
Issues and Strategies for Robotic Object
Manipulation in Domestic Settings

Danica Kragic, Mårten Björkman, Henrik I Christensen and Jan-Olof Eklundh
Computer Vision and Active Perception Lab

Centre for Autonomous Systems
Numerical Analysis and Computer Science

Royal Institute of Technology, Stockholm, Sweden
Email:{danik, celle, hic, joe}@nada.kth.se

Abstract— Many robotic tasks such as autonomous navi-
gation, human-machine collaboration, object manipulation
and grasping facilitate visual information. Some of the
major reasearch and system design issues in terms of visual
systems are robustness and flexibility.

In this paper, we present a number of visual strategies
for robotic object manipulation tasks in natural, domestic
environments. Given a complex fetch-and-carry type of
tasks, the issues related to the wholedetect-approach-
grasp loop are considered. Our vision system integrates
a number of algorithms using monocular and binocular
cues to achieve robustness in realistic settings. The cues
are considered and used in connection to both foveal and
peripheral vision to provide depth information, segment
the object(s) of interest in the scene, object recognition,
tracking and pose estimation. One important property
of the system is that the step from object recognition
to pose estimation is completely automatic combining
both appearance and geometric models. Rather than
concentrating on the integration issues, our primary goal
is to investigate the importance and effect of camera
configuration, their number and type, to the choice and
design of the underlying visual algorithms. Experimental
evaluation is performed in a realistic indoor environment
with occlusions, clutter, changing lighting and background
conditions.

I. I NTRODUCTION

One of the key components of a robotic systems op-
erating in a dynamic, unstructured enviroment is robust
perception. Our current reasearch considers the problem
of mobile manipulation in domestic setting where, in
order for the robot to be able to detect and manipulate
objects in the environment, robust visual feedback is
of key importance. In case of humans, complex co-
ordination between the eye and the hand is facilitated
during execution of everyday activities such as pointing,
grasping, reaching or catching. Each of these activities
or actions require attention to different attributes in the

environment - while pointing requires only an approxi-
mate location of the object in the visual field, a reaching
or grasping movement require more exact information
about the object’s pose.

In robotics, the use of visual feedback for coordina-
tion of a robotic arm motion is termedvisual servo-
ing, Hutchinsonet al. (1996). Given a complex fetch-
and-carry type of task, issues related to the wholedetect-
approach-grasploop have to be considered. Most visual
servoing systems, however, deal only with theapproach
step and forget about the problems such asdetecting
the object of interest in the scene or retrieving its 3D
structure in order to perform grasping. A so calledteach-
by-showingapproach is typically used where the desired
camera placement with respect to the object is well
defined and known before hand.

Our interest is the development of an architecture
that integrates a number of modules where each module
encapsulates a number of visual algorithms responsible
for a particular task such as recognition or tracking. Our
system is heavily based on theactive visionparadigm,
Ballard (1991) where, instead of passively observing the
world, viewing conditions are actively changed so that
the best results are obtained given a task at hand.

In our previous work, Bjorkman & Kragic (2004)
we have presented a system that consists of two pairs
of stereo cameras: a peripheral camera set and a foveal
one. Recognition and pose estimation was performed
using either one of these, depending on the size of and
distance to an observed object. From segmentation based
on binocular disparities, objects of interest were found
using the peripheral camera set, which then triggered the
system to perform a saccade, moving the object into the
centre of foveal cameras achieving thus a combination
of a large field of view and high image resolution.
Compared to one of the recent systems,S. Kim &
Kweon (2003), our system used both hard (detailed
models) and soft modelling (approximate shape) for
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ROBOTIC MANIPULATION SCENARIOS.

object segmentation. In addition, choice of binocular or
monocular cues was used depending on the task.

In this paper, we ..........
This paper is organized as follows, .......

