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Abstract

In this paper we describe a method for bridging internet titakays in a free motion type tele-
operation scenario in an unmodeled remote environmentwidéno feedback. The method pro-
posed uses minimum jerk motion models to predict the inmufthe user a time into the future
that is equivalent to the round-trip communication deldye predictions are then used to control
a remote robot. Thus, the operator canfiieet observe the resulting motion of the remote robot
with virtually no time-delay, even in the presence of a dedaythe physical communications
channel. We present results from a visually guided telesipdrline tracing experiment with
100 ms round-trip delays, where we show that the proposetladehakes a significant perfor-
mance improvement for teleoperation with delays corredjpyito intercontinental distances.
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1. Introduction

Teleoperation in robotics has been studied for more thahahegéntury. One typical tele-
operation scenario that has been around since the beginairgists of an operator controlling
a robot manipulator with a joystick at thmaster site, while viewing video feedback from the
remoteslave site. This could for example be the free-motion part of &®legery, hazardous ma-
terial handling, underwater robotics, or rescue robotinanany of these cases, the perception
and reasoning abilities as well as the task related skiltk@human operator are of paramount
importance for successful task completion. The task mapbedmplex for autonomous treat-
ment.

When the distance between master and slave becomes long padeon to the transfer
speeds of control signals, time delays will be present incthvetrol loop. Recently, as packet-
switched networks like the internet are being used for feeation, time delays due to routing
delays may also have a significant impact. These delays eaaignificant factor in designing
telerobotic systems, as they introduce instabilitiessThain either occur directly in the automatic
controller as can be the case for bilateral teleoperatidh force feedback, or indirectly by the
human operator overcompensating for perceived errorsaldelayed responses, giving rise to
operator-induced oscillations [1, 2]. After a while, humaperators typically adapt to this by
decreasing motion speed, or by only moving short distancdgten waiting for the result of a
motion to be seen until moving again, drastically worserthmgperformance as compared to a
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non-delayed setup [3, 4]. Time delays also decrease thatmpsrsense of directly interacting
with the remote environment — what is commonly referred torassparency [5].

Different methods for dealing with this has been one of the mainstes of the field of
teleoperation for several decades. Traditionally, detaywisual feedback systems have been
handled by predictive methods or through increased autgrara. higher level control, where
the necessary degree of autonomy increases with the tirag 17, 8]. Most prediction-based
delay compensation methods relay on predicting the feédfram the remote environment,
which may be dficult to model and predict, especially if the main feedbackvsdeo signal.

It is well known that humans are visually dominated [9], ahdré are clear models that
suggest that much of human actions are feed-forward driathrer than feedback driven [10].
Under such a control regime one would expect that motionrfi@raction is largely prospective,
in particular for dynamic situations. The fundamental dgieesaddressed by the present paper
is: given this knowledge, would it be possible to estimateé predict the motion input by the
user with stficient accuracy to allow it be to used to generate a prediativéon control signal
for the slave device? If one could do this, it would be posstbl compensate for time delays
and decrease the performance losses they cause withongheaypredict the observations of the
remote environment.

This would allow us to approach teleoperation scenariol littte or no explicit knowledge
of the dynamics of the remote site, as all understandingeofégmote environment is handled by
the human operator. In previous work, we have shown thatsbeinput prediction approach is
possible for simple point-to-point reaching motions [12, 13]. In the present paper, we extend
this to continuous motions.

We study the prediction of commands issued by the user uigtgfisant time pressure. The
guestions addressed are:

e What are good estimation models for predicting the futuijedtary specified by the user?
e How can these models be integrated into the control system?
e What kind of performance can be achieved with a real system?

The paper is organized as follows: In Section 2 we describgtinciples of our proposed
method of user input prediction. Section 3 describes anémphtation using superimposed
minimum jerk polynomials to approximate human motion. ¥ec#t describes an experiment
where we let 12 subjects perform a line-tracing task witHexdédotic system, where we compare
the results with and without a 100 ms round-trip time delayd avith and without the input
prediction system. Finally, Sections 5 and 6 present thelasions and future work.

