the
contact surface normal. This enables the robot to execute
a task with the held tool while performing the estimation.
The proposed controller limits the interaction forces, to avoid
damage to the tool or workpiece while estimates are converg-
ing. The proposed method uses force/torque measurements
from a wrist-mounted sensor, it is inherently online and fast
enough to react to changes, and can thus track the contact
point even if it moves relative to the robot hand while
executing the task.

III. KINETO-STATICS FORMULATION

Before describing the proposed method for estimating the
contact point and the surface normal, we define notation and
formalize the relevant first-order differential kinematics and
the statics. We assume a system that consists of a robot which
performs a task with its tool on a surface; the task requires
motion control of the tool contact point and control of the
contact forces of the tool on a surface.

A. Notation

First, we introduce the following notation and definitions
that will be used throughout this paper:

Bold small letters denote vectors and bold capital letters
denote matrices. Iν , Oν ∈ Rν×ν denote an identity and a
square matrix of zeros respectively while 0ν ∈ Rν denotes a
column vector of zeros. Hat ·̂ and tilde ·̃ denote estimates
and the errors between control variables and their corre-
sponding desired values/vectors respectively. Ra denotes a
rotation matrix that describes the orientation of a frame with
respect to the global frame. A left superscript (e.g. ab)
denotes the frame (e.g. {a}) in which a three-dimensional
vector (e.g. b ∈ R3) is expressed, e.g. ab = R>a b, and it is
omitted in case of the global frame. The projection matrix on
the orthogonal complement space of a unit three dimensional
vector a is denoted by P̄(a) , I3− aa>. S(b) denotes the
skew-symmetric matrix produced by b ∈ R3 to perform a
cross product operation with any three-dimensional vector
a ∈ R3 i.e. b × a = S(b)a.

B. First Order Differential Kinematics

Consider a robot end-effector equipped with a force/torque
sensor on its wrist that is grasping a tool which is in contact
with a surface, as shown in Fig. 2. We denote with {e}
a frame attached at a kinematically known position of the
end-effector (e.g. center of force/torque sensor) denoted by
pe. We assume that the contact between the tool and the
surface is modeled as a contact point that can slide along
the surface when the end-effector is moving. At the contact
point position pc, we attach a frame {c} with orientation
described by Rc = [nc oc ac], with nc being a unit vector



which is normal to the surface while oc, ac being vectors
that span the flat surface and can be arbitrarily chosen. Let
r be the relative position of {e} and {c} defined as follows:

r = pc − pe (1)

Note that er , R>e r is constant if we assume that the end-
effector is rigidly grasping the tool. Assuming additionally
that only sliding motion is performed i.e. ṗc = ṗe then r
is constant too and the velocity of the end-effector frame is
constrained as follows:

n>c ṗe = 0 (2)

Note that the assumption of pure sliding motion that simpli-
fies the estimation of the surface slope is not necessary for
the main objective of this work which is the contact point
estimation. Differentiating (1) implies that the contact point
velocity is related to the end-effector velocity as follows:

ṗc = Jt

[
ṗe
ωe

]
, with Jt ,

[
I3 −S(r)

]
∈ R3×6 (3)

being the tool Jacobian matrix and ωe being the end-effector
rotational velocity i.e. S(ωe) = ṘeR

>
e . By commanding

zero rotational velocity and assuming only sliding motion,
we can omit the tool Jacobian when mapping the contact
point velocities to the joint space. This means that the first
order inverse kinematics are given by:

q̇ = J+

[
u
03

]
(4)

where u is a commanded end-effector or contact point
velocity control law and J+ is the right pseudo-inverse of
the end-effector Jacobian with J+ , J>(JJ>)−1.

C. Statics

While the end-effector presses with the tool on the surface,
the normal force arising (with magnitude denoted by fn) can
– in case of rigid contact – be regarded as a Lagrange multi-
plier of the controlled system associated to the constraint
(2). While the contact point is moving along the surface
following the motion of the end-effector, tangential forces f t
arise owing to dynamic friction components that depend on
the sliding velocity of the contact point. The total contact
force applied at the contact point is mapped to the end-
effector as a wrench consisting of a force vector f c and a
torque vector τ c:

f c = ncfn + f t, (5)
τ c = r × f c. (6)