II. BACKGROUND AND MOTIVATION

In our current system, the robot may be given tasks
such as “Robot, bring me the raisins” or “Robot, pick
up this”. Depending on the prior information, i.e. task
or context information, different solution strategies may
be chosen. The first task of the above is well defined
in that manner that the robot already has the internal
representation of the object, e.g. theidentity of the
object is known. An example of such a task is shown
in Figure 2: after being given a spoken command, the
robot locates the object, approaches it, estimates its pose
and finally performs grasping. More details related to this
approach are given in SectionIII .

For the second task, the spoken command is com-
monly followed by a pointing gesture - here, the robot
does not know theidentity of the object, but it knows
its approximatelocation. The approach considered in this
work is presented in SectionIV. Figure1 shows different
scenarios with respect to prior knowledge of object
identity and location, with the above examples being
shaded. A different set of underlying visual strategies is
required for each of these scenarios. We have considered
these two scenarios since they are the most representative
examples for robotic fetch-and-carry tasks.

Techniques employed in terms of visual servoing and
object manipulation in general depend on:

• Camera placement: Most visual servoing systems
today useeye-in-handcameras and deal mainly
with theapproachobject step in ateach-by-showing
manner,Malis et al. (2003). In our approach, we
consider a combination of a stand-alone stereo and
an eye-in-hand camera systems,Kragic & Chris-
tensen(2003b).

• Number of cameras: In order to extract metric
information, e.g. sizes and distances, about objects

observed by the robot, we will show how we can
benefit from binocular information. The reason for
using multiple cameras in our system is the fact that
it simplifies the problem of segmenting the image
data into different regions representing objects in
a 3D scene. This is often referred to asfigure-
ground segmentation. In cluttered environments and
complex backgrounds, figure-ground segmentation
is particularly important and difficult to perform
and commonly the reason for experiments being
performed in rather sparse, simplified environments.

• Camera type: zooming or not, combinations of
foveal and peripheral, etc. Here, very little work
has been reported,Benhimane & Malis(2003).

A. Experimental platform

The experimental platform is a Nomadic Technologies
XR4000 and is equipped with a Puma 560 arm for
manipulation (see Figure3). The robot has sonar sensors,
a SICK laser scanner, a wrist mounted force/torque
sensor (JR3), and a color CCD camera mounted on the
Barrett Hand gripper. The palm of the Barrett hand is
covered by a VersaPad touch sensor and, on each finger,
there are three Android sensors. On the robot’s shoulder,
there is a binocular stereo-head. This system, known as
Yorick, has four mechanical degrees of freedom; neck
pan and tilt, and pan for each camera in relation to the
neck. The head is equipped with a pair of Sony XC999
cameras, with focal lengths of 18 mm.
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EXPERIMENTAL PLATFORM.
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THE YORICK STEREO-HEAD.

For some of the experimental results that will be
presented further on, the binocular stereo-head system
shown in Figure4 was used. Here, the head is equipped
with two pairs of Sony XC999 cameras, with focal
lengths 28 mm and 6 mm respectively. The motivation
for this combination of cameras will be explained related
to the examples.

B. Stereo System Modeling - Epipolar Geometry

If a binocular set of camerais available, differences
in position between projections of 3D points onto the
left and right image planes (disparities) can be used
to perform figure-ground segmentation and retrieve the
information about three-dimesnional structure of the
scene. If the relative orientation and position between
cameras is known, it is possible to relate these disparities
to actual metric distances. One of the commonly used
settings is where the cameras are rectified and their
optical axes mutually parallel,Kragic & Christensen
(2003b). However, one of the problems arising is that
the part of the scene contained in the field of view of
both cameras simultaneously is quite limited.

