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For when propositions are denied, there is an end of them, but if they
bee allowed, it requireth a new worke.

The Essais of Sr. Francis Bacon, London, 1612, same first page as in Modern
Developments in Fluid Dynamics edited by S. Goldstein, Oxford University Press,
1938).
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Preface

My two equations (the Euler equations) include not only all that has been
discovered by methods very different and for the most part slightly convinc-
ing, but also all that one could desire further in this science. (Euler 1752)

The first inquiry in the mind of the reader will probably be as to whether we
know just how birds fly and what poer they consume. The answer must, un-
fortunately, be that we as yet know very little about it. Here is a phenomenon
going on daily under our eyes, and it has not been reduced to the sway of
mathematical law.... Science has been awaiting the great physicist, who, like
Galileo or Newton, should bring order out of chaos in aerodynamics, and re-
duce its many anomalies to the rule of harmonious law. It is not impossible
that when that law is formulated all the discrepancies and apparent anoma-
lies which now appear, will be found easily explained and accounted for by
one simple general cause, which has been hitherto overloooked. (Octave
Chanute in Progress in Flying Machines 1891)

Only a very few comprehensive presentations of the scientific fundamentals
of the aerodynamics of the airplane have ever been published. (Schlichting-
Truckenbrodt in Aerodynamics of the Airplane 1979)

This book presents a New Theory of Flight describing in precise mathematical
terms for the first time, how the flow of air around a wing can generate a lift to
drag ratio larger than 10, which makes flight possible for birds and airplanes at
affordable power. The New Theory is a spin-off of the resolution of D’Alembert’s
Paradox of zero lift and drag of potential flow (stationary irrotational inviscid
incompressible flow) formulated in 1752, which was published by the authors
in 2008. D’Alembert’s Paradox paralyzed theoretical fluid mechanics from start
and the birth of modern fluid mechanics is traditionally counted as the resolution
presented in 1904 by Ludwig Prandtl coronating him to Father of Modern Fluid
Mechanics [144], an epithet asking for revision in the light of the New Theory.

3
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The book is a continuation of our previous book Computational Turbulent
Incompressible Flow as Vol 4 of Applied Mathematics Body&Soul, Springer 2007,
where a first version of the New Theory of Flight was presented together with a
resolution of D’Alembert’s Paradox.

The official doctrine or accepted truth of the fluid mechanics community is that
Prandtl resolved D’Alembert’s Paradox by suggesting that drag originates from a
thin boundary layer of slightly viscous flow resulting from imposing a no-slip
boundray condition, which discriminates potential flow satisfying a slip boundary
condition expressing zero skin friction.

The theory of flight filling text-books is a combination of (i) inviscid circu-
lation theory by Kutta-Zhukovsky for lift and (ii) viscous boundary layer theory
by Prandtl for drag and generation of circulation at a sharp trailing edge. This
theory, which we refer to as the Old Theory, is based on potential flow modified
by circulation to give physical results and possibly matched with boundary layer
solutions to satisfy no-slip boundary conditions.

Our resolution of D’Alembert’s Paradox shows that Prandtl’s resolution does
not describe correct physics, by showing that drag results from a specific sepa-
ration mechanism of inviscid flow satisfying a slip boundary condition without
boundary layer, described as three-dimensional (3d) rotational slip separation,
which is generated by a basic instability of potential flow.

The New Theory of Flight shows that also the large lift of a wing results from
3d rotational slip separation, which eliminates the high pressure at the trailing
edge of potential flow destroying lift generated at the leading edge.

More generally, The New Theory results from the discovery that slightly vis-
cous bluff body flow can be described as potential flow modified by 3d slip separa-
tion. Since both potential flow and 3d slip separation can be captured by analytical
mathematics, it is possible to grasp and understand main aspects of a partly turbu-
lent flow which has been beyond comprehension.

The New Theory is based on computational solution and mathematical anal-
ysis of the Navier-Stokes equations for slightly viscous incompressible flow with
slip boundary condition as a model of observed small skin friction, which accord-
ing to the above vision of Euler describes subsonic aerodynamics. Computation
and analysis show that solutions are not of the form postulated by the Old Theory,
which thus is an unphysical theory.

Computational aerodynamics has been hampered by a Prandtl dictate to use
no-slip boundary condition as the key to resolve D’Alembert’s Paradox. It gives
rise to thin boundary layers, which require impossible quadrillions of mesh points
for computational resolution. The insight that a slip boundary condition is a phys-
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ically correct boundary condition for slightly viscous flow, suddenly frees compu-
tational aerodynamics from a paralyzing spell.

The New Theory opens new possibilities of computational modeling of aero-
dynamics of flight and thus to innovative new design. We hope the reader after
digesting the book will share our conviction that the New Theory can be seen as
the dream of Euler come true, after 260 years. The book is controversial by ques-
tioning the bible of flight formulated by Kutta-Zhukovsky-Prandtl as the fathers
of modern aerodynamics.

We were first asked by Dover to publish the book, but Dover then backed
down apparently under pressure from the aerodynamics establishment to suppress
the book. We are happy that xxxx now gives voice to new ideas.

Stockholm in November 2012, JH, JJ and CJ

This book is dedicated to the memory of Otto Lilienthal (1848-1896): Glider King
and Father of Flight and author of Birdflight as the Basis of Aviation.
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Figure 1: Otto Lilienthal (1848-1896) admired on one of his many gliding flights
before the glider stalled at 15 meters above ground on August 9 1896, lost lift
and crashed. Lilienthal’s last words to his brother Gustav were ”sacrifices must
be made.”.

The employment of curved surfaces in connection with light explosion mo-
tors has produced good results; but it would be a mistake to bo satisfied with
those results, and to consider that the last word has been spoken on the de-
velopment of aviation. As yet, strong winds are the terror of all aviators, and
to the whims of the wind have been added the whims of the motor. We have
not yet succeeded in taming the wind and utilizing its wild forces. We have
to continue our investigations; experiments guided by theoretical considera-
tions will have to clear up many problems before we can claim victory over
the air. (Birdflight as the Basis of Aviation by Otto and Gustav Lilienthal,
1891)
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Short Story of Flight
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Chapter 1

From Old to New Theory of Flight

We call it theory when we know much about something but nothing works,
and practice when everything works but nobody knows why. (Einstein)

Of all the forces of Nature, I would think the wind contains the greatest
amount of power. (Abraham Lincoln)

Isn’t it astonishing that all these secrets have been preserved for so many
years just so we could discover them! (Orville Wright)

Few physical principles have ever been explained as poorly as the mecha-
nism of lift. ([90]).

1.1 What Keeps Planes in the Air?
What keeps a bird or airplane in the air? How can the flow of air around a wing
generate large lift L (balancing gravitation) at small drag D (requiring forward
thrust) with a lift to drag ratio L

D
ranging from 10 for short thick wings to 70 for

the long thin wings of extreme gliders, which allows flying at affordable power for
both birds and airplanes? How can an albatross glide 50 meters in still air upon
losing 1 meter in altitude, with apparently L

D
= 50?

Somehow evolution over millions of years has designed birds so that they can
fly by their own muscle power. The dream of human-powered flight came true
in 1977 on 60 m2 wings generating a lift of 100 kp at a thrust of 5 kp (thus with
L
D

= 20) at a speed of 5m/s supplied by a 25 kpm/s = 1
3
hp human powered

pedal propeller as shown in Fig. 1.2.

9



10 CHAPTER 1. FROM OLD TO NEW THEORY OF FLIGHT

Figure 1.1: Left: Lift L balancing gravity and drag D balanced by thrust. Right:
Forces on an airplane wing (section) from the flow of air around the wing. How
is it possible that L

D
> 10? Notice the shape of the wing section with a rounded

leading edge meeting to flow and a more or less sharp trailing edge where the flow
is leaving the wing. Notice the angle of attack or tilting of the wing with respect
to incoming horisontal flow of air.

Figure 1.2: The Gossamer Condor constructed by Paul MacCready (wing area of
60 m2 and weight of 32 kg) flew the first figure-eight, a distance of 2.172 meters
winning the first Kremer prize of 50.000 pounds offered by the industrialist Henry
Kremer in 1959.
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The era of engine powered human flight was initiated on December 17 1903
by Wilbur and Orville Wright, who managed to get their 12hp Flyer off ground
in controled flight lasting 12 seconds, with Orville winning the bet to be pilot.
Like the birds, Orville and Wilbur did not have to really understand why what
they managed to do was possible; they just managed somehow to do it by trial and
error, building on the careful studies of bird wings by Lilienthal from the 1890s.
Orville and Wilbur had computed that with L

D
= 10 and a velocity of 10 meter per

second, 4 effective hp would get the 300 kg of the Flyer off ground at an effective
thrust of 30 kp, and it worked!

Charles Lindberg crossed the Atlantic in 1927 at a speed of 50 m/s in his 2000
kg Spirit of St Louis at an effective engine thrust of 150 kp (with L

D
= 2000/150 ≈

13) from 100hp.
A 400 ton Airbus 340 crusies at maximal speed of 900 km/h with a wing lift

of (about) 1 ton/m2 and 66.000hp engine thrust of 20 tons with L
D

= 20. The
plane takes off at 300 km/h after accelerating during 35 seconds at a maximal
thrust of 100 tons from 4 engines.

Figure 1.3: How can a 560 ton Airbus380 take off?

How is this possible? Is it a miracle? Is there a theory of flight and what does
it say? What is the dependence of lift and drag on wing form, wing area, angle
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of attack (the tilting of the wing in the flow direction) and speed? Can engineers
compute the distribution of forces on an Airbus 380 during take-off and landing
using mathematics and computers, or is model testing in wind tunnels the only
way to figure out if a new design will work? Let’s see what media says.

New York Times informs us in 2003 [130] under the slightly scaring headline
STAYING ALOFT: What Does Keep Them Up There?:

• To those who fear flying, it is probably disconcerting that physicists and
aeronautical engineers still passionately debate the fundamental issue un-
derlying this endeavor: what keeps planes in the air?

The authority NASA dismisses on its website [117] all popular science theories
for lift, including your favorite one, as being incorrect, but refrains from present-
ing any theory claimed to be correct and ends without helping the curious with:
To truly understand the details of the generation of lift, one has to have a good
working knowledge of the Euler Equations.

Figure 1.4: Tautological explanation of the flight of The Flyer by NASA: There is
upward lift on the wing from the air as a reaction to a downward push on the air
from the wing.

How can that be? Is there no answer to give a curious child or someone with
fear of flying? No, not according to Airfoil Lifting Force: Misconceptions in K-6
Textbooks [91]:
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• How do airplane wings really work? Amazingly enough, this question is
still argued in many places, from elementary school classrooms all the way
up to major pilot schools, and even in the engineering departments of ma-
jor aircraft companies. This is unexpected, since we would assume that
aircraft physics was completely explored early this century. Obviously the
answers must be spelled out in detail in numerous old dusty aerodynamics
texts. However, this is not quite the case. Those old texts contain the details
of the math, but it’s the interpretation of the math that causes the contro-
versy. There is an ongoing Religious War over both the way we should
understand the functioning of wings, and over the way we should explain
them in children’s textbooks.

Science is about understanding and understanding flight is to be able to explain
from the principles of fluid mechanics how a wing can generate large lift at small
drag. Is it possible that NASA cannot explain what keeps planes in the air? Yes, it
is possible: birds fly without explaining anything. Is it not only possible but even
true that NASA does not know? We leave this question to the reader to answer
after digesting the book.

1.2 Basic Lift and Drag Formula
The lift L and drag D of a wing scales with the wing area A, the air density ρ and
the square of the velocity V according to the basic formula

L = CLA
1

2
ρV 2, D = CDA

1

2
ρV 2 (1.1)

where CL is a lift coefficient and CD a drag coefficient characteristic of the wing
form. The formulas (1.1) can be derived by dimensional analysis from the Euler
equations, and thus must have been understood in principle already by Euler. The
density of air at sea level is 1.2 kg/m3 and at 1500 meters 1.0 kg/m3. Below we
normally set ρ = 1.

Lilienthal found experimentally that for arched wings with a camber of 1
12

,
CL ≈ 0.1α, where α is the angle of attack of the wing up to a maximal angle of
15− 20 degrees before stall, with thus a maximal CL ≈ 1.5− 2, which describes
common wings as shown in Fig. 1.5.

Lilienthal also determined CD experimentally from his many gliding flights
and found L

D
= CL

CD
= 10 − 15 for larger angles of attack. For common wings,
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experiments show CD = 0.02+ 0.001α2 which gives a maximal L
D
= 10− 15 for

α = 2− 12, see Fig. 1.5.
Lilienthal computed the power required to carry 100 kg through air of unit den-

sity at a speed of 10m/s and thrust of 5 kp, with thus L
D
= 20, to be 50 kpm/s =

2
3
hp. With CL = 1.5 the basic formula gave a wing area of 14m2. The computa-

tion made Lilienthal believe in human flight, but lacking a light weight engine he
had to restrict himself to gliding flight.

One may compare with the data for the Gossamer Condor with a half the speed
(5ms), half the power (1

3
hp) and 4 times as large wing area (60m2).

Figure 1.5: Lift and drag coefficients CL and CD, and lift to drag ratio L
D

= CL

CD

for a typical wing, as functions of the angle of attack.

1.3 Basic Objective of Theory of Flight
We formulate as a basic objective of a theory of flight to explain in mathematical
terms, experimental observations for common wings of:

1. L
D
= 10− 50,

2. CL ≈ 0.1α and CD ≈ 0.02 + 0.001α2 up to stall at α ≈ 15− 20 degrees.

The wider objective concerns mathematical modeling of the full aerodynamics of
real airplanes and flyers including stall and extreme dynamics.
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1.4 Text Book Theory of Flight
Text books tell a different story than New York Times and NASA, by claiming:
Yes, there is a solid mathematical theory of flight explaining what keeps planes in
the air, which was developed 100 years ago by

• German physicist Ludwig Prandtl, named Father of Modern Fluid Mechan-
ics,

• German mathematician Martin Kutta,

• Russian mathematician Nikolay Zhukovsky, named Father of Russian Avia-
tion.

These fathers suggested in 1904 that both lift and drag of a wing result from
an effect of viscosity retarding fluid particles in a thin boundary layer from free
stream to zero no-slip relative velocity on the wing surface, capable of changing
the global features of the flow from the

• zero lift and drag of idealized unphysical inviscid laminar potential flow,

to the

• large lift and small drag of real physical slightly viscous turbulent flow.

The unphysical feature of inviscid laminar potential flow of having zero drag and
lift, making flight in particular impossible, named D’Alembert’s Paradox formu-
lated in 1752, was thus claimed by Prandtl in 1904 to be a result of allowing
fluid particles to glide or slip on the wing surface without friction. Prandtl thus
suggested that drag was caused by a no-slip boundary layer with fluid particles
sticking to the surface. Kutta and Zhukovsky complemented by obtaining lift by
modifying potential flow with a flow circulating around the wing section and thus
obtained lift from circulation, assuming that the circulation somehow was created
by the boundary layer.

This became the basic postulate of modern fluid mechanics: In mathematical
modeling of fluid flow it is necessary to use a no-slip boundary condition accom-
panied by a viscous boundary layer: Both lift and drag originate from the bound-
ary layer; without a boundary layer there will be no lift and no drag. The current
text book theory of flight is basically a 100 year old Kutta-Zhukovsky-Prandtl the-
ory with Kutta-Zhukovsky supplying lift (without drag) and Prandtl drag (without
lift).
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Figure 1.6: The Rutan Model 76 Voyager designed by Burt Rutan was the first
aircraft to fly around the world without stopping or refueling, piloted by Dick
Rutan and Jeana Yeager in 1986. The Voyager covered the 40.212 km round the
globe in about 216 hours at a maximal speeed of 196 km per hour. The Voyager
had L

D
= 32 and a take-off weight of 73% fuel.

Prandtl used a no-slip boundary condition in 1904 to handle D’Alembert’s
Paradox, which had paralyzed theoretical fluid mechanics from start, but in doing
so Prandtl sent fluid mechanics from an 18th century paralysis of zero lift and
drag into a 20th and even 21st century computational mathematics impossibility
of resolving very thin boundary layers.

1.5 New Theory of Flight
In this book we present a mathematical theory of flight based on computing and
analyzing turbulent solutions of the incompressible Navier-Stokes equations for
slightly viscous flow subject to a slip boundary condition. We thus break the no-
slip spell of Prandtl and we do this by a new resolution of D’Alembert’s Paradox
identifying the unphysical aspect of potential flow to be instability rather than
violation of no-slip, understanding that slip correctly models the very small skin
friction of slightly viscous flow.

We focus on subsonic flight on fixed wings at speeds well below the speed of
sound as the most basic, mysterious and elegant form of flight practiced in gliding
flight by birds and gliders, propeller airplanes and jet airplanes in take-off and
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Figure 1.7: Prandtl formulating the credo of modern fluid dynamics in 1904: I
have now set myself the task to investigate systematically the laws of motion of a
fluid whose viscosity is assumed to be very small...A very satisfactory explanation
of the physical process in the boundary layer [Grenz-schicht] between a fluid and
a solid body could be obtained by the hypothesis of an adhesion of the fluid to the
walls, that is, by the hypothesis of a zero relative velocity between fluid and wall..

landing, in which case the flow of air around the wings is nearly incompressible.
To fly at supersonic speed like a jet driven rocket in compressible flow is not

gliding flight and no aerodynamics wonder. But like an albatross stay gliding
for days without flapping the wings, is a miracle, and this is the miracle we will
explain. Not by reference to exotic difficult mathematics which nobody can un-
derstand and which does not capture physics, but by exhibiting certain fundamen-
tal mathematical aspects of the physics of slightly viscous incompressible flow,
which can be grasped without any tricky physics or mathematics.

We will thus identify the primary mechanism for the generation of substantial
lift at the expense of small drag of a wing, and discover it to be fundamentally
different from the classical circulation theory of lift by Kutta-Zhukovsky and the
boundary layer separation theory of drag by Prandtl.

The essence of the new flight theory can be grasped from Fig. 1.8 depicting
the following crucial features of the pressure distribution around a section of a
wing with (H) indicating high pressure and (L) low pressure:

• Left: Potential flow with leading edge positive lift from (H) on lower wing
surface and (L) on upper, cancelled by trailing edge negative lift from (L)
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Figure 1.8: Correct explanation of lift by perturbation of potential flow (left) at
separation from physical low-pressure turbulent counter-rotating rolls (middle)
into 3d rotational slip separation changing the pressure and velocity at the trailing
edge into a flow with downwash and lift (right).

on lower and (H) on upper surface, giving zero lift. Potential flow does
not cause downwash redirecting the flow downwards and thus no lift by
reaction.

• Middle: Instability at trailing edge separation with low pressure swirling
flow generating 3d ( three-dimensional) rotational slip separation.

• Right: The resulting flow as potential flow modified by 3d rotational sepa-
ration at the trailing edge at background pressure without (H) and (L), thus
with substantial lift from (H) and (L) at the leading edge, accompanied by
downwash redirecting incoming flow downwards.

The reality of 3d rotational slip separation at the trailing edge is shown in Fig.
1.9 by traces of ink ejected on the upper wing surface from an experiment in the
Dryden water channel.

The rest of the book can be seen as an expansion and explanation of this picture
with the following key questions to be answered:

• Why does the air stick to the upper wing surface without separation and thus
cause lift by low-pressure suction?

• Why does the air not turn around the trailing edge like potential flow de-
stroying lift?

We shall see that the miracle of gliding flight results from a happy combination of
all of the following features of subsonic flow of air around a wing:

1. nearly incompressible with velocity well below the speed of sound,

2. sufficiently small viscosity, sufficient speed and size of the wing,
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Figure 1.9: The flow around an airplane is visualized in the Dryden water tunnel
by emission of dye of different colors from different points on the airplane surface.
Notice in particular the trace of the dye ejected on top of the wing follwing a
streamline without rotation until the trailing edge where rolls of swirling flow are
generated, as a characteristic of 3d rotational slip separation.

3. 3d rotational slip separation at the trailing edge.

The requirement 2 can be expressed as a requirement of a sufficiently large Reynolds
number Re = UL

ν
, where U is a characteristic fluid velocity (10 − 100m/s), L a

characteristic length scale (1− 10m) and ν the (kinematic) viscosity (about 10−5

for air).
Experiments recorded in [121] show that the lift to drag ratio L

D
of a typ-

ical wing sharply increases from about 2 to 20 as a result of decreasing drag
and increasing lift, as Re increases beyond a critical Reynolds number Recrit ≈
0.5×106. The drag reduction is in the literature described as drag crisis reflecting
that it is poorly explained by Prandtl’s theory. The increase of the lift to drag ratio
with a factor 10 is what makes gliding flight possible, and can be seen as a form
of miracle as any factor 10 above normality. This book presents the mathematics
of this miracle, thereby turning it into science.

As a consequence, gliding flight in syrup is not possible (because of too large
viscosity) and neither in two space dimensions or 2d (because the 3d separation is
missing). We shall see that the classical flight theory of Kutta-Zhukovsky-Prandtl
violates 2 and 3: Prandtl talks about a viscous flow, and Kutta-Zhukovsky about
2d flow.
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Figure 1.10: Illustration of the drag crisis in the flow around a sphere as the
Reynolds numberRe passesRecrit ≈ 0.5×106, with delayed separation, decreas-
ing wake and reduction of drag (coefficient) from 0.5 to 0.2. Notice the separation
at the crest for Re < Recrit with large drag and and the structure of the wake flow
for Re > Recrit with four counter-rotating rolls of swirling flow resulting from 3d
rotational slip separation or elegant separation.

The result is that the flight theory of Kutta-Zhukovsky-Prandtl does not de-
scribe reality. Aviation developed despite theory and not with the help of theory,
just like real life is made possible by making a clear distinction from theoretical
religious scholastics. To say one thing and do another may be a necessity of life
including religion and politics, but is not the scientific method.

1.6 3d Rotational Separation: Elegant
We emphasize that a crucial element of the New Theory is

• 3d rotational slip separation,

to be described and studied in detail below, which makes it possible for the flow
to leave the wing without the pressure rise of non-physical 2d potential flow sep-
aration destroying the lift created by suction over the crest of the wing.

The 3d rotational slip separation pattern is similar to the elegant swirling mo-
tion of the hand used by noble men at the royal court when backwards leaving
from an audience with the king.

1.7 Elegant Separation: Minimal Stagnation
We show in Part IV that irrotational potential flow separation is unstable because
of opposing flow retardation and therefore changes into more stable (or quasi-
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stable) 3d rotational separation, with the unstable retardation to stagnation of po-
tential flow being replaced by more stable rotating transversally accelerating flow.

