Online Kinematics Estimation for Active Human-Robot Manipulation
of Jointly Held Objects

Yiannis Karayiannidis, Christian Smith, Francisco E. Viiia, and Danica Kragic

Abstract— This paper introduces a method for estimating the
constraints imposed by a human agent on a jointly manipulated
object. These estimates can be used to infer knowledge of where
the human is grasping an object, enabling the robot to plan
trajectories for manipulating the object while subject to the
constraints. We describe the method in detail, motivate its va-
lidity theoretically, and demonstrate its use in co-manipulation
tasks with a real robot.

I. INTRODUCTION

There is an increasing interest in letting humans and robots
share the same workspace and perform object manipulation
tasks together. Apart from safety issues, the main enabling
technology necessary to realize this is the design of control
systems that let the robot cooperate smoothly with the
human, working towards the same goal, which may not
be explicitly communicated to the robot before the task
is initiated. The traditional approach is to let the robot be
a passive agent in the interaction while the human agent
controls the motion of the object.

However, when two humans perform an object manipu-
lation task together, the role of leader and follower may
typically alternate between the two agents, depending on task
geometry, load distribution, limited observability, or other
reasons. For human-robot interaction to become as efficient
as human-human interaction, it is natural to assume that the
robot must be able to perform both the active and passive
parts of the interaction, just as a human would. For the robot
to take the active part in the interaction, and to be able
to plan and execute trajectories of the object, it must have
knowledge about the passive agent and what constraints the
human imposes on the object.

The main contribution of the present paper is a method
for estimating hinge-like constraints imposed by a passive
human agent on a jointly manipulated object. These estimates
can be used to infer knowledge of where the human is
grasping an object, enabling the robot to plan trajectories for
manipulating the object while subject to these constraints.
We describe the method in detail, motivate its validity
theoretically, and demonstrate its use in some example co-
manipulation tasks with a real robot, as illustrated in Fig-
ure 1.

The paper has the following structure: Section II reviews
the state of the art in related work, Section III formalizes
the constraint kinematics, Section IV describes the proposed
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Fig. 1 : A robot and a human manipulating a jointly held object.

approach and motivates it theoretically, while Section V
describes the experimental implementation of the method on
real human-robot comanipulation tasks. Finally, conclusions
are presented in Section VI.

II. RELATED WORK

An important problem for physical human-robot interac-
tion (pHRI) is cooperative manipulation of an object jointly
held by both a human and a robot. The earliest works in
human-robot co-manipulation consider the robot mainly as a
passive agent taking care of load compensation while the hu-
man acts as a leader for planning and guiding the cooperative
task. One of the most common approaches has been to use
different types of impedance control. Impedance control has
been proposed with the goal of improving the safety for the
human using variable impedance [1] or impedance based on
human impedance characteristics [2]. Impedance controllers
have also been proposed for co-manipulation with advanced
robot setups consisting of robot manipulators mounted on
mobile platforms [3], [4] or dual arm manipulators [5]. To
enable robots to understand human intention particularly
in case of rotation or translation, impedance control that
imposes virtual non-holonomic constraints to the object or
the combination of impedance control and voice instruction
have been considered [6], [7]. In contrast to these impedance
control based techniques, another approach is to use the
interaction force only to generate the direction of motion,
while the velocity profile is given as a minimum jerk
trajectory [8].



The above approaches only consider robotic assistants
that react to the actions of the human leader, hence their
capabilities are limited. By shifting the role of the robot in
the co-manipulation task towards a more active one, it is
possible to reduce human effort and exploit the advanced
performance capabilities of robots in terms of precision.
Recently, effort sharing policies through a dynamic role
allocation scheme have been proposed to enable the ma-
nipulation of bulky objects [9]. Precise positioning of the
object through human-robot collaboration has been treated
in [10]. Estimating intended human motion has been used
to enable a robot to give proactive assistance to an active
human partner [11]. Human motion estimation has been
used to set the stiffness matrix for impedance control to
achieve proactive robot behavior for an a priori defined role
of the robot. In this framework, confidence measures have
been exploited to enable automatic switching of roles [12].
Other works combine motion learning to allow the robot
to anticipate the human partner’s impedance with adaptive
control to compensate for unmodelled uncertainties in the
human part of the system [13] and understanding of human
behavior when the robot is the leader [14].

