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Abstract

An active visual observer is a vision-guided system that not only reacts to visual
stimuli, but is also able to influence the stimuli through its actions. Such a
system could for example be an autonomous robot that uses visual information to
perform tasks in a dynamic environment. Typical tasks for an autonomous robot
may involve fetch-and-carry operations, reconnaissance or delivery missions.

Vision is by an envisaged system used to detect and identify objects, struc-
tures and events in the scene. Some of these objects might be familiar, whereas
others are new to the observer. Their characteristic properties may therefore
not be known a priori. Hence the system needs to utilize any available source
of visual information - approaches based on multiple cues are required. The
overall goal is to determine both “where” the objects are and “what” they are,
i.e. location and identification.

This thesis concentrates on stereo and motion cues. These cues are espe-
cially strong since they indicate where objects are located and how they move
in relation to the observer. Such information may facilitate extraction of more
object-specific data. Since other independent objects may act within the same
environment, the observer has to react fast enough in relation to changes of the
environment, that is it has to be working in real-time.

The contributions in this thesis may be divided into three themes; evalua-
tion of algorithms and models sufficient for real-time use, development of new
efficient methods, and integration of different sources of visual information. The
evaluations involve methods for optical flow and binocular stereo estimation,
and structure-from-motion. The analyses are done in terms of accuracy as well
as speed. New methods are developed for epipolar geometry and ego-motion
estimation, image stabilization, and detection of independent motion. Much
attention is spent on the efficiency and robustness of these methods.

Towards the end of the thesis different sources of visual information are in-
tegrated into a complete system, from which image regions of interest may be
automatically obtained, while dynamically changing fixation. The system oper-
ates at 9 Hz on a single processor running at 1.2 GHz.
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Chapter 1

Introduction

For well over forty years scientists have been striving towards the goal of making
computers see. Even if progress has been made, noone has ever come close to
what the general public would consider to be a “seeing” system. What was
once considered plausible, soon turned out to be much harder than expected. It
is not self-evident what an artificial “seeing” system actually is. Vision, as we
know from biology, is embodied, which means that there is something that sees.
This “something” is involved in a set of tasks and activities, and vision is used
to accomplish these. The world in which this occurs is three-dimensional and
in it there are other independently acting and moving systems that need to be
observed and maybe also interacted with.

A system of the type we envisage could be an autonomous robot using vision
to carry out a variety of tasks, such as fetch-and-carry operations, or reconnais-
sance or delivery missions in environments inaccessible or hazardous to humans.
An important aspect of such scenarios is that the environment, like also our
everyday environment, is not known in detail and that unexpected events occur
in it. To cope with such unpredictability, to detect and identify objects and
events in the environment, such a system needs to utilize every possible source
of information. For a “seeing” system this implies that different types of visual
information should be used and that different algorithms may be appropriate.
Another consequence of the sketched scenario is the real-time requirement. The
system has to be able to respond to stimuli and events in limited time.

The work described in the thesis should be seen in such a context. Important
themes are the integration of multiple types of visual information, the selection
between different algorithms and the design of fast algorithms for 3D visual
analysis. Vision provides rich information both about “where” things are and
“what” they are. This thesis deals mainly with the “where” part, although
important input to processes for recognizing “what” are provided through figure-
ground segmentation. Before we describe this in more detail we will give an
overview of the problems addressed in the following chapters.
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1.1 Outline

An active visual system working in a dynamic environment, needs the ability
to sample the environment and determine the location and extension of objects
present in the scene. It should be able to react to unexpected events, as well as
recognize objects that are relevant to the task at hand. This thesis concentrates
on the problems of determining the location, extension and relative motion of
such objects, without necessarily determining what they look like. We also
present a complete system, where the developed methods are integrated.

The system consists of three separate processing paths; the optical flow path,
the binocular disparity path and the independent motion path. Each path con-
tributes with different kinds of information derived from the visual input. The
paths are not isolated, but share information that is relevant for different paths.
In the end of the thesis cues from the different paths will be integrated, so that
image regions of interest can be found. From these regions the observer might
find an updated gaze direction.

Binocular stereo The location and extension of an object can only be de-
termined, if the image region corresponding to its projection can be segmented
out from the visual data. Binocular disparities will be used for this purpose. A
number of disparity algorithms will be evaluated for accuracy as well as speed.
It will be shown that the difference between different algorithms is primarily in
the density of the calculated disparities and not in the accuracy itself.

In order for the observer to relate the disparities to a position in 3D space, the
epipolar geometry, that is the relative positions and orientations of the cameras,
has to be determined. This information is also essential when the observer
wants to change the fixation point through a saccade from one point in 3D space
to another. In the context of a binocular stereo head a number of methods
for epipolar geometry estimation will be developed. These methods are based
on corner features that are extracted from the left and right camera images.
Considerable attention is devoted to making the process as robust as possible.

Optical flow Optical flow, that is the temporal changes of image brightness,
is needed in order to determine the relative motion of the objects. It may also
serve as an additional cue for object segmentation. Objects located close to each
other in 3D space can be separated based on their individual motion. Three
different optical flow algorithms will be tested for real-time use. Even if the
algorithms are implemented as efficiently as possible, only one will turn out to
be fast enough.

Since the optical flow algorithms typically produce accurate data only within
a limited range of image motion, it is essential that the flow is kept within this
range. This means that images have to be stabilized, so that the dominant
visual motion is canceled out before optical flow is calculated. This is done
by changing reference points in the images, rather than controlling the camera
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motions. However, it is possible for the observer to use the extracted information
for that purpose. Three different stabilization methods are evaluated, out of
which one is a new algorithm based on contour points.

Independent motion The optical flow cannot be fully interpreted unless the
motion of the observer itself, the ego-motion, is known. Using ego-motion in-
formation together with disparities and optical flow, it is possible to determine
which parts of the scene belong to a static background and where independently
moving objects can be seen. The knowledge of independently moving objects
is critical, since such objects might directly affect the observer in its doings.
An efficient approach for independent motion detection will be presented. The
approach is based on forward-prediction and subtraction of image data.

In an effort to find an appropriate method for ego-motion estimation, six
different structure-from-motion algorithms will be analyzed, three linear algo-
rithms and three iterative ones. It will be shown that monocular information
is hardly sufficient to accurately and robustly determine ego-motion. However,
using information from stereo the problem can be simplified. The result will be
sufficient for real-time use, both in terms of robustness and speed.

1.2 Stereo and motion cues

In the thesis numerous visual cues based on binocular stereopsis and motion
will be studied in the context of a mobile seeing system capable of controlling
gaze. These cues are especially rich in that they include information on how the
scene, observed by the cameras, can be segmented into different objects in 3D
space. From biology we known that the paths in visual cortex can be divided
into “where” and “what” paths. The cues dealt with in this thesis primarily
belong to the “where” paths. These paths determine where a distinct 3D object
is located, but not necessarily what it looks like. Such information is instead
provided by the “what” paths, which include cues from e.g. colour, shape and
texture. Since these paths will not be covered in greater detail, the presented
system is far from being a complete system. In order for the observer to recognize
a familiar object, the “what” paths are essential. However, in order to determine
what a particular object looks like, one first has to know where it is located.
The difficulty of dividing an image into different 3D objects is often under-
estimated. For human beings the process is more or less automatic, since we
do not have to spend any effort trying to determine which region of the reti-
nal image belongs to what object. It is not just that this segmentation is done
automatically, relevant image regions also tend to “pop out” without conscious
effort, directing our gaze towards objects that might be of interest. This process
is often called preattentive vision, since no particular attention is required in
order for the process to work. The goal of this thesis is to perform the same task
computationally. Most effort is spent on the individual cues, and towards the
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Figure 1.1. A Yorick stereo head (left) and a Nomad 200 platform (right).

end of the thesis a framework for the whole system will be given. The experi-
ments, that will be presented in the following chapters, were performed on the
Nomad 200 system (Andersson et al. 1999) shown in the right image of Figure
1.1. A Yorick binocular stereo head (Sharkey et al. 1993) seen to the left was
also used in the study.

1.3 Head and eye movements

An observer moving around in a scene is likely to be most successful if it is able
to actively control its gaze. If the gaze direction is changed, such that image
data are stabilized in the centre of the images, more information on an observed
object may be collected as time goes by. Since motion blurring can be avoided,
the quality of data extracted will also be better than would otherwise have been
the case. Furthermore, in order for the system to produce accurate stereo data, it
is essential that the same object is visible in both images. Thus stabilization has
to be performed not just for each individual camera, but also binocularly, so that
the cameras can be kept in fixation. However, with information available from
monocular stabilization, the process of maintaining fixation may be simplified
(Pahlavan et al. 1992, Coombs & Brown 1993).

Stabilization of a moving target is known as smooth pursuit. It may be
considered as an attentive process, rather than a preattentive one and will thus
not be dealt with in greater detail, even if it is an interesting topic in itself.
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We will rather focus on saccades, that is the process of rapidly changing gaze
direction from one point of interest to another, and especially what information
triggers and controls saccades. Saccades have been studied by numerous people
in vision science, although computational attempts have been few (Murray et al.
1995). The reason could be that controlling saccades is harder than smooth
pursuit. Naively one may think that this is not the case, since saccades are
triggered every now and then, whereas smooth pursuit is continuous and relies
on series of images being processed at a very high rate. However, when it has
been initialized, a great deal is known about the object being stabilized and
computations may be concentrated on a small part of the field of view.

On the other hand, when a saccade is triggered not much is known about
existing objects. Thus the preattentive process has to work on all possible image
regions, out of which one is used to trigger a saccade. Since prior knowledge
about available objects is limited, it might not be clear which visual cues to rely
on. Computationally one may be forced to consider a whole range of algorithms,
where many turn out to be useless. It is also difficult to know how much in-
formation one ought to extract before a saccade is issued. If too much time is
spent on gathering information, the region of interest might disappear from the
field of view. Without enough information, a saccade might be issued towards a
region that does not prove to be interesting at all.

In conclusion, the aim is to extract enough relevant information to properly
direct gaze towards objects that might be of use or might interfere with the ob-
server in its tasks. Since the system is intended to work in a dynamic constantly
changing environment, very little can be taken for granted and the observer has
to rely on many different visual cues that each have to be fast enough for it to
react in time. Thus the work presented in this thesis may be characterized as “A
bag of tricks”, an expression that Ramachandran (1985) once used to describe
the human vision system.

1.4 Design criteria

The work in this thesis is in a sense biologically inspired, but not necessarily
biologically plausible. The goal is not to create a model of any biological system,
such as the human visual system, but to provide to an autonomous robot the
ability to “see”. Even if biological systems are good examples of systems that
work, the hardware on which the system runs is totally different. One important
difference is the high level of interconnectivity between neurons in a biological
system, which is hard to match computationally without seriously restricting
the efficiency of calculations. However, a number of lessons can be learned from
biology, inspiring the designer of computational systems. Biology might suggest
what cues to use and how information is to be extracted from the visual input.
The level of interaction between different cues is another interesting topic and
where, between low- and high-level vision, these interactions should take place.
Unlike most computational systems, biological ones include numerous feedback
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connections from higher levels back to lower ones. This greatly complicates the
analysis of such systems. However, the fact that these connections do exist in
biological systems, suggests that they ought to be explored also in computational
systems.

All algorithms presented in this thesis are intended to run in real-time using
off-the-shelf hardware available today. This real-time requirement is necessary in
order to perform closed-loop experiments in which the robot interacts with the
environment based on the visual input. What this means in terms of updates
per second depends on the task at hand. The more dynamic the environment
is, the faster responses have to be. It is often claimed that real-time processing
is not really necessary when studying computer vision for robotics. Requiring
that everything should work in real-time imposes a constraint on algorithms
and methods that may be used. Since future computers are likely to be much
faster, work done today might prove to be irrelevant in a few years time. In 1965
Gordon Moore predicted that the complexity of integrated circuits will double
every 18 months. In terms of processor speeds, this statement has shown to be
remarkably close to the truth, even if recent statistics indicate that 2.5 years
might be a more accurate figure. However, memory speed has only doubled
every ten years. Thus there is a huge gap between processor and memory speed-
ups. With this in mind, it is not at all certain that dramatic speed-ups can be
expected, since vision operations are indeed memory critical.

1.5 Contributions

The following chapters represent various aspects of a complete system presented
towards the end of the thesis. The chapters are ordered so as to reflect the
dependency between different components.

Much work has been spent on analyzing algorithms and methods that have
earlier been presented by others. Such evaluations can be found in the chap-
ters on optical flow (Chapter 2), binocular disparity (Chapter 5) and ego-motion
(Chapter 6). This has been done in the context of an autonomous system work-
ing in an indoor environment, which makes this study different from most other
studies. Some suggestions on how to make implementations efficient have also
been made, such as the combination of a preconditioned conjugate gradient al-
gorithm with robust M-estimators for optical flow calculation.

An approach for rotational stabilization of two consecutive images is pre-
sented in Chapter 3. This method is based on contour points and has the speed
and robustness of corner based methods, but is less likely to collapse when the
visible scene lacks texture. Another method based on corner features is presented
in the same chapter. Chapter 4 contains a large portion of the contributions of
the thesis. A binocular stereo head is described in terms of an essential matrix,
with the number of free variables kept as few as possible. It is shown how the
epipolar geometry can be robustly estimated. An alternative and more efficient
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iterative method, based on the binocular optical flow constraint, is also presented
and evaluated through series of experiments.

A number of ways to combine stereoscopic information with image features
matched in time is given in Chapter 7. It is shown how features triangulated us-
ing the epipolar geometry may simplify the problem of determining ego-motion.
From this information an efficient way of finding independently moving objects
in the scene is presented. Different stereo and motion cues are then integrated
into a complete system in Chapter 8, with the implementation of each component
described in detail. A suggestion is given on how bottom-up cues could be inte-
grated with top-down information. It is also shown how a maximum a posteriori
problem may be solved using graph cuts and used for filling-in of information in
textureless image regions.

1.6 Published papers

Much of the work presented in this thesis has been published elsewhere and
portions of especially Chapters 4, 5, 7 and 8 originate from the following papers.

1. M. Bjorkman and J-O. Eklundh, ‘Real-Time Epipolar Geometry Estima-
tion of Binocular Stereo Heads’, IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, Mar 2002.

2. M. Bjorkman and J-O. Eklundh, Dynamic Fixation in an Active Visual
Agent, in 'Robot Vision’, Auckland, New Zealand, pp. 1-8, Feb 2001.

3. M. Bjorkman and J-O. Eklundh, Depth and Motion from a Fixating Binoc-
ular System, in 'Vision, Modeling, and Visualization’, Saarbriicken, Ger-
many, Nov 2000.

4. M. Bjorkman and J-O. Eklundh, A Real-Time System for Epipolar Geom-
etry and Ego-Motion Estimation, in 'TEEE Computer Vision and Pattern
Recognition’, vol. 2, Hilton Head, SC, pp. 506-513, Jun 2000.

5. M. Bjorkman and J-O. Eklundh, Real-Time Epipolar Geometry Estimation
of Binocular Stereo Heads, Tech. Report ISRN KTH/NA/P-00/09-SE,
NADA, Royal Institute of Technology, Mar 2000.

6. M. Bjorkman and J-O. Eklundh, Real-Time Epipolar Geometry Estimation
and Disparity, in ’Intl. Conference on Computer Vision’, Kerkyra, Greece,
pp- 234-141, Sep 1999.






Chapter 2

Optical flow

Optical flow, that is the constant change of image data over time, arises either
due to objects moving in the scene or as a consequence of the observer moving
itself. Conversely, if the optical flow field is measured, these motions may in
principle be determined. Flow due to translational observer motion, which is
known as motion parallax, depends on the distance from the observer to objects
in 3D space. Thus optical flow may also be used for depth perception, similar
to stereo vision. The difference is that displacements are typically smaller and
measured between two consecutive images and not between the left and right
camera images.

This chapter deals with the computation of dense optical flow field, that is
deriving flow at every image point. It can be discussed whether a dense field
is really necessary, since information such as ego-motion can also be extracted
from a sparser field. The reason for calculating a dense field is that it may
be used for segmentation of the image space into regions of different motion.
Once a region of interest has been found, attention may be directed towards
the region, and more accurate information can be extracted locally. After an
introductory background survey, we will evaluate three methods for real-time
use. Two of these methods are well-known, but the third one is novel in that
a fast Preconditioned Conjugate Gradient method has been combined with a
robust M-estimator. It will be shown that the low cost requirement seriously
constrains the quality of possible results. However, the results are often good
enough for figure-ground segmentation to be successful, especially in conjunction
with disparities, which will be shown later on.

2.1 Methods for computing optical flow
Methods for calculating optical flow can be divided into a number of classes,

which are sometimes hard to separate, since some methods may in fact consist
of ideas originating from different classes (Barron et al. 1994, Beauchemin &

9
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Barron 1995). In this study we have classified methods as being either gradient-
based, frequency-based, correlation-based or based on motion models, that may
be either local or global. Methods may further be divided into groups depending
on whether they use robust statistics or not, or if optical flow is solved in a coarse
to fine framework.

Gradient-based methods Most methods are based on the assumption that
the brightness of a point moving in space will remain unchanged from one frame
to the next, that is the brightness of an image point at position (x(t),y(t)) at
time ¢ is constant, I(z(t),y(t),t) = K. A differentiation yields the well-known
brightness constancy constraint, which is known as the (first order) Optical Flow
Constraint Equation,

Lu+ILw+1;=0, (2.1)

where (u,v) are the x- and y-components of the optical flow and I, I, and I
are the derivatives of the brightness function.

Since there is only one such constraint and two unknown parameters for
each image point, the problem of finding the optical flow is under-constrained.
One possibility of overcoming this problem, which is referred to as the aperture
problem, is through the assumption that the flow is constant in a neighbourhood
around the point under consideration. From this assumption Lucas & Kanade
(1981) found the optical flow using least squares over such a neighbourhood.
Another way of overcoming the aperture problem is assuming that % grad I =
0, which leads to the second order optical flow constraints (Uras et al. 1988,
de Micheli et al. 1993),

{ A S (2.2)

Ipu+Iyv+T,; = 0

Now instead of a single constraint, two constraints are available and the optical
flow can be found separately for each image point.

Optical flow based on only first order constraints, has often been considered
as unreliable. However, it can be shown that results may be easily improved
through proper choices of pre-filtering, differentiation, neighbourhood and confi-
dence criteria (Brandt 1997). Since the major source of error is in the calculation
of image derivatives (Fermiller et al. 2001), the second order derivatives are typ-
ically more sensitive to image noise. To overcome this problem, Tretiak & Pastor
(1984) used a combination of both first and second order constraints. A more
extreme variant is a method of Weber & Malik (1995), who used a whole series of
filters of first and second order derivatives to produce an over-constrained system
and total least squares for improved robustness in the computations. Another
possibility is first using least median of squares to identify outliers in the data
and then use weighted least squares to get a final solution (Bab-Hadiashar &
Suter 1998). These outliers are points where either the brightness or the con-
stant optical flow assumption fails. Since errors are squared, these outliers would
otherwise easily dominate the result.
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A number of proposed methods use an additional smoothing constraint to
further increase robustness and density of the calculated flow. Horn & Schunck
(1981) performed a global regularization with an isotropic smoothing term

5= A2 /(|Vu|2 +|Vof?) dx (2.3)
together with the brightness constancy constraint
Ep = /(Iwu + Iv + I;)* dx. (2.4)

They applied an iterative scheme with a rather slow convergence. However, it is
possible to solve the same minimization problem using an incomplete Cholesky
preconditioned conjugate gradient algorithm (Lai & Vemuri 1998), that conver-
gences in about 10 iterations, without any increased complexity per iteration. A
problem with a smoothing term, such as Eg, is that flow data spread equally in
all directions, even across occluding edges. Nagel & Enkelmann (1986) instead
used, what they called, an oriented smoothness term that restricted the spread
to directions along edges. However, since non-occluding edges are treated no
differently from occluding edges, this approach might restrict the smoothing too
much. Another possibility is explicitly identifying occluding edges (Thompson
et al. 1985) and then only spreading information in the direction of the occluding
side. Thompson (1998) outlined a method that, using the normal flow on both
sides of a boundary, classifies the two sides into an occluding and occluded one.
Projections of flow and edges are performed from frame to frame, to gradually
improve the results. Another way of preserving discontinuities in the optical
flow is using a more robust smoothing term and minimizing the total energy
in a non-linear minimization. It is possible to turn the problem into a convex
one through the introduction of dual variables and solve it using linear methods
(Deriche et al. 1995).

Frequency-based methods A different family of methods uses spatiotempo-
ral motion energy filters to estimate the optical flow (Adelson & Bergen 1985).
Moving image structure results in oriented lines in space-time, where the ori-
entation is defined by the velocity. If a Fourier transformation is performed on
Equation 2.1 one will get a new constraint in the frequency domain,

Wzt + Wy + wy =0, (2.5)

that is (u,v) defines a plane in the space of spatiotemporal frequencies w;, wy
and w;. Heeger (1987) used a series of band-pass Gabor filters tuned to different
spatial and temporal frequencies to estimate the orientation of this plane and
thus the optical flow. Observing that the phase component of the filter outputs
is more stable to changes in amplitude, Fleet & Jepson (1990) chose another
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approach. The output of each filter may be expressed as a complex valued
function,
R(z,y,t) = p(x,y,t)e? ™1, (2.6)

which through differentiation results in a constraint on the phase

Gau + yv + ¢ = 0. (2.7)

This method seems to be the method of choice, in an extensive study by Barron
et al. (1994), but there has been a number of reports on its sensitivity to noise
(Bober & Kittler 1994, Liu et al. 1997). Even at moderate noise levels of about
5% the phase-based method often results in worse accuracy than far less complex
methods, such as the approach of Lucas & Kanade (1981). There are alternatives
to the use of spatiotemporal Gabor filters, such as Hermite polynomials, which
have been used by Liu et al. (1997), together with a more general model of the
optical flow.

Correlation-based methods Correlation-based optical flow methods (Anan-
dan 1989, Singh 1990), that is methods based on correlations of local image
neighbourhoods, have come under great criticism and have been considered as
less reliable than gradient or frequency based methods. It is primarily a con-
sequence of the fact that correlations tend to make estimates biased towards
integer flow values and in most studies approaches are tested towards sequences
with ground-truth flow limited to a few pixels in magnitude (Barron et al. 1994).
Thus the relative errors can be substantial. Gradient and frequency based meth-
ods, on the other hand, have serious problems for larger flows, unless they are
used in a hierarchical framework or the images have been significantly blurred in
advance. However, this blurring typically results in an over-smoothed estimate
of the optical flow.

An approach by Anandan (1989) uses sums of squared differences between
local neighbourhoods in a hierarchical framework and distinctness of peaks in
correlation space as confidence measures. A smoothness constraint on the optical
flow is then imposed using estimates from coarser scales and neighbouring pixels,
which results in smoothing in directions of lower confidence. A similar two-
stage method was presented by Singh (Singh 1990), who formulated the problem
as a statistical combination of flow estimates obtained from two sources, the
correlation values and the neighbouring estimates. Each source has its own
covariance matrix, and the eigenvalues of the inverted sum of these matrix are
used as confidence measure.

Local motion models If a segmentation of the image into regions of differ-
ent motion is given, the calculated optical flow may be improved using spatial
consistency. On the other hand, in order to segment objects along motion dis-
continuities, the flow has to be known. Thus segmentation and flow estimation
are two interrelated problems that are hard to separate. As early as in 1979,
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Fennema & Thompson (1979) used Hough transforms on the optical flow con-
straint to perform segmentation, but they never went as far as to exploit the
segmentation to improve the optical flow. Adiv (19854) instead performed seg-
mentation after estimating the optical flow in order to fit flow data into different
regions of planar motion. Bergen, Burt, Hingorani & Peleg (1992) were able to
find the flows of two different motion components without an initial segmenta-
tion being required. In an iterative scheme using warping and subtraction, the
two components were alternately solved for, assuming one of the components to
be given.

Since segmentation is such a difficult problem, one could instead use robust
methods near motion boundaries. Neighbouring pixels belonging to different
moving objects can be treated as outliers, as well as pixels for which the bright-
ness constraint does not hold. For this purpose Black & Anandan (Black & Anan-
dan 1993, Black 1994) used an M-estimator and the Graduated Non-Convexity
method of Blake & Zisserman (1987) to iteratively locate a globally optimal so-
lution. Ju et al. (1996) used a similar method with locally affine patches, rather
than the optical flow constraint pixel-wise and got exceptionally good results on
the well-known Yosemite sequence. Another example of robust methods used
for optical flow calculation is an approach of Ong & Spann (1999), who used
robust least median of squares regression of affine optical flow models on over-
lapping blocks. It is also possible to combine robust methods with a hierarchical
structure of parametric models (Szeliski & Shum 1996, Memin & Perez 2002),
for improved speed and disparity range. However, such models typically have
difficulties aligning block edges to occlusion boundaries.

A popular notion in image motion analysis and especially in video coding,
is that of scenes segmented into layers. Each layer represents a region of some
motion and each pixel is assigned to one such layer. Darrell & Pentland (1991)
used support maps to represent the segmentation and the Minimum Description
Length principle to determine the preferred number of support maps. Each sup-
port map determines the relative weight given to a particular motion hypothesis
for each pixel. A similar approach was presented by Ayer & Sawhney (1995), but
they used Expectation-Maximization to facilitate a binary assignment of pixels
to segments. Initial hypotheses of affine motion can be calculated locally, as
done by Wang & Adelson (Wang & Adelson 1993, Wang & Adelson 1994), who
then merge similar hypotheses using k-means clustering.

Black & Jepson (Black & Jepson 1994, Black & Jepson 1996) instead used
intensity based segmentation of images into regions and fitted these to variable
order parametric models, with local deformations near occlusion edges and areas
where a planarity assumption does not hold. An approach by Weiss & Adelson
(1996) is similar to that of Black & Jepson’s in the sense that image intensities are
used for segmentation, but this is done globally with the number of layers kept
low, reducing the risk of over-segmentation. Unfortunately, planar regions that
satisfy an affine motion model are often hard to find and sometimes lead to such
over-segmentation. Weber & Malik (1997) instead segmented image sequences
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into different moving regions using a model based on the affine epipolar constraint
and updated these models using Kalman filters.

Global motion models For many applications, such as navigation and surveil-
lance, there is no reason why the optical flow field has to be calculated locally.
Assuming that there is a dominant flow component induced by the motion of
the observer, it is possible to perform an image registration on the whole image
(Bergen & Adelson 1987, Bergen, Anandan, Hanna & Hingorani 1992) and in-
directly recover the flow field. In a sense, using one single model covering the
whole visual field, is an extreme on a spectrum of approaches, whereas methods
using only local information, such as the method of Weber and Malik (Weber
& Malik 1995), are located at the other side of the spectrum. Unfortunately,
without knowing the depths for every single image point, an image stabilization
might result in a residual. However, one might exploit this residual and find
the translational direction of the observer (Irani et al. 1994b), as the registration
eliminates the rotational component. Irani et al. (1994a) also tried to find, and
as new frames become available update, connected components in the residual,
resulting from independently moving objects in the scene. It is further possible
to take advantage of multiple frames, using the fact that the flow is embedded
in a lower dimensional linear subspace if the scene is rigid (Irani 1999) or planar
(Zelnik-Manor & Irani 2000).

2.2 Towards real-time optical flow

If one would like to calculate a dense optical flow field in real-time, what kind
of methods should be considered? Since most methods rely on the flow being
limited to a few pixels in magnitude, it is essential that the computations can be
performed at a high enough frame-rate. The changes from update to update will
also be smaller at a higher rate and it is then easier to take advantage of temporal
consistency. Thus an “accurate” method running at 1 Hz is not necessarily better
than a less accurate one running at 25 Hz, since the changes in the scene during
that second might be more than the system can handle. Few attempts have
been made to find faster optical flow methods, even if some exceptions do exist
(Liu et al. 1997, Camus 1997). The problem of speed is often ignored, with
the belief that enough computational power will become available in the future.
However, the most accurate methods are many orders of magnitude slower than
the fastest ones of today and since higher resolution and better frame-rate might
be of more interest than pure accuracy, there will always be a trade-off between
computational cost and accuracy.

There is another requirement that limits the number of possible methods. In
the case of an active observer it is essential that the latency between an event
occurring in the scene and the resulting change being observed in the optical
flow is low. This means that calculations should be performed using as few
images as possible, preferably only two or three image frames. Typically an odd
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number of frames is considered, with the calculated flow representing the image
velocities of the centre frame. Even if it is possible to use only two frames, it
might sometimes be beneficial to use an additional frame, so that the calculated
flow actually corresponds to what happens at an event for which an image is
available and not an event between two frames.

In this study we have evaluated three different methods that are all based
on image gradients. The x-, y- and t-wise derivatives are approximated using
three different separable 5 x 5 x 3 kernels. Each kernel consists of a high-pass
filter along one dimension and low-pass filters for the remaining two. The high-
pass filters H, = H, = -(1,-8,0,8,—1) and H; = £(—1,0,1) used for space
and time derivatives, are the discrete approximations closest to a continuous
differentiation filter. Low-pass filtering is performed with ordinary Gaussian
filters, that is L, = L, = %(1,4,6,4, 1) in space and L; = %(1,2,1) in time.
Thus with I3 denoting three consecutive images, the gradients are calculated as
follows:

IZ.:HZ.*Ly*Lt*Ig
Iy =L, xHy* L x I3 (2.8)
It:Lm*Ly*Ht*I3

2.2.1 Weighted least squares

The first implemented method is that of (Lucas & Kanade 1981), which has of-
ten shown to be remarkably accurate (Barron et al. 1994) despite its simplicity.
Optical flow is estimated through weighted least squares regression on the op-
tical flow constraint given in Equation 2.1, which is performed locally with one
window for each image point. That is, if p is a point of interest and N, its local
neighbourhood, the corresponding flow vector (up,vp) is sought such that

Z ws(Iz,su + Iy,sv + It,s)27 (29)
SEN,

is minimized. The window function ws represents the weights used for each
flow constraint, putting more emphasize on the central constraints, than the
peripheral ones. A Gaussian filter kernel of dimension 5 x 5, as given by L, and
L, above, is chosen for this purpose. Thus an estimate of the optical flow is
given by

u _
( ; > =A,'b,, where (2.10)

2
A= w, ( IIZf Iw’IZIy*S ) and (2.11)

SENP Y,8+T,8 Y,8
I, .1

b, = — o8 ts ) 2.12
p Z Ws ( Iy,sIt,s ) ( )

SEN,
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Problems occur if the second moment matrix A, is singular. With line fea-
tures, which contain no structure in the direction along the line, the least eigen-
value A2 of A, will be zero, and the matrix cannot be inverted. Then the best
one can do is to accept the normal flow

( v ) B trac:ﬁp)’ (2.13)

that is the optical flow in the direction of the maximum gradient. For uniformly
shaded image regions, the largest eigenvalue will also be zero. In order to de-
termine whether the calculated data are to be trusted, some kind of confidence
measure is required. The trace of A, is one such possible measure (Simoncelli
et al. 1991). However, the trace does not discriminate between line structures
and more reliable two-dimensional structures that do not suffer from the aper-
ture problem. In this study, like in many other studies, we use the smallest
eigenvalue, which can be written more explicitly as

A2 = trace(Ap)/2 — \/trace(Ap)2/4 —det(Ap). (2.14)

For each image position, the corresponding confidence value is stored together
with the optical flow estimate. Thresholding is delayed until later, which means
that different thresholds, typically between 0.5 and 5, can be used for different
operations on the flow. In fact, which measure to use depends on the application.
In the case of observer motion and structure estimation, a mixture of optical flow
and normal flow might lead to erroneous results. However, if the flow is used
in order to judge whether it is compatible with a known motion, normal flow
might suffice. The method has been implemented in two different versions, with
different ways of representing temporary buffers, as described in the Appendix.
Calculating a 192 x 144 pixel flow field requires about 24.4 ms with gradients
stored as whole images, and 12.5 ms if the gradients are calculated on the fly
and just stored temporarily.

2.2.2 Fast regularization with smoothing

Another method to be tested is the classical approach of Horn & Schunck (1981),
but with the exception that the system is solved using a preconditioned Conju-
gate Gradient method, with an incomplete Cholesky decomposition as precon-
ditioner (Golub & Van Loan 1996), along the lines described in (Lai & Vemuri
1998). The error function given by Horn & Schunk consists of two parts, one
due to the brightness constancy assumption and another for smoothness, that is

E=Y (Ioptp+ Iyyvp + I p)” + A(| V| + [V, ), (2.15)
P

with X used as the relative weight between the two constraints. If the gradient of
the x-wise flow component at a point p = (z,y) is approximated by Vu(z,y) ~
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[u(z +1,9) —u(z — 1,y),u(z,y + 1) —u(z,y — 1)] T, the corresponding factor of
the smoothing constraint can be written as

Z |V, | ~ Zu(m,y)Au(x,y), where (2.16)
P .y
Au(z,y) = 4u(z,y) —u(z + 1,y) —ulz - L,y) —u(z,y +1) —u(z,y — 1)).
The y-wise part of the smoothing constraint can be approximated in a similar
manner. With all flow vectors stacked on top of each other, such that the first half
consists of the u components and the bottom half contains the v components,
a 2N-vector u is created, where N is the total number of image points. The

energy to be minimized is then given by

E(u)=u"Au+b u+) I7, (2.17)
P

with b denoting a 2N-vector with I, ,I; , and I, ,I; , as elements. The 2N x2N-
matrix A includes 7 diagonals and can be written as four submatrices,

Ags+20A, | A )
A= Tz s zy , 2.18

such that A;; are diagonal matrices with I; ,I; , as elements and A is given by
the Au(z,y)’s in Equation 2.16.

With the Conjugate Gradient method a solution to a symmetric positive
definite problem is found iteratively, through gradient descents in directions py
A-orthogonal to previously explored directions, that is p;crApj, 0<j < k. Such
a direction can be found as a linear combination of the previous direction pg—_1
and the current residual ry = b — Auyg. If the matrix A is ill-conditioned, the
convergence rate will be weak and a so called preconditioner can be used instead.
A preconditioner is chosen such that it improves the condition number of the
system and at the same time is a good approximation of A.

With a sparse matrix A, such as in our problem, an incomplete Cholesky
decomposition may serve as a preconditioner. The benefit of using incomplete
Cholesky factorization, instead of standard Cholesky factorization, is because the
sparsity can be kept, which is necessary due to the large size of A. In conclusion,
the preconditioner used here is a matrix P = LL T, such that L is a sparse lower
triangular matrix and P is close to A. In this study an L matrix, with 8 diagonals
is used, following the derivations in (Lai & Vemuri 1998). Because of its simple
structure, Pz, = rj can easily be solved, as seen in the algorithm of Figure 2.1.

With a smoothing factor A of about 2, the method converges in approximately
10 iterations, which is two orders of magnitudes faster than the method proposed
by Horn & Schunk. Its major weakness is the fact that 20 floating point values
have to be stored and updated for each image point. On our machine the time
required for convergence is 80 ms for a flow field of dimension 96 x 72. It is worth
pointing out that the initial flow ug in Step 1 of the algorithm may originate
from a coarser scale flow field or from a previous instance in time, resulting in
an even faster convergence.
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Preconditioned Conjugate Gradient

1. Choose ug

2. k=0, rg=b—- Ay

3. Solve Pzg =1y, po =20, Yo =T, Zo
4 ok = =V /Py APy

5. Uy 1 = Ug — QxPk

6 Tpy1 =Ty + apApy

7 Solve Pz 11 = ryq1

8

9

— T
Ye+1 = Tpiq1Zk+1

: Br = Y1/ 7k
10. Pk+1 = Zk+1 + BrPk
11. k=k+1

12. Until convergence, return to 4.

Figure 2.1. Preconditioned Conjugate Gradient method

2.2.3 Making the constraints robust

Unfortunately, the method of Horn & Schunk uses a smoothing constraint that is
applied globally, without taking possible occlusion boundaries into consideration.
The resulting optical flow tends to be over-smoothed, which makes segmentation
based on flow difficult. In order to allow discontinuities in the flow field, the
quadratic smoothing term ought to be changed to a more robust error function.
An estimator being robust means that the influence of a single datum should be
bounded as the error increases. With a quadratic function, the influence due to
errors grows linearly, which means that the end result will be totally dominated
by outliers if such exist. Indeed, occlusion boundaries appear frequently in most
image sequences.

