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Abstract. Computer vision is gaining significant importance as a cheap,
passive, and information-rich sensor in research areas such as unmanned
vehicles, medical robotics, human-machine interaction, autonomous nav-
igation, robotic manipulation and grasping. However, a current trend is
to build computer vision systems that are used to perform a specific task
which makes it hard to reuse the ideas across different disciplines. In this
paper, we concentrate on vision strategies for robotic manipulation tasks
in a domestic environment. This work is an extension of our ongoing work
on a development of a general vision system for robotic applications. In
particular, given fetch-and-carry type of tasks, the issues related to the
whole detect-approach-grasp loop are considered.

1 Introduction

Humans use visual feedback extensively to plan and execute actions. However,
this is not a well-defined one-way stream: how we plan and execute actions
depends on what we already know about the environment we operate in, what
we are about to do, and what we think our actions will result in. In addition,
as pointed out in [1], a significant amount of human visual processing is not
accessible to consciousness - we do not experience using optical flow to control
our posture. By not completely understanding the complex nature of human
visual system, what are the ways to model similar capabilities into robots?

Many of the current robotic visual systems are dealing with isolated problems
such as scene segmentation, object recognition, tracking. Furthermore, different
approaches are considered for each of the above dependent on the task at hand -
object manipulation, SLAM, visual servoing, underwater robotics. It is natural
to assume that there is a possibility to define concepts and methods that support
the design of a unified and integrated visual system for all of the above.

In our previous work, we have presented a real-time vision system that uses
monocular and binocular cues to achieve robustness in realistic settings, [2] where
tasks such as object recognition, tracking and pose estimation were considered.
The system consists of two sets of binocular cameras: a peripheral set for dis-
parity based attention and a foveal one for object recognition. In this paper, we
show how this system can be used for object manipulation tasks. In particular,



we show how the system can be used in terms of grasping for cases where object
model is not known a-priory.

Shortly, in Section 2 a motivation and system design are given. Issues related
to vision system geometry are discussed in Section 3. In Section 4 the current
approach of active search is presented followed by an overview of tracking ap-
proaches in Section 5. In Section 6, object grasping for cases when object models
are not known a-priori is discussed. We summarize the paper in Section 7.

2 DMotivation and Design Issues

In our service robot project, tasks such as “Robot, bring me the raisins” or
“Robot, pick up this” are considered. Depending on the task or context infor-
mation, different strategies may be chosen. The first task of the above is well
defined in that manner that the robot already has the internal representation of
the object - the identity of the object is known. For the second task, the spoken
command is commonly followed by a pointing gesture - here, the robot does not
know the identity of the object, but it knows its approximate location. Figure 1
shows different scenarios with respect to prior knowledge of object identity and
location, with the above examples being shaded. A different set of underlying
visual strategies are required for each of these scenarios. We have considered
these two scenarios since they are the most representative examples for robotic
fetch-and-carry tasks.

This has motivated us to design a
vision system that can be used for the
above and similar tasks. The system _ WHERE (location)
design is heavily based on the active b -
vision paradigm, [3] where, instead of
passively observing the world, view-
ing conditions are actively changed
so that the best results are obtained
given a task at hand. Currently, our
vision system contains four major
building blocks. We have designed
these blocks to be general enough for
the system to be used for other robotic applications such as localization, navi-
gation and mapping. These blocks are:

unknown

Fig.1. Where/What combinations for
robotic manipulation scenarios.

known "This Cup”

WHAT
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unknown

— Visual Front-End: extracts visual information needed for figure-ground seg-
mentation and other higher level processes.

— Hypotheses Generation: produces hypotheses about the objects in the scene
relevant to the task at hand.

— Recognition: uses either corner features are color histograms to determine
the relevancy of observed objects.

— Action Generation: triggers actions, such as visual tracking and pose es-
timation, depending on the outcome of the recognition and current task
specification.



Each of the blocks are presented in the following sections. A detailed description
of the interprocess communication and module coordination can be found in [2].

