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Abstract

The ability to autonomously acquire new knowledge through interac-
tion with the environment is an important research topic in the field of
robotics. The knowledge can be acquired only if suitable perception-action
capabilities are present: a robotic system has to be able to detect, attend
to and manipulate objects in its surrounding. In this paper, we present
the results of our longterm work in the area of vision based sensing and
control. The work on finding, attending, recognizing and manipulating
objects in domestic environments is studied. We present a stereo based
vision system framework where aspects of Top-down and Bottom-up at-
tention as well as foveated attention are put into focus and demonstrate
how the system can be utilized for robotic object grasping.

1 Introduction

Humans use visual feedback extensively to plan and execute actions. However,
this is not a well-defined one way stream: how we plan and execute actions
depends on what we already know about the environment we operate in (con-
text), what we are about to do (task), and what we think our actions will result
in (goal). A significant amount of human visual processing is not accessible to
consciousness - we do not experience using optical flow to control our posture,
(Sloman, 2001). By not completely understanding the complex nature of human
visual system, what are the ways to model similar capabilities into robots?

Visual attention plays an important role when we interact with the envi-
ronment, allowing us to deal with the complexity of everyday scenes. The
requirements on artificial ’seeing’ systems are highly dependent on the task and
have historically been developed with this in mind. To deal with the complexity
of the environment, prior task and context information have commonly been
integrated with low level processing structures, the former being denoted as
Top-down and latter Bottom-up principle.

In our research, tasks such as “Robot, bring me my cup” or “Robot, pick
up this” are studied. Depending on the task or context information, different
execution strategies task may be chosen. The first task is well defined in that
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manner that the robot already has the internal representation of the object - the
identity of the object is known. For the second task, the spoken command is
commonly followed by a pointing gesture - here, the robot does not know the
identity of the object, but it can rather easy extract its location. A different
set of underlying visual strategies are required for each of these scenarios being
the most representative examples for robotic fetch-and-carry tasks. We have
worked with different aspects of the above for the past several years, (Björkman
and Eklundh, 2002; Björkman and Eklundh, 2006; Björkman and Kragic, 2004;
Ekvall and Kragic, 2005; Ekvall et al., 2007; Huebner et al., 2008a; Kragic and
Kyrki, 2006; Petersson et al., 2002; Rasolzadeh et al., 2006, 2007; Topp et al.,
2004). The work presented here continues our previous works, but the focus
is put on the design and development of a vision system architecture for the
purpose of solving more complex visual tasks. The overall goal of the system is to
enable the understanding and modeling of space in various object manipulation
scenarios. A schematic overview of the experimental platform is shown in Fig. 1.
The different parts of this illustration are described in detail throughout this
paper.

Figure 1: Illustration of the complete robotic platform that is the system de-
scribed in this paper. See Fig. 2 and 4 for detailed illustrations, and Fig. 10 for
an illustration of the actual setup.

The paper is organized as follows. In Section 2 system functionalities, con-
sidered tasks, system design and flow of information in the system are outlined.
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This corresponds roughly to the diagram in the middle of Fig. 1. In Section 3,
the details about the camera system and its calibration are given. Aspects of
Bottom-up and Top-down attention are presented in Section 4 and foveated
segmentation in Section 5. Section 6 describes how the visual system can be
used to facilitate manipulation. Selected results of the experimental evaluation
are presented in Section 7, where an evaluation of the attention-system and the
recognition-system is first performed separately, followed by a find-and-remove-
object task in Section 7.3. A discussion and summary finalizes the paper in
Section 8.

2 Vision System Functionalities and Tasks

Similar to the human vision system, but unlike many systems from the computer
vision community, robotic vision systems are embodied. Vision is used as a mean
for the robot to interact with the world. The system perceives to act and acts
to perceive. The vision system is not an isolated entity, but part of a more
complex system. Thus, the system should be developed and evaluated as such.
In fact, measuring the performance of system components in isolation can be
misleading. The quality of a component depends on its ability to function within
the rest of the system. Computational speed might sometimes be preferable to
accuracy or vice-versa. As a designer, one has to take a step backwards and
concentrate on the tasks the robotic system is supposed to perform and the
world in which the system resides. What are the goals of the system? What
can be expected from the world and what cannot be expected?

Examples of recent work taking the embodiment into account have been
demonstrated in Björkman and Eklundh (2006); Ude et al. (2006). In these
systems vision is embodied in a robotic system capable of visual search as well
as simple object manipulation. The goal of the work presented here is to design
a similar robotic system able to interact with the world through recognition
and manipulation of objects. Objects can either be previously known or com-
pletely new to the system. Even if confusions do occur frequently, a human
being is able to immediately divide the perceived world into different physical
objects, seemingly without effort. The task is performed with such ease that
the complexity of the operation is easily underestimated. For a robotic system
to perform the same task, the visual percept has to be grouped into larger en-
tities that have some properties in common, properties such as proximity and
appearance. These perceptual entities might or might not correspond to unique
physical objects in 3D space. It is not until the robot acts upon an entity, that
the existence of a physical object can be verified. Without interaction the entity
has no real meaning to the robot. We call these entities things to differentiate
them from objects that are known to be physical objects, through interaction
or other means. The idea of things and objects is the foundation of the project
PACO-PLUS 1 and the recent work presented in Geib et al. (2006); Kraft et al.
(2008); Wörgötter et al. (2009).

1www.paco-plus.org
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For the visual system to be of use in robotic tasks, it needs the abilities
to divide the world into things, represent these for later association and ma-
nipulation, and continuously update the representation as new data becomes
available. A representation can either be short-lived and survive only during a
short sequence of actions, or permanent, if interactions with the thing turn out
to be meaningful. A meaningful action is an action that results in some change
in the representation of the thing, such as a pushing action resulting in a change
in position. From this stage on, the thing is considered an object.

The amount of perceptual data arriving through a visual system easily be-
comes overwhelming (Tsotsos, 1987). Since resources will always be limited in
one way or the other, there is a need for a mechanism that highlights the most
relevant information and suppresses stimuli that is of no use to the system.
Instead of performing the same operations for all parts of the scene, resources
should be spent where they are needed. Such a mechanism is called visual at-
tention. Unfortunately, relevancy is not a static measure, but depends on the
context, on the scene in which the robot acts and the tasks the robot is per-
forming. Consequently, there is a need for the attentional system to adapt to
context changes as further studied in Section 4. A static thing too large for the
robot to manipulate might be irrelevant, while an independently moving thing
of the same size can be relevant indeed, if it affects the robot in achieving its
goals. Since sizes and distances are of such importance to a robotic system, a
visual system should preferably consist of multiple cameras.

2.1 Flow of Visual Information

The visual system used in our study has a set of basic visual functionalities,
the majority of which uses binocular cues, when such cues are available. The
system is able to attend to and fixate on things in the scene. To facilitate
object manipulation and provide an understanding of the world, there is sup-
port for figure-ground segmentation, recognition and pose estimation. All these
processes work in parallel, but at different time frames, and share information
through asynchronous connections. The flow of visual information through the
system is summarized in Fig. 2. Information computed within the system is
shown in rounded boxes. Squared boxes are visual processes that use this infor-
mation. Grey boxes indicate information that is derived directly from incoming
images. The camera control switches between two modes, fixation and saccades,
as illustrated by the dashed boxes. The vision system generally works within
the visual search loop that consists of a saccade to the current attentional foci,
after which the system tries to fixate on that point, which in turn will yield
more (3D) information for the recognition step. If the attended/fixated region
is not the desired object we are searching for, the visual search loop continues.