Another approach is to estimate the epipolar geometry

continuously from image data alone,Bjorkman (2002).
Additional reason for this may be that small disturbances
such as vibrations and delays introduce significant noise
to the estimation of the 3D structure. In fact, an error of
just one pixel leads to depth error of several centimeters
on a typical manipulation distance. Therefore, for some
of the manipulation tasks, the epipolar geometry is esti-
mated robustly using Harris’ corner features,ÂĺHarris &
Stephens(1988). Such corner features are extracted and
matched between the camera images using normalized
cross-correlation. The vergence angleα, gaze direction
t, relative tilt rx and rotation around the optical axesrz,
are iteratively sought using(

dx
dy

)
=

(
(1+x2)α−yrz

xyα+ ry +xrz

)
+

1
Z

(
1−xt
−yt

)
, (1)

where Z is the unknown depth of a point at image
position (x,y). The optimization is performed using a
combination of RANSAC (Fischler & Bolles, 1981) for
parameter initialisation, and M-estimators (Huber, 1981)
for improvements.

This optical flow model (Longuet-Higgins, 1980) is
often applied to motion analysis, but has rarely been
used for stereo. The reason for this is because the
model is approximate and only works for relatively small
displacements. In our previous work we have, however,
experimentally shown that this model is more robust
than the essential matrix in the case of binocular stereo
heads,Björkman & Eklundh(2002), even if the essential
matrix leads to a more exact description of the epipolar
geometry,Longuet-Higgins(1981).

III. M ANIPULATING knownOBJECTS

If a robot is to manipulate a known object, some
type of representation is typically known in advance.
Such a representation may include object textural and/or
geometrical properties which are sufficient for the object
to be located and manipulation task to be performed.



For realistic settings, a crude information about objects
location can sometimes be provided from the task level.
e.g. “Bring me red cup from the dinner table.” However,
if the location of the object is not provided, it is up to
the robot to search the scene. The following sections give
examples of how these are problems are approached in
the current system.

A. Detect

If we can assume that the object is in the field
of view from the beginning of the task, a monocular
recognition system can be used to locate the object in
the image,Zillich et al. (2001).

However, when a crude information about object’s
current position is not available, detecting a known
object is not an easy task since a large number of false
positives can be expected. Candidate locations have to be
analysed in sequence which may be computationally too
expensive, unless the robot has an attentional system that
delivers the most likely candidate locations first, using as
much information about the requested object as possible.

A natural approach here is to facilitate a binocular
system that provides metric information as an additional
cue. Since the field of view of a typical camera is quite
limited, binocular information can only be extracted
from those parts of the 3D scene that are covered by
both cameras’ field of view. In order to make sure that
an object of interest is situated in the centre of each
camera’s field of view, the head is able to actively change
gaze direction and vergence angle, i.e. the difference
in orientation between the two cameras. In our system,
stereo based figure-ground segmentation is intended for
mobile robot navigation and robot arm transportation
to the vicinity of the object. More detailed information
about an object’s pose is provided using a monocular
model based pose estimation and tracking.

In general, this part of the system can be seen as a
visual front-end, responsible for delivering 3D data about
the observed scene. Such information is extracted using
a three-step process, which includes epipolar geometry
estimation, image rectification and calculation of dense
disparity maps. The generation of this data is done
continuously at a rate of 8 Hz, independently of the
task at hand and used by more high-level processes for
further interpretation. Further information on this part
of the system can be found inBjorkman (2002). Since
most methods for dense disparity estimation assume the
image planes to be parallel, image rectification has to be
performed using the estimated epipolar geometry before
disparities can be estimated. The current system includes
seven different disparity algorithms, from simple area
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OBJECT HYPOTHESIS GENERATION

correlation,Konolige(1997) to more complicated graph-
cut methods,Kolmogorov & Zabih(2001). The benefit
of using a more advanced global method, is the fact
that they often lead to denser and more accurate results.
However, even if density is important, the computational
cost of these methods makes them infeasible for our
particular application which means that correlation based
methods are typically used in practice. The second
column of Figure5 shows two examples of disparities
calculated using sums of absolute differences.

Currently, we use two kinds of visual cues for this
purpose, 3D size and hue histograms. These cues were
chosen since they are highly object dependent and rela-
tively insensitive to changing lighting conditions, object
pose and viewing direction.