As mentioned in the beginning of this chapter, numerous researchers have
previously been using robust estimators for optical flow estimation. In this sec-
tion robust error functions will be used for the brightness as well as smoothing
constraint. The method is much similar to one presented by Black (1992) in
his thesis, but is different in its implementation. The resulting non-linear opti-
mization problem will be solved iteratively using the Conjugate Gradient method
described in Section 2.2.2. The error to be minimized can be expressed as follows:

E= ZPB(L»U + Iyv+Ii,08) + A ps(||V [u,v]]],05), (2.19)

where pp(x,05) and ps(z,0s) are the error functions associated will the bright-
ness and smoothing assumptions. In the implementation from which results will
be presented, Cauchy functions,

p(z,0) = 10g(1 + 5 (/o)) (2.20)
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also known as Lorentzian functions, are used for both error terms. Like other
M-estimators, the optimization problem can be solved using iterated reweighted
least-squares, with the corresponding weights defined by

1

m. (2.21)

w(z, ) = —pa(,0) =

More explicitly, with eg and eg denoting the errors of the brightness and
smoothness constraints, the function to be minimized can be written as

E =3 wr(enp) €p,p + A ws(esp) €5
€Bp = Iy pup + Iy pvp + I, and (2.22)

_ 2 2 2 2
€Sp = \/uw,p Tuyp t Uzt Uy p

The weight functions are evaluated using the errors from the previous pass of an
iterative procedure, thus resulting in a series of quadratic problems. Each con-
secutive quadratic problem is then solved using the Conjugate Gradient method,
which in itself is iterative. This means that the whole non-linear optimization
problem will be solved using two nested iterative processes. The continuation
parameters og and og are decreased for each pass, such that the influence of
outliers is gradually reduced. The shape of error and weight functions due to
the brightness constraint can be seen in Figure 2.2 and the complete method is
summarized as pseudo-code in Figure 2.3.

Figure 2.2. The error (left) and weight (right) functions of the Lorentzian es-
timator used for brightness constancy errors. The solid lines show the initial
functions, while the dashed lines show the final ones. In order to facilitate com-
parison, the graphs have been rescaled so that their peaks coincide.

In the current implementation the continuation parameters are decreased by
a factor of 0.5 for each pass, starting at op = 12 and og = 0.2. As in the
previously presented method the parameter A, which is fixed to 0.1, denotes the
relative importance between the two constraints. However, taking the weight
functions into consideration, the difference is in fact A(op/os)? = 360 if there
are no errors in either constraint. This means that for areas where discontinuities
in the flow do not exist, the optical flow due to the robust version is smoothed
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Regularization with robust estimators

Choose initial u, og and og
Warp images using u and calculate gradients
Calculate weights wp, wg

Update u using Conjugate Gradient (see Figure 2.1)

1
2
3
4. Create preconditioner factor L (see Section 2.2.2)
5
6 Decrease o and og

7.

Until convergence, return to 2.

Figure 2.3. Regularization with Cauchy functions

more than in the original method of Section 2.2.2. Experiments indicate that
three passes of five iterations each yield results sufficient for our applications,
as will be shown in the next section. The computational cost is about 150 ms
on a 1.2 GHz Athlon MP machine for flow fields of dimensions 96 x 72, without
taking advantage of flow calculated in previous frames.

2.3 Experiments

In this section a number of experiments will be presented, based on the methods
of Lucas & Kanade, Horn & Schunk and robust Horn & Schunk, as presented
in Section 2.2. Since our major concern is whether dense optical flow can be
used to reliably indicate significant events occurring in the scene, the results
will be compared qualitatively rather than quantitatively. Even if segmentation
based on optical flow is interesting in itself, it is believed that coarse estimates of
independently moving regions in terms of location, heading and size will provide
enough information for the system to redirect attention. Once an object is
attended to more accurate processes can be applied locally.

A three level Gaussian pyramid of images was used, with data being low-
pass filtered and subsampled between each level. The size of the finest scale
image was set to 192 x 144 pixels. Optical flow was then calculated from top to
bottom, warping the results from one level to the next, where it is used as initial
flow estimates. The reported results of the regularization based approaches,
those based on Horn & Schunk, originate from the second finest scale, which is
96 x 72 in size, in order to match the computational costs reported in Section
2.2. A series of four different experiments were performed to evaluate the three
presented methods to find out if they are suitable for real-time use.
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Experiment 1

In the first experiment we investigate the general characteristics of the differ-
ent methods, using a three image sequence of a square translating on-top of a
checkerboard background, with the central image shown to the upper-left in Fig-
ure 2.4. The results of Lucas & Kanade can be seen in the upper-right image.
Due to the fact that this method uses local windows of optical flow constraints,
the measures around the boarders of the image are not reliable and have thus
been excluded. Since optimization is performed locally, unlike the other methods
that also include a smoothing constraint, it does not get any support from more
distant regions, which means that sporadic errors often appear in the resulting
flow. This can be seen along the upper and left edges of the square, where image
structures related to foreground and background are confused.

Figure 2.4. The upper-left image shows a square translating one pixel to the
right and down. Results from Lucas & Kanade, Horn & Schunk and robust
Horn & Schunk are shown in the upper-right, lower-left and lower-right figures
respectively.

The method of Horn & Schunk does not suffer from the same sporadic errors,
but instead of really resolving the problem, errors are smoothed out. This leads
to new errors, when flow is erroneously spread across discontinuities. A method
that does not suffer from these two kinds of errors, at least not in the basic
example presented here, is the robust version of Horn & Schunk’s method. It
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is worth pointing out that discontinuities in the calculated flow not necessarily
correspond to the exact locations of occlusion boundaries in the original sequence.
Structure is still needed on both sides of a boundary, in order for the method to
identify it as a discontinuity. Its estimated location will be somewhere in between
image structures on either side. Thus the moving square in the lower-right flow
diagram of Figure 2.4 is slightly larger than in the stimulus.

Experiment 2

The next sequence, of which three images are shown in the left column of Fig-
ure 2.5, is taken by an autonomous robot moving around a living-room. The
translational motion is along the optical axis with a speed of about 4 cm per
update or 1 m/s when operating at 25 Hz. The calculated optical flow can be
seen in the centre and right columns of the same figure and gives an indication of
what can be expected from many everyday scenes. Flow in the x-wise direction
corresponds to the central columns, whereas the right column shows the y-wise
component. The nearest object is the chair on the left, located about 2 m away
from the viewer. It is here the maximum optical flow can be found, with a peak
of about 2 pixels downwards, which is shown as the lighter areas of the right col-
umn. As can be seen from the results, the flow is expantional, which is expected
from translational forward motion.

The darker regions of the upper row indicate areas of low confidence when
calculating flow using Lucas & Kanade’s method, that is areas where the least
eigenvalue of the second moment matrix Ay, is close to zero. An expanding mo-
tion field is evident in these images, but the flow is not accurate enough for the
chair and wheelchair to be seen. Some obvious errors do exist, especially where
the background can be seen through the back of the chair. If the magnitudes of
flow vectors are analyzed in greater detail, many vectors prove to be underesti-
mated, a consequence of the bias towards zero in the least squares optimization,
as explained by Fermiiller et al. (2001).

In the flow due to Horn & Schunk, which can be seen in the second row,
regions that represent the left chair and wheelchair can vaguely be seen, but due
to extensive smoothing, it is questionable if it can be used for segmentation. In
a sense this is understandable since the magnitude of flow induced by forward
observer motion is typically quite small, especially near the focus of expansion.
The same thing applies to the robust version, even if some discontinuities are
visible, such as the seat of the chair. Contrary to what is expected, flow may in
fact float across discontinuities, which is partially due to the fact that the filter
kernels have a certain width. It might also be the case that some discontinuities
only exist at finer scales and that smoothed initial data are pushed downwards
from coarser levels, where these discontinuities have not yet become visible.
Using more iterations than those suggested in Section 2.2, seems to support this
notion. It is also possible to use lower values of the smoothing parameter A at
coarser scales, instead of the same value for all scales, which was the case in this
experiment.
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Figure 2.5. The left column shows three images from a typical sequence. The u
and v flow components are given in the centre and right columns. Results from
Lucas & Kanade, Horn & Schunk and robust Horn & Schunk are in the upper,
middle and lower rows. Regions without enough texture are shown as dark areas.

Experiment 3

In this experiment shown in Figure 2.6, the conditions are similar to the previous
one, except for the fact that the wheelchair is controlled by a person, who is
driving it at a speed of about 3.5 m/s to the right. This results in a maximum flow
of 11 pixels to the right and 3 pixels down in an image of dimensions 192 x 144.
This is quite a lot compared to typical testcases presented elsewhere, for example
in the work of Barron et al. (1994). This might seem an extreme case, but it
does occur frequently in typical indoor scenes. What is quite striking is that
Lucas & Kanade’s algorithm does considerably well, compared to, for example,
the original version of Horn & Schunk. Quantitatively, the results are rather bad
for the region representing the moving wheelchair, but it is quite clear that it
can indeed be used for segmentation. The results are bad because the magnitude
is grossly underestimated. The reason is that even at the coarsest scale the flow
is greater than what the method reliably can estimate. Erroneous data survive
from level to level, without being significantly improved. Normally the estimate
of flow is improved at each new level, but that requires the initial error to be
limited to about 1.5 pixels. However, even if the results are erroneous, they
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Figure 2.6. The left column shows three images from a typical sequence. The u
and v flow components are given in the centre and right columns. Results from
Lucas & Kanade, Horn & Schunk and robust Horn & Schunk are in the upper,
middle and lower rows. Regions without enough texture are shown as dark areas.

capture the principal behaviour of the motion. The y-wise component of the
right columns seem to be recovered worse than the x-wise component, but that
is primarily due to the scaling of the intensities in the presentation.

The method of Horn & Schunk is on the other hand forced to comply with the
smoothing constraint, which results in complete failure. The only thing one can
be certain of is that something is moving and that it is probably moving to the
right. If the method is instead made robust, the calculated flow looks much more
promising. It is still underestimated, but not as much as by Lucas & Kanade’s
method, and with additional iterations the result will gradually improve, al-
though more and more slowly. The occluded region in front of the wheelchair
does not contain enough structure to prevent it from being incorporated into
the foreground object. Much like Lucas & Kanade’s this approach encounters
problems already at the coarsest scale, since the flow is close to the limit of what
can be estimated. Unless convergence occurs at the first iteration, it will most
likely never converge. This is what happens on the upper part of the object,
with the unfortunate consequence of the disabled person in the wheelchair being
beheaded. Since the kernels used for gradient estimation stretch across occlud-
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ing edges, the results will here be too erroneous for the method to produce good
enough initial estimates.

H .

Figure 2.7. The left column shows three images from a typical sequence. The u
and v flow components are given in the centre and right columns. Results from
Lucas & Kanade, Horn & Schunk and robust Horn & Schunk are in the upper,
middle and lower rows. Regions without enough texture are shown as dark areas.

Experiment 4

The last experiment is also the most challenging one, in that the observer rotates
at a speed of 35°/s, while an independently moving object generates deformable
optical flow. Like the previous example, this case is not extreme either, since the
walking person seen in Figure 2.7 is only moving at about 3 m/s. This results in
the background moving to the left at a speed of more than 10 pixels per update.
Thus the conditions are in a sense similar to the previous case, but with the
distinction that the foreground is static, while the background is rotating and
not the other way around.

It is quite clear from the results that this is indeed a harder problem. With
the robust version of Horn & Schunck’s approach, the foreground object may
still be segmented from the background. This is likely to be the case also for
the method by Lucas & Kanade, even if the borders are less distinct. Because
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of the size of filter kernels and due to the fact that optimization is performed in
windows of 5 x 5 pixels, the region in foreground has increased in width compared
to the stimulus. That was the case also in earlier examples, but it is more evident
here. In fact, the resulting flow is spread out, even though there ought to be
sufficient data in the background. From Equation 2.12 in Section 2.2.1, one may
conclude that if either the spatial or the temporal gradient is zero, the product
will also be zero. This might occur when image data have not been properly
warped, due to errors in the previous coarser level. As a result the constraint is
changed, such that zero flow is favoured, with the consequence that flow vectors
tend to be spread towards the side of largest flow, where such errors are most
frequent.

2.4 Conclusions

In this chapter three methods for calculating optical flow on sequences of images
have been explored, with the aim of finding a suitable approach for a real-time
active vision system. The intention is to extract enough information to judge
whether anything of significance occurs in the scene. The belief is that coarse
estimates of motion, location and size, derived from the optical flow, can be used
to attract the attention of the observer, as will be described in Chapter 8. Once
an object has been attended to, more accurate information can be calculated
locally, in order to determine properties such as shape.

From the experiments one may conclude that a smoothing constraint is in-
deed useful, but only in conjunction with a robust estimator. However, it is far
from certain that such a method would be better than using only the optical
flow constraint, such as in the method by Lucas & Kanade. The one order of
magnitude difference in computational cost is such that a simpler method might
enable a far greater update frequency, which then makes the optical flow estima-
tion problem easier to solve. One major obstacle is the fact that the flow field
can be grossly underestimated and data be spread across occlusion boundaries.
In the next chapter we will try to stabilize the background (or foreground) in
order to compensate for this weakness.
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Stabilization

Calculating optical flow, as was done in the Chapter 2, is in a sense a spatial
matching operation. Matching is easier if one knows the expected range at which
one should search for matches. Similar matching operations may occur when
estimating binocular disparities or when the incoming stimulus are compared
to a previously stored memory map. In all these cases, a system would benefit
from a coarse approximation of the appropriate matching range. In this chapter
we will determine this range for matching between two consecutive images. We
call this operation stabilization. A new method based on contour points will be
presented and evaluated against two other methods, one based on corner features
and another one that uses all image points. The evaluation is done in terms of
accuracy as well as speed.

Stabilization may also be used to facilitate fixation, not using the stabilized
images per se, but the pan velocities that come as a result of the process. From
the pan velocities of the left and right camera, the expected change in vergence
angle, as well as cyclopean gaze direction can easily be found (Pahlavan et al.
1992). For many algorithms, the accuracy deteriorates the further you depart
from a certain reference point in the centre of the matching window, which for
optical flow could be the same as the point of no motion displacements. When
working in an pyramidal framework this is typically the case.

Stabilization may also lead to a more economical execution of the matching
operation. The matching range may be such that points close to a particu-
lar reference point are given more computational resources, that points located
further away. The accuracy should only be high enough for the observer to
understand when the reference point ought to be changed. This is indeed the
case in many biological systems. For example, when an object is moving in a
scene and more information about the object is desired, an observer may change
reference point, moving the eyes and head in such a direction that the flow of
the object is canceled out. The same thing is true in the case of stereo, where
a change in vergence angle, affects the position of zero disparity. It should be
emphasized that we do not intend to present a model of how position constancy
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is achieved in biological systems, but rather use image stabilization to overcome
computational limitations of algorithms used. However, it is still interesting to
know how it may fit into existing theories on positional constancy.

Non-visual guidance

Our intention is to use visual information in order to stabilize images, but that
does not mean that we fully support the idea of direct position constancy as
proposed by Gibson (1966). In his theory the structure of the optical flow is used
to control stabilization, without the need for additional non-visual information,
such as eye movement commands. This is done through a subtraction of the
predominant flow component from the optical flow, resulting in a flow field more
or less stabilized. However, in biological systems, as well as in most artificial ones,
the commands that control head and eyes may be available and could therefore
be exploited. Since such commands will be available as soon as the eyes start
moving, which is earlier than the resulting optical flow can be observed, it would
be advantageous to take them into consideration. Rather, we imagine a system in
which stabilization is possible through a combination of the Efferent Copy theory
of von Helmholtz (1925), that uses the commands to directly affect stabilization,
and methods working on the optical flow.

In our system eye and head commands may be stored and used as initial
estimates of the expected future motion displacement. Thus non-visual infor-
mation could be used to guide methods working on the optical flow, rather than
controlling the stabilization exclusively on its own. Using stored commands as
initial estimates of displacements, the range of perceived image motions can be
extended beyond the high-accuracy range of the methods involved. In order for
the commands to be accurately translated into image displacements, some kind
of learning has to be performed, at least if the system is to be robust. The
residual image displacement after stabilization using to the motor commands,
can be used as an error signal to drive such a learning process. How this is to
be done in practice is beyond the scope of this thesis. Instead we concentrate on
stabilization without using non-visual information, but design the system such
that additional information can be taken advantage of, if such is available.

3.1 Related work

Image registration and stabilization has been used for, and is often required by,
a wide range of applications, such as ego-motion estimation (Irani et al. 1994b),
cue integration (Maes et al. 1997), video compression (Stiller & Konrad 1999),
image mosaicing (Hansen et al. 1994, Irani et al. 1995, Zoghiami et al. 1997),
detection and tracking of moving objects (Davis et al. 1996). There are a number
of method that can be used for image stabilization and they differ in the way
matching is performed and models used. Comparisons between some different
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techniques can be found in (Brown 1992, Tian & Huhns 1986), whereas (Mori-
moto & Chellappa 1997, Balakirsky & Chellappa 1996) study the performance of
a number of feature based implementations, in terms of mean square error and
moving target detection. Since stabilization has been used for so many different
applications, an extensive review of all relevant publications cannot be given in
this thesis. A couple of real-time system still ought to be mentioned.

To compensate for motion, Bergen et al. (Bergen, Anandan, Hanna & Hin-
gorani 1992, Hanna 1991) tested a whole series of different motion models; a
globally affine model, models based on the assumption of a planar surface or a
rigid scene, and a more general model of optical flow. Image data are fitted to the
model of choice using the brightness constancy assumption and sums of squared
differences. An affine model was also used by Hansen et al. (1994), who imple-
mented a real-time stabilization system using coarse to fine cross-correlations of
Laplacians and used the results for mosaic construction. A system based on a
2D rigid motion model has also been presented by Zheng & Chellappa (1993)
and implemented in real-time by Morimoto & Chellappa (1996). Features are
extracted as peaks in Laplacians of incoming images, with matching performed
minimizing sums of squared differences in a coarse to fine framework. The same
system has successfully been used for detecting independently moving objects
and for camera control (Davis et al. 1996).

Instead of warping images so that two consecutive images overlap, it is in
many cases desirable only to compensate for unwanted camera motions that
originate from vibrations in the mechanics of the system. The resulting image
motion will then reflect the motion of the cameras without such vibrations. Ways
of separating these two components can be found in (Yao & Chellappa 1996,
Duric & Rosenfeld 1996). It is worth noting that the problems of stabilization
and optical flow calculation are indeed related. Both problems are typically
solved through a matching operation between two images. Even if models used
for optical flow computation are typically applied locally, data may instead be
constrained, to fit a more global model of the camera motion (Irani et al. 19945).

3.2 Stabilization methods

In the next part of this chapter three different stabilization methods will be
analyzed in terms of accuracy and speed. Stabilization is only done with respect
to rotation, since the flow due to translation is typically small in comparison
and requires the different depths to be known. The first method is based on
corner features and the second one uses image gradients. They are similar to
methods that have earlier been presented by others, even if the implementations
presented here are different. In a sense the methods represent two extremes on
a scale of possible methods, because the first one only uses points that do not
suffer from the aperture problem, whereas the last method uses every image
point available. In an effort to combine the advantages of both approaches and
overcome their respective weaknesses, a third method will be presented. This
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method uses all points for which image structure exist in at least one dimension.
Since such points are more common than corner features, this approach is less
likely to collapse, due to lack of local structure.

3.2.1 Stabilization based on corner features

The use of high curvature feature points is natural for stabilizing images, since
their exact positions in image space can be determined with relatively high ac-
curacy. Whereas line features only can be aligned from one image to another
along the gradient direction, corner features can be aligned in both image di-
mensions, thus leading to a more constrained problem. Corner features may be
found using feature extractors, such as SUSAN (Smith & Brady 1997) or the
Harris corner detector (Harris & Stephens 1988). In this section an approach
based on such features will be presented, with care taken to make it as fast and
robust as possible.

The optical flow due to rotation u” can, in terms of the image velocity equa-
tion of Longuet-Higgins & Prazdny (1980), be expressed as u* = (u",v")" = Buw,
where w = (wy,wy,w,) " is the rotational speed of the observer and
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depends on the image space position. The rotation w can readily be solved for
using a set of corresponding feature pairs and least squares regression. However,
like many similar problems in this thesis, outliers may seriously degrade the
performance, unless they have been identified and eliminated from the data set.

In order to quickly and reliably match features between two consecutive im-
age frames, a two-stage process is applied. In the first stage the Mahalanobis
distances, in local image intensities and variance, between features from the two
images are calculated. As time proceeds statistics are collected from the small
(say 7 x 7 pixel) windows surrounding each corner feature. If the distance is
below a threshold the corresponding pixel windows are compared with modified
normalized cross-correlation. Assuming that the rotation around the optical axis
w, is small, the matching scores are then added to a 2-dimensional histogram
of w, and wy. The histogram is composed of 32 x 32 bins, with a resolution of
2/f, with f denoting the focal length. Thus the resolution is equivalent to a
2 pixel rotational flow in the origin of the image and the total range is 32/f,
which in our case equals about 4.6° per update. After smoothing, the peaks of
the histogram are extracted for further processing.

The histogram can be regarded as an approximate log-likelihood diagram over
the space of two rotational directions. If information is available either from
external non-visual sources or from previous frames, this information may be
added to the histogram before peaks are extracted. To extend the search beyond
the range defined by the size of the histogram, the centre of the histogram can
be redefined using the same information. Previous estimates of w, are used such
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that their contribution to the flow is subtracted from u, before histogramming,
but the current implementation is limited in the sense that additional non-visual
knowledge about w, cannot be exploited. Practical experiments have shown that
this does not significantly damage the performance of the system.

The histogram peaks taken into consideration are the largest peak together
with all other peaks with compiled matching scores more than one half the
maximum. Typically this results in between one and three peaks, depending on
translational speed and number of independently moving objects in the scene.
For each peak, corners from the current to the previous image frames are once
again matched, using the position of the peak as the centre of a small search
window. In practice no real correlations have to be performed, since the matching
scores have been saved from the creation of the histogram. Through this process
each feature point will have one corresponding match in the opposite image for
each histogram peak.

The same peaks are then used to initialize an M-estimator similar to the
one in Section 2.2.3. M-estimators are used to make the process more robust,
preventing possible erroneous outliers from dominating the final solution, as
would otherwise have been the case if least squares were used. Using a Cauchy
function

1
plz,0) = log(1 + 5(2/0)?), (3.2)
the following error function is iteratively minimized:
E=) p(u} - B, 0). (3.3)
i

Rewriting E as the a corresponding iterated reweighted least-squares problem

Ek = Z wi7k(u§ — Biwk)2, (34)

the minimization is performed using weights defined by the errors of the previous
iteration, €; x = [uf — B;w*~!| and the weight function

. (3.5)
P - )
Z,k 0_2 + 6127,6 /2

The shape parameter o2 is updated such that the number of feature pairs

with squared errors below 802, N,2.g,2, gradually reaches about ANy, where
Nyt is the total number of pairs and A is a fraction between 0 and 1. In the
current implementation A is set to 0.5, assuming that at least 50% of the feature
pairs have been correctly matched and do not belong to a independently moving
foreground object. The update function of o2 is
Ol =A o} (3.6)
After this iterative process has been completed for each initial histogram
peak, a solution corresponding to the one with the smallest o2 is chosen as the
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Stabilization using corner features

Find corner match candidates using Mahalanobis distance.
If the distance small enough,
Match corners using modified normalized cross-correlation.
Store matches in histogram.
For each histogram peak,
Match corners using modified normalized cross-correlation.
Find rotation using M-estimators.

® NS ok RN

Choose result corresponding to the lowest error.

Figure 3.1. Stabilization using corner features

final result. The algorithm may be summarized with the pseudo-code given in
Figure 3.1. For a 384 x 288 image, the total computational cost in the case
of one peak on a 1.2 GHz Athlon MP processor is approximately 2.8 ms and
an additional 0.8 ms required for each additional peak. The cost of extracting
corner features, which is about 3.0 ms following the suggestions in the appendix,
has not been included, since corners are expected to be required by other parts
of the complete system.

Performing stabilization using corner features can be done reliably, as long
as enough such features are available in the scene, which is not necessarily the
case. Scenes like the one in Figure 3.2 are common in indoor environments. It
could also be that features exist due to occlusions, which means that they do
not represent real corners in 3D space. They might also appear and disappear
behind objects in the foreground, complicating the matching problem. In an
attempt to overcome this weakness, another method based on image gradients
will be presented in the next section.

|

Figure 3.2. A hallway as seen by an autonomous observer
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Figure 3.3. An example of two consecutive images (top), with extracted contour
points of the first image (left) and the gradient magnitude of the second image
(right), with regions between contours filled-in with negative magnitude values.

3.2.2 Stabilization based on contour points

Instead of stabilizing images using high curvature feature points, the method
presented in this section uses all image points with high enough gradients, even
if structure only exists in one dimension, which is true for line features. Similar
to Canny’s edge detector (Canny 1986), edge pixels are found localizing points
of maximum gradient magnitude. First the magnitude has to be large enough
and then it has to reach a local maximum in the gradient direction. Simply
thresholding the magnitudes typically results in broken edge contours. Canny
solves this problem through a hysteresis operation using another lower threshold,
filling in the gaps of the broken contours. Since the method presented here does
not rely on the extraction of complete contours, this phase is simply ignored. A
result of that can be seen in the left column of Figure 3.3, where the threshold on
the gradient magnitude 71, has been set high enough, such that only a sufficient
number of points are found for the stablization algorithm to be successful.

The idea is to match these contour points from the first image (lower left of
Figure 3.3) to the gradient magnitudes in the second image (lower right) and
maximize the total sum of magnitudes, which will be regarded as the matching
strength between the two images. Since the summation is performed only over
contour points, the matching is considerably faster than if is was done over every
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Figure 3.4. Total matching strength as a function of w; and wy, with (right)
and without (left) filling structure-less regions with negative magnitude values.

pixel. A graph showing the matching strengths for different combinations of w;,
and w, can be seen in the left image of Figure 3.4, which shows the strengths
for angles within 4.3° from the peak. Even if the peak of the correct rotation
is distinct, the surface unfortunately includes a number of additional maxima.
Outside the peak the surface is more or less flat, which makes gradient ascent in
the space of rotations hard to achieve. In order to guide a search to the correct
maximum, image regions between contours are instead filled-in with negative
magnitude values, so as to make the matching surface less flat, as shown in the
right image of Figure 3.4.

Computationally this is done by first thresholding the gradient magnitude of
the second image and gradually letting negative magnitudes grow out from the
contour points, defined by magnitudes greater than 7. An example of that can
be seen in the lower right image of Figure 3.3. This threshold is about one third
of the one used for the contour points in the first image, that is 7. Each pixel
that does not belong to a contour keeps track of its closest contour point and is
assigned a negative magnitude value linearly dependent on the distance to this
point. Only points within a predefined maximum distance are considered. Even
if a quadratic dependence would be preferable, since that would typically lead
to a fast convergence, a linearly increasing cost is more robust.

In order to minimize the computational cost, the filling operation is performed
such that each pixel is only visited once. A list of active image points, that have
recently been assigned a magnitude value, are kept and read in the order of
closest distance registered. Initially the list only includes the extracted contour
points. Even if the information stored from the two images is different in its
nature, the collection of data is performed simultaneously, so that in the next
time frame contour points have already been extracted for the first image.

In order to locate the peak of maximum matching strength a cloud of initial
starting points is spread around a centre defined by the previously estimated
rotation or an a priori assumption based on non-visual information. For each
starting point a local maximum is then sought through an iterative ascent in
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directions of w,, wy and w,, one rotational axis after the other. Steps are taken
such that the resulting flow is equivalent to an average of about one pixel. For
each starting point the iterations are continued until either a local maximum has
been found or a point outside the range of reasonable rotations is reached.
Once the local maxima have been found, the rotational estimates are im-
proved using image gradients, instead of the gradient magnitudes. The reason
for doing so is that the method presented above tends to be biased towards
rotational flows of integer displacement. With I ;, I, ; and I;; denoting the
gradients of an image point (z;,y;) and B; the corresponding flow directions
according to Equation 3.1, a minimization is performed on the squared error

E= Z( [Ls,iy Iy i) Biw + I ; )% (3.7)

The summation is done only on the high gradient contour points, for the sake
of maximum speed. In order to make the approach robust and dismiss contours
originating from independent motion, only points where high gradients exist
in both images, are taken into consideration. The total computational cost is
approximately 7 ms on images of size 192 x 144 pixels, but may vary depending
on the number of initial rotations used and local maxima found. The complete
algorithm can be summarized with the pseudo-code in Figure 3.5.

Stabilization using contour points

1. Find contour points in first image with gradient magnitude > 77 and
maximum in the gradient direction

Find contour points in second image with gradient magnitude > 7
Fill regions between contours in second image with negative gradients
For each randomly generated initial rotation
Until a local maximum is found or outside range
Ascend sequentially in the directions of w,, w, and w,
For all local maxima large enough
Estimate rotation using least squares on image gradients

© N oW

Pick the result with the lowest residual error

Figure 3.5. Stabilization using contour points

3.2.3 Stabilization using image gradients

The third method implemented is similar to that of Hanna (1991) in that the
brightness constancy assumption is used in conjunction with a model of flow
induced by 3D camera motion. However, instead of including flow due to trans-
lation, representing the scene as a planar patch, only the rotational component
is considered, similar to the methods described in previous sections. Through
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practical experiments of an autonomous platform in an indoor environment it
has been observed that the translational component is typically very small. We
have instead chosen to compensate for rotations only and consider a resulting
residual as being part of either the translational flow or due to objects of indepen-
dent motion. For other applications, such as high-speed car control (Dickmanns
1997), the situation might be very different.

The rotational component is found minimizing the same function as in the
last step of the previously presented method, that is Equation 3.7. Operations
are performed in a three level coarse to fine framework, where the finest scale
in the current implementation is 192 x 144 pixels in size. Three iterations are
used for each level, except for the finest scale that only includes one. Results
are warped between levels as well as iterations. Through the warping procedure,
the temporal image derivative I; of iteration k£ + 1 is estimated as

Iy = L(z + uk,y +or) — Li(2,y) — [Le, Iy, (3.8)
where u = (ug,vr)" = Buwy, is the flow due to the previously estimated rotation
and, I; and I, are the two consecutive images.

From the coarse to fine process, the maximum possible range of rotations,
measured in the centre of the image, can be expected to be about 22x3+2'%3+1 =
19 pixels at the finest scale, which is equivalent to approximately 5.4° per update.
However, in order for such a large rotation to be determined, the largest possible
rotation must be found at every scale. This is not likely in practice, at least not
if rotations are to be estimated reliably. Since errors are most likely near the
limits of what the algorithm allows, and because errors from coarser levels are
magnified for each new finer scale, estimates of large rotations can be expected
to be erroneous. In order to correct for this weakness multiple initial values of
wy and wy are instead used at the coarsest scale. An estimate corresponding
to the lowest residual error is then passed to the next iterations. The complete
procedure has a computational cost of about 9.6 ms. The cost is higher than that
of the two other methods, even if this method was not implemented robustly.

3.3 Experiments

In order to test the presented methods, a series of 126 different indoor images
were considered. Each such image was rotated using a known rotation, creating
126 pairs of images. For each such pair, the corresponding rotation angle was
estimated using the three stabilization methods. This operation was performed
for different true rotation angles, between 0° and 4.6° around an axis in the image
plane and for each angle statistics were collected. For each method, the standard
deviation as a function of the rotation angle can be seen in Figure 3.6. Since the
last step of the method using contour points, is similar to the one using image
gradients, the results are quite similar. There is, however, a difference in bias
between the two methods. Whereas the former method includes no noticeable
bias, a linearly increasing bias, with a maximum of 0.06°, can be observed for
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Figure 3.6. The standard deviation of estimated rotations in degrees as a func-
tion of rotation magnitude, for the gradient-based method (solid), the one using
contour points (dashed) and corner features (dotted).

the gradient based method. An explanation for this bias is that spatial image
derivatives in this approach are calculated using the first image only, while the
contour based method uses the average between the two images. However, bias
as well as standard deviation are relatively small for all three methods, at least
for our application.

It should be noted that these results are the best one should expect. In a
real situation, with two images taken by the same cameras from two different
instances in time, additional errors are likely to be present from a number of
reasons. First of all, illumination might differ, globally as well as locally. Such
errors will probably be fewer for the feature based methods. With rapidly ro-
tating cameras, motion blur is evident in typical images. In the ground-truth
data there are no independently moving objects and no camera translations that
might also have degraded the performance.

Rotation |w| | Corner (3.2.1) | Contour (3.2.2) | Gradient (3.2.3)
0.9° 2.5% 2.6% 2.7%
1.8° 2.6% 2.9% 3.2%
2.4° 2.6% 3.0% 3.7%
3.6° 2.6% 3.3% 3.9%

Figure 3.7. The fractions of pixels with absolute errors in pixel values exceeding
8, after warping and subtraction, for different stabilization methods.

Experiments on real sequences

Evaluations were also performed using a series of real images, letting a binocular
head pan from right to left at a constant speed. For each image, the fraction
of image points with pixel error after warping of more than 8 was calculated,
assuming the maximum pixel value to be 255. The threshold was set so as to
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Figure 3.8. An image extracted while letting a camera pan from right to left
(upper-left) and images showing points with errors in pixel value more than 8
after stabilization, for methods using corner features (upper-right), contour points
(lower-left) and image gradients (lower-right).

discard typical image noise, but still accept errors due to failures in the stabiliza-
tion. Some errors can also be expected in the warping procedure, especially near
high gradient edges. Results are shown in Figure 3.7. As can be seen the cor-
ner based method is relatively insensitive to the magnitude of rotation, whereas
especially the gradient method suffers significantly, but for no method does the
stabilization fail completely.

For rotations of more than 4.5° all methods start to fail for an increasing
number of test cases. The gradient based method is the last method to collapse
for large rotations, while the corner based one has problems as soon as rotations
are beyond the range of the histogram used (see Section 3.2.1). The approach
using contour points rarely performs as well as the one based on corners, but
always better than the gradient based one. An example showing points of pixel
errors after stabilization can be seen in Figure 3.8. The example images are
chosen such that they reflect the average performance of the methods. As can
be seen most errors do not belong to large regions of erroneous pixels. The
low error limit is sometimes exceeded by quantization noise, mainly at object
boundaries. However, the errors due to the stabilization process are few.

The next sequence, out of which three images are shown in the first row of
Figure 3.9, contains a walking person in front of a moving camera, located on
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Figure 3.9. Images taken from a camera translating forward and residuals after
stabilization for the methods based on corners features (2nd row), contour points
(3rd row) and image gradients (last row).

top of an autonomous platform translating forward at a speed of approximately
0.1 m/s, without any rotations. This is a more challenging sequence than the
previous one, since image motion due to translations of the person and the
platform might interfere with the stabilization process. Results from the three
methods can be seen on the remaining rows of the same figure. It is clear that
all methods, except the method based on image gradients, does a rather good
job at identifying the background motion.

Since the estimated rotation should be zero for all tested images, the rota-
tional errors can be estimated. The errors are tabulated in Figure 3.10, together
with fractions of points exceeding 8 in pixel values. From the results of the gra-
dient based method one may conclude that more errors are related to the bias.
When analyzed in detail, this method proves to be sensitive to independent mo-
tion in the scene. While the other methods are designed such that irrelevant
corners and contours of an independently moving object in the foreground are
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Corner (3.2.1) | Contour (3.2.2) | Gradient (3.2.3)
Erroneous pixels 8.6% 9.8% 15.0%
Rotation bias 0.01° 0.03° 0.67°
Rotation error 0.05° 0.09° 0.73°

Figure 3.10. The fraction of points with errors larger than 8 in pixel values,
rotational errors and bias for the tested methods.

disregarded, the gradient based method tries to find a camera rotation that satis-
fies foreground as well as background, resulting in a motion that matches neither.
Better results can be expected if the method is made robust, but that would also
make it slower and it is already the slowest one among the three tested methods.

The final example uses the sequence from Section 2.3 with optical flow shown
in Figure 2.7. The camera undergoes a 1.4° rotation per update or 35°/s, while
translating forwards. The motion is such that the walking person is tracked in
the centre of the camera. The residuals after stabilization can be seen in Figure
3.11. Even if the translation is as large as about 0.85 m/s and the platform in the
foreground is located only 1.8 metres away, the performance of the stabilization
is similar to that of the previous case. The major difference is an increased
variance of the rotational estimates due to the gradient based method.