It is thus possible to see potential flow separation as maximally unstable by
maximal retardation/stagnation and 3d rotational separation as minimally unsta-
ble by minimal retardation/stagnation and as such the configuration chosen by the
real flow. Elegant separation can therefore be characterized by minimal retarda-
tion/stagnation as ”effortless” separation under small pressure gradients.

On the other hand, potential flow attachment is quasi-stable because the retar-
dation is caused by the body and not by opposing flow, and thus the real flow is
similar to potential flow in attachement and beyond until separation, as discussed
in Chapter 7 and analyzed in Part IV.

1.8 Bluff Body Flow: Computable Understandable
The key to unlock the Secret of Flight is the discovery that slightly viscous bluff
body flow in general, including the flow around a wing, can be described as

• potential flow modified by 3d rotational slip separation,

which can be seen as a summary of this book. This means that slightly viscous
bluff body flow, although partly turbulent, is found to have a large scale structure
determining large scale mean values like lift and drag, which can been captured
by solving the Navier-Stokes equations with slip using millions of mesh points
in Large Eddy Simulation (LES) without resort to turbulence models. Slightly
viscous turbulent bluff body flow is thus discovered to be both computable and
understandable.

1.9 From Symmetric to Unsymmetric Separation
The lift formula CL ∼ α with lift proportional to the angle of attack α can be un-
derstood as an effect of unsymmetric attachment-separation in real flow with 3d
rotational separation resulting in downwash, to be compared with zero lift of the
symmetrical attachment-separation of potential flow without downwash, as illus-
trated in Fig. 1.11. Since the downwash in real flow appears to be proportional to
α, it is natural to expect lift to scale the same way, which is also what is observed.
On the other hand, we may expect drag to change little for small angles of attack
and thus have a quadratic dependence on α, as observed. The basic objective of



22 CHAPTER 1. FROM OLD TO NEW THEORY OF FLIGHT

Figure 1.11: Left: Potential flow around flat plate with symmetric attachment-
separation without lift and downwash. Middle: Real flow with unsymmetric
attachment-separation with positive lift and downwash. Right: Unsymmetric sep-
aration of rotating ball creating the lift force of the Magnus effect.

showing that CL = 0.1α and CD = 0.02 + 0.001α2, thus may seem intuitively
reasonable and thus potentially possible to rationalize by mathematical analysis.

1.10 From Old Theory to New Theory
We will refer the the text-book theory since 100 years of the Kutta-Zhukovsky-
Prandtl theory as the Old Theory of Flight and our new theory as the New Theory
of Flight. The full picture includes both the Old and New Theory and a compari-
son between the two. To fully understand why the New Theory is correct, requires
(from a historical perspective) understanding why the Old Theory is incorrect. In
short, the Old Theory is incorrect because it is a 2d theory which does not describe
actual full 3d physics, and the New Theory is correct because it describes actual
full 3d physics.

1.11 Butterfly in Brazil and Tornado in Texas
How can you prove that a butterfly in the Amazonas cannot set off a Tornado in
Texas? Well, take away the butterfly and notice that tornados anyway develop.
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We shall use the same strategy to show that lift and drag of a wing do not
emanate from any boundary layer: In computational simulation we eliminate the
boundary layer by using a slip boundary condition, and we find that the computed
flow and lift and drag fit very well with experimental observation.

Figure 1.12: Tornados in Texas are not caused by butterflies in Brazil.

1.12 Lift and Drag without Boundary Layer

We thus show that Prandtl’s explanation is insufficient by computationally solv-
ing the Navier-Stokes equations with slip boundary condition, which eliminates
the boundary layer, and observing turbulent solutions with lift and drag in accor-
dance with observation. We thus observe tornados without any butterfly: Lift and
drag do not originate from a thin boundary layer. The central thesis of Prandtl un-
derlying modern fluid mechanics cannot be correct. As a consequence much of the
material propagated in text books of fluid mechanics needs to be fundamentally
revised.
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Figure 1.13: Lift and drag of a wing are not caused by a thin boundary layer.

1.13 Why Slip is a Physical Boundary Condition
The slip boundary condition models the small boundary friction force of slightly
viscous flow, understanding that Navier-Stokes equations can be solved with (small)
friction force boundary conditions or no-slip velocity boundary conditions, and
that the former choice is computationally more advantageous since there is no
no-slip boundary layer to resolve. We will show that this allows accurate compu-
tation of both lift and drag for complex geometries using millions of mesh point,
which is possible today, instead of the quadrillions required for boundary layer
resolution, which is way beyond the capacity of forseeable computers.

1.14 From Unphysical 2d model to Physical 3d Model
The classical Kutta-Zhukowsky circulation theory for lift is a 2d theory over a
section of a long wing, as well as Prandtl’s boundary layer theory for drag. The
Old Theory is thus essentially a 2d theory, although Prandtl developed a version
with some 3d aspects. The New Theory is based on solving the Navier-Stokes
equations in 3d and shows that the generation of both lift and drag of a wing is a
full 3d phenomenon, which cannot be captured in a 2d based physical model. The
Old Theory is thus a mathematical theory which does not describe actual physics
and thus is unphysical. This is acknowledged in text-book presentations of the
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Old Theory using phrases such as ”the real flow can be represented (or viewed) as
2d potential flow augmented by 2d circulation” thus admitting that the real flow is
not really of this form, while seeking justification by arguing that ”all models are
models”.

1.15 Flight and Turbulence

The reason it has taken so long time to develop a theory of flight describing the
real physics, is that the flow of air around a wing is partly turbulent, and turbu-
lence has been a main unresolved mystery of continuum mechanics: The complex
and seemingly chaotic nature of 3d turbulent flow defies description by analytical
mathematics.

But today computers are powerful enough to allow computational simulation
of 3d turbulent flow which opens to demystify turbulence and thereby demystify
flight. In [103] we demonstrated the new possibilties of both simulating and un-
derstanding turbulence and thus opened to a new theory of flight. The central
experience is that turbulent flow can be simulated without resolving the physical-
lly smallest scales, which allows accurate prediction of mean-value outputs such
as lift and drag with today affordable computer power.

Turbulent flow can be seen as Natures way of handling an intrinsic instability
of laminar slightly viscous flow with the fluid constantly seeking a more stable
configuration without ever succeeding and thus fluctuating on a range of scales
from large scale more or less organized motion to smaller scale fully chaotic mo-
tion. 3d rotational slip separation represents a large scale quasi-stable flow, which
reflects a basic instability of potential flow at separation and thus can be captured
analytically into an understandable feature of turbulent flow.

Zero lift and drag potential flow around a wing thus develops into a flow which
at the trailing edge of the wing separates into turbulent flow which has big lift and
small drag. Without turbulence it would be impossible to fly.

Turbulence consumes energy by internal friction or viscous dissipation into
heat and thus flying requires input of energy, from flapping wings, propellers or
jet engine or from upwinds for powerless gliders.

Turbulence is 3d phenomenon, which makes also flying a 3d phenomenon.
The classical flight theories of Kutta-Zhukovsky-Prandtl are 2d and do not de-
scribe real 3d flight.
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Figure 1.14: Turbulent flow depicted by Da Vinci. This picture properly viewed
reveals the secret of flight.
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1.16 Compute-Analyze-Understand

This book is based on computing solutions to the incompressible Navier-Stokes
equations with slip using a stabilized finite element method with automatic a pos-
teriori error control in mean-value outputs such as lift and drag. The error control
is based on duality measuring output sensitivity with respect to resolution of the
Navier-Stokes equations in the fluid domain and the boundary conditions. This is
a form of Direct Numerical Simulation DNS without user-specified turbulence or
wall model made possible by using slip as a simple wall model and finite element
stabilization as automatic turbulence model.

Computed solutions thus can be guaranteed to give correct output information
(up to a tolerance depending on the computational work) and thereby offer a dig-
ital fluids laboratory or wind tunnel. This book shows that the secret of flight is
revealed by combining the experimental facility of the digital laboratory with a
bit of mathematical analysis. The secret revealed shows the ingenious design of a
wing generating large lift at small drag, which was somehow first discovered by
Nature itself and then copied by man.

1.17 Computation vs Experiments

In Fig. 1.16 we show computed lift and drag (coefficients) CL and CD of a
long NACA012 wing under increasing angles of attack from cruising over take-
off/landing to stall, obtained by solving the Navier-Stokes equations using auto-
matically adapted meshes with less than 106 mesh points (blue curve) compared to
measured values in wind tunnel experiments. The computational values lie within
the range of the experimental values and thus evidently captures reality.

The message is that it is possible to compute the lift and drag of an airplane
in the whole range of angles of attack, from small angles of stationary cruising at
high speed, to large angles close to stall in the dynamics of start and landing at
low speed. This is a happy new message, since state-of-the-art tells [59] that 50
years of doubled computer power every 18 months according to Moore’s Law, are
needed to make computation of lift and drag of an airplane possible by solving the
Navier-Stokes equations.

We hope this gives the reader motivation to continue reading to discover how
a wing generates large lift at small drag, the mystery of flight.
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Figure 1.15: Evidence that computation of lift and drag coefficients CL and CD

of a wing is possible from small angles of attack at crusing to large angles at start
and landing: The blue curve shows computed coefficients by solving the Navier-
Stokes equations by Unicorn [141] compared to different wind tunnel experiments
by (Gregory/O’Reilly and) Ladson [143].
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1.18 Aerodynamics as Navier-Stokes Solutions
Fluid mechanics is well described by the Navier-Stokes equations expressing con-
servation of mass, momentum and energy, but there are two basic issues to han-
dle: The viscosity of the fluid is needed as input and the equations in general
have turbulent solutions defying analytical description and thus have to be solved
computationally using computers.

In aerodynamics or fluid dynamics of air with small viscosity, these issues
come together in a fortunate way: The precise value of the small viscosity shows
to be largely irrelevant as concerns macroscopic quantities such as lift and drag,
and the turbulent solutions always appearing in slightly viscous flow, show to be
computable.

Figure 1.16: Modern hang glider with L
D
= 15− 20 and CL ≈ 0.1α.

We shall find that there is a catch here, which we will adress shortly, but for-
tunately a catch which can be overcome, because in Einstein’s words:

• Subtle is the Lord, but malicious He is not.

This means that the secret of flight can be uncovered by solving the Navier-Stokes
equations and analyzing the computed solutions. We thus have at our disposal
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Figure 1.17: Modern paraglider with L
D
≈ 10 and CL ≈ 0.1α.

a complete fluid mechanics laboratory where we can study every aspect of the
flow around a wing, or an entire airplane in the critical dynamics of take-off and
landing, and also the flapping flight of bird. Nature can hide its secrets in real
analog form, but not in digital simulation. This leads to the program of this book:

• Solve the Navier-Stokes equations computationally.

• Study the computed turbulent solutions.

• Discover the mechanism creating large lift at small drag.

• Formalize the discovery into a new understandable theory of flight captured
by analytical mathematics.

1.19 Flight Control
The motion of an airplane is controled by

• roll: longitudinal axis: lateral stability: ailerons,



1.19. FLIGHT CONTROL 31

• yaw: vertical axis: directional stability: rudder,

• yaw: vertical axis: directional stability: spoilers,

• pitch: lateral axis: longitudinal stability: elevators,

• thrust: throttle,

as illustrated in Figs 1.18 and 1.19. The vertical motion is controled by pitch
and speed through elevator and throttle and the direction of horisontal motion is
controled by ailerons, spoilers and rudder. Turning is made by tilting the airplane
(banking) using the ailerons to give different lift on the wings, which gives a
sideway force as a horisontal componenet of the lift. The two ailerons are typically
interconnected so that one goes down when the other goes up: the down-going
aileron increases the lift on its wing while the up-going aileron reduces the lift on
its wing, producing a rolling moment about the aircraft’s longitudinal axis.

The banking is combined with change of direction by the rudder to keep the
nose in the direction of motion, to avoid yaw.

Figure 1.18: Basic mechanisms for control of lateral, longitudinal and directional
stability.
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Figure 1.19: The motion of an airplane is controled by ailerions, rudder, elevators
and spoilers.

1.20 Flight Simulator based on New Theory of Flight

Computational solution of Navier-Stokes/slip/FSI allows direct simulation of flight
stability under actions of ailerons, spoilers, rudder and elevators. This open to
constructing a new generation of flight simulator offering realistic simulation of
flight under exterme conditions as a new tool for pilot training.

The Wright brothers used variable warping of the wings to maintain lateral
stability in their Flyer, instead of ailerons which were patented in 1868 by the
English inventor Matthew Piers Watt Boulton but did come into use until 1908
when the U.S: inventor and busineman Glenn Curtiss flew an aileron-controlled
aircraft.

For longitudinal stability the Flyer had a wing (canard) mounted ahead of the
main wings, instead of the conventional tail wing mounted after, which gave an
inherently unstable flight which could only be controled by the Wright brothers.
The Wright brothers gave up the canard in later designs.

The course of the flight up and down was exceedingly erratic, partly due to
the irregularity of the air, and partly to lack of experience in handling this
machine. The control of the front rudder was difficult on account of its being
balanced too near the center...(Orville Wright)
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Figure 1.20: A simple control system showing the effect of the steering pin
on ailerons and rudder in sideways motion, and on elevator in motion forward-
backward.
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Let us hope that the advent of a successful flying machine, now only dimly
foreseen and nevertheless thought to be possible, will bring nothing but good
into the world; that it shall abridge distance, make all parts of the globe ac-
cessible, bring men into closer relation with each other, advance civilization,
and hasten the promised era in which there shall be nothing but peace and
good-will among all men. (Octave Chanute)



Chapter 2

Short History of Aviation

I feel perfectly confident, however, that this noble art will soon be brought
home to man’s general convenience, and that we shall be able to transport
ourselves and families, and their goods and chattels, more securely by air
than by water, and with a velocity of from 20 to 100 miles per hour. (George
Cayley 1809)

During the summers of 1891 and 1892, Mr Lilienthal of Berlin has been
gliding downward through the air, almost every Sunday and sometimes on
weekdays, upon an aeroplane with which he expects eventually to imitate
the soaring of the birds, when he has learned to manage it safely. (Octave
Chanute)

If birds can glide for long periods of time, then why cant I ? (Orville Wright)

Age appears to be best in four things; old wood best to burn, old wine to
drink, old friends to trust, and old authors to read. (Francis Bacon)

2.1 Leonardo da Vinci, Newton and d’Alembert
Is it conceivable that with proper mathematics, humans would have been flying,
at least gliders (without engine), several hundred years before this actually came
true in the late 19th century? Well, let’s face some facts.

The idea of flying, like the birds, goes back at least to Greek mythology about
the inventor and master craftsman Deadalus, who built wings for himself and his
son Icarus in order to escape from imprisonment in the Labyrinth of Knossos on
the island of Crete.

35
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Leonardo da Vinci made impressive and comprehensive investigations into
aerodynamics collected into his Codex on the Flight of Birds from 1505, and de-
signed a large variety of devices for muscle-powered human flight. After extensive
testing da Vinci concluded that even if both arms and legs got involved through
elaborate mechanics, human power was insufficient to get off the ground.

Newton confirmed these experiences by calculating the lift of a tilted flat plate,
representing a wing, in a horisontal stream of “air particles” hitting the plate from
below, to be proportional to the sine-squared of the angle of attack, about 6 times
too small.

Newton’s result was further supported by D’Alembert’s Paradox predicting
that both the drag and the lift of a body traveling through air would be close to
zero, clearly at variance with many early observations of birds flying long dis-
tances even without flapping their wings. d’Alembert built his computations of
drag (and lift) on particular solutions to the Euler equations referred to as po-
tential solutions, with the velocity given as the gradient of a potential satisfying
Laplace’s equation. But nobody could come up with any kind of resolution of the
paradox before Ludwig Prandtl (1875-1953), called the Father of Modern Fluid
Dynamics, in a short note from 1904 suggested a resolution based on boundary
layer effects from vanishingly small viscosity, which still today remains the ac-
cepted resolution of the paradox. As already indicated, we shall below present
computational evidence that Prandtl’s resolution is not credible and instead put
forward a new scientifically more satisfactory resolution.

2.2 Cayley and Lilienthal
Despite the pessimistic predictions by Newton and d’Alembert, the 29 years old
engineer George Cayley (uncle of the mathematician Arthur Cayley) in 1799
sketched the by now familiar configuration of an airplane with fixed cambered
wings and aft horisontal and vertical tails, and also investigated the characteristics
of airfoils using a whirling arm apparatus. Cayley outlined his ideas about the
principles of flying in On Aerial Navigation (1809). But Cayley did not produce
any mathematical description of the motion of an aircraft and thus had no quanti-
tative basis for designing airplanes. In 1849 Cayley built a large glider, along the
lines of his 1799 design, and tested the device with a 10-year old boy aboard. The
glider carried the boy aloft on at least one short flight.

The next major step was taken by the German engineer Otto Lilienthal, who
made careful experiments on the lift and drag of wings of different shapes and
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designed various gliders, and himself made 2000 more or less successful flights
starting from a little hill, see Fig 2.1, before he broke his neck in 1896 after the
glider had stalled 15 meter above ground.

Otto Lilienthal reported his investigations made together with his brother Gus-
tav during 1866 - 1889 in Birdflight as the Basis of Aviation, a Contribution to-
wards a System of Aviation, compiled from the Results of Numerous Experiments
made by Otto and Gustav Lilienthal published in 1891, predicting that human
flight should be possible with a suitable light weight engine and even by sole
human power of 1

3
hp.

Figure 2.1: A copy of Otto Lilienthal and one of his gliders. Note the similarity
with a modern hang glider.

2.3 Kutta, Zhukovsky and the Wright Brothers
Stimulated by Lilienthal’s successful flights and his widely spread book Bird
Flight as the Basis of Aviation from 1899, the mathematician Martin Kutta (1867-
1944) in his thesis from 1902 modified the erronous classical potential flow so-
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Figure 2.2: Table IV in Birdflight as the Basis of Aviation by Otto and Gustav
Lilienthal records measurement by of the lift and drag of an arched wing with a
camber of 1

12
for angles of attack from 0 to 90 degrees in the right graph, in a so-

called drag polar showing lift on the vertical axis and drag on the horisontal axis,
with CL ≈ 0.1α up to beginning stall at 15 degrees. This conforms with basic
experimental experience of the lift of airplane wings, also captured in the formula
CL = 2π2

180
α ≈ 0.1α of classical circulation theory. The lift and drag curve is the

middle curve in the right graph showing the lift and drag as fraction of a drag
(coefficient of) 2.6 represented by the outer quarter circle. The smaller half circle
curve shows the much smaller lift a plane wing.
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Figure 2.3: Gliding flights from an artificial hill by Otto Lilienthal in gusty head
wind and in calm air showing L

D
= 10− 15.

lution by including a new term corresponding to a rotating flow around the wing
with the strength of the vortex determined so that the combined flow velocity be-
came zero at the trailing edge of the wing. This Kutta condition reflected the
observation of Lilienthal that the flow should come off the wing smoothly, at least
for small angles of attack. The strength of the vortex was equal to the circulation
around the wing of the velocity, which was also equal to the lift. Kutta could this
way predict the lift of various airfoils with a precision of practical interest. But
the calculation assumed the flow to be fully two-dimensional and the wings to be
very long and became inaccurate for shorter wings and large angles of attack.

The first successful powered piloted controled flight was performed by the
brothers Orville and Wilbur Wright on December 17 1903 on the windy fields of
Kitty Hawk, North Carolina, with Orville winning the bet to be the pilot of the
Flyer and Wilbur watching on ground, see Fig 43.1. In the words of the Wright
brothers from Century Magazine, September 1908: “The flight lasted only twelve
seconds, a flight very modest compared with that of birds, but it was, nevertheless,
the first in the history of the world in which a machine carrying a man had raised
itself by its own power into the air in free flight, had sailed forward on a level
course without reduction of speed, and had finally landed without being wrecked.
The second and third flights were a little longer, and the fourth lasted fifty-nine
seconds, covering a distance of 852 feet over the ground against a twenty-mile
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wind.”

2.4 The Modern Era of Aviation
The Flyer’s controled flight in 1903 signfies the start of the modern era of aviation:
The required effective engine power of about 4 hp per 100 kg with L

D
= 10 and

speed of 30m/swas available and the Wright brothers had shown that flight could
be controled (longitudinally by a forward canard and laterally by wing warping as
discussed below).

Figure 2.4: Orville Wright (1871-1948) and Wilbur Wright (1867-1912) and the
lift-off at Kitty Hawk, North Carolina, the 17th December 1903: The start of the
modern era of aviation.

The mathematician Nikolai Zhukovsky (1847-1921), called the Father of Rus-
sian Aviation, in 1906 independently derived the same mathematics for comput-
ing lift as Kutta, after having observed several of Lilienthal’s flights, which he
presented before the Society of Friends of the Natural Sciences in Moscow as:
”The most important invention of recent years in the area of aviation is the flying
machine of the German engineer Otto Lilienthal”. Zhukovsky also purchased one
of the eight gliders which Lilienthal sold to members of the public.
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Kutta and Zhukovsky thus could modify the mathemathical potential theory
of lift of a wing to give reasonable results, but of course could not give anything
but a very heuristic justification of their Kutta-Zhukovsky condition of zero ve-
locity at the trailing edge of the wing, and could not treat realistic wings in three
dimensions. Further, their modified potential solutions were not turbulent at all,
so their calculations would seem merely like happy coincidences, knowing ahead
the correct answer to obtain.

Figure 2.5: Martin Kutta (1867-1944) and Nikolai Egorovich Zhukovsky (1847-
1921): Fathers of aerodynamics of flight.

Figure 2.6: Text book description of Kutta-Zhukovsky circulation theory with a
sharp trailing edge generating a starting vortex separating from the sharp trailing
edge thereby generating a compensating circulation around the wing section re-
moving the singularity created by the sharp trailing edge and thus creating lift by
high speed and low pressure above the wing.

Today computational methods open new possibilities of solving the equations
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for fluid flow using the computational power of modern computers. Thus, for the
first time the mathematical fluid models of Euler and Navier-Stokes may come to
a real use, which opens new revolutionary possibilities of computational simula-
tion and prediction of fluid flow in science and technology. The range of possible
applications is incredibly rich! For example, it is now becoming possible to simu-
late the turbulent flow around an entire aircraft and thus systematically investigate
questions of stability and control, which caused severe head-ache for the Wright
brothers, as well as the designers of the modern Swedish jet fighter JAS39 Gripen.
Actually, both the 1903 Wright Flyer airplane, with a forward canard instead of
an aft tail, and the JAS39 Gripen are unstable and require careful control to fly.
The instability of the fighter is intentional allowing quick turns, but the Wrights
later replaced the canard with the conventional aft tail to improve stability. The
stability of an airplane is similar to that of a boat, with the important design fea-
ture being the relative position of the center of gravity and the center of the forces
from the flow of air (center of buoyancy for a boat), with the center of gravity
ahead (below) giving stability.

