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Abstract

In this paper we describe a method for bridging internet timedelays in a free motion type tele-
operation scenario in an unmodeled remote environment withvideo feedback. The method pro-
posed uses minimum jerk motion models to predict the input from the user a time into the future
that is equivalent to the round-trip communication delay. The predictions are then used to control
a remote robot. Thus, the operator can in effect observe the resulting motion of the remote robot
with virtually no time-delay, even in the presence of a delayon the physical communications
channel. We present results from a visually guided teleoperated line tracing experiment with
100 ms round-trip delays, where we show that the proposed method makes a significant perfor-
mance improvement for teleoperation with delays corresponding to intercontinental distances.
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1. Introduction

Teleoperation in robotics has been studied for more than half a century. One typical tele-
operation scenario that has been around since the beginningconsists of an operator controlling
a robot manipulator with a joystick at themaster site, while viewing video feedback from the
remoteslave site. This could for example be the free-motion part of tele-surgery, hazardous ma-
terial handling, underwater robotics, or rescue robotics.In many of these cases, the perception
and reasoning abilities as well as the task related skills ofthe human operator are of paramount
importance for successful task completion. The task may be too complex for autonomous treat-
ment.

When the distance between master and slave becomes long in comparison to the transfer
speeds of control signals, time delays will be present in thecontrol loop. Recently, as packet-
switched networks like the internet are being used for teleoperation, time delays due to routing
delays may also have a significant impact. These delays become a significant factor in designing
telerobotic systems, as they introduce instabilities. This can either occur directly in the automatic
controller as can be the case for bilateral teleoperation with force feedback, or indirectly by the
human operator overcompensating for perceived errors due to delayed responses, giving rise to
operator-induced oscillations [1, 2]. After a while, humanoperators typically adapt to this by
decreasing motion speed, or by only moving short distances and then waiting for the result of a
motion to be seen until moving again, drastically worseningthe performance as compared to a
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non-delayed setup [3, 4]. Time delays also decrease the operator’s sense of directly interacting
with the remote environment — what is commonly referred to astransparency [5].

Different methods for dealing with this has been one of the main focuses of the field of
teleoperation for several decades. Traditionally, delayson visual feedback systems have been
handled by predictive methods or through increased autonomy - i.e. higher level control, where
the necessary degree of autonomy increases with the time delay [6, 7, 8]. Most prediction-based
delay compensation methods relay on predicting the feedback from the remote environment,
which may be difficult to model and predict, especially if the main feedback isa video signal.

It is well known that humans are visually dominated [9], and there are clear models that
suggest that much of human actions are feed-forward driven rather than feedback driven [10].
Under such a control regime one would expect that motion for interaction is largely prospective,
in particular for dynamic situations. The fundamental question addressed by the present paper
is: given this knowledge, would it be possible to estimate and predict the motion input by the
user with sufficient accuracy to allow it be to used to generate a predictivemotion control signal
for the slave device? If one could do this, it would be possible to compensate for time delays
and decrease the performance losses they cause without having to predict the observations of the
remote environment.

This would allow us to approach teleoperation scenarios with little or no explicit knowledge
of the dynamics of the remote site, as all understanding of the remote environment is handled by
the human operator. In previous work, we have shown that the user input prediction approach is
possible for simple point-to-point reaching motions [11, 12, 13]. In the present paper, we extend
this to continuous motions.

We study the prediction of commands issued by the user under significant time pressure. The
questions addressed are:

• What are good estimation models for predicting the future trajectory specified by the user?

• How can these models be integrated into the control system?

• What kind of performance can be achieved with a real system?

The paper is organized as follows: In Section 2 we describe the principles of our proposed
method of user input prediction. Section 3 describes an implementation using superimposed
minimum jerk polynomials to approximate human motion. Section 4 describes an experiment
where we let 12 subjects perform a line-tracing task with a telerobotic system, where we compare
the results with and without a 100 ms round-trip time delay, and with and without the input
prediction system. Finally, Sections 5 and 6 present the conclusions and future work.