The images in Figure6 show an example where the
giraffe in the centre of the lower-right image is requested.
The upper images illustrate the saliency maps generated
using the hue histograms of the giraffe (left) and a
blue box (right) respectively. From the disparity map
(lower-right) and the saliency map based on the giraffe,
a number of candidate locations are found as shown in
the lower left image. We further use recognition to verify
that a requested object has indeed been found. With
attention and recognition applied in a loop, the system
is able to automatically search the scene for a particular
object, until it has been found by the recognition system.
Two recognition modules are available for this purpose:
i) a feature based module based on Scale Invariant
Feature Transform (SIFT) featuresLowe (1999), and ii)
an appearance based module using colour histograms.

Most recognition algorithms expect the considered
object to subtend a relatively large proportion of the
images. If the object is small, it has to be approached
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AN EXAMPLE OF BINOCULAR FIGURE-GROUND SEGMENTATION AND POSE ESTIMATION. THE FIRST COLUMN SHOWS THE FOVEAL

IMAGES BEFORE A SACCADE HAS BEEN ISSUED. DISPARITY MAPS CAN BE SEEN IN THE SECOND COLUMN WITH OBJECT HYPOTHESES

SHOWN IN THE THIRD. THE LAST TWO IMAGE SHOW THE POSE OF RECOGNISED OBJECTS BEING CORRECTLY ESTIMATED.

before is can be detected. A more efficient solution is
a system equipped with wide field as well as foveal
cameras, like the stereo-head system used for the exam-
ple presented here. Hypotheses are found using the wide
field cameras, while recognition is done using the foveal
ones. An alternative solution would be using a eye-in-
hand camera and only approach the object through the
manipulator, keeping the platform itself static.

B. Approach

Transporting the arm to the vicinity of the object,
considering a closed-loop control system, requires reg-
istration or computation of spatial relationship between
two or more images. Although this problem has been
studied extensively in the computer vision society, it
has rarely been fully integrated in robotic systems for
unknown objects. One reason for this is that high real-
time demand makes the problem of tracking more dif-
ficult then when processing image sequences off-line.
For cases where the object is initially far away from the
robot, a simple tracking techniques can be used to keep
the object in the field of view while approaching it. For
this purpose we have developed and evaluated methods
based on correlation and optical flow,D. Kragic & Allen
(2001) as well as those based on integration of cues
such as texture, colour and motion,Kragic & Christensen
(2002). The latter approach is currently facilitated for
tracking.

Performing final approach towards a known object
depends also on the number of cameras and their place-
ment. For eye-in-hand configuration we have adopted

a teach–by–showingapproach, where a stored image
taken from the reference position is used to move the
manipulator so that the current camera view is gradually
changed to match the stored reference view. Accomplish-
ing this for general scenes is difficult, but a robust system
can be made under the assumption that the objects
are piecewise planar. In our system, a wide baseline
matching algorithm is employed to establish point corre-
spondences between the current and the reference image,
Kragic & Christensen(2002). The point correspondences
enable the computation of a homography relating the two
views, which is then used for 2 1/2D visual servoing.

Another method uses a CAD model of the object,
which in our case also includes a set of SIFT features,
for full 6D pose estimation and tracking. After the object
has been localised in the image, its pose is automatically
initiated using SIFT features from the foveal camera
image, fitting a plane to the data. Thus it is assumed
that there is a dominating plane that can be mapped to
the model. The process is further improved searching
for straight edges around this plane. An example of this
approach is shown in Figure7.