The reviewed literature considers the manipulation of
objects that are known to the robot in terms of task-related
geometrical characteristics (kinematic parameters) such as
center of mass, grasping points, pose of the object in hand
(e.g. the human is connected to the object through a handle
with an a priori known position). When the role of robot
is changed and proactive robotic behavior is required, the
human can be considered as a source of uncertainty. This
is particularly true for cases when the collaboration takes
place in domestic environments, where objects may not have
handles and markers for determining the grasping points.
Hence, it is important to design controllers that are able to
handle these uncertainties in the kinematics, since they are
important for mapping the intention of the human typically
expressed through forces to the robot frame.

In the present paper, we propose an adaptive controller
that estimates online the kinematic constraints imposed by
the human. This enables the robot to actively perform
some task on the jointly held object, while adhering to the
human’s constraints. Furthermore, the proposed controller
limits the interaction forces, allowing the human to impose
the constraints without having to exert large forces on the
manipulated object.

III. CONSTRAINTS’ FORMULATION

We consider a setting in which a human and a robot
jointly hold an object. Specifically, we consider the scenario
where the human is acting as a passive revolute joint —
conceptually as part of a more complex interaction scenario
—- which means that the robot can move along a circular
trajectory in the plane in order to rotate the object. This
scenario enables the robot to actively affect the motion of
the object while the human role is more passive. The human
can impose the kinematic constraints on the object in several
possible ways. Not only can the human grasp the object in

an arbitrary position, but for each possible grasp, the virtual
axis of rotation can be adjusted by changing the stiffness of
the wrists, elbows, or shoulders, by rotating the entire body,
or by any combination of these or other actions, all of which
are a priori unknown to the robot.

We assume that the robot has a fixed grasp of the object
i.e. there is no relative rotation and translation between object
and robot. In the following we consider that velocities and
forces are expressed with respect to the frame of the end-
effector {e}; the position and the orientation of {e} with
respect to the base frame {B} (world frame) can easily be
calculated through forward kinematics. We define the frame
{h} which consists of constrained motion axis y, and motion
axis Xy, see Fig 2. The main axes can be parameterized by

the angle ¢ as follows:
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where ¢ denotes the angle formed between each axis of {h}
with the corresponding axis of the end-effector frame {e}
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of {h} with respect to {e}. Let v. € R? and w € R
denote the translational velocity of the robot expressed at the
end-effector frame and the rotational velocity respectively.
Furthermore, let p be the distance between the robot end-
effector and the human virtual joint which corresponds to
the radius of the robot motion.

The human imposes the following constraints to the mo-
tion of the robot:

€ SO(2) describes the orientation

ynv =0, )

v = pw, with v = X;LFV. 3)

Both ¢ and p are constant parameters since i) the human is
passive (no translational velocity), and ii) the robot grasp is
fixed, but they are unknown since they depend on human
intention as well as object geometrical parameters (e.g.
length). Note that the position of the human hinge can be
calculated given the parameters ¢ and p as follows:

Py =0 [ o } 4)
©
Obtaining accurate estimates of ¢ and p is important
during the manipulation as it allows the robot controller to
include feed-forward terms that minimize interaction forces,
which enables smoother and more comfortable interaction.

IV. METHODOLOGY

In this section we propose a control law and formalize the
application problem of leveling a jointly held board.

A. Controller

Let vy be the desired velocity trajectory along the axis of
allowed motion x; and f4, 74 the desired force along the
constraint direction y;, and torque around the rotation axis
which is perpendicular to the plane of the motion. In order
to define robot reference velocities which are consistent with
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Fig. 2 : Kinematics of the human robot interaction task

the constraints imposed by the human the knowledge of ¢
and p is important. If the robot exerts high forces along a
direction in which the human does not want to allow motion,
extra effort will be needed from the human side and hence the
manipulation task becomes more difficult for the human co-
worker. To deal with this problem we propose the following
velocity controllers for the translational and the rotational
velocities:

Vief = &hvd + S’hw(f)7 (5)
Wre = dvg + w(7), (6)

where:

o w(x) = —x — Py fot x(¢)d¢ is a function of propor-
tional and integral action on a control variable z(t) e.g.
force, torque errors with «,, (3, being positive control
gains. In (5) and (6) the argument of w(-) is the force

error along the estimated constrained direction f and
the torque error 7 respectively:

=f—fa with f=y/f (7)
=7 — T4, (8)

where f, 7 are force and torque readings obtained from
a force/torque sensor attached at the end-effector.

o X =[cy —sp) and y, = [sp cy] ' are estimates of
allowed motion and constrained direction respectively
that are inherently unit vectors and they are updated
following the adaptation of ¢ (online estimate of the
parameter ¢):

N

,7’:

¢ = —yvquw(f) ©)

with ~ being positive gain for tuning the estimation rate.
o d is the estimate of the curvature of the cyclic trajectory
ie. d £ - that is updated according to the following

law:
d = vqvaw(7) (10)

with 4 being a positive gain for tuning the estimation
rate.

