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Abstract—In this paper we present ongoing work on how
to incorporate human motion models into the design of a
high performance teleoperation platform. A short description of
human motion models used for ballcatching is followed by a more
detailed study of a teleoperation platform on which to conduct
experiments. Also, a pilot study using minimum jerk theory to
explain user input behavior in teleoperated catching is presented.

Index Terms—Teleoperation, control, high performance ma-
nipulation, human motion.

I. INTRODUCTION

The desire to transfer human action over space, time and
scale is well-known by now. One of the most widely advertised
examples is the NASA Mars Rover Program with Sojourner,
Spirit and Opportunity. Other use of teleoperation includes
medical robotics and recent teleoperated drones for military
surveillance. Teleoperation received its initial popularity dur-
ing World War II for handling of nuclear material.

Early work emphasized transfer across space to allow
people to manipulate dangerous material (Goertz, Blomgren,
Grimson, W. M. Thompson, & Kline, 1961). The degree of
autonomy was non-existing and the systems were designed for
direct motion reproduction. The systems were often limited by
coarse feedback and limited visibility of the workspace.

Recent work such as operation of the MARS rovers have
transferred actions across time, due to the significant time-
delay of operating vehicles on another planet (Tsumaki et al.,
2000). The degree of autonomy is significant to enable efficient
operation and to avoid direct closure of the control loop, which
would be close to impossible.

Teleoperation involves two closely related problems, control
of a system in the presence of transfer function that is non-
linear, which could be transfer across space (for example
changes in kinematics), transfer in time (delays that are
significant compared to the time constant of the target system),
and transfers across scale (significant changes in scale for
example for nano-robotics or as part of medical surgery). The
second problem is generation of feedback to the user to give
him/her the best possible task embedding, or sense of presence.
The feedback requirements are also closely coupled to the
degree of autonomy in the system.
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Few studies have considered teleoperation in the presence
of significant dynamics (Hirzinger, Landzettel, & Fagerer,
1994; M. R. Stein & Paul, 1994). The qualifier “significant”
dynamics is here used to specify a process where the time-
delay is a large fraction of the process cycle time. Such
processes could for example be control of aerial vehicles.

For processes with significant dynamics it is of interest to
study the influence of varying degrees of autonomy and to be
able to understand the limits as to how a user can be embedded
in a task context, that is, how the user can be given a sense of
presence for actual interaction with objects and how can this
be achieved in the presence of delays so as to find a suitable
balance between delegation/tasking and actual control from
the user. It is also of interest to study different degrees of
embedding including the influence of use of different feedback
modalities such as haptics and visual feedback.

To understand this problem we have chosen to study the
challenge of teleoperated ball catching. For catching of balls
thrown across a room the flying time is on the order of 0.5-
1.0 seconds, and for teleoperation across the internet typical
delays are in the range 0.1-0.4 seconds for normal socket
operations. The autonomous catching of balls using a robot
has for example been studied by DLR (Frese et al., 2001),
Andersson (Andersson, 1989), Hove (Hove & Slotine, 1991),
and others.

Teleoperation has been widely used in a variety of applica-
tions and is in many respects considered a mature technology
as described in Section II. The design of teleoperation systems
for such applications are required to carefully consider the
integration of different sensory modalities, which motivates
studies of human perception-action models, as outlined in
Section III. It is well known that humans are visually dom-
inated (Schwartz, Moran, & Reina, 2004) and it is thus of
interest to understand how this influences integration of haptics
and graphics. At the same time there are clear models that
suggest that much of human actions are feed-forward driven
rather than feedback driven (Berthoz, 2000). Under such a
control regime one would expect that motion for interaction is
largely prospective, in particular for dynamic situations. The
control strategy for human catching has been studied for some
limited cases, as described in Section III-C. However, general
human ball catching strategies are poorly documented in the
literature.

To study the overall problem of ball catching we have
designed a high performance robotic manipulator. An objective
of the design has been use of components off the shelf,
to make it possible for others to replicate the setup with
a minimum of effort. The platform design is discussed in
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Section IV. For operator feedback both regular graphics and
stereoscopic displays have been studied in combination with
force-feedback joysticks. The design of a range of different
interaction modalities is also documented.

The system has been implemented and a structured set
of experiments have been designed. The experimental design
is outlined in Section V. The initial results obtained with
the system are documented in Section VI and the general
observations / lessons are presented in Section VIII.

II. TELEOPERATION CONTEXT

Teleoperation was originally introduced during World War
II (Goertz, 1952; Whitney, 1987). The systems were of the
master-slave kind. A human user was operating a master input
device and the slave manipulator reproduced the exact motion.
Often the master and slave were coupled mechanically. With a
gradual introduction of electronic control systems and modern
control theory the mechanical link was replaced by transfer
through communication. With the communication over an
electronic media there is a delay between operator instructions
and slave motion; the same is also true for generation of
feedback to the user (Hirzinger et al., 1999). The introduced
delay challenges traditional control models that assume signals
to be delivered instantly. A frequently used model is to
introduce a Smith predictor for compensation for the system
delay (Åström & Wittenmark, 1995; O. J. M. Smith, 1959).
The Smith predictor inherently limits bandwidth of the overall
system and in addition it is only well suited for systems with
deterministic delays. Others have considered systems with
varying time-delays for handling stochastic channels (Munir
& Book, 2002). The idea is here to explicitly include a
model of the communication channel in the systems model.
These systems have good performance for remote haptic
manipulation etc. However, the bandwidth of interaction is
still limited.

For applications with significant time-delays, such as the
Mars rover program or control of systems on-board the
international space station or the space shuttle, the adopted
strategy has been to use task oriented control (Muirhead, 2004;
Hirzinger et al., 1994; M. R. Stein & Paul, 1994). Rather
than trying to perform direct tele-operation, the operator
specifies the overall strategy and sequencing of tasks. The
detailed feedback control is delegated to the robot system. The
challenge is here to have continuous control and feedback from
the system.

III. ISSUES DERIVED FROM HUMAN STUDIES

There are several issues that emerge in the study of human-
machine interaction and human ball catching that influence hu-
man operated robotic ball-catching. This section gives a brief
overview of the studies that are relevant to the present work,
along with the implications they have for the teleoperation
scenario.

A. Visual Dominance over Proprioception
Humans have access to an array of different senses using

different modalities. It is a common view in recent neuro-
physiological research that these differences in modality are

used not only to register different types of real phenomena,
but also to register different aspects of the same phenomena.
For example, when handling an object, it can be perceived by
vision as well as touch. Indeed, this multisensory processing
seems to be the rule rather than the exception, and there is
evidence that the integration of sensory signals takes place at
a very basic level of the brain’s sensory processing (B. E. Stein
& Meredith, 1993; Shimojo & Shams, 2001; Schwartz et al.,
2004).

In natural settings, it would be expected that spacially and
temporally coinciding stimuli of different modalities would
originate from the same phenomenon, and similarily, that
stimuli that originate from the same phenomenon would coin-
cide in time and space. However, when stimuli are artificially
generated — e.g. in a teleoperation interface — there is a pos-
sibility to produce completely independent stimuli for different
modalities. Experiments have shown that when presented with
objects that have visual shapes that differ from their tactile
shapes, most subjects do not even notice the discrepancy (Rock
& Victor, 1964; Shimojo & Shams, 2001). Both studies show
that not only can the objects be scaled differently, but they can
also be significantly deformed between the modalities without
the subjects reporting any discrepancies. The same has been
shown for discrepancy in stiffness in a haptic device and visual
cues (Srinivasan, Beauregard, & Brock, 1996).

It is also noteworthy that all three studies indicate that when
presented with discrepant haptic and visual information, most
subjects tend to accept the visual cues as the “true” version,
and report that the tactile information is identical to this.
This is especially true for the experiments on visual versus
proprioceptive modalities (Shimojo & Shams, 2001). Here,
subjects moved their hands in elliptical trajectories where the
proportions of the major and minor axis were as large as 2:1,
and would report that they were moving their hands in perfect
circles if presented with a visual stimuli of a perfect circle
trajectory that otherwise coincided with their hand movement.
It was even possible to change the mapping from hand motion
to visual motion mid-experiment without the subjects noticing,
as long as the visual stimuli stayed unchanged.

This suggests that when designing a multimodal user in-
terface, it is not necessary for haptic and visual information
to coincide perfectly, and that it could be possible to use
different scales and non-isotropic gains in mappings between
modalities. This is interesting when the physical workspace of
the operator does not match that of the manipulator, since a
rescaled non-isotropic mapping could potentially bridge kine-
matic differences between operator and manipulator without
violating the operator’s sense of presence.