The images in Figure 3.12 illustrates the performance of Lucas & Kanade’s
optical flow method when the background has been stabilized using the corner
based method. The upper row shows the results of the sequence just mentioned.
Since the optical flow is well within the bounds of what the optical flow calcu-
lation can handle, there is not much difference, even if a slight improvement in
the uniformity of the background can be noticed. The second row shows results
from the panning sequence in Figure 3.8 with the camera rotating at a speed of
3.6° per update. In this case the optical flow is too large for Lucas & Kanade’s
method. For this particular sequence, an increased number of levels in the pyra-
mid could be a solution, but that would result in an undesirable blurring under
other circumstances.

3.4 Conclusions

Stabilization is a beneficial, and sometimes even necessary, component in a range
of applications, such as cue integration and tracking of moving objects. The
knowledge of dominanant image motion can be exploited in a number of ways.
In this chapter three different methods for compensating camera rotation have
been explored; one based on corner features, another using contour points with-
out requiring contours to be explicitly available, and finally a commonly used
method based on image gradients. The first two methods are novel in the way
they combined robustness with speed. All three methods perform well in cases
of limited camera translations and no independent motion. In more difficult sit-
uations, the corner and contour based methods are still able to separate these
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Figure 3.11. Images taken from a rotating and translating camera (upper row)
and residuals after stabilization for the methods based on corner features (2nd
row), contour points (3rd row) and image gradients (last row).

components from camera rotations, but the gradient based method, due to a
lack of a robust formulation, is not.

It would be worth investigating whether the gradient based method can be
made robust, without introducing a significant increase in complexity and com-
putational cost. The system designed during the work of this thesis uses the
methods based on corner as well as contour points. Corners are first extracted
and depending on the distribution and number of corners found, the appropriate
stabilization method is chosen. Since corners are used for both stereo and motion
analysis, stabilization using corners results in considerably lower computational
cost. However, there are more opportunities for possible speed-ups in the case of
the contour point method. The sum of gradient magnitudes in the optimization
of the contour based method gives a good indication of what maximum matching
strength to expect, and if a good initial guess is available it is possible to directly
locate the global maximum.
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Figure 3.12. Optical flow calculated for sequences in Figures 3.11 and 3.8, with
(right column) and without (middle column) stabilization of background.



Chapter 4

Epipolar geometry

An active observer would benefit from the use of binocular stereo. The main
reason is that disparity is such a strong cue to depth. However, in order to
relate disparities to distances in 3D space the relative positions and orientations
of the cameras, the epipolar geometry, has to be determined. This chapter deals
with the problem of estimating the epipolar geometry, as fast and robustly as
possible. After an introductory motivation, the so called epipolar constraint will
be explained in terms of a matrix known as the essential matrix. A number of
additional constraints will be introduced in order to minimize the complexity of
the problem. A process for identifying and eliminating of outliers is proposed and
experiments are performed in order to evaluate the different models. An iterative
method based on the bilinear optical flow equation will also be presented. It will
be shown that this approach leads to more robust results, even if it is based on an
approximate model. Finally, a couple of real-time experiments will be performed
and the performance analyzed.

4.1 Dynamic vergence

An observer working in a dynamic world is typically involved in tasks that re-
quire interaction with objects at different depths. In the case of manipulation
these objects will be located close to the observer, whereas navigation around
the scene leads to interactions with objects further away. If the visual field is
relatively small, which is most often the case, the observer will be forced to
dynamically verge its cameras, so that objects of interest are visible by both
cameras. Computationally, image locations close to the border of the visual field
often suffer from filter truncation errors, especially in multi-scale frameworks.
This means that objects of interest should preferably be kept at the centre of
the images, where such errors do not exist. Furthermore, in foveated systems
most computational resources are concentrated to the centre of the visual field,
which is another reason for objects to be centered.

43
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An additional reason why a stereo system would benefit from dynamic ver-
gence is the fact that fixation might simplify computational tasks such as calcu-
lating the ego-motion and the motion of an object present in the scene (Fermiiller
& Aloimonos 1993, Ballard 1991, Daniilidis & Thomas 1996). Fixation implies
that the camera system is not just verged, but that the optical axes also inter-
sect somewhere in front of the cameras. Hence, there is no relative tilt between
cameras. If the highest possible accuracy is desired when calculating motion and
shape, the object of interest should be located close to this intersection of the
optical axes, the fixation point.

If the cameras are verged and depths are to be determined, it is essential
that the relative positions and orientations of the cameras are known. If this is
not the case, it is not possible to relate calculated disparities to actual distances
in 3D space. One possibility is using counters on the motors controlling the
motion of the stereo head system. However, there are several reasons why this
is not always feasible. First of all, if the vergence angle, that is the difference in
orientation between the cameras keeps changing, it is necessary to synchronize
image capture with the readings from the motor counters. In practice, this is not
easy at all. The system controlling the camera motions and the one capturing
images might be physically separated, communicating only through a link with
a latency that is hard to predict. The system would most likely be simpler
as well as cheaper if the camera configuration could be estimated using image
information only.

Even if motor positions are available at every instance in time, it is still ques-
tionable if the information can be fully relied upon. As the observer is moving
around in the environment, it is hard to prevent the cameras from vibrating. A
system able to dynamically verge typically consists of a series of moving parts,
which means that it is very sensitive to disturbances. Small vibrations easily
corrupt the calculated disparities, leading to large errors in estimated depth. It
would be possible to add additional weight to the stereo head system making it
more robust and less sensitive to vibrations, but such a system would probably
be more difficult to control and slower. In any case, motor information from
body motions, in our case when the entire robot moves, will be too inexact to
use to control camera movements.

A last reason why the camera configuration ought to be estimated using
image information, is that the results may be used for further operations on
the same images. For example, in the system presented here information about
the camera configuration will be used in order to perform a rectification of the
images, that is rotating the images so that the rotated images will look as if the
cameras were located in parallel. If the estimated configuration is based on image
data, it is easier to relate the errors to image noise, than if only motor counter
information were used. However, this does not mean that external information
cannot be exploited at all. Estimation of the camera configuration using image
data may be easier and faster if an approximate configuration is already known.
Such information might be available from monocular stabilization of the left and
right images, as described in Chapter 3.
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In the system presented here the camera configuration, represented by the
epipolar geometry in later sections, will be estimated continuously. Internal
camera parameters such as focal length, optical centers and scaling are supposed
to be already calibrated, and recalibrated only when changed. These parameters
are not as sensitive to external disturbances and thus assumed to be constant in
the remainder of this chapter.

4.2 The essential matrix

Consider a binocular system consisting of two cameras with centres positioned
at ¢; and c,, separated by a baseline t = ¢, — ¢;. The camera centres together
with a point in 3D space u define a plane, as shown in Figure 4.1. The two
vector X; = u—¢; and X, = u — ¢,, representing the projections of this point
onto the left and right cameras, will lie on this plane, as will the baseline t. This
means that the determinant D = [%),t,%X,] = 0, which is known as the epipolar
constraint and was introduced independently by Longuet-Higgins (1981) and
Tsai & Huang (1981). The two projections can be given in the local frames of
each camera using the rotation matrices, Rj and R, that describe the orientation
of the cameras relative to a reference frame. Thus x; = R1%; and x, = R.X,
denote the vectors in this reference frame.

Figure 4.1. An epipolar plane

With T being the skew-symmetric matrix representing an outer product of t
and some other vector a, that is Ta = t A a, the determinant may be written as

D =[&1,t, %] = %1 - t A%e| = % T%, = x{ RiITR, X, = x{ Ex, = 0. (4.1)

The 3 x 3 matrix E = RyTR, is often called the essential matrix and has a
number of interesting properties. The product 1. = Ex, represents a line in the
left image and since x;' 1, = 0 the image point x; lies somewhere along this line.
Thus a point in the right image will constrain the corresponding point in the
left image to a line, given that the epipolar geometry is known. The converse is
also true, in that x,. will be constrained to another line I} = ETxj in the right
image. The major benefit of this constraint is that it relates image features to
each other, without knowing the actual 3D point being projected. The problem
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of finding positions in 3D space has efficiently been decoupled from the problem
of estimating the camera configuration.

The essential matrix can be factored in two different components, E = RS,
where R = RjR, is a rotation matrix and S = R, TR/ is skew-symmetric. The
second component S is just T transformed into the right camera frame, that is
an outer product of s = Rt and some vector. The product s A x, is the plane
given by the right image point and the baseline, and R transforms this plane
into the reference frame of the left camera. Given that the epipolar geometry
constraint is satisfied, that is x;’ Ex, = 0, the point x; will lie on the same plane.

The essential matrix is of rank-2, which is easily seen analyzing the singular
values of E. The square of E can be written as follows:

E2=E'E=S'TR'RS=S"S=(s"s)[—ss'. (4.2)

Since this matrix annihilates s, one of the singular values must be 0. However,
any vector u orthogonal to s is an eigenvector of E2, since E2u = (s 's)u. Thus
E has two singular values equal to s's and the essential matrix is of rank-2.
In fact, it can be shown (Tsai & Huang 1984, Huang & Faugeras 1989) that a
matrix can be factored into a rotation and a skew-symmetric matrix if and only if
it has two equal non-zero singular values and one equal to 0. This fact will later
be used when the epipolar geometry of the stereo head system is determined.

4.2.1 The 8-point method

Suppose that a number of image feature pairs are given and one would like to
estimate the relative orientation and position of the two cameras. In order to
do this, one could search for a matrix E that satisfies the epipolar constraint
x; Ex, = 0, where x; = (21,4, f)" and x, = (2,9, f-) are the left and
right projections of a given 3D point. Since the matrix multiplied by a factor &
will satisfy the same constraint, the translation t can only be determined up to
scale. This means the total number of unknown degrees of freedom is five, three
rotational and two translational ones.

Due to noise and outliers in the data set it will never be possible to find a
matrix that perfectly satisfies the epipolar constraint for each existing feature
pair, at least if there are more than five. Instead one could determine an estimate

1 C2 C3
Eg = C4y C5 Cg (43)
Cr Cg C9

of the true essential matrix E, that minimizes the algebraic error |x; Ex,|. How
this can done in practice will be covered later on. But once such an estimate has
been found, how can we make sure that it indeed is a essential matrix? After
all, Eg is a 3 x 3 matrix and consists of nine different elements. Disregarding
the factor of scale, it has got eight degrees of freedom and not five.
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Based on a scheme suggested by Toscani & Faugeras (1986), a projection can
be performed from the original space of eight dimensions, to the five dimensional
manifold spanned by all possible essential matrices. Let Eg be factored into its
singular value decomposition (SVD), that is Eg = UDV . The diagonal matrix
D = diag(r, s, t) consists of the three singular values. As mentioned above an
essential matrix should have two equal non-zero singular values and a last value
equal to zero. An essential matrix can then be found, simply by substituting
D with D = diag(k,k,0). If k = (r + s)/2, the resulting matrix E = UDVT
will be the essential matrix closest to Eg under the Frobenius norm, that can be
decomposed into E= RS, which is a necessary condition for E to be an essential
matrix as shown above.

The factorization of E into RS can be directly found from the singular value
decomposition. With the matrices

0 10 0 -k 0
Y= -10 0 and Z=|[%k 0 0|, (4.4)
0 01 0 0 0

the rotational factor can be shown to be either R=UYV' or R=UY'V'.
The difference between the two alternatives is a 180° rotation around the base-
line. The configuration for which all triangulated 3D points are located in front
of the cameras should preferably be chosen, since no point may exist behind the
camera centres. There are also two solutions for the translation, S = VZV T or
S = VZTVT, which may be separated using a similar consideration.

Counting the degrees of freedom of E leads to a total of seven, three from
each orthogonal matrix U and V, and one from D. However, since the essential
matrix can only be estimated up to scale, k may be set to 1. Also since the two
equal non-zero singular values of E are equal, the estimate is insensitive to a
rotation of V around vg, that is the last column of V. Thus the total number
of degrees is not seven, but five.

4.3 A typical stereo head

Finding the essential matrix as described above might not be the best approach
if the camera configuration is known to be constrained. For example, stereo head
systems, where two cameras are mounted on each side of a fixed baseline, are
often used so that they always are at fixation, that is the optical axes of the
cameras intersect somewhere in front of the cameras. Thus there is no relative
tilt between the cameras. Furthermore, it is usually not necessary to rotate the
cameras around their optical axes. After all, such a rotation would not change
the image data, only its orientation. A joint tilt of both cameras does not change
the nature of the problem, since the epipolar constraint describes the relative
orientation between the cameras, not between the cameras and some reference
frame. This means that in reality we may only have two degrees of freedom, one
pan rotation for each camera. However, even if the stereo head is constrained,
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the flexibility of the system would not be affected. The described system can
be seen as one of the special cases in a review of configurations by Brooks et al.
(1996).

Left camera\Q [ Right camera

Figure 4.2. stereo head system

In order to describe the actual geometry, a coordinate system is needed. The
baseline between the two cameras may be used to define a x-axis, as seen in
Figure 4.2. As mentioned earlier a stereo head in fixation has the two optical
axes intersecting somewhere in front of the cameras. This point together with
the two camera centres define a plane and one may the use the normal of this
plane as the y-axis, while the z-axis is located on the plane and perpendicular
to the baseline. In this coordinate system the rotations of the cameras can be
described by the following matrices

cos(ey) 0 sin(ayg)
R, = 0 1 0 (4.5)
—sin(ey) 0 cos(ay)
and
cos(a,) 0 —sin(a;)
R, = 0 1 0 , (4.6)
sin(a;) 0 cos(ay)
where ; and «, are the pan angles of each camera respectively and 8 = a; + «;,
is the vergence angle between the two cameras. The baseline is given by t =
(k,0,0)" and its corresponding skew-symmetric matrix

0 0 0
=0 0 & |, (4.7)
0 -k 0

which represents an outer product of t and some other vector, as was mentioned
earlier. Following the derivation in Section 4.2, the essential matrix E = RiTR,
can now be expressed as

0 —sin(ay) 0
E=k| —sin(a,) 0 cos(ay) | . (4.8)
0 —cos(ay) 0
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Since the epipolar geometry only can be determined up to scale, the factor k may
be set to 1. Thus the essential matrix lies in a two-dimensional space of possible
epipolar constraints, even if the matrix itself involves four unknown elements.

4.3.1 The constrained case

In order to estimate the true essential matrix E, the two angles a; and «, have
to be determined. This could be done solving a non-linear optimization problem.
However, such a problem would typically rely on a number of iterations and an
initial guess close to the true solution. An alternative linear approach is finding
the matrix E4 that minimizes the error | x;'— Ex, |, where

0 C1 0
Es = c 0 ¢ . (4.9)
0 C3 0

After finding an optimum in the four-dimensional space spanned by the param-
eters c¢j, j = 1...4, a projection onto the two-dimensional manifold of possible
epipolar constraints is done, similar to the unconstrained case covered earlier.
Using the approach suggested by Toscani & Faugeras (1986), the singular value
decomposition of E4 can be shown to be UDV T, where

1 cg 0 «¢3 1 0 ¢ —a
U=— 0 01 0 5 V=— g9 0 0 (410)
o1 C3 0 —C1 o2 0 C4 Ca

and D is a diagonal matrix with singular values equal to o1 = \/¢? + ¢Z, 02 =
V¢ + ¢ and 0. An essential matrix is found, substituting the epipolar geometry
E, with an approximation E = UDVT, where D = diag(c,0,0) and ¢ =
(o1 +02)/2. This matrix is the one closest to the estimated matrix E4 under the
Frobenius norm, that satisfies our requirements. We finally obtain an essential
matrix of the form:

0 & 0

-~ a1

B=| 2 0 2| (4.11)
0 &£ 0

g1
As mentioned in Section 4.2 a valid epipolar constraint can be divided into
two different components, one rotational component and one skew-symmetric
translational one. If we factorize the essential matrix in Equation 4.11 into two
such matrices, we get the rotation matrix

CB 0 —85
R=[0 1 0 |, (4.12)
sg 0 cg
with the elements ¢g = —(c1¢2 + c3c4) /0102 and sg = (c1c4 — c2c3)/0102. Con-

sidering that the determinant equals c% + 323 = 1, we conclude that R really
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is a rotation and that cg and sg are the cosine and sine of the vergence angle
B = a; + o, in Figure 4.2. The corresponding translational component

0 —84. O
S=1{ sa, 0 Car | (4.13)
0 —cqo 0

i

is the second factor of the essential matrix E, where the elements s,,, = ¢z /02 and
Ca, = Ca/02 can be identified as sin(a,.) and cos(a,). Thus S can be interpreted
as an outer product of s = (cos(a,),0, —sin(a,)) T, the baseline relative to the
right camera frame, and some other vector.

4.4 Parameter estimation

When we estimate the parameters of the different epipolar models, it is expected
that a number of extracted corner features is given. As described in Section 4.2,
each point in 3D space will be projected onto the camera image planes, producing
a pair of image features (xi,xl), where xi = (zf,4!, f{)T and x! = (2%, 9%, f}) 7.
In practice, one could use the Harris corner detector (Harris & Stephens 1988)
to locate corners in the left and right images. These features then have to be
grouped into correspondence pairs, before the actual epipolar geometry estima-
tion begins. This matching is far from trivial and a good matching is most
critical for the performance of the estimation process. A detailed description of
the corner matching of the presented system may be found in Section 8.1.

A natural way to recover the epipolar geometry is finding the optimal estimate
in a least squares sense, using all the available correspondences. The more data
being used, the better the influence of image noise will be suppressed. However,
since the errors used in the optimization are squared, even single outliers, that is
mismatches of features that do not correspond to the same point in 3D space, will
make the estimate useless. How to identify these outliers will be dealt with later
on in Section 4.6. As mentioned earlier the epipolar constraint can be estimated
using either linear or non-linear methods. Since the essential matrix only has
five degrees of freedom, a non-linear approach might be useful. However, since
we are interested in computational speed as well as accuracy, we will concentrate
on linear methods first and then return to non-linear methods in Section 4.7. A
linear method is usually quicker and if accurate enough, we are satisfied.

4.4.1 Orthogonal least squares

Unlike ordinary least squares optimization, where the errors are considered in one
coordinate only, an often more successful approach is orthogonal least squares
minimization (Torr 1995). For the 8-point method in Section 4.2.1, this will look
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as follows. If the left and right images vectors are rescaled so that ff = fi =1,
a hyper-plane

¢ = ( Cil C2 C3 C4 C; Cg C7 Cg Cg )T, (414)
defined by the nine parameters of Eg, is fit to a set of sample points given by
vi=(2jzi ajyi i yizi yiyl oy @i oy 1) (4.15)

This is done by minimizing the sum of squared orthogonal errors from the points
to the hyper-plane, which is determined by the error function

N N N
fle)= Z (yi ¢)* = ZcTyiyiTc =c'Mc, where M = Zyiyi—r. (4.16)
i=1 i=1 i=1

The trivial case, ¢ = 0, might be avoided using an additional constraint,
c'c = 1. The second moment matrix M is a 9 x 9 matrix and has eigenvalues
Ak, in increasing order, with corresponding eigenvectors uy; £ = 1..9. It is
well known that the estimate €, that minimizes f(c), can be found as the least
eigenvector ug, that is the eigenvector corresponding to the least eigenvalue A;.
The total sum of squared errors f(€) will then be equal to A; and since M is
symmetric, it will always be non-negative. Once ¢ has been found, it can be
rewritten as the matrix Eg. Since there are nine unknowns and ¢ only has to
be determined up to scale, eight feature pairs are needed to find the epipolar
constraint, which explains why the approach is known as the 8-point method.

If the model E4 is used instead, the four unknown parameters can be found
in a very similar manner. Now a hyper-plane & = (c1, ca, ¢3,¢4)? is fitted to the
measurement points y; = (ziyl, yizi,yi,yf)7T, minimizing f(c) = SN, (v; ¢)2.
Just as in the case of Eg this is possible finding the least eigenvector u; of
M= Zfil yiy; . However, due to the low dimensionality of M the process of
finding this eigenvector is much simplified.

4.4.2 The Inverse Power method

Speed is of major concern in the proposed system, and it is thus important that
computations are made as fast as possible. Since u; is the only eigenvector that
needs to be determined, one does not have to find all the other eigenvectors.
Hence, it is possible to use an iterative approach such as the Inverse Power
method (Golub & Van Loan 1996), if convergence is ensured. Initially the adjoint
of the matrix M is calculated, that is

M, = adj(M) = det(M) - M~ (4.17)

The reason why the adjoint is used, instead of the inverse of M, is simply because
the system might be ill-conditioned, which leads to large errors if the adjoint is
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divided by the determinant when calculating the inverse. Since the final eigen-
vector will be normalized anyway, this difference in scaling does not change the
result. Using an arbitrarily chosen initial vector vg, a series of updated vectors
are calculated iteratively according to

Mavk—l

= —_ - 4.18
Mavic 1| (4.18)

Vk

It can be shown that vi will converge towards u; as k — oo, and the error will
decrease at a rate of A;/A2. The question is what this actually means in terms
of the feature pairs involved.

An analysis of the eigenvalues of M shows that there is a strong dependency
between the scales of the eigenvalues and different aspects of the selected points,
such as the level of image noise and how the points are distributed in image space
and depth. The smallest eigenvalue \; increases quadratically as the level of noise
is doubled, but does not change very much as the distribution of points varies.
For the second smallest eigenvalue s the dependencies are reversed. As the
points are spread twice as much over the image space or in depth, the eigenvalue
doubles for each dimension. The same eigenvalue is, however, not very sensitive
to noise. In conclusion, a low value of A\;/A2, which means rapid convergence,
is equivalent to feature points being widely spread in space and suffering from a
low level of noise. This property will be used later for eliminating bad estimates.

4.5 Alternative models

There are a number of reasons why the two possible models presented above
might not fulfil our expectations under all circumstances. Based on the actual
conditions, other models might be taken into consideration. From a compu-
tational point of view, there is a large difference in determining the epipolar
geometry between an almost parallel camera configuration and a system where
the vergence angle is large. The same difference exists depending on the sym-
metry of the system. A model with too many free parameters, tends to be less
robust, even if the match between image data and model is better. This means
that if there is any a priori information about the current configuration, that in-
formation ought to be exploited, reducing the number of unknown parameters.

Symmetric configurations

If it is known that the camera configuration is symmetric or close to symmetric,
it is possible to simplify the model from Section 4.3.1. The reason why this is
interesting is the possible improvement in speed. If nothing is sacrificed, a model
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with as few unknown parameters as possible ought to be used. One such model
of the essential matrix looks as follows:

0 (4] 0
ES = Co 0 C3 . (4 19)
0 —C3 0

If yi = (ziyl,yizl,yt — yf) T, an optimal estimate & = (c1,¢2,¢3) T can be found
minimizing f(c) = Zfil (y;'¢)?. Similar to the previously presented models, &
is given by the least eigenvector of M = Zfil yiyiT . This is considerably faster
than using the model in Section 4.3.1, since M is only of dimension 3.

It might be possible to reduce the number of unknown parameters even fur-
ther if the configuration is not just close to symmetric, but also known to have
a small vergence angle 8. In practice it is rare that 8 is larger than about 20°.
This means that a; and «, will be relatively small and the parameter c3 in the

previous model is close to 1. This leads to a model of the form

0 C1 0
Ep=|c 0 1]. (4.20)
0 -1 0

A least squares estimate & = (c1,c2) " can be found solving

N N
Aé=Db, where A= Zyiyi—r and b= Zyi(yi —yl), (4.21)
=1 i=1

given that y; = (ziyl,yizl)". Thus the problem is solved without calculating
any eigenvectors. This model in a sense represents one extreme of a whole
spectrum of models, and it should not be surprising if a model as simple as this
only works under very limited conditions.

Image based error models

So far all methods presented have been directed towards minimizing an algebraic
error function |x; Ex,|. The main advantage is that it makes a linear solution
easy, but it is not always a good choice. As was earlier mentioned in Section 4.2,
the epipolar constraint is satisfied if d(E) = x{ Ex, = I/ x; = 1/ x, = 0, where
L=Ex, = (li2,l,y,l,7)" andly = E"x1 = (I.5,1r,4,1rf) " are the epipolar lines
in the left and right image respectively. Unlike what might be assumed, d(E) is
not equal to the distance between an epipolar line and its corresponding image
point, even if this most likely is a desired optimization criteria. The reason is
that the epipolar lines have not yet been normalized (Weng et al. 1993).
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A question is whether normalization can be performed, without using non-
linear optimization. After normalization, the image distance errors in the left
and right images are given by

x| Ex, x; Ex,
2

Ve +1, NP e
respectively. After a few calculations using the true essential matrix given in
Section 4.3, it can be shown that I7, + 17, = y2 + 22 sin’*(a,) — 2, sin(2a,) +
cos?(a,). A similar equation can be found for the right epipolar line. It is easily
seen that if o, and ¢; are small and no extreme focal length is used, the last
term dominates, leading to the approximate distance errors

d(E) = and  d.(E) = (4.22)

xlT Ex,

cos(a)

.
di(E) = and  d.(E) = L EXr

~ cos(ayg)’

(4.23)

Using d;(E), instead of d(E), as the error function means that large a, are
penalized. This leads to a model of the essential matrix, of the form:

0 C1 0
Ei=| c 0 1]. (4.24)
0 C3 0

If y; = (ziyl,yizl,yi)T an estimate & = (c1,c2,¢3)" can be found minimizing
fle) = Efil (y;' c+yi)2. The least squares estimate is found solving the equation

N N
Aé=Db, where A= Z yiy; and b= — Z ViYL (4.25)
i=1 i=1

Using the distance errors in both left and right image would possibly be an
even better choice, but just summing the two error functions and solving the
problem linearly is not easy. Instead one could use the geometric average of
d;(E) and d,.(E). This leads to a new error function

-
x, Ex,

d,(E)= ——"~——"%
tr (E) cos(a) + cos g

(4.26)
and with this function the problem can be solved linearly. In fact, one would
get the same function if the problem was statistically normalized, that is if
the variance of the reprojected errors is minimized (Weng et al. 1993). Given
the sample points y; = (ziyl,yizl,y! + yi)T and the squared error function
fle) =N (v e+ (4 —yi))?, an estimate can be found solving

N N
Aé=Db, where A= ZyiyiT and b= Zyi(yf, —yh. (4.27)

i=1 i=1
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The final estimate of the essential matrix will be given by

0 C1 0
E, = Co 0 c3+1 . (428)
0 ec3—1 0

Common to each model presented in this section, is that once an estimate has
been found, a projection down to the two-dimensional space of possible essential
matrices has to be made. Similar to the ordinary constrained case, this is done
creating a new matrix E as in Equation 4.11.

4.6 Robust estimation

For the estimation of the epipolar geometry we have chosen corner features.
This is because they do not suffer from the aperture problem and their positions
can be determined in both image dimensions. However, since the corners are
viewed from two different angles by two different physical cameras, they might
look slightly different. If transparencies and specularities exist in the scene,
the matching procedure is further complicated. It is also possible that due to
occlusions some 3D points may only be seen by one of the cameras and the
corresponding image features cannot be matched at all. The matching of image
features is typically performed through correlation of image pixel windows cen-
tred on the features. In the case of occlusions, a large fraction of these pixels may
belong to the background that differs between the two camera images, leading to
additional complications. A final reason why erroneous pairs can be expected is
that repetitive patterns exist in the scene and many points look much the same.

It is essential that these outliers can be identified and eliminated from the
data set, especially if an optimum is found solving a least squares system, where
the outliers would otherwise dominate the result. The outliers should be de-
tected as early as possible. To determine a final estimate all the remaining, and
hopefully correct, image features could be used. This can be done by selecting a
small set M (j) of random feature correspondences and calculating an essential
matrix as described above. The procedure is repeated numerous times and for
each set the estimated epipolar geometry is evaluated. Using some kind of error
measure, estimates with large errors could then be ignored. Hopefully, estimates
based on feature sets that include one or more outliers will belong to these.

A commonly used method known as the random sampling consensus paradigm
(RANSAQ) (Fischler & Bolles 1981, Torr & Murray 1997) uses the complete set
of correspondences in order to test the epipolar estimates. Once an estimate has
been found the image distance error, that is the distance between a feature and
its corresponding epipolar line, is calculated for each and every feature pair. If
this error is lower than a certain threshold, the epipolar estimate is said to be
supported by the feature pair. The estimate supported by most feature pairs is
then selected as the best estimate of the true epipolar geometry. However, since
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all image correspondences are used for this evaluation, RANSAC might be too
time-consuming and damage the performance of the complete system.

4.6.1 Quality testing estimates

In order to decide whether an estimate should be ignored or not, the least eigen-
value, that is the sum of squared errors, could be analyzed. This can be done
implicitly, observing the convergence of the iterative power method, as was de-
scribed in Section 4.4.2. Unfortunately, this does not guarantee that the estimate
is actually a good estimate located close to the true epipolar geometry. Figure
4.3 shows a number of sample points found when estimating the epipolar geom-
etry according to this scheme. Further experiments will be presented in more
detail later in Section 4.8. As seen in the figure, the points are clustered around
more than one centre in the two-dimensional space of epipolar geometries. The
cluster near (7,3) corresponds to the true epipolar geometry.

' L
-10 0 15

Figure 4.3. Distribution of sample points when estimating the epipolar geom-
etry. The x-axis represents the vergence angle and the y-axis the gaze direction.
The data set consists of 500 feature pairs, including 20% outliers.

The existence of the two other clusters can be understood as follows. If
the selected feature points suffer from a high level of noise or if the feature set
includes one or more outliers, the two eigenvectors u; and us may change order.
This problem has earlier been described by Ma et al. (2001). If the eigenvalues
change order, the wrong eigenvector represented by the two other cluster centres
in Figure 4.3 will be found instead. Figure 4.4 shows the epipolar lines associated
with solutions from the two different clusters. Both images are based on the same
set of feature pairs, but the right one includes a point that has an additional
error of 10 pixels in the y-position. The sensitivity may be explained as follows.
If the cameras are fixated on a point in the centre of the feature cloud and the
points are poorly spread in depth, the image displacements are typically small.
A relatively small error at one point may then suddenly dominate, which may
lead to the incorrect solution being found.
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Figure 4.4. Epipolar lines for two solutions based on 10 feature points. The
right image corresponds to the incorrect eigenvector, which is the result of a 10
pixel error at one point.

In order to separate such false samples from real ones, one may employ two
additional quality tests to decide whether to accept a sample point as a good
estimate of the epipolar geometry. The first test ensures that the maximum
image distance error is reasonably small, that is the errors of Equation 4.16
have to be lower than some predefined threshold, which could be set to a value
similar to the variance of the feature extractor. The other test involves a check
whether every point in M (j) is actually located in front of the cameras, when
the three-dimensional positions have been reconstructed.

The left and right optical axes seldom coincide in a single 3D point. This
is because there will always be some noise in the system and the calculations
cannot be done totally free from small truncation errors. However, here this
fact will simply be ignored, since the y-coordinate of the reconstruction does
not affect the test. With the coordinate system centred at the left camera,
the two projections will be given by x; = f;'Riu = (z1,4,1)" and x, =
iR (u—1t) = (zr,yr,1) ", following the derivations in Sections 4.2 and 4.3.
Eliminating the 3D position u and dropping the y-coordinates, the distances, f,
and fj, from u to the two cameras can be found solving

2, —cos(B)z —sin(8) \ ( fr \ _ ( cos(a)

1 sin(B)z; — cos(B) fi sin(e) /)
In order for the in-front test to be successful both distances have to be positive.
After performing the two quality tests on the sample points in Figure 4.3 and

omitting the points that do not pass, only one cluster will remain, as shown in
Figure 4.5.

4.7 Non-linear optimization

The linear method described in Section 4.4 relies on a minimum found in a
space of four dimensions. However, what is really sought is the minimum of the
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Figure 4.5. Distribution of sample points, after filtering out samples that do
not pass the two quality tests. The simulation was performed in the same manner
as for the points in Figure 4.3.

objective function on a two-dimensional manifold in this space. A point on the
manifold is found by performing a projection, as was described in Section 4.3.1.
The problem with this approach is that one does not know whether this point
really lies close to a local minimum.

A non-linear approach could be used to ensure that this is the case. Given the
two angles @ = (ay, @) the corresponding point in the four-dimensional space is
given by

f(a) = (—sin(qy), —sin(a,), cos(a,), —cos(ay))?. (4.29)

In order to find the minimum of the objective function
1 T
E(a) = §f(a) Mf (), (4.30)

it is possible to use Newton’s method. The minimum is found iteratively, in each
iteration using a direction py that satisfies

V2E(a®™)py = —VE(a®). (4.31)

As an initial estimate (), one may use a point from the linear optimization
explained earlier. Since the function E(«) typically is well-behaved around the
minimum, the estimate can be updated without any additional backtracking
operation. Hence the (k+1) th estimate of « is

ot = o®) 4 py. (4.32)
The gradient and Hessian of the optimization function are given by

of
_ eTar 91 or
VE(a) = (fTMg - £TM

o 1

Bar, and (4.33)
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Since non-linear optimization is relatively costly, it is important to discard
bad estimates as soon as possible. In our implementation the sum of squared er-
rors is tested directly after performing the initial linear optimization. This turns
out to be a quick way of filtering out most sets with image correspondences that
include one or more outliers, before continuing with the non-linear optimization.
The convergence test of the Inverse Power procedure described earlier ensures
that the function E(a) is well-behaved and few iterations are required for the
non-linear optimization. As seen in Figure 4.6 the spread of sample points is
significantly reduced, especially in the dimension of the gaze direction.

-10 -5 0 5 10 15

Figure 4.6. Distribution of sample points, after non-linear optimization and
filtering out samples of low quality. The simulation was performed in the same
manner as for the points in Figure 4.3.

4.8 Experiments

To evaluate the alternative methods, a number of simulations were performed.
Series of 500 randomly generated points were evenly spread in a three-dimensional
truncated pyramid located around the fixation point, that is the point where the
two optical axes intersect. With a focal length f equivalent to about 400 pixels,
based on 360 x 288 pixel image planes, the approximate distance to the fixation
point is Zy = 2f /3, where (3 is the vergence angle. The generated points were
spread between 0.5Z; and 2Z; from the observer. Each point was projected onto
the image planes of the left and right cameras. Noise with a standard deviation
of one pixel was added to each image dimension, in order to simulate feature
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extraction errors. The effect of outliers in real data was tested, adding an addi-
tional 30 pixel noise source to the left feature point position of about 20% of the
500 feature pairs.

The first approach that was tested is based on linear optimization (linear)
using the E4 model of the essential matrix, as described in Section 4.3.1. A
total of 10000 different sets, M (), consisting of six image correspondences each
were generated with random sampling. For each set the corresponding essential
matrix was calculated. The quality of the results was then tested and bad esti-
mates discarded. Typically only about 10% of the estimates are left after this
procedure, which might seem a low figure. However, based on the number of
outliers, it can be expected that about 1 — (1 — 0.20)® = 74% include at least
one outlier and these estimates will thus be excluded. Additional estimates are
thrown away because the feature points are not properly spread in 3D space.

The remaining epipolar estimates may be described by sample points in a
two-dimensional space, with vergence angle and gaze direction as coordinates.
The points typically form an ellipsoidal cluster in this space, which can be seen
in Figure 4.5. The mean sample position, the centroid, can then be used as
the final estimate of the epipolar geometry. The size and shape of the ellipsoid
varies depending on the level of image noise and the true camera configuration.
As explained earlier, linear optimization does not necessarily provide an optimum
in this two-dimensional domain. In order to ensure that a local minimum really
is found, one may add an extra nonlinear optimization operation (nonlinear).
This approach was tested using the same randomly generated sets of points and
compared with the linear method.

Instead of just using the mean sample point position as the final estimate
of the epipolar constraint, one may also test its support among the complete
set of image correspondence. In this approach (support), the epipolar estimate
with the highest number of supporting feature pairs wins and will thus be used
as the final estimate. The estimate E is supported by a pair of points (x1,%y),
if [xTEx,;| < op. The constant oy is a predefined threshold related to the
expected noise of the corner extractor.

There are primarily two reasons for keeping the degrees of freedom of the
binocular system as few as possible. The first reason is the computational speed
and the other is the robustness. In order to test these properties, the previous
three approaches, that were all based on E4, were compared to a method using
the full set of five degrees of freedom. This method, which uses the Eg essen-
tial matrix model from Section 4.2.1, is a Least Median of Squares (LMedS)
approach proposed by Zhang et al. (1995). For each randomly sampled set, an
epipolar geometry estimate Ermeas is calculated and for each feature pair in
the whole data set the squared error is obtained. The median of the squared
errors then determines the quality of the set. The feature set that leads to the
lowest median error is considered the winner and determines the final estimate.