2. Proposed Method

Time-delayed teleoperation is a well-studied problem. Fora more complete survey, see for
example [14, 7, 8]. We here mention some main approaches thathave been used for setups
with visual feedback. Withtask level or supervisory control, the operator performs higher level
control, such as e.g. task selection, while low-level control, e.g. obstacle avoidance, is performed
autonomously at the remote site [15, 16, 17, 18, 19, 20, 21, 22]. Other systems use different
kinds of predictive or simulated displays to present the operator with a real-time simulation of
the remote site alongside the delayed feedback [23, 24, 25, 26, 27]. A variant is thehidden robot
concept, where the remote robot is not displayed to the operator, but only the remote environment
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Figure 1: Teleoperation control structure with predictions to bridge time delay. In the present paper,u is position
commands andy is visual feedback.

itself, which can be “felt” via haptic feedback to the user [28]. A special case of simulated
display isteleprogramming, where the task is first performed in simulation until a satisfactory
performance has been recorded, and replayed at the remote site [29]. Recentmodel-mediated
methods simulate the remote environment locally for high-bandwidth interaction, and use sensor
data from the remote site to estimate and update model parameters [30].

However, neither of these methods will be adequate if the measurements from the remote site
are difficult to model and predict (for example an uncalibrated videosignal), the task is too novel
or difficult for autonomous treatment, and we still want good transparency for very fast motions,
at the limit of the operator’s cognitive performance.

Several published methods use different ways to predict the remote site, or put in control
terms, one substitutes the unavailable future measurementy with the predictor ˆy. A schematic of
this is shown in Figure 1(a).

We propose a different control structure. Instead of handling the round-trip delay by pre-
dicting the remote state with a simulation, the delay handling is moved to a model-based input
predictor that predicts the operator’s motions. The principal structure for this approach is shown
in Figure 1(b). Predicting the operator’s input over the one-way delay, and predicting the feed-
back from the remote site over the one-way return trip delay has been proposed previously, both
with model-free prediction [31] and model-based prediction [32]. Handling the entire round-trip
delay by predicting the operator’s input is a novel approachto the best knowledge of the authors.

With this approach, video, audio, or other data from the remote site that may be difficult
to predict, can be displayed as is, and there is no need for models of the remote site. Video
feedback based control can therefore be performed with a camera with an unknown position in
relation to the remote robot and task, as long as the camera shows an adequate view of the task
space, enabling a human operator to interpret and react to the scene.
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3. Implementation

In this section, we present a method to include a simulation of the operator’s input in the
control loop. This requires a model of the user’s input that relates previous and present inputs to
future ones, and a method to incorporate the predictions from the model into a control system.

3.1. Motion Models

A well-known model for explaining the kinematics of visually guided human reaching mo-
tions is theminimum jerk (MJ) model. It was first proposed for single-joint motions in[33], and
later extended to include multi-joint planar motion in [34]. It was observed that the trajectory of
voluntary arm motions, when described in extra-corporeal Cartesian space, follow certain con-
straints. The trajectories can be described by using a modelthat minimizesC, defined as the
integral over time of the square sum of the third derivative of position,jerk (γ), for the duration
of the motion (fromt0 to t1), see Equation 1 [33].

C =
∫ t1

t0
γ(t)2dt (1)

I.e, given a starting point, an end point and a time to move between the two, the trajectory
that minimizes the jerk on this interval is the MJ trajectory. Figure 2(a) shows an MJ trajectory
that has been fit to a measured human input signal from an experiment in [12].

More recently, other, more detailed models like minimum joint torque change, minimum
force, or minimum energy have been proposed and shown to describe human motions more ac-
curately [38, 35, 39]. However, the more detailed models require detailed knowledge of posture
and intrinsic mechanical parameters of the human subject, parameters that are not observable
when using a hand-held joystick-type device for motion input. On the other hand, the MJ model
can be completely described in Cartesian space coordinateswith no explicit knowledge of the
subject’s intrinsic mechanical properties, and is thus possible to implement with only the data
from a joystick-type input device. Furthermore, when a subject is using a small input device
with low inertia, it is reasonable to assume that no externalforces other than gravity act on the
user, and that posture does not change significantly during the motion. In this case, it has been
shown that trajectories predicted by the MJ model do not differ significantly from ones predicted
by the more advanced models [38].