B. Feedback vs. Ballistic Control

Another subject that is relevant for teleoperated ball-
catching is the study of ordinary human ball-catching as it is
performed in various sports and games. The possible strategies
for ball-catching can be divided into two categories, predictive
strategies relying on ballistic models, or prospective strategies
utilizing feedback (Dessing, Peper, Bullock, & Beek, 2005).
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1) Predictive Ball-catching: Predictive ball-catching relies
on a ballistic model of ball motion and observed initial
conditions to make a prediction of the most probable trajectory.
The differential equation governing a ballistic trajectory is
presented in Equation 1, c.f. (Frese et al., 2001).

Ẍ = −Ẋ · |Ẋ|α − ~g (1)

Here X is the (3D) position of the object, dots indicate the
time derivative, α is the coefficient of drag, and ~g is the gravity
vector. In a normal windless Earth environment, these factors
are necessary and sufficient to correctly predict the motion of
a thrown ball.

A predictive strategy is necessary when the motion com-
mands have to be started well before the point of impact, i.e.
when the time of flight of the ball is short compared to the
reaction and/or motion time of the catcher. This is typical for
batting in baseball or cricket (Dessing et al., 2005; Land &
McLeod, 2000).

2) Prospective Ball-catching: Prospective strategies utilize
continuous feedback from the task performed. There is no
explicit need for an exact model of target motion, but instead,
motions are made to minimize the distance or relative velocity
between object and catcher. This type of strategy is viable
when there is enough time to perform several corrections
before the point of impact, and is useful when the trajectory is
difficult to predict from initial conditions. This is typical for
outfield players in baseball (Dessing et al., 2005).

3) Combined Strategies: When catching a ball that is
thrown across a room at a moderate velocity of approximately
5 to 6 m/s, The time for the entire throw is approximately 0.8 s.
In one study, it was found that the average hand motion time
for a human subject attempting to catch such a ball was 0.52 s,
and that the average hand trajectory length was approximately
0.35 m (Krüger, 2006). In these cases, there does not seem to
be enough time for a conscious continuous feed-back loop to
correct the hand position, but rather an initial estimate is made
of the ball trajectory, and the hand moved roughly toward a
point of intercept. If there is still time to react, this position
can be corrected one or more times to produce an accurate
catch (Hauck, Sorg, & Schenk, 1999). Evidence towards this
is that one can distinguish a distict trajectory towards an
initial catch position estimate, and additional shorter distinct
trajectories that correct this.

C. Human Ball Catching

As mentioned above, the task of a baseball outfielder has
been studied in the context of prospective catching strategies.
It can be viewed as an extreme case of catching behavior
because of the long flight time — several seconds — of the
ball and the large distance that the fielder has to cover to the
interception point (Dessing et al., 2005). The task is in essence
two-dimensional, since the ball can only be caught when it has
(almost) reached the ground. Furthermore, the viewpoint can
be considered to be collocated with the hand, except maybe
at the very last stage of catching.

These properties make baseball outfielder catching behavior
a good candidate for modeling by prospective feed-back

control, relying solely on 2D retinal information to guide the
player towards the goal point, where the ball will reach the
ground. Indeed, there are several attempts in literature to de-
termine such a control law from data collected from outfielder
catching. The Linear Optic Trajectory (LOT) model was
proposed by McBeath et al. in (McBeath, Shaffer, & Kaiser,
1995), but has been opposed by McLeod et al. (McLeod, Reed,
& Dienes, 2002), who instead advocate the Optic Acceleration
Cancellation theory. It seems that this controversy might stem
from the fact that it is difficult to determine what optic
information based control law, if any, a fielder uses just from
observing his trajectory and that of the ball during catching. As
explained in (Marken, 2005) it is also necessary to introduce
disturbances into the hypothesized controlled variable and
observe the extent to which these have the expected effect,
or if the variable is protected from the disturbance by control.

Catching at smaller distances, where the viewpoint location
is clearly separate from the position of the hand, has been
studied in terms of the internal models that humans might
apply to the catching task. Specifically, McIntyre et al. have
shown that a priori knowledge about gravity direction and
magnitude is used when catching falling balls (McIntyre,
Berthoz, Zago, & Lacquaniti, 2001). Catching actions taken
by astronaut subjects were timed relative to the impact of the
ball, on the Earth as well as under micro-gravity conditions
in orbit. Results show that subjects anticipate impact at a
point in time before it actually happens when performing the
experiment in micro-gravity. This demonstrates that they are
not able to measure the acceleration of the ball in real-time.
The magnitude of the time shift when changing the initial
velocity of the ball also cannot be explained by the brain
using a first order, constant velocity model, even if corrected
by scaling. However, good agreement is found with an internal
second order model of gravity. In 0 g, the down direction of
the internal model is taken from visual cues, such as walls,
ceiling with lighting, etc.

Concerning hand trajectories for catching and other reaching
tasks, several important characteristics can be noted. Trajec-
tories are approximately straight in Cartesian space, and the
magnitude of the velocity has a bell-shaped profile (Kawato,
1996). More complex trajectories seem to be well described by
superpositions of several simple ones, as proposed in (Morasso
& Mussa Ivaldi, 1982) and further investigated in (Milner,
1992). Similar bell-shaped velocity profiles can be synthesized
using different optimization criteria, such as minimizing jerk
(the time derivative of acceleration), joint torque change,
energy, or force (Kawato, 1996; Hauck et al., 1999).

Recently, studies at the Deutsches Zentrum für Luft- und
Raumfahrt (DLR), have shown similar results for human 3D
catching (Krüger, 2006). Specifically, there was almost always
a local minimum in the velocity profile before the catching
instant, termed the point of minimum velocity (PMV). The
consistent existence of a PMV strongly suggests that there is a
first gross motion towards the catching point, followed by one
or more corrective submotions as described in Section III-B3.
For subjects with much experience of ball catching from
sports, submotions after the PMV also acted to reduce the
impact of the ball.
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D. Trajectory Optimization

A well-known model for explaining the kinematics of
human visually guided reaching motions is known as the
minimum jerk (MJ) model, and was briefly touched upon in
Section III-C above. It was first proposed by Hogan for single-
joint motions (Hogan, 1985), and later extended to include
multi-joint planar motion (Flash & Hogan, 1985).

The key observation of Hogan et al. was that the trajectory
of voluntary arm motions, when described in extra-corpular
cartesian space, followed certain constraints. It seemed that the
trajectories could be predicted by using a model in which the
square sum of the third derivative of position, jerk, integrated
over time was minimized, hence the name. In other words,
given a starting point, an end point and a time to move between
the two, the trajectory that minimizes the jerk on this interval
is the MJ trajectory.

The MJ solution was also found for the general case of
movement. It was shown that all MJ trajectories share the
property that the 6th derivative is zero for the duration of the
motion, and that they thus can be described as 5th degree
polynomials, as in Equation 2.

x(t) = a1t
5 + a2t

4 + a3t
3 + a4t

2 + a5t + a6 (2)

If we also add the start and end points of the motion, x(t0)
and x(t1), and state the position, velocity, and acceleration at
these points, we get the following constraints on Equation 2.

x(t0) = x0, x(t1) = x1

ẋ(t0) = ẋ0, ẋ(t1) = ẋ1

ẍ(t0) = ẍ0, ẍ(t1) = ẍ1

The above constraints will give us 6 equations, and we get
a well-defined system to find the 6 parameters a1 . . . a6. Thus,
there is only one possible MJ trajectory for a given start and
end, and it can be found by solving a simple system of linear
equations. This is well-studied, and thorough descriptions and
analysis for generating MJ paths for different situations can
also be found in the literature (Kyriakopoulos & Saridis, 1988;
Piazzi & Visioli, 2000; Secco & Magenes, 2004).

The trajectories described by the MJ model are of course
limited to one single motion. What happens if a more complex
motion is desired or if the target of the motion is changed in
mid-motion can be described by superpositioning several MJ
trajectories. It is obvious that if the added MJ trajectory has
an initial position, velocity, and acceleration of zero, this will
still result in a continuous motion where the 6th derivative is
zero, so the jerk is still minimized. This has been thoroughly
described (Flash & Henis, 1991; Gat-Falik & Flash, 1999).
The interesting point is that with this description, even when
the target position is changed, the original MJ motion is
not removed from the trajectory, but kept alongside the new
motion. A new submovement can be generated as often as
once every 100 ms (Milner, 1992).

For completeness, it should be noted that other models
also have been proposed to explain the kinematics of human
motor trajectories. They differ mostly in what cost function
the target trajectory minimizes. Nelson gives a compilation

of trajectories given by different target functions (Nelson,
1983). Some of these target functions, like time, peak velocity
and peak acceleration, can be easily discarded as not fitting
well with observed data for reaching motions. Other target
functions, like energy and impulse need detailed models of the
dynamics of the arm, such as link impedance, frictions, and
muscle forces and are therefore difficult to implement without
detailed physiological measurements of the subject.