2. Proposed Method

Time-delayed teleoperation is a well-studied problem. &arore complete survey, see for
example [14, 7, 8]. We here mention some main approacheshé#vat been used for setups
with visual feedback. Wittiask level or supervisory control, the operator performs higher level
control, such as e.g. task selection, while low-level aang.g. obstacle avoidance, is performed
autonomously at the remote site [15, 16, 17, 18, 19, 20, 21, @Qther systems use ftierent
kinds of predictive or simulated displays to present the operator with a real-time simutatid
the remote site alongside the delayed feedback [23, 2482%2,72. A variant is thenidden robot
concept, where the remote robot is not displayed to the tpelaut only the remote environment
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Figure 1: Teleoperation control structure with predictido bridge time delay. In the present papeiis position
commands ang is visual feedback.

itself, which can be “felt” via haptic feedback to the useB][2 A special case of simulated
display isteleprogramming, where the task is first performed in simulation until a $at®ry
performance has been recorded, and replayed at the ren®{@%]. Recenimodel-mediated
methods simulate the remote environment locally for highdwidth interaction, and use sensor
data from the remote site to estimate and update model psees1jg0].

However, neither of these methods will be adequate if thesoreanents from the remote site
are dificult to model and predict (for example an uncalibrated visigoal), the task is too novel
or difficult for autonomous treatment, and we still want good trarepcy for very fast motions,
at the limit of the operator’s cognitive performance.

Several published methods usdfelient ways to predict the remote site, or put in control
terms, one substitutes the unavailable future measurenveittt the predictory” A schematic of
this is shown in Figure 1(a).

We propose a dierent control structure. Instead of handling the roungl-delay by pre-
dicting the remote state with a simulation, the delay hargdis moved to a model-based input
predictor that predicts the operator's motions. The ppaktstructure for this approach is shown
in Figure 1(b). Predicting the operator’s input over the-eray delay, and predicting the feed-
back from the remote site over the one-way return trip debs/lieen proposed previously, both
with model-free prediction [31] and model-based predic{@2]. Handling the entire round-trip
delay by predicting the operator’s input is a novel apprdadhe best knowledge of the authors.

With this approach, video, audio, or other data from the tensite that may be fficult
to predict, can be displayed as is, and there is no need foelmad the remote site. Video
feedback based control can therefore be performed with @m@awith an unknown position in
relation to the remote robot and task, as long as the cameressin adequate view of the task
space, enabling a human operator to interpret and react &ctmne.
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3. Implementation

In this section, we present a method to include a simulatfoth@ operator’s input in the
control loop. This requires a model of the user’s input tle#tes previous and present inputs to
future ones, and a method to incorporate the predictioms fhee model into a control system.

3.1. Motion Models

A well-known model for explaining the kinematics of visyajuided human reaching mo-
tions is theminimum jerk (MJ) model. It was first proposed for single-joint motion§33], and
later extended to include multi-joint planar motion in [3#Jwas observed that the trajectory of
voluntary arm motions, when described in extra-corporeaté&sian space, follow certain con-
straints. The trajectories can be described by using a nthdeminimizesC, defined as the
integral over time of the square sum of the third derivatif/pasition, jerk (y), for the duration
of the motion (fromty to t;), see Equation 1 [33].

C= [yt (1)

l.e, given a starting point, an end point and a time to movevben the two, the trajectory
that minimizes the jerk on this interval is the MJ trajectdrigure 2(a) shows an MJ trajectory
that has been fit to a measured human input signal from aniegrin [12].

More recently, other, more detailed models like minimunnjdorque change, minimum
force, or minimum energy have been proposed and shown teibesziman motions more ac-
curately [38, 35, 39]. However, the more detailed modelsirecdetailed knowledge of posture
and intrinsic mechanical parameters of the human subjecgnpeters that are not observable
when using a hand-held joystick-type device for motion ing@n the other hand, the MJ model
can be completely described in Cartesian space coordindtiesio explicit knowledge of the
subject’s intrinsic mechanical properties, and is thussiiids to implement with only the data
from a joystick-type input device. Furthermore, when a eabjs using a small input device
with low inertia, it is reasonable to assume that no extefioraes other than gravity act on the
user, and that posture does not change significantly dunegniotion. In this case, it has been
shown that trajectories predicted by the MJ model do ndedsignificantly from ones predicted
by the more advanced models [38].