All MJ trajectories share the property that the 6th derivative is zero for the duration of the
motion, and that they thus can be described as 5th degree polynomialsxMJ(t), as in Equation 2.

xMJ(t) = b5t5 + b4t4 + b3t3 + b2t2 + b1t + b0, t0 ≤ t ≤ t1 (2)

If we also add the start and end points of the motion,x(t0) andx(t1), and state the position,
velocity, and acceleration at these points, we get the following constraints on Equation 2.

xMJ(t0) = x0, xMJ(t1) = x1

ẋMJ(t0) = ẋ0, ẋMJ(t1) = ẋ1

ẍMJ(t0) = ẍ0, ẍMJ(t1) = ẍ1

The above constraints will give us 6 equations, and we get a well-defined system to find the 6
parametersb0 . . . b5. Thus, there is only one possible MJ trajectory for a given start and end, and
it can be found by solving a simple system of linear equations. For the general case, the velocity
and acceleration are zero at the start and end points, ˙x0 = ẋ1 = ẍ0 = ẍ1 = 0. Using this, along
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with the definition ofx0, we get 5 equations, and we can rewrite the equation as a function of b5

andx0:

xMJ(t) = x0 + b5

[

t5 − 5
2(t0 + t1)t4 + 5

3(t12 + 4t1t0 + t02)t3−
5(t1t02 − t12t0)t2 + 5t02t12t−
1
6t05 + 5

6t04t1 − 5
3t03t12

]

(3)

Where the remaining constants are related as:

b4 = − 5
2(t0 + t1)b5

b3 = 5
3(t20 + t21 + 4t0t1)b5

b2 = −5(t20t1 + t0t21)b5

b1 = −5b5t40 − 4b4t30 − 3b3t20 − 2b2t0
b0 = x0 − (b5t50 + b4t40 + b3t30 + b2t20 + b1t0)

It has been shown [33] that if the motion starts att0 = 0, Equation 3 can be written as

xMJ(t) = x0 + (x1 − x0)
(

6( t
d )5 − 15( t

d )4 + 10( t
d )3
)

(4)

whered = (t1 − t0) is the duration of the motion. If we relieve the assumption thatt0 = 0, we
get

xMJ(t) = x0 + (x1 − x0)
(

6( t−t0
d )5 − 15(t−t0

d )4 + 10(t−t0
d )3
)

(5)

Thus, the entire trajectory is defined completely by the starting pointx0, the end pointx1, and
the start and end timest0 andt1. For 3-dimensional motion, each dimension of the motion is de-
scribed by such a polynomial, where the coefficients for the different dimensions are independent
from one another, butt0 andt1 are the same [38].

The trajectories described by this simple MJ model are limited to one single MJ motion,
which is a straight line of finite length. If a more complex motion is desired, or if the target of
the motion is changed in mid-motion, the trajectory can be described by superpositioning several
MJ trajectories. If the added MJ trajectory has an initial position, velocity, and acceleration of
zero, this will still result in a continuous motion where the6th derivative is zero, so the jerk is
still minimized. For motions of this type, a common trait is that the tangential velocity tends
to be lower as the radius of curvature decreases. Compound MJmotions have been described
thoroughly in [40, 41, 42, 43]. In the motor control system ofhumans, a new submovement can
be generated as often as once every 100 ms [44]. Figure 2(b) shows three such MJ trajectories
superimposed to fit a human input signal from an experiment in[12].

MJ trajectories have been used extensively in the past to generate human-like motions for
robots [45, 46, 43, 47, 48, 49, 50]. Recently, work has also been performed that fits MJ trajecto-
ries to user inputs in teleoperation, using environment knowledge to generate MJ-shaped virtual
fixtures [51]. Also, MJ type trajectories have been used to estimate current operator input for
generating force commands for admittance control [52].

3.2. Human Input Estimation
We fit the input data to an MJ model using least squares. The resulting polynomial is then

extrapolated to obtain a prediction. This prediction is then tracked with a Kalman filter. The
details are described below. The methods for detecting and fitting to MJ submotions have been
described earlier in [11, 12, 13].
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Figure 2: MJ trajectories fit to observed hand motion data.