It is remarkable that 400 years passed between Leonardo da Vinci’s investiga-
tions and the largely similar ones by Lilienthal. Why did it take so long time from
almost success to success? Can we blame the erronous mathematics of Newton
and d’Alembert for the delay? Or was the reason that the (secret) writings of da
Vinci were made public with a delay of 300 years? We leave the question open.

2.5 Bairstow vs Glauert/Prandtl/Lanchester
The Enigma of the Aerofoil by David Bloor describes the dispute in England after
the 1st World War between Leonard Bairstow representing ”inside” Cambridge
mathematics and ”outside” engineering represented by the circulation theory first
put forward by Frederick Lanchester but killed by Lord Rayleigh and instead
picked up by Prandtl and then reimported to England by Hermann Glauert, con-
cerning the fundamental problem of aerodynamics of flight with the following
highlight:

• The International Air Congress for the year 1923 was held in London. It
provided a further occasion for assessing the advances that had been made
in aeronautics during the war years and for addressing unresolved prob-
lems. It was a highly visible platform on which the supporters and oppo-
nents of the circulatory theory could express their opinions and, in some
cases, air their grievances.
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• In the morning session of Wednesday, June 27, there were three speakers:
Leonard Bairstow, Hermann Glauert, and Archibald Low. The first to speak
was Bairstow, whose talk was titled The Fundamentals of Fluid Motion in
Relation to Aeronautics. Bairstow was explicit: his aim was nothing less
than the mathematical deduction of all the main facts about a wing from
(Navier-)Stokes equations and the known boundary conditions:.

• The range of these equations covers all those problems in which viscosity
and compressibility are taken into account, and from them should follow all
the consequences which we know as lift, drag etc. by mathematical argu-
ment and without recourse to experiment. Such a theory is fundamental.

• The boundary conditions were empirical matters, but thereafter everything
should follow deductively: lift, drag, changes in center of pressure, the onset
of turbulent flow and stalling characteristics, along with a host of other
results.

In short, Bairstow stated that theoretical aerodynamics could be reduced to solving
the Navier-Stokes equations for slightly viscous flow using mathematics. Bairstow
thus aimed at reducing aerodynamics to mathematics, in the same way as celestial
mechanics by Newton was reduced to solving the equations of motion for a set of
n bodies subject to gravitational attraction, referred to as the n-body problem.

Newton showed that the equations of motion could be solved analytically for
a sun with one planet (n=2) and by followers using perturbation techniques for a
planetary system like ours (n=10), which made Newton immensely famous.

But Bairstow (and nobody else at his time) could solve the Navier-Stokes
equations in any case of interest of aerodynamics, which made his grand plan use-
less. Bairstow thus had nothing to match Glauert’s The Elements of the Aerofoil
and Air Screw Theory published in 1926 based on circulation theory for inviscid
flow with a fix-up in the form of the Kutta condition at the trailing edge, which
gave some results and set the text book standard into our time. This

Today it is possible to solve the Navier-Stokes equations using computers and
Bairstow’s grand plan can finally be realized. This shifts the weight back to fun-
damentals without fix-up boosted by computational, and circulation theory with
fix-up has no longer any role to play, as explained in detail in this book.
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Figure 2.7: Sir Leonard Bairstow (1880-1963).

2.6 State-of-the-Art in England 1920

Bairstow describes in his Applied Aerodynamics the state-of-the-art of the aero-
dynamics of flight in England in 1920 as follows:

• The most prominent important parts of an aeroplane are the wings, and
their function is the supporting of the aeroplane against gravitational at-
traction. The force on the wings arises from motion through the air, and is
accompanied by a downward motion of the air over which the wings have
passed. The principle of dynamic support in a fluid has beed called the
”sacrificial” principle (by Lord Rayleigh, I believe), broadly expresses the
fact that if you do not wish to fall yourself you must make something else
fall, in this case air.

• ...if we knew the exact motion of the air round the wing the upward force
could be calculated. The problem is, however, too difficult for the present
state of mathematical knowledge, and our information is almost entirely
based on the results of tests on models of wings in an artificial air current.
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Bairstow’s explanation of lift trivially shifted the question of how a wing gen-
erates lift to the question how a wing generates downwash, which he did not an-
swer, and thus his theory was empty and could no challenge the Kutta-Zhukovsky-
Prandtl theory, which was not empty in the same sense, only unphysical and thus
incorrect.

2.7 First Study of Stability of Flight

Bairstow main contribution was a study, extending earlier work by G. H. Bryan
in Stability in Aviation from 1911, of longitudinal and lateral stablity of flight
performed by analytical rigid body dynamics assuming the forces acting on the
plane to be known, with similarities to mathematical analysis of ship stability.

Inherent longitudinal stability without need of control surfaces is achieved if
the center of gravity is positioned ahead of the center of lift forces. On the other
hand, later stability requires active control of the difference of lift force between
the two wings usually realized through the use coupled ailerons (wing flaps): With
one flap up and the other down the wings get different lift and thus can counteract
rotation around the longitudinal axis.

As noted above, the Wright Flyer was inherently unstable and required skil-
full active control by a forward canard, instead of a tail for longitudinal stability
and active coupled control of the wing warping for lateral stability. The Swedish
fighter JAS39 Gripen has center of gravity behind the center of pressure and re-
quires sophisticated active control by little wings ahead of the main wings similar
to the canard of the Flyer.

We shall see that the computational technique underlying the New Theory
allows direct dynamic simulation of the flight of an airplane under the control
of wing flaps and rudder and thus gives direct assessment of stability without
complicated analytical rigid body dynamics which can only give a very crude
answer.

2.8 The Paradox of Circulation Theory

The New Theory of Flight shows that the classical circulation theory of lift by
Kutta-Zhukovsky is unphysical and thus incorrect, which is also reflected by the
fact that it builds on a paradox:



46 CHAPTER 2. SHORT HISTORY OF AVIATION

Figure 2.8: The Swedish JAS39 Gripen after crash from longitudinal instability
and landing. Note the forward canards supposed to keep the inherently unstable
plane in stable flight by rapid active computer control.

• Kutta-Zhukovsky lifting flow around a 2d airfoil is obtained by augmenting
non-lifting potential flow by large scale circulation around the airfoil.

• The sharp trailing edge of an airfoil is supposed to be necessary for genera-
tion of lift.

• The lift is proportional to the circulation, and the circulation is determined
so as eliminate the singularity of potential flow arising from the sharp trail-
ing edge.

• Lift is thus paradoxically obtained by elimination of what has been intro-
duced, that is by eliminating the singularity introduced by the sharp trailing
edge. This is like obtaining an effect by first introducing something and
then removing it, as if (+ 1 - 1) could be greater than zero.

The paradox is supposedly resolved by claiming that the singularity from the sharp
trailing edge is eliminated by effects of viscosity. The New Theory shows that lift
is generated, not by a sharp trailing edge, but by wings with smoothly rounded
trailing edges with diameter up to 10 percent of the chord length. The above
JAS39 Gripen picture thus illustrates the present status of circulation theory.
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2.9 Timeline of Old Theory of Flight
John D. Anderson gives in A History of Aerodynamics and its Impact on Flying
Machines a time line for theoretical aerodynamics including:

• 350 B.C. Aristotle describes a model for a continuum and suggests that a
body moving through a continuum encounters resistance.

• 250 B. C. Archimedes suggests that a fluid is set into motion by the exis-
tence of a pressure difference exerted on the fluid.

• 1523 Da Vinci formulates a first version of Bernoulli’s principle with ”thin-
ner air” at lower pressure above a wing than below in his Codex of Bird
Flight as a first explanation of flight, 300-400 years ahead of time.

• 1600 Galieo is the first to understand that aerodynamic resistance varies
directly as the density of the fluid.

• 1673 Edme Mariotte, in Paris, states that aerodynamic resistance varies as
the square of the velocity.

• 1687 Newton proves his sine-squared law for the lift of a tilted plate show-
ing much too small lift to make flight possible, as a spin-off of Proposition
34 of Book II of Principa Mathematica on the drag of a sphere.

• 1738 Daniel Bernoulli states in Hydrodynamica a version of Bernoulli’s
Law.

• 1744 D’Alembert discovers the paradox of zero drag of potential flow, along
with Euler.

• 1752 Euler formulates the Euler equations for inviscid incompressible fluid
flow expressing conservation of mass and momentum in the Euler coordi-
nates of a fixed reference coordinate system.

• 1752 New proof by d’Alembert’s of his paradox.

• 1789 Laplace’s equation for potential flow.

• 1799-1810 Cayley initiates applied aerodynamics.

• 1840 Formulation of Navier-Stokes equations for viscous flow.
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• 1892 Lanchester connects lift to circulation assuming that the lift of the
Magnus effect of a rotating cylinder comes from circulation.

• 1903 First powered flight by the Wright brothers.

• 1904 Prandtl suggests that drag originates from a thin boundarylayer caused
by a no-slip boundary condition.

• 1906 Circulation theory of lift is developed by Kutta and Zhukovsky.

• 1915 Prandtl presents his lifting line theory with input from Lanchester and
Kutta-Zhukovsky.

• 1922 Thin-airfoil theory by Max Munck.

• 1962 Computational Fluid Dynamics CFD starts to develop with panel meth-
ods for potential flow and solution methods for the Navier-Stokes equations
with no-slip boundary condition for low Reynolds numbers, combined with
turbulence models and wall models for large Reynolds numbers. Direct Nu-
merical Simulation DNS considered impossible because of thin boundary
layers from no-slip boundary condition.

• 2008 DNS is shown to be possible using stabilized finite element methods
with slip boundary condition, which leads to resolution of D’Alembert’s
Paradox and revelation of the Secret of Flight.

The Old Theory of Flight was formulated hundred years ago by Kutta-Zhukovsky-
Prandtl and is still the theory of flight presented in text books. The fact that the
theory has not evolved over a century is not to be taken as a sign that it was
correct from the beginning, but rather the opposite, that it was a dead-end ad hoc
non-physical theory which could not be improved.
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Figure 2.9: The experimental apparatus used by the Lilienthal brothers to measure
drag and lift of an arched surface.

Figure 2.10: Lilienthal’s conception of the flow around a plane wing compared to
an arched wing with more downwash.
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Figure 2.11: The lift L and drag D of a kite can be determined by measuring the
pull P , the angle α and the weight W of the kite.

Figure 2.12: The Wright brothers measuring lift and drag of an early version of
the Flyer flown as a kite.
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For some years I have been afflicted with the belief that flight is possible.
My disease has increased in severity and I feeel that it will soom cost me
an increased amount of money if not my life. I have been trying to arange
my life in such a way that I can devote my entire time for a few months to
experiments in this field. (Wilbur Wright to Chanute in 1900)

Who is there who, at such times at least, does not deplore the inability of
man to indulge in voluntary flight and to unfold wings as effectively as birds
do, in order to give the highest expression to his desire for migration? Are
we still to be debarred from calling this art our own, and are we only to look
up longingly to inferior creatures who describe their beautiful paths in the
blue of the sky? Is this painful consideration to be still further intensified by
the conviction that we shall never be able to discover the flying methods of
the birds? Or will it be within the scope of the human mind to fathom those
means which will be a substitute for what Nature has denied us? (Birdflight
as the Basis of Aviation )
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Chapter 3

New Perspective on History

I have not the smallest molecule of faith in aerial navigation other than bal-
looning or of expectation of good results from any of the trial we hear of.
(Lord Kelvin refusing to join the Aeronautical Society of London)

The stability or instability of a few basic flows was conjectured, debated,
and sometimes proved in the nineteenth century. Motivations varied from
turbulence observed in real flows to permanence expected in hydrodynamic
theories of matter. Contemporary mathematics often failed to provide rig-
orous answers, and personal intuitions sometimes gave wrong results. Yet
some of the basic ideas and methods of the modern theory of hydrodynamic
instability occurred to the elite of British and German mathematical physics,
including Stokes, Kelvin, Helmholtz, and Rayleigh. This usually happened
by reflecting on concrete specific problems, with a striking variety of inves-
tigative styles. (Darrigol 2002)

A sudden bold and unexpected question doth many times surprise a man and
lay him open. (Francis Bacon)

3.1 The Official Doctrine
The official doctrine or accepted truth of the fluid mechanics community is that
Prandtl resolved D’Alembert’s Paradox of zero drag and lift of inviscid potential
flow satisfying a slip boundary condition, by suggesting that drag and lift originate
from a thin boundary layer of slightly viscous flow resulting from imposing a no-
slip boundary condition. Our new resolution of D’Alembert’s Paradox shows that
drag and lift instead arise from 3d rotational slip separation developing from a

53
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basic instability of potential flow at separation. We thus observe drag and lift
in accordance with observation without presence of boundary layer from no-slip
boundary condition, and conclude that Prandtl’s basic idea was and is wrong.

3.2 How to View History of Hydrodynamics
It is instructive to read the History of Hydrodynamics from the Bernoullis to
Prandtl by O. Darrigol, with a shift of perspective from the official doctrine that
Prandtl resolved D’Alembert’s Paradox and thus explained drag and lift of a wing,
to the new perspective presented in this book. This fundamentally changes the
story as indicated in comments to key quotes from the book and New Short His-
tory:

Darrigol: What distinguishes the history of hydrodynamics from that of other
physical theories is not so much the tremendous effect of challenges from phe-
nomenal world, but rather it is the slowness with which these challeneges were
met. Nearly two centuries elapsed between the first formulation of the fundamen-
tal equations of the theory (Euler equations for inviscid incompressible flow) and
the deductions of laws of resistance in the most important case of large Reynolds
numbers...The reason for this extraordinary delay are easily identified a posteri-
ori. They are the ... nonlinear character of the fundamental equations...Moreover,
instability often deprives the few known exact solutions of any physical rele-
vance....almost every theoretical description of a natural or manmade flow in-
volves instabilities...These difficulties have barred progress along purely mathe-
matical lines. They have also made physical intuition a poor guide, and a source
of numerous paradoxes.....Hydrodynamicists therefore sought inspiration in con-
crete phenomena. Challenged to understand and act in the real world, they devel-
oped a few innovative strategies. One was to modify the fundamental equations,
introducing for instance Navier’s viscous term. Another was to give up the con-
tinuity of the solutions of Euler’s equations, and to study the evolution of the re-
sulting singularities. Helmholtz pursued this approach without leaving the realm
of the perfect fluid.
Comment: We see how Darrigol struggles to rationalize the ”slowness” of the de-
velopment of hydrodynamics to be a result of the ”nonlinear character of the fun-
damental equations” and lack of ”physical relevance of the few known exact so-
lutions” which combined with ”instabilities of natural and manmade flow...barred
progress along purely mathematical lines”. In other words, Darrigol describes a
complete failure of theoretical hydrodynamics. The correct mathematical ques-
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tion of instability was formulated but was not followed up and replaced by a non-
mathematical search of ”inspiration in concrete phenomena”.

Darrigol: None of these strategies sufficed to fully master the real flow for which
they were intended. Prandtl’s ultimate success depended on combining them
within the asymptotic framework of high Reynolds numbers /quasi-inviscid flow)
and large aspect ratios (quasi-2d-flow). The role of small viscosity, Prandtl rea-
soned, is to produce boundary layers of high shear, and vortex sheets to which
Helmholtz’s theory of vortex motion may be applied in a second step. Vortex
sheets are always unsatable, and boundary layers ofteh are so. Thg instabilities
lead to turbulence... When separation occurs, the hydrodynamicist is left with
Columbus’s egg, unless strong resistance is desired, in which case he can appeal
to model measurements combined with similitude arguments.
Comment: This is the official mantra presented as an Egg of Columbus, that is,
a solution which is not a true solution but only a trick (to make an unstable egg
stable).

Darrigol: The evolution from paper theory to an engineering tool thus depended
on transgression of the limits between academic hydrodynamics and applied hy-
drodynamics. The utilitarian spirit of Victorian science, the Polythechnique ideal
of a theory-based engineering, a touch of Helmholtz’s eclectic genius, and the
Gttingen pursuit of applied mathematic, all contributed to the fruitful blurring
of borders between physics and engineering. The ”sagacious geometers” who
answered d’Alembert’s ancient call for a solution to his resistance paradox all
visited the real worlds of flow.
Comment: The official picture is presented as a mish-mash of theory (mathe-
matics) and practice (real world engineering flow) with a touch of genius and
utilitarian spirit.

Darrigol: In the 1890s, interest in flying contraptions grew tremendously, partly
as a consequence of Otto Lilienthal’s invention of the man-carrying glider in
1889. The prospects of building a motor-powered, piloted airplane seemd high
in some engineering quarters. The materialized in 1903 when Wilbur and Orville
Wright flew the first machine of that kind. Theory played almost no role in this
spectacular success....The contemporary flight frenzy prompted theoretical com-
ments and reflections from flat rejection to elaborate support. ... In summary,
Rayleigh, Lamb and Kelvin knew too much fluid mechanics to imagine that circu-
lation around wings was the main cause of lift. The two men who independently
hit upon this idea lacked training in theoretical physics. One of the them was an
engineer (Lanchester), and the other was a young mathematician (Kutta).
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Comment: Lanchester’s circulation theory was not credible to people like Rayleigh,
Lamb and Kelvin with training in theoretical physics in the late 19th century, sim-
ply because it did not make sense, but the critique was overpowered by the cir-
culation theory of Kutta-Zhukovsky-Prandtl during and after the 1st World War.

Darrigol: By the end of the 1st World War, Prandtl and his collaborators could
legitimately claim a mathematical, quantitative solution to the wing problem. The
leftover was to justify the various approximations that Prandtl had introduced
at various steps of the reasoning. Although Prandtl’s justifications for these as-
sumptions lacked rigor, experiments performed during the war in the Gttingen
wind tunnel vindicated them. Post-war British and American experiments further
confirmed Prandtl’s theory....After some hesitation on the British side, by the mid
1920s, it became routine...Under the stimulus of the rising field of aeronautics and
with the strong support of Göttingen institutions, Prandtl’s group put an end to the
engineer’s legitimate distrust of the theoretical predictions of fluid mechanics.
Comment: Kutta circulation theory is a non-physical mathematical theory, as
well as Prandtl’s extended lifting-line version of circulation theory boosted with
a boundary layer theory. Prandtl’s institutions boomed under the German prepa-
rations for the 2nd World War in the 1920-30s and lack of correct theory was
compensated by powerful wind tunnels and steel.

New Short History of Hydrodynamics: Theoretical hydromechanics is based on
the Euler/Navier-Stokes equations formulated in 1752/1840, but since the equa-
tions could not be solved analytically, the theory was empty until computational
solution became possible in the 21st century, which for the first time opened to a
fruitful interplay between theory and practice.

With each advent of spring, when the air is alive with innumerable happy
creatures; when the storks on their arrival at their old northern resorts fold up
the imposing flying apparatus which has carried them thousands of miles, lay
back their heads and announce their arrival by joyously rattling their beaks;
when the swallows have made their entry and hurry through our streets and
pass our windows in sailing flight; when the lark appears as a dot in the
ether and manifests its joy of existence by its song; then a certain desire
takes possession of man. He longs to soar upward and to glide, free as the
bird, over smiling fields, leafy woods and mirrorlike lakes, and so enjoy the
varying landscape as fully as only a bird can do. (Birdflight as the Basis of
Aviation)
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Figure 3.1: Left: An agile, highly maneuverable biplane, the Sopwith Camel ac-
counted for more aerial victories than any other Allied aircraft during World War
I. Right: Fokker DVII Scout Single seat biplane scout with Mercedes engine. The
DVII posed a serious threat to Allied air supremacy in 1918 with its manoeuvra-
bility in combat.

When we observe the awkward first flying attempts of young storks, how
they drop their beaks and legs and execute the most curious movements with
the neck in order to re-establish their equilibrium, we conclude that such
unskilled flight must be extremely easy, and we are tempted to construct a
pair of wings for experimental flight. Following the young bird’s progress
after the lapse of but a few days, we feel encouraged to emulate its example.
(Birdflight as the Basis of Aviation )
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Chapter 4

Euler and Navier-Stokes Equations

However sublime are the researches on fluids which we owe to Messrs
Bernoulli, Clairaut and d’Alembert, they flow so naturally from my two
general formulae that one cannot sufficiently admire this accord of their pro-
found meditations with the simplicity of the principles from which I have
drawn my two equations...they include not only all that has been discovered
by methods very different and for the most part slightly convincing...but also
all that one could desire further in this science. (Euler 1752)

There may even be no stable steady mode of motion possible, in which case
the fluid would continue perpetually eddying.(Stokes 1867)

Stokes did not attempt a mathematical investigation of the stability of flow.
(Darrigol [139])

Truth is so hard to tell, it sometimes needs fiction to make it plausible. (Fran-
cis Bacon)

4.1 Model of Fluid Mechanics
The basic mathematical model of fluid mechanics (or fluid dynamics) consists of
Navier-Stokes equations expressing conservation of mass, momentum and energy
of a viscous fluid. Theoretical fluid mechanics can be viewed as the science of
computing and analyzing solutions of the Navier-Stokes equations.

Water has a very small compressibility and air at speeds well below the speed
of sound is nearly incompressible. The fluid mechanics of water and air at sub-
sonic speeds is thus captured by the incompressible Navier-Stokes equations with
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the Reynolds number Re = UL
ν

as an important flow characteristic, where U is a
characterisitic flow speed, L a characteristic length scale and ν the kinematic vis-
cosity. For water ν ≈ 10−6 and for air ν ≈ 10−5. The typical Reynolds number
of an airplane may be 107, of larger birds 105 and of insects 103, while formally
the incompressible Euler equations would describe flow at vanishing viscosity or
infinite Reynolds number.

In the incompressible Navier-Stokes equations the equation expressing conser-
vation of total energy as the sum of kinetic energy and heat energy, is decoupled
from the equations expressing conservation of mass and momentum, and mass
conservation can be reduced to requiring fluid velocities to be incompressible.

The incompressible Navier-Stokes equations thus can be viewed to consist of
two equations in the fluid velocity u(x, t) and pressure p(x, t) as functions of a
space coordinate x in a fixed (Eulerian) reference system and a time coordinate t,
expressing

• Newton’s 2nd Law (conservation of momentum),

• incompressibility (conservation of mass),

which in standard mathematical notation take the following (deceptively simple)
form in the domain occupied by the fluid:

Du

Dt
+∇p− ν∆u = 0,

∇ · u = 0,
(4.1)

where Du
Dt

= ∂u
∂t
+(u ·∇)u is fluid particle acceleration at (x, t), ν ≥ 0 is viscosity,

the density is normalized to 1 and we consider the basic case without exterior
forcing. Here −∇p is the pressure force and ν∆u is the viscous force, and ν = 0
gives the inviscid Euler equations.