The service robot platform used is a No-
madic Technologies XR4000 and is equipped
with a Puma 560 arm for manipulation, Fig-
ure 2. The robot has sonar sensors, a SICK
laser scanner, a wrist mounted force/torque
sensor and a color CCD camera mounted on
the Barrett hand. On the robot shoulder,
there is a binocular stereo-head system. The
system, known as Yorick [4], has four mechan-
ical degrees of freedom; neck pan and tilt, and
pan for each camera in relation to the neck.
The head is equipped with a pair of Sony
XC999 cameras, with focal length of 6 mm.
On the top of the robot base, there is an addi-
tional pair of similar cameras with focal length
of 12mm. The last camera is mounted on the
robot hand as an the-in-hand system. It is also
a Sony XC999 with a focal length of 6mm.

Fig. 2. Nomadics XR4000

3 Vision System Geometry

With limited resources in terms of memory storage and computational power,
biological and robotic systems need to find an acceptable balance between the
width of the visual field and its resolution. Unfortunately, this balance depends
on the tasks the systems have to perform. An animal that has to stay alert in
order to detect an approaching predator, would prefer a wide field of view. The
opposite is true if the same animal acts as a predator itself. Similarly, a robotic
system benefits from a wide field of view, in order not to collide with obstacles
while navigating through a cluttered environment. A manipulation task on the
other hand, requires a high resolution to grasp and manipulate objects. That is,
to find objects in the scene a wide field of view is preferable, but recognizing and
manipulating the same objects require a high resolution.

In the current system, [2] we overcame this problem by using a combination
of two pairs of cameras, a peripheral set for attention and foveated one for recog-
nition and pose estimation. In order to facilitate transfers of object hypotheses
from one pair to the other, and replicate the nature of the human visual sys-
tem, the pairs are placed next to each other. The camera system in this study,
however, is different in that the two pairs are widely separated and placed on an
autonomously moving platform, see Figure 2: stereo head on a shoulder and a
stereo pair on the base. The search pair is located on-top of the robot overlook-
ing the scene and the manipulation pair is at waist height, such that the gripper
will not occlude an object while it is being manipulated. In the original version,



Fig. 3. First row: hypotheses map, Second row: Disparity map, and Third row:
Strongest hypotheses showed with a cross.

hypothesis transfers were based on matched corner features and affine geometry.
Hence, with the cameras related pairwise, the position of hypotheses seen by the
peripheral cameras could be transfered to the images of the foveated ones.

This way of transferring positions is no longer feasible in the new configu-
ration. With the cameras separated by as much as a meter, the intersections
between visual fields tend to be small and the number of feature possible to
match is low. Furthermore, a feature seen from two completely different orienta-
tions is very difficult to match, even using affine invariant matching, [5]. Instead
we exploit the fact that we can actively move the platform such that an object
of interest, found by the search pair, will become visible by the manipulation
pair. For this to be possible we have to approximately know the orientation and
position of the cameras in relation to the base. Hypotheses are found by the
search pair, while the 3D positions are derived using triangulation and finally
projected onto the image planes of the manipulation pair. For the 3D position
to be accurately estimated, the search pair is calibrated on-line, similarly to the
original version of the system, [6]. The precision in depth range from about a
decimeter to half a meter depending on the observed distance.

4 Active Search

The search system includes two necessary components, an attentional system
that provides hypotheses to where an object of interest might be located, and
a recognition system that verifies whether a requested object has indeed been
found. Even if the attentional system works on a relatively wide field of view, 60°
is still limited if a location is completely unknown to the robot. In our system,



we have extended this range by applying an active search strategy, that scans
the environment and records the most probable locations. Five images from such
a scan can be seen on the last row of Figure 3. The crosses indicate hypothesis
positions when the robot actively searched for and locates an orange package
that is in fact located on the table seen on the first and fourth image.

The system uses the approximate 3D size and color hue of the object. Hue
is represented as one-dimensional histograms, with matching done using cross-
correlation of statistics collected from local windows. This hue saliency can be
seen on the first row of the same figure. The orange package is highlighted as
well as the wooden shelves on the left. Blobs are found in 3D by slicing up the
space into a series of depth layers. For each layer blobs as extracted using differ-
ences of Gaussians on the hue saliency, using only those points that are located
within the particular layer. This slicing in depth is based on disparities, similar
to those on the second row of Figure 3, which were derived using simple area
based correlation. The whole process runs continuously at 6 Hz. The 3D position
and variance of each hypothesis are measured through triangulation, using the
disparity map. As the cameras scan the scene, hypotheses are tracked and up-
dated. The most salient hypothesis is finally selected for further processing. Only
hypotheses that are observed a sufficient number of times, given as a fraction
of all possible observations of the particular hypothesis, are regarded for selec-
tion. The set of hypotheses can further be pruned from locations that are either
unlikely or beyond reach. Once selected, a hypothesis is fixated in the center of
the search cameras and transfered to the manipulation cameras as explained in
previous section.