The force/torque feedback part of the controller (5), (6) can
be regarded as a type of a damping controller — for safe
pHRI — similar to [15] but along the estimated constrained
directions.

The proposed controller is formulated in the end-effector
velocity frame. To be applied to the joint velocity level, the
following first order differential kinematic equation can be
used:

q=Jﬂ®[Vﬂ} (11)

Wref
with q, q € R™ being the joint positions and velocities and
J(q)t =J(q)" [J(q)J(q)T]_1 being the pseudo-inverse
of the geometric Jacobian J(q) € R3*™ expressed at the
end-effector frame which relates the joint velocities q to the
end-effector velocities [vw]T.

A dynamic controller based on the proposed reference
velocities (5), (6) can be designed and applied at the joint
torque level following the steps of our previous work [16].
However, if we assume a high frequency current control loop
with compensation of the external forces and weak inertial
dynamics, the theoretical analysis of this work is valid.
Experimental results of Section V-B support the validity of
the use of control action at the velocity level.

Theorem 1: Consider the system of a velocity controlled
robot manipulator (11) which is rigidly grasping an object
connected to a human imposing the constraints (2), (3). The
proposed controller (5), (6) combined with the parameter
update laws (9), (10) and applied to the system ensures the
identification of the position of the joint p; — p;, as well
as convergence of force and torque errors to zero.

The adaptive controller given by (5), (6), (9), (10) is a
variation of the controller proposed in [17] in case the axis
of rotation for the robot end-effector is a priori known.
A sketched proof of the Theorem can be found in the
Appendix while details for the general case of uncertainties
can be found in [17]. In this work we mainly focus on
experimentally validating that the proposed control method
can be used to identify the position of the “human joint” in
human-robot object co-manipulation. The use of the online
estimates of the constraints imposed by the human can be
used to achieve a specific control objective. An example
described in the following section is the automated leveling
of an object jointly held by a human and a robot.

B. Leveling

Here, we define leveling as aligning the end-effector frame
of the robot with the horizontal axis of the world frame, while
jointly holding an object, see Fig 3.

In early work [4], leveling has been dealt with by con-
trolling the orientation of the robot end-effector so that
the pointing vector becomes parallel with the ground; the
problem is solved by considering that the axis of motion
is known with respect to the end-effector while the inexact
knowledge of the distance between the human and the robot
grasping points can only deteriorate the rate of convergence.
Here we deal with the leveling problem [4] but we consider
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Fig. 3 : Automated leveling is achieved when the robot end-
effector pointing vector is aligned with the horizontal axis
of the inertial frame {B}

that the robot is not aware of the center of rotation, i.e. both
axis of motion and distance are unknown.

In order to solve the leveling problem the velocity con-
troller (5), (6) and the update laws (9), (10) are modified by
considering the following specifications:

1) The gravity and any force exerted by the human along
the vertical axis of the inertial frame will be filtered by
projecting the measured force f,,, along x that denotes
the horizontal axis of the inertial frame (i.e. [1 0]")
expressed at the end-effector frame, i.e. in (7) f =
xx ' f,, is used.

2) The desired torque 74 is set zero. If we consider the
case of symmetric human and robot grasping points
with respect to the center of mass of the object modeled
as a beam, human and robot will share the load.

3) A projection operator that does not affect the conver-
gence and stability properties of d is used on (10) in
order to ensure that d(t) # 0, Y t.

4) The desired velocity used in the feedforward terms of
the controller is replaced by a feedback term based on
the leveling angle ¥ € (—n/2,7/2) shown in Fig. 3
which is the angle between a horizontal line and the
pointing vector, defined as follows:

¥ = arcsin (y;y) (12)

where y is the vertical axis of the inertial frame (i.e.
[01]T) expressed at the end-effector frame.