The same applies to the minimum torque change
model (Kawato, 1996). This also takes into accord the dy-
namics of the arm, and strives to minimize the produced joint
torque. The trajectories described by this model produce a
better fit to observed human motion data than MJ trajectories
when the motion is perturbed by an outer force, or includes
significant changes in posture. However, the minimum torque
change model does not produce better fits to measured data
than the MJ model in the absence of external forces or major
posture changes.

Based on observation that the noise in the human motor
system is proportional to the signal amplitude, a model where
the trajectory of a reaching motion is explained by minimizing
the variance of the final position has been suggested (Harris &
Wolpert, 1998). While this model may have more biological
relevance as to explaining why a certain trajectory is chosen,
the trajectories it predicts for reaching motions do not differ
significantly from those given by MJ, and thus does not add
to this application.

IV. PLATFORM FOR EMPIRICAL STUDIES

A. Control Strategy for Teleoperation
Direct teleoperation has a number of different challenges de-

pending on the problem at hand, including kinematic transfer,
handling of time delays, and feedback generation. Kinematic
transfer refers to the fact that in some cases there is a differ-
ence in kinematic structure between the actuation system (the
manipulator) and the control system available to the operator.
In control theory the handling of deterministic delays is often
modeled using a Smith predictor structure, whereas there are
a number of different strategies for handling of stochastic
delays such as (Munir & Book, 2002). Finally the issue of
feedback generation is important as multiple modalities often
can be used to complement each other and provide efficient
embedding of the operator in the scenario.

We use stereoscopic VR modeling and a force-reflectance
joystick to provide flexibility in the feedback generation and
best performance in the type of experiments to be performed.
The study is performed in the context of control of a system
over the Internet, so the system is assumed to have stochastic
time characteristics. A common technique for closing a teleop-
eration control loop over a communication link with significant
delays is to use wave variables (Niemeyer & Slotine, 1997).
Whereas this can guarantee passivity (no net output of energy)
of the communication link, and thereby help prove stability of
the total system, it imposes severe performance penalties in a
scenario where fast dynamics are required despite the presence
of substantial communication delays.

For this reason a different approach, requiring an accurate
dynamic model of the robot and its environment, was selected.
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Fig. 1. Control structure (skewed boxes represent delays)

In the employed scheme, all forces displayed to the operator
through the haptic device are generated interacting exclusively
with a dynamic simulation running on the operator interface
computer. Since this interaction does not involve a time delay,
the risk of instabilities is much reduced. The modeling of the
robot is facilitated by including the robot’s local controller in
the model. Knowing the input command and the dynamic state
of the robot, the future state can be predicted well after a time
of the same magnitude as the communication delays.

To close the control loop over the robot via the communi-
cation link, we use a non-linear, multivariate Smith predictor
control structure (depicted in Figure 1). Because the system
simulated (the robot and its controller at the robot site) in the
predictor is highly non-linear, it is not sufficient to correct only
the predictor output by the measured state y (the joint angles
and speeds) arriving from the robot, as in a standard Smith
predictor (O. J. M. Smith, 1959). The simulation itself also
needs access to the corrected state estimate to be able to use
the correct dynamics for that particular point in state space.
The simulation output however, is not corrected, and can still
be compared to incoming measurements for generating new
corrections.

The command and measurement communication delays, τc

and τm respectively, are handled by
i) Adding an artificial delay τa to the stochastic command

delay τc when a command packet arrives at the robot so
that their sum, the virtual delay τv , is constant (Kosuge,
Murayama, & Takeo, 1996).

ii) Delaying the simulation result ysim(t + τv) by τv + τm

before it is compared to the measured state y(t−τm) to
form the simulation correction δ. This means that when
a measurement packet arrives from the robot, the current
value of τm is calculated from timestamps and an old
simulation result ysim(t − τm) retrieved from memory
for comparison.

The net effect of this compensation is that the simulation,
the haptic controller, and the operator all perceive time τv

ahead of real time. That allows the generated command
signal u to travel to the robot before it is needed by the
robot controller. Values of τv upto 200 ms have been tested
successfully.

Because the correction loop closed over the communication

link runs at a much lower frequency (∼50 Hz) than the inner
loop containing the simulation and control of the haptic device
(∼500 Hz), the correction signal δ must be low pass filtered to
reduce zero order hold noise that would otherwise be felt by
the operator as vibrations. The low pass filter also reduces the
high frequency gain of the correction loop, which moderates
the spike effect of quick state changes in the simulation and
at the robot being slightly offset in time.

The basic principle of the haptic controller of Figure 1
is to map the haptic device handle to the chosen command
space (position in the case of teleoperating the robot arm) and
virtually attach it by a spring to the current corrected simulated
robot position. I.e., the current 3D position of the end-effector
is mapped to a point in the haptic device workspace to which
the handle is attracted by a virtual spring. The command sent
to the robot is just the position of the handle translated to
an end-effector position by the inverse of the same mapping.
In this way the force perceived by the operator is related to
the resistance of the robot and its controller to adjust to the
command.

In addition, virtual viscous damping is applied to the handle
to help stabilize the system, and in the case of velocity control,
a weak force toward zero velocity is added as well. To reflect
the quality of the communication link, both of these forces
can be strengthened in response to any sustained increase in
the measurement communication delays.

To avoid known obstacles, these are mapped into the used
command space, and made to repel the handle with a force
proportional to the inverse of the square or cube of the distance
to the handle depending on the dimensionality of the space. For
position control this mapping is trivial, but mapping obstacles
to velocity space requires some thought.

The mapping chosen for velocity control is based on the
principle that a point in velocity space is part of an obstacle
if, starting at this velocity v, and at the current position of the
robot, braking with a postulated constant negative acceleration
abrake to zero velocity results in a collision (Bratt, Smith, &
Christensen, 2006).

B. Requirement Analysis

In order to design a robot arm for our experimental setup,
we start with an analysis of the requirements that need to
be fulfilled. The experiment involves catching a ball thrown
across a room. We anticipate a normal, slow, underhand throw
from a distance of approximately 5 m. In an indoor environ-
ment, a ball can be thrown with reasonable accuracy along a
parabolic path with an apex of 2.3 m, with both the thrower
and the catcher situated at a height of approximately 1 m (see
Figure 2). Simple studies of human performance indicates that
the system must be able to accomodate variations in accuracy
corresponding to catching the ball within a 60×60 cm window.
From these basic requirements it is possible to compute the
flight time and end velocity for the scenario, with the flight
time being approximately 0.8 s, and the end velocity being
approximately 6 m/s.

These experimental requirements in turn impose require-
ments on the platform. As stated in I, one of the desired
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5 m

2.3 m

Fig. 2. Schematic of ball-catching experiment.

requirements of the scenario is use of standard video cameras
for trajectory estimation. Using normal 50 Hz cameras, the
frame time is approximately 20 ms, and a similar time win-
dow is expected to be needed for segmentation and position
estimation. In addition, at least three frames are required for an
additional trajectory estimation, resulting in a 60 ms estimation
time. However, limited accuracy of the cameras will mean
that more, probably as many as 10 images might be necessary
(c.f. (Frese et al., 2001)), and the time delay from initiation
of a throw to initial trajectory estimate might be 200 ms. This
setup is intended to be used for teleoperated catching, so we
also have to allow for extra reaction time as we include a
human in the loop. This might add an additional 100 ms,
so a window of 300 ms is reserved for initial reaction to a
throw, leaving 500 ms in which the arm has to move into
position. In the worst-case scenario, the arm has to move
against gravity from one opposing corner of the operational
window to another, a distance of almost 0.9 m. Depending on
the type of end effector1, the positioning has to be within one
or a few centimeters of error from the ball trajectory. These
requirements can be summarized as:

• End effector has to be able to move 0.9 m in 0.5 s,
(partially) against gravity, from stand-still to stand-still.

• The precision of positioning the end effector should be
within 1 cm

Given constant acceleration and deceleration, a distance of
0.9 m can be travelled in 0.5 s if the acceleration is at least 14.4
m/s2, and the maximum velocity is at least 3.6 m/s. This also
has to be achieved when working against gravity. These are the
minimum dynamic requirements — the actual implementation
should have some margin to allow for uncertainties.

The system thus requires significant dynamics and the
control has to be performed in real-time. This implies that
it is desirable to have closed form solutions for kinematics,
which in term imposes constraints on the design of the overall
kinematic structure. Without a closed form kinematic/dynamic
solution it would be much more challenging to guarantee the
real-time performance.