3.2.1. Detecting the MJ Submotion
The first step is detecting an MJ submotion, finding its start and end times and determining

the magnitude. It is impossible to detect the start of a motion before it occurs, but the point in
time at which the motion ends can to be found before it can be observed. Using Equation 5,
we see that if the start of a motion is known, but not the end, there are two unknowns — the
time and position at which the motion ends. Thus, in theory, if two points on the trajectory are
known, the system of equations can be solved to find these two unknowns and thereby specify
the entire motion exactly. Since this involves solving a 5thdegree polynomial, the solution will
be very sensitive to measurement error, especially in the time domain. However, if the start and
end times are known, extrapolations that fit well with observed data are possible.

A robust way to detect the start timet0 and the end timet1 is proposed in the following.
Since the motion itself is expected to follow a 5th degree polynomial curve, the velocity profile
is expected to follow a 4th degree polynomial curve that starts and ends at zero value, with zero
first derivative. Such a curve is symmetric around the apex. Empiric analysis of recorded motion
data shows that by using an extended Kalman filter (EKF), the point of maximum velocitytvmax

is easy to detect. A threshold value requires the peak velocity to be above a certain magnitude
to be registered. Using a least square approach, the 4th degree velocity profile can be fit around
this peak, fitting only to data before the peak, see Fig 3. The zeros of the polynomial found with
this approach are used as candidates for the start and end of the motion, and used when fitting
the motion data to an MJ trajectory.

A weakness in this approach is that half of the motion has to beobserved before a prediction
can be made. In order to facilitate earlier predictions, theEKF observer can be used to predict
when tvmax will be reached. This involves estimating higher derivatives, and is prone to high
uncertainties in the presence of observation noise. In practice this means that a stable estimate
of tvmax can be achieved after approximately one third of the motion.The implementation used in
the experiments described later in this paper therefore uses atvmax predicted from the EKF until

6



−0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time [s]

T
an

ge
nt

ia
l v

el
oc

ity
 [m

/s
]

 

 

Measured trajectory

Remaining trajectory

Fit MJ velocity profile
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tvmax is reached, after which the algorithm switches to using the observed value.
When the peak velocity has been passed, at timest > tvmax , the polynomial is subtracted

from all incoming velocity measurements up to timet1, and the algorithm tries to find the next
velocity peak.

3.2.2. Fitting an MJ Submotion to Data
When t0 and t1 are known, along with the start positionx0 of the motion, Equation 3 only

contains one unknown,b5. By fitting to the latest measured data points with a least squares fitter,
robust trajectory prediction for timet + τ is possible by calculatingxMJ(t + τ). For values where
(t + τ) > t1, we letxMJ(t + τ) ≡ xMJ(t1).

3.2.3. Tracking the Predictions
The predictions achieved this way are tracked by an extendedKalman filter. In the following

treatment, we apply the same definitions and terminology as Welch [53]. We define the filter
stateX as

X = {x, y, v, θ, v̇}, (6)

wherex and y are the Cartesian position coordinates,v is the tangential velocity,θ is the
direction of motion, and ˙v is the tangential acceleration. The motivation for this polar repre-
sentation of velocity is that MJ trajectories are defined by 4th degree polynomials in tangential
velocity, making the implementation more straightforward.

In this case, we assume that the direction of motion remains unchanged for each MJ sub-
motion, so that the observationZMJ will be the value of the MJ polynomial added to the last
measured position in the direction of motion:
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ZMJ(t) =


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whereẋMJ and ẍMJ are the first and second derivatives ofxMJ with respect to time.
The observation matrixHMJ is then

HMJ =


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(8)

For cases when there are no MJ predictions available, i.e. atthe beginning of an MJ submo-
tion, or during motions too slow to trigger the threshold value for the MJ detector, an ordinary
EKF extrapolation from the (delayed) measured position data is used as observation. Given the
delayed measurementsYd:

Yd(t) =


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(9)

wherewi is measurement noise, we model the observationZEKF as:

ZEKF(t) =


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The observation matrixHEKF is then:

HEKF =




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4. Evaluation Experiments

A prototype teleoperated drawing task was designed, and a setup was constructed so that an
operator could control the robot with video feedback through arbitrary time-delays.
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(a) Track 1 (b) Track 2

(c) Track 3 (d) Track 4

Figure 4: The tracks used in the tracing task.