All MJ trajectories share the property that the 6th derixats zero for the duration of the
motion, and that they thus can be described as 5th degreegmoigisxy ;(t), as in Equation 2.

xma(t) = bst® + bgt* + bst® + bot? + bat + by,  to<t<ty 2)

If we also add the start and end points of the motix{ty) andx(t;), and state the position,
velocity, and acceleration at these points, we get theviatig constraints on Equation 2.

>_<MJ(to) = Xo, >_<MJ(t1) =X
Xmia(to) = Xo, Xma(t) = X
Xmi(to) = Xo, Xma(ty) = %

The above constraints will give us 6 equations, and we getladeéned system to find the 6
parameter$y . .. bs. Thus, there is only one possible MJ trajectory for a givantstnd end, and
it can be found by solving a simple system of linear equatiéis the general case, the velocity
and acceleration are zero at the start and end poigits, X; = X = X3 = 0. Using this, along
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with the definition ofxg, we get 5 equations, and we can rewrite the equation as aduaraftbs
andxo:

xmat) = Xo+ bs [t = 5(to + t)t* + §(ta? + Ayto + to2)t3-
5(tyto? — t1%to)t? + 5t’t; 2t— (3)
%toS + %to4t1 - gtogtlz]

Where the remaining constants are related as:

by = —3(to + ta)bs

bs = 3(t3+t2 + 4tot;)bs

bz = —5(t(2)t1 + tot%)bs

by = —5b5tg - 4b4t8 - 3b3t§ — 2boty

bo = Xpo— (bstg + bAtS + bgtg + bzt(z) + b]_to)

It has been shown [33] that if the motion start$eat 0, Equation 3 can be written as

xua(t) = o+ (xa — %0) (6(4)° - 15()* + 10(4)%) @)
whered = (t; — tp) is the duration of the motion. If we relieve the assumptiuatt, = 0, we
get

xma(t) = X0+ (xa — %) (6(52)° — 15(52)* + 10(52)°) (5)

Thus, the entire trajectory is defined completely by thetisigpoint Xy, the end poink;, and
the start and end timdg andt;. For 3-dimensional motion, each dimension of the motioreis d
scribed by such a polynomial, where the fiméents for the dferent dimensions are independent
from one another, bup andt; are the same [38].

The trajectories described by this simple MJ model are déchito one single MJ motion,
which is a straight line of finite length. If a more complex moatis desired, or if the target of
the motion is changed in mid-motion, the trajectory can tszdbed by superpositioning several
MJ trajectories. If the added MJ trajectory has an initiadipon, velocity, and acceleration of
zero, this will still result in a continuous motion where i derivative is zero, so the jerk is
still minimized. For motions of this type, a common trait &t the tangential velocity tends
to be lower as the radius of curvature decreases. Compounudfidns have been described
thoroughly in [40, 41, 42, 43]. In the motor control systenhafmans, a new submovement can
be generated as often as once every 100 ms [44]. Figure ghjsdhree such MJ trajectories
superimposed to fit a human input signal from an experimejitdp

MJ trajectories have been used extensively in the past tergenhuman-like motions for
robots [45, 46, 43, 47, 48, 49, 50]. Recently, work has alemlpgerformed that fits MJ trajecto-
ries to user inputs in teleoperation, using environmentkedge to generate MJ-shaped virtual
fixtures [51]. Also, MJ type trajectories have been used tonade current operator input for
generating force commands for admittance control [52].

3.2. Human Input Estimation
We fit the input data to an MJ model using least squares. Thatires polynomial is then
extrapolated to obtain a prediction. This prediction isntlracked with a Kalman filter. The
details are described below. The methods for detecting #imtjfto MJ submotions have been
described earlierin [11, 12, 13].
5
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Figure 2: MJ trajectories fit to observed hand motion data.

3.2.1. Detecting the MJ Submotion

The first step is detecting an MJ submotion, finding its stadt @nd times and determining
the magnitude. It is impossible to detect the start of a nmotiefore it occurs, but the point in
time at which the motion ends can to be found before it can semkd. Using Equation 5,
we see that if the start of a motion is known, but not the enelettare two unknowns — the
time and position at which the motion ends. Thus, in thedryy® points on the trajectory are
known, the system of equations can be solved to find these mkoawns and thereby specify
the entire motion exactly. Since this involves solving a&gree polynomial, the solution will
be very sensitive to measurement error, especially in the domain. However, if the start and
end times are known, extrapolations that fit well with obedrdata are possible.