Flight at speeds up to 300 km/h of airplanes and larger birds is described by
solutions of the incompressible Navier-Stokes equations at a Reynolds number of
size 106 or larger, which with normalization to U = L = 1 translates to small
viscosity ν of size 10−6 or smaller.

We shall find that the Euler case with ν = 0 is illposed or not-wellposed, in the
sense that solutions including potential solutions to the Euler equations, are unsta-
ble at separation and thus there lack physical significance. But we shall find that
slightly viscous bluff body flow such as the flow around a wing, can be described
as potential flow modified at separation into quasi-stable partially turbulent real
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flow. Potential flow thus captures aspects of real flow before separation and ana-
lytical solution formulas for potential flow can aid understanding of these aspects,
as shown in Chapter 7.

We thus always assume the viscosity ν is small strictly positive and we thus
always consider the Navier-Stokes equations with the Euler equations as a formal
limit case without true physical significance.

4.2 Boundary Conditions
The Navier-Stokes equations in the fluid domain are complemented by boundary
conditions on the boundary of the fluid domain prescribing velocities or forces or
combinations thereof. The following conditions prescribed on the boundary of a
solid object moving through a fluid have particular significance:

• no-slip: normal and tangential velocities put to zero,

• slip: normal velocity and tangential forces put to zero.

From mathematical point of view we have a real choice to use slip or no-slip,
and we use this freedom to choose slip as a model of the small tangential force
observed for slightly viscous flow. We thus combine the Navier-Stokes equations
in the interior of the fluid domain with small positive viscosity, with slip boundary
conditions corresponding to vanishing viscosity.

We compare with Prandtl’s argument that only no-slip is allowed because fluid
particles have to stick to the boundary in the case of positive viscosity in the fluid.
But this is an ad hoc assumption without sound physical basis, because it is con-
ceivable that fluid particles can glide along the boundary without friction even if
there is interior friction between fluid particles. Prandtl thus claims to know that
fluid particles cannot glide on a boundary, but this only an hoc assumption which
does not have to be true. The exact nature of the (quantum mechanical) inter-
action between fluid particles and solid boundary may be beyond inspection, but
in the setting of the Navier-Stokes equations, this is irrelevant: If measurements
show that the tangential force is very small on the boundary, this information is
enough to make it possible to combine Navier-Stokes equations in the fluid with
slip boundary condition, irrespective of the exact nature of the quantum mechanics
of the fluid-boundary interaction.

Prandtl used the no-slip condition to solve d’Alembert’s Paradox by discrim-
inating potential flow satisfying slip, but then introduced thin boundary layers
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which made computational solution of the Navier-Stokes equations impossible.
In our new resolution of d’Alembert’s Paradox potential solutions are instead
discriminated because of instability, which allows slip boundary condition with-
out boundary layer making computational solution possible, thus fundamentally
changing the game.

Note that the slip boundary condition connects to the so-called discontinuity
theory of Helmholtz in the sense that the non-zero tangential velocity allowed by
slip can be seen as a sudden jump or discontinuity from the zero tangential velocity
of no-slip. However, while discontinuity theory focussed of interior discontinu-
ities, which could not really be observed presumably by inherent instability, the
slip discontinuity could be observed as a sudden jump across a very thin boundary
layer. In the controversy between Bairstow and Glauert, the discontinuity theory
represented by England did not resist the effective advocasy of circulation theory.

Figure 4.1: The linen which is placed on a rope in order to dry, as well as any
flag which flies from a horizontal pole, demonstrate the strong lift which curved
surfaces experience in wind, and which pushes them even above the horizontal
position. (Birdflight as the Basis of Aviation)

We are, therefore, forced to the conclusion that the only possibility of at-
taining efficient human flight lies in the exact imitation of birdflight with re-
gard to the aerodynamic condition, because this is probably the sole method
which permits of free, rapid flight, with a minimum of effort. (Birdflight as
the Basis of Aviation )
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D’Alembert’s Paradox

It appears to me very probable that the spreading out motion of the fluid,
which is supposed to take place behind the middle of the sphere or cylin-
der, though dynamically possible, nay, the only motion dynamically pos-
sible when the conditions which have been supposed are accurately satis-
fied, is unstable; so that the slightest cause produces a disturbance in the
fluid, which accumulates as the solid moves on, till the motion is quite
changed. Common observation seems to show that, when a solid moves
rapidly through a fluid at some distance below the surface, it leaves behind
it a succession of eddies in the fluid. (Stokes)

They are ill discoverers that think there is no land, when they can see nothing
but sea. (Francis Bacon)

5.1 D’Alembert and Euler and Potential Flow
Working on a 1749 Prize Problem of the Berlin Academy on flow drag, the great
mathematician d’Alembert was led to the following contradiction referred to as
D’Alembert’s Paradox [75, 76, 77, 78, 83] between observation and theoretical
prediction:

• It seems to me that the theory (potential flow), developed in all possible
rigor, gives, at least in several cases, a strictly vanishing resistance, a sin-
gular paradox which I leave to future Geometers to elucidate.

The even greater mathematician Leonard Euler(1707-1783) had come to same
conclusion of zero drag of potential flow in his work on gunnery [79] from 1745
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based on the observation that in potential flow the high pressure forming in front
of the body is balanced by an equally high pressure in the back as shown in Fig.
(7.1 below), in the case of a boat moving through water expressed as

• ...the boat would be slowed down at the prow as much as it would be pushed
at the poop...

This connects to the idea Aristotle’s idea of motion adopted by da Vinci as a form
of peristaltic motion (see Part V), with a body moving through a fluid without
resistance as if following Newton’s 1st Law stating rectilinear motion at constant
velocity in the absence of forcing. Here, potential flow is defined as a formal solu-
tion of the Euler equations in the form of (i) incompressible, (ii) inviscid (iii) irro-
tational and (iv) stationary (time-independent) flow, with the flow velocity u given
as the gradient u = ∇φ of a stationary potential function φ satisfying Laplace’s
equation ∆φ = 0.

More generally, D’Alembert’s Paradox concerns the contradiction between
observations of substantial drag/lift of a body moving through a slightly viscous
incompressible fluid such as air and water, with the mathematical prediction of
zero drag/lift of potential flow defined as inviscid, incompressible, irrotational
and stationary flow.

Evidently, flying is incompatible with potential flow, and in order to explain
flight D’Alembert’s Paradox had to be resolved. But d’Alembert couldn’t do it
and all the great mathematical brains of the 18th and 19th century stumbled on it:
Nobody could see that any of the assumptions (i)-(iv) were wrong and the paradox
remained unsolved.

We show below that the true reason that potential flow with zero drag/lift is
never observed, is that it is a formal solution of the Euler equations which is
unstable and thus not a physically meaningful solution required to be stable or
wellposed, that is, change little under small perturbations. It took 256 years for
this idea to descend.

5.2 What’s Wrong with the Potential Solution?

D’Alembert left his paradox to “future Geometers”: Evidently something was
wrong with the potential solution as an approximate solution to the Navier-Stokes
equations. Since the Navier-Stokes equations cannot be questioned as expressing
Newton’s 2nd law and incompressibility, there are only two possibilities:
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Figure 5.1: D’Alembert contemplating his paradox in 1749 maybe with an idea
of peristaltic motion and Fig. (7.1) .

• (A) The potential solution is not a correct approximate solution of the Navier-
Stokes equations in the fluid domain.

• (B) The potential solution does not satisfy the correct boundary condition
between fluid and solid.

The mathematicians of the 18th century could not resolve the paradox, neither
could the 19th century masters including Navier and Stokes. When powered flight
showed to be possible at the turn to the 20th century the paradox simply had to
be resolved one way or the other. The emerging modern man preparing to take
control over Nature, required rational science and mathematics and paradoxes and
contradictions could no longer be tolerated.

5.3 Prandtl’s Resolution in 1904
It was the young physicist Ludwig Prandtl who in an 8-page article in 1904 gave
birth to modern fluid mechanics suggesting that the unphysical feature of the po-
tential solution was (B): The potential solution satisfies a slip boundary condition
allowing fluid particles to glide along the boundary without friction, while in a
real fluid with positive viscosity even very small, fluid particles would have to
stick to the boundary and thus form a thin boundary layer where the fluid speed
would increase rapidly from zero at the solid boundary to the free stream value



66 CHAPTER 5. D’ALEMBERT’S PARADOX

in the fluid. In other words, real physical flow would satisfy a no-slip condition
with zero velocity on the boundary, which discriminated the potential solution as
non-physical and resolved the paradox.

5.4 The Mantra of Modern Fluid Mechanics

This became the mantra of modern fluid mechanics: Both lift and drag originate
from thin boundary layers casued by a no-slip boundary condition. The mantra
saved theoretical fluid mechanics through the first half of the 20th century, but in-
stead killed computational fluid dynamics emerging with the computer by asking
for resolution of very thin boundary layers using quadrillions of mesh points.

5.5 New Resolution 2008

In 2008 we published a resolution of D’Alembert’s Paradox [104], 256 years after
its formulation, which identified instead (A) as the unphysical feature: A zero-
drag potential solution is unstable as an approximate solution of the Navier-Stokes
equations with a slip boundary condition, and because it is unstable it changes
under infinitesimal perturbations into a more stable turbulent solution with sub-
stantial drag.

We identified the primary instability which gives the main features of the tur-
bulent solution with lift and drag. We thus observed and explained the emergence
of lift and drag of a wing and showed both to be accuractely computable by solv-
ing the Navier-Stokes equations with a slip boundary condition without boundary
layers using some hundred thousand mesh points.

We thus computed and explained lift and drag without resorting to any ef-
fects of boundary layers and thus in particular concluded that Prandtl’s mantra
of modern fluid mechanics has little to do with reality. The consequences are
far-reaching.

The new flight theory to be presented can be shown to be correct as far as the
Navier-Stokes equations describe fluid mechanics, because the new flight theory
directly reflects properties of Navier-Stokes solutions.

By studying computed Navier-Stokes solutions, which Prandtl could not do,
we discover that Prandtl’s resolution of D’Alembert’s Paradox does not correctly
describe the essential physics, nor does the flight theory conceived by the father
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of modern fluid mechanics. A study of the new flight theory thus naturally starts
with a study of the new resolution of D’Alembert’s Paradox.

5.6 Suppression of Birkhoff’s Innocent Question
The mathematician Garret Birkhoff at Harvard asked in his Hydrodynamics first
published in 1950, the seemingly innocent question if there is any time-independent
inviscid flow, including potential flow, which is stable, but was met with so harsh
criticism by J. Stoker at Courant Institute that Birkhoff deleted the question in the
second edition of his book and never wrote anything more on hydrodynamics.

But Birkhoff’s question was very motivated and the active suppression delayed
the progress of computational fluid dynamics by several decades. Suppression of
correct science is often more harmful than the promotion of incorrect science.
Unfortunately, Birkhoff did not live to see that after all he was right and Stoker
wrong.

Figure 5.2: Garret Birkhoff in 1950: Is there any potential flow which is stable?
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Chapter 6

From Circular Cylinder to Wing

Isn’t it astonishing that all these secrets have been preserved for so many
years just so we could discover them! (Orville Wright)

The most salient characteristics of wing form are common to birds of widely
different species and habit of life. In spite of variations in detailand in gen-
eral proportions, there is a certain uniformity of design and construction that
cannot fail to impress even the most superficial observer. (Lanchester 1907)

6.1 One Way to Construct a Wing

A wing can be constructed by letting two circular cylinders stretch a fabric to form
the wing surface with leading and trailing edges being formed by half cylinder
surfaces as depicted in Fig. 6.1.

6.2 The Princeton Sailwing

The Princeton sailwing [140] is intended to provide a light-weight, low-cost lift-
ing surface suitable for a number of low-speed applications. It consists of a
leading-edge spar with attached ribs which (ideally) form a rigid framework sup-
porting a trailing-edge cable in tension. A non-porous, non-stretchable cloth
membrane, usually dacron, is wrapped around the leading-edge and attached to
the trailing-edge forming the upper and lower sail surfaces. The aerodynamic
efficiency of the sailwing can approach that of a hard wing.
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Figure 6.1: Wing as two circular cylinders stretching a fabric forming the wing
surface.

Figure 6.2: Wing as membrane stretched over leading edge cylinder and trailing
edge chord with lift and drag (and moment) coefficients as functions of angle of
attack (right).
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6.3 What to Look For
We are thus led to study the flow around a circular cylinder with particular atten-
tion to the attachment in the front and separation in the back with:

1. attachment of the flow at the frontal part of the cylinder as attachment at the
leading edge of a wing,

2. flow over the top of the cylinder as flow over the crest of a wing,

3. separation in the back of the cylinder as separation at the trailing edge of a
wing.

We shall then see that understanding the flow around a circular cylinder opens to
understanding the flow around a wing and thus to revealing the miracle of flight.

We start by considering potential flow around a circular cylinder and discover
that it is unstable at separation and thus cannot be observed as a physical flow. We
discover that the instability of potential flow transforms the flow into real physical
flow with a more stable separation pattern described as 3d rotational separation
(in contrast to 2d irrotational separation of potential flow), as depicted in the Fig.
1.8 and reproduced here:

Figure 6.3: Correct explanation of lift as potential flow with 2d irrotational separa-
tion without lift and downwash (left) modified by instability at separation (middle)
into 3d rotational separation (right) with downwash and lift, with the instability
arising from opposing flow developing swirling flow without the high pressure of
potential flow at separation.

The science of flight cannot, as yet, be considered a separate profession, and
it does not yet include a series of exponents worthy of absolute confidence;
this is due to the existing uncertainty and want of system, no firm basis
having been laid down, from which every investigator must start. (Birdflight
as the Basis of Aviation )
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Chapter 7

Potential Flow

If we worked on the assumption that what is accepted as true really is true,
then there would be little hope for advance. (Orville Wright)

The forms of flow that result from the assumption of continuity and the equa-
tions of motion (potential flow), bear in general but scnat resemblance to
those that obtain in practice (D’Alembert’s Paradox), and it is not altogether
easy to account for the cause of the failure. (Lanchester in Aerodynamics
1907)

Truth emerges more readily from error than from confusion. (Francis Bacon)

7.1 Circular Cylinder vs Wing
Fig. 7.1 shows the pressure (left) and velocity/streamlines (right) in a section of
potential flow (from left to right) around a circular cylinder: We see that the flow
is fully symmetric so that the pictures would be the same if instead the flow was
from right to left. We see that the pressure is high (red) in the front of the cylinder,
but also in the back giving zero drag (Alembert’s paradox), while the pressure is
low on top and bottom (blue) giving also zero lift. We see that the velocity is
low (blue) in the high pressure zones and high (red) in the low pressure zones, in
accordance with Bernoulli’s Law to be discussed below.

With connection to the peristaltic motion in Fig. 5.1, we see the streamlines
apparently ”squeezing” the cylinder in the back thus (mysteriously) ”pushing” the
cylinder to overcome the high pressure in the front allowing the cylinder to move
through the fluid without drag: The flow opens in the front and closes in the back
with zero net drag. Simple, but puzzling.
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Figure 7.1: Section of potential flow around circular cylinder: velocity left and
pressure right. Notice full symmetry with the same solution independent of the
direction of the flow from left-to-right and from right-to-left, with attachment and
separation pattern the same.

In Fig. 7.2 we display the principal feature of the pressure distribution of
potential flow around a circular cylinder and a wing, in both cases with zero lift
and drag. For a wing see that the leading edge generates lift and drag which is
matched by high pressure on top and low pressure below the trailing edge, to give
potential flow net zero lift and drag.

We shall find that the real flow around a wing is not potential flow, but potential
flow with a modification at the trailing edge as 3d rotational slip separation, which
eliminates the high and low pressure and thus gives substantial lift at small drag
from the leading edge.

7.2 Analytical Solution for Circular Cylinder
We now give the analytical formula for potential flow around a circular cylin-
der of unit radius with axis along the x3-axis in 3d space with coordinates x =
(x1, x2, x3), assuming the flow velocity is (1, 0, 0) at infinity in each x2x3-plane.

It is not necessary at this point to follow the details of the mathematical anal-
ysis, but it is quite simple and surely illuminating, so it is worth some effort to di-
gest. The analytical mathematical description of the flow opens to an analysis and
understanding of the flow according to the principle that understanding in physics
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Figure 7.2: Pressure distribution of potential flow around circular cylinder and
wing with zero lift and drag.

Figure 7.3: Turbulent flow past a cylinder; velocity (left) and pressure (right).
Notice the low pressure wake of strong streamwise vorticity generating drag.
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means understanding of an analytical mathematical model of the phenomenon in
question.

In polar coordinates (r, θ) in a plane orthogonal to the cylinder axis, the flow
is given by the potential function

φ(r, θ) = (r +
1

r
) cos(θ) (7.1)

with corresponding velocity components

ur ≡
∂φ

∂r
= (1− 1

r2
) cos(θ),

us ≡
1

r

∂φ

∂θ
= −(1 +

1

r2
) sin(θ),

(7.2)

with streamlines being level lines of the conjugate potential function

ψ ≡ (r − 1

r
) sin(θ. (7.3)

Potential flow is constant in the direction of the cylinder axis with velocity (ur, us) =
(1, 0) for r large, is fully symmetric with zero drag/lift, attaches and separates at
the lines of stagnation (r, θ) = (1, π) in the front and (r, θ) = (1, 0) in the back.

By Bernoulli’s principle the pressure is given by

p = − 1

2r4
+

1

r2
cos(2θ) (7.4)

when normalized to vanish at infinity. We see that the negative pressure on top
and bottom (-3/2) is 3 times as big in magnitude as the high pressure at the front
(+1/2). We see that the pressure switches sign for θ = 30.

We also compute

∂p

∂θ
= − 2

r2
sin(2θ),

∂p

∂r
=

2

r3
(
1

r2
− cos(2θ)),

(7.5)

and discover an adverse pressure gradient in the back with unstable retarding flow
as illustrated in Fig. 7.4. We may further compute

∂ψ

∂r
= (1 +

1

r2
) sin(θ),

expressing that the flow is increasingly compressed before the crest and then cor-
respondingly expanded after the crest.



7.2. ANALYTICAL SOLUTION FOR CIRCULAR CYLINDER 77

Figure 7.4: Instability of potential flow at separation.
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7.3 Non-Separation of Potential Flow
The normal pressure gradient on the boundary

∂p

∂r
= 4 sin2(θ) ≥ 0

is precisely the force required to accelerate fluid particles with speed 2| sin(θ)|
to follow the circular boundary without separation, by satisfying the condition of
non-separation on a curve with curvature R, as identified already by Euler,

∂p

∂n
=
U2

R
, (7.6)

where U is the flow speed and R = 1 the radius of curvature of the boundary
(positive for a concave fluid domain thus positive for the cylinder). The relation
(7.6) is Newton’s law expressing that fluid particles gliding along the boundary
must be accellerated in the normal direction by the normal pressure gradient force
in order to follow the curvature of the boundary. More generally, (7.6) is the
criterion for non-separation: Fluid particles will stay close to the boundary as
long as (7.6) is satisfied, while if

∂p

∂n
<
U2

R
, (7.7)

then fluid particles will separate away from the boundary tangentially. In particu-
lar, as we will see below, laminar flow separates on the crest or top/bottom of the
cylinder, since the normal pressure gradient is small in a laminar boundary layer
with no-slip boundary condition [124, 134].

7.4 2d Stable Attachment 3d Unstable Separation
Potential flow around a circular cylinder shows exponentially unstable 2d irrota-
tional separation and quasi-stable 2d attachment, and is a useful model for both
attachment at the leading edge of a wing and separation at a rounded trailing edge.

The separation of the flow from the cylinder in the rear is of crucial impor-
tance: Potential flow separation can be described as 2d irrotational slip separation
with line stagnation (along a line on the cylinder surface parallel to the cylinder
axis), noting that separation and attachment have the same pattern in potential
flow, as illustrated in Fig. 7.5. In D’Alembert’s Paradox we show that potential
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flow is exponentially unstable at separation (but not at attachment) and therefore
develops into a different quasi-stable separation pattern as 3d rotational slip sep-
aration with point stagnation, in which the high pressure of 2d irrotational slip
separation with line stagnation is replaced by free stream pressure with non-zero
drag as illustrated Fig. 7.4.

We understand that the role of the high pressure at attachment is to redirect the
flow around the cylinder, and likewise the role of the high pressure of potential
flow at separation to to redirect the flow into horisontal motion.

Figure 7.5: The essence of stability of slightly viscous flow: stable attachment and
unstable separation, according to mathematical analysis given below: Elementary
but profound!

7.5 Lift of Half Cylinder
It is instructive to compute the lift of potential flow over a half cylinder (of unit
radius) glued to a half plane: By symmetry the pressure is the same as for a full
cylinder, that is on the cylinder surface the pressure P is given by

P = −1

2
+ cos(2θ) for 0 ≤ θ ≤ π, (7.8)

and thus the lift force L is given by

L =

∫ π

0

(−1

2
+ cos(2θ)) sin(θ) dθ = 1.67, (7.9)
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which gives a lift coefficient CL ≡ F
2ρV 2A

≈ 1.67, where F is the lift force, V = 1
the free stream velocity, ρ ≈ 1 is the density of air and A = 2 is the planform
width of the cylinder. We may compare with the maximal CL of about 1.5 from
measurements as shown in Fig. 7.7.

7.6 Drag from Frontal Part of Half Cylinder
We also compute a drag coefficient CD from the frontal part high pressure

CD =

∫ π
3

0

(−1

2
+ cos(2θ)) cos(θ) dθ =

1

6
, (7.10)

suggesting that L
D
≈ 10, modulo rear part drag.

Figure 7.6: Potential flow above a half cylinder with CL = 1.67 and wing as
deformed half cylinder.

Figure 7.7: Observed maximal lift coefficient CL.



Chapter 8

Real Flow: Circular Cylinder

We were lucky enough to grow up in an environment where there was al-
ways much encouragement to children to pursue intellectual interests; to
investigate what ever aroused curiosity. (Orville Wright)

There are no atheists on turbulent airplanes. (Erica Jong in Fear of Flying)

Aye, ’twill not be so easy, To mate the wings of mind with material wings.
(Goethe’s Faust)

The subtlety of nature is greater many times over than the subtlety of the
senses and understanding. (Francis Bacon)

8.1 3d Rotational Slip Separation
The instability of potential flow around a circular cylinder at separation changes
the flow into a more stable real flow pattern characterized by 3d rotational slip
separation with point stagnation with the high pressure of potential flow being
reduced to the background pressure by swirling flow as illustrated in Fig. 8.1.