The above-mentioned vision system has been implemented on the four-
camera stereo head (Asfour et al., 2006) shown in Fig. 10. The head consist of
two foveal cameras for recognition and pose estimation, and two wide field cam-
eras for attention. It has seven mechanical degrees of freedom; neck roll, pitch
and yaw, head tilt and pan & tilt for each camera in relation to the neck. The
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Figure 2: The flow of visual information.

attentional system keeps updating a list of scene regions that might be of inter-
est to the rest of the system. The oculomotor system selects regions of interest
from the list and directs the head so that a selected region can be fixated upon
in the foveal views. Redirection is done through rapid gaze shifts (saccades).
As a consequence, the camera system always strives towards fixating on some
region in the scene. The fact that the system is always in fixation is exploited
for continuous camera calibration and figure-ground segmentation.
Given the large focal lengths of the foveal cameras, the range of possible dis-
parities can be very large, which complicates matching in stereo. With the left
and right foveal cameras in fixation, we know that an object of interest can be
found around zero disparity. This constrains the search range in disparity space,
which simplifies stereo matching and segmentation.

2.2 Design Issues

We have chosen a design methodology that is biologically inspired, without the
ambition to make our systems biologically plausible. Since computational and
biological architectures are so fundamentally different, biologically plausibility
comes at a cost. One critical difference is the relative costs of computation and
communication of the estimated results. In biological systems, computations
are done in neurons, with results communicated through thousands of synapses
per neuron. This is much unlike computational systems in which the cost of
communicating data, through read and write operations to memory, can be
higher than that of computing the actual data. Unfortunately, computer vision
tend to be particularly memory-heavy, especially operations that cover whole
images. If one considers typical real-time computer vision systems, the cost of
storage easily out-weight the cost of computation. Thus for a system to perform
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at real-time speed, biological plausibility easily becomes a hindrance. Even if
biological systems inspire the design process, our primary interest is that of
robotic manipulation in domestic environments.

3 Camera System

For a robot to successfully react to sudden changes in the environment the
attentional system ought to cover a significant part of the visual field. Recog-
nition and vision-based navigation, however, place another constraint on the
visual system, i.e. a high resolution. Unfortunately, these two requirements are
hard to satisfy for a system based on a single stereo pair. A biological solu-
tion, exemplified by the human vision system, is a resolution that varies across
the visual field, with the highest resolution near the optical centers. There
are some biologically-inspired artificial systems (Kuniyoshi et al., 1995; Sandini
and Tagliasco, 1980) that use similar approaches. However, non-uniform image
sampling leads to problems that make these systems less practical. Binocular
cues can be beneficial for a large number of visual operations, from attention
to manipulation, and with non-uniform sampling stereo matching becomes hard
indeed. Furthermore, the reliance on specialized hardware makes them more ex-
pensive and less likely to be successfully reproduced. Another possible solution
is the use of zoom lenses (Paulus et al., 1999; Ye and Tsotsos, 1999). While the
robot is exploring the environment the lenses are zoomed out in order to cover
as much as possible of the scene. Once an object of interest has been located,
the system zooms in onto the object to identify and possibly manipulate it.
However, while the system is zoomed in it will be practically blind to whatever
occurs around it.

Other than the obvious reasons of cost and weight, there is nothing concep-
tually preventing us from using more than just two cameras, which is the case
in solutions based on either zoom-lenses or non-uniform sampling. Instead, one
could use two sets of stereo pairs (Scassellati, 1998), a wide-field set for atten-
tion and a foveal one for recognition and manipulation. The most important
disadvantage is that the calibration process becomes more complex. In order to
relate visual contents from one camera to the next, the relative placement and
orientation of cameras have to be known.

Sets of four cameras can be calibrated using the quadrifocal tensor (Hartley
and Zisserman, 2000), or the trifocal tensor if sets of three are considered at a
time. However, the use of these tensors assumes that image features can be suc-
cessfully extracted and matched between all images considered. Depending on
the camera configuration and observed scene, it may not at all be the case. For
example, due to occlusions the visual fields of the two foveal images might not
overlap. Furthermore, since the visual fields of the foveal cameras are so much
narrower than those of the wide-field ones, only large scale foveal features can
be matched to the wide-field views. The largest number of matchable features
is found if only two images are considered at a time and the corresponding focal
lengths are similar in scale. Thus for the system presented in this paper, we use
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Figure 3: Two sets of cameras, a wide-field camera set for attention and a
foveal one for recognition and manipulation, with external calibration performed
between pairs.

pair-wise camera calibration as illustrated by the arrows in Fig. 3.

3.1 Wide-Field Calibration

Since external calibration is inherently more stable if visual fields are wide, we
use the wide-field cameras as references for the foveal ones. This calibration is an
on-going process, where previous estimates are exploited for feature matching in
the subsequent frames, assuming a limited change in relative camera orientation
from one frame to the next. The purpose of the calibration is two-fold. First,
given a known baseline (the distance between the cameras) it provides a metric
scale to objects observed in the scene. Second, calibration provides parameters
necessary for rectification of stereo images, so that dense disparity maps can be
computed, as it will be shown in Section 4.4.

In our study we related the wide-field cameras to each other using an iterative
approach based on the optical flow model (Longuet-Higgins, 1980):(

dx
dy

)
=

1
Z

(
1 x
0 y

) (
tx
tz

)
+

(
0 1 + x2 −y
1 xy x

)  rx

ry

rz

 (1)

In an earlier study (Björkman and Eklundh, 2002), we have shown this model to
more gracefully degrade in cases of image noise and poor feature distributions,
than the more popular essential matrix model (Longuet-Higgins, 1981). The
rotational (rx, ry, rz) and translational (tx, tz) parameters are determined iter-
atively from matches of corner features. We use Harris’ corner features (Harris
and Stephens, 1988) for the purpose and apply random sampling (Fischler and
Bolles, 1981) to reduce the influence from outliers in the dataset. Matching is
done using normalized cross-correlation of 8 × 8 pixel image patches. As qual-
ity measure we use a left-to-right and right-to-left matching consistency check,
rather than thresholding on matching scores. Once the above parameters are
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known, the metric distance to the current fixation point is computed from the
baseline and the vergence angle ry. This distance is later used as a reference for
distance and scale measurements, as well as for camera control.

3.2 Wide-field to Foveal Transfer

Once an object of interest has been found through the attentional process (ex-
plained in Section 4), the cameras are directed so that the object is placed in
fixation in the foveal views. This is done using affine transfer (Fairley et al.,
1998), which is based on the fact that if the relations between three different
views are known, the position of a point given in two views can determined in
the third. In our case a new fixation point is found in the wide-field views and
the problem is to transfer the same point to each foveal view. To relate a foveal
view position xf to the corresponding wide-field position xw, we use the affine
epipolar constraint x>wFAxf = 0 and the affine essential matrix

FA =

 0 0 a3

0 0 a4

a1 a2 a5

 (2)

Here a1, a2, a3 and a4 encode the relative orientation and scale between the
wide-field and foveal views, while a5 is the difference in y-wise position between
the optical centers. Similarly to wide-field calibration, the parameters are deter-
mined using feature matching of Harris’ corner features (Harris and Stephens,
1988) and random sampling (Fischler and Bolles, 1981). With wide-field views
related to each other using Equation (1) and foveal views to their wide-field
counterparts using Equation (2), a new fixation point can be transferred from
the wide-field to the foveal views. The cameras can then be moved using rapid
gaze shifts, so that the new point is placed in the center of the foveal images.