A highly dynamic mechanical arm will pose a potential
hazard to both its operator and itself unless sufficient pre-
cautions are taken. Therefore, the control of the arm has
to be sufficiently exact so that safe paths can be accurately
followed, and precautions against malfunctions have to be duly
taken. The former requires control loops running at a high

1Since the initial experiments will not be concerned with grasping, a simple
passive end effector like a net will be employed.

frequency/low latency, the latter that software and hardware
malfunctions are kept at a minimum, and that the negative
effects of malfunctions also should be minimized. Thus, the
software environment has to be a stable real-time system,
while the hardware contains fail-safe fallback for dealing with
software failure. These further requirements a solution has to
fulfill can be summarized as:

• Closed form analytical kinematics and dynamics.
• At least 6 degrees of freedom.
• Acceleration of at least 14.4 m/s2 for end effector.
• Velocity of end effector of at least 3.6 m/s.
• Safety for operator and machinery requires a stable real-

time system, as well as fault-tolerant hardware.

C. Mechanical Design

There are a number of fairly fast robotic manipulators
available, like for instance the DLR developed Kuka Light
Weight Arm (Hirzinger, Sporer, Albu-Schafer, Haahnle, &
Pascucci, 2002). It has been shown to be fast enough to catch
thrown balls autonomously (Frese et al., 2001), but in order
for the arm to reach the catch position in time, the ballistic
path estimation has to be done very early. In our experiments
we also want to include a human operator in the control loop
to be able to do semi-autonomous teleoperated catching, so we
require even faster movements to compensate for slow human
reactions. With perhaps only half the time to get into position,
twice the speed is needed.

Given the special needs of our experiments, it was decided
to construct a 6 DoF arm using PowerCube modules from the
German manufacturer Amtec. These modules are available off
the shelf and allow for rapid prototyping. In addition, the mod-
ules have a built-in controller that can be used for embedded
safety and low level control (C. Smith & Christensen, 2007).

0.31 m

0.09 m

0.51 m

540mm

Workspace

1000mm

Fig. 3. The manipulator, constructed with Amtec PowerCubes.

The modules were assembled in a configuration that kine-
matically is very similar to a Puma560 arm (and to many other
industrially available ones). This is not only a configuration
that allows for very good dynamic performance but as it is a
widely used and studied configuration, several implementation
issues have already been solved, thus making the design
process considerably faster. For example, the closed form
solution for inverse kinematics and dynamics are well-known.
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Fig. 4. Schematic of the connection architecture.

Fig. 5. The robot arm.

Keeping the moments of inertia as low as possible in the
moving parts, and placing heavier, more powerful modules
where their impact on the inertial load is lower, very fast
dynamics can be achieved.

The design and dimensions of the configuration can be seen
in Figure 3. The design allows for a workspace that is more
than large enough to accommodate for the specified 60 cm
× 60 cm window for ball-catching, though the manipulator’s
dynamic performance deteriorates somewhat at the edges of
the workspace. A cross-section of the workspace can be seen
in Fig. IV-C. The arm has rotational symmetry as viewed from
above.

It was decided that the computer doing the direct control
should run RTAI, a real-time Linux system that has showed
good performance in previous studies (Aarno, 2004). The
control computer will perform the trajectory generation and
be responsible for dynamic and kinematic calculations. A
secondary computer will be used for the user interface. The
communication between the two should be in cartesian space,
since the kinematic structure of the arm allows for up to
eight different joint-space configurations for each cartesian
position, and the choice of configuration should be made by
the real-time low-level controller for best performance. In early
experiments over the LAN in our lab, the total roundtrip time
from the UI input via the manipulator controller to UI feedback
has been shown to be in the range of 10–20 ms. A schematic
of the connection architecture is shown in Figure 4.

D. Control System

A Linux 2.6.9 Kernel was patched with RTAI 3.2 for low-
latency real-time performance. A customized communications
API was also implemented to guarantee low-latency commu-
nication with the PowerCube modules, as well as customized
libraries for fast vector manipulations optimized for calculating
arm dynamics. The control loop is run in soft real-time.
Experiments have shown that this gives a worst case latency
of less than 1 ms, which is sufficient. The average jitter for
the control algorithm is 60 µs, which is significantly less than
the modules’ latency of up to 600 µs.

Inverse kinematics and dynamics are calculated using a
C implementation of the analytical solution for a Puma
arm (Craig, 1986), and the forward dynamics are calculated
using the second algorithm proposed in (Walker & Orin, 1982).
As a result, inverse kinematics can be calculated in 1.7µs,
and dynamics in 41µs, so that all calculations needed in the
control loop take less than 50µs. This means that virtually
all latency in the control loop originates from the CAN bus
communication path and the PowerCube modules response
times.

Combined position and velocity control has been imple-
mented on the system using a combined feed-forward com-
puted torque control (CTC) scheme and a feed-back proporti-
nal integrating (PI) controller. When a new setpoint enters
the controller, a velocity ramp trajectory is calculated in joint
space. This trajectory is limited by a preset top velocity and a
maximum acceleration. The limits on velocity and acceleration
are chosen to limit the mechanical stress on the system, while
being able to reach any point in the workspace in less than
0.5 s.

E. Camera Placement

To perform the manipulation task described in the previous
section, a vision system capable of tracking the ball with suffi-
cient accuracy to make early predictions of the ball trajectory
is necessary. Given manipulator speed and the size of the
catching area of the end effector, the ball should be safely
caught if the trajectory can be estimated with an accuracy, at
the catch point, which is better than 4 cm after it has flown
for less than 0.3 s.

The available vision system consists of a wall-mountable
stereo camera pair with a 60 cm baseline, see Fig 5. The
cameras connect via Firewire to a Dell Precision 9510 work-
station with a Pentium D dual core processor at 2.8 GHz. This
setup allows for color images taken at 50 Hz at a resolution
of 320×240 pixels. The cameras have a field of view of
approximately 50o in the horizontal plane.

We want to determine the optimal camera placement given
these parameters. If possible, we want to place the cam-
eras close to the manipulator, to simulate an antropomorhic
viewpoint, so it is of interest to find how this would affect
performance. It is well known that near-optimal performance
for tracking and predicting trajectories of ballistic objects can
be achieved with an extended kalman filter (EKF) (Welch &
Bishop, 2004). It is therefore reasonable to adopt this approach
and we define our measure of success S as the fraction of
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trajectories that can be predicted to within 4 cm accuracy with
an EKF (see Eq 3).

S =
n4

ntot
(3)

In the above equation, n4 is the number of trajectories
predicted to within 4 cm, and ntot is the total number of
trajectories considered. Given the restrictions of our setup,
mainly the ceiling height of our lab and the field of view of the
cameras, it is not possible to see more than a small portion of
the trajectory with an above view, so we are limited to camera
placements in the horizontal plane. Therefore, the placement of
the cameras can be parametrized with one parameter, the angle
between the optical center of the cameras and the horizontal
direction of the trajectory, θ (see Fig 6).

θ

Ball

Cameras

Fig. 6. Angle definition for camera placement

Thus, we are looking for a mapping that will give us S as
a function of θ. Since no analytical solution is to be expected,
the most straightforward approach to solving the problem is
a Monte-Carlo type simulation of the ball-camera system.
Simulating the system, it was possible to directly calculate
S for a series of different values for θ.

Figure 7 shows the success rate measure S as a function
of camera placement angle θ and elapsed flight time, for ε =
0.5. Interception takes place after 0.95 s in these simulations.
As can be seen, the performance is worst at 90o. Overall, the
180o position gives a good performance after a few images,
but on the other hand, the final performance is good for the 0o

position, and the success rate S has reached 0.75 after 0.4 s,
meaning that 75 percent of throws would be caught using the
prediction when 0.5 s remains.
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Fig. 7. Capture results with imaging error ε = 0.5 pixels

Another way of viewing the results is to examine the
variance of the Kalman state, P . If we eliminate measurements
from the EKF iterations at time te and run the filter without
new measurements to the intercept time ti, the values of P at
time ti will give us the variance of the estimated trajectory at
the point of intercept. We set te to 0.4 s in order to examine
the results when 0.5 s remain. In table I, we give the standard
deviation for the location of the ball at ti = 0.95 s for some of
the values of θ. The standard deviation is expressed along the
axis of the trajectory, as well as the axis of the intercepting
plane. Not only is there a difference in the magnitude of the
error, but also in the orientation of the main axes. For θ = 90o,
the error is smaller in the component in the direction of the
trajectory, meaning that we can make a more exact prediction
of when the ball intercepts the plane than where it intercepts it.
For θ = 0o or 180o, the situation is reversed. For our particular
task, since the manipulator only has to be in position before
the ball arrives, the exact timing is not important, and therefore
we get better results with the cameras in the plane of motion,
i.e., θ = 0o or 180o.