The instability of potential flow at separation results from the retardation of
the flow by the opposing flows from above and below behind the cylinder, which
can be understood to be exponentially unstable in velocity by inspecting the ana-
lytical formula for potential flow, as will be shown below. The instability is man-
ifested by an oscillating pressure with high pressure zones redirecting the flow
thus replacing unstable high pressure opposing flow by quasi-stable oscillating
pressure swirling flow allowing elegant separation at nominal mean pressure.
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As noted above, the retardation of the flow at attachment in the front is more
stable since the retardation is caused by the cylinder front surface and not by
opposing flow, as shown in more detail in Chapter 25.

8.2 Drag
Assuming that 3d rotational separation gives a small contribution to drag, we can
estimate the drag to result from the frontal high pressure of potential flow, which
we just computed to be 1

3
, twice that of a half cylinder, which matches measure-

ments for Reynolds numbers larger than 5 · 106.

Figure 8.1: Real flow around a circular cylinder with 3d rotational slip separa-
tion structured as an array of counter-rotating rolls of swirling flow attaching to
low-pressure regions around stagnation points separated by high-pressure regions
deviating opposing flows meeting in the back.
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Figure 8.2: Rotational slip separation generates swirling flow similar to a tornado
created by opposing flow generated by low presssure rising hot air. The flow of
water into a bathtub drain shows a similar swirling motion.

Figure 8.3: Measured drag of circular cylinder as function of Reynolds number.
Notice the drop from 1.2 to 0.4 for Reynolds number bigger than 5 · 106.
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Figure 8.4: Total drag as pressure drag plus skin friction drag for a circular cylin-
der as functions of Reynolds number. Notice the neglible contribution from skin
friction for larger Reynolds numbers.

It will, indeed, be no easy matter to construct a useful wing for man, built
upon the lines of the natural wing and endowed with all the dynamically
economical properties of the latter; and it will be even a more difficult task
to master the wind, that erratic force which so often destroys our handiwork,
with those material wings which nature has not made part of our own body.
But we must admit the possibility that continued investigation and experi-
ence will bring us ever nearer to that solemn moment, when the first man
will rise from earth by means of wings, if only for a few seconds, and marks
that historical moment which heralds the inauguration of a new era in our
civilization. (Birdflight as the Basis of Avaition)



Chapter 9

Real Flow: Wing

Before the date of the recent additions to the mathematical theory relating
to discontinuous motion (largely initiated by Helmholtz himself), it might
almost have been said that the hydrodynamic theory of the text-book had
nothing to do with the motions of any known liquid or gas.

The immediate function of the sectional form of the aerofoil is to receive a
current of air in upward motion and impart to it a downward velocity.

In all real fluids the influence of viscosity accounts for the departure from
the theoretical Eulerian form of flow (potential flow), and the departure is
greater the less the viscosity. (Lanchester in Aerodynamics 1907)

9.1 From Potential Flow to Real Flow

Figure 9.1: Real flow around a wing (right) with high and low pressure zones at
trailing edge of potential flow (left) eliminated by 3d rotational separation.
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The real flow around a wing can be described as potential flow modified by 3d
rotational separation into a flow without pressure rise or drop at the trailing edge,
thus with substantial lift and small drag from the leading edge with L

D
> 10, as

illustrated above. Computational results from solving the Navier-Stokes equations
with slip are shown in Fig. 9.2.

9.2 What to Observe
Notice in particular that the pressure at the

• trailing edge is equal to the background pressure here normalized to zero,

• upper part of the trailing edge is small (suction),

• lower part of the trailing edge is high.

Figure 9.2: Pressure distribution at α = 12.

The flow around a wing can roughly be thought of as the flow around the upper
frontal quarter of the cylinder which generates drag and lift, with the rest of the
flow as around the upper half of the cylinder extended back to a trailing edge as
indicated in Fig. 7.6.

The secret of flight is hidden in answers to the following two questions:
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• Q1: Why does the flow not separate on the crest of the wing but follows the
downward direction of the upper wing surface and thus creates downwash?

• Q2: How can the flow can separate so smoothy from the trailing edge with-
out high/low pressure?

We shall see that answers are given by our analysis of the flow around a circu-
lar cylinder as potential flow (answers Q1) modified by 3d rotational separation
(answers Q2).

You cannot fly with circular cylinder wings, you can fly with effort on upper
half cylinder wings, and you can fly with elegance on a wing formed by two
circular cylinders as indicated in Fig. 6.1.

9.3 What the New Theory Offers
A common reaction when confronted with the New Theory is the following: Well,
a New Theory may be fine, but engineers have been able to construct airplanes
without theory or using the Old Theory, and so what is the use of the New Theory?
We may answer that the New Theory offers two basic capabilities:

1. Observation: computational solution of the Navier-Stokes equations de-
scribing aerodynamics.

2. Understanding: analysis of solutions identifying main characteristics.

The New Theory opens to more efficient and more safe air transportation, by
offering a virtual computational wind tunnel in which virtually any question con-
cerning the performance of a flying object can be answered, combined with con-
ceptual analyses opening to innovative new design. This is much very more than
what is offered by the Old Theory, which basically consists of a collection of ad
hoc methods for computing certain quantities related to simple models problems.
The heavy reliance on wind tunnel experimrents all through the development of
modern aviation signifies the lack of reliable computation for realistic problems.

The experiments which we described in the foregoing section demonstrate
that certain properties of curved surfaces with regard to wind pressure make
actual sailing in the air a possibility. The sailing bird, a kite liberated from
its string, are things of reality and not of the imagination.
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From the above considerations we are justified in stating that if we call the
laws of air resistance the general foundations of aviation, the knowledge of
the laws relating to the air resistance of curved surfaces, similar to birds’
wings, actually forms the basis for every effective research into actual flight.
It is just as thankless to calculate the purely theoretical value of pressures on
curved surfaces as it was for plane surfaces. It is true that we may obtain a
number of interesting theoretical facts, and indeed the dynamics of curved
surfaces in air are more amenable to correct theoretical treatment than those
of planes obliquely moved ; but it is obvious that in practice things are not so
simple...For the determination of air pressures on curved wings under differ-
ent inclinations, we must have recourse to experiment; only actual measure-
ments of forces can give us useful figures for the explanation of birdflight
and for aviation. (Birdflight as the Basis of Aviation )
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Mathematical Miracle of Flight

If a man’s wit be wandering, let him study the mathematics. (Francis Bacon)

...do steady flow ever occur in nature, or have we been pursuing fantasy all
along? If steady flows do occur, which ones occur? Are they stable, or will
a small perturbation of the ow cause it to drift to another steady solution,
or even an unsteady one? The answer to none of these questions is known.
(Marvin Shinbrot in Lectures on Fluid Mechanics 1970)

What quality of air surrounds the birds as they fly? The air surrounding
birds is thinner above than the ordinary thinness of the other air, as it is
accordingly thicker below. And it is as much thinner behind than above,
accordingly as the movement of the bird is faster in the forward direction
than in comparison to the direction of the wings toward the ground. (da
Vinci in Paris Manuscript E)

Computing turbulent solutions of the Navier-Stokes equations led us to a res-
olution of D’Alembert’s Paradox, which turned out to reveal the miracle of flight.
To understand flight means to identify the relevant mathematical aspects of solu-
tions to the Navier-Stokes equations, which are:

• Non-separation of potential flow before trailing edge creating suction on the
upper surface of wing and downwash.

• 3d rotational slip separation at the trailing edge without destruction of lift.

This principle is pictured in the by now familiar principal picture Fig. 10.1 sup-
ported by computation in Figs. 10.2 and 10.3. We see the zero lift/drag of potential
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flow being modified by 3d rotational slip separation in to flow with large lift and
small drag, as described in a detailed analysis below.

The enigma of flight is thus to explain why the air flow separates from the up-
per wing surface at the trailing edge, and not before, with the flow after separation
being redirected downwards depending onthe angle of attack recalling Fig. (1.16).
We will reveal the secret to be an effect of a fortunate combination of features of
slightly viscous incompressible flow including a crucial instability mechanism of
potential flow at separation (with connections to the swirling flow down a bathtub
drain).

We show that this mechanism of lift and drag is operational for angles of attack
smaller than a critical value of 15−20 degrees depending on the shape of the wing,
for which the flow stalls and separates from the upper wing surface well before the
trailing edge with a quick increase of drag and reduction of L

D
into flight failure.

In this book you will meet a new theory which you will discover to be both correct
and computable.

Figure 10.1: Correct explanation of lift by real flow as potential flow (left) mod-
ified by 3d rotational slip separation (right) arising from instability of potential
flow at separation generating counter-rotating rolls (middle), allowing the flow to
leave the trailing edge smoothly with downwash.

We show that lifting flow results from an instability at rear separation of po-
tential flow generating counter-rotating low-pressure rolls of streamwise vorticity
inititated as surface vorticity resulting from meeting opposing flows. This mech-
anism is entirely different from the mechanism based on global circulation of
Kutta-Zhukovsky theory. We show that the new theory allows accurate computa-
tion of lift, drag and twisting moments of an entire airplane using a few millions
of mesh-points, instead of the impossible quadrillions of mesh-points required ac-
cording to state-of-the-art following Prandtl’s dictate of resolution of very thin
boundary layers connected with no-slip velocity boundary conditions.

Finally we endeavoured to prove, by actual experiments, that the true secret
of birdflight was the curvature of the bird’s wing, which accounted for the
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Figure 10.2: Pressure distribution with big leading edge lift (suction above and
push below) and small drag at α = 5. Notice that the high pressure at the trailing
edge of potential flow is missing thus maintaining big lift.

Figure 10.3: Turbulent separation in flow around a circular cylinder from sur-
face vorticity forming counter-rotating low-pressure swirling flow, illustrating 3d
rotational slip separation at the trailing edge of a wing [101].
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Figure 10.4: Vortex generators guiding 3d rotational separation and thus delaying
separation on upper wing surface and stall.

natural, small effort required for forward flight, and which, together with the
peculiar lifting effects of wind, explained the ability of birds to ”sail.”

... we should not take the insect world as our model for flying, but, on the
contrary, we must study the large flyers, for whom the ratio between wing
area and weight approaches as nearly as possible those conditions which are
necessary for human flight. Our attention has been drawn to the shape of
the wings, and we all know that birds’ wings are not plane, but somewhat
curved. The question therefore arises whether this fact is capable of explain-
ing the small amount of energy necessary for natural flight, and in how far
wings other than planes are of assistance in reducing the work of flying.
Theoretical predictions do not seem to be of much use in this respect, except
by referring us back again and again to nature and to the exact imitation of
a bird’s wing. (Birdflight as the Basis of Aviation)
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Mathematical Miracle of Sailing

By denying scientific principles, one may maintain any paradox. (Galileo
Galilei)

Truth is a good dog; but always beware of barking too close to the heels of
an error, lest you get your brains kicked out. (Francis Bacon)

11.1 Sail and Keel Act Like Wings
Both the sail and keel of a sailing boat under tacking against the wind, act like
wings generating lift and drag, as illustrated in Fig. 11.1. But the action, geomet-
rical shape and angle of attack of the sail and the keel are different. The effective
angle of attack of a sail is typically 15-20 degrees and that of a keel 5-10 degrees,
for reasons which we now give.

11.2 Basic Action
The boat is pulled forward by the sail, assuming for simplicity that the beam is
parallel to the direction of the boat at a minimal tacking angle, by the component
L sin(15) of the lift L, as above assumed to be perpendicular to the effective wind
direction, but also by the following contributions from the drag assumed to be
parallel to the effective wind direction: The negative drag on the leeeward side at
the leading edge close to the mast gives a positive pull which largely compensates
for the positive drag from the rear leeward side, while there is less positive drag
from the windward side of the sail as compared to a wing profile, because of the
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Figure 11.1: Lift L and drag D from sail at beating with drive F = sin(α)L at
angle of attack α, balanced by lift and drag from the keel at the angle of attack β
(plus drag from the hull). Notice that the wind approaches the sail from the left,
while the water approaches the keel from the right, giving opposite lift forces.
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difference in shape. The result is a forward pull ≈ sin(15)L ≈ 0.2L combined
with a side (heeling) force ≈ L cos(15) ≈ L, which tilts the boat and needs to be
balanced by lift from the the keel in the opposite direction. Assuming the lift/drag
ratio for the keel is 13, the forward pull is then reduced to ≈ (0.2 − 1/13)L ≈
0.1L, which can be used to overcome the drag from the hull minus the keel.

Figure 11.2: Seeking to balance the heeling on a beat.

11.3 Sail vs Wing

The shape of a sail is different from that of a wing which gives smaller drag from
the windward side and thus improved forward pull, while the keel has the shape
of a symmetrical wing and acts like a wing. A sail with aoa 15 − 20 degrees
gives maximal pull forward at maximal heeling/lift with contribution also from
the rear part of the sail, like for a wing just before stall, while the drag is smaller
than for a wing at 15-20 degrees aoa (for which the lift/drag ratio is 4-3), with the
motivation given above. The lift/drag curve for a sail is thus different from that of
wing with lift/drag ratio at aoa 15-20 much larger for a sail. On the other hand, a
keel with aoa 5-10 degrees has a lift/drag ratio about 13. A sail at aoa 15-20 thus
gives maximal pull at strong heeling force and small drag, which together with a
keel at aoa 5-10 with strong lift and small drag, makes an efficient combination.
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This explains why modern designs combine a deep narrow keel acting efficiently
for small aoa, with a broader sail acting efficiently at a larger aoa.

In Chapter 6 we saw that a sail can be used as a wing, and it is possible to use
a symmetrical wing as a sail as shown in the next section.

Figure 11.3: Lift L and drag D forces on a sail.

11.4 Americas Cup Wing-Sail
AC45 is a forerunner to the next generation of Americas Cup boats: A wing-sailed
catamaran designed for speed over 30 mph and close racing, see Figs. 11.5 and
11.6. Vestas Sailrocket 2 became the fastest sailboat on planet reaching a peak
speed of 62 knots on Nov 12 2012, see Fig. 11.6.
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Figure 11.4: The secret of sailing: Lift L, drag D and lift-to-drag L
D

for different
(apparent) angles of attack. Note that L

D
≈ 6 at maximal lift at an angle of attack

of 20 degrees, while maximum L
D

≈ 13 is obtained at an angle of attack of 6
degrees.

Figure 11.5: AC 45 wing sail.
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Figure 11.6: AC 45 and Vestas Sailrocket 2.



Chapter 12

Real and Virtual Wind Tunnels

Turbulence is the most important unsolved problem of classical physics.
(Richard Feynman)

I am an old man now, and when I die and go to heaven there are two matters
on which I hope for enlightenment. One is quantum electrodynamics, and
the other is the turbulent motion of fluids. And about the former I am rather
optimistic. (Horace Lamb)

Studies perfect nature and are perfected still by experience. (Francis Bacon)

The difficulty of computational mathematical simulation in aerodynamics led
to the construction of wind tunnels for experimental testing. Prandtl based his
leadership in aerodynamics on the closed-circuit 2m × 2 m wind tunnel he con-
structed at his Institute for Technical Physics in Göttingen in 1908 with a second-
generation completed in 1916 to serve the war effort.

The Full-Scale 30-by 60-Foot Wind Tunnel at NASA’s Langley Research Cen-
ter completed in 1931 was a double-return atmospheric pressure tunnel with two
fans powered by 4,000 hp electric motors, capable of testing aircraft with spans of
12m air at speeds up to 190 km/h.

The tunnel was used to test virtually every high-performance aircraft used by
the United States in World War II. For much of the war, when it was operational
24 hours a day, seven days a week, the full-scale tunnel was the only tunnel in the
free world large enough to perform these tests.

The wind tunnel was in use through the 2000s, modified to allow new testing
procedures, such as free-flight and high angle of attack, but demolition of the
tunnel began in 2010 with the fan blades being salvaged for display. The era of
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the physical wind tunnel is now over and the era of the virtual computational wind
tunnel has begun.

Figure 12.1: Langley full scale wind tunnel 1931: Entrance and exit cones with
people showing thye dimensions.



Chapter 13

Data

Birds raise their opened wings with greater facility than they lower them.
...because the wing is convex on top and concave below, so that the air can
more conveniently escape from the percussion of the wings in their rising
than in their lowering, where in the air included within the concavity tends
to become more condensed than to escape. (da Vinci in Paris Manucript E)

13.1 Classical Data
We present below experimental data from Goldstein: Modern Developments in Fluid Dy-
namics including comparisons with predictions by classical circulation theory. We shall
below return to these observations in the light of the New Theory.

13.2 Boeing 787-8 Dreamliner
• Overall L

D = 20.84

• Takeoff CLmax = 1.91

• Takeoff V 2 = 167 keas (climb out speed) (knots, 1 knot ≈ 1.8km/h )

• L
D = 14.15 at 2nd segment.

• Takeoff Thrust/Weight = 0.280

• Landing CLmax = 2.66

• Landing Approach Speed 133 keas
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Figure 13.1: Circulation theory velocity around an airfoil compared with obser-
vation. Notice the unphysical inflow velocity of circulation theory.
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Figure 13.2: Drag coefficient cD for different surface roughness as function of
Reynolds number.
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Figure 13.3: Drag coefficient cD as function of angle of attack and Reynolds
number.
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Figure 13.4: Comparision of theoretical and observed pressure distribution on
upper and lower wing surface for aoa = 7. Observe the unphysical theoretical
high pressure at the trailing edge.
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Figure 13.5: Comparision of theoretical and observed pressure distribution on up-
per and lower wing surface for aoa = 0 and 8. Observe the unphysical theoretical
high pressure at the trailing edge.
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Figure 13.6: Observed drag coefficients for different suraface roughness and
Reynolds number. Notice increasing drag for smaller Reynolds numbers.
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Figure 13.7: Observed lift coefficient as function of angle of attack for different
airfoils and Reynolds number
.
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Figure 13.8: Observed maximal lift coefficient as function of Reynolds number for
different surface roughness. Observe the branching of the curves as the Reynolds
number increases beyond 106 with finished surfaces allowing effective slip to de-
lay separation and increase lift.
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Figure 13.9: Observed maximal lift coefficient as function of Reynolds number
for different airfoils.
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Figure 13.10: Observed velocity as function of distance to the wing surface, with
u0 the free stream velcocity. Notice the apparent absense of a boundary layer
connecting the free stream velocity to a no-slip boundary condition.
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Figure 13.11: Observed maximal lift for different levels of inflow turbulence. Ob-
serve that the maximal lift increases with increasing level of turbulence indicating
delay of separation connecting to an effective slip boundary condition.
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Figure 13.12: The essence of classical circulation theory in pictures, from
Schlichting-Truckenbrodt Aerodynamics of the Airplane. Top left (a) shows po-
tential flow with zero lift and drag. Bottom left (c) shows potential flow with large
scale circulation determined by the Kutta condition of smooth separation at the
trailing edge, supposedly generated by the starting vortex shown to the right (b
and c). The unphysical nature of circulation theory with a change of the direction
of the inflow, is clearly displayed.
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Figure 13.13: Classical circulation theory only gives the slope of the lift curve as
one number, but does not include e.g. stall or drag.
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Figure 13.14: Observation of lift and drag for different angles of attack and
Reynolds numbers, from Schlichting-Truckenbrodt Aerodynamics of the Airplane.



116 CHAPTER 13. DATA



Part II

Observing Navier-Stokes
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Chapter 14

Shut Up and Calculate

How can aviation be grounded in such a muddy understanding of the un-
derlying physics? As with many other scientific phenomena, it’s not always
necessary to understand why something works to make use of it. We en-
gineers are happy if we’ve got enough practical knowledge to build flying
aircraft. The rest we chalk up to magic [87].

14.1 Naviers-Stokes vs Schrödinger

The interpretation of the wave functions of the new quantum mechanics of the
atomic world as solutions of Schrödinger’s wave equations, was intensely debated
in the 1920s by Schrödinger, Bohr, Born and Dirac without reaching any agree-
ment. This led a frustated Dirac in an effort to get out of the scientific dead lock
to make the appeal ”shut up and calculate”: Simply solve the Schrödinger equa-
tion and take what you get as physics. However, Dirac’s appeal did not and still
does not help much because analytical solution of Schrödinger’s equation is pos-
sible only for the Hydrogen atom with one electron, and computational solution
involves 3N space dimensions for N particles, which even today is possible only
for small N .

The debate thus is shifted to different techniques of solving Schrödinger’s
equation, considered to harbor the truth, and the debate goes on.

Similarly, solutions of the Navier-Stokes equations may be expected to tell the
physics of flight, and so the question is if they are computable or as uncomputable
as Schrödinger’s equation?

Navier-Stokes solutions at the high Reynold’s numbers of flight are turbulent

119



120 CHAPTER 14. SHUT UP AND CALCULATE

and have thin boundary layers and the standard wisdom expressed by Kim an
Moin [43] is that computational resolution requires quadrillions of mesh points
beyond the capacity of any forseeable computer.

But there is trick, or mircale, which make the Navier-Stokes equations com-
putable: If we combine the Navier-Stokes equations with a slip boundary condi-
tion modeling that the friction force from the air on the wing is small, which it
is for slightly viscous flow, then there is no Prandtl boundary layer to resolve and
then solutions of the Naviers-Stokes equations can be computed with 106 mesh
points, and the lift and drag of these solutions agree very well with experiments.
Thus Dirac’s appeal works out for flight described by Navier-Stokes equations.

Chosing a slip (or small friction) boundary condition, which we can do be-
cause it is a good model of actual physics, we gain in two essential aspects: Solu-
tions become computable and computed solutions tell the truth.

The truth we find this way is that neither lift nor drag originate from a thin
boundary layer, and thus that the Kutta-Zhukovsky-Prandtl theory is unphysical
and incorrect. State-of-the-art today thus presents a theory of flight which is both
unphysical and uncomputable.

14.2 Compute - Analyze - Understand
Computed solutions show that a wing creates lift as a reaction force downwash,
with less than 1/3 coming from the lower wing surface pushing air down and the
major remaining part from the upper surface sucking air down, with a resulting
lift/drag quotient L

D
> 10.

You could stop here following the device of the physicist Dirac of “shut up and
calculate” but as a scientist and rational human beings you would certainly like
to “understand” the solutions, that is describe the “mechanism” making a wing
generate large lift with small drag.