Instead of calculating the angle ¥, sin ¥ can be alternatively
used in the controller, i.e.:
«

[0 2
Vg = ——=sind = —=y
d

T
(13)
d rhY

where « is a positive control gain that is modulated by d to
enable the system a convergence rate independent of kine-
matic parameters of the task. Particularly, the convergence
of the leveling angle to zero is described by the following

differential equation:

0= — adA sin ¢
Ccﬁd

(14)

which implies that ¥ — 0 since ¢z > 0, d > 0; thus
the leveling objective can be achieved independently of the
learning objective. However the rate of leveling angle con-
vergence depends on the estimation error of the parameters
including also uncertainty in the motion axis, which has not
been considered in [4]. If the signal v; ensures that after
some time instant 7' the estimated parameters values are
close to the actual (g ~ 1, ¢z ~ 1), then the convergence
rate becomes approximately equal to « for ¢ > T in
contrast to [4] that consider constant estimates. One way
to achieve practical parameter convergence without affecting
the stability properties of the closed loop system is to apply
Vg = % for |9 > ¥ for some positive ¥ and to use vy

Vi for |9 < .

sin Yg

given by (13) with o =

V. EXPERIMENTS

The proposed method was verified by implementation on
a dual arm robot. The robot has 7 degrees of freedom (DoF)
Schunk LWA arms that are velocity controllable at the joint
level, and have a 6 DoF force/torque sensor at the wrist.
See [18] for details.

A. Experimental Setup and Scenarios

The performance of the proposed method is demonstrated
and verified in two scenarios. In scenario A, the human
subject is completely passive, and the robot makes small per-
turbations of a jointly held object to estimate the kinematic
constraints imposed on the object by the human agent. In
scenario B, the human agent starts by moving the object, and
the robot estimates the constraints on-line while following
the action initiated by the human.

1) Scenario A - Estimation of Kinematics of Passive
Human: In the first scenario, we demonstrate the capability
of the proposed method to estimate the constraints imposed
by a human on a jointly held object. The human is passively
holding one end of a 95 cm long wooden board, with a mass
of 2.75 kg, and the robot has a fixed grasp of the other end,
see Figure 3. The task for the robot is to actively rotate the
board around the virtual vertical axis imposed by the human
at point py,.

We run two experiments in this scenario. In both of these
experiments, the controller was run using v = 700, v4 =
1000, ay = 0.001, and a, = 0.002.

In experiment 1, the human agent keeps arms fixed and lets
the board rotate around the grasping point (p;,; in Figure 4).
The point p;,; was marked with a visible spot on the board,
at [0 0.81] T in the end-effector frame, and a laser pointer was
fixed to the ceiling and set to point to the spot. The human
subject then tried to keep the spot and laser dot aligned
during the robot’s motion of the board, ensuring knowledge
of the ground truth of the virtual rotational axis. The spot on
the board was kept within 1 cm of the initial point during



the entire motion, and the estimate error e; was calculated
as er = |[Pp1 — Pl

In experiment 2, the human subject fixes the grasp, but
keeps the arms stiff and rotates around the main vertical axis
(ppo in Figure 4). For this experiment, the ground truth for
the virtual axis of rotation is not as well defined as in the first
scenario. Overhead video footage was used to approximate
Po at [0 1.25]7 in the end-effector frame, and the error e
was calculated as ea = ||pa — Ppoll-

Fig. 4 : Scenario A. p,,; and p,, mark the virtual rotational axis
in the two experiments.

2) Scenario B - Kinematic Estimation as a Secondary
Task: In the next scenario — experiment 3 — the human
and robot are grasping the same board as in the previous
scenario, but the robot is given the task of keeping the board
horizontal. The human starts the action by raising the end of
the board approximately 20 cm. As the robot raises the other
end of the board to keep it horizontal, it estimates the position
Py of the virtual rotational axis imposed by the human. A
laser point was projected onto a checkerboard pattern on the
board to help the subject keep the virtual axis of rotation
stable during the leveling motion of the robot, see Figure 5.

Controller settings were slightly different from scenario A,
with 74 = 1500 and o, = 0.006, the higher values making
the controller more responsive to the initial human motion.

B. Experimental Results and Discussion

For experiments 1 and 3, the estimates of the virtual
rotational axis converged to within a few centimeters after
5 cm perturbation by the robot (taking approximately 2
s), see Figure 8. For experiment 2, the estimate initially
converged to within approximately 0.3 m in the same time,
and to within 5 cm after approximately 20 cm perturbation,
or 10 s. The estimates p;; and p;, are plotted in the end-
effector reference frame in Figure 6, and p;5 in Figure 7.
Experiment 3 converges faster than the others, due to the
higher gain settings.