The total force fm and torque τm measured by the
force/torque sensor (assuming noise-free measurements, and
no acceleration of the end-effector) is given by:

fm = f c + fg, (7)
τm = r × f c + rg × fg, (8)

where fg is the gravity force acting at the center of mass
of the object and rg is the position of the center of mass
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Fig. 2 : A robot end-effector equipped with a force/torque sensor
on its wrist that is grasping a tool which is in contact with
the surface. Frames are illustrated with red lines. Forces
are depicted with orange. Absolute position vectors with
respect to the base frame {B} are depicted with black
lines. Relative positions with respect to the end-effector
(sensor) frame are depicted with green lines.

with regard to pe. Note that if fg and rg are known, gravity
compensation can be performed by subtracting them from
(7) and (8) to obtain f c and τ c, and thus we can use
(5) and (6) to identify r as proposed in Section IV-A. This
gravity compensation can be achieved either by assuming an
object with known mass and position with respect to the end-
effector, or by considering identification of the gravity effects
fg and rg in a prior free-motion phase where the only force
acting on the object is inertial, and f c = 03. In the latter case,
proper rotation of the object by the end-effector can generate
signals that can be used in the algorithm in Section IV-A to
identify rg to allow compensation for the gravity during the
main contact phase. In case of a lightweight tool, such that
fg � f c, we can assume that the effects of gravity are
within the limits of the measurement errors, and do not need
to be compensated for.

IV. METHODOLOGY

In this section we propose the adaptive laws for estimating
the contact point and the surface orientation as well as
the force/motion control which is based on these estimates.
The overall control scheme effectiveness is theoretically
justified and the formal proofs of the results are given in
the Appendix.

A. Contact Point Estimation

First we design the adaptive law for estimating er assum-
ing that er is piecewise constant or slowly varying compared
to the rate of the estimation. An example of an estimation



rate that can be achieved is demonstrated in Section V. The
estimates can also be used to estimate r , Re

er in the global
frame. The proposed adaptive law utilizes measurements of
forces and torques expressed in the end-effector frame, which
is assumed to coincide with the force/torque sensor frame, as
this can trivially be achieved through known transformations.
The law is given by the following equations:

e ˙̂r = −Γr [Lr(t)
er̂ − cr(t)] (9)

with

L̇r = −βrLr − S(ef )S(ef ) with Lr(0) = O3 (10)
ċr = −βrcr + S(ef )eτ with cr(0) = 03 (11)

where Γr is a positive definite matrix affecting the speed
of convergence, βr is a positive design constant acting as
forgetting factor and ef , eτ are either the measured force
and torque after gravity compensation used to estimate er
during the contact phase, or the measured force and torque
owing to gravity used to estimate the center of mass erg in
the free-motion phase.

Proposition 1: The adaptive estimation law (9)-(11) guar-
antees that:

(i) the torque estimation error, the estimate er̂ and its
derivative are bounded i.e. eτ − eτ̂ , er̂, e ˙̂r ∈ L∞,

(ii) the torque estimation error and and the estimation rate
e ˙̂r are square integrable, i.e. eτ − eτ̂ , e ˙̂r ∈ L2,

(iii) limt→∞
eτ̂ = eτ and limt→∞ ‖ ˙̂r‖ = 0, and

(iv) if S(ef ) is persistently excited (PE) er̂ converges
exponentially to er. By choosing Γr = γrI, with γr
being positive constant, the speed of convergence can
be arbitrarily increased by increasing γr.

The proposed estimator (9)-(11) is an integral adaptive
control law since its design is based on the minimization
of an integral cost function of the error between the actual
and the estimated torque [22]; the proof of the Proposition 1
is following the proof of the integral adaptive control for
identifying the parameters in a multiple inputs-single output
parametric model and is based on the use of a quadratic
Lyapunov function V (er̃) = 1

2
er̃>Γ−1r

er̃.
As is demonstrated in Section V, convergence to the

actual parameters can be achieved by varying the direction
of fe in order to span some surface in the Cartesian space,
which is an identification condition arising from the problem
formulation.

The contact point estimate p̂c can be calculated using
proprioception and the estimate er produced by exploiting
force/torque measurements:

p̂c = pe + Re
er̂ (12)

Note that it is also possible to use the contact point estimation
together with an accurate model of the grasped tool to
determine which of a possible set of points is in contact.
In this case, we can additionally infer the orientation of the
tool given that the grasping point is obtained through tactile
sensing.