For flight with a mean value of 3 degrees wing inclination, the mechanical
effort for a human being would be 0.3hp. This amount of energy is within
the possibilities of human effort especially after some training. Given a
very favourable shape for the flying apparatus, with 15 to 20 square meter
area, and not more than 22 pounds weight, rapid horizontal flight in still air
becomes feasible. But, at any rate, with such an apparatus and without beat-
ing the wings, we can execute a prolonged downward glide, which would
present plenty of interest and instruction. (Birdflight as the Basis of Aviation
)
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Observing Pressure, Lift and Drag

I have been able to solve a few problems of mathematical physics on which
the greatest mathematicians since Euler have struggles in vain... But the
pride I could have felt over the final results... was considerably diminished
by the fact that I knew well how the solutions had almost always come to
me: by gradual generalizations of favourable examples, through a succes-
sion of felicitous ideas after many false trails. I should compare myself to a
mountain climber who, without knowing the way, hikes up slowly and labo-
riously, often must return because he cannot go further, then, by reflection or
by chance, discovers new trails that take him a little further, and who, when
he finally reaches his aim, to his shame discovers a royal road on which he
could have trodden up if he had been clever enough to find the right begin-
ning. Naturally, in my publications I have not told the reader about the false
trails and I have only described the smooth road by which he can now reach
the summit without any effort. (Hermann von Helmholtz 1891)

15.1 Potential Flow with 3d Rotational Separation

We will now uncover the secret of flight in more detail by inspecting computa-
tional solutions of Navier-Stokes equations with a slip boundary condition for a
long NACA0012 wing. The distribution of the pressure over the wing surface de-
termines both lift and drag. The pressure acts in a direction normal to the wing
surface and its components perpendicular and parallel and perpendicular to the
motion of the wing give the distributions of lift and drag over the wing surface
which give the total lift L and drag D with by integration. We discover that
L
D

= 30 − 50 for α < 14 as recorded in Fig. 1.16, which captures the miracle
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of flight. For a common wing of finite length, L
D

= 15 − 20, because of wing-tip
effects as discussed below.

We will inspect the computed velocity and vorticity and rationalize what we
see in terms of basic fluid mechanics. We will find that the flow can be described
as a potential flow modified by 3d rotational slip separation with point stagnation.

The flow before separation thus will seen to be close to potential flow and
there conform with Bernoulli’s Law stating that the sum of kinetic energy 1

2
|u|2

with u velocity and pressure p remains constant over the region of potential flow:

1

2
|u|2 + p = constant, (15.1)

expressing that the pressure is low where the velocity is high and vive versa.
We recall the principal description in Fig. 10.1 with full potential flow to the

left with high pressure H on top of the wing and low pressure L below at the
trailing edge destroying lift, and to the right the real flow modified by a certain
perturbation at the trailing edge switching H and L to generate lift.

15.2 Pressure
Fig. 15.3 shows the pressure distribution for aoa = 4, 12, 17. We observe

• low pressure on top/front of the leading edge and high pressure below as
expected from potentiual flow,

• no high pressure on top of the trailing edge in contrast to potential flow,

• the pressure distribution intensifies with increasing angle of attack,

• max negative pressure (lift) 5 times bigger than max pressure (drag) on
leading edge for α = 10,

15.3 Lift and Drag Distribution
Fig. 15.2 shows the distributions of lift and drag over the surface of the wing
section for α = 0, 2, 4, 10, 18. We observe

• lift increases and peaks at the leading edge as α increases towards stall,

• both lift and drag are small att the trailing edge,
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• the negative lift on the lower surface for small α shifts to positive lift for
larger α,

• the lift from the upper surface is several times bigger than from the lower
surface

• leading edge suction: negative/positive drag on the upper/lower leading
edge balance to give small net drag,

• main drag from leading edge for smaller α.

Altogether, we see that the miracle of L
D
> 10 results from the facts that

• main lift and drag come from leading edge,

• minimal pressure several times bigger than the maximal pressure on the
leading edge (factor 5 say)

• leading edge suction reduces drag (another factor 2 say).

15.4 Pressure Distribution
Fig.15.4 shows the computed presssure distribution vs experiments for aoa =
4, 10.

15.5 Total Lift and Drag
Figs. 15.5-15.5 show lift and drag coefficients as functions of time and total num-
ber of mesh points. We see that the coefficients are determined up to a tolerance
of less than .5% for lift and 10% for drag.
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Figure 15.1: Pressure for aoa = 4, 12, 17.



15.5. TOTAL LIFT AND DRAG 125

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−2

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−1

0

1

2

3

4

5

Figure 15.2: G2 computation of normalized local lift force (upper) and drag
force (lower) contributions acting along the lower and upper parts of the wing, for
angles of attack 0, 2 ,4 ,10 and 18◦, each curve translated 0.2 to the right and 1.0
up, with the zero force level indicated for each curve.
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Figure 15.3: Computed pressure distribution vs experiments for aoa = 4 and 10.
Notice the pressure distribution at the trailing edge in accordance with observa-
tion, without the unphysical high pressure of circulation theory.
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Chapter 16

Observing Velocity

The contribution of skin-frcition to the drag of a cylinder is small...for Re =
2.2 × 105 about 2.0%. (Gold stein in Modern Developments in Fluid Dy-
namics)

Fig. 16 and 16 show the velocity for α = 10, 14, 17. We observe

• high velocity on top/front of the leading edge and low velocity below in
conformity with Bernoulli’s Principle,

• a wake with low velocity develops as stall is approached,

• well before stall the flow separates smoothly at the trailing edge and not as
potential flow at stagnation before the trailing edge,

• the separation moves forward from the trailing edge on the upper surface as
stall is approached.

We observe

• 3d rotational slip separation with point stagnation in a zig-zag pattern

• generating rolls of streamwise vorticity with low pressure.

Fig. 16.5-16.9 also show the zig-zag velocity separation pattern with point stag-
nation.
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Figure 16.1: Velocity magnitude around the airfoil for α = 10 (top), 14 (center)
and 17 (bottom).
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Figure 16.2: Velocity magnitude on the airfoil surface for α = 10 (top), 14
(center) and 17 (bottom) showing that separation pattern moves up the airfoil with
increasing α towards stall.
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Figure 16.3: Velocity for aoa = 4, 10, 12, 17.
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Figure 16.4: Velocity aoa = 10.

Figure 16.5: Trailing edge zig-zag velocity pattern aoa = 04.
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Figure 16.6: Trailing edge zig-zag velocity aoa = 10.

Figure 16.7: Zigzag velocity aoa = 12.
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Figure 16.8: Trailing edge zig-zag velocity aoa = 12.

Figure 16.9: Trailing edge zig-zag velocity aoa = 17.
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Chapter 17

Observing Vorticity

The lift and drag coefficients of an airfoil are usually obtained from wind-
tunnel tests on models of finite aspect ratio (usually 6 to 1) and rectangular
plan form: coefficients for this type of flow can be predicted by the vor-
tex theory of airfoils from those measured on an airfoil of finite span...The
experimental values of surface pressure lie close to the theoretical Kutta-
Joukowski formula except for a short part at the tail. (Goldstein in Modern
Developments in Fluid Dynamics)

Fig. 17.1-17.3 shows side view of pressure, velocity and top view of vorticity for
α = 2, 4, 8, 10, 14, 18. We observe

• development of rolls of streamwise vorticity at separation at the trailing
edge as illustrated in Fig. 10.1,

• pressure is small inside rolls of streamwise vorticity generating som drag,

• separation moves from the trailing edge to upper surface as α approches
stall.

Below we will in more detail study the dynamics of the generation of streamwise
vorticity as the generic structure of rotational slip separation with point stagnation.
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Figure 17.1: G2 computation of velocity magnitude (upper), pressure (middle),
and non-transversal vorticity (lower), for angles of attack 2, 4, and 8◦ (from left
to right). Notice in particular the rolls of streamwise vorticity at separation.
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Figure 17.2: G2 computation of velocity magnitude (upper), pressure (middle),
and topview of non-transversal vorticity (lower), for angles of attack 10, 14, and
18◦ (from left to right). Notice in particular the rolls of streamwise vorticity at
separation.
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Figure 17.3: G2 computation of velocity magnitude (upper), pressure (middle),
and non-transversal vorticity (lower), for angles of attack 20, 22, and 24◦ (from
left to right).
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Summary of Observation

On all airfoils the first sign of an approaching stall is the formation of a
thick region of low pressure over the upper surface near the trailing edge,
but without definite separation of the stream from the surface. (Goldstein in
Modern Developments in Fluid Dynamics)

Phase 1: 0 ≤ α ≤ 8

At zero angle of attack with zero lift there is high pressure at the leading edge and equal
low pressures on the upper and lower crests of the wing because the flow is essentially po-
tential and thus satisfies Bernouilli’s law of high/low pressure where velocity is low/high.
The drag is about 0.01 and results from rolls of low-pressure streamwise vorticity at-
taching to the trailing edge. As α increases the low pressure below gets depleted as the
incoming flow becomes parallel to the lower surface at the trailing edge for α = 6, while
the low pressure above intenisfies and moves towards the leading edge. The streamwise
vortices at the trailing edge essentially stay constant in strength but gradually shift attache-
ment towards the upper surface. The high pressure at the leading edge moves somewhat
down, but contributes little to lift. Drag increases only slowly because of negative drag at
the leading edge.

Phase 2: 8 ≤ α ≤ 12

The low pressure on top of the leading edge intensifies to create a normal gradient pre-
venting separation, and thus creates lift by suction peaking on top of the leading edge. The
slip boundary condition prevents separation and downwash is created with the help of the
low-pressure wake of streamwise vorticity at rear separation. The high pressure at the
leading edge moves further down and the pressure below increases slowly, contributing

147



148 CHAPTER 18. SUMMARY OF OBSERVATION

to the main lift coming from suction above. The net drag from the upper surface is close
to zero because of the negative drag at the leading edge, known as leading edge suction,
while the drag from the lower surface increases (linearly) with the angle of the incoming
flow, with somewhat increased but still small drag slope. This explains why the line to a
flying kite can be almost vertical even in strong wind, and that a thick wing can have less
drag than a thin.

Phase 3: 12 ≤ α ≤ 14

Beginning stall with lift non-increasing while drag is increasing super-linearly.

Phase 4: 14 ≤ α ≤ 16

Stall with rapidly increasing drag.

18.1 Summary Lift and Drag
The lift generation in Phase 1 and 3 can rather easily be envisioned, while both the lift and
drag in Phase 2 results from a (fortunate) intricate interplay of stability and instability of
potential flow: The main lift comes from upper surface suction arising from a turbulent
boundary layer with small skin friction combined with rear separation instability generat-
ing low-pressure streamwise vorticity, while the drag is kept small by negative drag from
the leading edge.

We can thus summarize as follows:

• Substantial lift from suction on upper surface.

• Small drag from suction on leading edge.
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Computation vs Experiments

The drag of a stream-line body is mainly, though not entirely, due to skin-
friction...The drag of a bluff obstacle, on the other hand, is mainly the re-
sultant of normal pressure. (Goldstein in Modern Developments in Fluid
Dynamics)

When we consider fluids of small viscosity, we shall have to explain first
why inviscid fluid theory ever gives approximately correct results, since it
involves slip over the surface, how circulation and vorticity make their ap-
pearance; how to calculate skin-friction; how to calculate the circulation and
the lift for a stream-line body without a salient edge; and how to calculate
the pressure distribution, the drag, and the lift for a bluff body. We may state
at once that we can make very little progress indeed with the last calculation
beyond what has already been mentioned in connection with the theory of
the vortex-street...(Goldstein in Modern Developments in Fluid Dynamics)

The computations shown are obtained by the finite element solver G2 with
automatic mesh adaption from a posteriori error estimation of lift and drag by
based on sensitivity information obtained by solving a linearized dual Navier-
Stokes problem.

19.1 Data for Experiments
Ladson 1

Re = 8.95e6,M = 0.15 Grit level 60W (wraparound). grit acts to trip the
boundary layer.
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Figure 19.1: Comparison between computed lift and drag coefficient with experi-
mentsfor aoa = 10.

Ladson 2
Re = 6.00e6,M = 0.15 Grit level 60W (wraparound).

Ladson 3
Re = 8.95e6,M = 0.30 Grit level 120W (wraparound).

Gregory/O’Reilly
Re = 2.88e6,M = 0.16

where the wraparound grit in the Ladson experiments acts to trip the boundary
layer.

19.2 Comparing Computation with Experiment
Fig. 19.1 shows that G2 computations lie within variations in experiments [55, 58]
as a central message of this book.
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In fact, computations may well be more precise than experiment, because G2
with slip models a very large Reynolds number representative of e.g. a jumbojet,
which cannot be attained in wind tunnel where scale model are used. Upscaling
of test results is cumbersome because boundary layers do not scale. This means
that computations may be closer to reality than wind tunnel experiments.

Of particular importance is the maximal lift coefficient, which cannot be pre-
dicted by Kutta-Zhukovsky nor in model experiments.
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Chapter 20

Preparing Understanding

The only natural phenomena that we can pre- calculate and understand in all
their observable details, are those for which small errors in the input of the
calculation bring only small errors in the final result. As soon as unstable
equilibrium interferes, this condition is no longer met. Hence chance still
exists in our horizon; but in reality chance only is a way of expressing the
defective character of our knowledge and the roughness of our combining
power. (Helmholtz 1876)

20.1 New Resolution of D’Alembert’s Paradox

We have said that the new flight theory comes out of a new resolution of D’Alembert’s
Paradox [103, 104, 102]. The new resolution is based on a stability analysis show-
ing that zero-lift/drag potential flow is unstable and in both computation and real-
ity is replaced by turbulent flow with both lift and drag.

The new resolution is fundamentally different from the classical official reso-
lution attributed to Prandtl [120, 124, 137], which disqualifies potential flow be-
cause it satisfies a slip boundary condition allowing fluid particles to glide along
the boundary without friction force, and does not satisfy a no-slip boundary condi-
tion requiring the fluid particles to stick to the boundary with zero relative velocity
and connect to the free-stream flow through a thin boundary layer, as demanded
by Prandtl.
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20.2 Slip/Small Friction Boundary Conditions
In contrast to Prandtl, we complement in the new theory Navier-Stokes equations
with a friction force boundary condition for tangential forces on the boundary with
a small friction coefficient as a model of the small skin friction resulting from a
turbulent boundary layer of slightly viscous flow. In the limit of zero boundary
friction this becomes a slip boundary condition, which means that potential flow
can be seen as a solution of the Navier-Stokes equations subject to a small pertur-
bation from small viscous stresses. In the new theory we then disqualify potential
flow because it is unstable, that is on physical grounds, and not as Prandtl on
formal grounds because it does not satisfy no-slip boundary conditions.

The Navier-Stokes equations can be complemented by no-slip or slip/friction
boundary conditions, just like Poisson’s equation can be complemented by Dirich-
let or Neumann boundary conditions. The choice of boundary conditions depends
on which data is available. In the aerodynamics of larger birds and airplanes, the
skin friction is small and can be approximated by zero friction or a slip boundary
condition.

For small insects viscous effects become important, which changes the physics
of flight and makes gliding flight impossible. An albatross is a very good glider,
while a fruit fly cannot glide at all in the syrup-like air it meets and can only move
by using some form of paddling.

20.3 Computable + Correct = Secret
We solve the Navier-Stokes equations (NS) with slip/friction boundary condition
using an adaptive stabilized finite element method with duality-based a posteriori
error control referred to as General Galerkin or G2 presented in detail in [103]
and available in executable open source form from [132]. The stabilization in
G2 acts as an automatic computational turbulence model, and the only input is
the geometry of the wing. We thus find by computation that lift is not connected
to circulation in contradiction to Kutta-Zhukovsky’s theory and that the curse of
Prandtl’s laminar boundary layer theory (also questioned in [92, 93, 72]) can be
circumvented. Altogether, we show in this book that ab initio computational fluid
mechanics opens new possibilities of flight simulation ready to be explored and
utilized.

• NS with no-slip: uncomputable: hides the secret,
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• NS with slip: computable: reveals the secret.

20.4 No Lift without Drag
The zero-drag of potential flow has been (and still is) leading aerodynamicis to
search for wings with lift but without drag [3], which we have seen is not a feature
of Navier-Stokes solutions, and thus is unrealistic.
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Part III

Solving Navier-Stokes
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Chapter 21

Navier-Stokes Equations

Waves follow our boat as we meander across the lake, and turbulent air
currents follow our flight in a modern jet. Mathematicians and physicists
believe that an explanation for and the prediction of both the breeze and the
turbulence can be found through an understanding of solutions to the Navier-
Stokes equations. Although these equations were written down in the 19th
Century, our understanding of them remains minimal. The challenge is to
make substantial progress toward a mathematical theory which will unlock
the secrets hidden in the Navier-Stokes equations. (Clay Mathematics Insti-
tute Millennium Problem [106])

I have always inclined to the belief that the motion of a perfect incompress-
ible liquid, primitively at rest, about a solid which continually progressed,
was unstable.(Stokes 1858).

21.1 Conservation of Mass, Momentum and Energy
The basic mathematical model of fluid mechanics takes the form of the Navier-
Stokes equations expressing conservation of mass, momentum and energy of a
viscous fluid in the conservation variables of density, momentum and energy with
the viscosity as a given coefficient. For an incompressible fluid the equations can
be formulated in terms velocity and pressure, referred to as the incompressible
Navier-Stokes equations, with a decoupled energy equation.

The fluid mechanics of subsonic flight is modeled by the incompressible Navier-
Stokes equations for a slightly viscous fluid, which is the focus of this book. The
Reynolds number Re = UL

ν
where U is a characteristic fluid velocity, L a char-
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acteristic length and ν the fluid viscosity, is used to identify the high Reynolds
number flow occuring in aerodynamics with Re of size 108 for large airplanes.

The incompressible Navier-Stokes equations are complemented by initial val-
ues for velocity, and boundary conditions specifying either velocities or forces on
the boundary. A no-slip boundary condition sets the fluid velocity to zero on the
boundary, while a slip boundary condition sets the velocity normal to the boundary
to zero together with the tangential (friction) force. The slip condition is a limit
case of a combined normal velocity-tangential stress boundary condition with the
tangential stress set to zero as a model of zero skin friction.

The Navier-Stokes equations for an incompressible fluid of unit density with
small viscosity ν > 0 and small skin friction β ≥ 0 filling a volume Ω in R3

surrounding a solid body with boundary Γ over a time interval I = [0, T ], read as
follows: Find the velocity u = (u1, u2, u3) and pressure p depending on (x, t) ∈
Ω ∪ Γ× I , such that

u̇+ (u · ∇)u+∇p−∇ · σ = f in Ω× I,
∇ · u = 0 in Ω× I,
un = g on Γ× I,
σs = βus on Γ× I,

u(·, 0) = u0 in Ω,

(21.1)

where un is the fluid velocity normal to Γ, us is the tangential velocity, σ = 2νϵ(u)
is the viscous (shear) stress with ϵ(u) the usual velocity strain, σs is the tangential
stress, f is a given volume force, g is a given inflow/outflow velocity with g = 0
on a non-penetrable boundary, and u0 is a given initial condition.

We notice the skin friction boundary condition coupling the tangential stress
σs to the tangential velocity us with the friction coefficient β with β = 0 for slip,
and β >> 1 for no-slip. We note that β is related to the standard skin friction
coefficient cf = 2τ

U2 with τ the tangential stress per unit area, by the relation
β = U

2
cf . In particular, β tends to zero with cf (if U stays bounded).

Prandtl insisted on using a no-slip velocity boundary condition with us = 0
on Γ, because his resolution of D’Alembert’s Paradox hinged on discriminating
potential flow by this condition. On the oher hand, with the new resolution of
D’Alembert’s Paradox, relying instead on instability of potential flow, we are free
to choose instead a friction force boundary condition, if data is available. Now,
experiments show [124, 28] that the skin friction coefficient decreases with in-
creasing Reynolds number Re as cf ∼ Re−0.2, so that cf ≈ 0.0005 for Re = 1010

and cf ≈ 0.007 for Re = 105. Accordingly we model a turbulent boundary layer
by a friction boundary condition with a friction parameter β ≈ 0.03URe−0.2. For
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very large Reynolds numbers, we can effectively use β = 0 in G2 computation
corresponding to slip boundary conditions.

21.2 Wellposedness and Clay Millennium Problem
The mathematician J. Hadamard identified in 1902 [95] wellposedness as a neces-
sary requirement of a solution of a mathematical model, such as the Navier-Stokes
equations, in order to have physical relevance: Only wellposed solutions which
are suitably stable in the sense that small perturbations have small effects when
properly measured, have physical significance as observable pheonomena.

Leray’s requirement of wellposedness is absolutely fundamental, but the ques-
tion whether solutions of the Navier-Stokes equations are wellposed, has not been
studied because of lack mathematical techniques for quantitative analysis. This
is evidenced in the formulation of the Clay Millennium Prize Problem on the
Navier-Stokes equations excluding wellposedness [106, 102].

The mathematical Garret Birkhoff became heavily criticized for posing this
question in [92], which stopped him from further studies. The first step towards
resolution of D’Alembert’s Paradox and the mathematical secret of flight is thus
to pose the question if potential flow is wellposed, and then to realize that it is not.
It took 256 years to take these steps.

21.3 Laminar vs Turbulent Boundary Layer
As developed in more detail in [134], we make a distinction between laminar
(boundary layer) separation modeled by no-slip and turbulent (boundary layer)
separation modeled by slip/small friction. Note that laminar separation cannot be
modeled by slip, since a laminar boundary layer needs to be resolved with no-
slip to get correct (early) separation. On the other hand, as will be seen below,
in turbulent (but not in laminar) flow the interior turbulence dominates the skin
friction turbulence indicating that the effect of a turbulent boundary layer can be
modeled by slip/small friction, which can be justified by an posteriori sensitivity
analysis as shown in [134].

We thus assume that the boundary layer is turbulent and is modeled by slip/s-
mall friction, which effectively includes the case of laminar separation followed
by reattachment into a turbulent boundary layer.
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Chapter 22

G2 Computational Solution

If the velocity is sufficiently great, the motion of the fluid at small distances
from its surface all round will always be very nearly the same as if the fluid
were inviscid, and the difference will be smaller near the front part than near
the rear of the globe. (Lord Kelvin 1887)

22.1 G2: Stabilized Finite Element Method

We show in [103, 102, 104] that the Navier-Stokes equations (21.1) can be solved
by a weighted least squares residual stabilized finite element referred to as General
Galerkin or G2.

Writing the Navier-Stokes equations in symbolic form as R(u, p) = 0, the G2
method determines a piecewise linear computational solution (U, P ) on a given
finite element mesh such that the residual R(U, P ) is small in a mean-value sense
(Galerkin property) and with a certain weighted control of R(U, P ) in a least-
square sense (residual stabilization).