3.3 Fixation

Once a transfer has been completed and a saccade (rapid gaze shift) executed
towards the new attention point, the system tries to fixate onto the new region
in the center of the foveal views. This fixation is kept until another region of in-
terest has been found through the attentional system. Thus the camera control
can be in either of two modes, saccade or fixation. However, since a saccade
occurs in a fraction of a second, the cameras are almost always in fixation. This
is beneficial to more high-level processes. With regions of interest in fixation,
binocular information can be extracted, information that can be useful for seg-
mentation, object recognition and manipulation. We will see examples of this
in later sections.

The relative orientations of the left and right foveal views are constantly kept
up-to-date, much like the wide-field external calibration in Section 3.1. Harris’
corner features (Harris and Stephens, 1988) are extracted from both views and
features are matched using random sampling (Fischler and Bolles, 1981). The
cameras are then related by an affine essential matrix FA, similar to the one
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used for wide-field to foveal transfer in Equation (2). Even if FA is just an
approximation of a general essential matrix, it is applicable to our case, since
focal lengths are large and views narrow. Binocular disparities are measured
along the epipolar lines and the vergence angle of the stereo head is controlled
such that the highest density of points are placed at zero disparity. For temporal
filtering we use Kalman filters, but ignore frames for which not enough matches
are found.

4 Bottom-Up and Top-Down Attention

The best way of viewing attention in the context of a robotic system is as a
selection mechanisms serving the higher level tasks such as object recognition
and manipulation. Biological systems may provide a good basis for solving some
of the modeling issues. However, due to computational issues mentioned earlier,
these studies serve as a mere inspirational source and should not be restricting
the computational implementation. We know that humans tend to perform a
subconscious ranking of the “interestingness” of the different components of a
visual scene. This ranking depends on the observers goals as well as the compo-
nents of the scene; how the components in the scene relate to their surroundings
(Bottom-up) and to our objectives (Top-down) (Itti, 2000; Li, 2002). In humans,
the attended region is then selected through dynamic modifications of cortical
connectivity or through the establishment of specific temporal patterns of activ-
ity, under both Top-down (task dependent) and Bottom-up (scene dependent)
control (Olshausen et al., 1993). In this work we will define the Top-down infor-
mation as consisting of two components: 1) task dependent information which
is usually volitional, and 2) contextual scene dependent information.

We propose a simple, yet effective, Artificial Neural Network approach that
learns the optimal bias of the Top-down saliency map (Koch and Ullman, 1985).
The most novel part of the approach is a dynamic combination of the Bottom-up
and Top-down saliency maps. Here an information measure (based on entropy
measures) indicates the importance of each map and thus how the linear com-
bination should be altered over time. The combination will vary over time
and will be governed by a differential equation. Together with a mechanism for
Inhibition-of-Return, this dynamic system manages to adjust itself to a balanced
behavior, where neither Top-down nor Bottom-up information is ever neglected.

4.1 Biased Saliency for Visual Search Tasks

Current models of how the attentional mechanism is incorporated in the hu-
man visual system generally assume a Bottom-up, fast and primitive mecha-
nism that biases the observer toward selecting stimuli based on their saliency
(most likely encoded in terms of center-surround mechanisms) and a second
slower, Top-down mechanism with variable selection criteria, which directs the
’spotlight of attention’ under cognitive, volitional control (Treisman and Gelade,
1980). In computer vision, attentive processing for scene analysis initially largely
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dealt with salience based models, following (Treisman and Gelade, 1980) and
the influential model of Koch and Ullman (1985). However, several computa-
tional approaches to selective attentive processing that combine Top-down and
Bottom-up influences have been presented in recent years.

Koike and Saiki (2002) propose that a stochastic Winner-Take-All (WTA)
enables the saliency based search model to cause the variation of the relative
saliency to change search efficiency, due to stochastic shifts of attention. Ram-
ström and Christensen (2004) calculate feature and background statistics to be
used in a game theoretic WTA framework for detection of objects. Choi et al.
(2004) suggest learning the desired modulations of the saliency map (based on
the model by Itti et al. (1998)) for Top-down tuning of attention. Navalpakkam
and Itti (2003) enhance the Bottom-up salience model to yield a simple, yet
powerful architecture to learn target objects from training images containing
targets in diverse, complex backgrounds. Earlier versions of their model did not
learn object hierarchies and could not generalize, although the current model
could do that by combining object classes into a more general super class.

Lee et al. (2003) showed that an Interactive Spiking Neural Network can be
used to bias the Bottom-up processing towards a task (in their case in face de-
tection). However, their model was limited to the influence of user provided
Top-down cues and could not learn the influence of context. In Frintrop’s
VOCUS-model (Frintrop, 2006) there are two versions of the saliency map; a
Top-down map and a Bottom-up one. The Bottom-up map is similar to that of
Itti and Koch’s, while the Top-down map is a tuned version of the Bottom-up
one. The total saliency map is a linear combination of the two maps using a
fixed user provided weight. This makes the combination rigid and non flexi-
ble, which may result in loss of important Bottom-up information. Oliva et al.
(2003) show that Top-down information from visual context can modulate the
saliency of image regions during the task of object detection. Their model learns
the relationship between context features and the location of the target during
past experience in order to select interesting regions of the image. Many of the
computational models study the attention mechanism itself but there have also
been approaches that demonstrate robotic applications.

In the work of Breazeal and Scassellati (1999) a computational implemen-
tation of the visual search model described by Wolfe (1994), is created. They
use this system on a robotic platform where they integrate perception with in-
hibition of return and other internal effects. The result is a context-dependent
attention map they use to determine the gaze direction of the robot. On their
humanoid platform, Vijayakumar et al. (2001) explored the integration of ocu-
lomotor control (biologically inspired) with visual attention. Their attention
module consisted of a neural network implementing a WTA-network (Tsotsos
et al., 1995), in which different visual stimuli could compete for shift of gaze
in their direction. Nickerson et al. (1998) created within the framework of the
ARK project, mobile robots that used attention-based space segmentation for
navigating within industrial environments without the need for artificial land-
marks. They too used the WTA-network of (Tsotsos et al., 1995). Clark and
Ferrier (1992) suggested early on an robotic implementation of a visual control
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system based on models of the human oculomotor control. They did that by at-
tentive control through specifications of gains in parallel feedback loops. Their
modal control was through saliency map calculated as weighted combination of
several feature maps. In a recent work, Siagian and Itti (2007) use the attention
system of Itti et al. (1998) in combination with a “gist” model of the scene, to
direct an outdoor robot toward the most likely candidate locations in the im-
age, thus making the time-consuming process of landmark identification more
efficient. In their human-machine interaction system, Heidemann et al. (2004)
recognize hand gestures in parallel with computing context-free attention maps
for the robot. Allowing an interaction between the human and the robot where,
according to the authors, a balanced integration of bottom-up generated feature
maps and top-down recognition is made. One of the few recent works that in-
corporates a computational mechanism for attention into a humanoid platform
is the work of Moren et al. (2008). A method called Feature Gating is used to
achieve Top-down modulation of saliencies.

Our framework is based on the notion of saliency maps (SMs), (Koch and
Ullman, 1985). To define a Top-down SM, SMTD(t), t denoting time, we need
a preferably simple search system based on a learner that is trained to find
objects of interest in cluttered scenes. In parallel, we apply an unbiased version
of the same system to provide a Bottom-up SM, SMBU (t). In the following we
will develop a way of computing these two types of maps and show that it is
possible to define a dynamic active combination where neither one always wins,
i.e. the system never reaches a static equilibrium, although it sometimes reaches
dynamic one. The model (illustrated in Fig. 4) contains a standard Saliency
Map (SMBU ) and a Saliency Map biased with weights (SMTD). The Top-down
bias is achieved by weight association (our Neural Network). An Inhibition-of-
Return mechanism and stochastic WTA-network gives the system its dynamic
behavior described in Section 4.3. Finally the system combines SMBU (t) and
SMTD (t) with a linear combination that evolves over time t. Our model applies
to visual search and recognition in general, and to cases in which new visual
information is acquired in particular.