In order to compare the different methods, the results of the LMedS ap-
proach had to be converted into two parameters only, the vergence angle and
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gaze direction. First the essential matrix Erneds was decomposed into a ro-
tational and a skew-symmetric matrix. The two matrices of the forms given
by Equations 4.12 and 4.13, that were closest to those of the estimation pro-
cess, under the Frobenius norm, were then determined. The corresponding two
parameters were then used in the evaluation.

Experimental results

Simulations were performed using the methods mentioned above. The resulting
vergence angles can be seen in Figure 4.7, which show the standard deviation
and mean of the estimated angles. Different groups of bars illustrate the results
from different combinations of true vergence angles and gaze direction. Vergence
angles of 2°, 7° and 17° represent the minimum, typical and maximum values
of a stereo head system under normal working conditions. The thin horizontal
lines in the right image of Figure 4.7 show the true vergence angles and can be
used as references.

20 200 220 70 70 B0 10 1m0 17x20 20 240 220 70 70 720 1n0 170 1720
Vergence x Direction (degrees) Vergence x Difection (degrees)

Figure 4.7. Standard deviation (left) and mean (right) of the vergence angle,
for different combinations of true vergence angles and gaze directions.

We see that all methods come close to the true configuration, since the mean
error never exceeds one degree and the standard deviations are reasonable small.
In general the support method is not as robust as the other methods. It is also
worth noting that, contrary to what the higher number of degrees of freedom
might suggest, the LMedS method is just as robust as the first two methods,
unless the vergence angle is too small. We may also note a slight improvement of
the bias when nonlinear optimization has been added to the ordinary linear one,
but it is questionable if the relatively small improvements justify the increased
complexity of the method.

Considering the graphs in Figure 4.8 that show the mean and standard de-
viation of the gaze direction, one may conclude that this component is much
harder to estimate. Here the methods based on the E4 model show a much
better robustness than the LMedS approach. Systems where the cameras are
close to parallel are especially hard and even the best methods show a radi-
cally reduced robustness. However, a standard deviation of about three degrees,
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which is equivalent to the worst results of the linear and nonlinear methods, is
probably acceptable in most applications. The method based on support does
not come close to the robustness of the first two methods, even if the results are
considerably more stable than those of LMedS.

In conclusion, the gaze direction is far easier estimated using the linear
and nonlinear methods than with the methods based on a support measure.
However, for the vergence angle all methods show similar results and there is
no obvious factor excluding one method from the others. In most cases, the
nonlinear method is slightly less biased than the linear method, especially for
the gaze direction. It is not always necessary to test as many as 10000 sets of
six feature pairs each. More sets are typically required when the cameras are
close to parallel due to the essential matrix not being of full rank. It should
be pointed out that the support based methods are more sensitive to a reduced
number of tested feature sets, than methods based on the centroid of accepted
estimates. Later in Section 4.11.1 the methods will be compared in terms of the
computational cost.

8
E
.
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Figure 4.8. Standard deviation (left) and mean (right) of the gaze direction,
for different combinations of true vergence angles and gaze directions.

4.9 An iterative algorithm

So far all experiments have been based on the epipolar geometry using essen-
tial matrices. As described in Section 4.2, the epipolar constraint decouples
the structure from the stereo problem. Without knowing anything about the
structure, the relative location and orientation of the cameras can be extracted.
However, in many applications the depths are in fact known, at least approxi-
mately, and the question is whether this knowledge can be used to simplify the
problem. One might not have an accurate depth value for each individual image
point, but at least the expected distribution of depths may be given.

Instead of using the essential matrix, one may view the problem as a dif-
ferential motion problem. The left and right images can be considered as two
images taken by the same cameras at two different instances in time, while the
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camera moves in 3D space. The vertical and horizontal disparities can be used as
approximation of the optical flow. One might wonder whether such a treatment
of the problem is feasible, since such approximations are known to break down if
the motion from frame to frame is too large, and we intend to use the model for
stereo rather than for motion. However, in this section it will be shown that for
a stereo head in fixation, where objects in space are located relatively far away
from the platform and the vergence angles are small, one will stay within the
bounds of acceptable results.

Considering a stereo head as shown in Section 4.2 and the bilinear optical
flow equation of Longuet-Higgins & Prazdny (1980), the difference in position
between an image point (z;,y;) in the left and right image is approximately

de; \ _ [ 1+2? 1 T, — z;T,
( dyi ) B ( TiYi )ﬂ+ Z; ( —yiT, ) (4.34)

The values dx; and dy; represent the horizontal and vertical image displacements.
Unlike with the essential matrix, the depth Z; of each point appears in the
equation. The angle § represents a rotation around the y-axis, as seen in Figure
4.2, which is the same as the vergence angle. The gaze direction is determined
by the translational component given by T, and T, that is the position of the
right camera relative to the left.

Since the camera system is constrained, such as described in Section 4.3.1,
the horizontal disparities of different points maintain the same ordering if the
cameras are verge, that is change the vergence angle (Yau & Wang 1999). This
means that if the distribution of depths is known in advance, one may easily find
an approximate depth for each individual image point. This will be shown in
the algorithm outlined below.

The approach proposed in this section is a two-stage iterative algorithm that
alternates between estimating depths and the camera configuration. First the
geometry parameters 3, T, and T, are calculated using the current depth es-
timates. In the second stage the depth values Z; are updated from the new
geometry parameters. The process is initiated using an estimated vergence an-
gle calculated from an expected median depth and the median of horizontal
disparities. As seen in Equation 4.34, the depths and translation are related and
can only be estimated up to a constant. Letting ¢t = T,/T, and denoting the
inverted and scaled depth A; = T},/Z;, the equation may be rewritten as

d:t:,-—)\i) (1%—%,2 —wi)\z’><ﬂ>

= . 4.35
( dy; Z;Y; —YiA t ( )
An iterative algorithm based on this equation can be seen in Figure 4.9.

4.9.1 Reducing the effect of outliers

As mentioned earlier in Section 4.6, one always has to expect that a consider-
able fraction of matched feature pairs are in fact outliers, that is feature points
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Algorithm
1. Initialize 8(©) from the expected median distance to points in 3D space and
the median horizontal disparity, and let t(©) = 0.
2. Individually update the inverted depths using the estimated of the epipolar
geometry.
e?bi

ei €;

_( dai— (1422 1 g
b= ( dy; — ziy; B and e = —y;t(™ : (4.37)

A = where (4.36)

3. Calculate the geometry parameters from the estimated depths, in a least
squares framework with all valid feature pairs included:

(n)
( f(n) ) =(D_ATA)Y ATd;, where (4.38)

(n—1) -1
A; = 1+ 2312 —wi/\gn_l) and d; = ( dx; — /\E” ) ) - (439)
TiYi _yi/\i dyi

4. Return to 2. until convergence is reached.

Figure 4.9. An iterative epipolar geometry estimation algorithm

that do not correspond to any existing points in 3D space. Similar to methods
based on the essential matrix, outliers may seriously damage the performance
of the algorithm and a couple of adjustments have to be made to improve the
robustness.

The most obvious and dominating outliers can be identified by making sure
that the vertical disparities are kept within a limit defined by

|dy;| < |ziy:| max(B) + |yi| max(T, /Z;) + oy. (4.40)

The constant max(3) defines the maximum vergence angle possible, which typ-
ically has a value of about 20°. The maximum translation along the optical
axis, typically only a few centimetres, relative to the closest object in 3D space
is determined by max(T,/Z;), whereas o, is the expected noise of the feature
extractor. Image correspondences that do not pass this test will be omitted from
the data set and not used in the optimization. The test can either be performed
before Step 1 or directly after. If the test is done afterwards it is possible to
take advantage of the initial vergence estimate 5(°), which is usually within a
few degrees from the true value. A more conservative limit may then be used,
allowing also less critical outliers to be identified.
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In order to further suppress the effect of outliers, the current implementation
assigns a weight w; to each correspondence and uses these weights in the least
squares optimization of Step 3. The errors of Step 2, ¢; = d; — /\z(")ei, define the
weights. The weights reflect in what sense the horizontal and vertical disparities
can agree on a single depth value and determine how much a certain feature
influences the final solution. Letting o, be a predefined value relating to the
noise of the feature extractor, one might use the following definition of weights:

1= ()2, if e < o
Wi = { 0, otherwise [~ (441)

After introducing the weights given above, Equation 4.38 is replaced by
( pr) ) = (Y wATA) 'Y wATd; (4.42)
t(n) = iy A i di, .
i i

which leads to a new epipolar estimate, where points that do not match the
current estimate are suppressed, thus reducing the effect of outliers.

It should be noted that the success of this procedure depends on the camera
configuration being within bounds previously defined. With unusual configura-
tions or when the initial depths values are far away from the true values, correct
feature correspondences may be eliminated erroneously and outliers kept unno-
ticed. The effect of this will be seen in the next section.

4.9.2 Simulations

Simulations similar to those presented in Section 4.8 were carried out using the
same sets of randomly generated feature points. In order to test the effect of
incorrect initial median depths, the fraction between the expected median depth
and the true one was varied between 0.2 and 5.0. The different groups of bars
in Figure 4.10 represent estimated vergence angles for different combinations of
true vergence angle and gaze direction. The E4 model was used for the results
based on the essential matrix. As seen in the left image, the standard deviation is
considerably lower than that of earlier presented methods, provided the expected
depth is close enough to the true one. However, when the initial guess was not
as good, the algorithm collapses for combinations of large vergence angles and
asymmetric camera settings.

Gaze directions estimated using the proposed iterative approach also seem
to be more robust than previous methods, as illustrated by Figure 4.11. Even if
small vergence angles are still critical, the standard deviations stay within about
2°, which ought to be acceptable in most cases. Unlike the earlier methods, the
robustness is slightly dependent on the true gaze direction. This is likely to be
a result of the initial translation set in Step 1 of the algorithm.

The iterations converge at a rate remarkably independent of the true camera
configuration. Typically 20 to 30 iterations are needed for the relative errors
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Figure 4.10. Standard deviation (left) and mean (right) of the vergence angle,
for different combinations of true vergence angle and gaze direction.
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Figure 4.11. Standard deviation (left) and mean (right) of the gaze direction,
for different combinations of true vergence angle and gaze direction.

of the depth values to decrease to about 10% of the initial errors from Step 1.
The rate is slightly higher for near-symmetric camera configurations and small
vergence angles. In situations where outliers have not been properly eliminated
the convergence rate can be much worse, even if the procedure never seems to
diverge. Based on these observations it might be possible to improve the speed
of convergence using forward prediction, but this was not used here.

4.10 Solving for additional parameters

In the previous sections the epipolar geometry was only determined with two
degrees of freedom. The question arises of whether more parameters ought to
be added to the optimization problem. There were primarily two reasons for
only two to be included. The first one is the computational speed. The more
often the epipolar geometry estimate can be updated, the easier it will be to
take advantage of temporal consistency. Secondly, too many parameters added
to the problem might seriously affect the robustness. Oliensis & Govindu (1999)
have shown that an optimization with internal camera parameters treated as



4.11. Real-time experiments 67

unknowns, does not necessarily result in more robust results than when the
“known” internal parameters are in fact only approximate. In fact, if a parameter
is hard to determine, it often means that a small error in this parameter will not
significantly effect the estimation of the other parameters.

Hartley (1992) has previously shown that the two focal lengths may be found
by exploiting all the degrees of freedom of Eg. However, in our particular case,
with the system constrained as is Section 4.3.1, this is not possible (Brooks et al.
1996). The reason is that E4 always consists of five elements equal to zero. With
only three degrees of freedom, it is not possible to estimate both focal lengths
simultaneously. However, if the focal lengths are known to be equal, they may
be determined, but at the cost of a considerably higher variance in the estimated
parameters (de Agapito et al. 1998). It can be shown that the errors may be
extremely large if the camera configurations are close to symmetric, which is
often the case for binocular stereo heads. As a consequence of this, the presented
system does not include such a process. In fact, a moderately erroneous focal
length does not hurt the robustness to a great extent, but the results will be
slightly biased. More critical to the robustness is the relative difference in focal
lengths between the two cameras. This difference can be robustly estimated in a
separate operation, simply by assuming that one camera has a known focal length
and then search the other. Even if the given focal length is just approximately
known, the calculated relative difference will be close to the true value.

For a typical stereo head system, it is sometimes hard to fulfil the requirement
that there is no relative tilt between the two cameras. Due to the mounting of
the cameras and the placement of the actual CCD chips inside the cameras,
there can easily be a bias in vertical disparity of as much as 10 pixels. Without
adjusting the extracted feature positions for such a bias, the final estimated
geometry will either be useless or seriously biased. The presented system uses
the fact that no vertical disparities should be present along the x-axis. As an
initialization, features are extracted from a sequence of pairwise images. Using
feature correspondences located along the x-axis, a linear relation between the
x-positions and the vertical disparities is found. The data are fitted to a straight
line, with least median of squares. From this relation the vertical difference in
position may be found in the centre of the image. If the epipolar geometry is
available from a previous frame, rectified data may be used instead. Through
the same procedure, feature positions can also be adjusted to correct for small
relative rotations around the optical axes.

4.11 Real-time experiments

A series of real-time experiments, out of which one is presented here in greater
detail, was also performed using a binocular stereo head with processing done on
an SGI Octane machine. The tested system consists of three basic components,
feature extraction, matching and epipolar geometry estimation. Corner features
are extracted using the Harris corner detector (Harris & Stephens 1988). In order
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Figure 4.12. Left and right camera images from the 50th, 100th and 150th
image frames. Black points represent the extracted corner features, while lines
indicate valid matches between the two images.

to suppress image noise, incoming images are low-pass filtered before corners
are extracted. Matching is done from the left to right images and then in the
opposite direction. With modified normalized cross-correlation of 9 x 9 pixel
areas, a favourite in the opposite image is found for each corner feature. Two
features that are each others favourites are considered as reliable and are then
used in epipolar estimation process. See Section 8.2 for more details.

The epipolar geometry is determined using a combination of the iterative
algorithm presented in Section 4.9 and the method based on the E4 model of
the essential matrix, as described in 4.3.1. First the iterative method is used
and if the estimated vergence angle is larger than 12°, the essential matrix is
applied instead. Thus the inherent limitations of the optical flow constraint can
be overcome, without reducing the robustness. In the presented sequence the
stereo head was kept static, but with the ability for the cameras to verge. On
a 195 MHz SGI Octane the complete system runs at 12.5 Hz, which includes
grabbing of image frames and on-screen output of left and right images.

A small number of images from the sequence are presented in Figure 4.12,
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showing images from the left and right cameras in the left and right columns
respectively. The three rows constitute image pairs from the 50th, 100th and
150th frames. Between the first and second rows the cameras verge from about 8°
to 11.5°. In order to test the ability of the system to reassume convergence after
failure, we let someone block the left camera with a hand for a few seconds. This
can be seen in the images from the 150th frame. For the left images the locations
of extracted corner features are shown, together with lines that indicate valid
matches. The system was able to compute the relative tilt between the cameras
as 5.2 pixel, using the method presented in Section 4.10.

angle (degrees)

vergence

jon of

Standard deviat

Figure 4.13. Estimated vergence angle (left) and its standard deviation (right).
Note the different scales.

The two diagrams of Figure 4.13 show the estimated vergence angles and
their standard deviations. The values are processed through a moving average
filter, with a time window of about 20 frames. The first frame is the very moment
when the system starts running. In Figure 4.14 the corresponding graphs of the
estimated gaze directions are shown. The standard deviations stabilize at about
1°, which is close to the errors reported from the simulations in Figure 4.11. The
same is true for the vergence angles, where the standard deviation reaches about
0.2° after convergence.

of gaze direction (degrees)

Standard deviation
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Figure 4.14. Estimated gaze direction (left) and its standard deviation (right).



70 Chapter 4. Epipolar geometry

Method Cost on R10K
Linear 58 ms (26 ms)
Nonlinear | 81 ms (36 ms)
Support 480 ms
LMedS 850 ms
Iterative | 27 ms (12 ms)

Figure 4.15. Computational costs of the different methods performed on a
195MHz MIPS R10K processor.

Through all experiments, the bootstrapping process never seemed to fail,
provided the distribution of features was otherwise good enough. However, if
the lighting-conditions radically change or the cameras get partially occluded as
in the 150th frame of the sequence, one might get serious errors primarily due to
a dramatic increase in the number of outliers. In order to minimize the effect of
such problems, a gate was introduced just before the moving average filter. This
gate simply discards inputs to the filter if the estimated values are too far away
from the range of values that are considered likely. The range is based on the
maximum acceleration of the stereo head and is never changed during execution.
For the results presented here such a gate was never applied.

4.11.1 Computational costs

The table in Figure 4.15 shows the computational costs of the methods presented
above, when executed on a 195 MHz MIPS R10K processor. The time required
for feature extraction has not been included. The data clearly show that methods
that do not rely on any support calculations run considerably faster than if
a support measure has to be obtained for each and every sample set. It is
worth noting that LMedS is not much slower than support, even if the number
of degrees of freedom is six, instead of two. This indicates that the actual
support calculations, which are similar in both methods, dominate the total
computational cost for these methods.

As seen in the table, the linear and nonlinear are about an order of mag-
nitude faster. However, it is hard to tell which of the two methods one would
prefer. In applications where the slight bias of the linear method is not criti-
cal, one might benefit from a somewhat lower computational cost. The speed of
the two methods may be improved, if a limit is set on the number of epipolar
estimates one wishes to include when calculating the centroid. Instead of gen-
erating as many as 10000 random sets of six feature pairs each, one might be
satisfied when a certain number of accepted estimates have been found and then
end the random sampling procedure. The data in brackets show the execution
times when such a limit has been set to 200. The accuracy due to such a limit
is not notable. The disadvantage is the fact that the computational cost will be
less deterministic, but the simulations show that as long as the vergence angle
exceeds about 3°, the execution times will not vary very much.
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The iterative approach turned out to be considerably faster than all the
other methods. This is basically because the approximate distance to objects in
3D space is already known and this knowledge has then been used to improve
the estimation process. In cases where the external calibration is performed con-
tinuously and the camera configuration has not radically changed since the last
update, one might benefit from the use of previously estimated camera parame-
ters. Instead of using as many as 25 iterations, the method often converges after
much fewer iterations when the previous estimate has been used for initialization.
The iterative procedure might then be terminated as soon as convergence is met.
At the cost of a less deterministic computational cost, the average execution time
will then be 12 ms, as shown in brackets.

4.12 Conclusions

For an active observer, stereo is an important cue for a variety of visually guided
tasks, such as navigation, obstacle avoidance and manipulation. However, dif-
ferent tasks require observations of objects located at different depths and be-
cause of the limitations in field of view and image resolution, dynamic vergence
typically becomes a necessity. Dynamic fixation may also be used to simplify
problems like ego-motion estimation and figure-ground segmentation.

In this section a real-time framework for epipolar geometry estimation has
been presented, with experiments performed on a binocular head. Instead of
using counters on the motors controlling the motion of the stereo head, external
calibration is performed continuously at a low computational cost. Two models
have been explored, with the number of unknown parameters minimized without
affecting the flexibility of the system. The first model based on the essential
matrix proved to be somewhat sensitive to near-parallel camera systems, but for
vergence angles larger than about 5° the errors stay within about 1° in both
translational and rotational component.

An alternative approach based on the bilinear optical flow equation was also
presented. Using an initial expectation of the median distance to objects in 3D
space, the geometry parameters and depths were sought in an iterative procedure.
Since the approximate model that was used only works for small rotations and
translations, it could be expected not to be feasible for modeling the image
displacements of a stereo system. However, this study showed that it could in
fact be used for a stereo head under normal working conditions. The method was
faster and also more robust, especially for small vergence angles, than methods
based on the essential matrix.
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Chapter 5

Binocular disparities

There are a number of possible cues to perception of depth, such as motion paral-
lax, accommodation, relative size, texture gradients and shadows, but binocular
disparities are likely to be the strongest ones. For an autonomous observer, the
ability to segregate the world into regions of different depths is crucial. But at
long ranges in navigation and short ranges in manipulation binocular disparities
form a valuable piece of information. However, the use of multiple cameras intro-
duces some new questions that may be hard to solve. The increased complexity
may slow down the system, as data to be analyzed grows. Unless the cameras
have been calibrated, intrinsically and externally, the calculated data are difficult
to use. Most disparity methods rely on cameras being aligned, such that their
epipolar lines are parallel. Thus in the case of verging camera systems, images
first have to be rectified, before disparities can be estimated. These problems
have limited the use of binocular disparities in robot vision. Nevertheless, we
believe that they can be overcome and that binocular stereo should be used by
a “seeing” system.

In Chapter 4 the epipolar geometry of a binocular stereo system was analyzed
and an approach for estimating the relative orientations and positions of the two
cameras were given. Using such a process images can be readily rectified, before
disparity calculation starts. In this chapter a number of possible algorithms for
calculating binocular disparities will be evaluated. Emphasis is put on both speed
and accuracy, knowing that the final system is intended to work in a dynamic
environment under real-time conditions. Dense disparity maps are important,
but an increased number of false positives, should not be traded for maximum
density. If information about a certain image region is sparse and disparities
cannot be reliably estimated, it is better to discard these results. Additional
cues and estimates from different instances in time, will hopefully aid in handling
situations when disparity calculation fail. In these regards this study is somewhat
different from other studies. In the next section a historical overview will be given
about computational studies dealing with binocular stereo. A number of methods
based on area correlation will be tested in Section 5.2, with results compared to

73



74 Chapter 5. Binocular disparities

a method based on dynamic programming (Section 5.3) and a recently presented
cooperative approach in Section 5.4. The chapter ends with final remarks and
suggestions for further research.

5.1 Related work

The reason why people have studied binocular disparities as a cue to depth per-
ception, has varied during the years. In earlier computational studies, scientists
were interested in computational models of the human vision system and not so
much in applying the results practically in reconstruction, surveillance or track-
ing human motion. One likely reason for that could be the lack of computational
power typically required for such applications. Despite these limitations, binocu-
lar disparities was used for rover navigation and obstacle avoidance as early as in
the late 70’s (Hannah 1974, Gennery 1980). Moravec (1977) used feature points
extracted as local maxima of a cleverly designed directional variance measure.
The matching was done in a coarse to fine fashion using cross correlations. Even
if the rover was slow, they were still able to show that disparities as means to
control the motion of a rover is indeed feasible.

Inspired by the work of Julesz (1971), Marr & Poggio (1976) presented a co-
operative model of the human stereo perception. Using a network of inhibitory
connections between neurons representing the same image position, but differ-
ent disparity. A uniqueness constraint was imposed, such that each image point
could only be assigned a single disparity. Another constraint based on the as-
sumption that nearby image points typically originate from nearby points in 3D
space, was imposed through excitatory connections between neighbouring neu-
rons of similar disparity. This constraint is known as the continuity assumption
and is similar to the smoothness constraint in optical flow studies. A modern
version, given in the cooperative model by Zitnick & Kanade (2000), shows very
promising results.

In another study Marr & Poggio (1979), instead of using every image pixel,
matched edge pixels only. This was done in a single pass, rather than in an
iterative procedure such as in the cooperative model. The left and right images
were filtered with twelve different orientation sensitive difference of Gaussians
filters at various scales. Matching was performed using a similarity measure
based on filter signs and orientations, with image positions defined by zero-
crossings in the filtered images. Grimson (1981) implemented this model on
faster hardware, but used a single Laplacian of Gaussian filter and grouped the
edge pixels based on the orientation of the filtered responses.

The model was later extended (Grimson 1985), such that instead of impos-
ing the continuity constraint over an area, it was done only along contours, as
suggested by Mayhew & Frisby (1981). Prazdny (1985) presented an algorithm
based on a more general constraint, called the coherence principle. This princi-
ple recognizes that nearby points may in fact come from different objects in 3D
space. Thus it includes no inhibition between nearby points that do not agree on



5.1. Related work 75

the same disparity, even if points of similar disparity still cooperate. The same
is true in the PMF algorithm by Pollard et al. (1985), who in addition used the
disparity gradient limit (Burt & Julesz 1980).

With the introduction of dynamic programming methods, dense disparity
maps became more common. In order to better handle occlusions, Baker &
Binford (1981) divided each edge into its two sides and considered the sides
separately. These so called half-edges were matched between the left and right
images using the Viterbi algorithm and then the gaps between edges were filled
in using a second Viterbi pass. With the assumption that the ordering of edges
along an epipolar line does not change, which is known as the ordering constraint,
the matching complexity could be significantly reduced. In cases of very thin
objects located in the foreground, this constraint does not always hold, but such
occasions are rare. Ohta & Kanade (1985) used dynamic programming to match
scanline intervals based on pixel brightness. These intervals were delimited by
edge points and the consistency between edge points on different scanlines was
enforced using a second dynamic programming process.

Through a Bayesian treatment of the matching problem along a scanline, it is
possible to better deal with occlusions (Geiger et al. 1992, Belhumeur & Mumford
1992). These methods used shiftable windows to impose continuity in disparities,
which is unlike the method of Cox et al. (1992), where only pixel intensities
were used in conjunction with a second constraint that minimizes discontinuities
between scanlines. A common problem with dynamic programming is the fact
that a single mismatch at one point affects the following points of the same
scanline, which results in the typical streaking effect of such methods. This is
especially true in the case of very large disparities. In order to cope with this
problem Intille & Bobick (1994) introduced the notion of highly reliable ground
control points, that are used to guide the matching process.

Area-based methods have played a major role in practical applications during
the years. Typically small areas are correlated between the left and right images,
and matches are chosen based on maximum correlation. The benefit of such an
approach is the simplicity, that makes implementation on fast hardware easier.
Some of the first such systems were built at SRI (Quam 1984, Hannah 1985).
While these systems used cross-correlations, Nishihara (1984) considered only the
sign of Laplacians and got reasonable results. He also showed that the probability
of mismatches decreases as the correlation window increases in width, but at the
cost of lower accuracy. To overcome this problem it is possible to perform the
matching in both directions, left to right and then in the opposite direction
(Cochran & Medioni 1992, Fua 1993). Disparities are then accepted only for
those pixels, where the matchings in both directions agree. A real-time system
from INRIA (Faugeras et al. 1993) was based on this principle.

Instead of using only two cameras one may apply a whole series of cameras,
arranged either on a row (Okutomi & Kanade 1991) or in an array (Satoh & Ohta
1996), without being forced to sacrifice accuracy for occlusion detection. In a
binocular setting a wider baseline is typically required to achieve high accuracy,
but the matching is then seriously complicated in cases of occlusions. There
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has been other attempts to deal with this problem. Zabih & Woodfill (1994)
introduced what they called the rank and census transforms, which are more
robust to outliers. Areas are matched based on the relative ordering of pixel
intensities, rather than on the intensities themselves. Birchfield & Tomasi (1998)
used a dissimilarity measure which is less sensitive to image sampling. This is
done in order to cope with the fact that correlations are performed in steps of
integer disparities, which might result in large errors in highly textured regions.

Just like in the case of optical flow (see Chapter 2), local phase information
might be used for disparity calculation (Sanger 1988, Fleet et al. 1991, Maki et al.
1995). The benefit of using such information is its stability with respect to affine
deformations and contrast change, as well as subpixel accuracy. However, the
range of possible disparities is limited to the size of the filter kernels used. Thus
phase information could be an interesting alternative if disparities are known
to be small and high accuracy is required. This is, however, not the case in
typical indoor environments. More general multiple linear filters for disparity
calculation were proposed by Jones & Malik (1992).

During the last few years, more efforts have been devoted to the disparity
calculation problem globally. Thanks to dynamic programming it was possible to
optimize pixel matches along scanlines. However, this method is unfortunately
limited to one-dimensional problems and cannot be applied over the whole image.
An alternative global method was presented by Barnard (1989), who solved the
problem using simulated annealing. However, even in a coarse to fine framework,
this method is very slow.

With the introduction of graph cut based methods (Roy & Cox 1998, Ishikawa,
& Geiger 1998), greater speed could be achieved. In these studies a 3D network
of nodes was created, with links between nodes representing the cost of introduc-
ing occlusions and differences in pixel intensities. The problem was formulated
as letting a 2D plane divide the network into two halves, such that the total cost
of links cut is minimized. Unfortunately, the cost of a discontinuity increases
linearly as a function of the difference in disparities between two neighbouring
pixels. Boykov et al. (2001) instead formulated the problem as a large labeling
problem, with a greater flexibility in terms of possible cost functions. The prob-
lem was iteratively solved as a maximum flow problem, with one minimum cut
determined at each iteration. Several recent and successful methods are of this
type. Unfortunately, they are still too slow for real-time execution.

More information on the performance of the most popular methods for dense
disparities can be found in a recent study by Scharstein & Szeliski (2002), which is
a continuation of the comparative work in (Szeliski & Zabih 1999). A taxonomy is
presented, together with numerous quantitative results of five separate methods,
that represent different levels of algorithmic complexity. A prior study by Dhond
& Aggarwal (1989) gives a thorough presentation of the historical background.
It includes few quantitative results, unlike (Bolles et al. 1993) where three real-
time methods from SRI, INRIA and Teleos were analyzed and tested for the
application of planetary rover navigation.
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5.2 Area-based methods

There are several reasons why methods based on spatial correlation by design
give limited accuracy. First of all, since correlations are done pixel-wise, they
tend to be biased towards integer disparity values. This problem might be over-
come by fitting a curve, typically of second degree, to the correlation data and
find a maximum along the curve. However, it might be difficult to find a theo-
retical motivation for the choice of a certain curve, even it the accuracy indeed is
improved. In fact, the possible accuracy is determined by the Nyquist sampling
limit, which affects any area based method. Another reason why curve fitting
is not always enough is that image noise is usually not uncorrelated between
different pixels, which leads to a bias towards the integer position closest to the
true disparity value.

A second problem in correlation, is the fact that an aggregation area is re-
quired. The area must be large enough for the signal to noise ratio to be low.
On the other hard, if the area is too large the probability will increase for pixels
of different disparities to be covered by the same aggregation area, resulting in
a competition between different disparity estimates. This is especially the case
near occlusions. A larger area may also result in foreground objects being en-
larged. Since a discontinuity edge belongs to a foreground object, nearby pixels
in the background will be influenced by the erroneous disparity to the foreground
object. The enlargement will increase if the background lacks texture. Thus a
correlation based approach would benefit from the use of adaptive area sizes
(Kanade & Okutomi 1994, Scharstein & Szeliski 1996).

In conclusion, there is a number of reasons for not choosing a method based on
aggregation areas. However, area correlation has one major advantage, namely
its simplicity, which may result in high speed. As mentioned in the chapter about
optical flow a fast solution is sometimes more important than high accuracy. The
solution should in the end be judged by the performance of the complete system,
not of each individual component. If computations can be performed at a higher
frame-rate, we typically get less complex tasks to solve, as the system needs
to adapt to changes in the environment. This implies that even less accurate
methods may prove to be more successful. Hence such approaches need to be
considered.

Matching criteria

Before implementing an area-based disparity system, it is important to select a
proper matching criterion. There are several alternatives to choose from. When
evaluating the possibilities in terms of both accuracy and computational cost,
it is not obvious what criterion is the overall winner. The most commonly
used criteria are the sum of squared differences (Anandan 1989) and the sum
of absolute differences (Kanade & Okutomi 1994, Konolige 1997), which can be
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expressed as follows:

Csap(p,d) =Y [Li(z,y) (z+d,y)| and (5.1)
(w,y)EW
CSSD(pad) = Z (Il(a"ay) - IT("E + d7 y))27 (52)
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where Ij(z,y) and I, (x,y) represent the left and right images and Wy, is a left
image aggregation window around a point p. Another matching criterion, with
the characteristic feature of being invariant to image brightness variations, is
normalized cross correlation (Hannah 1985, Faugeras et al. 1993)

Cnce(p,d) = Z I(z,y) I(x +d,y) — I;(z,y) I.(z + d, y)

(5.3)
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Here 02(z,y) and o2(z,y) denote the variances of pixel intensities of the left and
right aggregation windows. Since the two images come from different cameras,
that might be set up somewhat differently, invariance to brightness change is
often desirable. However, invariance may prove to be a too strong condition and
result in windows of very different brightness being matched. A better alternative
could thus be modified normalized cross-correlation (Moravec 1981),

Ii(z,y) I(x +d,y) — I;(z,y) I.(z + d,
Cunce(p,d) =2 ) () é;(x,y)yiaz(lﬁﬁy)(x Do
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that differs from Cncc(p,d) by a factor of

Voi(z,y) o(z +d,y)
ot (z,y) + o2(x +d,y)’

that is the quotient of the geometric and arithmetic averages. Thus too large a
difference between variances will be penalized in the matching process.

A final criterion, at least in this short exposé of criteria, is one due to Birch-
field & Tomasi (1998), that tries to adjust for the fact that windows are only
correlated in steps of integer disparity values. For the previously mentioned
criteria, the difference between correlated windows may still by significant in
highly textured regions. In this approach a range of acceptable intensities is
calculated for each pixel of the right image and a match is evaluated based on
how much a left image pixel departs from this range. First the midpoints be-
tween a right image pixel and its neighbours along a scanline are found, that is
I7(z,y) = 5(I:(z = 1,y) + L(z,y)) and I} (z,y) = 5(I(z,y) + L(z + 1,y)).
The range is then defined as the image intensities between I¥ =min(I7, I}, I,)

Ty r )
and I = max(I,I;},I,). The final criterion looks as follows:

(5.5)
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Figure 5.1. Two stereo pairs on which experiments are performed, the upper
row showing the Tsukuba pair including ground-truth data and the lower from a
typical stereo sequence.

Experiments

The above mentioned criteria, except normalized cross-correlations, have been
tested on two different stereo pairs. The first one, originating from the University
of Tsukuba, is given with a ground-truth disparity map. The original pair is in
colour, but in this study a black and white version will be used instead, in
order to keep the complexity of chosen methods to a minimum. The other pair
comes from a typical indoor sequence and is intended to represent a more likely
working condition. With a baseline of about 12 cms, the maximum disparity
is as large as 52 pixels, which is considerably more than in normal test cases.
Even if there are exceptions (Intille & Bobick 1994, Sara 1999), benchmarks are
typically performed on stereo pairs similar to that of the Tsukuba one, with
disparity ranges in the neighbourhood of about 16 pixels.

The two pairs, including the ground-truth data, are shown in Figure 5.1. In
all experiments 7 x 7 pixels image windows were used. The size was chosen such
that the calculated disparities were of acceptable quality, without any unnec-
essary smoothing of the resulting data. Thus one might say that high density
is sacrificed for a better localization of discontinuities, with the hope that dis-
parities may be easier segmented in objects located at different distances from
the observer. Subpixel disparity estimates are found fitting the data to a second
degree curve around the maximum. Results are shown without postprocessing
in order to better illustrate the true performance of the matching process.

Resulting disparities can be seen in Figures 5.3 and 5.4, for runs using Csap,
Cssp, Cunce and Cpr, in the order from upper-left to lower-right. The first
striking observation is that the results are almost identical, which is also con-
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Csap | Cssp | Cuncce | CBr
Correct | 68.3% | 69.2% 69.2% 69.0%
Empty | 23.4% | 22.4% | 22.8% | 23.1%
Wrong | 8.3% | 8.4% 8.0% 7.9%

Figure 5.2. Number of correct, empty and incorrect estimates for different
matching criteria on the Tsukuba stereo pair.

Figure 5.3. Results from the Tsukuba pair, using the matching criteria Cs4p
(upper-left), Cssp (upper-right), Camrnec (lower-left) and Cpr (lower-right).

firmed by the table in Figure 5.2. An estimate is said to be correct if the
difference compared to the ground truth is less than or equal to one pixel. Pixels
are assigned as being empty, if either the variance of pixel intensities within the
corresponding window is too small, or if they fail a left-to-right test. That is,
correlations are performed from left to right and then back from right to left, and
if the winners in each direction do not agree, the disparity estimate is considered
as unreliable. For both sets of images, the method based on Cgr seems to result
in cleanest disparity maps, but it is questionable if the increase in complexity is
justified by the relatively small improvement in accuracy. From the results in
Figure 5.4 it looks as if the Cprnoc criterion has more problems with reflexions
on the floor, compared to the other three criteria. The results of Csap and
Cssp are much similar, except that slightly more pixels fail the left-to-right test
using Csap.