The least squares stabilization of G2 acts as an automatic turbulence model,
reflecting that the Euler residual cannot be made pointwise small in turbulent re-
gions. G2 has a posteriori error control based on duality and shows output unique-
ness in mean-values such as lift and drag [103, 99, 100]

We find that G2 with slip is capable of modeling slightly viscous turbulent
flow with Re > 106 of relevance in many applications in aero/hydro dynamics,
including flying, sailing, boating and car racing, with hundred thousands of mesh
points in simple geometry and millions in complex geometry, while according to
state-of-the-art quadrillions is required [59]. This is because a friction-force/slip
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boundary condition can model a turbulent boundary layer, and interior turbulence
does not have to be resolved to physical scales to capture mean-value outputs
[103].

The idea of circumventing boundary layer resolution by relaxing no-slip bound-
ary conditions introduced in [99, 103], was used in [115, 26] in the form of weak
satisfaction of no-slip, which however misses the main point of using a force con-
dition instead of a velocity condition in a model of a turbulent boundary layer.

G2 produces turbulent solutions characterized by substantial turbulent dissipa-
tion from the least squares residual stabilization acting as an automatic turbulence
model, reflecting that R(U, P ) cannot be made small pointwise in turbulent re-
gions.

G2 is equipped with automatic a posteriori error control guaranteeing correct
lift and drag coefficients [103, 34, 33, 38, 99, 100] up to an error tolerance of a few
percent on meshes with a few hundred thousand or million mesh points number
of mesh points depending on geometry complexity.

G2 with slip works because slip is good model of the turbulent boundary layer
od slightly viscous flow, and interior turbulence does not have to be resolved to
physical scales to capture mean-value outputs [103].

G2 with slip thus offers a wealth of infomation at affordable cost, while Prandtl’s
requirement of boundary layer resolution cannot be met by any forseeable com-
puter.

A G2 solution (U, P ) on a mesh with local mesh size h(x, t) according to
[103], satisfies the following energy estimate (with f = 0, g = 0 and β = 0):

K(U(t)) +Dh(U ; t) = K(u0), (22.1)

where

K(U(t)) =
1

2

∫
Ω

|U(t)|2 dx , Dh(U ; t) =

∫ t

0

∫
Ω

h|R(U, P )|2 dxdt, (22.2)

with K(U(t)) the kinetic energy at time and Dh(U ; t) the turbulent disspation up
to time t and Rh(U, P ) the Euler residual of (U, P ). We see that the G2 turbulent
viscosity Dh(U ; t) arises from penalization of a non-zero Euler residual R(U, P )
with the penalty directly connecting to the violation (according the theory of crim-
inology). A turbulent solution is characterized by substantial dissipation Dh(U ; t)
with ∥R(U, P )∥0 ∼ h−1/2, and

∥Rh(U, P )∥−1 ≤
√
h (22.3)
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with ∥R(U, P )∥0 the mean square norm of R(U, P ) and ∥R(U, P )∥−1 a weaker
norm measuring the mean square norm of a smoothed version of R(U, P ), see
[103] for details.

22.2 Wellposedness of Mean-Value Outputs
G2 is equipped with automatic a posteriori error estimation in chosen output quan-
tities such as lift and drag, which expresses the sensitivity of lift and drag with
respect to the residual of a computed Navier-Stokes solution in terms of a weight
function obtained by solving a dual linearized Navier-Stokes equation with the
size of derivatives of the dual velocity and pressure representing the weight. G2
automatically adapts the computational mesh according to the weight so as to op-
timize computational resources.

Let M(v) =
∫
Q
vψ dxdt be a mean-value output of a velocity v defined by

a smooth weight-function ψ(x, t), and let (u, p) and (U, P ) be two G2-solutions
on two meshes with maximal mesh size h. Let (φ, θ) be the solution to the dual
linearized problem

−φ̇− (u · ∇)φ+∇U⊤φ+∇θ = ψ in Ω× I,
∇ · φ = 0 in Ω× I,
φ · n = g on Γ× I,

φ(·, T ) = 0 in Ω,

(22.4)

where ⊤ denotes transpose. Multiplying the first equation by u−U and integrating
by parts, we obtain the following output error representation [103]:

M(u)−M(U) =

∫
Q

(Rh(u, p)−Rh(U, P )) · φdxdt (22.5)

where for simplicity the dissipative terms are here omitted, from which follows
the a posteriori error estimate:

|M(u)−M(U)| ≤ S(∥Rh(u, p)∥−1 + ∥Rh(U, P )∥−1), (22.6)

where the stability factor

S = S(u, U,M) = S(u, U) = ∥φ∥H1(Q). (22.7)

In [103] we present a variety of evidence, obtained by computational solution
of the dual problem, that for global mean-value outputs such as drag and lift,
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S << 1/
√
h, while ∥Rh∥−1 ∼

√
h, allowing computation of of drag/lift with

a posteriori error control of the output within a tolerance of a few percent. In
short, mean-value outputs such as lift and drag are wellposed and thus physically
meaningful.

We explain in [103] the crucial fact that S << 1/
√
h, heuristically as an

effect of cancellation of rapidly oscillating reaction coefficients of turbulent solu-
tions combined with smooth data in the dual problem for mean-value outputs. In
smooth potential flow there is no cancellation, which explains why zero lift/drag
cannot be observed in physical flows.

22.3 Computed Dual Velocity-Pressure
In Fig. 22.1-22.5 we show dual pressure and velocity for lift/drag indicating mesh
refinement where derivatives are large. Notice the large pressure on top of the
trailing edge for aoa = 04.

22.4 Computational Meshes
In Figs. 22.6-22.7 we show a sequence of adaptively refined 3d meshes for aoa =
10, 14. with up to 1 million mesh points.

In Figs. 22.8-?? we show computational meshes for aoa = 4, 10, 12, 17, 20.

22.5 What You Need to Know
To understand flight it is not necessary to get into the details of G2; it is sufficient
to understand that G2 solves the Navier-Stokes equations with an automatic con-
trol of the the computational error, which guarantees that G2 solutions are proper
solutions capable of unraveling the secrets hidden in the Navier-Stokes equations,
thereby offering valuable information for both understanding and design.
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Figure 22.1: Dual pressure and velocity aoa = 04.
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Figure 22.2: Dual pressure and velocity aoa = 10.

Figure 22.3: Dual pressure and velocity aoa = 12.

Figure 22.4: Dual pressure and velocity aoa = 17.
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Figure 22.5: Dual velocity for aoa = 20.
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Figure 22.6: Automatically adapted meshes for aoa = 10, with inital mesh (top),
iteration 4 (center), and iteration 8 (bottom).
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Figure 22.7: Automatically adapted meshes for aoa = 14, with inital mesh (top),
iteration 4 (center), and iteration 8 (bottom).
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Figure 22.8: Adaptively refined meshes for aoa = 04.
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Figure 22.9: Adaptively refined meshes for aoa = 10.
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Figure 22.10: Adaptively refined meshes for aoa = 12.
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Figure 22.11: Adaptively refined meshes for aoa = 17.
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Part IV

Understanding Navier-Stokes
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Chapter 23

The Secret

To those who ask what the infinitely small quantity in mathematics is, we
answer that it is actually zero. Hence there are not so many mysteries hidden
in this concept as they are usually believed to be. (Leonhard Euler)

High office, is like a pyramid; only two kinds of animals reach the summit–
reptiles and eagles. (d’Alembert)

Just go on . . . and faith will soon return. (d’Alembert to a friend hesitant
with respect to infinitesimals)

The flow of air around a wing is a specific example of slightly viscous flow
around a bluff body. If we can understand slightly viscous flow around bluff
bodies in general, then we can understand the flow around a wing and thus uncover
the secret of flight.

But you say that slightly viscous flow around a bluff body is turbulent and
since turbulence is not or cannot be understood, and so how can it be possible to
uncover the secret of flight in this way?

But Nature comes to our help; even if turbulence in general hides its secrets,
it turns out that slightly viscous around a bluff body can be described and thus
understood as

• potential flow modified by 3d slip separation.

Since potential flow has been well understood since the time of Euler, it remains
to understand 3d slip separation. So we now proceed to uncover the secret of
flight by first recalling basic aspects of potential flow and then describe 3d slip
separation in mathematical terms.
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Figure 23.1: Unsuccessful attempt to uncover the secret of flight by da Vinci:
sketch and model.



Chapter 24

Potential Flow

Because of D’Alembert’s Paradox) fluid mechanics was from start split into
the field of hydraulics, observing phenomena which could not be explained,
and mathematical or theoretical fluid mechanics explaining phenomena which
could not be observed. (Chemistry Nobel Laureate Sir Cyril Hinshelwood
[63])

If one looks at all closely at the middle of our own century, the events that
occupy us, our customs, our achievements and even our topics of conversa-
tion, it is difficult not to see that a very remarkable change in several respects
has come into our ideas; a change which, by its rapidity, seems to us to fore-
shadow another still greater. Time alone will tell the aim, the nature and
limits of this revolution, whose inconveniences and advantages our posterity
will recognize better than we can. (d’Alembert on the Enlightment)

24.1 The Euler Equations
The basic equations in fluid mechanics expressing conservation of momentum or
Newton’s 2nd law connecting force to accelleration combined with conservation
of mass in the form of incompressibility, were formulated by Euler in 1755 as the
Euler equations for an incompressible inviscid fluid (of unit density) enclosed in a
volume Ω in R3 with boundary Γ: Find the velocity u = (u1, u2, u3) and pressure
p such that

u̇+ (u · ∇)u+∇p = f in Ω× I,
∇ · u = 0 in Ω× I,
u · n = g on Γ× I,

u(·, 0) = u0 in Ω,

(24.1)
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which is the Navier-Stokes equations (21.1) with vanishing viscosity and skin
friction corresponding to setting ν = 0 β = 0.

24.2 Euler’s Optimism vs D’Alembert’s Paradox

Mathematical fluid mechanics kick-started when Euler in the 1740s discovered
certain solutions in two space dimensions of the Euler equations with velocities
of the form u = ∇φ with the potential φ a harmonic function satisfying ∆φ = 0
in the fluid domain. These were named potential solutions characterized as

• inviscid: vanishingly small viscosity,

• incompressible: ∇ · u = 0,

• irrotational: ∇× u = 0

• stationary: u̇ = 0.

This promised a fluid mechanics boom for mathematicians as experts of har-
monic functions, but the success story quickly collapsed when d’Alembert in 1752
showed that both lift and drag of potential solutions are zero, which showed that
the wonderful potential solutions were unphysical and thus were doomed as use-
less. But potential solution were essentially the only solutions of the Euler equa-
tions which could be constructed analytically, which led to a long-lasting split of
fluid mechanics into according to the description of Hinshelwood:

• practical fluid mechanics or hydraulics: observing flow with non-zero lift
and drag, which cannot be explained as potential flow with zero lift and
drag,

• theoretical fluid mechanics: explaining flow as potential flow with zero lift
and drag which cannot be observed.

We shall see that it took 254 years to resolve the paradox, but once it was
resolved the mystery of flight could be uncovered without split between theory
and reality.
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Figure 24.1: First page of Euler’s General Principles concerning the Motion of
Fluids from 1757 [80].
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24.3 Potential Flow as Near Navier-Stokes Solution
Potential flow (u, p) with velocity u = ∇φ, where φ is harmonic in Ω and satisfies
a homogeneous Neumann condition on Γ and suitable conditions at infinity, can
be seen as a solution of the Navier-Stokes equations for slightly viscous flow with
slip boundary condition, subject to

• perturbation of the volume force f = 0 in the form of σ = ∇ · (2νϵ(u)),

• perturbation of zero friction in the form of σs = 2νϵ(u)s,

with both perturbations being small because ν is small and a potential flow veloc-
ity u is smooth. Potential flow can thus be seen as a solution of the Navier-Stokes
equations with small force perturbations tending to zero with the viscosity. We
can thus express D’Alembert’s Paradox as the zero lift/drag of a Navier-Stokes
solution in the form of a potential solution, and resolve the paradox by realizing
that potential flow is unstable and thus cannot be observed as a physical flow.

Potential flow is like an inverted pendulum, which cannot be observed in real-
ity because it is unstable and under infinitesimal perturbations turns into a swing-
ing motion. A stationary inverted pendulum is a fictious mathematical solution
without physical correspondence because it is unstable. You can only observe
phenomena which in some sense are stable, and an inverted pendelum or potential
flow is not stable in any sense.

24.4 2d Potential Flow Separates only at Stagnation
2d potential flow has the following crucial property which partly will be inherited
by real turbulent flow, and which explains why a flow over a wing subject to small
skin friction can avoid separating at the crest and thus generate downwash, unlike
viscous flow with no-slip, which separates at the crest without downwash. We
will conclude that gliding flight is possible only in slightly viscous incompressible
flow.

Theorem. Let φ be harmonic in the domain Ω in the plane and satisfy a homoge-
neous Neumann condition on the smooth boundary Γ of Ω. Then the streamlines
of the corresponding velocity u = ∇φ can only separate from Γ at a point of
stagnation with u = ∇φ = 0.
Proof. Let ψ be a harmonic conjugate to φ with the pair (φ, ψ) satisfying the
Cauchy-Riemann equations (locally) in Ω. Then the level lines of ψ are the
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streamlines of φ and vice versa. This means that as long as ∇φ ̸= 0, the boundary
curve Γ will be a streamline of u and thus fluid particles cannot separate from Γ
in bounded time.

24.5 Point Stagnation vs Line Stagnation
2d potential flow around a circular cylinder shows unstable separation at a line
of stagnation in 3d. On the other hand, 3d rotational slip separation with instead
point stagnation represents a more stable separation pattern.

24.6 Bernoulli’s Principle
The momentum equation of (24.1) can alternatively be formulated

u̇+∇(
1

2
|u|2 + p) + u× ω = f, (24.2)

where
ω = ∇× u

is the vorticity of the velocity u. This follows from the following calculus identity:

1

2
∇|u|2 = (u · ∇)u+ u× (∇× u).

For a stationary irrotational velocity u with u̇ = 0 and ω = ∇ × u = 0, we find
that if f = 0, then

1

2
|u|2 + p = C (24.3)

where C is a constant, which is nothing but Bernoulli’s principle coupling small
velocity to large pressure and vice versa.

We conclude that a potential flow velocity u = ∇φ solves the Euler equations
with the pressure p given by Bernoulli’s law.

24.7 Potential Flow: Unstable in 3d Stable in 2d
Our resolution of d’Alembert’s paradox is based on the fact that potential flow is
unstable in 3d and thus cannot be observed as physical flow.
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On the other hand, 2d potential flow is stable. This follows from the fact that
in 2d the vorticity ω = ∇× u with u a velocity satisfying u̇+ u · ∇u+∇p = f ,
satisfies the following transport equation without exponential growth:

∇× f = ∇× (u̇+ u · ∇u+∇p) == ω̇ + u · ∇ω =
Dω

Dt
. (24.4)

This means that potential flow (stationary irrotational incompressible inviscid
flow) remains potential flow and as solution to Laplace’s equation is stable.

On the other hand, in 3d the vorticity equation takes the form

ω̇ + u · ∇ω = ∇× f + (ω · ∇)u, (24.5)

with exponential growth from the presence of the zero-order term (ω · ∇)u. This
means that potential flow does not remain irrotational and stability as solution to
Laplace’s equation is lost.
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3D Slip Separation

At the time of the first human flight, no theory existed that would explain
the sustenation obtained by means of a curved surface at zero angle of at-
tack. It seemed that the mathematical theory of fluid motion was unable to
explain the fundamental facts revealed by experimental aerodynamics. (von
Karman)

When the surface of an obstacle is made to move sufficiently rapidly in the
direction of the current, it has no retarding action on the fluid; consequently
there is no separation. Thus an airfoil would not stall if the top surface
were part of a rotating band. (Goldstein in Modern Developments in Fluid
Dynamics)

We now consider in more detail the central problem of flow separation i slightly
viscous bluff body flow such as the flow around a wing modeled by the Navier-
Stokes equations with slip boundary conditions. We shall consider three basic
cases of 3d slip separation with the main flow velocity u in the x1-direction as
illustrated in Fig. 25.1:

1. Rotational separation modeled by u = (x1, 0,−x3) for x1 ≥ 0,

2. Parallel flow separation modeled by u = (1,−x2, x3) for x3 ≥ 0,

3. Flat plate separation modeled by u = (1,−x2, x3) for x3 ≥ 0.

In case 1. the flow separates from the plane x1 = 0 with flow velocity u1 = x1
and in case 2. and 3. the flow separates from the plane x3 = 0 with flow velocity
x3. The main flow velocity (1, 0, 0) is subject to perturbation in case 2. but not in
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case 3. Notice that to satisfy incompressibility the positive derivative ∂u1

∂x1
= 1 in

case 1. is balanced by ∂u3

∂x3
= −1 with u2 = 0. Similarly ∂u3

∂x3
= 1 in case 2. is

balanced by ∂u2

∂x2
= −1 with now u1 = 1 as the main velocity component.

The flow velocity u3 = −x3 in case 1 and u2 = −x2 is case 2 and 3 describes
opposing flow with an effect of exponential instability. In case 2 we assume that
this effect is damped by the presence of the main flow velocity u1 = 1 which
makes the opposing flow into a second order effect from being a first order effect
in case 1 with u1 = 0. In case 3 we assume that this damping effect is missing
allowing rotational separation to develop as a second order effect.

We shall thus discover opposing flow to be the main source of instability, but
we shall also find that the instability can be moderated by diverting the flow.

Figure 25.1: Bluff body separation at trailing edge and on upper surface of a wing,
modeled as separation in two half-planes, one with normal in the direction of the
main flow (rear) and one tangent to the upper surface (top).

We shall start with case 1. covering separation at the trailing edge of a wing
before stall, while case 3. models separation on the upper wing surface at and
beyond stall using the analysis of case 1. Case 2. connects to separation at e.g.
wing tips.

We shall see that in case 1. the separation can be described as opposing flow
rotational slip separation with point stagnation also covering case 3. as a sec-
ondary effect. We shall then refer to case 1. as rotational separation and to case
3. as flat plate slip separation, with different forms of rotational slip separation
with point stagnation. We shall discover separation with point stagnation arising
as quasi-stable flow from separation with line stagnation, typical of unstable 2d
potential flow.

In case 2. the main instability of case 1. is prevented by perturbations in the
streamwise direction and thus the base flow can persist.
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Figure 25.2: Oil film visualization of rotational separation (left) and parallel sep-
aration (right).

For angles of attack well before stall, only case 1. applies, while as stall
approaches the trailing edge separation moves upward-forward onto the upper
surface and and combines with flat plate separation on top of the wing.
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Chapter 26

Rotational Separation

The fear of making permanent commitments can change the mutual love of
husband and wife into two loves of self - two loves existing side by side,
until they end in separation. (Pope John Paul II)

Problems of the flow of fluids are of great interest and complexity...the chief
incentive to explore such problems in recent years has been provided by the
study of the practical problems of flight. (Goldstein in Modern Develop-
ments in Fluid Dynamics)

We now turn to a detailed mathematical analysis of flow separation, which
we will find uncovers the secret of generation of both lift and drag of a body
moving through air such as a wing. We know that the flow around the body
attaches somewhere in the front, typically around a point of stagnation, where the
flow velocity is zero, and separates somewhere somehow in the rear. In many
cases attachment is governed by smooth (laminar) potential flow, while separation
effectively is a generator of turbulence. We shall thus find that drag can be seen
as a “cost of separation”, which for a wing also pays for generating lift.

We will present a scenario for separation in slightly viscous turbulent flow,
which is fundamentally different from the scenario for viscous laminar flow by
Prandtl based on adverse pressure gradients retarding the flow to stagnation at
separation. We make a distinction betweeen separation from a laminar boundary
layer with no-slip boundary condition and from a turbulent boundary layer with
slip. We thus make a distinction between

• laminar separation with no-slip in (very) viscous flow

considered by Prandtl of relevance for viscous flow, and
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• turbulent separation with slip in slightly viscous flow

of relevance in aerodynamics.
We noted above that separation occurs if ∂p

∂n
< U2

R
, where ∂p

∂n
is the pressure

gradient normal to the boundary into the fluid, U is a flow speed close to the
boundary and R the curvature of the boundary, positive for a convex body. We
note that in a laminar boundary layer ∂p

∂n
> 0 only in contracting flow, which

causes separation as soon as the flow expands after the crest of the body. We
observe that in a turbulent boundary layer with slip, ∂p

∂n
> 0 is possible also in

expanding flow which can delay separation. We present a basic mechanism for
tangential separation with slip based on instability at rear points of stagnation
generating low-pressure rolls of streamwise vorticity reducing ∂p

∂n
.

26.1 From Unstable to Quasi-Stable Separation
We are concerned with the fundamental problem of fluid mechanics of the motion
of a solid body, such as a subsonic airplane, car or boat, through a slightly viscous
incompressible fluid such as air at subsonic speeds or water. We focus on incom-
pressible flow at large Reynolds number (of size 106 or larger) around both bluff
and streamlined bodies, which is always partly turbulent.

The basic problem is to determine the forces acting on the surface of the body
from the motion through the fluid, with the drag being the total force in the direc-
tion of the flow and the lift the total force in a transversal direction to the flow.

As a body moves through a fluid initially at rest, like a car or airplane moving
through still air, or equivalently as a fluid flows around a body at rest, approaching
fluid particles are deviated by the body in contracting flow, switch to expanding
flow at a crest and eventually leave the body. The flow is said to attach in the front
and separate in the back as fluid particles approach and leave a proximity of the
body surface.

In high Reynolds number slightly viscous flow the tangential forces on the
surface, or skin friction forces are small and both drag and lift mainly result from
pressure forces and the pressure distribution at turbulent separation is of particular
concern.

Separation requires stagnation of the flow to zero velocity somewhere in the
back of the body as opposing flows are meeting. Stagnation requires retardation
of the flow, which requires a streamwise increasing pressure, or adverse pressure
gradient. We show by a linearized stability analysis that retardation from opposing
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Figure 26.1: Unstable irrotational separation of potential flow around a circular
cylinder (left) from line of stagnation surrounded by a high pressure zone indi-
cated by +, with corresponding opposing flow instability (right).

flows is exponentially unstable, which in particular shows potential flow to be
unstable as indictaed in Fig. 32.6. Since unstable flow cannot persist over time, we
expect to find a quasi-stable separation pattern resulting from the most unstable
mode of potential flow, as a flow without streamwise retardation from opposing
flows. By quasi-stable we mean a flow which is not exponentially unstable and
thus may have a certain permanence over time.