The maximum force exerted by the robot on the human
(via the board) was approximately 20 N for experiments 1

Fig. 5 : Scenario B. p;; marks the virtual rotational axis in the
experiment.

and 3, and 13 N for the second trial, which is less than the
gravitational load the board exerts on the human. After 4 s
had passed and the initial error was mostly eliminated, forces
stay below 6 N for all experiments.
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Fig. 6 : Scenario A. The plot shows the estimated positions P,
and Py,,, in the robot end-effector coordinate frame. Note
that the actual value for p,,, is [0 0.81]7, and [0 1.25]7
for p;,,. The end-effector and the board are drawn in the
image to aid orientation.

Experiments 1 and 3 had a very well defined virtual
rotational axis p;, and the visual aid of the laser pointer
made it easy for the human subject to fix p;; and p;3 in a
static position. This is probably why these estimates show
good convergence. For experiment 2, p;, is much more
difficult to fix for the human subject, so part of the error may
be explained by a less well defined “true” virtual rotational
axis.

The quick convergence from a large initial error (for all
cases) indicates that even when p,, is not well defined, the
proposed method can make a rough estimate after only a
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Fig. 7 : Scenario B. The plot shows the estimated position P,
in the robot end-effector coordinate frame. Note that the
actual value for p;,5 is [0.05 0.75]T. The end-effector and
the board are drawn in the image to aid orientation.

1.6
. €1
+ A €
14T * €3 |]
1.2 1
*
4%, ]
PN
E_|I* A
5 084 & 1
@ PN
* JA

time [s]

Fig. 8 : The estimation errors ey, ez, and es as functions of time.
The initial estimate is similar for all runs, while the true
value of p,, differs, hence the difference in initial error.

small perturbation of the jointly manipulated object has been
performed. The small forces exerted by the robot on the
human show that this rough estimate is enough to produce
robot motion that follows the constraints imposed by the
human.

VI. CONCLUSIONS

Motivated by our recent work for door/drawer opening
[17] we propose a method for estimating the human joint
position in a simple human-robot co-manipulation scenario
in which the human is modeled as a rotational joint. The
robot is controlled by a damping-type force controller for
safe interaction while a feedforward or a feedback term —
in case of a leveling task — drives the robot motion along
the unconstrained directions as they are estimated online.
Experimental results show that the method based on rigid
modeling for robot grasp and external constraints can be

force [N]

time [s]

Fig. 9 : The magnitude of forces exerted in the horizontal plane in
the experiments, as measured by the force/torque sensor
in the robots wrist.

applied to cases where the human can be considered as a
compliant joint. This work is a first step towards applying
adaptive learning control to enhance safety and robot per-
formance in complex human-robot object co-manipulation
scenarios in which human and robot roles, effort sharing
policies and human intention are dynamically changing. For
future work, we plan to expand the treatment to a wider class
of constraints, including those with more degrees of freedom.
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APPENDIX

Proof of Theorem 1: Substituting the control input (5) to
(11), multiplying from left with the Jacobian matrix J(q),
and using the constraint equations (2) and (3) we can derive

relations connecting w(f), and w(7) with the parameter
errors ¢ and d, that can be substituted into the parameter
update laws (9), (10) in order to get the following differential
equations describing the estimation error dynamics:

¢ = —yv3tan @ 15)
d= —yqv2d — yqvidsin @ tan @ (16)
Let V(¢,d) : D — RY, with D = {¢,d € R, || < T} be

a positive definite function given by:

)= € lomteos ) + L1
V(@g,d) = —>1 +—||d 17
(.d) =~ log(cosg) + 5P (17

where £ is a positive constant with £ > d/2. By differentiat-

ing V' (, d) with respect to time along the system trajectories
(15), (16) we get:

- d? d A\ 2
V(@ d) < =(€%=)vgtan” v (2 tan¢+d) (18)



Notice that V < 0 which implies that V(g,d) <
V(¢(0),d(0)) and thus @, d are bounded and addi-
tionally |p(¢)] < /2, Vt, given that |¢(0)] < =/2.

From system and constraint equations we can prove

that w(f) and w(7) are bounded. Furthermore by inte-
grating both sides (18) we get that f0+°° v3(0)@%(¢)d¢,
2

f0+°° v3(¢) (% tan ¢(¢) + ci(()) d¢ and are bounded and

hence ¢,d — 0 when vy satisfies persistent excitation
condition. In the next step Barbalat’s Lemma can be used

in order to prove that w(f), w(7) converge to zero which
implies (given that ¢ — ) that f — f; and 7 — 74.
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