A robust way to detect the start timg and the end timé; is proposed in the following.
Since the motion itself is expected to follow a 5th degree/poinial curve, the velocity profile
is expected to follow a 4th degree polynomial curve thatstand ends at zero value, with zero
first derivative. Such a curve is symmetric around the apexpiic analysis of recorded motion
data shows that by using an extended Kalman filter (EKF), tietpf maximum velocity,,
is easy to detect. A threshold value requires the peak \gltxibe above a certain magnitude
to be registered. Using a least square approach, the 4tkaleglocity profile can be fit around
this peak, fitting only to data before the peak, see Fig 3. Bneszof the polynomial found with
this approach are used as candidates for the start and ehd pfdtion, and used when fitting
the motion data to an MJ trajectory.

A weakness in this approach is that half of the motion has wserved before a prediction
can be made. In order to facilitate earlier predictions,EKé& observer can be used to predict
whent,_. will be reached. This involves estimating higher derivesivand is prone to high
uncertainties in the presence of observation noise. Intipeathis means that a stable estimate
of t, .. can be achieved after approximately one third of the mofiére implementation used in
the experiments described later in this paper therefors ag, predicted from the EKF until

6



141
Measured trajectory
1.2F == Remaining trajectory .,
- = = Fit MJ velocity profile S
1t v
@) '
E \".
Z208f '
8 1
[} 1,
> Vi
= 061 (9
= A
S \
S 04 \
= \
'
0.2 )
\
\
A
0 ~
-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

Time [s]

Figure 3: 4th degree MJ velocity profile fitted to Kalman fil@kelocity data. The solid line is the data used for fitting,
the dotted lined is the (unused) remainder of the measureditigland the dashed line represents the fit MJ velocity
profile.

tv.., IS reached, after which the algorithm switches to using tiseoved value.

When the peak velocity has been passed, at times t,__, the polynomial is subtracted
from all incoming velocity measurements up to titaeand the algorithm tries to find the next
velocity peak.

3.2.2. Fitting an MJ Submotion to Data

Whenty andt; are known, along with the start positiog of the motion, Equation 3 only
contains one unknowig. By fitting to the latest measured data points with a leashssgfitter,
robust trajectory prediction for timter 7 is possible by calculatingy ;(t + 7). For values where
(t + T) > t1, we |etXMJ(t + T) = XMJ(tl).

3.2.3. Tracking the Predictions

The predictions achieved this way are tracked by an exteKdédan filter. In the following
treatment, we apply the same definitions and terminology aktW[53]. We define the filter
stateX as

X = {X,Y,V,0,V}, (6)

wherex andy are the Cartesian position coordinatess the tangential velocityd is the
direction of motion, ands is the tangential acceleration. The motivation for thisapakpre-
sentation of velocity is that MJ trajectories are defined thydegree polynomials in tangential
velocity, making the implementation more straightforward

In this case, we assume that the direction of motion remanebanged for each MJ sub-
motion, so that the observatiagi,; will be the value of the MJ polynomial added to the last
measured position in the direction of motion:
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X(t = 7) + (Xma(t) — Xma(t - 7)) - cosg)

y(t = 7) + (Xma(t) = Xma(t = 7)) - sin@) )
Xma(t)
Xma(t)

wherexy; andXy; are the first and second derivativesxgf; with respect to time.
The observation matriklyj is then

Zyy(t) =

0
0
0 (®)

Hmy =

[cNeNeN
[cNeN e
OmFr OO
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1

For cases when there are no MJ predictions available, iteedteginning of an MJ submo-
tion, or during motions too slow to trigger the thresholdweafor the MJ detector, an ordinary
EKF extrapolation from the (delayed) measured positioa tkatised as observation. Given the
delayed measuremerity:

V.1 X(t—1)+wy
Yd,2 y(t—1) + W,
Yd,3 X(t - 1) +ws
Yq(t) = ’ =1 . 9
a(®) Yd.4 Yt —7) +wy ©
Yd,5 X(t—17) +ws
V.6 Yt —7) +we

wherew; is measurement noise, we model the observaiign: as:

Va1 + YaaT + Yas72/2
Va2 + YaaT + YaeT2/2

Z t) = 10
exe (1) Va3 + Yas7)? + (Yaa + Yae7)? (10)
tan((Ya.s + Ya.67)/(Ya3 + Ya57))
The observation matriklgx is then:

1 00 00O

01 000
Hekr = 00100 (11)

0 00 10

4. Evaluation Experiments

A prototype teleoperated drawing task was designed, antlp s&s constructed so that an
operator could control the robot with video feedback thioatpitrary time-delays.
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Figure 4: The tracks used in the tracing task.