IV. M ANIPULATING unknownOBJECTS

For general setting, manipulation of unknown objects
has rarely been pursued. The primary reason is likely
to be that the shape of an object has to be determined
in order to successfully grasp it. Another reason is that,
even if the location is given by a pointing gesture, the
size also has to be known and the object segmented from
its background.
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POSE ESTIMATION USINGSIFT FEATURES

A. Detect

Numerous methods exist for segmentation of objects
in cluttered scenes. However, from monocular cues only
this is very difficult, unless the object has a colour
or texture distinct from its surrounding. Unfortunately,
these cues are sensitive to lighting as well as pose
variations. Thus, for the system to be robust, one has
to rely on information such as binocular disparities or
optical flow. A binocular setting is recommended, since
the motion that needs to be induced should preferably
be parallel to the image plane, complicating the process
of approaching the object.

In our current system, binocular disparities are used
for segmentation with the foveal camera set. We use this
set since the focal lengths have to be relatively large in
order to get the accuracy required for grasping. When
the resolution in depth increases, so does the range of
possible disparities. If only a fraction of these disparities
are tested, e.g. the range in which the object is located,
a large number of outliers can be expected, such as in
the lower-left image of Figure8. We apply a Mean-Shift
algorithm, Comaniciuet al. (2000) to prune the data,
using the fact that the points representing the object are
located in a relatively small part of 3D space and the
centre of these points is approximately known. After
applying a sequence of morphological operation a mask
is found as shown in the lower-right image.

B. Approach

Approaching an unknown object can be done either
using the stereo-head or with an eye-in-hand camera.
Without knowing the identity of the object the latter case
is hardly feasible. It would be possible to take a sequence
of images, while approaching the object, and from these
estimate a disparity map, but this map would hardly be
as accurate as using the disparities available from the
foveal camera set.

If the stereo-head is used instead, it is essential that
the robot gripper itself can be located in disparity space.

Fig. 8

FIGURE-GROUND SEGMENTATION

Using the mask derived in SectionIV-A , the elongation
and orientation of the object can be determine and the
fingers of the gripper be placed on either side of the
object. In general we will not be able, from one stereo
view only, to retrieve the full 3D shape of the object. In
particular, if the extension in depth is significant, it will
be difficult to guarantee that the full closing grasp can
be performed. This problem can be solved by moving
the stereo-head to another location. This is a topic we
intend to investigate further in the future.

V. GRASP

For active grasping, visual sensing will in general not
suffice. One of the problems closely related to eye-in-
hand configurations is the fact that when theapproach
step is finished, the object is very close to the camera,
commonly covering the whole field of view. To retrieve
features necessary for grasp planning is impossible. One
solution to this problem is to use a wide field eye-
in-hand camera, together with a stand-alone mono– or
stereo vision system. Our previous work has integrated
visual information with tactile and force-torque sensing
for object grasping,Kragic & Christensen(2003a). We
have, however, realised that there is a need for a system
that is able to monitor the grasping process and track
the pose of the object during execution. We have shown
that in this way, even if the robot moves the object,
grasping can successfully be performed without the
need to reinitiate the whole process. This can be done
even for unknown objects where the Mean-Shift strategy
suggested in SectionIV-A is applied on consecutive
images.



VI. T HE SYSTEM

Figure 9 shows a schematic overview of the basic
building blocks of the system. These blocks do not neces-
sarily correspond to the actual software components, but
are shown in order to illustrate the flow of information
through the system. For example, the visual front end
consists of a several components, some of which are
running in parallel and others hierarchically. On the other
hand, action generation, such as initiating 2D or 3D
tracking, is distributed and performed across multiple
components.

The most important building blocks can be summa-
rized as follows:

• The Visual Front-End is responsible for the extrac-
tion of visual information needed for figure-ground
segmentation and other higher level processes.

• Hypotheses Generation produces a number of hy-
potheses about the objects in the scene that may
be relevant to the task at hand. The computations
are moved from being distributed across the whole
image to particular regions of activation.

• Recognition is performed on selected regions, us-
ing either corner features are color histograms, to
determine the relevancy of observed objects.

• Action Generation triggers actions, such as visual
tracking and pose estimation, depending on the
outcome of the recognition and current task speci-
fication.
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BASIC BUILDING BLOCKS OF THE SYSTEM.