In conclusion, there is no obvious choice in either case. The differences are
so small that other test cases might have resulted in a totally different ranking
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Figure 5.4. Results from a typical sequence, using the matching criteria Csp
(upper-left), Cssp (upper-right), Cprnveco (lower-left) and Cpr (lower-right).

of the criteria. The question that remains is if the methods can be separated
based on computational costs. Clearly Csap and Csgp are far less complex
than the other two criteria. Which one to choose depends on the hardware on
which the disparity estimation is supposed to be implemented, that is if one sub-
traction followed by taking the absolute value is faster than one multiplication.
On number-crunching processors such as DEC Alpha 21264, C'sgp is likely to be
the best choice. However, if the implementation is on an AMD Athlon or Intel
Pentium 4 using the MMX instruction set, Csap is probably a better alterna-
tive, since MMX includes operations suitable for multiple absolute differences in
parallel.

Window sizes

So far all experiments have been performed using 7x 7 pixel aggregation windows.
The windows were chosen large enough for image noise to be suppressed, but
still limited in size not to complicate the separation of objects into foreground
and background objects. In order to justify such a small aggregation window,
a number of experiments using somewhat larger windows were performed. For
example, in the study of Scharstein & Szeliski (2002), windows as large as 21 x 21
pixels were used, but it is unclear what motivated such a choice. Possibly it was
in order to increase the density of data, so as to make comparison with other
dense disparity method easier.
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Tx7 | 11x11 | 15x15| 19x 19
Correct | 68.3% | 74.9% 77.8% 77.6%
Empty | 23.4% | 17.0% | 13.8% | 13.5%
Wrong | 8.3% 8.0% 8.4% 8.9%

Figure 5.5. Number of correct, empty and incorrect estimates using different
sizes of aggregation windows on the Tsukuba stereo pair.

Figure 5.6. Disparity maps calculated using aggregation windows of dimensions
11 x 11 (left) and 15 x 15 pixels (right) for two different stereo pairs.

The table of Figure 5.5 shows a number of quantitative results based on
the Tsukuba stereo pair. The major difference between sizes seems to be in
the number of correct and empty estimates, since the incorrect ones only vary
slightly. For this particular stereo pair the minor change in erroneous disparities
is understandable, since image texture is usually located on both sides of existing
discontinuities. Thus background and foreground compete and results are not
spread beyond boundaries, enlarging objects in the foreground. As seen in Figure
5.6, this is not really the case for the second stereo pair. The head of the
walking person is enlarged, as the background is lacking texture to counteract the
dominance of the foreground. This would possibly have resulted in an increase in
errors, if ground truth data were in fact available. In both cases discontinuities
seem to get rounded as the size increases, which might be acceptable but also a
problem depending on the application.

In order to understand the negative aspects of an enlargement, one might con-
sider the following scenario. Assume that disparities are to be used in conjunction
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with another cue, such as colour, and both cues are combined for foreground-
background segregation. Since colour data have highest confidence within areas
of uniform colour and disparities are more accurate along edges, it might to
valuable to combine these two cues for better segregation. Statistics could then
be collected from foreground and background, and segregation be performed
based on this information. This would typically result in a problem of separat-
ing different peaks in a colour-disparity space. However, if objects are enlarged
these peaks may be less distinct and the foreground harder to identify. Thus
sparse data kept within discontinuities may be more favourable in practice, even
if denser data typically are required.

Postprocessing

In order to better preserve disparity discontinuities and make estimates more
tolerant to image noise, so called shiftable windows have been used in a number
of studies (Kanade & Okutomi 1994, Intille & Bobick 1994). During the earlier
experiments is was assumed that an aggregation window is defined such that the
point taken into consideration is located at the centre. this is not always the
case. If the size of a window is too large, data across discontinuities risk being
smoothed out, resulting in less reliable estimates. That occurs because pixels
belonging to the background and foreground objects are present within the same
aggregation window. If the centre of a window is instead allowed to move, it is
possible to place it such that all pixels belong to either side.

Figure 5.7. Results when postprocessing of calculated disparities is performed
using shifted windows (left) and a local median filter (right).
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One way of approximating such an approach, is performing a postprocessing
with a two-dimensional max-filter on the correlations corresponding to the cal-
culated disparities. If the size is the same as that of the aggregation window,
the result is equivalent to the process of letting the centre move across the whole
window and choosing the disparity that results in the highest correlation be-
tween windows in the two images. The final disparity estimate is then the result
of the maximum correlation among all possible disparities and choices of window
centres. However, since the same correlation will be used for several pixels, a
distinct peak in correlation space may affect the results of all these pixels. This
may potentially result in considerable errors, as can be seen in the left column
of Figure 5.7. In areas of low contrast a single erroneous estimate may dominate
its neighbourhood causing the error to spread. That is especially true near the
ceiling in the upper row of the figure, where small erroneous blocks are clearly
visible. The results are much more attractive in areas rich on image texture.

Another possibility is letting a median filter run over the whole disparity
map. In the previous case the max-filter was working on the correlation data,
which means that such data have to be kept until the postprocessing is finished.
If instead a median filter is used on the resulting disparities, correlation data do
not have to be stored. This means that less temporary data will be needed. The
results in the left right column of Figure 5.7 come from such a procedure. The
disparities are not as dense and the errors are still enhanced, but based on the
table in Figure 5.8, they are at least fewer than with a shiftable window. For a
median filter of size 5 x 5 the fraction of correct data is in fact higher than in
case of the min-filter, even if the error-rate is lower. The filter was implemented
such that in reality the median of medians are calculated, first along the x-axis
and then the y-axis. This was done in order to keep the computational cost to a
minimum, since calculating the median of 25 different values for each pixel can
indeed prove costly. Since empty data are disregarded by the median filter, a
slight blockiness is visible around areas of low contrast.

Without | Shifted | Median 3 | Median 5
Correct | 68.3% 79.8% 78.4% 81.8%
Empty | 23.4% 3.8% 10.2% 5.7%
Wrong | 83% | 164% | 11.4% 12.5%

Figure 5.8. Number of correct, empty and incorrect estimates using different
sizes of aggregation windows on the Tsukuba stereo pair.

5.3 Dynamic programming

In Section 5.2 disparities were only calculated based on local information, which
meant that no reliable estimates could be found in image regions without enough
texture. A better solution would instead be a search performed globally, finding
the most likely combination of disparities over the whole image. This typically
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leads to iterative methods that unfortunately are too slow for a real-time re-
quirement. Thus one might instead aim for an approach that optimizes scanline
by scanline.

A commonly used assumption is the so called ordering constraint, which
requires the ordering of scene points projected onto the two image planes to be
the same. This means that if a point x; is projected to the left of x5 in the left
image, then it should be to the left in the right image as well. As mentioned
earlier this does not always hold. If variations in depths are large and the scene
includes thin objects in the foreground, the opposite situation might occur. This
can easily be seen if two fingers are put in front of your eyes, one finger far
behind the other. Both fingers are visible, but differently ordered in the eyes.
Fortunately, these occasions are few in a real situation. If the constraint is
supposed to hold, one might use it to speed up the process.

The squares in Figure 5.9 each represents a hypothesis of a pixel at position
z; in the left image being matched to z, in the right. If they are not matched,
there is an occlusion in either of the two cameras. Thus there are three differ-
ent hypotheses for each square; match, left occlusion and right occlusion. An
occlusion in one image corresponds to a discontinuity in disparity in the other.
The two graphs illustrate the same thing, but with different choices of y-axes.
The left and right graphs use right image positions and disparities respectively.
If the ordering constraint is satisfied, one may conclude that if a pixel match
hypothesis is true, then it is only possible for hypotheses in the upper-left and
lower-right quadrants to hold, as seen in the left graph. Thus it is possible to
order the hypotheses, such that hypotheses to the upper left precede those in
the lower right quadrant. Such an ordering is what is required for a dynamic
programming method to be used.

With the uniqueness and ordering constraints taken into consideration, a
total matching of pixels along a scanline can be illustrated by a path from left
to right in the left graph of Figure 5.9. Diagonal segments represent matches
between the left and right cameras, that is the corresponding points are visible
from both cameras. A horizontal line indicates an occlusion in the left camera,
while a discontinuity results in a vertical line. Thus the problem is reduced to
that of finding the lowest cost path from left to right. A cost function may be
derived from maximum likelihoods (Cox et al. 1996), but in this study we instead
express the function directly as

N
C(d) = Nokio + > (Ii(w:) — I(w; + di))>. (5.7)

i=1

The total cost is expressed as a function of disparities d = (d,ds, ...,dn) ",
where N is the number of pixels along a scanline. The parameter N, is the
number of left and right occlusions, that is a sum of vertical and horizontal
segments in the path, and &, is the cost of each such occlusion. The number of
matched pairs is N, and squared differences of pixel brightnesses are used as
the cost of a match. Due to the ordering of hypotheses, the cost at a particular
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Figure 5.9. Squares representing combinations of left and right image pixel
matches. The left graph uses right image positions as y-axis, while the right uses
disparities. The arrows indicate local hypotheses of matching pair (diagonal),
occlusion (horizontal) and discontinuities (vertical), as seen in the left graph.

location depends only on hypotheses in the directions of the arrows shown in
the figure. If Cj;; denotes the total accumulated minimum cost from the left
to a point (¢,7), an expression can be given as a function of the immediately
preceding neighbours,

Cz"j = min(Ci_Lj_l + (Il(:ci) — I,-(.’IIj))2, Ciyj_1 + Ko, Ci_1,]' + Iﬁ:o). (5.8)

The approach is typically implemented such that each square is visited from
left to right and the minimum accumulated cost and winning hypothesis is tem-
porarily stored, assuming that the path will pass the square. When the process
ends, there are a number of possible paths, each ending at squares corresponding
to different disparities of image pixel z. The path of lowest cost can thus be
found and reconstructed following the segments back from right to left. The
two images in Figure 5.10 show the estimated disparities using these methods
on the two examples in Figure 5.1. The occlusion cost k, was chosen such that
the best overall performance was achieved using the same cost for both stereo
pairs. For the two dotted scanlines in the right image of Figure 5.10, the corre-
sponding matching costs are shown in Figure 5.11, that is the squared difference
of matched image pixels. Here the vertical axis represents different disparities,
as in the right graph of Figure 5.9. The minimum cost paths are shown in
white with diagonal and vertical gaps indicating the existence of occlusions and
discontinuities.

One of the drawbacks with the approach just described is the fact that dis-
parities are estimated scanline by scanline without any coupling between results
from different scanlines. This often results in a streaking effect, when different
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Figure 5.10. Calculated disparities from the two stereo pairs in Figure 5.1 using
dynamic programming. The dotted lines show scanlines for which matching costs
are shown in Figure 5.11.

Figure 5.11. The squared differences between matched image pixels of the
left and right cameras, for the two scanlines in Figure 5.10. The vertical axes
represents different disparities and minimum cost paths are shown in white, as
in the right graph of Figure 5.9.

competing matchings of similar cost win for different scanlines. In the results
of Figure 5.10, the matching costs are thus calculated such that summations
are performed on squared differences in 7 x 7 pixel windows, similar to what is
described in Section 5.2. Even if streaking is significantly reduced, it is still ev-
ident. Larger windows typically do not improve the results much and may also
lead to occlusions being harder to separate from disparity gradients of curves
surfaces. Considerable errors are visible to the right of the autonomous platform
in the right image of Figure 5.10. There is not enough texture in the back-
ground to compensate for the cost related to the large differences in disparity
between foreground and background. The quantitative results of the Tsukuba
pair indicate similar problems. Only 2.8% of the estimates are empty, 82.5% are
correctly matched and the remaining 14.7% are thus incorrect, which is a far
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greater error-rate than for the area-based methods.

Dynamic programming methods have often been considered attractive, since
they lead to dense disparities and still allow occlusion detection. However, they
have one major flaw. A disparity calculated on a discontinuity typically orig-
inates from an object in the foreground. If there is no image structure in the
background to support a hypothesis of a different disparity, the corresponding
region will incorrectly assume the disparity of the foreground. This means that
one might falsely believe that the foreground is larger that what is actually is. In
area-based methods, such textureless regions would simply be disregarded. For
these regions there is simply not enough information. With disparities optimized
for over the whole image, support could have come from structure on different
scanlines, which makes global optimization more robust.

If dynamic programming is still preferred to a more complex global method, it
would be possible to use a quality measure based on local data. However, in the
end this would lead to results much similar to that of area-based methods, since
such a measure would typically be based on the local variance of either image
pixels or correlation data. This means that uniformly shaded regions would be
excluded and not much is gained.

5.4 Cooperative stereo

The last algorithm to be evaluated in this study is a cooperative method of
Zitnick & Kanade (2000), which has a couple of interesting properties. The
method is very simple in its implementation, while able to estimate disparities
globally. Methods based on graph cuts are far more complex. On the other
hand, the nonlinear nature of cooperative methods, makes their behaviours hard
to predict. Unlike dynamic programming methods, the ordering constraint is
not assumed, even if it can be incorporated in theory. Thus it has the potential
of doing better on scenes with large variations in depths.

Cooperative method are built on the notion of excitation and inhibition re-
gions in disparity-space, as illustrated in Figure 5.12. Nearby locations of similar
disparity, shown in medium grey, cooperate in determining better disparity esti-
mates, whereas different disparity assumptions for the same pixel position com-
pete, which is shown in light grey. The inhibition regions ¥(z;,y;, d) are divided
into two parts, one along the y-axis in the figure, corresponding to the same left
image position, and a diagonal one for the same positions in the right image. For
simplicity, regions are only shown along a scanline in Figure 5.12. The complete
disparity-space is in fact three-dimensional, with an excitation region ®(z;,y;, d)
of dimension 5 x 5 x 3.

The cooperative stereo algorithm shown in Figure 5.13 is iterative and main-
tains a set of matching scores during the whole process. The initial matching
scores So(z1,y1,d) are set using modified normalized cross-correlation between
local windows in the left and right images. A threshold is used such that negative
values are set to zero. Scores are sequentially summed over the excitation and
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Figure 5.12. Disparity space image along a scanline, with inhibition ¥(z;,y;, d)
and excitation ®(z;,y;, d) regions shown in light and medium grey respectively.

inhibition regions, and finally updated. During the excitation phase scores are
spread in the neighbourhood of each point. The inhibition in Equation 5.12 is
performed such that normalization is first performed on all values in the inhibi-
tion region. The largest scores are then strengthened using an exponent a and
finally the scores are weighted by the initial matching score.

Thus a score will never grow stronger than its initial value. The rational be-
hind this is the following. A correct match will most likely have a high matching
score, but an erroneous one does not necessarily lead to a low score. In areas of
uniform texture, there might be numerous possible disparities that each result
in high scores. Due to the competition and influence from nearby regions, one
disparity value will end up being the winner, which is given by the disparity
corresponding to the largest score. Before accepting an estimated disparity, its
score is tested towards a predefined threshold. In regions of limited texture or
occlusions, no single matching score is able to dominate other scores of the same
inhibition region, which means that its maximum value will be too small. Con-
sequently, these disparity values will be disregarded. Convergence is guaranteed
using an exponent « greater than 1. With a value of 2 the algorithm converges
in about 10 iterations. In fact, the choice of a does not significantly affect the
accuracy of the final result, only the convergence rate.

Similar to the previously mentioned algorithm, the cooperative one was tested
using the two stereo pairs in Figure 5.1 with results shown in Figure 5.14. For
the Tsukuba pair for which ground truth is given, the fraction of correctly esti-
mated disparities is 92.3%, 0.8% are empty and 6.9% erroneous. The errors are
considerably larger than what Zitnick & Kanade (2000) reported in their study.
Even if it is unclear from their report, the difference could be due to the fact
that the original Tsukuba pair is in colour and here only the black and white
version is used. The most challenging areas in this particular pair, assuming the
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Cooperative stereo

1. Initialize matching strengths
So(@1,y1,d) = max(Sunce (@, yi,d), 0) (5.9)

2. Sum over excitation regions

SE(x1,y1,d Z Sn(z',y',d") (5.10)

(w 87 1d’)€<1>(wz,yz,d)

3. Sum over inhibition regions

S ml;yla Z SE y dl) (511)

(z 2y'd') €Y (z1,y1,d)

4. Update matching strength

Sf(xbylad))a (512)

Sny1(wr,y1,d) = SO(xl’yl’d)<SI($l Y1, d)

5. Until convergence, return to 2.
6. For each pixel (z;,y;) find d that maximizes Sy,y1(z1,y1,d)

Figure 5.13. Cooperative stereo algorithm

occluding areas can be handled properly, are those of no texture. For example,
the region just below the lamp contains no horizontal image gradients, except for
the boundary of the shadow across the side of the table. Without this boundary
it would hardly be possible to get an accurate disparity estimate. The informa-
tion from the boundary is also spread to the region below the table, which is
not correct, since this region belongs to the background. On both sides of the
table information from the background has further been able to spread upwards.
An improved result could probably be achieved if the excitation phase is only
performed on regions of similar brightness or colour, but it is still very hard to
understand how Zitnick & Kanade (2000) got their results, which indicate no
such problems.

5.5 Conclusions

As could be seen from the experiments, the major difference between the evalu-
ated methods is the density of the calculated disparities, rather than the accuracy
itself. Another criterion that ought to be considered is the computational cost.
Faster execution leads to computations at higher frame rate, which means that
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Figure 5.14. Calculated disparities from the two stereo pairs in Figure 5.1 using
the cooperative method of Zitnick & Kanade.

SAD SSD MNCC BT DP
Correlation 35 ms | 45 ms 81 ms | 175 ms | 45 ms
Maximization | 69 ms 69 ms 69 ms 69 ms | 44 ms
Total 104 ms | 114 ms | 150 ms | 244 ms | 89 ms

Figure 5.15. Computational cost, on a 1.2 Gz Athlon, of five different methods,
divided into the cost of area correlations and finding peaks in correlation space,
with a maximum range of a 20 disparities on 384 x 288 pixel images.

possible temporal consistency may be exploited in the complete system. A sum-
mary of costs on an 1.2 GHz Athlon processor for the above mentioned methods,
with an exception of the cooperative algorithm, is given in Figure 5.15. Data
have been divided into the cost of performing area correlations and then finding
the peak for which the correlation gives the maximum score. All methods were
been implemented in C++4, with correlation and brightness values represented
as floating points. Optimization was only done such that the total allocation of
memory was kept as low as possible, but no additional hardware specific opti-
mization was done. A motivation for this decision can be found in the appendix.

Maybe surprisingly, the fastest method is the one based on dynamic program-
ming. The reason is that no left-right test is performed with this method. Since
the major portion of the Maximization cost is due to iterations over correlation
values, which is done twice for the other methods, this phase is considerably
faster in the dynamic programming approach. However, it is hard to determine
any feasible quality measure to be used with this approach, in order to determine
if estimates should be considered as trustworthy or not. Based on the qualita-
tive results previously addressed, it is questionable if the additional costs of using
modified normalized cross-correlation or the similarity measure of Birchfield &
Tomasi (1998) is well motivated. The cost of the final approach, the cooperative
one, is as high as about 2.6 s with 10 iterations. This is primarily due to the
radical increase in allocated memory.
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During the last decade there has been a surge for accurate dense disparity
maps and not only data along edges or in other high contrast regions. This
has primarily been motivated by the applications. However, for image regions
of uniform brightness, these methods may at best compute the most likely dis-
parity, given the support from nearby textured regions. Typically, constraints
from continuity are imposed in order to fill in areas without such texture. This
is often done through the use of global cost functions, where a certain positive
cost is assigned to discontinuities in the resulting disparity map. Thus if two dif-
ferent hypotheses of similar costs are available based on brightness constraints
only, the hypothesis that results in the fewest number of discontinuities will be
chosen. This is true even if additional information, that might promote an intro-
duction of discontinuities, is in fact available. Such information might originate
from observing the optical flow field as the observer is moving about. The exis-
tence of T-junctions may also be considered as evidence for discontinuities and
could in theory be incorporated into a minimization problem when disparities
are estimated. Future methods should thus be opened up, so that such external
information can be taken advantage of.

In conclusion, the major difference between the tested methods is the density
and not the accuracy itself. Since our system does not require the density of the
more complex methods, we used the simplest possible approach based on sums
of absolute differences. A hardware specific implementation of such an approach
has a computation cost of only 15 ms on an 1.2 GHz Athlon processor. Using
the capabilities of the MMX instruction set, it was possible to parallelize most
operations, with correlation data and image pixels stored as short integers. This
method will be integrated into the complete system presented in Chapter 8.



Chapter 6

Ego-motion

In this chapter several well-known monocular structure-from-motion methods
will be analyzed, in the context of an autonomous system moving around in
an indoor environment. The intention is to determine whether such a method
can be used for ego-motion estimation. One important reason why the system
would benefit from knowing its ego-motion, is the ability to determine time-to-
impact, that is the time required for the system to reach an observed object
in 3D space. It will also be shown in Chapter 7 how the ego-motion can be
used to detect regions of independent motion. A third reason is that ego-motion
information may help the system localize itself in relation to a representation of
the environment.

The two problems of determining 3D structure and estimating ego-motion
are in fact interrelated. If one is solved, the other one follows relatively easily,
at least in a static environment. The most evident coupling is the ambiguity in
scale between translations and reconstructed depths. However, there are other
less obvious ambiguities, especially in the case of noisy measurement data. As
a consequence of these ambiguities, the performance of the evaluated methods
will prove to be worse than what the intended application requires. It will also
be shown that the difficulties are inherent to the problem itself, rather than the
models and methods used to solve it.

Ego-motion in relation to epipolar geometry

The problems of estimating ego-motion and epipolar geometry, as discussed in
Chapter 4, have much in common, in that they can be similarly formulated.
Ego-motion can be determined from two consecutive images, whereas epipolar
geometry is estimated from a stereo pair. There are, however, a number of im-
portant differences. Stereo involves a translation along the baseline, which is
typically almost parallel to the image planes. In motion the translational direc-
tion is usually close to the optical axis. Depending on the translational direction,

93



94 Chapter 6. FEgo-motion

different algorithms may behave very differently under noisy conditions. This in-
dicates that one should not necessarily use the same method for both problems.
Another difference is that motion typically results in rather small image motion
displacements, which make ego-motion estimation more sensitive to image noise.
The ego-motion problem may be further complicated by independently moving
objects present in the scene.

When estimating ego-motion, shorter translations make the problem harder
(Weng et al. 1993, Oliensis 1996), whereas in stereo there will always be a trans-
lation along the baseline. This means that the ego-motion methods should grace-
fully adapt to cases of no motion. A natural way of relieving the difficulty of
short translations, is by increasing the time between the considered image frames.
However, this may lead to a more complex matching problem, since outliers due
to independent motion, brightness change and occlusions become more likely.
This is true for feature as well as dense optical flow based methods.

As described in Chapter 2, optical flow algorithms tend to collapse if dis-
placements are too large. Furthermore, it can be shown that due to the aperture
problem, the addition of more data using a smoothness constraint, does not
significantly improve the quality of estimated ego-motion (Young & Chellappa
1992). This leads us to believe that a method based on feature points is prefer-
able, since such a method would allow the computations to be performed at a
higher frame-rate. In order to reduce noise sensitivity, a complete system could
further include an extended Kalman filter on structure and ego-motion (Heel
1990) or on ego-motion alone (Soatto & Perona 1997). The work presented
here primarily deals with the two-frame case, since recursive methods typically
consist of multiple two-frame operations performed in sequence. However, it is
acknowledged that a multi-frame batch approach is likely to be more successful
for reconstruction of 3D geometry in an off-line environment.

6.1 The bilinear constraint

The epipolar constraint, that was discussed in Chapter 4, can in theory be used
for monocular motion analysis as well. However, the constraint only works for
wide enough baselines and it collapses if the motions are not sufficiently large.
This has led some researchers to follow a different route and instead consider the
optical flow field (Koenderink & van Doorn 1975) as a basis for determining mo-
tion and structure. If the flow field is differentiated (Longuet-Higgins & Prazdny
1980, Prazdny 1981), a bilinear constraint can be derived, relating optical flow
vectors to motion and structure. Here we review such a derivation due to Bruss
& Horn (1983).

If X = (X,Y,Z)7 is a rigid point in 3D space, its corresponding perspective
projection onto an image surface is given by x = (z,y)" = (X/Z,Y/Z)T. The
optical flow at x can then be expressed as

(2)=(3)=%(32232) ©
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Assume the observer is moving in the scene with a translation along t = (t;,ty,t,)"
and rotating with an angular velocity w = (wg,wy,w;) . The velocity of X, as
seen by the observer, will then be given by X = T + w x X which can be written
more explicitly as

X te +wyZ —w,Y
YV | = ty+w.X—wZ |. (6.2)
VA t: + wyY —wyX

A combination of Equations 6.1 and 6.2 yields
u\_1(t-zt + —zywy + (1 +2?) wy —yw, (6.3)
v Z\ ty—yt. —14+y?)wy +zywy + 7w, )
or, if written in a more compact form,

u=u;+u, =7 tAX)t+ B(x) w. (6.4)

The translational and rotational components are related to the measurable image
position of x by the corresponding two matrices

A(x) = ((1] (1J :‘”) and (6.5)
B(x) = ( _;fny 1;;52 v ) (6.6)

As seen in Equation 6.4, with exception for the depth Z, the equation only
contains information about X available from data available in the projection. In
conclusion, the unknown parameters are the rotation w, translation t and the
depths of each individual image point. Unlike the essential matrix, structure has
not been decoupled from motion, since the depths have not been eliminated. As
seen in Figure 6.1, separating translation from rotation is far from trivial. A
translation along the x-axis is similar to a rotation around the y-axis, even if the
depths affect the magnitudes of the translational flow and the rotational flow is
only approximately parallel to the x-axis. Because of this similarity, it is easy to
understand that a translation parallel to the image plane is harder to determine
than one along the optical axis.

Algorithms for estimating structure and motion can be divided into different
categories. The optimization criteria can be either discrete or differential, linear
or non-linear in the unknown parameters, with solutions that are either direct
or iterative. In the forthcoming sections a number of methods will be evaluated,
in order to judge whether the performance, in terms of speed and accuracy, is
sufficient for real-time use. The following notation will be used in the description
of methods. A true value of a measured parameter x is denoted x. A projection
onto a surface defined by its normal n is written as a projection matrix nt =
I-n(n"n) 'n'. The matrix @ is a skew-symmetric matrix, such that ox = wxx
for all vectors x. A pseudo-inverse of a matrix A is denoted At = (ATA)"1AT.
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Figure 6.1. Typical flow fields for translations (upper) and rotations (lower)
along and around the x-axis (left), y-axis (middle) and z-axis (right).

6.1.1 Instabilities

In a discussion such as this, ambiguities in the determination of structure and
motion are usually treated either towards the end or during the presentation
of results. In this study, however, the most important ambiguities are briefly
discussed early on, in order to make the understanding of methods presented
easier. These are in fact independent of the methods used and inherent to the
problem (Adiv 1985b).

Bas-relief ambiguity

The most well-known ambiguity in structure-from-motion problems is the so
called bas-relief ambiguity, which manifests itself in the difficulty in separat-
ing translations from rotations, for translations in the plane determined by the
optical axis and the true translation (Jepson & Heeger 1990). For orthogonal
projections the bas-relief ambiguity exists even in the noise-free case, which has
been nicely illustrated by Belhumeur et al. (1997) and analyzed by Szeliski &
Kang (1997) using the Hessian matrix.

First assume that there are no rotations or the rotations have already been
adjusted for. Since depths can be chosen arbitrarily, an error in the flow will
only be evident in the direction orthogonal to the true translational flow, which
is determined by (A(x)t)’ (see Equation 6.4). An erroneous translation t will

thus have a measurable error related to

N = (A(x)t) " (A(x)t) = (2,5, 1)(t x t). (6.7)
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Even if N is only the nominator of the real error, since (A(x)t)* have to be
normalized, it captures the general behaviour of the error function for points not
too close to the focus of expansion, where A(x)t = 0.

If the field of view is small, the terms of Equation 6.7 that include z and
y will be small and the error is dominated by the last term, t,t, — t,t,. This
means that a small translational perturbation in the plane determined by the
optical axis and the focus of expansion, will result in a small measurable error.
However, the location of the focus of expansion will change as a result of such
a perturbation, which means that points near it may contain significant errors.
Since the field of view is limited and the quadratic terms of the rotational matrix
B(x) are small, these errors may be compensated by a slight rotation around an
axis orthogonal to t and t. The magnitude of the rotation is determined by the
values of Z71. A compensation is only possible if all feature points are located
at the same depth, which is typically not the case. However, if the depths are
similar for all points, a compensation is possible and it will be harder to separate
rotations from translations.

Flipped minima

Another ambiguity that has been observed in a number of studies, is the existence
of double minima, one minimum on either side of the optical axis (Tomasi & Shi
1993). The most distinct minimum usually corresponds to the correct motion,
whereas the second one is incorrect. This erroneous motion, often called the “rub-
ber motion” percept, has been observed in psychological experiments. Soatto &
Brockett (1998) characterize the behaviour as the inverted depths d = Z~! be-
ing mirrored around the mean inverted depth d. With inverted depths being
mirrored and the translational direction being on the opposite side of the optical
axis, the corresponding optical flow takes the form

(2d — d)A(x) Iiy :d(iz)+(23—d)(:zzi)—23(2)%

t.
2dt,
d =72 ) _og( b ) naam)t+ Bx) | —2dt, (6.8)
ty —yt, ty 0

The approximations are due to the assumption that the field of view and depth
variations are small. However, this does not hold if the translation is dominated
by forward motion, which can also be seen experimentally. In the second row
the mean translational flow has been compensated by an appropriate rotation.
Thus there are two competing solutions that result in similar residuals.

There is, however, an error in the reasoning mentioned above. Even if the
depth variation is significant, multiple minima can be seen experimentally. Olien-
sis (2000) analyzed the same problem using a series of approximations to describe
the behaviour of the error function. One of his observations was that the error
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function tends to reach a maximum somewhere within the image. For points
near the estimated focus of expansion, the denominator of the error function,
D = |A(x)t|, will be small and the real error E = N/D large. If feature points
are spread all over the field of view, which was assumed to be small, the com-
bined influence on the error function of all features involved, will be a sharp peak
close to the image centre. This was disregarded in the previous section.

However, due to the nominator N, it will still reach a minimum in the true
translational direction and if this direction is close enough to the optical axis,
the sharp peak will disappear. We further assumed that an error in translation
can be compensated by a corresponding rotation, but this is only true for small
errors in translational direction. The compensation errors will grow the further
you go from the true direction, but the errors increase relatively slowly. The
combination of a shallow error function due to NV and a sharp peak close to the
centre as a result of the denominator D, will result in two different minima on
either side of optical axis.

In conclusion, the bas-relief ambiguity manifests itself in an instability in
the translational direction within the plane defined by the true direction and
the optical axis. Outside this plane, the errors are relatively large. An error
in translation can be compensated by an appropriate rotation around an axis
orthogonal to the optical axis and the true translational direction. The error will
grow slowly as the necessary compensation increases. Since points are spread
within a limited field of view and points near an erroneous focus of expansion
contain significant errors, the error function will show a peak close to the centre
of the image. As a result of these two factors, there will be a second minimum
on the opposite side of optical axis.

6.1.2 Related work

During the years a number of two-frame methods based on the bilinear constraint
have been presented. Some of these have been experimentally analyzed in e.g.
(Tian et al. 1996). Bruss & Horn (1983) expressed the depths Z in terms of
flow vectors, rotation and translation. They then established a least squares
formulation with depths being eliminated and proposed a solution based on
nonlinear optimization. This approach was later used by Adiv (19854), who also
segmented the scene into regions of different motions. Prazdny (1981) worked on
the flow vectors directly, without explicitly considering the depths. He instead
used an error measure based on the variance of pair-wise intersections of flow
vectors, after being stabilized for different rotations. This approach is different
from most other methods in that optimization is performed for rotations, rather
than for translational directions.

A number of so called subspace methods have been presented by Heeger &
Jepson (1992). These methods have been applied by a number of groups since
they were introduced. What they have in common is that they try to cancel
out one group of flow vectors, such that the result only contains information
from the remaining ones. In (Heeger & Jepson 1992) a search is performed in
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the space of translations. For each translation, the corresponding rotation and
depths are found directly. The optimization is then performed on the resulting
errors. An alternative solution can be derived by finding a translation using
the space orthogonal to that of all possible rotational flows (Jepson & Heeger
1992). A similar method using spherical projections, instead of projective ones,
has been presented by Thomas et al. (1994).

Unfortunately, the combination of perspective projections and a cancellation
of one group of flow vectors, typically results in a biased estimator. Even if
spherical projections are unbiased in theory, they require the field of view to
be as large as 180°. A number of attempts have been made to correct the
bias in the perspective case. Jepson & Heeger (1992) suggest that dithering
could be used, adding noise to the constraints making the total noise of the
optimization function isotropic. However, adding additional noise to the already
unstable problem feels intuitively unnatural and has therefore rarely been done in
practice. Kanatani (1993b) instead used a rather complex iterative approach for
subtracting the anisotropic covariance matrix prior to estimating the translation.
Another method is based on pre-whitening, that is pre- and post-multiplying
the measurement matrix with the square-root of its covariance matrix (MacLean
1999).

Separating rotation from translation can also be done by observing that the
rotational flow is independent of depth. If each flow vector is expressed in terms
of its corresponding angular velocity vector, the components due to rotation will
be the same over the whole image. Prazdny (1983) used this observation and
subtracted pair-wise velocity vectors, which led to constraints only containing
information on the translation. Unfortunately, he never showed how this was
to be done in practice. Rieger & Lawton (1985) used two nearby points on
either side of an occlusion and subtracted their corresponding flow vectors. The
difference is then only determined by the translation and point towards the focus
of expansion. The problem with this approach is the difficulty of accurately
estimating optical flow, especially near occlusions. Another method using pairs
of image features is one of Tomasi & Shi (1993), who measured the change in
angles between image features, since this change is also invariant to rotation.
All these three methods have in common that they are based on analysis of
motion parallax between pairs of image features. Unfortunately, such methods
have shown to be especially sensitive to image noise.

Due to the inherent difficulty of separating rotations from translations, a
method based on one component being estimated prior to the other will some-
times result in serious problems. This is simply because errors in the first compo-
nent, result in errors in the next one and these errors will never be fully corrected.
During the last couple of years a number of iterative methods have emerged that
instead alternate between solving for rotation and translational direction. In
such an approach it is possible to take the bas-relief ambiguity into account and
jump from one minimum to another. Similar to Heeger & Jepson (1992), Olien-
sis & Genc (1999) found a rotation using the flow components orthogonal to a
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given translational direction. After compensating for this rotation a search is
performed to update the translation and so on.

None of the previously mentioned methods keeps any information on depths
during the optimization. Through series of algebraic transformations, the depths
have efficiently been canceled out. This makes sense, since the depths can be
chosen arbitrarily. However, there is a risk that the optimization function loses
its relation to the image position noise. A notable exception from this rule
is a method of Zhang & Tomasi (1999) who used the original error function,
as defined by Equation 6.4, keeping the depths in the optimization function.
This method instead alternates between estimating rotation, translation and
depths. Another method that maintains the depth is a method based on spherical
projections proposed by Chiuso et al. (2000). Like the method of Heeger &
Jepson (1992) rotations and depths are found concurrently, using an estimated
translation. However, the translation is then updated using not only the rotation,
but also the depths. The benefit of these methods is the unbiasedness due to the
choice of optimization criteria. Since they are free from errors due to algebraic
manipulations, the convergence is somewhat better for short translations than
with the previous methods. This will be shown in Section 6.6.

6.2 Subspace methods

As mentioned in Section 6.1.2 the works of Heeger & Jepson (1992) has led to
a number of similar methods being presented by others. A deeper analysis of
their approach may thus serve as an introduction to the whole family of such
methods. Through algebraic manipulation, the original nonlinear equation (see
Equation 6.4) can be split into three sets of equations, where the first set is only
related to the translation.

For a given translation t, the translational term of a feature point x; may be
expressed as ug; = d; A;(t), where

ty — x4it,
A= (7o) (6.9)
and d; = 1/Z; is the corresponding inverted depth. The rotational component
is given by u,; = B(x;)w.