4.1. Task Description

The users try to trace a path as fast as possible on a papea péth, using a robot controlled
though a joystick-type interface. The task is significamtigre dificult if a small time delay is
added. A small pilot study showed that the task completime tincreased by 40 to 50% with as
little as 100 ms round-trip delay.

The path the subjects were given to trace contains a mixfusgaghts, sharp corners, and
curves of varying radius. Fourfiigrent tracks were constructed by mirroring the first traackuab
the horizontal or vertical axis, see Figure 4. The trackgafmed by an inner and an outer line,
and the task is to draw a trace between these boundaries.

4.2. Robot Platform

The robot used in this experiment is a fast lightweight malaifor with six degrees of free-
dom, see Figure 5. The robot can reach any point in the 3& @@ cm (A3) workspace within
300 ms with the settings used in this experiment. The robes @ascombination of PID and
computed torque control (CTC) to track setpoints with camebidefinitions in both position and
velocity space, and is thoroughly described in earlier Wb#4.

The end &ector used in this experiment is a permanent marker pen redimia short PVC
pipe. The drawing area is a sheet of A3 paper fixed to a 5 mm alumisheet suspended by
taught springs. In this setup, only two degrees of freedarcantrollable by the operator: the
Cartesiarx andy dimensions of the tip of the pen in the plane of the paper.

The network interface of the robot is set so that all inconibgimands are delayed for a
preset time before being relayed to the robot controlleris Pheset time delay can easily be
changed between experiments.



Figure 5: The manipulator with pen and drawing surface.

4.3. User Interface

The user interface (shown in Figure 6) used for the experim@msists of a video feed and a
position input device.

The video is obtained with an inexpensive USB camera with %64@0 resolution and a
framerate of 15 fps, which was mounted to point towards tlaevilrg area. The unprocessed
video image of the drawing surface is then shown on a 19-inchitor.

An Omega haptic unit from Force Dimension serves as inputmblefor user hand motion.
This device provides a large workspace, as well as higimess and force output. Itis sampled at
2.2 kHz. Force feedback is used to define the limits of the gjmake, so that drawing is possible
on the entire 2 dimensional surface of the paper, but notdait&ravity, friction, and inertia are
canceled by the controller, so that within the boundariesetdorces act on the operator.

4.4. Proof of Concept

In an initial proof of concept, the task was performed withtme delays, and all inputs
were recorded. The proposed model was then appliéide®to the measured inputs. For com-
parison, we also applied a predictor using the same EKFitvgdbut no MJ predictions, just
the extrapolations from measured data. This is a near-appiredictor without human motion
models.

We observe that the MJ prediction errors are smaller tharetters caused by the delay,
or the errors we get by applying the EKF predictor based pualinput measurements, See
Table 1. The errors were measured at points were a valid Miigtien was available. As
described in 3.2, a valid prediction is available a@mf the submotion has been observed. With
a time delayr, this means that it is available at tinge+ %d + 7, and will remain valid until it
is possible for a new submotion to dominate the trajectohjictv according to empiric study
of operator input was determined to be approximately 200 fites the peak of the current MJ
submotion.
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Figure 6: User interface hardware, with video display of reersite and input device.

Table 1: Comparison of mean errors of the MJ model and pure EKdigtiens.

Delayed signall Non-MJ EKF | MJ Predictor
Mean error| 12.1 mm 3.7mm 2.9 mm
errorE;

In the proof of concept trial, track 1 was circled 7 times,hocibckwise and counter clock-
wise, for a duration of 100 seconds. During this time a tofa81¥ distinct MJ motions were
detected by the system.

The error measuremeh; for each predictor functio®; was defined as follows:

E = ) IXM) - PRI (12)
k=1

WhereX(t) is the true input signal at time with position given in millimeters, antl, k =
{1...n} are all time points where a valid MJ prediction exists. Inesrth quantify the error that

was caused by the delayed signal without a predictor, agadinction defined as the position
at the timet — 7 was used:

Pdday(t) = X(t-1) (13)
wherer is the round-trip time delay, in this case 100 ms.