TABLE I
STANDARD DEVIATION AT THE INTERCEPT TIME FOR ε = 0.5

θ along trajectory intercept plane x intercept plane y

0o 7.24 cm 1.16 cm 4.19 cm
90o 2.94 cm 19.39 cm 2.79 cm
180o 2.25 cm 0.6 cm 0.95 cm

The ball is detected in each image using a simple color seg-
mentation scheme. First, the 24 bit RGB image was converted
to 24 bit HSV using a lookup table. The ball was found to
have a hue value of 3, and a (largely varying) saturation value
of approximately 160, so all pixels that were in the range 1–5
for hue and 120–200 for saturation were preliminary marked
as ball pixels. A second pass that only kept marked pixels with
at least 3 other marked neighbors eliminated noise. The center
of mass for the marked pixels was calculated and used as the
ball centroid.

A variant of a subwindowing scheme as described in (Ishii
& Ishikawa, 2001) was used to reduce the size of the processed
image and thus the necessary processing time. After the ball
has been detected the first time, only a subwindow where
the ball should be expected to be found was processed. This
subwindow was calculated using the state estimate from the
EKF, and the size of the window is set to cover several times
the standard deviation in position. Using this approach, the ball
could be segmented and localized with a reasonable accuracy
at less than 4 ms processing time per stereo image pair, giving
sufficient real-time performance.

The evaluation was performed using 115 throws with the
ball launcher. Since the accuracy of the vision system is
within a few millimeters at the end of the trajectory, the last
reading of the vision system was used as “ground truth” when
evaluating the predicted trajectories. The resulting value for S
as a function of time can be seen in Fig 8.
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Fig. 8. Experimentally evaluated S(t) for θ = 0. The simulated results for
the same angle, with ε = 0.25 and 0.5 are also included for comparison.

F. Internet Communication Delays

The communication medium between the operator interface
and the robot is the Internet or another IP network. Whereas
this gives several advantages, including world-wide availability
and abundant hardware and software support, it also poses
some problems. There are no bandwidth guarantees, and, most
importantly, there is a stochastic communication delay.

The magnitude and distribution of the delay (Niemeyer &
Slotine, 2001) depends on several factors, such as physical
distance, time of day etc. Typical round trip times are about
50 ms inside a city, 100 ms US coast to coast, and 150-
200 ms for a transatlantic connection. Different kinds of
fluctuations in the delay include random noise, changes due
to variable network load, delays from transmitting too much
data, bunching of packets not originally transmitted together,
and lost packets (Niemeyer & Slotine, 2001). Improved real-
time communication properties can be achieved by using IPv6
where available (Nuño & Basañez, 2005).

On top of the IP protocol, UDP (user datagram protocol)
is used for the teleoperation communication. For transmission
of real-time data UDP is preferable to TCP (transport control
protocol), because it avoids the overhead of e.g. detecting and
retransmitting lost packets, at the expense of not guaranteeing
transmission of all data or constant ordering (Munir & Book,
2002). If the packets are self contained, i.e. they each contain
samples of all the transmitted signals, only the newest packet
available at the receiving side is relevant, making retransmis-
sion of old data and enforcing constant ordering pointless.

To avoid the problems caused by variable delays, the
teleoperation system uses a constant virtual delay equal to
a postulated maximum communication delay as detailed in
section IV-A above. The virtual delay is realized by embedding
a time-stamp in each packet and adding an artificial delay at
the receiving side so that the sum of the communication delay
and the artificial delay is equal to the virtual delay. It is chosen
to make occasions when the communication delay is larger
than the chosen value relatively rare. They can then be treated
as exceptions by the control system causing the robot to stop

Fig. 9. One of the two user interface hardware configurations, with a CRT
stereo display and an Omega haptic device.

smoothly.

G. User Interface

Two different versions of the hardware part of the user
interface have been tested:

1. Stereo display on a CRT monitor and a 3D force
reflectance joystick. Shutter glasses (from an inexpensive
eDimensional 3D Vision System kit) are used for stereo,
and the joystick is an Omega unit from Force Dimen-
sion. It is a parallel linkage device, which provides a
large workspace, as well as high stiffness and force
output. This user interface hardware is shown in Figure
9.

2. Head mounted stereo display, headtracking and tracking
of hand position. In this configuration the display is an
eMagin 3DVisor Z800 aimed at the high-end gaming
market. It has one 600×800 OLED display per eye, and
a diagonal field of view of 40 degrees. For headtracking
and tracking of free hand motion an Ascension Technol-
ogy Nest of Birds device is employed. To get acceptable
quality headtracking we use a setup with two of the
four available sensors fixed to the user’s head and the
magnetic transmitter unit mounted at a distance of only
approximately 30 centimeters from these sensors. This
allows measuring the orientation and position of the head
with the in-device filtering disabled. It otherwise causes
unacceptable lag and, consequently, nauseates the user.
The two remaining sensors are bundled together and held
by the user, so that hand position can be measured. The
resolution of the hand measurements are reduced due to
the greater distance from these sensors to the transmitter.

Both of these hardware setups use the same virtual environ-
ment, but only the second allows the user to change the gaze
angle and viewpoint in a natural way. Both also use a speaker
connected to the sound card of the user interface computer for
audio feedback.

The basic visualization is performed using Open Inventor 6
from Mercury Computer Systems, and the force reflectance is
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Fig. 10. The user’s view in the ball-catching experiment.

implemented with the low level API provided by Force Dimen-
sion. Even though the Omega device setup and the software
developed supports feeding back robot arm momentum and
obstacle avoidance forces to the user, this functionality was
disabled for the catching experiments described in Section V.

OpenGL quad buffered stereo with asymmetric frustum
perspective mapping is supported, and the dependence of
teleoperation performance on any static or dynamic virtual
camera position can be explored. A screen dump of the
operator interface is shown in Figure 10.

The user interface receives the estimated position of the
ball from the stereo vision system of Section IV-E. In order to
be able to bridge communication time delays using prediction
as detailed in Section IV-A however, it also needs the com-
plete state of the Kalman filter to make future ball position
estimates. Estimates are computed by letting the state develop
further forward in time without the usual measurement update.
This predictive power is also used over the much longer time
interval of a complete throw to show the user the projected
trajectory of the ball.

The predicted ball trajectory is drawn as a red line through
the ball, and the uncertainty inherent in the future Kalman
states is displayed as a semi-transparent shell around it. The
shell cross section that corresponds to a particular point on the
trajectory is the projection along the predicted velocity of an
uncertainty ellipsoid. The axes of the ellipsoid are twice the
standard deviations along different directions derived from the
eigenvectors and eigenvalues of the Kalman filter covariance
matrix for the predicted x, y, and z coordinates of the ball.
The result is that the uncertainty of the ball trajectory drawn
is visible as a funnel that has its narrow end at the current ball
position, and widens as the standard deviation, represented by
the distance from the trajectory in the center, increases the
further into the future the prediction extends.

When the ball is not in flight, but is visible to the vision
system, the user interface computer still gets information about
the estimated ball position. In this case, which often occurs just
before a throw, the rest of the Kalman state in not available,
and the ball is shown in an alternate color. As the vision system
determines that a throw has begun, full Kalman state data starts

to flow in, and the word ‘go’ is output to the speaker to alert the
user. Another sound is played if and when the ball is caught.

All data about user actions, as well as received robot and
ball states, are logged to file by the user interface computer.
The log files can then be exported and used for data analysis
with tools such as Matlab, but also serves as input to the inter-
face software in replay mode. This mode of operation allows
normal and reduced speed play-back and pausing of recorded
experiment sessions. The viewpoint and viewing direction
can be arbitrarily adjusted in real-time using a 3Dconnexion
SpaceTraveler six degree-of-freedom input device.

V. EXPERIMENTAL DESIGN

To evaluate the system, a pilot study comprising of a series
of experiments was performed. The purpose was to examine
how a user interacts with the system, to find what validity the
human motion models have for predicting user inputs, and to
determine if the setup is appropriate for tele-operated catching.
In total, three experiments were conducted. The results from
the first experiment were used to guide the design of the latter.

A. Experimental Procedure

The main goal of the first experiment was to study the
interaction between the user and the system, and to evaluate
the user interfaces. The goal of the second experiment was
to evaluate the online user input prediction ability of the MJ
model, and the ball-catching performance of the system. The
goal of the third experiment was to verify the effect of user
instruction.

1) Experiment 1 - User Interfaces: In the experimental
setup, the same virtual world was presented in the two different
interfaces presented in Section IV-G. The user’s viewpoint was
slightly behind and above the manipulator with a clear view
of the rest of the room and the path of the incoming balls,
see Figure 10. Balls were visualized as small spheres, and the
balls’ ballistic trajectories were recordings from earlier tries
with the autonomous ball-catching system.