With N being the number of vectors, let the optical flow vectors u; be stacked
on top of each other into a single 2N-vector u = [uy, vy, u2,vs, ., un,vn]" and
similarly stack the inverted depths together with the rotation parameters, form-
ing q = [di,ds, ..,dN,ws,wy,w; | . Organize the A4;(t) vectors in a 2N x N
bi-diagonal matrix A(t) and the B(x;) matrices in a single 2N x 3 matrix B,
that is

A1 (t) 0 st 0 B(Xl)
0 A2 (t) st 0 B(XQ)
At) = . . . . and B = . . (6.10)

0 0 - An(b) B(xx)
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Then the optical flow may be expressed as u = C(t) q, where C(t) = (A(t)|B).
A least squares estimate of inverted depths and rotation may thus be found as

q(t) = P(t)"'C(t) 'u, where (6.11)

[ AF)TA(t) A(t)'B
P(t)_< BTA(t) B'B )

The error of this estimate is given by e(t) = | u — C(t) §(t) |, which may be
determined without first calculating §(t). Since the error function only depends
on the translation, it may be used as an optimization criterion to find the trans-
lational estimate t. The corresponding inverted depths and rotation will then
be readily given by Equation 6.11. Two examples of error functions e(t) can be
seen in Figure 6.2 below, with light areas illustrating smaller errors. In the right
image double minima can be observed, with a clear extremum representing the
“rubber motion” explained in Section 6.1.1.

(6.12)

-80 -60 -40 -20 0 20 40 60 80 -80 -60 -40 -20 0 20 40 60

Figure 6.2. The error function e(t) in the cases of two different true translations,
t =[0,0,3]7 (left) and t = [1,0,3]" (right). A cloud of 200 points were gener-
ated in a truncated pyramid between 100 and 500 units in front of the cameras,
projected onto 320 x 240 pixels images with 0.5 pixels noise.

The elegance of this method is the fact that the search space has been reduced
from five dimensions to two, that is those of the translation. However, it relies on
an exhaustive search through the space of translations, which might be too costly
for real-time use. Calculating P(t)™" is not as difficult as one might assume,
since A (t) is bi-diagonal and the inversion can be done in O(N) operations. One
possibility is using gradient descent from a initial point given by e.g. the 8-
point method, that was discussed in Chapter 4. On the other hand, because of
its complexity e(t) may contain a whole series of local minima and the 8-point
method often yields poor results, especially in the case of confusions between the
rotational and translational flows.

However, if the given flow field is dense and the focus of expansion is within
the field of view, Srinivasan (2000) has shown that the speed can be greatly
improved. Assuming that there are NV flow vectors and the focus of expansion is
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searched for among M = kN locations evenly spread across the image plane, he
showed that the computational cost can be reduced from O(N?) to O(N log N)
using a series of Fast Fourier transforms.

6.2.1 Annihilated rotations

Another method of Jepson & Heeger (1992) tries to first annihilate the rota-
tional component and then solve for the translational direction directly. Thus
an exhaustive search can be avoided, hopefully leading to a quicker and more
reliable solution. The method can be understood as follows. First a matrix

0 1
Qx;) = -1 0 (6.13)
Yi

is created for each feature point x; and multiplied with the corresponding flow
vector, that is q; = Q(x;)u;. If the image position x; is expressed in homoge-
neous coordinates, it can easily be seen that

q; = d,’(X,’ X t) + x; X (X,; X L«J), (614)

which explains the choice of the matrices @(x;). This means that the rota-
tional term only consists of elements quadratic in feature coordinates, while the
translational term is orthogonal to t.

The main idea behind the method is to find a large matrix that eliminates all
possible rotational terms that may be defined by x;. This is possible by creating
N-6 N-vectors ¢ = [cf,c2,..,cy]T that are perpendicular to the 6 N-vectors

{1}, {=:}, {vi}, {»’C?}; {ziyi}, {yzz} (6.15)

All elements of x; X (x; X w) stacked into N-vectors are sums of such vectors and
will also be perpendicular to c;. Hence all vectors defined by

N
Tk — Zc};qi (6.16)
i=1

will be orthogonal to t, since the first term of q; is already orthogonal to t and
¢, annihilates all rotational components.

As a consequence 7, t = 0 can be used as constraints when searching for
a translation, without the rotation being known in advance. The only concern
is the fact that the number of constraints have been reduced from N bilinear
constraints to N-6 linear ones. An estimate € of the translational direction can
thus be found, calculating the least eigenvector of the matrix

N—-6
A= Z TkT];r- (617)
k=1

Once the translation is known, the rotation and depths can be found as described
in the previous section. The major benefit of this method is that it is linear and
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can be used to initialize a more accurate iterative process. A problem however
is that it is prone to serious bias in the translation estimates. This is primarily
due to the non-linearity in the projection of image points and the fact that
image points are not treated homogeneously. More on the performance of these
methods will be presented later on.

6.3 The differential epipolar constraint

As mentioned earlier, solutions based on the epipolar geometry, that was treated
in Chapter 4, have serious difficulties in cases of insufficient translation. There
is, however, a differential counterpart to the ordinary epipolar constraint and
this works on the optical flow rather than on discrete image positions. The
constraint was introduced by Zhuang et al. (1988) and later reformulated by
Kanatani (1993a) in terms of essential parameters and twisted optical flow, that
is the flow orthogonal to the projection rays and optical flow.

From Equation 6.2 we already know that the motion of a rigid point can be
described as X = T+ w x X = T+ ©X. Let x be the projection of X, such that
X = Ax. An inner product of the motion equation with tx, where t = T/|T],
yields

XTix = (T+0X)Ttx= @X)Ttx=X"0Ttx = Ax "0 tx. (6.18)

In terms of the projection the motion is X = Ax+ Ax. Observing that x "tx = 0,
the equation can be rewritten as

XTtx = (x + %) Tex = AxTix, (6.19)
which leads to the Differential Epipolar Constraint
xtx+x oOtx =0. (6.20)

Similar to the epipolar constraint, the depths have been eliminated, but it is
different in the sense that it works on an image position and its instantaneous
optical flow, rather than on image positions from two different images. The
matrix @V is symmetric, which means that the constraint can be reformulated
into a symmetric form

%"tx +x"Ax =0, where

1 .. .
A =@+ i), (6.21)

which is known as a special symmetric matrix.

The two motion parameters, A and t, can be found linearly if given at least
eight feature points and their corresponding optical flow vectors. However, with-
out any nonlinear optimization there is no guarantee that A can in fact be
decomposed into t and w according to Equation 6.21, without imposing any
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additional constraints. After all, without enforcing decomposability, A and t
have eight degrees of freedom in total, whereas the constraint only admits five,
assuming that |[t| = 1. Ma et al. (2000) described a scheme in which A is instead
expressed in terms of w and a new vector t'. The alternative, t or t’, that results
in the lowest residual is then chosen as the final translational direction. They
also presented a four-step algorithm for estimating the motion, similar to the
three-step SVD-based method used for essential matrices proposed by Toscani
& Faugeras (1986). The method is summarized below.

Algorithm
1. Lety; = (22, 2y, 27, y7, 2yi, 1, —vi, ui, v;T; — w;y;) | and the optical flow
be defined by %; = (u;,v;,0) . Find the vector a = (a1, as,as, a4, as, ag, tz,
ty,t.) " that minimizes }°, (a'y,)?, where the motion parameters are

ai as as tz
Ap=1| a2 as as and t=1| t, |. (6.22)
a4 a5 Qg tz

2. Perform an eigenvalue decomposition of Ag, Ag = Vg diag{\1, A2, A3}V,
with the eigenvalues ordered as A1 > A2 > A3. Create a new matrix through
a projection of Ay into the space of special symmetric matrices,

A=V0 d’iag{(fl,dg,(fg}v(—)r. (623)

The eigenvalues of the new matrix are defined as o1 = é(ZAl + A2 — A3),
09 = %()\1 + 29 +)\3) and o3 = é(2A3 + Ao — )\1).

3. Define the rotational magnitude A = o1 —0o3 and an angle § = arccos(—o2/A).
With Ry (6) being a rotation around the y-axis, let

m 6 ™ 6
U= VoRy(E + 5), V= V()Ry(E - 5) and (624)
0 -1 0
Z=(1 0o o ]. (6.25)
0 0 0

Four possible rotations and translational directions are then given by

=+VZV'T

— LUZUT (6.26)

{ & =+AUZUT,
E/

O =+AVZVT,
4. Choose the rotation w that corresponds to the estimate t' closest to t given

in Step 1 and then either t’ or t depending on which translation gives rise
to the lowest residual error.

Proofs concerning the decomposition of A can be found in (Ma et al. 2000).
As can be seen in Step 3, there are four alternative solutions. However, like
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with the essential matrix, ambiguous solutions can be thrown away using the
positive depth constraint. The main reason for using the differential version of
the epipolar constraint is that the discrete variant tends to perform badly for
small motions. Since the differential one is based on instantaneous optical flow,
it is likely to perform better. In the next section we will see if that is the case.

6.4 Experiments

Even if a higher accuracy in general can be achieved using nonlinear methods,
such methods typically require an initial motion estimate close enough to the
true solution. In this section we therefore intend to evaluate three methods
that could initiate such a process. A series of simulations were performed using
randomly generated data. This generation of data, which will be described later
on in this section, was done using parameters representing that of typical working
conditions for an autonomous platform moving around in an indoor environment.
The performance is evaluated in terms of 3D velocities, rather than magnitudes
of the optical flow. This means that the conclusions might be slightly different
from those of other studies.

The first method to be analyzed is the usual 8-point method, that was dis-
cussed in Chapter 4 and tested for stereo. Motion is different because the epipo-
lar points are typically located within the image plane, which only occurs in
stereo for very asymmetric configurations. As mentioned earlier, problems may
arise due to the so called second eigenmotion, that is the motion due to the sec-
ond smallest eigenvalue of the linear least squares solution, explained in Section
4.4.1. If the points are not properly spread in depth and field of view and if the
noise level is too high, the ordering of eigenvectors may change, resulting in an
incorrect local minimum being found.

The reason for this instability of the linear method, is partially that the
error function has not been properly normalized. This typically leads to a bias
towards translations along the optical axis. In order to cope with this weakness,
an additional nonlinear search is performed in the one-dimensional space defined
by the essential matrices Eg; and Eg,, that are associated with the two least
eigenvalues. For essential matrices defined by E(a) = cos(a) Eg; + sin(a) Eg,
and z = (0,0,1) T, the following normalized error function is minimized,

) (%7 B(0)x:)?
f6@) = 3 GR@x)? + (] B@#)?

X1,Xr

(6.27)

The next method to be studied is the one based on the instantaneous epipolar
constraint, that was described in Section 6.3. Unfortunately, the same problems
exist in this case and the corresponding error function should also here be nor-
malized. With t(«) and A (a) defined like E(a) given above, the optimal motion
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is found minimizing

fila) = Z (XTf(a)x + xTA(a)x)2_ (6.28)

The nonlinear optimizations are performed using Levenberg-Marquardt (Press
et al. 1992), starting with the eigenmotion of lowest normalized error. Since the
search is performed in one dimension only, a minimum is reached in about 10
iterations. The last method analyzed in this section is the subspace method of
Jepson & Heeger (1992) described in Section 6.2.1. The reason for choosing these
three methods, is that they all work without any prior information and can thus
be used to initialize more accurate iterative methods.

Simulated data Based on what has shown to be typical for the system pre-
sented in this thesis, series of 80 feature pairs each were randomly generated
in a truncated pyramid 200 to 600 cm away from an imaginary observer and
projected onto two 384 x 288 pixel image planes. The focal length was set to
400 pixels, which corresponds to a field of view of about 52°. Noise with a stan-
dard deviation of 0.7 pixels was added to each image feature position. However,
unlike a real scenario, all features pairs were assumed to be correctly matched,
which means that no outliers were included in the data sets. Thus considerable
additional work has to be done to guarantee robustness, if the methods are to be
used in practice, similar to what is described in Chapter 4 in the case of stereo.
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Figure 6.3. Translational bias (upper) and stability (lower), for motions along
the optical axis (left), diagonally (middle) and along the x-axis (right). Each
group of bars show the results for different combinations of translational and
rotational speeds, with rotations around the y-axis.
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Figure 6.4. Rotational bias (upper) and stability (lower), for motions along the
optical axis (left), diagonally (middle) and along the x-axis (right). Each group
of bars show the results for different combinations of translational and rotational
speeds, with rotations around the y-axis.

Simulations were performed with translations in three different directions,
along the optical axis, the x-axis and the diagonal in the plane defined by these
two axes. All rotations were around the y-axis, making the rotational flow hard
to distinguish from the translational one, which was explained in Section 6.1.1.
Rotations around other axes have previously shown to have little effect on the
stability of the problem. If an observed object is kept fixated, while the observer
is moving about, the cameras are rotated so as to subtract the flow induced by
the translation. Hence, these motions are common for autonomous robots.

The performance of the three methods was evaluated in terms of bias and
stability, using a metric proposed by Tian et al. (1996). With 1000 different data
sets being tested for each combination of true rotation and translation, a mean
motion was calculated. The corresponding biases can be seen in the upper rows
of Figures 6.3 and 6.4. The lower rows show the stability of the results, which
was calculated as the variance using the same metric. Note that longer bars
indicate higher variance and thus less stable results. The results of the discrete
epipolar constraint, the differential epipolar constraint and the method of Jepson
& Heeger are shown in black, grey and white respectively.

Compared to most other studies the translations were relatively small, which
greatly complicates the estimation problem. However, a maximum magnitude
of 12 cm, that was used here, is equivalent to as much as 3 m/s if the system
runs at 25 Hz, or 1 m/s when only every third frame is used. On the other
hand, a longer delay between image frames means an increased risk of outliers
due to independent motion and a longer latency between events occurring in the
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scene and the observer being able to react. For example, if ego-motion is used
for calculating time-to-contact, this latency is indeed critical.

£=K[0000,0.000, 1000 ] t=k[0.707,0000.0707] £2K[1000,0000,0000]

Figure 6.5. Fraction of estimates with errors in translational direction less that
5° (upper row) and 10° (lower). Each group of bars show the results for different
translational and rotational speeds, with rotations around the y-axis.

The results show that the difference between the discrete epipolar constraint
and the differential one is primarily in the bias and not in stability. It should be
pointed out that the additional nonlinear optimizations greatly improved the bias
in both cases, but at the cost of a somewhat worsened stability. The subspace
method shows a considerably better stability, especially for smaller translations,
but the bias can in some cases be very large. The smallest bias was observed
using the differential epipolar constraint method. It has been shown (Daniilidis
& Nagel 1990), that motions along the optical axis yield more stable results
than those parallel to the image plane. This can be seen if the translational
magnitudes are increased. However, from the results in Figure 6.3 this is not at
all obvious. For small forward translations the induced flow is so small, that it
is hard to discriminate it from ordinary image noise. This leads to very large
translational variances, which is especially evident in the epipolar constraint
based methods.

In conclusion, there is no clear winner among the three algorithms. If the
choice is between the two epipolar constraint methods, the differential one seems
to be the preferred choice. For some applications the type of motion might be
more important than the exact measures. A complete solution might in fact
consist of a number of methods, one method dedicated for each motion type.
An approach to determine which method to use would then be required. This
approach would most likely be successful, even if the bias is significant. In such
a case, the subspace method might be more favourable.
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If any of the evaluated methods is to be used to initialize a more accurate iter-
ative one, it is important to know if the initial motion estimates are close enough
to the true solution. In Figure 6.5 the fraction of estimates with translational
errors less that 5° and 10° are shown in the upper and lower row respectively. As
long as the iterative method is able to converge, the initial estimates need only
to be good enough. Rather disappointingly the best method, which seems to be
the one based on the differential epipolar constraint, is only able to guarantee
30% of estimates being closer than 5° to the true translational direction. If an
error of 10° is acceptable, the fraction increases to about 60%. However, this
fraction decreases rapidly if the translational magnitude is less than 6 cm. The
question is whether the results are good enough for an iterative method to be
initialized. The success depends on the ability of such a method to converge,
which will be analyzed in the following section.

6.5 Iterative methods

The original optimization problem using the bilinear constraint is nonlinear, as
stated in Section 6.1. In order to solve the problem most methods try to eliminate
some parameters and then determine the remaining ones linearly. Unfortunately,
this process typically leads to bias, when the error functions are manipulated
algebraically. Worse yet, due to the interdependence between parameters, a bias
in one parameter will affect the others. Thus the nonlinear problem ought to be
solved iteratively in order to reach a result without such a bias. In this section
three different nonlinear methods will be described. Each method relies on an
initial motion estimate being close enough to the true motion, but they differ in
the way bias is eliminated.

6.5.1 Annihilated rotations

Oliensis & Genc (1999) proposed an algorithm that like the method of Jepson
& Heeger (1992) tries to annihilate the rotational component and then optimize
for translation. However, the annihilation is not performed on the optical flow
directly, but on the flow component perpendicular to the translational one. Thus
given a correct translational direction, the results after annihilation should be
just noise. The benefit of this approach is that annihilation is performed using
three N-vectors only, instead of six, and as a consequence of this it is able to
better handle planar scenes. The reason why Jepson & Heeger (1992) have
problems with planar scenes is that the motion due to a plane can be expressed
in terms of the annihilated vectors of Equation 6.15.

The three annihilation vectors correspond to the rotational components pro-
jected such that they are perpendicular to the current translational flow. The
vectors are collected in a N x 3 matrix of the form

Vi = [{me(x:) x ef }, {m(x:) x r¥}, {me(x;) xr7} ], where (6.29)
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T (X3) = |A(Xi)tk (6.30)

A(xs)t |
and r?, r! and r} are the three columns of the rotational flow basis B(x;) in
Equation 6.6. The algorithm of Oliensis & Genc (1999) is given below.

Algorithm

1. Let £ = 0 and find an initial estimate of the translation tg and rotation wy
using e.g. the 8-point method.

2. Compensate for the currently known rotational flow and update the trans-
lation tgy1 = argming [V Yx|?, with

Y = {7 (x:) x (w; — B(x;) W) }-

3. Update the annihilation matrix V1.
4. Calculate a new rotational estimate of w41 = wg + Awg, where the update
is determined by Awy, = argmina,, |[Yr — Vit1Aw|? = VLHT;C.

5. Return to Step 2 until convergence.
The minimization of Step 2 can be performed through steepest descents, using
for example the method of Levenberg-Marquardt. To avoid getting stuck in a
local minimum, such as one corresponding to the “rubber motion”, a search
can initially be performed among directions located on the plane of the current
translation t; and the optical axis.

6.5.2 Simultaneous structure and motion

The main reason for the bias in the previous methods is the algebraic manipu-
lations done in order to divide the problem into different components that are
estimated separately. In order to avoid computing depths these methods based
their residuals on the component orthogonal to the translational flow, completely
ignoring depth. In the method of Zhang & Tomasi (1999) the depths are instead
estimated simultaneously and the minimization is performed on the original error
function, that is their method tries to minimize the residual

I‘i(di, t, w) =u; — dZA(X,) t— B(Xz) Ww. (631)

The translational direction, rotation and depths are estimated in sequence, using
the same error function, with total least squares being used in each step, except
for the step updating the rotation. Instead rotational estimates are based on the
flow orthogonal to the current translational one. However, for translations in the
forward direction, rotations based on errors in both dimensions seem to result
in a significantly better convergence rate. Despite this the original algorithm,
which is given below, was used for the simulations presented in Section 6.6.
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Algorithm
1. Let k = 0, the inverted depths d; o = 1 and find an initial estimate of the
translation tg and rotation wy using e.g. the 8-point method.
2. Calculate an updated translational direction based on the current residual,

N
—_— 1 . . — . . 2
Aty = argrriltnz |ri(di—1,bk—1,wr—1) — d; A(x;) At] (6.32)

=1

with the condition t}_; Aty = 0 and update as t; = tx_1 + Aty.

3. Like the method of Oliensis & Genc (1999) and with definitions in Section
6.5.1, the rotation is updated as wy = argmin,, | — Viw|? = VL'I‘k.

4. Individually for each feature point, recompute the depths,

diy = in |r;(d;, tg, 2=
= axg i il b o) 7 (i) A(xi )t

5. Return to Step 2 until convergence.

6.5.3 Spherical projections

The methods studied previously in this thesis have been based on perspective
projections. However, optical flow expressed in spherical projections leads equa-
tions, which can sometimes be easier to understand and analyze (Thomas et al.
1994, Soatto & Perona 1997). Using spherical coordinates, that is x; € S2, the
optical flow can be written as

u; = dz(t X Xi) X X;+wXX; = dzf(?t — )"cz-w. (634)

Thus the optical flow may be considered as the result of a rotation around an
axis w; = w — d;X;t, which is unique for every flow vector. The flow can further
be measured against the image point vectors, which yields the angular flow

yi =w; X X; = —d;%;t + Xw. (6.35)

It should be emphasized that if the image noise is isotropic in the spherical
projection, it will be so also after this manipulation. In an algorithm presented
by Chiuso et al. (2000), the residual

N
r(di,w,t) = Y lyi + dikit — %2w[’ (6.36)
=0

is minimized, which is done linearly for each component. Instead of enforcing the
translational magnitude to be |t| = 1, normalization is done after optimization.
Based on experimental results there does not seem to be much difference between
the two alternative procedures.
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Using an initial zero rotation and all points set to some arbitrary positive
depth, the parameters are searched iteratively, first estimating the translation,
then the rotation and finally the depths. The procedure is performed twice, but
in the second run the initial values of Step 1 are changed to that of the corre-
sponding “rubber motion”, that is wp = —w and d;o = 2d — d;. An additional
check is performed on the inverted depths making sure that they remain positive.
Negative depths are changed to random values and the procedure is continued.
After convergence the result with the lowest total residual is used as the final
estimate of motion and structure. The complete algorithm is as follows.

Algorithm
1. Let k=0, wp =0 and d;p = 1.
2. Compute t'y, = argming r(d; g—1,wk—1,t') as

N N
'y = ()i 1%) Y digaRi(wr-1 — ¥i)
=0 =0

3. Normalize the translation ty = t'x/|t's|.
4. Update the rotation,

N N N
wg = argﬁgnz Ixity (vi — %jw)|* = O Ktpt %)™ D %tpt, 9.
i=0 i=0 =0

5. Individually recompute the inverted depths through

T iitk
t] %2ty

dig = argrréin r(di, wi, tr) = (X2wy, — yi) (6.37)

6. Return to Step 2 until convergence.

6.6 Experiments

The three iterative algorithms in Section 6.5 were tested on simulated data gener-
ated as in Section 6.4. However, even if the previously presented linear methods
were intended for initialization, the iterative procedures were initialized using a
cloud of random initial translations and rotations. Thus Step 1 of the given algo-
rithms was changed so as to better analyze the convergence of the three methods.
The initial motion estimates were generated such that translational directions
were evenly spread within a quadratic angular area with sides of length 20° in
altitude as well as in azimuth.

In order to facilitate convergence as many as 32 iterations were used for each
algorithm, which is more than what some of the algorithm designers themselves
recommended. The number of resulting samples with a translational direction
within 5° and 10° of the true one, can be seen in Figure 6.6. Before drawing any
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conclusions one should be reminded that out of the initial randomized motion
estimates, about 19.6% have a translational error of less than 5° and 78.5% are
within 10°. Thus the results are not as good as one might initially assume.

Figure 6.7. Distribution of translational results for magnitudes of 6 cm (left),
12 cm (centre) and 18 cm (right), using the method of Oliensis & Genc.

In the simulations, data were generated such that depths and image positions
were uncorrelated. This makes the expected standard deviation of displacements
due to translations relatively easy to calculate. Using the simulated data given
in Section 6.4, it is possible to show that the approximate displacement in the
forwards direction is about std(ug) = 0.19 ¢, pixels, with ¢, measured in cen-
timetres. This means that 6 cm in forward translation is equivalent to a noise
level of about 44.5%.

Such a short translation is obviously not enough to reach a proper conver-
gence. One exception is in the lateral direction, where the two methods that
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include depth estimates are able to converge. The situation is quite different if
the translations are increased to 12 cm, where all methods converge more or less,
depending on the direction. The most successful approach is that of Zhang &
Kanade, which converges quite well even in the forward direction. Rotations do
not seem to affect convergence at all. Another way of analyzing the convergence
is by studying the images of Figure 6.7. For the method of Oliensis & Genc, it is
not until the magnitude is as large as 18 cm that convergence is clearly visible.

It should be pointed out that the reported results depend on the number of
iterations used. The method of Oliensis & Genc shows significant improvements
if the number of iterations is increased. However, even with as many as 100
iterations the results do not meet those of the other methods. An effect of
the annihilation seems to be that the problem becomes more sensitive to noise.
Annihilations are performed to isolate residuals due to certain sets of motion
parameters. On the other hand, if the annihilation is not perfect the residual
contains not just image noise, but also noise due to the erroneous annihilation.
Furthermore, even if convergence is possible, the high number of local extrema
in the forward direction further complicates the process (Oliensis 2000). These
exist due to the denominator of the error function mentioned is Section 6.1.1,
which is similar for all the reviewed methods.

Since the convergence is so slow for all the three tested iterative methods,
at least for our application, we have chosen not to use such an approach in the
system presented in Chapter 8. We will instead rely on data from binocular
stereo. It should be emphasized that even if the convergence were better, one
still has to include a mechanism for outlier detection. From the discussions in
Chapter 4 one may conclude that outliers would further complicate the problem.

6.7 Conclusions

In this chapter a number monocular structure-from-motion methods have been
analyzed in the context of an autonomous system moving around in an indoor
scene. The intention was to determine whether such a method may be used for
ego-motion estimation. Three linear and three iterative methods were evaluated.
The linear methods are important, since they may be used to initialize a more
accurate iterative one. All methods show similar weaknesses for translations
shorter than about 6 cm. Since the convergence of the iterative methods was so
weak, in relation to the results of the linear ones, we judged them not feasible
for our particular application.

In conclusion, since the translations in an indoor scene are typically short
in relation to what the evaluated structure-from-motion methods require, we
decided not to rely on such a method. The situation might, however, be much
different in an application such as reconstruction. In the next chapter we will
instead investigate the possibility of using stereo data for ego-motion estimation.



Chapter 7

Stereo and motion

The results of the previous chapter were not as encouraging as one would have
hoped, even if monocular structure-from-motion is feasible as long as the trans-
lational speed is high enough. On the other hand, if the autonomous system is
equipped with a binocular stereo head, reconstructed three-dimensional feature
points might be available from stereo. We claim that the process of determining
ego-motion can be simplified, when such points exist. In this chapter the use of
stereo for ego-motion estimation will be explored, beginning with an analysis of
the errors involved in the reconstruction of 3D features. A number of alternative
methods for estimating ego-motion will be given. In the end of the chapter,
ego-motion will be combined with disparities, calculated as described in Chapter
5, resulting in a system in which independently moving objects can be found
quickly and automatically.

7.1 Triangulation

Three dimensional feature points may be created though a process called triangu-
lation, given that image features have been properly matched and the epipolar
geometry is known. Assume that we have a binocular stereo system and use
the coordinate system given in Section 4.3. The origin is defined by the left
camera centre and both optical axes lie on the same plane, which also con-
tains the baseline b = (b,0,0)T. Let a 3D point p be projected onto the left
and right image planes. The projection can be represented by two normalized
rays, X1 = (z1,91,2) " and x; = (2, ¥y, 2r) | . With s; and s, denoting the dis-
tances from each camera centre to p, the position of p can be given by either
pi1(si) = six1 or pr(s;) = s,Xr +b. Equating these two vectors, s;x; = s,%x, + b,
yields the equation

(x1,—%x ) ( j’ ) =b. (7.1)

T
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The distances can be found using least squares, which results in

x> —x % st a:,
( _XrTxl |Xr|2 Sr =0 —Zr ) (72)

Observing that |x;| = |[x;| = 1 and x; " x, = cos(f3), where 3 is the angle between
the projection rays x; and x,, the distances are given by

( N ) N sin;)(,é’) ( cosl(ﬂ) 6081(@ ) ( o ) (7.3)

If p is located relatively far away from the stereo head compared to the length
of the baseline and if the camera configuration is close to symmetric, a number
of approximations can be introduced. Then sin(8) ~ 8 ~ z; — z, and Equation
7.3 can be simplified as

(:l)mﬂ%(iw(—xgﬁ)“%(}) (7.4)

A symmetric configuration is not just motivated from a computational point
of view, such as indicated by the results in Chapter 5. The cameras can never
rotate more than what is determined by the mechanics. In order for the ob-
server to execute a saccade towards any position within the field of view, the
cameras should typically be directed forwards, in relation to the neck on which
the cameras are mounted. During and after a saccade, eye movements could
be compensated by a synchronized rotation of the neck (Pahlavan et al. 1993).
Thus the stereo system will stay close to symmetric between two saccades.

The distances can be regarded as depths viewed from respective camera. As
mentioned in Chapter 6, these depths constitute the structure in the feature
based structure-from-motion problem. Thus knowing the dependency between
depths and image noise is essential in order to determine the expected quality
of the extracted structure. Due to image noise the angle 8 will be erroneous.
Since the depths are given by Z = b/, the reconstruction errors depend on the
derivative

§Z b 72

BEF= T (7.5)
or if expressed using inverted depths Z—! = 3/b,
6zt 1
W —_ 5- (7-6)

Thus there is a quadratic dependency between depths and the errors of the
reconstruction, while the inverted depths only depend on the baseline. This
quadratic dependency can be illustrated by the image in Figure 7.1. The shaded
area represents a region of uncertainty. As the depth is increased, the height H
of the uncertainty region grows quadratically.
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Right camera

Figure 7.1. Region of uncertainty depending on image point errors.

How much do these errors affect the performance of a practical application,
such as for example manipulation? If the working distance is about one metre
and the image errors are in the neighbourhood of one pixel, with a focal length
equivalent to 400 pixels and a baseline of 20 cm, it is easily seen that the errors
in reconstructed depths are about 1.25 cm. For indoor navigation, where the
distances are typically longer, the errors can be of the order of decimetres and
metres. Unfortunately, image point errors are not the only errors involved. Ad-
ditional errors originate from difficulties in determining the camera calibration.
However, even if the absolute errors in depth are large, the relative ones may
still be manageable. Thus these errors may well be overcome, if the manipulator
arm is visible and tracked.

7.2 Ego-motion using depths

If our observing agent is equipped with a binocular stereo head, one might wonder
if a more accurate estimate of ego-motion can be achieved using two cameras,
instead of just one. After all, the errors in depth depend on the length of the
baseline and typically the baseline is longer than the translational magnitude.
The fact that two images from the left and right cameras originate from the
same instance in time implies that the number of outliers, due to non-rigid
motion, can be expected to be much fewer. The structure-from-motion problem
is in itself very error sensitive and every single inlier is valuable. However, an
efficient exclusion of outliers often results in some correct matches being falsely
disregarded. Thus the problem would benefit not just from the longer baseline,
but also from a fewer number of outliers being present.

Assume that a number of features have been matched between the left and
right cameras, and that the corresponding depths have been found using tri-
angulation. One possible way of estimating the ego-motion could then be using
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these depths in a structure-from-motion algorithm, e.g. one of those described in
Section 6.5. A good candidate might be the method of Zhang & Tomasi (1999)
reviewed in Section 6.5.2, since in their approach the depths are not eliminated,
unlike methods based on the essential matrix. In this section of the thesis we
instead use an error function, where an a priori depth estimate has been in-
corporated. The error associated with a feature at image position x; is given
by

ei(w, t,di) = [w; — diA(x;)t — B(xi)w|” + K|d; — di?, (7.7)
where d; and d} denote the estimated and a priori given inverted depths and K

determines the relative importance of d;. The remaining variables are given in
Section 6.1. A differentiation of e;(w,t,d;) with respect to depth yields

%ei(w,t, di) = 2(A(xi)t) T (0 — diA(xi)t — B(xi)w) + 2K (d; — d?),  (7.8)

which leads to an estimated depth given by

J = Kdf + (A(x;)t) T (u; — B(x;)w)

T R+ (A)DT A (7.9)

The ego-motion can be found using Equation 7.9 in Step 4 of the iterative al-
gorithm described in Section 6.5.2. Due to the ambiguity between depths and
translational magnitude, the translation t was normalized in Step 2 of that algo-
rithm. Since depths are known a priori this normalization is no longer necessary
and the condition that At]_,t; = 0 can be ignored.

7.2.1 Initial motion estimates

Unfortunately, most iterative methods rely on good initial estimates in order to
be successful and the experiments in Section 6.4 indicated that such estimates
are very difficult to find, especially if the translations are small. The speed of an
autonomous platform in an indoor environment is typically too low, compared
to what is required. If the depths are already available from stereo, the situation
might be slightly different. Then it is possible to directly solve the rotation and
translation linearly. If the optical flow due to ego-motion is expressed as

s = (i) | 5x)) ). (7.10)
a motion estimate can be found using least squares, that is
E _ a-1 Z’L diA(Xz')Tuz'
( 5 ) =S ( S B(xi)Tw )’ where (7.11)
S = Zz d?A(Xz)TA(Xz) Zz diA(Xi)TB(Xi) (7 12)
Y diB(xi)TA(xi) Y B(xi)TB(xi) ) '

Note that the condition number of S only depends on the distribution of
features in 3D space and not on the motion. This makes the sources of motion
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errors easier to understand. The accuracy of the results depend on the magni-
tudes of the optical flow projected onto each flow component respectively, while
the ability to separate components depends on the distribution of features in 3D
space. This means that the system does not collapse if translations are small,
even if the translational direction is erroneously determined.

A number of experiments were performed, with simulated data generated as
in Section 6.4. The true rotation was set to 2° and a translational magnitude
of 6 cm was used. A priori depth estimates were perturbed using Equation 7.6.
Results for translations in three different directions, forward, diagonally and
laterally, are summarized in the table of Figure 7.2. The definition of bias and
stability may be found in Tian et al. (1996).

w bias | w stab | t bias | t stab | |t| mean | [t| std
Forward | 0.006° | 0.13° | 1.32° | 29.1° | 1.90 cm | 0.49 cm
Diagonal | 0.004° | 0.10° | 29.2° | 8.5° | 447 cm | 0.40 cm
Lateral | 0.003° | 0.06° | 0.17° 2.9° | 6.02cm | 0.22 cm

Figure 7.2. Rotational and translational bias and stability for translations in
forward, diagonal and lateral directions and rotations of 2° per update.

The rotational results are indeed satisfactory compared to the results pre-
sented in Chapter 6, that were not based on a priori depths. However, the
estimated translations suffer from a serious bias in direction, as well as magni-
tude. The reason can be understood as follows. Due to errors in image positions,
a term based on the error variance will be added to the ¢, components of S. This
will lead to an underestimation of this component. However, flow generated by
forward motion is rarely confused with other components, which means that they
will remain approximately the same. Thus when moving along the optical axis,
the magnitude will be underestimated, but the direction will not change. The
large directional bias diagonally is a result of this underestimation in combina-
tion with lateral translations. Translations along the x-axis are left unaffected,
since in this direction ¢, is already zero.

Fortunately, it is possible to improve the translational estimates. Since the ro-
tation estimate is relatively reliable, the rotational component can be subtracted
from the optical flow. The resulting flow depends linearly on the inverted depths.
Thus a much simpler problem can be derived observing that

e, = 7 (04— Blxi) ) = ( y ) . ( " ) | (7.13)

If t, is given, a component due to forward motion may be added to usq;, which
should result in two constants, ¢, and t,. This means that optimization can be
performed on ¢, using the variances of these parameters. In fact, in most appli-
cations the range of possible ¢, is known in advance. In our system the minimum
is found using steepest descent, starting from an initial value within this range.
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The optimization function based on variances is usually well behaved and con-
tains only one extremum. Results from experiments using such an additional
optimization can be found in Figure 7.3.

t bias | t stab | |t| mean | |t| std
Forward | 0.37° 8.2° 599 cm | 0.24 cm
Diagonal | 0.39° 5.8° 6.01 cm | 0.32 cm
Lateral | 0.17° 3.2° 6.02 cm | 0.23 cm

Figure 7.3. Translational bias and stability for translations in forward, diagonal
and lateral directions after additional optimization.

Experiments

A series of experiments was performed in order to determine how much a priori
depths estimates are able to improve the performance of the method of Zhang &
Tomasi (1999). The iterative approach of Section 6.5.2 was tested on simulated
data using initial estimates based on the method given above. In order to eval-
uate the performance of the iterative process, the direct method for obtaining
initial estimates was also tested in isolation. The third approach that was tested
is the one presented in Section 7.2, where the iterative method was modified
so as to take advantage of a priori depths. The value K, in Equation 7.7, was
chosen such that the influence of the a priori depths was equivalent to about
10% of the total error.