In terms of average error magnitude, the delayed signal hawerage error of 12.1 mm,
the signal from the non-MJ EKF 3.7 mm, and the signal from thkegvedictor 2.9 mm. For
comparison, it can be noted that the average width of thé& ia23 mm allowing an 11.5 mm
error margin from the center of the track.

The magnitude of the average error for the pure EKF appraa@7% larger than that of
the MJ approach. This may not be very large, but there isfardince in the quality of the
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error. Figure 7 shows both predictions as compared to tHesigrzal and the delayed signal of
the x coordinate. With the MJ curves there is only a small amourdsaillations as the input

slows down after a period of higher velocity. This is where ofthe strengths of the MJ-based
prediction is shown as it enforces an MJ trajectory, whichcbgistruction does not oscillate.
In this particular setup, this is an important property, aghhrequency oscillations may be
reproduced at lower frequencies but with higher amplitusiethe manipulator controller.

Note that while Figure 7 shows two entire superimposed MJnations, in online usage,
due to the time dely, only the later part of each submotionldibe available as a prediction. In
the figure, the arrows pointing from the left show where eaeldigtion would become available,
and the arrows from the right show where the prediction wtndde validity as a new submotion
could possible become dominant. Since the MJ trajectorisis taacked with a Kalman filter,
the influence of the MJ prediction remains for some time dftisrpoint.
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Actual Input
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0.0441 Delayed Input

— MJ Curves
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Figure 7: A comparison between MJ curves and pure EKF predictThe MJ trajectory in the plot contains two sub-
motions. The arrows pointing from the left show where eachratton would become available to an online prediction
system, the arrows pointing from the right show where eactiigtion would loose validity, as it would be possible for
a new submotion to dominate the trajectory.

An example of the final result of the compound predictionngd¥J predictions when these
are available, and simple EKF type extrapolation from tHeyksl signal when no MJ predictions
are available is shown in Figure 8. This plot showsxteordinate as Track 4 is traced one lap
clockwise. The transients caused by switching predict@edding on the availability of MJ
predictions arefectively damped out by the system and are not noticeablestofibrator.

4.5. Experimental Procedure

For evaluation purposes, experiments were carried outexdwdjects were asked to trace the
path clockwise. First 10 laps for practice, then 10 laps W& recorded. This was repeated 3
times, with a diferent setting each time. Possible settings were:

A No communication delays added, no predictions. This iscihr@rol case that the other
settings are compared to.
12
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Figure 8: Example performance of prediction.

B 100 ms round-trip time delay added, no predictions. Thieda used to determine the
effects of delays on the completion time of this particular task

C 100 ms round-trip time delay added, input prediction systetive. This case is used to
determine how well the predictions can cancel the negaffeets of the time delay.

The order in which the three settings were presented to thiess was permuted between
subjects to cancel out overall learninfieets. The subjects were told that “thredf@lient set-
tings” would be evaluated, but not what those settings wé&lrey were asked to trace as fast
as they could without making mistakes. A total of 12 subjease used. The subjects were all
male, ages 23-31, and did not have prior experience withxperenental setup.

We measure “Objective telepresence”, as defined in [55F ift@ans that the task completion
time is used as the performance measure. Of the measuredhedimes for successful trials are
included in the analysis. Results for subjects who did notsssfully complete at least 5 laps
with each setting was not considered. Success is defined desazing outside the borders of the
track during the lap. For this type of task, there exists &etiant trade-4b between minimizing
errors and completion time. By excluding results from tngth errors, the remaining data
should have a lower variation in how this trad&-e balanced.

It should be noted that even in setting A, with no added comaation delay, there are some
inherent delays in the system. The time needed to process dapa and calculate predictions
is less than one millisecond, but the robot processes counsratn 00 Hz, giving the “current”
command a delay that varies from 0 to 10 ms. Similarily, tleewidisplay is updated at 15 Hz,
so that the image being displayed will have a varying dela§-&f7 ms, plus the overhead for
image acquisition and processing. None of these delaystveaied in any special way, but were
added to the total delay of the system for all three settings.