In these trials, only the simulated virtual reality system was
used. Since the goal was to study the interaction between the
user and the interface, it was deemed that connecting the actual
robot arm would not benefit the experiments.

The subjects were given a brief explanation of how the
interface works. They were told that they would see balls being
thrown towards them, and that they were to try to steer the
robot arm so as to intercept the ballpath and thereby catch
the ball. With setup 1, the subjects were instructed that the
arm would copy the movements of the input device, and were
given some time to explore this before the subject of ball-
catching was brought up. In setup 2, subjects were told that
the robot arm would mimic the motions of their right hand (or
left for the one left-handed subject), and that the end effector
of the manipulator would be visualized in the same place in
the virtual world as their hand would be in the real world.

For each system, the subjects were given 20 practice throws,
in which the balls were thrown in a random order. After a short
break, they were subject to 21 throws that they were told would
be measured. When using setup 2, the subjects were allowed
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a short rest after each 7 throws, dividing the experiment into
three shorter sessions. This was so that they could rest their
arms/shoulders.

A total of 10 subjects were used, all of whom are robotics
or computer vision researchers affiliated with our university,
but with no prior knowledge of the setup. Of these 3 were
female and 7 were male. The same subjects were used for both
setups, but the trials with the different systems were conducted
approximately two weeks apart. The trials with setup 1 were
performed before the trials with setup 2.

2) Experiment 2 - Online Prediction: In the second exper-
iment, interface setup 1 was connected to the robot manip-
ulator over a UDP/IP connection, using the control structure
described in Section IV-F. A mechanical ball launcher was
set to launch balls in a predetermined pattern, that was the
same for all subjects, but unknown to the subjects. In this
experiment, the communication roundtrip delay was about
20 ms, caused mostly by the 50 Hz operational frequency of
the communication protocol.

The goal of this experiment was to study how online MJ
prediction can be used to aid the user. The final objective is to
design a system that can use prediction of user inputs to bridge
delays in the communication link. Three different systems for
sending user input to the manipulator were employed:

• System A - Direct Control In the direct control setup,
position and velocity data from user input was transmitted
directly as setpoints to the robot controller, at 50 Hz.
The controller would then accurately mimic the user’s
movements up to the maximum acceleration of the robot.

• System B - Minimum Jerk Prediction Based Control
The minimum jerk (MJ) prediction based control system
fits MJ trajectories to the user input data whenever a
velocity threshold id exceeded. This was empirically set
to 0.07 m/s. The MJ model is then used to predict the goal
in time and space of the current user motion. A prediction
is made when a velocity peak has been detected, leaving
the second half of the motion to be predicted using data
from the first half. The predicted goal of the user motion
is sent as a setpoint for the robot arm instead of the
current motion.

• System C - Semi-Autonomous Control The semi-
autonomous system is based on system B, and works
identically, until a predicted user input is found to be
within 10 cm of the expected ball trajectory, when the
user is assumed to attempt to catch the ball, and an
autonomous ball-catching system is engaged. The au-
tonomous system sets the robot controller setpoint to the
point on the expected ball trajectory that is the closest to
the present position.

Each subject was first shown the simulator version of the
teleoperation system to allow him or her to get acquainted
with the user interface. The relevant features of the graphics
display were explained. These include a home position that
the end-effector must be brought to before each throw, the
ball flying toward the robot, and the projected trajectory of
the ball. Then the subject was allowed 20 practice throws with
simulated robot dynamics and prerecorded balls.

The following sequence was repeated for each control
system:

• Twelve unrecorded practice throws followed by a pause
while the balls were collected.

• Three times twelve recorded throws with a pause after
each series of twelve.

The order in which the systems were presented was per-
mutated between subjects as to not introduce a bias from
learning curve effects. The subjects were not informed of the
underlying control model for each of the systems. A total of
25 subjects were used. These had no prior experience of robot
control. 12 were female, 13 male, and the ages ranged from
19 to 63 years. All the subjects were persons unaffiliated with
the university that had responded to an advertisement.

3) Experiment 3 - User Instruction: The purpose of the
third experiment was to examine what effect user instruction
would have on performance. The experiment was in most parts
identical to experiment 2, with three differences. First, only
systems A and C were employed — system A to provide a
performance baseline, and system C to see if assistance would
benefit a user when properly instructed. System B was omitted
as it was not expected to enhance performance in the absence
of time-delays.

The second difference was that the users were briefly
instructed how the systems worked, in terms resembling the
system description in the previous section. The third difference
was that a visual cue was added so that the end effector of
the manipulator changed color in the graphical interface when
the autonomous system was engaged. For this experiment 10
subjects aged 25 to 37 were used. Of these, 2 were female
and 8 were male. These subjects had no prior experience with
the experimental setup.

B. Trajectory Estimation

From the collected data, we attempt to predict the subjects’
reaching trajectories using data from the start of the trajectory.
Using current findings on human catching motions, it should
be possible to some extent to predict the final position of a
motion only using a portion of the start of that motion.

In our implementation, we assume that our subjects reach
towards an expected interception point along a minimum jerk
(MJ) trajectory, and that corrections of the initial motion are
carried out by superimposing additional MJ trajectories onto
the first, a model described by Flash et. al (Flash & Henis,
1991; Flash & Hogan, 1985).

If we know the duration of a motion, ∆t, we can use this
to fit the motion to a MJ trajectory, which according to the
model accounts to a 5th degree polynomial with boundary
constraints, Equation 2.

We assign t0 to the start of the motion and set t1 = t0 +
∆t. If we now assume that the motion stops at t1, meaning that
both velocity and acceleration are zero, we get the constraints
in Equation 4.

ẋ(t1) = 0
ẍ(t1) = 0 (4)

Combining equations 2 and 4, we get Equation 5.
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Fig. 11. A fitting of two superimposed 4th-degree polynomials to a measured
tangential velocity profile

x(t) = (t5 − 10t2t31 + 15tt41)a1 +
(t4 − 6t2t21 + 8tt31)a2 +
(t3 − 3t2t1 + 3tt12)a3 +
a6

(5)

1) Offline Trajectory Fitting: For experiment 1, user data
was collected and analyzed offline. As the subjects were
given several tries to practice, we also assume that the initial
reaching motion will be of approximately equal length in
different trials with the same person, as the velocity of the
approaching ball and the distance to the intercept point is
similar between trials. Our first approach was therefore to
extract the average time for a reaching motion.

In order to find the time ∆t, it is important to identify
where one MJ trajectory starts and ends. Since the total
motion can contain several MJ trajectories superimposed on
each other, they must be separated. Our method for separation
works by identifying the typical bell-shaped tangential velocity
profiles of a motion (Milner, 1992; Flash & Hogan, 1985).
These bell-shaped velocity profiles are 4th-degree polynomials
with boundary value conditions that state that they start and
end at zero, with zero derivatives. This leaves only one free
parameter, which can be fit using a least-squares approach.
Since we anticipate several superimposed trajectories, we fit
several such 4th-degree curves, minimizing the mean square
error of the sum of these trajectories as they approximate the
total velocity profile. An example of the results of such a fitting
is shown in Figure 11. We assume that submovements are at
least 100 ms apart, as observed by Milner (Milner, 1992).

We extract the average duration of the first motion of each
recording, and use for ∆t. Using the measurements from
experiment 1 in Section V-A1, we fit Equation 5 to the data
using least squares fitting. The parameter t0 was determined
by finding the point in time after a throw commenced that the
motion exceeded a predefined threshold velocity v0.

The less data that is used for fitting the MJ trajectory, the
earlier a prediction can be made. However, it is expected
that the quality of the prediction will deteriorate with the
use of fewer samples. it is therefore of interest to find what
performance can be expected when using different portions,
α, of the observed trajectory data before making a prediction.

TABLE II
CATCHING SUCCESS RATES

Subject Setup 1 Setup 2

1 0.62 0.71
2 0.24 0.33
3 0.29 0.38
4 0.48 0.67
5 0.48 0.52
6 0.29 0.10
7 0.76 0.71
8 0.81 0.62
9 0.71 0.33
10 0.33 0.43

total 0.50 0.48

2) Online Trajectory Fitting: For the subsequent experi-
ments, online fitting was necessary. Observing that the typical
bell-shaped velocity profile of a MJ motion is symmetrical
in time around the point of maximum velocity, we see that
we can use the fourth degree fitting scheme mentioned above
using only the first half of the motion. Thus, it is possible to
find the start point and predict the endpoint of a movement
when half of that movement has been performed. Therefore,
for the online curve fitting, α was set to 0.5. The midpoint of
a motion is defined as the point where the second derivative,
acceleration, changes sign from positive to negative. By using
an extended Kalman filter, this point is easy to detect. Using
a least square approach, the 4th degree velocity profile can be
fit around this peak, fitting only to data before the peak. The
zeros of the polynomial found with this approach are used as
candidates for t0 and t1 for the motion, and used when fitting
the motion’s position data to a MJ trajectory.