5 Object Tracking

Once the object is detected, it can be tracked while the platform approaches
it. In the current system, there are two different tracking modules: i) 2D image
based, and ii) 3D model based. We shortly present both.

2D Image Based Tracking - Our 2D tracking system is based on integra-
tion of multiple visual cues where voting is used as the underlying integration
framework, [7]. The visual cues used are motion based on the temporal deriva-
tive using image differencing, color, correlation and intensity variation. Cues are
fused using weighted super-position and the most appropriate action is selected
according to a winner-take-all strategy.

3D Pose Estimation and Pose Tracking - Current model based tracking
system is based on the ideas proposed in [8] with robust considerations proposed
in [9]. The objects considered for manipulation are highly textured and therefore
not suited for matching approaches based on, for example, line features [10]. The
initialization step uses the SIFT point matching method proposed in [11]. An
example of the initialization step is shown in the left part of Figure 4. Images on
the right show the estimated pose of the object while the robot approaches it.



Fig. 4. Left) Initializing pose tracking using SIFT features, Right) Pose tracking.

5.1 Model-based manipulation

If pose of the object and its model are known, object can be picked up. In the
current system, a three-fingered Barrett hand is used for grasping as mentioned
in Section 2. To achieve close loop control during grasping, visual sensing will in
general not suffice. In many systems, especially those using eye-in-hand configu-
rations, one the approach step is finished, the object is very close to the camera,
commonly covering the whole field of view. In such situations, retrieving features
necessary for grasp planning is impossible. Currently, this problem is solved by
integrating visual information with tactile and force-torque sensing, [12].

6 Model-free manipulation

In general, we will not have a precise model for all objects the robot will manip-
ulate. In this section, we present an approach for manipulation of unknown but
textured objects. The approach relies on the fact that the relation between the
manipulation cameras and arm is approximately known. From a reference point
on a gripper itself, the relative depth and orientation to the object of interest are
computed. The motivation for this is that absolute depths from stereo images are
often very sensitive to image noise and errors can be both large and systematic.
Currently, a small fiducial mark is used on one of the fingers which is always kept
oriented toward the platform during manipulation. With the relation between
arm and camera pair being fixed, the reference point is also known in the robot
coordinate system.

Fig. 5. Grasping the object.



6.1 Measuring depth

From the measured disparity after rectification, d, the depths to an object point,
Z, can be estimated through a simple relation:

Z=b f/(d+ka)- (1)

Here b is the baseline between the cameras, f is the focal length measured in
pixels and kg is a factor that corrects for imprecisions in rotation, that occurs
due to vibrations. This factor is found from the same equation using the depth
to the fiducial mark, Z,., and the corresponding disparity, d,.

Equation (1) can be derived as follows. First we assume that the cameras have
been calibrated and rectified, i.e. the camera images are rotated as if they were
taken from two parallel cameras. The calibration is done using the fundamental
matrix. With a coordinate system given by the left camera frame, the projections
of a 3D point X = (X,Y, Z, 1) after rectification are respectively given by:

(@r,yr, )T = (RIt) X and (xi,y1,f)" = (1]0) X, (2)

where R~ I is the error in rotation and t = (—b,0,0) " is the translation along
the baseline. The right camera projection can now be written in terms of the
left coordinates,

(‘rhyrvf)—r = (R|t) (mlvyla]-»f/Z)T' (3)

Errors in R result mostly from an inability to separate the translational and
rotational components of the disparity. Thus, the dominating errors is a rotation
around the y-axis, which motivates the following model:

1 0kyg
R~ 0 10 ]. (4)
—kq0 1

If we assume that this rotation results in a negligible change in depth, we get:
Tr=x+kqg—bf/Z and d =x, —x; =kq — bf/Z (5)

which finally leads to Equation (1).