4.6. Results

For all subjects but one, the median completion time was daresetting C, with the pre-
dictor, than for setting B. One subject even performed tithas where better than the control
setting A, See Figure 9. This is possibly thféeet of some overall learning, with subjects per-
forming relatively better on the last setting they were prged with. A small overall trend for
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Figure 9: Task completion times for the 12 subjects. The plotwshmedian completion times and 90% confidence
intervals. Note that subjects 5 and 9 did not complete the fmsketup B, and are not included when calculating
statistics.

improvement over time was observed. When corrected fonggtifferences, the subjects were
on average 2% faster on the second trial, and 6% faster othitite fThe average completion
time was 12.86 s for setup A, 19.3% longer for setup C and 4000%er for setup B. Perform-
ing a Student’s T-test on the results, and setting the sggmitie level to 0.05, we find that the
performance with setup A is significantly better than thddsoth setup B (withp = 1.83-10712)

and setup C (witlp = 3.54- 10°%). The performance with setup C was significantly better than
that of setup B (withp = 0.000187).

Two subjects, 5 and 9, were only able to complete one suaddapfwith setting B, and are
therefore excluded from these results. All others were @bt®mplete at least 5 successful laps
with each setting. Comments from several subjects stastditt main dficulties they perceived
with settings B and C were oscillations, most subjects didemplicitly notice that there was a
time delay.

5. Conclusions

In the present paper, we have described a method that uskstjmnes of user input to cancel
the negative #ects of time delays on free-motion teleoperation. The expantal results show
that this is a valid approach, as the performance was signific better when compared to a
control case with the same delay but no predictive systene. rii&in strength of this approach
is that we only need a model of the master side of the teleiobgstem, while the slave side
can be left completely unmodeled. This means that once we @i@signed the master system,
we can deploy a slave system in novel environments to perfawel tasks without the need
for recalibration or redesign of the control system. Fumi@e, once the predictive system is
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calibrated for the master system, the slave system can kscegpwithout having to recalibrate
the predictive system, as long as the new slave system woitkeisame coordinate space and
does not significantly dlier in performance. This also allows for easy-to-deploy rensensors,
such as arbitrarily positioned uncalibrated cameras.

In the implementation presented here, the prediction sys&dies on MJ models, but any
model that sfficiently well describes human motion could conceivably bedus

6. Limitationsand Future Work

One strength of using the relatively simple MJ model for jaré#lg human input is that since
we do not use any knowledge of the particular task being paed, it should generalize to most
possible vision guided tasks.

However, there are several limits to this approach. Theififstat since new MJ submotions
can be generated as often as every 100 ms, it is not realistiake predictions much further
into the future than this, as there is a real possibility thatoperator will be moving along a
trajectory that we have not yet detected. A 100 ms rounddilpy is comparable to the internet
round-trip delay between Stockholm, Sweden and New Yorl, CISA. However, when using
the Internet, time delays can behave stochastically, dangethat would have to be considered
and dealt with in an implementation over an internet coriaact

A potential use of this approach even in the presence of lodgkys, is where we have
a plausible model for predicting the feedback from the remmtvironment as in traditional
model-based control, but where non-linearities or unmedielents make it fficult to predict
over as long time delays as we would need. It is possible thabmbination with the input
predictor model described in the present paper, one coulcessfully predict both input and
measurements, and thus bridge larger time delays than whkeprgdicting one of the two. How
this could be done remains to be studied.

Another limit is that the MJ model assumes free motion. I&iagtions do not hold under
the presence of outer forces, e.g. contact forces. Thexdftus approach is not applicable with-
out modification for tasks that require haptic interactiathwthe remote environment. However,
as shown in Section 4.4, even without the MJ predictionsra BiKF predictor has similar mag-
nitude of tracking errors. It remains as future work to exaariiow this type of approach can
be extended to tasks that include contact. It is possiblehttarid approaches, utilizing parts of
this approach and parts of traditional delay-handling epgines may be the solution. One could
conceive of using simple remote autonomy to avoid unwantdions. If an operator’s typical
reaction to contact forces is known, it could be possibletmiporate this in a predictor at the
remote site.

Finally, there this is yet no treatment of stability issuesthe MJ prediction approach. Al-
though empirical trials have not shown any unstable belhagimore rigorous analysis remains
to be done.
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