The adaptive law can also be used to identify the center
of mass in case of free-space motion. The parameters are
identified exponentially fast given that ef = R>e f is PE.
Note that f = fg is constant and thus the identification is
excited by the rotational motion of the object.

B. Surface Normal Estimation

In order to estimate the surface normal direction we design
the following adaptive law:

˙̂nc = −γnP̄(n̂c)Ln(t)n̂c (13)

L̇n = −βnLn + 1
1+‖ṗe‖2

ṗeṗ
>
e with Ln(0) = O3 (14)

where γn is a positive constant for tuning the speed of
convergence and βn is a positive forgetting factor.

Proposition 2: The adaptive law (13)-(14) guarantees that:

(i) the norm of the estimate n̂c(t) is invariant i.e. given
that ‖n̂c(0)‖ = 1, ‖n̂c(t)‖ = 1,∀t > 0,

(ii) if ϑ(0) ∈ (−π2 ,
π
2 ) then ϑ(t) ∈ (−π2 ,

π
2 ),∀t > 0 where

ϑ is the angle formed between nc and n̂c,
(iii) limt→∞ ‖ ˙̂nc‖ = 0, and
(iv) if ṗe is persistently excited (PE) ϑ converges to zero

exponentially which implies that n̂c converges expo-
nentially to nc with a rate that can be tuned by γn.

The proposed estimator (13)-(14) is an integral adaptive
control – in contrast to those used in our previous work [19],
[20]– with normalized input but here is modified in order
to produce unit and well-defined estimates of the normal
direction as the problem in hand requires. The proof of
Proposition 2 can be found in the Appendix, and is based
on defining the Lyapunov function in the domain of the
estimation error angle ϑ formed between nc and n̂c.

Measurements of the contact force f c alone cannot in
general be used together with (5) to identify the surface
normal if the contribution from the tangential force f t due
to friction is unknown. However, we can use the force
measurements in order to initialize the proposed estimator
when contact is detected i.e. n̂c(0) = f (0)/‖f (0)‖. Given
that the gravity is compensated in f (0), the initial angle
error will be within the cone of friction which implies that
|ϑ(0)| < π/2 and consequently that the estimator is properly
initialized. If there is no rotational motion of the end-effector,
the sliding velocity of the tool-tip on the surface is equal to
the end-effector velocity, and thus the latter can be directly
used to estimate the surface normal direction, independent
of the accuracy of the contact point estimate.

C. Force/motion Control

The control objective is to follow a velocity trajectory
vd(t) and to press upon the surface with a desired force
fd. In this way, we can perform a meaningful task and
simultaneously generate signals ef and ṗe. In particular, the
motion along the surface not only generates ṗe that span the
orthogonal complement of the normal direction required in
(13) but gives rise to tangential forces owing to dynamical
friction that can be added to the normal interaction forces,



see (5), in order to generate an appropriate signal ef to excite
(9) by spanning a surface in the Cartesian space.

The velocity control design is based on decomposing
the motion and force control directions according to hybrid
force/motion control methodology by using however the
estimates n̂c – like the kinematic loop of [20]. The proposed
kinematic controller is given by the following equation:

u = P̄(n̂c)vd − n̂cvf (15)

where vf is a PI control loop of the estimated force error
˜̂
fn = f̂n − fd. Note that the estimated f̂n can be calculated
based on force measurements and the online estimates n̂c.
In particular:

vf = αI

∫ t

0

(f̂n − fd)dτ + αP (f̂n − fd), f̂n = n̂>c f (16)

with αI and αP are positive control gains.
The velocity trajectory vd(t) can be either defined a priori

in a feedforward fashion or designed appropriately by using
feedback of control errors such as end-effector or contact
point position errors. A simple way to define vd(t) is the
following:

vd(t) = ṗd − α(p − pd) (17)

where α is positive control gain and p can be either the end-
effector position or the contact point estimate depending on
the definition of the desired position pd. Note that pd can
be defined as follows:

1) directly and a priori in the robot workspace e.g. by using
vision and mapping a desired trajectory from the image
space to robot space. In this case the feedback control
is designed using the contact point position which is
however based on estimates obtained by (9) i.e. p :=
p̂c.

2) locally at the surface as ξd ∈ R2 and then mapped
online to the robot workspace through a transformation
(pe(0), R̂c). Details on the motivation behind this se-
lection and the construction of R̂c can be found in [20].
In this case the design of vd(t) is based on pe instead of
p̂c. This can be explained by the following observation:
the objective of drawing a circle with center around the
initial contact point is equivalent of drawing a virtual
circle around the end-effector’s initial position.