Due to the complexity of the software system, it
was partitioned into a number of smaller modules that
communicate through a framework built on a interpro-
cess communication standard called CORBA (Common
Object Request Broker Architecture),Vinoski (1997).

The current version of the system consists of about
ten such modules, each running at a different frame
rate. The lowest level frame grabbing module works at
a frequency of 25 Hz, while the recognition modules
is activated only upon request. In order to consume
processing power, modules are shut down temporarily
when not been accessed by any other module within a
time frame of 10 seconds.

The experimental evaluation has been performed on a
1.2 GHz dual Athlon MP computer running under the
Linux operating system. For frame grabbing, a Leutron
PicProdigy board was used. This board is able to si-
multaneously grab images from all four cameras at full
frame-rate.

VII. H YPOTHESES GENERATION

The purpose of this component is to derive quali-
fied guesses ofwhere the object of interest is located
in the current scene. As mentioned earlier, this step
is performed using the peripheral cameras while the
recognition module uses the foveal ones. This requires
a transfer from peripheral to foveal vision, or from
distributed to focused attentionPalmer(1999).

A. Distributed attention

Unlike focused attention, distributed attention works
on the whole image instead of being concentrated to
a particular image region. Using the available visual
cues a target region, that might represent an object
of interest, is identified. Even if the current system
is limited to binocular disparities, it is straightforward
to add additional cues, such as in the model of Itti,
Koch and NieburL. Itti & Niebur (1998). Here, we
have concentrated on disparities because they contain
valuable information about object sizes and shapes. This
is especially important in a manipulation task, where the
color of an object might be irrelevant, whereas the size
is not.

The only top-down information needed for hypotheses
generation is the expected size of an object of interest
and the approximate distance from the camera set. A
binary map is created containing those points that are
located within a specified distance range. The third
column of Figure5 shows two such maps overlayed on-
top of the corresponding left peripheral images. Initial
hypotheses positions are then generated from the results
of a difference of Gaussian filter applied to the binary
map. The scale of this filter is set so as to maximize
the response of image blobs representing objects of the
requested size and distance.



B. Focused attention

From the generated hypotheses, a target region is
selected so that the gaze can be redirected and recog-
nition performed using the foveal cameras. To make the
experimental analysis easier and safer, this is currently
done manually by an external user who points at the
hypothesis of choice. It is straighforward to make this
fully automatic by searching through the view space until
the requested object is found.

Since hypotheses are described in the peripheral cam-
eras frame and recognition is performed using the foveal
ones, the relative transformations have to be known.
These are found applying a similarity model to a set of
Harris’ corner features similar to those used for epipolar
geometry estimation in SectionII-B. The relative rota-
tions, translations and scales are continuously updated
at a rate of about 2 Hz. Knowing the transformations, it
is possible to translate the hypotheses positions into the
foveal camera frames.

Before a saccade is finally executed, fixating the foveal
cameras onto the selected hypothesis region, the target
position is refined in 3D. During a couple of image
frames, a high-resolution disparity map is calculated
locally around the target area. A mean shift algorithm,
Comaniciu et al. (2000), is run iteratively updating
the position from the cluster of 3D points around the
target position, represented by the disparity map. The
maximum size of this cluster is specified using the top-
down information mentioned above. The first two images
of Figure 10 show these clusters highlighted in the left
peripheral images before and after a saccade. The foveal
images after the saccade can be seen to the right.

VIII. E XPERIMENTAL EVALUATION

As mentioned in SectionVI , our system is built on a
number of independently running, but communicating,
modules. Since most methods used within these modules
have been analysed elsewhere, we will concentrate on
the integrated system as a whole, rather than analysing
each individual method in isolation. The system should
be considered as an integrated unit and its performance
measured based on the behaviour of the complete
system. The failure of one particular module does
not necessarily mean that the whole system fails. For
example, figure-ground segmentation might well fail
to separate two nearby objects located on a similar
distance, but the system might still be able to initiate
pose estimation after recognition.