Several computational models of visual attention have been described in the
literature. One of the best known systems is the Neuromorphic Vision Toolkit
(NVT), a derivative of the model by Koch and Ullman (1985) that was (and is)
developed by the group around Itti et al. (Itti and Koch, 2001; Itti et al., 1998;
Navalpakkam and Itti, 2003). We will use a slightly modified version of this sys-
tem for our computations of saliency maps. Some limitations of the NVT have
been demonstrated, such as the non robustness under translations, rotations
and reflections, shown by Draper and Lionelle (2003). However, our ultimate
aim is to develop a system running on a real time active vision system and we
therefore seek to achieve a fast computational model, trading off time against
precision. NVT is suitable in that respect. Similarly to Itti’s original model, we
use color, orientation and intensity features, with the modification that we have
complemented these with a texture cue that reacts to the underlying texture of
regions, not to outer contours. The details of how this texture cue, based on
the eigen-values of small patches in the image, are calculated can be found in
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Figure 4: An attentional model that combines Bottom-up and Top-down
saliency, with Inhibition-of-Return and a stochastic Winner-Take-All mecha-
nism, with context and task dependent Top-down weights.

(Rasolzadeh et al., 2007).

4.2 Weight Optimization and Contextual Learning

As mentioned above we base both Top-down and Bottom-up salience on the
same type of map. However, to obtain the Top-down version we bias this con-
spicuity map. In our approach, which otherwise largely follows Frintrop (2006),
the weighting is done differently. This has important consequences, as it will
be shown later. The four broadly tuned color channels R, G, B and Y, all cal-
culated according to the NVT-model, are weighted with the individual weights
(ωR, ωG, ωB , ωY ). The orientation maps (O0◦ , O45◦ , O90◦ , O135◦) are computed
by Gabor filters and weighted with similar weights (ω0◦ , ω45◦ , ω90◦ , ω135◦) in
our model. Following the original version, we then create scale pyramids for all
9 maps (including the intensity map I) and form conventional center-surround-
differences by across-scale-subtraction and apply Itti’s normalization operator.
2 This leads to the final conspicuity maps for intensity

(
Ī
)
, color

(
C̄

)
, orienta-

tion
(
Ō

)
and texture

(
T̄

)
. As a final set of weight parameters we introduce one

weight for each of these maps, (ωI , ωC , ωO, ωT ). To summarize the calculations:

RG(c, s) = |(ωR ·R(c)− ωG ·G(c))	 (ωR ·R(s)− ωG ·G(s))|
BY (c, s) = |(ωB ·B(c)− ωY · Y (c))	 (ωB ·B(s)− ωY · Y (s))|

Oθ(c, s) = ωθ · |Oθ(c)	Oθ(s)|
C̄ =

⊕
c

⊕
s N(RG(c, s))−N(BY (c, s))

Ō =
∑

θ N(
⊕

c

⊕
s N(Oθ(c, s)))

2The center-surround-differences are a computational model of the center-surround recep-
tive fields composed by ganglion cells in the retina. For details on the across-scale subtraction
we refer to Itti’s original work.
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Ī =
⊕

c

⊕
s N(|I(c)	 I(s)|)

T̄ =
⊕

c

⊕
s N(|T (c)	 T (s)|)

SMTD = ωI Ī + ωCC̄ + ωOŌ + ωT T̄

Here 	 denotes the across-scale-subtraction,
⊕

the across-scale-summation.
The center scales are c ∈ {2, 3, 4} and the surround scales s = c + δ, where
δ ∈ {3, 4} as proposed by Itti and Koch. We call the final modulated saliency
map the Top-down map, SMTD. The Bottom-up map, SMBU can be regarded
as the same map with all weights being 1.

As pointed out by Frintrop, the number of introduced weights in some sense
represents the degrees of freedom when choosing the “task” or the object/region
to train on. A relevant question to pose is: how much “control” do we have over
the Top-down map by changing the weights? As previously stated, we divide
Top-down information in two categories; i) task and ii) context information. To
tune and optimize the weight parameters of the SM for a certain task, we also
have to examine what kind of context information is important. For instance,
the optimal weight parameters for the same task typically differ from one context
to the other. These two issues will be considered in the remaining part of the
section.

4.2.1 Optimizing for the ROI

First we need to formalize the optimization problem. For a given Region Of
Interest (ROI) characteristic for a particular object, we define a measure of how
the Top-down map differs from the optimum as:

eROI(ω̄) =
max SMTD −max (SMTD|ROI)

max SMTD

where ω̄ = (ωI , ωO, ωC , ωT , ωR, ωG, ωB , ωY , ω0◦ , ω45◦ , ω90◦ , ω135◦) is the weight
vector. The optimization problem will then be given by ω̄opt = arg min eROI(ω̄).
ω̄opt maximizes peaks within the ROI and minimizes peaks outside ROI. This
optimization problem can be solved with the Levenberg-Marquardt algorithm.
The optimal set of weights (the optimal weight-vector) are thus obtained. With
this set of weights, we significantly increase the probability of the winning point
being within a desired region. To summarize; given the task to find a certain
(type) of ROI we are able to find a good set of hypotheses by calculating the
Top-down map SMTD(ω̄opt). The method used to do this optimization for a
given ROI, is described in (Rasolzadeh et al., 2006).

4.2.2 Learning Context with a Neural Network

The weight optimization above is in principle independent of context. In order
to include the correlation between the optimal weights and the context (envi-
ronmental Top-down information), we have to know both types of Top-down
information (context and task) in order to derive the set of optimal weights as
a function of context and task.
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There are a large number of different definitions of context in the computer
vision literature (Rabinovich et al., 2007; Strat and Fischler, 1989, 1995). In our
model we will keep the definition simple enough to serve our purpose of visual
search. A simple example is that a large weight on the red color channel would
be favorable when searching for a red ball on a green lawn. However, the same
weighting would not be appropriate when searching for the same ball in a red
room! We therefore represent context by the total energy of each feature map,
in our case a 11-dimensional contextual vector, here denoted as ᾱ. This will
give us a notion of “how much” of a certain feature we have in the environment,
and thus how discriminative that feature will be for a visual search task.

Obviously we cannot perform this non-convex (time-consuming) optimiza-
tion every time we need to find the optimal weights (minimizing eROI(ω̄)), in
order to find a ROI, i.e. have maximal saliency within the ROI. Instead, we
collect the optimized weights and the corresponding contextual vectors for a
large set of examples. Given that data set, we train an artificial neural network
(Haykin, 1994) to associate between the two: i.e. given a contextual vector,
what will the optimal set of weights be like. This is performed for each type
of ROI, thus there will be one trained neural network (NN) for each object.
Each of these NNs can automatically correlate the context information with
the choice of optimal weight parameters without any optimization. Fore more
details on how this training is done we refer to our previous works (Rasolzadeh
et al., 2006).

4.3 Top-Down / Bottom-Up Integration

So far we have defined a Bottom-up map SMBU (t) representing the unexpected
feature based information flow and a Top-down map SMTD (t) representing the
task dependent contextual information. We obtain a mechanism for visual at-
tention by combining these into a single saliency map that helps us to determine
where to “look” next.