6.2 Segmentation for manipulation

In the current system, an object is commonly grasped along the y-axis of the
cameras. The reason for this is that the Puma arm is placed on a height of 70
cm (base height) and manipulating objects on a table height is restricted due to
singularities. Even if the presented approach does not require the identity to be
known, it can be useful in order to make sure that the object is standing upright.
We do this during the recognition phase using the extracted SIFT features. For
future versions we hope to exploit the knowledge of the identity to determine
more suitable grasps, so that the objects can be grasped from other orientations.



Before the 3D position of an object, as well as its orientation can be de-
termined, it has to be segmented from its surrounding, which in our system is
done using a dense disparity map. This map is calculated using sums of abso-
lute differences in local image windows. An example of such a disparity map
can be seen in the right image of Figure 6. Note that few reliable points in the
background could be extracted. The reason is because the disparity search range
was limited to a range determined by approximate distance available from the
search procedure and the expected size of the object. More detail related to this
problem can be found in [13].

The points for which disparities exist can be seen as 3D points in (z,y, d)
space. From Equation (1) their reconstructed positions in metric space can easily
be computed. The object can now be segmented, if the cloud of points repre-

Fig. 6. Left) A left manipulation camera image, Middle) The corresponding disparity
map, Right) Segmentation from mean shift in 3D space.

senting the actual object are found in the 3D scene. In our system we determine
the center of this cloud using a Mean-Shift algorithm, [14]. However, for this to
be possible we need an initial estimate of the position in 3D. We find this us-
ing correlations of windows of hue saliencies, determined from the left and right
camera images, similarly to those used by the search procedure in Section 4. In
the end we get a segmentation, which looks like the image in Figure 6 (right),
after a series of morphological open and close operations.

6.3 Finding the orientation

Given the segmentation a plane is mapped to the 3D coordinates of the points
within the segmented object. This is a simplification that limits the flexibil-
ity of the approach, but turns out to feasible in most cases. Since only points
oriented toward the cameras are seen, the calculated orientation tends to be
somewhat biased toward fronto-parallel solutions. However, the gripper is able
to tolerate some deviations from a perfectly estimated orientation. With the 3D
points denoted by X; = (X;,Y;, Z;) ", we iteratively determine the orientation
of a dominating plane using a robust M-estimator. The normal of the plane at
iteration k is given by the least eigenvector ¢y of

Ci = sz—,ko{i ~ X)X - Xp) T, (6)



where the weighted mean position is Xj. Points away from the surface are sup-
pressed through the weights

wip =12/ +62), (7)

where §; , = ¢]_,(X; — X) is the distance from the point X; to the plane of
the previous iteration. Here ¢ is a constant reflecting the acceptable variation
in flatness of the surface and is set to about a centimeter. To determine the
orientation around the y-axis at which the object is grasped, the angle between
the normal and the optical axis is finally measured.

6.4 Summary

The procedure can be summarized as follows. With the manipulation cameras
oriented toward an object of interest and the distance to this object being ap-
proximately known, the disparities at the object are determined and the object
is segmented. For the disparities to be translated into actual metric depths, the
kq factor in Equation (1) is calculated using the gripper as a reference. A more
precise distance and orientation can then be determined, so that the object can
be grasped from above downward. The procedure is in a sense image based, in
that gripper is placed in reference to the location of the object in the left and
right images. The transformation from camera system to manipulator is only
necessary to make sure that the gripper is in fact visible in both manipulation
cameras.

7 Conclusions

We have presented a vision system that integrates monocular and binocular
cues for figure-ground segmentation, object recognition, pose estimation and
tracking. One important property of the system is that the step from object
recognition to pose estimation is completely automatic combining both appear-
ance and geometric models. A number of different methods have been used to
demonstrate object manipulation in a domestic environment where issues related
to the whole detect-approach-grasp loop were considered. Our primary interest
here was not on the integration issues, but rather on the importance and effect
of camera configuration, their number and type, to the choice and design of the
underlying visual algorithms. Finally, we have considered model-free manipula-
tion approaches where visual cues are used to recognize and segment complex
objects in cluttered scenes. Our future work will consider the use of the proposed
system with different visual servoing and grasp planning approaches in terms of
mobile manipulation.
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