In more complicated scenarios where both sliding and rolling
motion of the tool take place the estimated contact point
position must be used in vd(t) even when the target is
defined based on local coordinates.

Analysis of the closed loop when u (15)–(17) is applied
(briefly sketched in the Appendix) yields to the following
theorem:

Theorem 1: The control law (15)–(17) applied as a trans-
lational velocity controller to a robot firmly grasping a
tool which is in contact with a flat surface, together with
the adaptive laws (9) and (13) used for estimating the
contact parameters such as contact point position and surface
orientation ensure the boundedness of the contact force and

the velocity along the unconstrained directions as well as
the convergence of the force/motion errors to zero and the
identification of the uncertain parameters given that u and
ef are persistently excited.

V. EXPERIMENTS

Our adaptive control framework for tool and surface
calibration was evaluated with a robot setup consisting of a
7-DOF velocity controlled manipulator controlled at 130 Hz.
The manipulator also includes a wrist mounted ATI Mini45
6-axis force-torque sensor used for the force feedback control
and the contact point estimator.

For more details on the experimental setup, see e.g. [23].
The end-effector velocities used for the estimation of the
surface normal were calculated using joint velocities filtered
through joint position measurements.

Fig. 3 : Experimental setup used for evaluating our adaptive con-
trol scheme for contact point and surface normal estima-
tion.

To perform our experiments we attached a tool rigidly
to the robot’s gripper as shown in Fig. 3. Attaching the
tool rigidly to the end-effector allowed us to have a con-
sistent ground truth with which to compare the controller’s
estimation of the contact point. Furthermore, we tested the
controller over a flat table which was previously calibrated to
obtain the ground truth of the surface normal. A circular tra-
jectory of 4 cm radius and 5 second period was commanded
to the manipulator during the experiment.

Fig. 4 shows the normal force error |f̃n| = |fn−fd| which
indicates that the adaptive controller manages to regulate the
normal contact force.

Fig. 5 and 6 show the estimation errors of the contact
point and the surface normal respectively. The contact point
converges with an error of approximately 5 mm, which, given
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Fig. 4 : Normal force error |f̃n|.
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Fig. 5 : Contact point estimation error.

the 30.8 cm distance from the force-torque sensor to the tool-
tip is within the error margins of the setup. Moreover, the
surface normal estimate converges with an approximately 1.5
degree error with respect to the ground truth normal.

For a set of contact forces that share the same direction
and only vary in magnitude, the contact point estimate p̂c
will converge to a point on a line passing through the actual
contact point pc, parallel to the force direction. As the
direction of contact forces vary, p̂c will converge to the
intersection point of a set of such lines, which will be pc.
In the experimental convergence of p̂c, as seen in Fig. 5,
we see an initial convergence to a point on such a line after
approx 0.1 s, and then, as the direction of the contact force
starts to change as the tool-tip slides on the surface, we see
convergence to the intersection point, or pc. For the setup
in the experiment we see that we have good convergence
for forces that spread over approximately 14 degrees with
respect to the surface normal. For faster convergence with
the same setup, we would need contact forces spanning that
angle variation in shorter time.

VI. CONCLUSIONS

In this paper, we have proposed a method for simultaneous
online estimation of the point of contact of a tool held
by a robot, and the normal of the surface it is interacting
with. The method is based on adaptive estimation and a
hybrid force/motion controller, and uses force and torque
measurements from a wrist-mounted sensor.

The fast convergence of the contact point estimate makes
it suitable for real time tracking of the endpoint of a tool that
may slip and move in the robot’s hand as it is being used for
a task execution. The method also guarantees stable control
of contact forces even before the estimates converge. For
non-contact motion, the method can be used to estimate the
center of mass of the end-effector and/or a grasped object.
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Fig. 6 : Surface normal estimation error.

This enables tool use with unmodelled and/or uncalibrated
tools.

The strength of the method lies in the fact that it uses force
and torque measurements and it is therefore complimentary
to vision based approaches where occluded or bad lighting
conditions make affect the estimation. An interesting future
extension is to combine the proposed method with other
methods for object tracking. One possibility is to combine it
with model based vision methods or tactile sensors to use the
tracked contact point to improve pose tracking of an object.