4.1. Task Description

The users try to trace a path as fast as possible on a paper witha pen, using a robot controlled
though a joystick-type interface. The task is significantlymore difficult if a small time delay is
added. A small pilot study showed that the task completion time increased by 40 to 50% with as
little as 100 ms round-trip delay.

The path the subjects were given to trace contains a mixture of straights, sharp corners, and
curves of varying radius. Four different tracks were constructed by mirroring the first track about
the horizontal or vertical axis, see Figure 4. The tracks aredefined by an inner and an outer line,
and the task is to draw a trace between these boundaries.

4.2. Robot Platform

The robot used in this experiment is a fast lightweight manipulator with six degrees of free-
dom, see Figure 5. The robot can reach any point in the 30 cm× 42 cm (A3) workspace within
300 ms with the settings used in this experiment. The robot uses a combination of PID and
computed torque control (CTC) to track setpoints with combined definitions in both position and
velocity space, and is thoroughly described in earlier work[54].

The end effector used in this experiment is a permanent marker pen mounted in a short PVC
pipe. The drawing area is a sheet of A3 paper fixed to a 5 mm aluminum sheet suspended by
taught springs. In this setup, only two degrees of freedom are controllable by the operator: the
Cartesianx andy dimensions of the tip of the pen in the plane of the paper.

The network interface of the robot is set so that all incomingcommands are delayed for a
preset time before being relayed to the robot controller. This preset time delay can easily be
changed between experiments.
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Figure 5: The manipulator with pen and drawing surface.

4.3. User Interface

The user interface (shown in Figure 6) used for the experiment consists of a video feed and a
position input device.

The video is obtained with an inexpensive USB camera with 640× 480 resolution and a
framerate of 15 fps, which was mounted to point towards the drawing area. The unprocessed
video image of the drawing surface is then shown on a 19-inch monitor.

An Omega haptic unit from Force Dimension serves as input channel for user hand motion.
This device provides a large workspace, as well as high stiffness and force output. It is sampled at
2.2 kHz. Force feedback is used to define the limits of the workspace, so that drawing is possible
on the entire 2 dimensional surface of the paper, but not outside. Gravity, friction, and inertia are
canceled by the controller, so that within the boundaries nonet forces act on the operator.

4.4. Proof of Concept

In an initial proof of concept, the task was performed without time delays, and all inputs
were recorded. The proposed model was then applied offline to the measured inputs. For com-
parison, we also applied a predictor using the same EKF tracking but no MJ predictions, just
the extrapolations from measured data. This is a near-optimal predictor without human motion
models.

We observe that the MJ prediction errors are smaller than theerrors caused by the delay,
or the errors we get by applying the EKF predictor based purely on input measurements, See
Table 1. The errors were measured at points were a valid MJ prediction was available. As
described in 3.2, a valid prediction is available after1

3 of the submotion has been observed. With
a time delayτ, this means that it is available at timet0 + 1

3d + τ, and will remain valid until it
is possible for a new submotion to dominate the trajectory, which according to empiric study
of operator input was determined to be approximately 200 ms after the peak of the current MJ
submotion.

10



Figure 6: User interface hardware, with video display of remote site and input device.

Table 1: Comparison of mean errors of the MJ model and pure EKF predictions.

Delayed signal Non-MJ EKF MJ Predictor
Mean error 12.1 mm 3.7 mm 2.9 mm
errorEi

In the proof of concept trial, track 1 was circled 7 times, both clockwise and counter clock-
wise, for a duration of 100 seconds. During this time a total of 317 distinct MJ motions were
detected by the system.

The error measurementEi for each predictor functionPi was defined as follows:

Ei ≡
1
n

n
∑

k=1

‖X(tk) − Pi(tk)‖
2 (12)

WhereX(t) is the true input signal at timet, with position given in millimeters, andtk, k =
{1 . . . n} are all time points where a valid MJ prediction exists. In order to quantify the error that
was caused by the delayed signal without a predictor, a predictor function defined as the position
at the timet − τ was used:

Pdelay(t) ≡ X(t − τ) (13)

whereτ is the round-trip time delay, in this case 100 ms.
In terms of average error magnitude, the delayed signal has an average error of 12.1 mm,

the signal from the non-MJ EKF 3.7 mm, and the signal from the MJ predictor 2.9 mm. For
comparison, it can be noted that the average width of the track is 23 mm allowing an 11.5 mm
error margin from the center of the track.