The following properties of the system have been
evaluated, as will be described in more detail in the
sections below:

• Combined figure-ground segmentation based on
binocular disparities and monocular pose estima-
tion,

• Combined monocular CCH based object recognition
and monocular pose estimation,

• Robustness of figure-ground segmentation,
• Robustness towards occlusions using SIFT features,
• Robustness of pose initialisation towards rotations.

For recognition, a set of objects shown in Figure11
was used. A database was created consisting of object
models based on SIFT features and CCHs. Only one
view per object was used for the SIFT models, while
the CCHs were based on multiple views. Pose estima-
tion was only considered for the first three box-like
objects, automatically starting as one of these objects
are recognised. For this purpose, the width, height and
thickness of these objects were measured and recorded
in the database.

Since the observed matching scores did not signif-
icantly differ from those already published inLowe
(1999), Mikolajczyk & Schmid (2001) and S. Ekvall
& Kragic (2003), we have chosen not to include any
additional quantative results. A few observations have
lead us to believe that recognition would benefit from
CCHs and SIFT features being used in conjunction.
For example, the blue car is rarely recognized properly
using SIFT, since the most salient features are due
to specularities. However, the distinct colour makes it
particularly suitable for CCHs, which on the other hand
have a tendency of mixing up the tiger and the giraf,
unlike to recognition module based on SIFT features.

A. Binocular Segmentation and Pose Estimation

The first presented experiments illustrate the typical
behaviour of the system with binocular disparity based
figure-ground segmentation and SIFT based recognition.
Results from these experiments can be seen in Figure5.
The first column shows the left foveal camera images
prior to the experiments. It is clear that a requested
object would be hard to find, without peripheral vision
controlling a change in gaze direction. However, from
the disparity maps in the second column the system is
able to locate a number of object hypotheses, which
can be shown as white blobs ovarlayed on-top of the
left peripheral camera image in the third column of the
figure.

The matching scores of the recognition module for
these two examples were 66% and 70% respecitvely,
measured as the fraction of SIFT freatures being matched
to one particular model. Once an object has been recog-
nised, pose estimation is automatically initiated. This is



Fig. 10

THE FIRST TWO IMAGES SHOW A TARGET REGION BEFORE AND AFTER A SACCADE(THE RECTANGLES SHOW THE FOVEAL REGIONS

WITHIN THE LEFT PERIPHERAL CAMERA IMAGE) AND THE FOVEAL CAMERA IMAGES AFTER EXECUTING A SACCADE ARE SHOWN IN

THE LAST TWO IMAGES.
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OBJECTS USED FOR EXPERIMENTAL EVALUATION.

done using SIFT features from the left and right foveal
camera images, fitting a plane to the data. Thus, it is
assumed that there is a dominating plane that can be
mapped to the model. The process is further improved
searching for straight edges around this plane. The last
two images in the fourth columns show an example of
this being done in practice.

B. Monocular CCH Recognition and Pose Estimation

Figure 12 shows two examples of recognition and
pose estimation based on monocular CCH. Here, object
recognition and rotation estimation serve as the initial
values for the model based pose estimation and tracking
modules. With the incomplete pose calculated in the
recognition (first figure from the left) and orientation
estimation step, the initial full pose is estimated (second
figure from the left). After that, a local fitting method
matches lines in the image with edges of the projected
object model. The images obtained after convergence of
the tracking scheme is shown on the right. It is important
to note, that even under the incorrect initialization of the
two other rotation angles as zero, our approach is able
to cope with significant deviations from this assumption.
This is strongly visible in the second example where the
angle around camera’sZ-axis is more than 20◦.