In order to do this, we rank the “importance” of saliency maps, using a
measure that indicates how much value there is in attending that single map at
any particular moment. We use an energy measure (E-measure) similar to that
of Hu et al, who introduced the Composite Saliency Indicator (CSI) for similar
purposes (Hu et al., 2004). In their case, however, they applied the measure on
each individual feature map. We use the same measure, yet we use it on the
summed up saliency maps. The Top-down and Bottom-up energies ETD and
EBU are defined as the density of saliency points divided by the convex hull of
all points.

Accordingly, if a particular map has many salient points located in a small
area, that map might have a higher E-value than one with even more salient
points, yet spread over a larger area. This measure favors saliency maps that
contain a small number of very salient regions.
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4.3.1 Combining SMBU and SMTD

We now have all the components needed to combine the two saliency maps. We
may use a regulator analogy to explain how. Assume that the attentional system
contains several (parallel) processes and that a constant amount of processing
power has to be distributed among these. In our case this means that we want
to divide the attentional power between SMBU (t) and SMTD(t). Thus the final
saliency map will be a linear combination

SMfinal = k · SMBU + (1− k) · SMTD.

Here the k -value varies between 0 and 1, depending on the relative importance
of the Top-down and Bottom-up maps, according to the tempo-differential equa-
tion

dk

dt
= −c · k(t) + a · EBU (t)

ETD(t)
, 0 ≤ k ≤ 1

The two parameters c and a, both greater than 0, can be viewed as the amount
of concentration (devotion to search task) and the alertness (susceptibility for
Bottom-up info) of the system. The above equation is numerically solved be-
tween each attentional shift.

The first term represents an integration of the second one. This means that
a saliency peak needs to be active for a sufficient number of updates to be
selected, making the system less sensitive to spurious peaks. If the two energy
measures are constant, k will finally reaches an equilibrium at aEBU/cETD. In
the end, SMBU and SMTD will be weighted by aEBU and max(cETD−aEBU , 0)
respectively. Thus the Top-down saliency map will come into play, as long as
ETD is sufficiently larger than EBU . Since ETD is larger than EBU in almost
all situations when the object of interest is visible in the scene, simply weighting
SMTD by ETD leads to a system dominated by the Top-down map.

The dynamics of the system comes as a result of integrating the combination
of saliencies with Inhibition-of-Return (IOR). The kind of IOR we talk about
here is in a covert mode, where the eyes or the head are not moving at all
(overt shifts) and there is essentially only a ranking of the various saliency
peaks within the same view. Of course, if the desired object is not found within
the current set of salient points, the system will continue to an overt shift where
the head and the eyes focus on a different point in space. If a single salient
Top-down peak is attended to (covertly), saliencies in the corresponding region
will be suppressed, resulting in a lowered ETD value and less emphasis on the
Top-down flow, making Bottom-up information more likely to come into play.
However, the same energy measure will hardly be affected if there are many
salient Top-down peaks of similar strength. Thus the system tends to visit each
Top-down candidate before attending to purely Bottom-up ones. This, however,
depends on the strength of each individual peak. Depending on alertness, strong
enough Bottom-up peaks could just as well be visited first. The motivation
for a balanced combination of the two saliency-maps based on two coefficients
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Figure 5: Disparity map (right) of a typical indoor scene (left).

(alertness and concentration) comes from neuroscientific studies on the dorsal
and ventral pathways. In a larger system, this attentive mechanism we propose
here can thus easily be integrated with the rest of the reasoning system, with
the dorsal stream activity indicating a pragmatic mode, whereas the the ventral
stream activity indicates a semantic mode.

4.4 Binocular Cues for Attention

Since the attentional system described above is generic with respect to the visual
task, it may just as well deliver regions of interest corresponding to things that
are either too large or too far away to be manipulated. It is clear that in
our scenario, size and distance needs to be taken into account for successful
interaction with the environment. Now, even if the projective size of a region can
be measured, its real-world size is unknown, since the projective size depends on
the distance from the camera set. One of the benefits of a binocular system, such
as the one described in Section 3, is that sizes and distances can be made explicit.
Therefore, we complement the attentional system with binocular information in
order to make the system more likely to pop-out regions of interest suitable for
manipulation.

With wide-field cameras calibrated as described in Section 3.1 disparity
maps, such as the one to the right in Fig. 5, are computed. Disparity maps en-
code distances to 3D points in the scene. A point distance is given by Z = bf/d,
where b is the baseline (the distance between the cameras), f is the focal length
and d the respective binocular disparity. Before a peak is selected from the
saliency map, the saliency map is sliced up in depth into a set of overlapping
layers, using the disparity map. Each layer corresponds to saliencies within a
particular interval in depth. A difference of Gaussian (DoG) filter is then run
on each layer. The sizes of these filters are set to that of the expected projected
sizes of manipulable things. Thus for saliency layers at the distance the DoGs
are smaller than for layers closer to the camera head. As a result you will get
saliency peaks similar to those in Fig. 6, with crosses indicating the expected
size of things in the scene.
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Figure 6: Saliency peaks with saliency maps computed using top-down tuning
for the orange package (left) and the blue box (right). The crosses reflect the
sizes derived from the attentional process.

Figure 7: Disparity maps (right), prior foreground probabilities (middle) and
posteriori figure-ground segmentation (left).

5 Foveated Segmentation

After a region of interest has been selected by the attentional system, the camera
system is controlled such that the region is placed at zero disparity in the center
of the foveal views. It is now ready to be identified and possibly manipulated.
Before this is done, it would be beneficial if it could also be segmented from
other nearby objects in the scene. Both recognition and pose estimation are
simplified if the object is properly segmented. In our system we do this with
the help of binocular disparities extracted from the foveal views.

In the foveated segmentation step, the foreground probability of each pixel is
computed in a probabilistic manner. From area based correlation we estimate a
measurement for each pixel, that are then used to estimate the prior probability
of a pixel belonging to the foreground. Examples of foreground priors can be
seen in Fig. 7 (middle).

By modeling the interaction between neighboring patches and computing the
posteriori foreground probabilities using graph-cuts, pixels are finally labeled as
being part of either the foreground or background. Since there are only two pos-
sible labels, the exact posteriori solution is given in a single graph-cut operation
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(Grieg et al., 1989). The resulting segmentation may look like the two images
in Fig. 7 (right). These segmentations are then passed to either recognition or
pose estimation. For more information on the precise modeling and motivations
see (Björkman and Eklundh, 2006).

5.1 From 3D Segments to Shape Attributes

In order to have segmentation that is appropriate for manipulation image data
needs to be grouped into regions corresponding to possible objects in the 3D
scene. Disparities can be considered as measurements in 3D space, clustered
around points of likely objects. These clusters are found by applying a kernel-
based density maximization method, known as Mean Shift (Comaniciu and
Meer, 2002). Clustering is done in image and disparity space, using a 3D Gaus-
sian kernel with a size corresponding to the typical 3D size of objects that can be
manipulated. The maximization scheme is iterative and relies on initial center
point estimates. As such estimates we use the hypotheses from the attentional
system. Examples of segmentation results using this approach can be seen in
the second row of Fig. 9.

One major drawback of the mean shift algorithm is the fact that an object
can not be reliably segregated from the surface it is placed on, if there is no
evidence supporting such a segregation. Without any additional assumption on
surface shape or appearance there is no way of telling the surface from the object.
However, in many practical scenarios (including ours) it might be known to the
robotic system that objects of interest can in fact be expected to be located on
flat surfaces, such as table tops.

We therefore complement our approach with a table plane assumption. Using
a textured surface, it is possible to find the main plane and cut it with a 3D
version of the Hough transform as in (Huebner et al., 2008a). Following the
table assumption the 3D points are mapped onto a 2D grid to find segments
and basic shape attributes.