The magnitude of the average error for the pure EKF approach is 27% larger than that of
the MJ approach. This may not be very large, but there is a difference in the quality of the
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error. Figure 7 shows both predictions as compared to the real signal and the delayed signal of
the x coordinate. With the MJ curves there is only a small amount ofoscillations as the input
slows down after a period of higher velocity. This is where one of the strengths of the MJ-based
prediction is shown as it enforces an MJ trajectory, which byconstruction does not oscillate.
In this particular setup, this is an important property, as high frequency oscillations may be
reproduced at lower frequencies but with higher amplitudesby the manipulator controller.

Note that while Figure 7 shows two entire superimposed MJ submotions, in online usage,
due to the time dely, only the later part of each submotion would be available as a prediction. In
the figure, the arrows pointing from the left show where each prediction would become available,
and the arrows from the right show where the prediction wouldloose validity as a new submotion
could possible become dominant. Since the MJ trajectory is also tracked with a Kalman filter,
the influence of the MJ prediction remains for some time afterthis point.
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Figure 7: A comparison between MJ curves and pure EKF prediction. The MJ trajectory in the plot contains two sub-
motions. The arrows pointing from the left show where each submotion would become available to an online prediction
system, the arrows pointing from the right show where each prediction would loose validity, as it would be possible for
a new submotion to dominate the trajectory.

An example of the final result of the compound prediction, using MJ predictions when these
are available, and simple EKF type extrapolation from the delayed signal when no MJ predictions
are available is shown in Figure 8. This plot shows thex coordinate as Track 4 is traced one lap
clockwise. The transients caused by switching predictor depending on the availability of MJ
predictions are effectively damped out by the system and are not noticeable to the operator.

4.5. Experimental Procedure

For evaluation purposes, experiments were carried out where subjects were asked to trace the
path clockwise. First 10 laps for practice, then 10 laps thatwere recorded. This was repeated 3
times, with a different setting each time. Possible settings were:

A No communication delays added, no predictions. This is thecontrol case that the other
settings are compared to.
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(a) Predictor performance with 100 ms delay.
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(b) Predictor performance with 100 ms delay, closeup.

Figure 8: Example performance of prediction.

B 100 ms round-trip time delay added, no predictions. This case is used to determine the
effects of delays on the completion time of this particular task.

C 100 ms round-trip time delay added, input prediction system active. This case is used to
determine how well the predictions can cancel the negative effects of the time delay.

The order in which the three settings were presented to the subjects was permuted between
subjects to cancel out overall learning effects. The subjects were told that “three different set-
tings” would be evaluated, but not what those settings were.They were asked to trace as fast
as they could without making mistakes. A total of 12 subjectswere used. The subjects were all
male, ages 23–31, and did not have prior experience with the experimental setup.

We measure “Objective telepresence”, as defined in [55]. This means that the task completion
time is used as the performance measure. Of the measured tries, the times for successful trials are
included in the analysis. Results for subjects who did not successfully complete at least 5 laps
with each setting was not considered. Success is defined as not drawing outside the borders of the
track during the lap. For this type of task, there exists an inherent trade-off between minimizing
errors and completion time. By excluding results from trieswith errors, the remaining data
should have a lower variation in how this trade-off is balanced.

It should be noted that even in setting A, with no added communication delay, there are some
inherent delays in the system. The time needed to process input data and calculate predictions
is less than one millisecond, but the robot processes commands at 100 Hz, giving the “current”
command a delay that varies from 0 to 10 ms. Similarily, the video display is updated at 15 Hz,
so that the image being displayed will have a varying delay of0–67 ms, plus the overhead for
image acquisition and processing. None of these delays weretreated in any special way, but were
added to the total delay of the system for all three settings.