APPENDIX

Proof of Proposition 2: (i) Note that d
dt

(
‖n̂c‖2

)
=

−γn[P̄(n̂c)n̂c]
>Ln(t)n̂c = 0; thus the norm of the estimate

is invariant and consequently bounded. (ii) Note that (14)
and the constraint (2) implies:

d

dt
(Lnnc) = −βnLnnc

which in turn, for Ln(0) = O3, implies that nc belongs in the
nullspace of Ln. Note also that Ln is positive semidefinite.
Consider the following Lyapunov function:

V (θ) = − ln(cosϑ), V : (−π2 ,
π
2 )→ R (18)

Its time derivative along the systems trajectories (13)-(14) is
given by:

V̇ (θ, t) = −γnñ>c Ln(t)ñc (19)

From (18) and (19) we conclude that V (θ) is bounded which
implies ϑ(t) ∈ (−π2 ,

π
2 ),∀t > 0 for ϑ(0) ∈ (−π2 ,

π
2 ). (iii)

Clearly (i) and (ii) imply that n̂c ∈ L∞. Furthermore, since
1

1+‖ṗe‖2
ṗeṗ

>
e is bounded by construction, (14) implies that

Ln and L̇n are bounded too. By integrating both sides of (19)
in t ∈ [0,∞) and taking into account that V (∞) is bounded
from (ii), we get that L1/2

n ñc ∈ L2. The update law (13) im-
plies: (a) ‖ ˙̂nc‖ ≤ γn‖(L>n )1/2‖‖L1/2

n ñc‖ which implies that
˙̂nc ∈ L∞

⋂
L2 as well as (b) ¨̂nc given the boundedness of ˙̂nc

and L̇n. Clearly (a) and (b) yield limt→∞ ‖ ˙̂nc‖ = 0. (iv) The
PE condition is satisfied given that there exists α0, T0 such
that

∫ t+T0

t
ṗeṗ

>
e dτ ≥ α0I3. Using the integral expression of

Ln =
∫ t
0

exp(−βn(t− τ)) 1
1+‖ṗe‖2

ṗeṗ
>
e dτ implied by (14),

it can be found that Ln(t) ≥ λ exp(−βnT0)I3 given that
the PE condition is satisfied. Then we consider a quadratic
Lyapunov function U = 1

2‖ñc‖
2 which in our case depends



only on the estimation error angle i.e. U = 1− cosϑ. It can
be easily proved that U̇ ≤ −2λγn exp(−βnT0)U

U(t) ≤ exp
(
−2λγne

−βnT0t
)
U(T0) (20)

Note also that 4
π2 ‖ϑ‖2 ≤ U(θ) ≤ 1

2‖ϑ‖
2 and thus (21)

implies that the angle between the actual and the estimated
vector n̂c, converges exponential to zero as follows:

|ϑ(t)| ≤ π
√
2

4 exp
(
−λγne−βnT0t

)
|ϑ(T0)| (21)

Proof of Theorem 1: Let us consider the case of a
bounded input vd. This assumption is valid even when vd
is defined using feedback given that pd, ṗd are bounded
and by considering a bounded robot workspace. Saturation
on the position error can be used in order to construct a
bounded vd. Substituting the control law in to the system
first order differential kinematics (4) we get: ṗe = u. By
projecting the aforementioned equation along the surface
normal we get: vf = 1

cosϑn>c P̄(n̂c)vd. Since n̂c is bounded
and ϑ 6= π/2 from (i) and (ii) of Proposition 2, vf is
bounded. The boundedness of vf implies ṗe is bounded
and additionally that

∫ t
0
(f̂n− fd)dτ , f̂n are bounded. Hence

ef is bounded and thus the update law for er̂ (9)-(11) is
well-defined. The boundedness of pe can be proved by
using the boundedness of the estimates er̂, n̂c and their
derivatives e ˙̂r, ˙̂nc. Ultimate bounds can also be found by
exploiting limt→∞

e ˙̂r = 03, limt→∞ ˙̂nc = 03 (Proposition
1 and 2); analytic derivations are omitted. Given that ef ,
ṗe (or vd) satisfy the PE condition the estimation error
converges to zero exponentially fast and thus vf converges
exponential fast to zero which implies

∫ t
0
(f̂n − fd)dτ → 0

and fn → fd. Furthermore, ṗe → P̄(nc)vd with implies
that P̄(nc)(p − pd)→ 03.
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