In the simulations all translations lie on the plane defined by the x-axis
and the optical axis, with rotations around the y-axis. It is well known that
rotational components around other axes are relatively easy to find (Maybank
1987, Jepson & Heeger 1990). This means that in order to get an understanding
of the overall performance, we only have to test a limited set of motions, where
the confusion between translations and rotations is maximized. Figure 7.4 show
the stability of translations in three different direction; along the optical axis,
diagonally and along the x-axis. Similarly the rotational stability can be seen in
Figure 7.5. Each group of bars represents different combinations of translational
magnitudes and rotations.

Studying the results, what is most striking is that the iterative process is
only able to significantly improve results in the forward direction and only if the
translations are large enough. The problem of estimating depth from stereo is
similar to the case of lateral motion. Since a baseline is typically larger than
the translational magnitude, no improvements are seen for motions along the
x-axis. In that case it is better to rely on the stereo estimates, than trying to
further improve the results using translations that are too small. In the forward
direction, motion and stereo estimates may instead cooperate leading to more
reliable results. However, this is only possible if the translations are large enough.
The inclusion of additional free variables to an error sensitive problem such as
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Figure 7.4. Translational stability for motions along the optical axis (left),
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Figure 7.5. Rotational stability for motions along the optical axis (left), di-
agonally (middle) and along the x-axis (right) for different combinations of true
translation and rotation.

this may thus lead to worse results, than if those variables are fixed to erroneous
values.

One may summarize the results as follows. The use of a priori depths in
the error function only seems to add to the complexity and rarely leads to more
stable results. One possible interpretation is that an erroneous image position
may well result in errors in depths, but that does not necessarily mean that the
motion estimates are affected. The a priori depths originate from a different set
of image pairs and should not be combined with features tracked in time. If
the performance is measured in terms of motion, image errors along the transla-
tional flow direction will be disregarded, since such errors will be compensated
by a sufficient change in estimated depth. However, if an a priori depth esti-
mate is given, this freedom is lost. In order to adjust for errors in depth, the
motion estimate will change, which means that additional motion errors will be
introduced.

7.3 Ego-motion from 3D features

In the previous section, a priori depths were introduced in solving the structure-
from-motion problem. Due to the dependency between image feature noise and
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triangulated depths, the benefit of the a priori depths was limited. An alternative
approach might be one that does not rely on features in image space, but rather
on features that have already been triangulated into 3D space. If image features
are tracked in stereo as well as in time, it should be possible to derive the observer
motion directly from such 3D features. In this section it will be shown how this
can be achieved. Unlike the previously described methods, great care is taken in
order to make the proposed system work in practice, that is robust statistics are
used to eliminate outliers that arise from false matches or independent motion.

Assume that we have two sets of triangulated 3D features from two different
instances in time. In the coordinate frames of the two camera positions, let the
position of the ith feature be denoted by x; and y; respectively. If the set of
features is rigid, the 3D positions are related through the rigid motion equation,
that is y; = Rx; + t. The vector t represents the camera translation and R is
an 3 x 3 rotation matrix. The ego-motion can thus be determined by minimizing
the least square errors

N
f(R,t) = Z lyi — (Rx; + t)[°. (7.14)

7.3.1 Estimating the rotation

A separation of R and t is possible observing that the two feature sets represent
two similarly shaped clouds of points in 3D space. This translation will then
be given directly by the difference between their centroids, that is t = y —
X. However, the existence of outliers will corrupt this estimate. Thus a few
modifications will be introduced later on.

Subtracting the centroids of the clouds from the 3D points results in two new
sets of positions, X; = x; —X and y; = y; — ¥, and an objective function

N

AR) =)

i=1

2 (7.15)

yi — RX;

Horn has proposed two alternative methods for solving for the rotation (Horn
1987b, Horn 19874a), either using quaternions or by fitting orthogonal matrices.
However, in this study an elegant method of Arun et al. (1987) based on singular
value decomposition (SVD) will be used instead. If the error function in Equation
7.16 is rewritten as

N
AR) =) (9 + [%l° - 2% Ry), (7.16)

i=1
it can be seen that the problem may be restated as that of maximizing

N
f2(R) = Z %/ Ry; = Trace(RH), where (7.17)

i=1
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N
H=>) yi%/. (7.18)

i=1

Arun et al. (1987) showed that the rotational estimate R that maximizes
f2(R) can be found using a singular value decomposition. The correlation matrix
H is factorized into UDV ", where U and V are two orthogonal matrices and
D is diagonal. Depending on its determinant, R = VU will represent either
a rotation or a reflection. A rotation is characterized by a determinant equal
to +1, while —1 instead means that R is a reflection. However, as long as all
features are not located on the same plane, this is no serious problems, since
then the determinant will always be +1.

Improving the results

The errors of the reconstructed features may unfortunately be very large, as
described in Section 7.1. To improve the stability of the estimation process,
features of large errors should be identified and discarded as early as possible.
These features were hard to find in the method just described, since they are all
hidden within H. In the system presented here, the three dimensional displace-
ment vectors d; = y; — X; is instead analyzed prior to calculating H. First of
all, some erroneous features can be discarded because |d;|/|%X;| is too large. For
these points the corresponding rotation would simply be larger that what can
be considered as likely.

One observation that can be exploited is the fact that all d; should lie on
the same two-dimensional plane. The normal of this plane is the rotation axis,
which can be estimated as the least eigenvector n of

N
H, = Z d;d;. (7.19)
i=1

Once n is determined the expected rotational displacement direction is given by
r; = (%¥; x n)/|%; x n| and an angle can be estimated as

- LZ fliT Ly (7.20)

Simply using an as the estimated rotation is possible, but it is not as accurate
as estimates based on H. The reason for calculating « is instead that serious
outliers can be found and eliminated using errors defined by e; = d r; — a|%;
It turns out that rotational estimates based on Hs are considerably less sensitive
to large errors than if H were used directly.

If the SVD based estimates R are studied in noisy situations, it is revealed
that orientations are relatively easy to find, but the magnitudes are typically un-
derestimated. As a consequence of that an additional nonlinear optimization on
the magnitudes can be performed using Equation 7.16. Summarized, rotations

a

-

Xj
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are estimated using a three step procedure. First the rotational axis is estimated
as the least eigenvector of Hs and through projections onto the expected rota-
tional displacement vectors an angle is calculated. Features with errors larger
than a given threshold can then be treated as outliers. Using the remaining
features, a new rotational estimate is found using a singular value decomposi-
tion of H. The last step includes an nonlinear optimization on the rotational
magnitudes directly using the error function in Equation 7.16.

7.3.2 Translation estimation

It was previously mentioned that a translation t can be estimated using the
difference between the centroids of the two clouds of points. This is done in the
first step out the presented algorithm. Prior to that, gross errors are avoided as
follows. Since rotations around the camera centre do not change the individual
feature depths and since the translational speed is expected to be limited, 3D
features with too large differences in depth between two consecutive frames are
likely results of mismatches. In the current implementation features are removed,
if the difference between two frames is more than the sum of 30 cm and 10% of
the first depth, or if either depth estimate is negative. Fortunately, mismatches
typically result in considerable differences in depth and the vast majority of
erroneous features due to mismatches can thus be identified. In practice, this is
the most important advantage of using triangulated features from two different
instances in time.

In order to update the translation, the current rotational estimate R is used
for the stabilization of features projected onto the image plane of the left cam-
era. The translation is then determined in 2D from the optical flow using least
squares. Since depths are available, this process is relatively stable. The rea-
son for not performing the operation on the 3D features, but rather on their
projections, is the uncertainty in position along the optical axis. The problem
could have been solved using a covariance matrix to weight feature data, but this
would in fact have led to a problem similar to the 2D case. Solutions in 3D tend
to vary depending on the true translational direction, with errors large in either
direction or speed. However, the mean errors do not differ much from those of
the 2D case.

The overall motion estimation process is executed iteratively. Rotations and
translations are determined in sequence, updated using previous motion esti-
mates. From the second pass on, rotations are estimated using the current
estimate of t, rather than the difference between cloud centroids. In the current
implementation eight passes are used in total, even if convergence is typically
reached within three to five passes. Within each pass outliers are reidentified,
using the complete set of features. Based on the current motion estimate, fea-
tures with errors in projected image positions larger than a certain threshold are
removed from the next pass. If this process were instead based on 3D positions,
features located far from the observer might be eliminated, even if they were
correctly matched between frames. This leads to a poor balance of features at
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different depths. In order to limit the effect of erroneous 3D positions, an ad-
ditional outlier identification is performed before calculating the rotation R, as
was described above.

7.3.3 Experiments

The complete ego-motion estimation process was evaluated using simulated data
as in previous experiments, with one exception however. Instead of just using 80
randomly generated 3D features, an additional 20 non-rigid points were added,
so as to test the behaviour when independent motion is present. These outliers
originated from a rotating cylinder located at the centre of the scene. Its ro-
tational axis was along the y-axis and the angular speed 10° per frame. While
rotating the cylinder was also translating along the same axis, at a speed of
10 cm per update. Since erroneous features that exist due to mismatches are
easily found in the outlier detection process, such features were not added. The
remaining 80 features were evenly spread within the truncated pyramid between
200 and 600 cm from the observer.

All 100 features were then projected onto 384 x 288 pixel image planes of the
left and right cameras, with 0.7 pixel in standard deviation noise added to each
coordinate. With image features from two consecutive instances in time and a
baseline of 20 cm, two sets of 3D features were created using triangulation. A
systematic error of 0.3° was further added to the vergence angles, in order to
simulate the effect of incorrect camera calibration. To adjust for such errors, the
shapes and sizes of the two point clouds are analyzed early on in the process.
The adjustment is done adding a constant to disparities in one of the two image
frames, such as to make shapes and sizes approximately the same.

Results

In Figure 7.6 results from a series of simulations have been summarized. The
rows each represent the results from 1000 test runs, for different choices of true
translational direction /t, magnitude |t| and rotational speed Ry. All rotations
are given in degrees around the y-axis, with translations in the plane defined by
the optical axis and x-axis. The translational directions are expressed in degrees
from the optical axis and the magnitudes in centimetres per update. The last
three columns show the variances of the same parameters being estimated.
Unlike all previously described ego-motion estimation methods, that were
based on optical flow, the presented approach turns out to be invariant not
only to the rotational speed, but also to translational direction. Furthermore,
no significant bias was noted in any of the parameters. In previous iterative
methods, large errors in rotation were typically accompanied by large errors in
translation. In cases of small translations and low rotational speed, the second
order factors of the rotational flow were easily drowned in image noise, resulting
in corresponding errors in translation. These errors were especially evident in
the forward direction, since here the required angular change in translation is
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Lt [ [ Ry [ 78] 1] Ry

0 0 0.43 | 0.039

0 2 0.42 | 0.039

0 4 0.42 | 0.037

0| 3 0| 431 | 0.40 | 0.038
0 3 2 || 425 | 0.40 | 0.038
0| 3 4 || 4.76 | 0.43 | 0.040
0| 6 0|l 2.32 | 0.40 | 0.037
0| 6 2 || 2.33 | 0.40 | 0.039
0| 6 4 || 2.33 | 0.43 | 0.039
45| 3 0 || 4.56 | 0.42 | 0.040
45| 3 2 || 4.38 | 0.41 | 0.039
45| 3 4 || 4.68 | 0.44 | 0.042
45| 6 0| 232 | 045 | 0.040
45| 6 2 || 2.24 | 0.43 | 0.040
45| 6 4 || 2.38 | 0.45 | 0.041
90| 3 0 || 425 | 0.40 | 0.037
90| 3 2 || 422 | 0.43 | 0.040
0| 3 4 || 4.66 | 0.45 | 0.043
90| 6 0| 219 | 0.43 | 0.043
| 6 2 || 2.25 | 0.43 | 0.042
0| 6 4 || 2.23 | 0.46 | 0.045

Figure 7.6. The standard deviation of the estimated translational direction and
speed, and pan rotational speed shown as functions of their true values.

maximized, in order to compensate for a given rotational error. In the stereo
case, however, there are no such limitations and the rotation may be recovered
using the relatively accurate depths estimated from stereo. Thus the required
translational compensation is much smaller.

If the translational direction errors are analyzed for a broader range of true
magnitudes, it can be seen that the product of directional errors and magnitudes
are approximately constant. There is one possible explanation to that. Assume
that a translational vector of length a is given and the error perpendicular to
the vector is z, then the angular error is = tan(z/a) ~ z/a for large enough
translations. This means that fa ~ x, which can be assumed to have a constant
variance, since the baseline has a fixed length.

7.4 Independent motion detection

Once the motion of the observer has been determined and the three dimensional
structure of the scene is available, it is possible to find image regions of inde-
pendent motion. In a rigid scene only the ego-motion is required for the optical
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flow to be predicted, assuming that the depths are already known. If this optical
flow field is different from the one estimated as in Chapter 2, the corresponding
parts of the scene cannot be rigid, that is they belong to independently moving
objects. Unfortunately, the optical flow calculated in Chapter 2 is not accurate
enough for such a direct comparison. However, since the optical flow determines
the displacement from one image frame to the next, not only the optical flow can
be predicted, but also the image data itself. Thus image data may be warped
from one frame to the following and a comparison can be done between images,
not between optical flow fields.

Figure 7.7. Disparities calculated using area correlation and sums of squared
differences. Black areas indicate pixels for which no disparity could be found.

First assume that disparities have been calculated using one of the methods
described and evaluated in Section 5. Figure 7.7 shows a sequence of disparity
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maps determined using the simplest of these methods, based on area correla-
tions and sums of absolute differences. The number of false positives have been
reduced, matching the left and right images and both directions. No additional
postprocessing has been performed. It should be emphasized that the camera cal-
ibration was done automatically using the iterative method proposed in Chapter
4. Given the disparities, depths can then be calculated as

Z; = bi, (7.21)

d;

where d; is the disparity at image position x;, b denoting the length of the
baseline and f the focal length expressed in terms of image pixels.

In the previous sections of this chapter, randomly generated sets of feature
points from two sequential images were used to estimate the motion parameters.
In practice these features have to be determined using some kind of feature
detector. For the experiments presented here, the Harris corner detector (Harris
& Stephens 1988) was used. Matching is then performed between the two images,
in both directions, using modified normalized cross-correlation of 9x9 pixel areas.
In fact, matching is done in motion as well as in stereo, since the reconstructed
depths are used in the ego-motion estimation process. The stereo matching is
done similarly prior to the camera calibration. This is both a strength and a
weakness. Since a corner feature has to be visible in four different images from
two separate image pairs, sporadic mismatches tend not to survive and are thus
excluded. However, the same applies to less distinct corners, which might result
in too few features being left for ego-motion estimation.

In Figure 7.8 an example of extracted corner features can be seen, with lines
illustrating their corresponding matches in time. Using the method presented
in Section 7.3, the majority of outliers, which are shown in white, belong to the
person walking in the centre of the images. Unfortunately, some correct features
located far from the observer have also been eliminated. This is likely to be a
consequence of the temporary outlier detection performed just before rotations
are estimated. There is a tendency towards nearby features dominating the ego-
motion estimation process, since errors in depth are smaller for these features.
It should be kept in mind that the threshold used for the exclusion of outliers
was set to approximately one pixel, which is relatively low.

Once the motion parameters have been calculated, that is when the transla-
tion t and rotation w are known, the predicted optical flow is given by

u; = Z;IA(X,) t+ B(X,) w. (722)

A comparison between the first image and a warped version of the following one
can then be performed. The residual

€e; = |It+1(Xz' + ui) — It(Xi)| (723)

may then be used to determine areas, where the rigidity assumption does not
hold. The ordering of the two frames does not really matter, but since the posi-
tions x; are defined in the first image, the second one is warped. In practice, this
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Figure 7.8. Corner features used for estimating ego-motion, with lines indicating
corresponding matches between image frames. Outliers are shown in white.

ordering is preferably reversed, so that the residual corresponds to independent
motion regions of in the most recently grabbed image.

The data in Figure 7.9 show pixels for which the residual e; exceeds 25 in pixel
value. For areas where there are no disparity estimates, that is the black areas
of Figure 7.7, the mean disparity was used instead. These areas exist either due
to the lack of image structure or because the left-right consistency check fails.
The most notable such areas are visible to the far left of the images or near the
manipulator arm in the front. There is also a large number of sporadic errors,
but these are typically only about one pixel in width, which indicates that they
originate from pixel noise around image gradients. The remaining residuals exist
near the walking person in the centre of images. For these regions of independent
motion, the optical flow is different than what was predicted, resulting in large
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errors in the subtraction.

The results could probably be used as they are, with a blob detection algo-
rithm working directly on the residuals. However, a better segmentation may
be obtained if disparities are also taken into consideration. After all, a visible
object moving in an environment occupies not just a certain part of the images,
but also of 3D space. In the algorithm presented here, the following operations
are performed. First a two-dimensional histogram is created, with one dimen-
sion representing x-wise positions and the other one disparities. Each cell in the
histogram is determined by the number of pixels with optical flow and disparity
values matching the particular cell and a residual larger than 25 pixel values.
Pixels with unknown disparity values are disregarded.

From the histogram, peaks are extracted, each representing a region of inde-
pendent motion or noise. The extension of such a region is determined fitting a
quadric surface around the peak and measuring its curvature. The y-wise exten-
sion is calculated from the residuals, using pixels located close to the histogram
peak and within its extension. Thus two different moving objects cannot be
located in the same position both in x and in depth. This does not matter,
however, since that would imply that the objects are placed on top of each other
in the 3D world, which is not likely to happen. Once the extension and position
of the moving region are known, segmentation can be performed using the dis-
parity map. After segmentation each pixel is hypothesized as being either in the
foreground or background.

The light areas of Figure 7.10 show results obtained using this approach.
An additional morphological operation was applied to the segmented data, such
as to fill in empty regions, where low contrast did not permit disparities to
be calculated. The operation was implemented as follows. For each pixel the
number of foreground pixels within a four pixel radius is counted, using a circular
filter swept over the segmentation data. For low contrast pixels its final state,
foreground or background, is determined by the majority of pixels agreeing on
the same state. The same operation is applied to high gradient points, but in
this case at least 80% of the nearby pixels need to be of the opposing state in
order for the state to be changed. Through this approach data will be spread
more in uniformly shaded regions than in regions rich in texture.

Postprocessing was done at the final stage of the algorithm and not on the
original disparity map. This is because there are only two possible hypotheses in
this case. If there were instead multiple hypotheses, especially when there is no
natural metric, postprocessing might lead to corruption of the data. With only
two hypotheses, this corruption is likely to be smaller. Furthermore, if corruption
of data cannot be avoided, postprocessing should preferably be performed as late
as possible, so as not to affect the performance of following procedures.

It should be emphasized that no temporal consistency was taken into consid-
eration in the results presented here. Each blob shown in Figure 7.10 is calculated
based on information from only two instances in time. Without any integration
of results, the blob disappears as soon as the object stops moving. It is likely
that data from multiple frames would improve results. In fact, the results are
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so satisfactory, that they may be used directly to track the object in question.
On the other hand, in order to track the object, as much information as possible
should be extracted from the blob, improving speed as well as accuracy. The
computation should preferably be performed locally and not on the whole image.
However, a framework is created in which tracking can be initialized.

7.5 Conclusions

In this chapter three-dimensional feature points were exploited for ego-motion
estimation. Using matches between image features in stereo, the corresponding
depths were determined using triangulation. These points together with the
bilinear optical flow constraint could then be used to find the translation and
rotation of the observing platform. However, if the method of Zhang & Tomasi
(1999) described in Chapter 6 was initialized and executed using these motion
estimates, the results could hardly be improved. It seems as if depth estimates
based on stereo and motion compete, rather than cooperate. This is probably
because depths were determined using different pairs of noisy image feature pairs,
which leads to different depths being estimated, even if both stereo and motion
pairs ought to result in the same reconstructed depths in a noise-free case.

This led us to try another scheme which did not involve the optical flow
constraint. Instead the motion parameters were estimated directly from 3D
features from two different instances in time. The method was implemented with
outlier detection so as to make it robust in a real situation. A direct quantitative
comparison between this method and the monocular ones is not fair, but it is
worth noting that the robustness was significantly improved using stereo, even
when 20% outliers were added to the data set. The quality of results seemed to
be invariant not only to rotation, but also to the translational direction, which
is very different from the monocular case.

In the final part of the chapter we showed how regions of independent motion
may be found using disparities in combination with the ego-motion. The results
suggest that they may be used for tracking and not just for the initialization
of tracking. However, once enough information has been extracted from moving
regions, one could use a simpler method, that does not work on the whole image.
The current implementation of the complete algorithm requires about 90 ms
in computational cost on a 1.2 GHz Athlon, which ought to be sufficient for
the redirection of gaze in a complete active system. The independent motion
information will later be integrated with various other cues in Chapter 8.
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Figure 7.9. Residuals after subtracting a warped version of a prior image from
the following true one. White areas either come from independent motion or as
a result of disparity and image pixel errors.



7.5. Conclusions 133

Figure 7.10. Regions of independent motion.
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Chapter 8

System integration

In this chapter the components explained and analyzed in the preceding chapters
will be integrated into a complete system. The system is intended to be used to
control the direction of gaze of a vision-guided robot. Attention is paid to the
implementation details that were not made clear earlier on. The intention is to
give an overview of the components used and the flow of information from visual
input to an updated gaze direction. The system contains three different feature
paths, with results respectively in terms of disparities, optical flow and regions
of independent motion. It will be shown how these cues may be integrated into
a common representation and how top-down control could be included. Since
stereo and motion data typically exist only around high gradient edges, data
will often be missing within textureless areas. Towards the end of the chapter
a method based on graph cuts will be given that may be used to fill in such
missing information.

8.1 Flow of information

In the diagram of Figure 8.1 the operations and cues involved in the system have
been summarized. The boxes indicate resulting data, whereas rounded boxes
represent operations necessary to produce such data. Furthermore, the incoming
images are supposed to be available within each individual operation. This is by
no means a final system. Additional cues such as colour and texture cues, blobs
and ridges should be provided in the future, as well as functions for storing and
retrieving visual object data. Unfortunately, neither stereo nor motion cues can
be used directly for that purpose. However, important information about size,
shape and rigidity may be derived from these cues.

The flow of information is more or less bottom-up, in that every piece of
information is derived directly from the visual input. The presented system is
not strictly feed-forward, since adaptation and guidance may be possible through
feedback links, either locally or between different components. Non-visual cues
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may also be be available, such as inertial information from the observing agent.
A bottom-up system is able to act on unexpected events, but can hardly be
used for performing any tasks involving interaction with the environment, since
that would require that information about the object and the environment is
stored, either short-term or long-term. Knowledge that is not directly available
in the visual input, but remembered from previous experience or hardwired into
the system, consistutes the top-down part of an envisaged system. Later on in
Section 8.3, the problem of integrating different cues will be briefly considered,
with a discussion on how to integrate top-down control into the system.

[ Incoming images ]

Prefiltering
/ Corner features
[Stereo matching] [ Motion matching ]

!

Epipolar geometry

Stabilization

Y

Triangulation

Rectification Ego—motion Optical flow

Disparity map Image warping

Independent motion

!

Regions of interest

!

Fixation point

Additional cues

A4
A

Top-down control

Figure 8.1. The flow of information with boxes representing data that have
been calculated through operations shown as rounded boxes.
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8.1.1 Feature paths

As can be seen in Figure 8.1 the system basically consists of three parallel fea-
ture paths, a disparity path, an optical flow path and an independent motion
path. Each path results in a dedicated map, which will be used as a basis for
determining an updated gaze direction.

Disparity The disparity path consists of four sequential steps, corner match-
ing, epipolar geometry estimation, rectification and calculation of disparity maps.
The matching of corners will be discussed in the following section. In choosing
the proper epipolar geometry algorithm, one has to consider the environment
in which the system is intended to work, as was discussed in Chapter 4. The
essential matrix is preferable if one does not know anything about the depths
of feature points and if the vergence angle is large. The increased complexity
of nonlinear optimization is hardly justified in most situations. The speed of
the iterative approach, described in Section 4.9, is attractive, but relies on the
median depth of feature points in space being approximately known. However,
this is often not a serious limitation. Just knowing the size of the intended en-
vironment has shown to be enough for this approach to work. Consequently,
the system presented here uses a combination of the iterative approach and the
linear method based on essential matrices. As long as the vergence angles stay
within about 10°, the convergence rate of the iterative approach will be accept-
able and the system keeps the results from this method. The calculated median
depth from one update is used as an input in the next update. Upon failure the
system switches to the linear approach and continues using it until the iterative
approach can be resumed.

Rectification is a process in which the stereo images are projectively trans-
formed, as if they were captured by two parallel cameras. Rectification is neces-
sary, since most disparity algorithms rely on epipolar lines being parallel to the
scan-lines, in order to run in real-time. The complexity of the algorithms can
then be greatly reduced and a parallel implementation is easier. The projective
transformation involves a bilinear filtering of the images. Since such a filtering
might influence the correlations done when disparities are calculated, it is prefer-
able to use similar filtering for both images. If the vergence angles are relatively
small, it would be possible only to transform one of the two images, reducing the
computational cost of the rectification. However, the best results are achieved if
both images are transformed, using approximately the same rotation around the
y-axes for both images. A benefit of the geometry estimation process is that one
gets a good idea of the range of available disparities. During the rectification
images can thus be shifted, so that the range of disparities matches that of the
disparity algorithm.

For binocular disparities the simplest possible method was chosen, that is a
method based on area correlation with sums of absolute differences. In Chapter
5 it was shown that the major difference between algorithms is primarily the
resulting density and not the accuracy itself. More complex algorithms can fill
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in missing information, between regions rich on texture, where disparities can be
found locally. For a complete “seeing” system it is worth considering where, in
the flow of information, this filling-in operation should be performed. Typically
objects at different depths are attended to separately and not at the same time.
Hence, filling-in could be performed later in the path, using information from
additional cues, and not necessarily within the disparity algorithm itself. How
this can be done in practice will be shown later on in Section 8.4.

Independent motion In the independent motion path, the objective is to
find image regions, where the optical flow does not match that of a rigid scene.
In theory it would be possible to get the same results from the optical flow
path in conjunction with disparities, but the data are unfortunately not good
enough. Optical flow is still an important cue and will be calculated in parallel.
The first step of the path is the motion matching, which was described earlier.
Only features that have earlier been successfully matched in stereo will be taken
into account. Thus the number of feature pairs will be somewhat reduced. The
following ego-motion procedure, that was described in Section 7.3, is however not
as sensitive as the epipolar geometry process. After features have been matched
they are triangulated based on stereo, such that their positions in 3D will be
made available. Three-dimensional points from two consecutive image frames
are then used for ego-motion estimation.

The triangulation is performed as described in Section 7.1, but with the
vergence angle and gaze direction from the estimated epipolar geometry, rather
than the approximation of Equation 7.2. With R and s denoting the rotation
and translation as defined in Section 4.3.1, the depths are found by solving the
following problem with least squares,

|x1/2 —x, Rx, 2\ x| s (8.1)
—-x R Tx |%r |2 z )\ —-x/RTs )~ )

The homogeneous coordinates x; and x, are the feature positions in the left and
right image planes and the corresponding 3D position is given by x = z;x;.

Once the ego-motion and disparities are known, a forward prediction of the
next image frame can be made. The predicted image is then subtracted from
the next image, so as to create a residual image which indicates areas where
independent scene motion is most likely. For an active observer working in a
real dynamic environment, this is a very strong cue, since it might indicate
unpredictable events occurring in the scene.

Optical flow The optical flow path consists of two separate components, image
stabilization and optical flow calculation. Stabilization is done using the method
based on corner features, that was described in Section 3.2.1. If this method
collapses, that is the number of matched pairs are too few, the other method
based on image gradients is used instead. This typically happens when most
parts of the visible scene are located nearby and variations in depth are small.
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The matching of corners in two consecutive frames is done intrinsically within
the algorithm, even if the corners matched in the motion matching operation
could in fact be used here.

The reason for doing stabilization is that optical flow is only accurately cal-
culated, if the magnitudes of the flow vectors are limited. The complexity of the
optical flow methods increases radically if larger magnitudes are permitted. In
the current implementation, the method of Lucas & Kanade in Section 2.2.1 is
used because this was the only method that was fast enough, out of those tested
in this study. As long as the magnitudes are limited the accuracy is reasonably
good, even if the method has problems along discontinuities. In the future the
stabilization should work in two different modes, depending on whether an ob-
ject of interest is tracked or not. During tracking stabilization ought to be done
on the object being tracked, rather than on the dominant background.

Regions of interest

The last component in the flow of information is a procedure that combines
all available feature maps into a common representation, from which the next
gaze direction can be found. This part has not yet been implemented into the
system, since object specific cues such as from colour and texture still remain to
be included. Since stereo and motion cues are not object specific, they cannot be
directly used for object representations, that are to be stored for long-term use.
The system should not just include bottom-up information in terms of incoming
sensory data, but also top-down knowledge of previously encountered objects
and events. Such knowledge is important for the observer to engage in tasks
that require interaction. In Section 8.3 the problems of integrating cues and
top-down knowledge into the system will be discussed and a common framework
proposed.

8.2 Preprocessing and implementation

This section includes a description of the implementational details that are nec-
essary for the system to work in practise. Before cues can be extracted using the
feature paths presented earlier, the incoming images have to be preprocessed, so
as to limit the effects of radial distortion and image noise.

Preprocessing

In the presented system the radial distortion is compensated for through a warp-
ing procedure. Due to distortions in the lenses objects appear to be rounder than
they are in reality, which explains why it is often known as “barrelling distor-
tion”. The further away a pixel x = (z,y)' is located from the optical centre
¢ = (z¢,y.) ", the more the image has to be compressed. Most radial distortion
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models are thus based on the the image distance d =|| x — ¢ ||. For the presented
system the following simplified model was applied,

x' = (14 kd?)(x —c) +c. (8.2)

Here x’ denotes pixel positions after compensation and & is a scale factor that
determines the amount of compensation necessary. Higher order terms of the
scale function were disregarded, since it was experimentally concluded that these
only had a small effect on the outcome.

For the cameras and lenses used during the work of this thesis, the factor &
was usually set to a value in the range between 0.04 and 0.06, assuming that all
image positions have been normalized using the focal length. The values were
found off-line, with an approach based on Canny’s edge detector (Canny 1986).
The method uses the assumption that the observed scene contains a large number
of straight edges, which is typical in indoor environments. Locally straight edges
are first extracted from a couple of images. For all edges of sufficient length, a
two-dimensional curve is fitted to pixels along the edge. From each curve the end-
points and centre are found. Since these three points ought to be located on the
same line, the determinant of the matrix, which has the points in homogeneous
coordinates as its columns, should be zero. An optimization function is then
created as the sum of all determinants, with which the parameters x, z. and y.
are found iteratively using gradient descent.

When the radial distortion factors are known, an incoming image may be
warped into a new image, for which the distortion is reduced. In the presented
system this is done using a bilinear filter. Unfortunately, in addition to ordinary
image noise, new errors will be introduced in this procedure. Thus images have
to be low-pass filtered right after being warped. This is done using a small, sepa-
rable linear filter. The size of the filter is kept as small as possible, since different
algorithms may require different amounts of prefiltering and unnecessary filter-
ing should be avoided, in order not to hurt the accuracy. Typically, operations
such as corner extraction and disparity calculation perform additional low-pass
filtering intrinsically.

Corner extraction

In the current implementation corners are extracted for three different purposes;
for epipolar geometry estimation, stabilization and in order to determine the ego-
motion. As mentioned previously in Chapters 4 and 7, corner features are found
using the Harris corner detector (Harris & Stephens 1988). A second moment
matrix is created using the gradients in a neighbourhood around each image
point. From these matrices high curvature corner points are found. Gradients
are calculated using two 5 x 5 pixel filters, one for each dimension. Unlike
some extractors, such as SUSAN (Smith & Brady 1997), the Harris detector
suffers from the fact that this filtering may affect the positioning of the corner
points and move them in the direction of the centre of curvature. However, in
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this study the Harris detector is used anyway. One reason is that the operations
involved can easily be parallelized, using hardware such as the MMX capabilities
of recent Intel and AMD processors. Another reason is the fact that, even if
corner positions are incorrect, the relative positions between two images are of
greater importance and these will not change as much, since the errors are similar
in the two images.

In practice the number of extracted features is of the order of 300 in a typical
indoor scene. This number may be adjusted using a threshold on the curva-
ture measure. In order to adapt to changes in illumination and structure, this
threshold is updated dynamically, such that the number of corners will be kept as
close to constant as possible. However, a predefined range of allowed thresholds
constrains the updates, so that extreme values can be avoided. This is another
reason why SUSAN is not used, even if this extractor may be used to find the
more exact location of a corner in a second phase. With SUSAN the neighbour-
hood pixels, that differ in luminance by more than a certain value from the pixel
in question, are counted. The extractor then operates on the number of such
pixels. This means that there is no natural threshold with which the extraction
can be controlled. As a consequence the number of corners extracted may vary
considerably when the observed scene changes.

Corner matching

Corner features are matched in time as well as between stereo pairs. The goal
is to find a sufficient number of correctly paired features that can be used for
ego-motion and epipolar geometry estimation. A pair is correct if the matched
features represent the same point in 3D space. That procedure typically breaks
down if the feature pairs are too few. This is in fact the most critical weak-
ness of the whole system and failure must be handled gracefully. The current
implementation uses a combination of prior estimates and motor counter data,
to cope with image frames for which the corners are few and ensure continuous
operation. A future system could be based on not just corner features, but also
high gradient edges.

Corners are matched using modified normalized cross-correlation of 9 x9 pixel
image patches located around each extracted corner. A feature in one image is
matched towards all possible features in the other and for each combination a
corresponding matching score is calculated. Based on matching scores a favourite
in the opposite image is found for every corner feature. If no score is good enough,
no favourite is selected for the particular feature. This procedure is performed in
both directions, and if two features are each others’ favourites they are considered
as a valid feature pair and stored for further processing. That is, if x, is the
favourite of xj, then x; must be the favourite of x,, in order for (x1,%;) to be
accepted as a valid pair.

In order to avoid a combinatorial explosion when corner features are matched,
care has been taking to minimize the number of required matches. Assuming an
image size of 384 x 288 pixels, a motion match is searched within a 50 x 50 pixel
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window, which is centred around a point defined by previously calculated ego-
motion. The window is slightly different for stereo matching. By constraining
the possible camera configurations, matches are only searched within a region,
similar to the one determined by Equation 4.40. In the horizontal direction, the
region is limited so that a triangulation always will result in points in front of
the cameras. Thanks to these windows, the number of matches performed in
total is radically reduced and the computational cost much lower than would
otherwise have been the case. In order to avoid unnecessary cache misses, corner
patches are stored in a separate location, aligned in memory so that 8 pixels can
be compared in parallel using MMX hardware.

The valid pairs typically represent about 40% of the available corner fea-
tures. Additional pairs can be created, letting the same matching operation be
performed once again on all features that have not yet been paired. Thus fea-
tures may be paired with their second best favourites, which is acceptable as
long as the matching score is good. In the end the valid matches often include
slightly more than 50% of all features. Unfortunately, the valid pairs hardly
increase in number, if multiple rematch rounds are used. Because of occlusions
some features only exist in one of the two images and will never be able to be
properly matched. The final set of valid pairs usually contains only a few false
matches. Empirically, it can be seen that the vast majority, 80%-90%, of pairs
considered as valid are in fact correct, in that they originate from the same point
in 3D space. False matches usually exist due to repeatable patterns in the im-
age. Since a threshold is applied on the matching score, occlusions rarely lead
to mismatches. The picture is quite different in the case of wide baseline stereo,
especially if there are large differences in scale and rotations around the optical
axes (Pritchett & Zisserman 1998, Tell 2002).