The result of transformation and clipping on the scene given in Fig. 8(a)
can be seen in Fig. 8(b). The segmentation of objects is computed on the
2D grid (Fig. 8(c)) with a simple region growing algorithm grouping pixels
into larger regions by expanding them bottom up. Since the grid is thereby
segmented, simple shape-based attributes of each segment can be determined
and the segments reprojected to 3D points or to the image plane (illustrated in
Fig. 8(d)) 3.

5.2 Associated Attributes

The generated segments are just things, as the step to an object longs for seman-
tics. One way to identify the semantics of a thing in order to derive an object

3Note that dilation has been applied for the reprojected segments for the later application of
point-based object hypotheses verification. The dilation, the grid approach, as also noisy and
incomplete data from stereo causing that reprojections are often little larger or not completely
covering the bodies.
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(a) Stereo images (b) 3D points (c) 2D segmentation (d) Reprojection
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Figure 8: Segmentation using the table plane assumption. Disparity information
from the stereo images (a) produces 3D points (b). Having defined the dominant
plane, the points can be projected onto this plane, where distinctive segments
are computed (c) and reprojected to the image (d).

(a) (b) (c) (d) (e) (f)

Figure 9: Sample scenario segmentation (best viewed in color). Original images
are shown in the first row. The second row shows results using the Mean Shift
segmentation, the bottom row those using the table plane assumption (men-
tioned in Section 5.1). In the latter, (a) and (b) seem well segmented and in (c)
there is just some noise at the table edge. Problems arise for (d)-(f): (d) two
segments for the car, (e) one segment for two cans, and (f) the dog underneath
the giraffe is not detected.

is to associate attributes to it. The attributes can be of two kinds, intrinsic
and extrinsic. Intrinsic attributes are object-centered and thereby theoretically
viewpoint-independent (e.g. shape, color, mass). Extrinsic attributes describe
the viewpoint-dependent state of an object (e.g. position, orientation). In our
system, the basic intrinsic attributes of covered area, length (along the dominant
axis), width (perpendicular to the dominant axis) and height can be qualita-
tively determined for each segment. The discretization, i.e. if an object is small
or large in size, is adapted to our table-top manipulation scenario at hand. Ad-
ditionally, the centroid position of a segment is calculated. Its 3D point cloud
is kept available for the subsequent operations, e.g. pose estimation (as we will
show later in Section 6.2) or shape approximation and grasping, as we proposed
in (Huebner et al., 2008b).
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6 Object Manipulation

To achieve real cognitive capabilities, robotic systems have to be able to interact
with the surrounding. Grasping and manipulation of objects is one of the basic
building blocks of such a system. Compared to humans or primates, the ability
of today’s robotic grippers and hands is surprisingly limited and their dexterity
cannot be compared to human hand capabilities. Contemporary robotic hands
can grasp only a few objects in constricted poses with limited grasping postures
and positions.

Grasping, as a core cognitive capability, has also been posed as one of the
key factors of the evolution of the human brain. This is founded in convergent
findings of brain researchers. For example, 85% of axons in visual cortex do
not come from the retina, but other brain areas including what is thought to
be higher brain regions (Sigala and Logothetis, 2002). Lately, anatomical and
physiological investigations in non human primates, together with brain imag-
ing studies in humans, have identified important cortical pathways involved in
controlling visually guided prehension movements. In addition, experimental
investigations of prehension movements have begun to identify the sensorimo-
tor transformations and representations that underlie goal directed action. It
has been shown that attentional selection of the action related aspects of the
sensory information is of considerable importance for action control, (Castiello,
2005; Riddoch et al., 2001). When a grasp is being prepared, the visual system
provides information about the egocentric location of the object, its orientation,
form, size, and the relevant environment. Attention is particularly important for
creating a dynamic representation of peripersonal space relevant for the specific
tasks.

Regarding implementation in robots, grasp modeling and planning is diffi-
cult due to the large search space resulting from all possible hand configura-
tions, grasp types, and object properties that occur in regular environments.
The dominant approach to this problem has been the model based paradigm, in
which all the components of the problem (object, surfaces, contacts, forces) are
modeled according to physical laws. The research is then focused on grasp anal-
ysis, the study of the physical properties of a given grasp; and grasp synthesis,
the computation of grasps that meet certain desirable properties, (Bicchi and
Kumar, 2000; Coelho Jr. et al., 1998; Namiki et al., 2003; Platt Jr. et al., 2002;
Shimoga, 1996). More recently, it has been proposed to use vision as a solution
to obtain the lacking information about object shapes or to use contact infor-
mation to explore the object (Kragic et al., 2005; Morales et al., 2001; Platt
Jr. et al., 2002). Another trend has focused on the use of machine learning
approaches to determine the relevant features that indicate a successful grasp
(Coelho et al., 2001; Kamon et al., 1998; Morales et al., 2004). Finally, there
have been efforts to use human demonstrations for learning grasp tasks (Ekvall
and Kragic, 2004).

One of the unsolved problems in robot grasping is grasping of unknown ob-
jects in unstructured scenarios. For general settings, manipulation of unknown
objects has almost not been pursued in the literature and it is commonly as-
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Figure 10: Our robotic setup.

sumed that objects are easy to segment from the background. In the reminder
of this section, we concentrate on an example of how the presented visual sys-
tem can be used to provide grasping hypotheses of objects for which the iden-
tity/geometry is not known in advance. We acknowledge that this approach is
not valid in all situations, but it is one of the possible directions to pursue.

6.1 Experimental Platform

Our robotic setup consist of the Armar-III humanoid head described in Sec-
tion 2.1, a BH8-series BarrettHand mounted on a KUKA KR5 R850 6-DOF
robot, Fig. 10. The hand-yye calibration is performed using the classical ap-
proaches of (Shiu and Ahmad, 1989; Tsai and Lenz, 1988). The integration
of the different parts of this robotic platform is achieved using a modularized
software system; containing interacting modules for frame grabbing, camera
calibration, visual front end modules, head control, arm control, hand control
and sensory reading. Modules are implemented as CORBA processes that run
concurrently and generally on different machines.

6.2 Model-Free Manipulation

In general, we will not have a precise geometrical model for all objects the
robot is supposed manipulate. One a new object hypothesis is made based on
the visual modules described so far, different attributes may be attached to it.
These attributes are intrinsic (size, shape) and extrinsic (pose) and are stored
as a part of object representation for later indexing. We refer to (Huebner et al.,
2008a) for more details.
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Figure 11: Left) A left manipulation camera image, Middle) The corresponding
disparity map, Right) Segmentation from mean shift in 3D space.

Before the 3D position of an object, as well as its orientation can be de-
termined, it has to be segmented from its surrounding, which in our system is
done using a dense disparity map as explained in Section 5, and exemplified by
the images in Fig. 11. In the current system, we thus use the generated object
hypotheses in combination with the orientation estimation described below, to
apply top-grasps on the objects. Given the segmentation (with table-plane as-
sumption), and 3D coordinates, a plane is mapped to the 3D coordinates of all
points within the segmented object. Since only points oriented toward the cam-
eras are seen, the calculated orientation tends to be somewhat biased toward
fronto-parallel solutions. However, the BarrettHand is able to tolerate some
deviations from a perfectly estimated orientation. With the 3D points denoted
by Xi = (Xi, Yi, Zi)>, we iteratively determine the orientation of a dominating
plane using a robust M-estimator. The normal of the plane at iteration k is
given by the least eigenvector ck of

Ck =
∑

i

ωi,k(Xi − X̄k)(Xi − X̄k)>, (3)

where the weighted mean position is X̄k.
Points away from the surface are suppressed through the weights

ωi,k = t2/(t2 + δ2
i,k), (4)

where δi,k = c>k−1(Xi − X̄) is the distance from the point Xi to the plane of
the previous iteration. Here t is a constant reflecting the acceptable variation
in flatness of the surface and is set to about a centimeter. More details on the
implementation can be found in (Kragic et al., 2005).