VI. EXPERIMENTAL RESULTS

This section presents the results of the experiments. When
making comparisons between the simulation in experiment 1
and the performance of the real robot setup in experiments 2
and 3, it should be noted that balls are much easier to catch in
the simulated environment, mostly due to the lack of modelling
of collision dynamics. Thus, all balls that hit the catching
cylinder are considered to be “caught” in the simulator, while
many of these might bounce off in the real system.

A. Experiment 1 - User Interfaces

1) Catching Performance: In the simulation experiments,
the catch performance varied largely between subjects. Some
subjects were able to successfully catch most balls after
the initial practice, while others were hardly able to catch
any. The success rate for the different setups are shown in
Table II. According to an early evaluation, there seems to be
a correlation between successful stereo fusion in the interface
and successful catching.

2) Minimum Jerk Fitting: To illustrate the fitting of a MJ
trajectory to recorded data, two examples are shown. Both
examples originate from subject 1, for whom the performance
of MJ fitting was average on setup 1.

The first example, in the left part of Figure 12, illustrates
a catching motion that was close to the MJ model, and could
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be fit well to a MJ trajectory. The plot shows the tangential
velocity profile at the top, and the different components below.
The green dotted line is the fit MJ trajectory, ended with
an asterisk. The first vertical line represents the start of the
motion, and the second vertical line shows the last sample
used for fitting. In this example, a portion of α = 0.35 of the
motion was used for prediction. The second example, in the
right part of Figure 12, shows the performance when a large
corrective motion is added after the initial motion. As can be
seen, this motion is not a good fit to the MJ trajectory, mostly
due to the fact that almost no samples of the corrective motion
are used for fitting the MJ trajectory.
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Fig. 12. Examples of fitting a MJ trajectory to a catching motion using the
first 35% of the motion to fit. The left plots show a successful fit, and the
right plots show a failed fit. The solid line is the measured trajectory, the
dotted line is the MJ trajectory fit. The two vertical dashed bars enclose the
portion of the trajectory used for fitting. The portion of the MJ trajectory that
continues beyond this portion is purely extrapolated.

3) Results Using Setup 1: The following results were
recorded from the users in the trial with setup 1. The average
time and average traveled distance for the the first MJ trajec-
tory for the different subjects are presented in Table III. The
distances are measured in the robot space for easy comparison.
The actual distance moved with the device is 10 times smaller.
Given that all subjects try to catch balls from an identical
set of trajectories, it could be expected that the differences
in traveled distance would be smaller. Some subjects would
return the robot to a default position between catches. This
position varies across subjects, and accounts for most of the
difference in average distance.

The average deviation from final position for the fitted MJ
trajectories is shown in Figure 13. This was calculated by
using the samples from the first portion of the motion to fit
an MJ trajectory, and then measure the distance between the
end of the predicted trajectory, and the actual position at this
time. When only a small portion (α < 0.2) of the samples

TABLE III
AVERAGE TIMES AND DISTANCES FOR MJ MOTIONS ON SETUP 1

Subject Avg ∆t [s] Std(∆t) [s] Avg distance [m] Std [m]

1 0.3376 0.0859 0.2115 0.0859
2 0.2974 0.0462 0.5753 0.1078
3 0.3906 0.0498 0.3638 0.1216
4 0.3076 0.0940 0.1806 0.0692
5 0.3883 0.0853 0.2594 0.0678
6 0.3059 0.0948 0.3552 0.1283
7 0.3190 0.0839 0.1945 0.0724
8 0.2874 0.0863 0.1935 0.0565
9 0.3738 0.0876 0.4557 0.0731
10 0.3471 0.1015 0.2348 0.1382

total 0.3355 0.0801 0.3024 0.1571
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Fig. 13. The final deviation of the predicted MJ trajectory as a function of
the portion of the trajectory used for fitting, using setup 1.

were used, insufficient data accounts for the larger part of
this deviation. When more samples are used, non-modeled
corrective movements after the used samples account for most
of the deviation.

To show the performance of MJ trajectory fitting, the results
are compared to other, simpler models. For MJ fitting to be
meaningful, it should at least outperform simpler approaches
that do not use human motion models. Perhaps the simplest
fitting possible is to use the last available sample and perform
a constant extrapolation from this. Since this model does not
assume any motion after the last observation, it can be viewed
as a zero-order model. If motion is assumed, using least square
fitting to fit linear, quadratic, or cubic functions to the data set
can be used. A comparison of the performance of MJ trajec-
tories and extrapolation of polynomials of different degrees
is shown in Figure 14. Polynomials of higher degree than 3
result in even larger deviations when used for extrapolation.
Note that in all these fittings, the MJ criterion has been used
to determine the duration of the motion, which is essential to
predicting the endpoint for all but the zero-order model.

4) Results Using Setup 2: Most of the discussion in the
previous section is valid for these results as well. The average
time and the average motion distances (in robot space) for the
first MJ trajectory is presented in Table IV.
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Fig. 14. The final deviation of the predicted MJ trajectory as a function
of the portion α of the trajectory used for fitting, as compared to the final
deviation when fitting polynomials, using setup 1. This is the average over
all subjects.

TABLE IV
AVERAGE TIMES FOR MJ MOTIONS ON SETUP 2.

Subject Avg ∆t [s] Std(∆t) [s] Avg distance [m] Std [m]

1 0.7229 0.1063 0.2579 0.1174
2 0.5268 0.0628 0.5082 0.1018
3 0.6738 0.1430 0.3190 0.1832
4 0.6799 0.1291 0.3987 0.2876
5 0.8269 0.1361 0.3135 0.0896
6 0.4860 0.0965 0.4211 0.1330
7 0.6703 0.1162 0.3315 0.1264
8 0.7474 0.1201 0.3971 0.0977
9 0.5945 0.1010 0.3774 0.1282
10 0.6112 0.1218 0.5137 0.1574

total 0.6542 0.1492 0.3838 0.1688

The average deviation from final position for the fitted MJ
trajectories is shown in Figure 15. It should be noted that
this setup has a significantly lower sampling frequency than
setup 1, and therefore the results for using only the first 10
or 20% of the samples are not very reliable. A comparison
of the performance of MJ trajectories and extrapolation of
polynomials of different degrees is shown in Figure 16.
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Fig. 15. The final deviation of the predicted MJ trajectory as a function of
the portion α of the trajectory used for fitting, using setup 2.
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Fig. 16. The final deviation of the predicted MJ trajectory as a function
of the portion α of the trajectory used for fitting, as compared to the final
deviation when fitting polynomials, using setup 2. This is the average over
all subjects.

5) Result Analysis: As can be seen from the plots of fitting
performance, the MJ fitting outperforms the other fitting meth-
ods, at least for a portion of the interval. In both experimental
setups it seems that MJ fitting is better when one to two thirds
of the data is used for fitting. However, it is also obvious
that this performance varies greatly with the subject. Some
subjects seemed to have problems with immersion into the
3D environment. The subjects that were actually able to catch
a significant portion of the balls reported good immersion with
the interface whereas those with fewer caught balls indicated
a weaker immersion.

There seems to be a connection between successful catching
and successful fitting to a MJ trajectory. An explanation for
this can be that subjects that perform well with the catching
task are able to make a good early prediction of the ball
trajectory and therefore need less corrective motions. This
proposition is supported by the observation that many of these
subjects tend to move shorter distances with less variation, as
can be seen in Tables III and IV.

B. Experiment 2 - Online Prediction

The first performance measure considered is the perfor-
mance of the online MJ predictor. The overall performance
is summarized in Table V. The first MJ trajectory that has
been found is evaluated. The average duration is given, and
also the average improvement. The improvement factor is
how much closer the predicted position at t1 is to the later
measured position at t1, compared to the remaining distance
when the prediction is made. Thus an improvement factor of
0 would mean no improvement, and 100% would mean that
the system had made a prediction that was exactly the same as
the actual value. Note that predictions in the wrong direction
give negative improvement factors. The number of tries for
which the predictor improves the position by at least 25, 50,
and 75% are also given.

Comparing the catching performance of system A, where
the MJ predictions were not used to control the robot, but
merely logged, with the MJ predictor performance, we find
that good MJ prediction correlates to successful catching, with
p = 0.010. If we only examine the successful catches
from system A, we find that the average improvement of MJ
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TABLE V
THE PERFORMANCE OF MJ PREDICTION IN EXPERIMENT 2.

average std
Movement Duration 0.249 s 0.0895 s
Relative Improvement 17.2% 82.3%

improvement trials within ratio
25% 44.9%
50% 26.0%
75% 5.9%

TABLE VI
THE PERCENTAGE OF BALLS CAUGHT IN EXPERIMENT 2.