8.2.1 Implementation

The presented system has so far been implemented on two different dual pro-
cessor platforms. The first one is an SGI Octane machine with two 195 MHz
RI10K processors, and the other is a platform based on 1.2 GHz Athlon MP,
running the Linux operating system. The platforms and processors are slightly
different in their characteristics. The Octane has got a relatively fast memory
system and typically executes floating-point operations faster than integer ones.
Due to the much smaller data caches of the Athlon processors, they suffer more
from poorly planned memory allocation. Suggestions on how to maximize speed
through efficient memory use and organization can be found in Appendix A.
Everything was programmed in C++, which means that it was rather easy
to port the code from one platform to the other. However, in order to improve
the overall speed on the Athlon machine, disparities are calculated and corners
extracted using the MMX instruction set, the parallel hardware of recent AMD
and Intel processors. With cue integration being excluded, the implementations
on R10K and Athlon processors run with update frequencies of about 6 Hz and
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9 Hz respectively. Due to the hardware specific implementation, the Athlon
version runs faster even if only one processor is used.

On Athlon processors, the computational cost of each feature path is about
the same. The most costly path, the disparity path, requires about 30 ms in total,
while the independent motion path only uses about 18 ms and the optical flow one
25 ms. The feature maps and images are 384 x 288 pixels in size, except for the
optical flow path, which functions at half this resolution. Additional time is spent
on frame-grabbing, corner extraction and prefiltering. This leads to a total cost
of approximately 110 ms. Unfortunately, when executing multiple operations
in sequence, the total cost is typically more than the sum of each individual
component. Since cache memory is scarce, different components compete for the
same limited memory resource. Thus one should be careful not to draw any rash
conclusions from components studied in isolation.

8.3 Cue integration and attention

Our intention is to create a artifical “seeing” system consisting of both bottom-up
and top-down processes, so that gaze can be directed not just based on familiar
objects entering the scene, but also due to unexpected event that might occur.
We have mainly been concentrating on stereo and motion cues, since these cue are
important in order to determine where objects are located in 3D space. However,
a working “seeing” system would also require object specific cues, such as colour,
texture and shape. These are necessary for the system to known, not just where
an object is, but also what it is. In computer vision little attention has been
paid to the problem of integrating these different sources of information in the
context of a “seeing” system. However, lessons can be learnt from neuroscience
and psychophysics. An understanding of the human vision system, may give us
ideas about how the problem could be solved. In the first part of this section
some relevant work done within these fields will thus be reviewed.

Even if each cue is interesting in itself and many experiments can be per-
formed on single cues in isolation, combinations of multiple cues are necessary
for a system to continuously operate in a real environment and everyday sit-
uations. A natural question is thus how different cues ought to be combined,
utilizing the strength of each individual cue, while overcoming their respective
weaknesses. In order for visual objects to be uniquely recognized, features from
different cues has to be used in conjunction. In cognition this problem is known
as the “binding problem”. Studies of single cell firing rates have shown that the
different low-level areas in visual cortex consist of cells specialized for different
stimuli and organized topographically. Thus the creation of feature maps, such
as those in the presented system, is not just natural from a computational point
of view, but also biologically plausible. Within psychophysics reaction times and
the ability to discriminate between different groups of features have been mea-
sured experimentally. From these experiments it has been shown that objects
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are much easier attended to if they are characterized by a unique feature, rather
then a unique combination of features.

In a very influential paper, Treisman & Gelade (1980) presented a theory
of human visual attention, Feature Integration Theory, in which this behaviour
could be explained. The theory is based on the notion of low-level feature maps
and an attentional spotlight. An observer is not aware of a certain feature until
the feature is covered by the spotlight. The direction of the spotlight is guided
by the feature maps and if a unique target feature is requested, the spotlight
moves directly towards the location in question, if there is only one such feature
in view. This procedure is called parallel search, since the time required does
not depend on the size of the feature maps. On the other hand, conjunctions of
different target features are assumed not to be processed preattentively, which
means that they can only be found once the spotlight has arrived to the position
of such a conjunction. Thus the feature maps have to be searched serially, with
the spotlight moving randomly across the field of view, which means that the
latency increases for larger feature maps.

The Feature Integration Theory soon turned out to have a number of weak-
nesses and had to be revised (Treisman & Sato 1990). Additional psychological
experiments had shown that the distinction between pure parallel and serial
search was not as clear as the theory seemed to suggest. For example, it was
shown that conjunctions of disparity and colour could be found in parallel. In
order to overcome these problems, Wolfe et al. (1989) proposed a model called
Guided Search, in which a conjunction search is performed directly using the
feature maps, similar to parallel search (Cave & Wolfe 1990). However, since
the maps are supposed to be noisy, conjunctions might be less distinct and only
found after a few trials. For example, finding a red cross among red circles
and green crosses, is harder than finding a red cross among green ones only.
The preattentive cues guide the spotlight from one region of interest to another,
in the order of strongest activation and due to noise a distractor may well be
stronger than the target conjunction. A similar model was presented by Duncan
& Humphreys (1989), but they also used the dissimilarity between non-target
features to explain variances in search performance. If a background of non-
target features is homogeneous, the non-target features may be grouped and the
true target is easier to find.

8.3.1 Integrating top-down and bottom-up

Today there are well established models for bottom-up attention in humans. As
mentioned previously, bottom-up cues are necessary in order for the observer to
react to unexpected events in the scene. It is typically assumed that a series of
feature maps are created, each feature map representing a certain aspect of the
visual input. These maps are then combined into a saliency map, from which
an image position is found using a process of winner-takes-all (Koch & Ullman
1985). A question is whether these models can by used for an artifical system.
Computationally, the saliency map is typically created as a weighted sum of all
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available feature maps, which means that it represents the collective activity of
all maps. The feature maps are often normalized so as to promote saliency maps
with a few distinct peaks (Itti et al. 1998).

Top-down information, that is information based on the will and the mem-
ory of the observer, should also be incorporated into the system. It is not as
straight-forward as one might assume, since bottom-up saliency is based on how
much a certain feature stands out in relation to neighbouring features, while
top-down saliency is typically based on the existence of the feature itself. One
way of introducing top-down control is by changing the feature weights, so that
requested features have larger weights than features less relevant to the task at
hand. This approach might be dangerous, since it easily makes the system either
purely top-down or bottom-up. Milanese et al. (1994) instead used a non-linear
relaxation process with a series of energy functions, together with a separate
alerting system, that is able to bypass the results from the saliency map.

It is also possible to create the saliency maps directly using a top-down model
of a desired object. One such approach is a model of Rao et al. (1997), who used
correlations of a memorized model with incoming data. One advantage of such
an approach is the fact that the model might require not just the existence of a
feature, but also its expected strength. However, bottom-up information is only
used in learning the model and not for visual search. This means that an observer
cannot concentrate on one task and still react to other unexpected events. Some
researchers have even suggested models with two mechanisms running in parallel,
one fast bottom-up and another slower one based on top-down knowledge (Braun
& Sagi 1990).

In the system presented here the summation of feature maps is done over
outputs from a series of adjustable functions, with one function for each feature
map. The filters can be seen as log-likelihood functions of the image position in
question being an object of interest. This will be made clearer in the following
section. Using ordinary summation these saliency functions would have been
monotonically increasing, which means that larger feature values will always
be more salient. Since the function may be changed arbitrarily depending on
the task at hand, it is possible for multiple feature values to generate the same
amount of saliency. In the case of binocular disparities, an observer might be
able to concentrate on regions at a certain depth and at the same time be able
to react to objects popping-up just in front of the view. More explicitly, the
saliency at position (z,y) may be written as

Say = Z si(v;’y), (8.3)

%

where v},  is the feature value of the ith feature map and s;(v) the corresponding
saliency function. The dimensionality of feature values might be different for each
feature map. For example, colour could be represented in two dimensions, using
one blue-yellow channel and one green-red channel (Nordlund & Eklundh 1999).
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Example: Attentional pursuit

One of the benefits of the saliency functions mentioned above, is that they may
be learned and stored either in a short-term or long-term memory as a repre-
sentation of an observed object. In this section it will be shown how saliency
functions may be used to follow an object moving in the scene using a short-term
memory of disparity and optical flow distributions. The results are similar to
those of Section 7.4, but the complexity of the method is considerably lower.

Assume that a feature value v is given at a particular image point. Using
Bayes’ rule it is possible to express the conditional probability, for the point
being part of an object of interest, as

P(fiv) = g = T, (8.4

From this function the saliency function will be given by s(v) = log P(f|v) and
if there are multiple cues, these may be integrated as shown in Equation 8.3. It
is easily seen that, if the distribution of feature values is assumed to be the same
between two instances in time, P(v, f) and P(v) can be approximated using
two histograms, one for all image points and another only for points within the
object of interest.

The images of Figure 8.2 show a short sequence of images based on this
principle. The lightly shaded areas denote image pixels for with the probability
of representing the object of interest is higher that 50%. Saliency functions are
created for disparities as well as optical flow values and updated from one frame
to the next. The histograms of the first frame is based on a rectangular area in
the upper part of the walking person. This area was found using the independent
motion detection approach presented in Section 7.4. Since probabilities exist for
each pixel, the histograms can be created using sums of these probabilities, rather
than integer values. The results may be further improved, using the maximum a
posteriori estimate of the segmentation, as will be described in the next section.
Another possibility that has shown to be advantageous, is representing the object
as a binary mask and updating the mask as time passes (Maki et al. 2000).

8.4 Figure-ground segmentation

In many situations one would like to determine if an image region satisfies one
of two possible hypotheses. This is typically the case in figure-ground segmenta-
tion, where each pixel either belongs to the foreground or background. Another
example of two such hypotheses is whether a region is part of an independently
moving object or not. Let f; € {0,1} be a parameter that determines which state
an image pixel p; belong to. The segmentation of the whole image will then be
described by f = (f1, f2,..., fN), where N is the number of pixels. Further as-
sume that a measurement g; is available for each pixel. In order to estimate
the true segmentation one might find the maximum a posteriori (MAP) esti-
mate, utilizing possible dependencies between neighbouring pixels. Given the
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Figure 8.2. Pixels for which the probability of an object of interest is greater
than 50%, based on prior distributions of disparity and optical flow.

measurement, the posterior distribution for a segmentation x is given by Bayes’

rule,
P(x|g) = k P(g|x)P(x), (85)

where k is a normalization constant.

The prior distribution can be hard to determine, but a possible model may
be based on the similarities between neighbouring pixels. For example, in figure-
ground segmentation discontinuities in depth are typically accompanied by large
image gradients. Thus image gradients may be used to describe differences in
discontinuity probability. If ¢;; is a constant based on such gradients and N;
denotes the neighbourhood of p;, one can use the prior distribution

N

P(X) = kl exp Z Z Ci,j 5(.’17,',.'17]') . (86)

i=1 jEN;

The function 6(z;,x;) is equal to 1 if z; = x;, otherwise 0. It should be pointed
out that other cues may be used in conjunction with image gradients, for example
disparities and colour. Given the measurement g, the likelihood function of x
may be expressed as

N N
P(gx) = [[ Plgilai) = [] Ploil )" P(gilo) =, 57)

which can be rewritten as

Plah) = I (710
g|x) = kaexp Z)\,w, , Where )\’_IOg(P(g-|O)

i=1

) (8.8)
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and ky = Hfil P(g;|0) is a constant given by the measurements alone. The
posterior distribution will thus be given by

N N
P(x|g) = ks exp Z)\iﬂfi + Z Z ci,j 6(zi, ;) | - (8.9)
i=1

i=1 jEN;

8.4.1 Graph cuts

The problem of maximizing Equation 8.9, that is determining the MAP estimate
xpAp = argmax P(x|g), can be solved using graph cuts. Graph methods (Ahuja
et al. 1993) are well understood and lots of effort has been spent on trying to
optimize the complexity of such methods. It will be shown in Section 8.4.2 that
figure-ground segmentation based on graph cuts can in fact be performed in
real-time. Let G = (V, E) be a graph defined by a set of nodes V' and a number
of connections E between pairs of nodes. The nodes consist of all image pixels,
together with a source node s and a drain ¢. All pixel nodes are connected to
their respective neighbours, as well as to either s or ¢ depending on the sign of
i, which is the factor defined in Equation 8.8. This means that source and drain
can be seen as representing the two hypothesis, foreground or background.

Each connection has a dedicated non-negative capacity. For connections be-
tween two neighbouring pixels the capacity is 2c¢; j, which may be determined
using image gradients, as mentioned earlier. The factor of 2 will be explained
later on. For image nodes connected to s, which is the case if A > 0, the capacity
is determined by ¢;; = A. The remaining image nodes will then be connected
to the drain ¢, with a corresponding capacity of ¢;; = —A;. Assume that the
nodes have been partitioned into one set V;, that includes s, and its compliment
Vi = V' \ Vs, which contains ¢. Such a partition is known as a graph cut.

A cut may be considered as a segmentation, with pixels within V; having the
state z; = 1, while z; = 0 for the remaining pixels. The total capacity for all
edges that connect nodes on either side of the cut will then be given by

c(x) = Z Cs,i T Z i+ Z 2¢;,5 (8.10)

;=0 z;=1 z;=1,z;=0
N

= Z (1 — .Z'z)/\z + Z Z’,(—/\z) + Z Z Ci’j(l — (5(.’1)’,,1']))

Ai >0 Ai<0 i=1 jEN;

N N
= k=" zihi+>. Y cijd(@i,z))).
i=1

i=1 jEN;

The factor of 2 in the last term of Equation 8.10 disappears, since the following
two rows include summations performed in both directions. From a comparison
between the last row and Equation 8.9, it may be concluded that x;;4p can be
found as the cut that minimizes ¢(x). The two problems are equivalent.
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Finding a minimum cut through the network, such that s and ¢ are on either
side of the cut, is possible using a maximum flow approach. This can be un-
derstood as follows. Assume that flow of some substance is led from the source
to the drain, where the maximum flow along each edge is limited by the cor-
responding capacity. A direct path from s to t is called an augmenting path.
One of the earliest methods for finding the maximum flow over a whole network,
is based on a gradual search for such paths and is thus called the Augmented
Path algorithm (Ford & Fulkerson 1956). After an augmenting path has been
found, it is filled up with the maximum possible flow, which is limited by the
smallest capacity along the path. In the end the network will be saturated and
no additional flow can be led through, since all possible paths will be blocked by
at least one edge for with the flow has reached the capacity. A cut through the
network will now be given by the capacities of these saturated edges. Since the
flow will always be limited by the cut of lowest collected capacity, this cut is in
fact the minimum cut, as defined above.

The most popular method currently in use is known as the preflow-push
algorithm by Goldberg & Tarjan (1986) and is based on flow being pushed from
the source towards the drain. Flow that has not yet reached the drain is called
excess flow. Each node includes a record that determines the shortest distance
to the drain. Starting from the node with the greatest distance to the drain,
excess flow is gradually pushed closer to the drain, using directions defined by
the distance labels of neighbouring nodes. This means that flow from different
directions is gathered up before being sent to the drain, which typically results in
a much faster execution. Since the amount of flow that may be pushed across an
edge is limited by the edge capacity, some excess flow might remain unpushed.
For these nodes the distance labels are updated using the labels of neighbouring
nodes. Since flow is always pushed from the longest distance, this flow will
eventually be tested in a new direction. The process stops when no additional
excess flow can be pushed any further.

An illustration of a network before and after flow has been traversed along
an augmenting path can be seen in the upper and lower images of Figure 8.3.
The circles show image pixels, with capacities based on their different colours.
Even if the connections between image nodes are shown as undirected, they
are implemented using two directed edges. Thus flow in one direction may be
canceled out by an equal amount of flow in the opposite direction. The upper
arrows indicate the capacity of connections from the source, while the lower ones
point towards the drain. In the lowest image the residual capacities have been
reduced by the amount defined by the lowest capacity along the augmenting path.
In the current example no additional paths can be found. A saturated edge has
been introduced, which separates the nodes depending on their connections to
source and drain.

The complexity of the preflow-push algorithm is O(n? logn), where n is the
number of pixels. However, due to the regular structure of typical computer
vision applications, such a complexity is rarely seen in practice. In the case
of integer capacities the best maximum flow method to date is an approach of
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Figure 8.3. A network with residual capacities before (upper) and after (lower)
flow has been led from source to drain through an augmenting path.

Goldberg & Rao (1997). Instead of using distance labels representing the number
of edges that has to be traversed in order to reach the drain, the method relies
on an adaptive binary length function. This length function is based on the
current residual capacities and a threshold that is gradually decreased such that
edges of large residual capacities will be treated first. The complexity of such an
approach is O(n®/? logn).

Within computer vision graph cuts have been used for applications such as
image restoration and disparity calculation. Greig et al. (1989) compared the
results of a maximum flow based method to simulated annealing for restoration
of binary images. Even if the results were improved, they also concluded that a
MAP estimate is not necessarily the best method. The MAP estimate might in
fact be a poor representation of the whole posterior distribution (Fox & Nicholls
2000). For disparities Roy & Cox (1998) used a network with d nodes stacked
on-top of each other for every image pixel. The two sides of such a columns are
connected to the source and drain respectively. The calculated disparity of a
certain pixel is determined by the location of the cut along the corresponding
column. As a result the cost of a discontinuity will be linearly dependent on the
difference in disparity. A similar network has been used for image restoration on
grey-scale images (Ishikawa & Geiger 1999).

Unfortunately, it is sometimes hard to represent the prior distribution using
such a cost function. A better cost function could be one for which the discon-
tinuity costs are kept constant, instead of letting it grow for larger differences
in disparity. A method of Boykov et al. (1998) is based on such a cost function.
Instead of just two terminals, source and drain, their network contains one ter-
minal for each disparity and disparities are determined using a multi-way cut
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approach. The image nodes are clustered such that each node is connected to
one terminal, with cuts between every cluster. The problem is solved iteratively
with a maximum flow found between every pair of terminals. This method is
slow, but the results are impressive.

In this study we have used graph cuts for figure-ground segmentation, based
on either image differencing or zero disparities. In order to use the full potential
of the method, also object specific information should be used. Since this study
is limited to stereo and motion cues, this graph cut based method has not yet
been integrated into the rest of the system. However, an example will be shown
in the next section, illustrating the expected performance.

8.4.2 Example: Image differencing

In Chapter 3 sequences of images were stabilized with respect to rotation and
in the end consecutive images were subtracted, generating residual images from
which moving scene objects could be found. An example of such a procedure
can be seen in the second row of Figure 8.4. The images show regions where the
residual exceeds a threshold of 8 in image pixel values. In order to pinpoint the
exact location of the object in the image, a blob detector is typically employed on
the residual. However, in a case like this, where data are only available around
image gradients, the data are quite sparse, which leads to a number of small
blobs being found, instead of just one for each moving object. This is a perfect
example where one would benefit from a filling-in method based on graph cuts.
For the experiment presented in this section a very simple model was used. A
pixel is assumed to be part of a moving object in the foreground, if the residual
|I:(7)] is larger than 8, assuming that the maximum luminance value is 255. The
network nodes representing these pixels each have one connection to the source,
but no connections to the drain. The opposite is true for pixels of small residuals.
The larger the residual, the more certain it is that the pixel really belongs to the
foreground. This is reflected by the edge capacities, which are defined by

Cs,i = 20 |It(l)| (811)

A small residual does not necessarily mean that the pixel is a part of the stabilized
background, since it could also be due to the foreground being uniformly shaded.
However, for regions of large image gradients, such a confusion is less likely. This
means that the background edge capacities should preferably take the gradients
into consideration. This is done using the following capacities

Cit = Lo (6) + Iy (i)]- (8.12)

All capacities and flow values are represented used short integers, in order
to keep the memory consumption low. The constants used for the definitions of
capacities were found empirically for this particular problem, but are irrelevant
for a general understanding of the method. The capacity of edges between two
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Figure 8.4. Subtraction and thresholding (middle) of consecutive images from a
sequence of incoming images (upper), with the results after performing a filling-in
operation based on graph cuts (lower).

pixel nodes determines the amount of cooperation that is possible between the
nodes. In this example the capacities are defined as a function of image gradients,

ci; =8 max(32 — |I(i) — I(j)],0). (8.13)

Near gradients larger than 32, the segmentation is determined directly by c;
and ¢, ;, while the remaining pixel states are based on information from nearby
image regions. Flow will spread from location of high confidence to uniformly
shaded areas in-between. This can be seen in the lower row of Figure 8.4. From
these images it is much easier to find the exact image location of the moving
object than before textureless areas were filled in.

The computational cost, which is approximately 25 ms for a 192 x 144 pixel
image, depends on the number of pixels being filled and the distance between
source and drain, that is the number of pixels between a foreground pixel in the
lower row of the figure and the closest foreground pixel before filling-in. Thus
the speed is much higher than what the algorithm complexity would suggest.
The same method has been used for a number of different problems, such as
improving the output of a zero disparity filter. However, it is not clear where
in the flow of information this operation ought to be performed. It could either
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be done prior to cue integration on each cue individually or immediately after
using the combined saliency map.

8.5 Conclusions

This chapter presented the integration of the cues and operations described in
earlier chapters into a complete system. More details were given about operations
that had earlier been mentioned. The system consists of three separate feature
paths; an optical flow path, a disparity path and a path for independent motion
detection. It was shown how cues from these paths can be integrated in terms
of saliency maps, from which information about possible regions of interest can
be extracted. This presentation also included a description of how top-down
knowledge can be added to the system.

The developed system has by no means all the characteristics outlined in
the introduction in Chapter 1. Stereo and motion cues are strong in that they
contain information about the locations and motions of objects present in the
scene. However, in order for a familiar object to be recognized, additional cues
such as colour, texture and local shape, also need to be included. On the other
hand, a framework is created from which we claim that such information can be
extracted. In order to determine the properties of a particular object, one first
has to find where it is located and then what it looks like. Stereo and motion
cues may provide such information, as has been shown in this chapter.
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Chapter 9

Conclusions

The goal of this thesis is to develop the lowest reactive levels of an artificial
system that ”sees”. Such as a system could e.g. be an autonomous robot using
vision for tasks such as navigation, and fetching and carrying objects, that is
including both detection and identification of things in the environment and
physical interaction with them. In order to be successful the system would
have to extract visual information sufficient for the task at hand. However,
since the world is constantly changing unpredictable events may occur and the
observer must adapt its behaviours accordingly. Hence, the system first has to
notice that something unexpected has happened and then gather enough relevant
information for it to react accordingly. Since the nature of events and objects
may be unknown in advance, a whole range of different cues and methods should
be considered.

The work has been concentrated on cues based on motion and binocular
stereo data. These cues are especially valuable, since they give an indication of
the three-dimensional extent of visible objects and how the observer is located
and moving in relation to these objects. For the observer to react appropriately,
such knowledge is essential. Much of the work has been biologically inspired,
but not necessarily biologically plausible. The intention has not been to create
a model of the human vision system, but an artificial vision system that may be
used by for example an autonomous robot. Every component has been evaluated
in terms of its real-time use and not only on accuracy. The real-time constraint is
necessary for the system to be tested in practice, when the actions of the seeing
system directly affect the visual stimuli.

9.1 Summary and contributions
The subjects covered in the thesis may be divide into three different themes; that
of analyzing and selecting stereo and motion algorithms for real-time use, that of

developing methods for 3D visual analysis and that of integrating multiple types
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of visual information into a complete system. The studies presented in Chapters
2, 5 and 6 are analytical and cover a number of methods that have earlier been
presented by others. Most innovations can be found in Chapters 4, 7 and 8. The
most important results from each individual chapter is given as follows:

In Chapter 2, three different optical flow algorithms were evaluated and an-
alyzed. All three methods were based on image gradients and the optical flow
constraint. Two of these also included a smoothness constraint applied glob-
ally and a fast Preconditioned Conjugate Gradient method was used to solve
the optical flow. Accuracy turned out to be good enough only with significant
smoothing. The last algorithm included a robust version of the smoothness con-
straint, which led to a better preservation of discontinuities. The only method
fast enough for real-time use, was the method of Lucas & Kanade, that does not
have a smoothness constraint, but aggregates data only within local windows.

Optical flow can only be accurately calculated, if the magnitudes stay within
the range allowed by the involved algorithms. In order to make sure that this
is the case, the presented system uses image stabilization. A number of stabi-
lization algorithms were explored in Chapter 3, one based on corner features,
another using contour points and a third one working on all image points. The
first method being robustly implemented, is also the most accurate, but it might
fail if there are not enough corner features. The second method is a new ap-
proach and combines the strengths of the other methods. At a somewhat higher
computational cost, its accuracy is close to that of the corner method, but this
method is less likely to collapse.

Chapter 4 contains a large portion of the innovations in this thesis. It was
shown how the epipolar geometry of a binocular stereo head can be continuously
and robustly estimated in real-time. The system was constrained, so as to mini-
mize the number of free parameters, but without limiting its flexibility and use.
Unlike what could be expected, the essential matrix is not necessarily preferable
to the bilinear optical flow constraint. Since the latter is just an approxima-
tion, it is usually disregarded for stereo. However, the results from this chapter
show that the optical flow constraint is not only faster than methods based the
essential matrix, but also more robust.

The epipolar geometry is needed by the disparity algorithms evaluated in
Chapter 5. These methods rely on the epipolar lines being parallel to the scan
lines, which is possible through a rectification using the epipolar geometry. Fur-
thermore, from the corner matching in Chapter 4, the range in which disparities
can be found is also given. The evaluation of disparity algorithms shows that the
major difference between methods is primarily in the density of the calculated
results and not in their accuracy. Since the difference in computational cost is so
large, it is hard to justify the use of more complex algorithms unless the density
is critical, which might be the case in reconstruction.

In Chapter 6, six different monocular structure-from-motion methods were
tested, three linear and three iterative ones. The hope was that the results could
be used to determine the ego-motion of the observer, as well as three-dimensional
structure. However, the results were only judged accurate enough if translations
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were large in relation to what is typical in our application. The strengths and
weaknesses of the algorithms turned out to be quite similar, which indicated that
the difficulties are inherent to the problem itself.

More successful results were possible if ego-motion was instead determined
binocularly, which was done in Chapter 7. A number of methods were presented
with which this could be done. The best results were achieved if 3D points
triangulated from stereo were matched in time, rather than when one combined
stereo and motion in the same optimization. Later on in the same chapter, it was
shown how these results may be used in conjunction with disparities to efficiently
determine regions of independent motion.

The components presented in the previous chapters, were integrated into a
complete system in Chapter 8, and the flow of information between different
components was described. Most of the implementation details were explained,
together with the additional components that had to be added for the system
to work in practice. It was also discussed how cues could be integrated and
top-down knowledge used to control the behaviour of the system.

9.2 Possible extensions

Even if the presented system is based on an extensive analysis of possible tech-
niques, that have been implemented and integrated, it is by no means a final
and fully functional system. Some possible extensions that could be considered
in a future system can be summarized as follows.

Fixational mechanism The binocular system assumes that the cameras are
always kept in fixation, that is they are directed towards the same point in
3D space. This mechanism has not yet been implemented, even if information
required to perform such an operation is available from the extracted motion
and stereo data. Techniques for performing dynamic fixation were extensively
studied ten years ago using less explicit information. We are in a position to go
beyond that work with the presented system.

Adaptation Most components of existing and future systems can be adapted
in order to optimize performance, either short-term of long-term locally or in
relation to other components of the system. They typically contain thresholds
and parameters that can potentially be learned. It would be worth investigating
how such mechanisms could be provided.

State based methods for gaze control Depending on the task at hand
there are alternative ways of controlling the gaze. Some of these changes in be-
haviour can be done continuously, updating parameters involved in the process.
Other changes are discrete in nature. For example, the system should either
stabilize the background or foreground. This would require a state machine to
be implemented.
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Hierarchy of methods The same methods should not necessarily be run all
the time. When little is known about the environment in which the system is
working, methods usually have to be conservative and use every possible source
of information. However, if the system learns more about the environment, a
conservative and slow method may be changed for a faster one, by exploiting the
information learnt. Different methods for similar purposes could be arranged in
a hierarchy of methods, ordered based on what prior information they require.
Toyama & Hager (1999) used such an approach for tracking.

Additional visual cues Motion and stereo cues contain no explicit informa-
tion about particular objects and can only be used for object recognition, if
information such as shape, size and rigidity is derived from them. Other cues
should be considered as well, for instance cues based on colour, texture and form.
Only with enough such information can a visual object be uniquely represented.

Object representation A difficult general problem is how objects are to be
represented, stored in memory and retrieved when needed. It is also important
to know when and how an image region is to be considered as such an object.
The representation should be as general as possible, so that all kinds of objects
may be treated. However, the problem of matching stored representations with
incoming visual data is greatly complicated if the models are too general. These
issues are far-reaching and encompass most problems on what “seeing” actually
means.

Embodiment The visual system is only a part of a larger system, that of the
observer itself. The observer occupies a part of the dynamic environment, with
means of performing physical interaction. The visual system cannot interact on
its own, only through the motor part of the observer. This requires communi-
cation in terms of information passed to and from the motor system. In order
to really evaluate the performance of the visual system, it thus has to be imple-
mented within a larger context.

We have shown that the presented system may be used as an essential com-
ponent of an artificial system that “sees”, in order to determine where objects
are located and events occur in the environment in which the system works.
Even if there is more to be done to make intelligent “seeing” systems a reality,
we believe that such systems may well exist in the future.
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Appendix A

Speeding up the code

The problem of reaching real-time speed can be approached in a number of pos-
sible ways. In his book Vision Marr (Marr 1982) distinguished between three
different levels of information processing; the computational, the algorithmical
and the implementational. All of these ought to be considered. On the compu-
tational level the needs of the system are defined. What has to be performed?
And what does not? For example, if it is not absolutely necessary for a system
to calculate and store the gradients of incoming images, one should avoid it.
Typically gradients are needed, but they not always have to be stored. Design-
ers tend to concentrate on optimizing the actual calculations, but underestimate
the cost of storing. Towards the end of this appendix we will show that memory
optimization is just as important.

From a designer’s point of view, it is often easier to jump directly to the
second level, the algorithmical one. Modeling the desired behaviour of the whole
system can sometimes be too overwhelming and forces you to concentrate on it
piece by piece. But once the puzzle has been assembled, one might benefit from
going back to the computational level and reconsider some aspects of the design.
If you want your system to be able to perceive image motion, it is natural to look
for optical flow algorithms, but once optical flow is available, what is it really
used for? Could the same problem be solved without a dense flow field, and
does it matter if it is forgotten once it has been calculated and used? On the
way between incoming data and final actions, what is necessary and what can be
dropped? Cutting all loose ends is an important part of the gradual development
of an information system.

The algorithmical level deals with the processes to be used for solving a par-
ticular problem and how data should be represented, while the implementational
one describes how and on what platform the algorithms are to be realized. It
is on these levels that most design efforts are typically spent. Quite often the
hardware on which the implementation is to be made is given and the search
for algorithms can be restricted to those for which the hardware is adequate.
A general purpose computer might then be a better alternative than dedicated
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hardware, since such hardware may seriously constrain the search for possible
algorithms and representations. Hardware should be evaluated based on algo-
rithms already known, as well as on methods that has yet to be invented.

Assume that a working system already exists, but is still not running in real-
time, that is fast enough in relation to changes in the environment in which it
is supposed to work. Then there are a number of obvious likely solutions to
consider, such as those given in the list below. Before you listen to the cries for
faster hardware, the search for other alternatives ought to be exhausted. Even
if faster hardware is an obvious choice, it is well worth knowing why the existing
hardware failed to reach its expectations. This is no easy task, since the lack
of pure computational power is not always the explanation. The problem might
be in the usage of memory, in the interaction with external devices or due to
the fact that too much power is spent on operations that turn out not to be
necessary. In essence, in order to reach this understanding, the remaining ways
of improvements are preferably evaluated first.

Means of gaining speed

e Faster hardware
Lower resolution
Lower frame-rate
Faster algorithms
Faster implementation

A lowered resolution is something that often show to be more promising,
than what one might expect. The success of different algorithms is often judged
based on how we perceive the output, often the in terms of images showing
information such as optical flow or binocular disparities. However, such images
are rarely what constitutes an end result and what really counts is in what sense
the system is successful in its tasks. For example, if optical flow is to be used
for tracking, a lowered resolution by half in each dimension and a double frame-
rate, might show more success than would otherwise have been the case, even
if the computational cost is reduced. The same argument can be applied when
evaluating different algorithms, in that there might be a trade-off between frame-
rate and the complexity of algorithms. In order to maximize the speed through
a faster implementation, the strengths and weaknesses of the available hardware
need to be understood, as the next section will show.

A.1 The cost of memory
That the usage of memory is indeed costly can be learned, if one analyzes the

latency of single read and write operations as a function of the total amount of
memory in use. All modern computers of today, such as the 1.2 GHz Athlon
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MP processor exemplified here, uses high-speed cache memories to improve the
memory latency of frequently accessed data. Since larger memories are typically
slower and smaller memories can be located closer to the processor, cache mem-
ories tend be limited in size. This means that the total amount of data in use
should be kept within the sizes of the caches, in order to maximize speed. For
example, an Athlon MP processor has normally got a memory structure with two
levels of cache memories. An access beyond the 128Kb L1 cache costs around
18 clock-cycles, for both read and write operations. If a memory access misses
the L1 cache as well as the 256Kb L2 cache, the cost increases dramatically. A
write operation requires about 100 extra cycles, whereas a read costs about half.
This means that it is often wiser to recompute data than storing it, even if the
results are used multiple times in different parts of the process.

Since cycles are lost due to cache misses only once every new 64 byte cache
block is accessed, it is better to take advantage of the fact that after the first
bytes of a block has been accessed, reading the remaining bytes is virtually
free of charge. If other memory blocks are accessed in between, there is a risk
that the block will otherwise be swapped out. So, if it is known that cache
misses cannot be prevented, the data are preferably accessed block-wise and not
in an order such that many different cache blocks are accessed simultaneously.
Typically when an image processing operation is performed on entire images,
this is not much of a problem, since it is natural to access data sequentially.
However, if data are store in data structures with a number of different variables
for each instance, it is quite often the case that only a few variables are being
accessed, while the others remain untouched. It might then be preferable to
break the structures into different substructures, each consisting of variables
that are accessed simultaneously.

A.2 A blurring example

Suppose we are interested in blurring an incoming image, using an ordinary 5 x 5
Gaussian filter kernel. What you typically do is first lowpass filter the image x-
wise, store the result in a temporary image structure, and then perform the same
operation y-wise. If the final result is stored in another structure, you end up
using three different images. If the images are 320 x 256 in size and stored using
floating points, we have already used close to 1Mb of memory, which is more
than the capacity of the caches. Assume instead that the incoming and resulting
images are stored as characters and the temporary image as short integers, the
amount of memory has been reduced to 320Kb. If the incoming image is never
to be reused, the same memory area can be used for incoming as well as resulting
image. The only annoying thing left is the temporary buffer.

In the work presented here, the need for such temporary images is minimized
using rotating buffers, instead of whole images. Each operation, such as lowpass
filtering x-wise and y-wise, is performed pixel row by pixel row. As soon as
5 pixels rows have been filtered x-wise and stored in a temporary buffer, it is
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possible to lowpass filter the first row of the output y-wise. The first pixel row
of the buffer can then be reused for the next incoming x-wise filtered row. The
example code may look as follows:

Image img(width, height);
Buffer buf(width, 5);

for (int y=0; y<4; y++) {
LowPassXRow (img[y], buf[yl);

}

for (int y=4; y<height; y++) {
LowPassXRow (img[y], buf[yl);
LowPassYRow (buf [y], buf[y-1], buf[y-2],

buf [y-3], bufl[y-4], imgly-21);
}

where operator[ ] is overloaded, such that the y mod 5 row of buf is returned.
Each row routine is very simple in complexity, which makes them easy to op-
timize. For AMD and Intel processors an additional speed-up can be gained,
implementing the routines using SIMD (Single Instruction Multiple Data) in-
structions, that are available for these processors. Most row routines used in
this study have been implemented using MMX instructions, that are able to
perform 4 short integer or 8 character operations in parallel. For the given
example the following table summarizes the computational cost of blurring an
incoming image, based on the representation of temporary data, with all pixel
values stored as short integers.

| Buffer type | Cost (ms) |
Entire image 10.1
Rotating (C) 5.9
Rotating (MMX) 0.8

Figure A.1. Cost of blurring a 320 x 256 image

It is worth noting that the speed-up thanks to the MMX implementation is
in fact greater than what the 4-way parallelism might imply. There is a rather
easy explanation of this. When MMX operations are used, calculations will be
done using the MMX registers, while the integer registers will be dedicated for
loop counters and memory pointers, but without MMX the same integer registers
have to be used for all kinds of data. An implementation of the Harris corner
detector using the same principle runs in about 3.0 ms and with a search range
of 16 pixels, binocular disparities are calculated in 11.1 ms.
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