4.6. Results

For all subjects but one, the median completion time was lower for setting C, with the pre-
dictor, than for setting B. One subject even performed timesthat where better than the control
setting A, See Figure 9. This is possibly the effect of some overall learning, with subjects per-
forming relatively better on the last setting they were presented with. A small overall trend for
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Figure 9: Task completion times for the 12 subjects. The plot shows median completion times and 90% confidence
intervals. Note that subjects 5 and 9 did not complete the taskfor setup B, and are not included when calculating
statistics.

improvement over time was observed. When corrected for setting differences, the subjects were
on average 2% faster on the second trial, and 6% faster on the third. The average completion
time was 12.86 s for setup A, 19.3% longer for setup C and 40.0%longer for setup B. Perform-
ing a Student’s T-test on the results, and setting the significance level to 0.05, we find that the
performance with setup A is significantly better than those of both setup B (withp = 1.83·10−12)
and setup C (withp = 3.54 · 10−6). The performance with setup C was significantly better than
that of setup B (withp = 0.000187).

Two subjects, 5 and 9, were only able to complete one successful lap with setting B, and are
therefore excluded from these results. All others were ableto complete at least 5 successful laps
with each setting. Comments from several subjects stated that the main difficulties they perceived
with settings B and C were oscillations, most subjects did not explicitly notice that there was a
time delay.

5. Conclusions

In the present paper, we have described a method that uses predictions of user input to cancel
the negative effects of time delays on free-motion teleoperation. The experimental results show
that this is a valid approach, as the performance was significantly better when compared to a
control case with the same delay but no predictive system. The main strength of this approach
is that we only need a model of the master side of the telerobotic system, while the slave side
can be left completely unmodeled. This means that once we have designed the master system,
we can deploy a slave system in novel environments to performnovel tasks without the need
for recalibration or redesign of the control system. Furthermore, once the predictive system is
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calibrated for the master system, the slave system can be replaced without having to recalibrate
the predictive system, as long as the new slave system works in the same coordinate space and
does not significantly differ in performance. This also allows for easy-to-deploy remote sensors,
such as arbitrarily positioned uncalibrated cameras.

In the implementation presented here, the prediction system relies on MJ models, but any
model that sufficiently well describes human motion could conceivably be used.

6. Limitations and Future Work

One strength of using the relatively simple MJ model for predicting human input is that since
we do not use any knowledge of the particular task being performed, it should generalize to most
possible vision guided tasks.

However, there are several limits to this approach. The firstis that since new MJ submotions
can be generated as often as every 100 ms, it is not realistic to make predictions much further
into the future than this, as there is a real possibility thatthe operator will be moving along a
trajectory that we have not yet detected. A 100 ms round-tripdelay is comparable to the internet
round-trip delay between Stockholm, Sweden and New York City, USA. However, when using
the Internet, time delays can behave stochastically, something that would have to be considered
and dealt with in an implementation over an internet connection.

A potential use of this approach even in the presence of longer delays, is where we have
a plausible model for predicting the feedback from the remote environment as in traditional
model-based control, but where non-linearities or unmodeled events make it difficult to predict
over as long time delays as we would need. It is possible that in combination with the input
predictor model described in the present paper, one could successfully predict both input and
measurements, and thus bridge larger time delays than when just predicting one of the two. How
this could be done remains to be studied.

Another limit is that the MJ model assumes free motion. Its assumptions do not hold under
the presence of outer forces, e.g. contact forces. Therefore, this approach is not applicable with-
out modification for tasks that require haptic interaction with the remote environment. However,
as shown in Section 4.4, even without the MJ predictions, a pure EKF predictor has similar mag-
nitude of tracking errors. It remains as future work to examine how this type of approach can
be extended to tasks that include contact. It is possible that hybrid approaches, utilizing parts of
this approach and parts of traditional delay-handling approaches may be the solution. One could
conceive of using simple remote autonomy to avoid unwanted collisions. If an operator’s typical
reaction to contact forces is known, it could be possible to incorporate this in a predictor at the
remote site.

Finally, there this is yet no treatment of stability issues for the MJ prediction approach. Al-
though empirical trials have not shown any unstable behavior, a more rigorous analysis remains
to be done.
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