C. Robustness of disparity based figure-ground segmen-
tation

As mentioned in SectionVII , object location hypothe-
ses are found slicing up the disparities into a binary

map of pixels located within a given depth range. There
are some evident disadvantages associated with such a
procedure. First of all, an object might be tilted and
extend beyond this range. This can be seen in the upper
left image in Figure13 - but it does not occur in the
second image on the same row. However, since a more
accurate localization is found through the focused atten-
tion process, a saccade is issued to the approximately
same location. This is shown in the last two images on
the upper row.

Another challenge occurs if two nearby objects are
placed on almost the same distance, especially if the
background lacks sufficient texture. Then the objects
might merge into a single hypothesis, which is shown
on the second row of Figure13. In our experiments this
seemed more common when a global disparity method
Kolmogorov & Zabih(2001) was used and is the reason
why we normally use simple area correlation. The global
optimisation methods tend to fill in the space between
the two objects, falsely assuming that rapid changes in
disparities are unlikely and thus should be suppressed. In
practice, it is preferable if the textureless area between
the objects are left unassigned. The right two images
on the last row show that pose estimation might still be
possible, even when hypotheses are merged.

D. Robustness of SIFT based recognition towards occlu-
sions

In a cluttered environment, a larger fraction of objects
are likely to be occluded. These occlusions affect most
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involved processes, in particular those of recognition and
pose estimation. The first two images in Figure14 show
a scene in which the sugar box is partially occluded
behind a bottle. In the first case, the recognition fails
because not enough foveal features are available, while
successful recognition and pose estimation is possible in
the second case as shown in the third image. However,
even if recognition is successful, the pose initialization
might still fail when not enough edges are clearly visible.
This can be seen in the last two images of Figure14. As
it is apparent from the fourth image that a failure does
not necessarily mean that the results are useless, since
the location of the object in 3D space is still available.

E. Robustness of pose initialisation towards rotations

Since, in SIFT based recognition, only one view was
available for each object, the sensitivity of the system to
rotations was expected to be high. It is already known
that for efficient recognition using these features, the
relative orientation between query image and object
model ought to be less than about 30◦. Likely because
our model set only consisted of eight objects, our study
indicated that slightly larger angles were in fact possible.
In the three columns of Figure15 an object was rotated
about 20◦, 40◦ and 60◦ respectively. The rise package
was correctly recognized at a score higher than 70%.
However, the break-point turned out to be highly object
dependent. For example, for an object like the tiger, the
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breakpoint was as low as 20%. For a more thorough
analysis on the SIFT recognition performance we refer
to Lowe (1999).

As can be seen in the last two images on the upper row
of Figure15, larger rotations tends to be underestimated
when the pose is initialised. However, these errors are
still below what is required for the pose estimation to
finally converge. The lower row shows the estimated
pose after a few initial iterations. Even at an angle of
60◦ the process will converge, but at a somewhat slower
rate. For 40◦ and below convergence is reach within a
few frames.

IX. CONCLUSIONS

In this paper, different visual strategies necessary
for robotic hand-eye coordination and object grasping
tasks, have been presented. The importance of camera
placement and their number have been discussed and
their effect on the design and choice of visual algorithms.
For realistic, domestic settings we are interested in
designing robots that are able to manipulate both known
and unknown objects and it is therefore important to
develop methods for both cases. We have shown what
are our current strategies for both of these cases.

Reflecting back to Figure1, different scenarios can be
arranged in a hierarchy depending on prior information.
Even if a particular task is given, it is possible to shift
between different scenarios and therefore, the underlying
strategies used. For example, if the command “Pick Up
This Cup” is given, but the system fails to verify the

existence of the cup, the execution may still continue as
if “Pick up The Cup” was given. A vice-versa example
is if the command “Pick Up This Object” was given and
the system realises that the object is, in fact, a known
box of raisins. Then, the system automatically changes
the task to “Pick Up The Raisins”. In the future, we want
to develop a more formal description for the above, in
order to design a visual system framework for robotic
manipulation in general.
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