7 Experimental Results

The following sections present several experiments related to the different as-
pects of the vision system. Section 7.1 presents qualitative and quantitative
experiments of the attention system, such as the weight optimization process
and the neural network learning. Section 7.2 presents results on the object
recognition module and Section 7.3 gives an example of the integrated modules
solving an object detection and manipulation task.
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7.1 Top-Down and Bottom-Up Attention

As described in Section 4, our attentional model consists of three main modules:

• The optimization of Top-down weights (offline);

• The Neural Network which associates context and weight (online); and

• The dynamical combination of SMBU and SMTD.

The experiments presented below are designed to show how these different mod-
ules affect the performance of the model. We present results from the experi-
ments on the contextual learning, since it is the most crucial part for our visual
search tasks. In Fig. 12 (top), the ten objects used in the experiments are shown.
These are all associated with a set of intrinsic attributes that consist of 3D size,
appearance, and feasible grasps. To represent the appearance, we use SIFT
descriptors (Lowe, 1999) and color histograms (Gevers and Smeulders, 1999).
Detection experiments using these can be found in Section 7.2. The graph in
Fig. 12 shows the Top-down (TD) weights deduced for the four cues from one
particular image. The cues with high weights for most materials are color and
texture. We can see that some cues are almost completely suppressed for several
objects. The resulting set of triplets {ROI, ω̄opt, ᾱ} were used for training the
neural networks.

7.1.1 Weight Optimization

The non-convex optimization, solved with the Levenberg-Marquardt method,
maximizes the saliency value SMTD within the RIO. RIO represents the desired
target object and the process of optimization is based on manipulating the
weight-vector ω̄. However, it is important to note that, even if one may reach a
global minimum in the weight optimization, it does not necessarily mean that
our Top-down map is “perfect”, as in Fig. 13. In other words, the Top-down map
may not rank the sought ROI the highest, in spite of eROI(ω̄) being at its global
minimum for that specific image and object. What this implies is that for some
objects min[eROI(ω̄opt)] 6= 0, or simply that our optimization method failed to
find a proper set of weights for the Top-down map at the desired location as,
for example, in Fig. 14.

Another observation worth mentioning is the fact that there may be several
global optima in weight space each resulting in different Top-down maps. For
example, even if there exists many linear independent weight vectors ω̄i for
which eROI(ω̄i) = 0, the Top-down maps SMTD(ω̄i) will in general be different
from one another (with different ECSI -measure).

7.1.2 Artificial Neural Network (ANN) Training

When performing the pattern association on the neural network that is equiv-
alent with context learning, it is important that the training data is “pure”.
This means that only training data that gives the best desired result should be
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Figure 12: A set of objects used for experiments (left) and the four TD-weights
ω̄I , ω̄O, ω̄C , ω̄T for each object in one particular image (right).

included. Thus only examples {ROI, ω̄opt, ᾱ} where eROI(ω̄opt) = 0 were used.
To examine the importance of our context information we created another set
of NNs trained without any input, i.e. simple pattern learning. For the NN
calculations this simply leads to an averaging network over the training set
{ROI, ω̄opt}. Quantitative results of these experiments are shown in Fig. 15.
There were from a training set of 96 images taken of 10 different objects on
4 different backgrounds (table-cloths) in two different illumination situations.
In each of the 96 images, the location of each of the 10 objects is annotated,
thus yielding 960 annotated locations (ROIs). See database online (Rasolzadeh,
2006). Results using optimized weights (last row) in some sense represent the
best performance possible, whereas searches using only the Bottom-up map per-
form the worst. One can also observe the effect of averaging (learning weights
without context) over a large set; you risk to always perform poor, whereas if
the set is smaller you may at least manage to perform well on the test samples
that resemble some few training samples. Each NN had the same structure,
based on 13 hidden neurons, and was trained using the same number of itera-
tions. Since all weights (11) can be affected by all context components (9) and
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Figure 13: An example of successful optimization; the ROI is marked in the
left image. Without optimization (unitary weights) the saliency map is purely
Bottom-up (middle). However, an optimization that minimizes eROI(ω̄) (in
this case to 0) the optimal weight vector ω̄opt clearly ranks the ROI as the best
hypothesis of the Top-down map (right).

Figure 14: An example of poor optimization; although the optimization may
reach a global minimum for eROI(ω̄) (in this case >0) the optimal weight vector
ω̄opt doesn’t rank the ROI as the best hypothesis of the Top-down map (right).

since each weight can be increased, decreased or neither, a minimum number of
12 hidden units is necessary for good learning.

7.2 Multi-Cue Object Detection and Hypotheses Valida-
tion

Relying on a single object detection method is difficult due to a large variety
of objects a robot is expected to manipulate is difficult. Using a combinations
of methods seems therefore as a suitable strategy. Without providing an exten-
sive study of all possible methods and combinations, we give an example that
shows the benefit of foveated segmentation and multiple cues object recognition.
For this purpose, we have selected two methods that show different strengths
and weaknesses. The first method is based on color histograms (Gevers and
Smeulders, 1999) and the other on scale and rotation invariant SIFT features
(Lowe, 1999). Histogram based methods are suited for both uniformly colored
and textured objects, but tend to be problematic when objects are not easy
to distinguish from the background. Feature based method, work well in clut-
tered environments, but break down when too few features are extracted due to
limited texture.

We selected a set of 24 objects, similar to those in Fig. 12. We performed
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Figure 15: The estimated accumulated probability of finding the ROI. The re-
sults were averaged over the entire test set of objects(ROI:s). BU is purely
Bottom-up search, NNi(ᾱ) is Top-down search guided by a Neural Network
(trained on i% of the training data available) choosing context dependent
weights, and NNi(.) is the same without any context information.

Figure 16: ROC curves for SIFT based (left), color histogram based (mid-
dle) and combined (right) object detection, with (solid) and without (dashed)
foveated segmentation.

886 object recognition tasks using images provided in real-time using the binoc-
ular attention system described in earlier sections. The ROC curves in Fig. 16
illustrate the recognition performance with and without segmentation for both
methods individually, as well as for a combination. The combination is done
using a binary operator that is learned using a support vector machine (SVM)
approach, (Björkman and Eklundh, 2006).

Since we are also interested in object manipulation, we combine the results
of appearance and shape recognition where the shape here is represented by
the width, breadth and height of the object. Thus, we bind the object iden-
tity to its known intrinsic attributes. This binding serves two purposes: i) it
boosts the recognition rate by disregarding more false positives, ii) it allows
for substitution of objects with other “visually similar” objects. This opens
up for broader Object-Action-Complex (OAC) categorization of objects and is
discussed further in (Huebner et al., 2008a) as in more detail in (Geib et al.,

26



2006; Kraft et al., 2008; Wörgötter et al., 2009). Since “action” here implies
possible (stable) grasps, this binding of identity with intrinsic attributes leads
to a scenario where objects that resemble each other (in appearance and shape)
may be grasped similarly.

7.3 Object Grasping: an Example

Several object grasping trials were performed and the overall performance of the
system was qualitatively evaluated in a tabletop scenario. The goal for the robot
was to find a desired object or object type and move it to a predefined location.
The first task is to find the object of interest. Here the attention system was
tuned by our NN, that selected appropriate weights for the SMTD based on
task (i.e. object) and context (scene). That gave us hypotheses of where the
object of interest might be. Fig. 17 shows two such examples of SMTD when
searching for the ’UncleBen’ object and the ’yellowCup’ object, respectively.
Given any of these hypotheses of location, a saccade was performed to redirect
the robot’s focus to that particular point in the environment. Consequently
the binocular system tried to fixate on that point by the fixation mechanisms
described earlier.