Trial Balls Caught
System A 20.6%
System B 16.4%
System C 15.7%

predictions is 32.2%. There was also a significant correlation
between the reaction time and the performance of the MJ
predictor, with p = 0.0124. The faster the reaction, the better
the MJ prediction.

The second performance measure considered is the number
of balls that were caught with the different systems, as
shown in Table VI. The figures here are the average over
all tries in each experiment, i.e. 900 tries for each system
in experiment 2. The unexpected result in experiment 2 is that
subjects performed worse with the assisted system C than with
the other systems.

For reference, the robot system was also run in fully
autonomous mode without any user connection. In this case,
the reaction time is on the order of 100 ms, and the initial
error that needs to be corrected is minimal. The catching
performance for this case was that 73% of the balls were
caught, 19% bounced off the rim of the end effector and the
remaining 8% were missed completely. This is the hardware
limit on performance for the set of ball trajectories used in the
experiments.

Defining the performance as the ratio of balls actually
caught is an aggregate measure of the performance of human
and machine. In order to discriminate between the subject’s
and the system’s performance, each subject’s logged input
signals were examined. There are two major components of
the quality of user input, the spatial precision of the input, and
the reaction time, good input being both fast and accurate.

Since the spatial accuracy depends on the initial distance
from the manipulator and thus the user’s hand position to the
ball trajectory (Fitts, 1954), we formulate the accuracy A as
the ratio of the distance dc when the ball was the closest to
the manipulator and the initial distance di to the trajectory, as
formulated in Equation 6.

A =
dc

di
(6)

With the system C, there was a tendency that the earlier
a catch attempt was recognized and the autonomous system
was engaged, the higher the probability for catching. This
relationship is illustrated in Figure 17. The plot shows an

almost linear relationship between the distance left for the
ball to travel and the probability for the ball to be caught.
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Fig. 17. The probability that a ball was caught as a function of the distance
remaining to the interception point when the autonomous system was engaged.
The dashed line shows a linear fit to the data.

One way to measure reaction time that is relevant to
the current setup is to see when the intention detector in
system C was able to detect the intention to catch the ball.
Figure 18 shows the distribution of remaining distances to the
interception point when the catch intention was detected.
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Fig. 18. The distribution of the ratio of trials where a catch attempt has been
detected at different distances to the interception point.

In experiment 2, it was found that the subjects’ inputs had
noticeably lower accuracy for system C than for the other two
systems. Therefore, the poor performance of system C was
thought to be due to this poor performance in the user input.
The distributions of accuracies for the different systems in
experiments 2 and 3 are shown in Figure 19. Several subjects
in experiment 2 complained that system C was difficult to
understand and did not perform as they expected.

C. Experiment 3 - User Instruction
For experiment 3, the performance of the online MJ predic-

tor is summarized in Table VII. The first MJ trajectory that has



16

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ratio of movements within a certain ratio of starting radius

Accuracy (ratio of start radius)

ra
tio

 w
ith

in
 a

cc
ur

ac
y

 

 
Exp3 Sys A
Exp3 Sys C
Exp2 Sys A
Exp2 Sys C
Exp2 Sys B

Fig. 19. The distribution of accuracies for the different trials. The plot shows
the accumulated ratio of attempts that were better than a certain accuracy.

TABLE VII
THE PERFORMANCE OF MJ PREDICTION IN EXPERIMENT 3.

average std
Movement Duration 0.248 s 0.0875 s
Relative Improvement 19.6% 71.3%

improvement trials within ratio
25% 46.0%
50% 23.9%
75% 5.8%

been found is evaluated. The average duration is given, and
also the average improvement, as explained in the previous
section. These figures do not differ much from experiment 2,
except the average relative improvement which is slightly
better, with a slightly smaller standard deviation.

As in experiment 2, there was a significant correlation
between the reaction time and the performance of the MJ pre-
dictor, with p = 0.0029, but good predictions and successful
catching in system A only correlates with p = 0.14, with an
average improvement factor of 30.0% for successful catches.

The second performance measure considered is the number
of balls that were caught with the different systems, as shown
in Table VIII. The figures here are the average over all
tries in each experiment, i.e. 360 tries for each system in
experiment 3. The noteworthy result is seen in comparison
with experiment 2: the number of caught balls varies with
the information given to the subject. For system C, there is an
increase in the number of balls caught when the subject is told
that (s)he will be assisted by the system, while for system A,
there is a smaller decrease in performance when the subjects
are told that they will not be assisted.

Also, as can be seen in Figures 19 and 18, the user input

TABLE VIII
THE PERCENTAGE OF BALLS CAUGHT IN EXPERIMENT 3.

Trial Balls Caught
System A 18.0%
System C 24.2%

performance is better for system C in experiment 3. Regarding
reaction speed, since the velocity is close to constant, this fig-
ure can also be expressed in terms of time. For experiment 2,
the median time left when a catch attempt was detected was
185 ms, in experiment 3, the median remaining time was
225 ms, which is 22% longer.

VII. EVALUATION

Though much remains to be studied, some early indications
and observations are presented here.

A. User Interfaces

The two different user interfaces that were tried in the
first experiment showed similar performance in terms of the
number of balls caught. Given the full freedom of motion
and high level of immersion in setup 2, this was expected
to fit the MJ requirements better. However, the motion times
were faster, and the prediction performance better for setup 1.
Setup 1 is also less cumbersome to employ, and was therefore
chosen for the subsequent experiments.

B. Online Prediction

On average, using the MJ model improved the knowledge
of the final position by 17 to 20% in the two experiments.
However, the variation between trials was large. Predictions
to within 25% of the remaining distance was only possible in
less than 6% of the trials. There were significant correlations
between successful catching and fast reaction times and MJ
prediction performance, which suggests that when a subject
has a clear goal for the hand motion and can react in good time
for a successful catch, the hand motion is a more typical MJ
motion with small corrections. Manually inspecting examples
of good performance, it seems that for most of these cases
there is only one major MJ component, while for many
unsuccessful attempts, several corrective motions as large as
or larger than the first followed. Although this remains to
be experimentally studied, it is possible that by using longer
training sessions and thereby more skilled subjects, the number
and magnitude of corrective motions would decrease, resulting
in better performance for the MJ predictions.

The performance improvement resulting from informing the
subjects that there is an assistive function in the teleoperation
system indicates that using informed subjects is also an
important feature to include in future implementations.

C. Future Directions

Summarizing the above, it seems relevant to have more
user training before the MJ predictor model can perform well
enough to serve its purpose of bridging communication delays.

VIII. SUMMARY

Traditionally people have studied teleoperation systems with
limited dynamics. For such systems it is possible to have
model based control system that compensate for delays and
stochastic variations in the communication link. For systems
with significant dynamics an interesting challenge is to decide
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how to provide the user with effective ways of interacting with
a system. I.e. how should the system be modelled in order to
accomodate remote operation.

In human studies of ball-catching it is evident that a
significant part of the motion is ballistic. Once a flying object
is detected the arm is largely controlled ballistically to arrive
at a position that is close enough for catching or for a small
correction of the position. The present paper has studied
teleoperation of catching as an example of how one might
design system for operation with significant dynamics. This
raises questions as to the fidelity of models of trajectory
generation, appropriate mechanisms for feedback generation
etc.

Human models for such systems were briefly outlined. In
addition the design of a high-performance manipulator for
experimentation was outlined and two different interfaces for
control of such a system were presented. The system has been
used in a number of early experiments for ball-catching. The
experiments have been performed across 45 subjects and using
both a joystick / 3D graphics interface and a virtual reality
/ body tracking interface. As a model for ballistic motion
generation a minimum jerk trajectory has been suggested and
also evaluated in this paper.

It is evident that model based control is the only way to
achieve task performance in the presence of significant delays
and/or dynamics. The task in itself seems to be difficult for
untrained subjects, but when the subjects perform well, they
also fit well with the suggested model, and there seems to be
a good possibility for predicting the motions of skilled users.
The system itself has a good enough performance to allow
well above chance performance for the ball catching.

It is important to recognize that these results are preliminary
results and in most cases they are not abundant enough to allow
demonstration of significance. They should be taken as early
demonstration of the value of human motion models. There
are several open issues to be addressed in future research.
This includes a need for clear modelling of the different types
of users: novice, experienced computer gamer, tennis player
etc. It is clear from the early results that there is a significant
variability. In addition it is also clear that there is a learning
effect which will influence the performance. Finally the time
delays experienced this far are limited and it is of interest to
study the performance as the delays increase and become more
dominantly stochastic.
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