Next, a segmentation based on disparities, using the table-plane assumption
mentioned in Section 5.1, was made on the “thing” of interest. Segmentation
results can be viewed as the enclosed regions in the foveal views of the four
examples in Fig. 18. One consequence of real world conditions such as noise,
varying illumination etc., is that the segmentation are far from perfect. How-
ever, following the OAC-concept mentioned earlier, it is not our goal to gather
information about the state of the object solely through vision. Instead we want
to complement this sensory information through interactions with the object.
Therefore, this imperfection is of minor importance, if the grasping yields a
successful result.

Figure 17: Example with Top-down tuned saliency maps (UncleBens & yel-
lowCup)
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Figure 18: The visual front-end. The top row shows the wide-field view where
the visual search selection is made. The bottom row shows the foveal view in
which the binocular segmentation and recognition as well as validation is done.

If the segmented region contains the object sought for based on the appear-
ance and intrinsic attributes, the estimated position and orientation is sent to
the manipulator. The system then chooses an appropriate grasp based on the
intrinsic and extrinsic attributes of the object.

A couple of examples are shown in Fig. 19. The images show the scene before
(top rows) and during grasping (bottom rows). One interesting detail seen in
these images, is that when the gripper enters the foveal view the fixation-loop
adapts to its presence and tries to re-fixate on the point in the center of the
image, now being closer to the eyes.

One important detail about this particular implementation is that we have
here not included the Bottom-up cues (SMBU ) nor the temporal linear com-
bination of the two saliency maps. The reason for this is simply that we were
only interested in the Top-down performance of the system. The more dynamic
combination of the two saliency maps will be further examined in our future
work, where a more “natural” environment with clutter and distractors that
might be of importance, will be used.

Imperative in the context is that this is just one example to expose the
qualitative properties of the system. A potential quantitative and objective
evaluation can be difficult to perform for the complex real-world applications
that we are facing. Thus other than a separated part-wise evaluation of the
different components of this assembled system, we will not here present any
quantitative performance results. However, we do intend to create such evalu-
ation processes in the future to more exactly measure the performance of the
system as a whole.
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(a) Farin

(b) Tiger

(c) UncleBen

Figure 19: Finding and manipulating three different objects. In each of the
three examples, the top row shows the state of the system before grasping and
the bottom row shows the attempted grasp. Best viewed in color.
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8 Conclusions

The goal for the future development of intelligent, autonomous systems is to
equip them with the ability to achieve cognitive proficiency by acquiring new
knowledge through interaction with the environment and other agents, both
human and artificial. The base for acquiring new knowledge is the existence of
a strong perception-action components where flexible and robust sensing plays
a major role. Visual sensing has during the past few years proved to be the
sensory modality that offers the richest information about the environment.
Despite this it has typically been used for well defined, specific tasks for the
purpose of coping with the complexity and noise effects.

For the past several years, our work has concentrated on the development of
general systems and their applications in navigation and object manipulation
applications. The work presented here is in line with the development of such a
system, except that we have kept our attention on the design and development
of a vision system architecture that allows for more general solutions in service
robot settings.

Our system uses binocular cues extracted from a system that is based on two
sets of cameras: a wide field for attention and a foveal one for recognition and
manipulation. The calibration of the system is performed online and facilitates
the information transfer between the two sets of cameras. The importance
and role of Bottom-up and Top-down attention is also discussed and shown
how biased saliency for visual search tasks can be defined. Here, intensity,
color, orientation and texture cues facilitate the context learning problem. The
attentional system is then complemented with binocular information to make
the system more likely to pop out regions of interest suitable for manipulation.
We have also discussed how the attentional system can adapt to context changes.

In relation to manipulation, we show and discuss how the system can be used
for manipulation of objects for which geometrical model is not known in advance.
Here, the primary interest is to pick up an object and retrieve more information
about it by obtaining several new views. Finally, we present experimental results
of each, and give an example of how the system has been used in one of the
object pick-up scenarios. As mentioned, this was just one example to expose the
qualitative properties of the system. In real-world applications it is in general
difficult to perform extensive experiments thus evaluation different modules in a
number of benchmarking tasks may be one of the solutions. Current directions
in the area of robotics and different competitions of mobile and manipulation
settings are pointing in this direction. However, there are still very few systems
that use active vision.

Regarding the limitations of the presented systems we first need to touch
upon the issue of using four-camera setup. As we discussed, the ability to
use wide-field and narrow-field cameras is good but it is not necessary in all
applications. The area of robot navigation and localization, which is currently
going more into direction of using visual sensing, may not necessary require
such a setup. In addition, one may argue that if a camera system is placed
on a mobile base, the robot can move toward the object for achieving a better
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view of the object. Our opinion is still that changing between the cameras may
be faster and alleviates the need for obstacle avoidance and path planning that
moving a platform commonly requires.

Another aspect is the comparison with a zooming camera system. Our opin-
ion here is that changing zoom and fixating on a target results in loosing the
wide-field coverage that may be necessary when re-detection of objects for track-
ing is attempted.

An interesting research issue is related to further learning of object attributes
and affordances. The affordances need to be meaningful and related to tasks
a robot is expected to execute. In addition, using a interactive setup where a
robot can grasp objects, offers more freedom in terms of what attributes can be
verified, e.g. hollowness, or extracted, e.g. weight.

The current system does not perform any long-term scene representation,
i.e. there is no real memory in the system apart from storing the individual
object’s attributes. One aspect of future research is therefore to investigate
large-scale spatial/temporal representations of the environment. Some aspects
of our previous work in the area of Simultaneous Localization and Mapping as
well as semantic reasoning will be exploited here.

In the current work, we study the issue of calibration between the head cam-
eras but the hand-eye calibration is not really tackled. The system is complex
so that there are also neck motions that could be taken into account for online
learning of the hand-head-eye calibration. This process is also related to the
issue of smooth pursuit once moving objects are considered. An application
may be just the classical object tracking or observation of human activities. An
active vision system allows for fixation on parts of human that are important
for the task at hand: fixating on mouth when a human is peaking or fixating
on the hands when a human is manipulating objects. In this case, the interplay
between the saccades and the neck motions is an interesting problem and the
solution can be biologically motivated: fast movement of eyes followed by a
slower movement of the neck and the mutual compensation.

One of the aspects not studied is vision based closed-loop control of arm
motions: visual servoing. It would be interesting to explore, similarly to the
partitioned control approaches based on the integration of image based and
position based control, to what extent the change between using one of the four
cameras at the time can cope with the problems of singularities and loss of
features that are inherit to the image based and position based visual servoing
approaches.

The most immediate extension of the system is the integration of the object
attributes that are extracted based purely on visual input and the ones that are
further extracted once the object has been picked up by the robot arm. These
include both more detailed visual representation such as several views of the
unknown object and the attributes that are extracted by other sensors on the
robot: force-torque sensor in the wrist and haptic sensors on the fingers of the
robot hand.
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Appendix A: Index to Multimedia Extensions

The multimedia extensions to this article can be found online by following the
hyperlinks from www.ijrr.org.

Table 1: Index to Multimedia Extensions
Extension Media Type Description

1 Video The grasping experiment described in Section 7.3.
2 Images Large size multipage(6)-Tiff of Fig. 19(a).
3 Images Large size multipage(6)-Tiff of Fig. 19(b).
4 Images Large size multipage(6)-Tiff of Fig. 19(c).
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