Both experiment and computation show that there is such a quasi-stable sep-
aration pattern arising from transversal reorganization of opposing potential flow
in the back into a set of counter-rotating vortex tubes of swirling flow (streamwise
vorticity) attaching to the body, accompanied by a zig-zag pattern of alternating
low and high pressure zones around points of stagnation with low pressure inside
the vortex tubes. This pattern is illustrated in Fig. 2 for a cylinder along with
computation and experiment, where we see how the flow finds a way to separate
with unstable streamwise retardation in opposing flows replaced by quasi-stable
transversal accelleration close to the surface before separation and in the swirling
flow after separation. We see this phenomenon in the swirling flow in a bathtub
drain, which is a stable configuration with transversal accelleration replacing the
unstable opposing flow retardation of fully radial flow.

We refer to this quasi-stable pattern as 3d rotational separation. This is a
macroscopic phenomenon with the stagnation points spaced as widely as possibe.
From macroscopic point of view the small skin friction of slightly viscous flow
can be modeled with a slip boundary condition expressing vanishing skin fric-
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Figure 26.2: Quasi-stable 3d rotational separation from alternating high/low pres-
sure: principle, computation and experiment
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tion. We show that computational solution of Navier-Stokes equations with slip
is possible at affordable cost, because with slip there are no boundary layers to
resolve, which makes it possible to compute both drag and lift of a of a car, boat
or airplane arbitrary shape without the quadrillions of mesh points for boundary
layer resolution commonly believed to be required [43].

The single high pressure zone stretching along the stagnation line of potential
flow around a circular cylinder (creating instability) in Fig. 32.6, is thus broken
down into a pattern of high and low pressure zones by the development of low
pressure vortical flow in Fig. 2, which allows the fluid to separate without unstable
streamwise retardation in opposing flow. The so modified pressure creates drag of
a bluff body and lift of a wing from the zero drag and lift of potential flow.

We present evidence in the form of mathematical stability analysis and com-
putation that high Reynolds number incompressible flow around a body moving
through a fluid can be described as

• quasi-stable potential flow before separation,

• quasi-stable 3d rotational separation.

This scenario is also supported by observation presented in e.g. [121, 122, ?] and
our evidence thus consists of mathematical theory/computation and observation
in strong accord.

We show that both drag and lift critically depend on the pressure distribution of
3d rotational separation. We remark that in the attaching flow in the front the flow
is retarded by the body and not by opposing flows as in the back, which allows
stable potential flow attachment. We show that drag and lift of a body of arbitrary
shape can be accurately computed by solving the Navier-Stokes equations with
slip.

The description and analysis of the crucial flow feature of separation presented
here is fundamentally different from that of Prandtl, named the father of modern
fluid mechanics, based on the idea that both drag and lift originate from a thin
viscous boundary layer, where the flow speed relative to the body rapidly changes
from the free stream speed to zero at the body surface corresponding to a no-
slip boundary condition. Prandtl’s scenario for separation, which has dominated
20th century fluid, can be described as 2d boundary layer no-slip separation, to
be compared with our entirely different scenario of 3d no-boundary layer slip
separation.

The unphysical aspect of Prandtl’s scenario of separation is illuminated in [?]:
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Figure 26.3: Oilfilm plots for aoa = 4, 10, 12 showing point stagnation as a char-
acteristic of 3d rotational slip separation Notice that the stagnation points move
towards the upper surface as aoa increases.



26.2. STABILITY ANALYSIS BY LINEARIZATION 197

• The passage from the familiar 2d to the mysterious 3d requires a complete
reconsideration of concepts apparently obvious (separation and reattach-
ment points, separated bubble, recirculation zone) but inappropriate and
even dangerous to use in 3d flows.

26.2 Stability Analysis by Linearization
The stability of a Navier-Stokes solution with vansihing viscosity or solution of
the Euler equations (24.1) is expressed by the linearized equations

v̇ + (u · ∇)v + (v · ∇)ū+∇q = f − f̄ in Ω× I,
∇ · v = 0 in Ω× I,
v · n = g − ḡ on Γ× I,

v(·, 0) = u0 − ū0 in Ω,

(26.1)

where (u, p) and (ū, p̄) are two Euler solutions with slightly different data, and
(v, q) ≡ (u− ū, p− p̄). Formally, with u and ū given, this is a linear convection-
reaction problem for (v, q) with growth properties governed by the reaction term
given by the 3 × 3 matrix ∇ū. By the incompressiblity, the trace of ∇ū is zero,
which shows that in general ∇ū has eigenvalues with real values of both signs,
of the size of |∇u| (with | · | some matrix norm), thus with at least one exponen-
tially unstable eigenvalue, except in the neutrally stable case with purely imagi-
nary eigenvalues, or in the non-normal case of degenerate eigenvalues represent-
ing parallel shear flow [103].

The linearized equations in velocity-pressure indicate that, as an effect of the
reaction term (v · ∇)ū:

• streamwise retardation is exponentially unstable in velocity,

• transversal accelleration is neutrally stable,

where transversal signifies a direction orthogonal to the flow direction.
Additional stability information is obtained by applying the curl operator ∇×

to the momentum equation to give the vorticity equation

ω̇ + (u · ∇)ω − (ω · ∇)u = ∇× f in Ω, (26.2)

which is also a convection-reaction equation in the vorticity ω = ∇ × u with
coefficients depending on u, of the same form as the linearized equation (26.5),
with a sign change of the reaction term. The vorticity is thus locally subject to
exponential growth with exponent |∇u|:
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• streamwise accelleration is exponentially unstable in streamwise vorticity.

We sum up as follows: The linearized equations (26.5) and (32.1) indicate
exponential growth of perturbation of velocity in streamwise retardation and of
streamwise vorticity in streamwise accelleration. We shall see in more detail be-
low 3d rotational separation results from exponential instability of potential flow
in retardation followed by vortex stretching in accelleration, with the retardation
replaced by neutrally stable transversal accelleration.

Note that in classical analysis it is often argued that from the vorticity equa-
tion (32.1), it follows that vorticity cannot be generated starting from potential
flow with zero vorticity and f = 0, which is Kelvin’s theorem. But this is an
incorrect conclusion, since perturbations of f̄ of f with ∇× f̄ ̸= 0 must be taken
into account, even if f = 0. What you effectively see in computations is local ex-
ponential growth of vorticity on the body surface in rear retardation and by vortex
stretching in accelleration, even if f = 0, which is a main route of instability to
turbulence as well as separation.

26.3 Instability of 2d Irrotational Separation
We now analyze the stability of 2d irrotational separation considered by Planck
in the following model of the potential flow around a circular cylinder studied in
more detail below: u(x) = (x1,−x2, 0) in the half-plane {x1 > 0} with stagnation
along the line (0, 0, x3) and

∂u1
∂x1

= 1 and
∂u2
∂x2

= −1, (26.3)

expressing that the fluid is squeezed by retardation in the x2-direction and ac-
celleration in the x1-direction. We first focus on the retardation with the main
stability feature of (26.5) captured in the following simplified version of the v2-
equation of (26.5), assuming x1 and x2 are small,

v̇2 − v2 = f2,

where we assume f2 = f2(x3) to be an oscillating perturbation depending on x3
of a certain wave length δ and amplitude h, for example f2(x3) = h sin(2πx3/δ),
expecting the amplitude to decrease with the wave length. We find, assuming
v2(0, x) = 0, that

v2(t, x3) = (exp(t)− 1)f2(x3).
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We next turn to the accelleration and then focus on the ω1-vorticity equation, for
x2 small and x1 ≥ x̄1 > 0 with x̄1 small, approximated by

ω̇1 + x1
∂ω1

∂x1
− ω1 = 0, (26.4)

with the “inflow boundary condition”

ω1(x̄1, x2, x3) =
∂v2
∂x3

= (exp(t)− 1)
∂f2
∂x3

.

The equation for ω1 thus exhibits exponential growth, which is combined with
exponential growth of the “inflow condition”. We can see these features in prin-
ciple and computational simulation in Figs. 26.1 and ?? showing how opposing
flows at separation generate a pattern of alternating surface vortices from pushes
of fluid up/down, which act as initial conditions for vorticity stretching into the
fluid generating counter-rotating low-pressure tubes of streamwise vorticity.

The above model study can be extended to the full linearized equations lin-
earized at u(x) = (x1,−x2, 0):

Dv1 + v1 = − ∂q
∂x1
,

Dv2 − v2 = − ∂q
∂x2

+ f2(x3),

Dv3 = − ∂q
∂x3
,

∇ · v = 0

(26.5)

where Dv = v̇ + u · ∇v is the convective derivative with velocity u and f2(x3)
as before. We here need to show that the force perturbation f2(x3) will not get
cancelled by the pressure term − ∂q

∂x2
in which case the exponential growth of v2

would get cancelled. Now f2(x3) will induce a variation of v2 in the x3 direction,
but this variation does not upset the incompressibility since it involves the varia-
tion in x2. Thus, there is no reason for the pressure q to compensate for the force
perturbation f2 and thus exponential growth of v2 is secured.

We thus find streamwise vorticity generated by a force perturbation oscillating
in the x3 direction, which in the retardation of the flow in the x2-direction creates
exponentially increasing vorticity in the x1-direction, which acts as inflow to the
ω1-vorticity equation with exponential growth by vortex stretching. Thus, we find
exponential growth at rear separation in both the retardation in the x2-direction
and the accelleration in the x1 direction, as a result of the squeezing expressed by
(26.3).
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Since the combined exponential growth is independent of δ, it follows that
large-scale perturbations with large amplitude have largest growth, which is also
seen in computations with δ the distance between streamwise rolls as seen in Fig.
32.1 which does not seem to decrease with decreasing h. The perturbed flow with
swirling separation is large scale phenomenon, which we show below is more
stable than potential flow.

The corresponding pressure perturbation changes the high pressure at separa-
tion of potential flow into a zig-zag alternating more stable pattern of high and
low pressure with high pressure zones deviating opposing flow into non-opposing
streaks which are captured by low pressure to form rolls of streamwise vortic-
ity allowing the flow to spiral away from the body. This is similar to the vortex
formed in a bathtub rain.

Notice that in attachment in the front the retardation does not come from op-
posing flows but from the solid body, and the zone of exponential growth of ω2 is
short, resulting in much smaller perturbation growth than at rear separation.

We shall see that the tubes of low-pressure streamwise vorticity change the
normal pressure gradient to allow separation without unstable retardation, but the
price is generation of drag by negative pressure inside the vortex tubes as a “cost
of separation”.

26.4 Quasi-Stable Rotational 3d Separation

We discover in computation and experiment that the rotational 3d separtion pattern
just detected as the most unstable mode of 2d, represents a quasi-stable flow with
unstable retardation in opposing flows replaced by transversal acceleration.

As a model of flow with transversal accelleration we consider the potential
velocity u = (0, x3,−x2) of a constant rotation in the x1-direction, with corre-
sponding linearized equations linearized problem

v̇1 = 0, v̇2 + v3 = 0, v̇3 − v2 = 0, (26.6)

which model a neutrally stable harmonic oscillator without exponential growth
corresponding to imaginary eigenvalues of ∇u.

Further, shear flow may represented by (x2, 0, 0), which is marginal unsta-
ble with linear perturbation growth from degenerate zero eigenvalues of ∇u, as
analyzed in detail in [103].
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26.5 Quasi-Stable Potential Flow Attachment
The above analysis also shows that potential flow attachment, even though it in-
volves streamwise retardation, is quasi-stable. This is because the initial pertur-
bation f2 in the above analysis is forced to be zero by the slip boundary condition
requiring the normal velocity to vanish. In short, potential flow attachment is sta-
ble because the flow is retarded by the solid body and not by opposing flows as in
separation.

This argument further shows that a flow retarded by a high pressure zone is
quasi-stable in approach because it is similar to attachment.

26.6 Resolution of D’Alembert’s Paradox
Potential flow can be viewed as an approximate solution of the Navier-Stokes
equations at high Reynolds number with a slip boundary condition, but potential
flow is unphysical because both drag and lift are zero, as expressed in D’Alembert’s
Paradox [104]. Inspection of potential flow shows unstable irrotational separa-
tion of retarding opposing flow, which is impossible to observe as a physical flow.
D’Alembert’s Paradox is thus resolved by observing that potential flow with zero
drag and lift is unstable [104] and thus unphysical, and not by the official resolu-
tion suggested by Prandtl stating that the unphysical feature is the slip boundary
condition.

Although 3d rotational separation has a macroscopic features the flow is tur-
bulent at separation in the sense that the dissipation in the flow is substantial even
though the viscosity is very small, following the definition of turbulent flow in
[103].

26.7 Magnus Effect by Unsymmetric Separation
The Magnus effect of a rotating ball results from unsymmetric separation with
separation delayed where the skin friction is smaller, that is where the relative
velocity is smaller. Small skin friction corresponds to a slip boundary condition
allowing potential flow which cannot separate without stagnation, and thus has de-
layed separation as compared to viscous flow with no-slip, which tends to separate
on the crest of the flow, see Fig. 29.6.
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Figure 26.4: Oilfilm plots for aoa = 17: upper wing surface (top) (middle) and
trailing edge (below).



Chapter 27

Parallel Separation

Oft habe ich Kuttas Leben reich und beneidenswert gefunden wegen seiner
Aufgeschlossenheit für so viele Seiten menschlichen Geisteslebens, oft aber
fand ich es auch arm und bedauernswert in seiner Einsamkeit und Zurück-
gezogenheit. (Pfeiffer)

The actual processes are often in such unsatisfactory agreement with the
theoretical conclusions that technology has addopted its own procedure to
deal with hydrodynamical propblems, which is usually called hydrualics.
This latter speciality, however, lacks so much of a strict method, in its foun-
dations a well as its conclusions, that most of its results do not deserve a
higher value tha that of empirical formulae with very limited range of valid-
ity. (1900 text book, from The Dawn of Fluid Dynamics by M. Eckert)

Outside Göttingen boundary layer theory was largely ignored for almost two
decades after Prandtl’s first publication in 1904....Both boundary layer the-
ory and airfoil theory became the subject matter of heated debates in tht
1920s. ( The Dawn of Fluid Dynamics)

We now consider the case of parallel flow separation seen on top of the ho-
risontal surface in Fig. 25, modeled by

u = (1,−x2, x3) for x3 ≥ 0, (27.1)

as an extension of the analysis in preceding chapter, which with a switch of co-
ordinates concerns the case u = (0,−x2, x3). We thus consider the effect of a
change of u1 from 0 to 1.
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In the above case of u1 = 0, we considered an oscillating perturbation (0, f2(x1), 0)
in the linearized equation with an effect of exponential growth generating a pattern
of counter-rotating rolls of x3 vorticity, thus without perturbation of u1 = 0.

In the case u1 = 1, we also have to allow a perturbation in u1 which may
destroy the development of the organized pattern of counter-rotating rolls in the
x3 direction and thus allow separation into x3 > 0 according to the unperturbed
base flow as a possibly stable flow.

Effectively, without a perturbation of the form (0, f2(x1), 0), the base flow
u = (1,−x2, x3) is a 2d potential flow and as such is stable by the argument
in Section 24.7. In this case the main flow (1, 0, 0) acts to stabilize the flow by
effectively restricting it to 2d.

Figure 27.1: Oscillating perturbation of u2 (blue) cancelled by perturbation of u1
(red).
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Flat Plate Separation

We aerodynamicists were always more modest (than physicists) and did not
attempt to change basic beliefs of the human mind or to interfere with the
business of the good Lord or divine Providence. (von Karman)

We consider now the case 3. of flat plate separation in parallel flow such as the
flow on top of a wing approaching stall. In this case the opposing flow required
for separation occurs as a secondary transversal effect of counter-rotating rolls
of streamwise vorticity emerging from the exponential instability of streamwise
vorticity in the accellerating flow before the crest of the wing as evidenced by
(26.4). We then assume that the perturbation in the streamwise direction is small
allowing the secondary effect to develop.

Notice that streamwise rolls on the top wing surface come along with a tranver-
sal variation of the pressure which can lead to violation of the condition ∂p

∂n
= |u|2

R

where R is the radius of curvature of the surface, and thus trigger local separation.
This local separation can take the form described in the previous chapter:

Transversally opposing flow in the valley between each second streamwise roll
may trigger generation of counter-rotating rolls of transversal vorticity stretching
into the flow from the wing surface which bend into the main flow direction and
possibly recombine into hairpin vortices as illustrated in Fig. 28.1 and Fig. 28.2
and evidenced in e.g. [29, 30] and Fig. 28.3.

As a model of rolls of streamwise vorticity in a layer attaching to the x3 = 0
plane, we may consider

u = (1, cos(x3),− cos(x2)), p = − sin(x2) sin(x3). (28.1)
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Figure 28.1: Development of hairpin vortices.

Figure 28.2: Two-step mechanism of flow separation in in parallel flow from
non-normal growth of streamwise velocity followed by rotational separation from
transversal opposing flow organizing into hairpin vortices.



207

Figure 28.3: Shear flow over flat plate generates x1 vorticity which generates sec-
ondary transversal opposing flow which generates rolls of x2-vorticity attaching
to the plate and bending into the flow, like a forest of sea tulips attaching to the
sea bottom.
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Chapter 29

Bluff Body Flow

It seems evident that the mere viscosity of water would be utterly insufficient
to account for [the eddies] when they are formed on a large scale, as in a mill
pool or whirlpool?. Of course eddies are modified by viscosity, but except
on quite a small scale I hold that viscosity is subordinate. Of course, it
prevents a finite slip, which it converts into a rapid shear, but viscosity tends
to stability, not to instability. (Stokes 1900)

We now give some examples in pictures of our main thesis that slightly viscous
bluff body flow can be described as potential flow modified by 3d slip separation:

• landing gear: Fig. 29.1,

• sphere: Fig.29,

• NACA0012 wing: Fig. 29,

• car: Fig. 29.4,

• hill: Fig. 29.5.

The brothers Wright started with gliding flights, using the results of our
experiments on the lifting properties of curved surfaces. Their leading idea
was to utilize this lifting effect in calm air by pushing these surfaces forward
through the action of motors and propellers, foregoing the assistance of the
wind, and thus attaining security and independence from the erratic changes
of wind direction. (Addendum to Birdflight as the Basis of Aviation 1911).

209



210 CHAPTER 29. BLUFF BODY FLOW

Figure 29.1: Oilfilm visualization of 3d rotational separation with point stagnation
and parallel flow separation without stagnation.
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Figure 29.2: Pattern of exponential separation instability of potential flow around
a sphere at its single point of stagnation (pressure left), forming four counterrotat-
ing rolls of streamwise vorticity (right) attaching around four points of stagnation
(middle).

Figure 29.3: Velocity at trailing edge separation for NACA0012 wing showing
zig-zag pattern of 3d rotattional separation.
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Figure 29.4: Velocity of turbulent flow around a car
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Figure 29.5: Separation after crest of hill.

Figure 29.6: Rotating sphere with unsymmetric separation and lift and non-
rotating sphere with symmetric separation and no lift.
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Figure 29.7: Generation of streamwise vorticity from accellerating parallel flow
at the leading edge (blue) with secondary transversal vorticity (red), and opposing
flow separation at the trailing edge (red) both associated with point stagnation.
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Scale Invariance and LES

Of course, D’Alembert’s Paradox is not a paradox at all, for his seemingly
paradoxical findings were simply the correct results that naturally followed
from the neglect of friction...today we recognize that the neglect of friction
was the reason that d’Alembert was not able to calculate drag. (John D.
Anderson in History of Aerodynamics)

30.1 Effect of Shear Layers
Computational simulations of e.g. the flow around a circular cylinder show that
the large scale features of the flow (potential flow modified by 3d rotational sepa-
ration), do not change under mesh refinement, see Fig. 30.1. We thus discover that
the Navier-Stokes equations with slip boundary condition and vanishingly small
viscosity show a form of scale invariance in the sense that the main features of
bluff body flow depend on the shape of the body but not on its absolute size. The
effect of descreasing viscosity would then be a sharpening of large scale features
as in the sharpening of an image by decreasing smoothing effects, which increases
contrast while leaving large scales structures invariant, see Fig. 26.1.

To estimate the sharpening effect of a decreasing viscosity ν, we consider a
(laminar) shear layer L, typically of width d =

√
ν, connecting two fluid regions

with different velocities with velocity gradient |∇u| thus scaling with 1/
√
ν, with

a total dissipation

Dν ≡
∫
L

∫
ν|∇u|2ds ∼ A

√
ν, (30.1)

where A is the area of the layer. We thus find that the dissipation Dν in a layer
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with bounded area tends to zero with ν, which indicates that its effect vanishes
with vansihing viscosity. We thus expect the effect of a no-slip boundary layer
of a bluff body to vanish with vanishing viscosity, contrary to Prandtl’s basic
postulate. In the case of a turbulent shear layer, experimental data [124] shows
Dν ∼ Aν0.2, and the conclusion is similar.

On the other hand, the area of the interior layers of the rolls the 3d rotational
separation increases with the length of the rolls, which allows positive dissipation
with major effect on drag and lift. The diameter of the rolls would then be deter-
mined by the trailing edge radius, which is what effectively determines the drag
and lift of the bluff body in elegant separation, while the length of the rolls behind
the body would increase with decreasing viscosity without change of drag and lift.
We may thus expect convergence of lift and drag under mesh refinement, and this
is also what we observe.

Figure 30.1: Large scale structure invariant under mesh refinment.

30.2 Effect of Trailing Edge Diameter
From scale invariance we expect the 3d rotational separation pattern at the trailing
edge to remain the same as the radius d of the trailing edge tends to zero. The
vorticity and pressure gradient then scale as 1

d
locally, the pressure locally as 1
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with a total effect scaling as d, thus tending to zero with d. With 3d rotational
separation the flow manages to separate without the high pressure of 2d potential
flow, which can be seen as the secret of flight. As the radius tends to zero the flow
may be viewed to form a type of vortex sheet with a complex pattern of counter
rotating streamwise vorticity, corresponding to oscillating high and low pressures
which is small in mean by cancellation. By scale similarity we thus expect lift and
drag to remain the same as the radius of the trailing edge decreases to zero, which
is also observed experimentally, as long as the Reynolds number is large enough.

30.3 Large Eddy Simulation (LES)
It is the scale invariance of solutions to the Navier-Stokes equations with slip
boundary condition and vanishing viscosity, which make solutions computable on
meshes resolving only the large scale features of the flow in what can be referred
to as Large Scale Simulation (LES), without any need of user-defined turbulence
models. This makes computational solution of slightly viscous flow possible by
removing the Prandtl spell of having to resolve thin boundary layers from no-
slip boundary conditions, which has paralyzed fluid mechanics. In fact, a no-slip
boundary condition is mathematically incompatible with vanishing viscosity and
Prandtl’s insistence on using no-slip can be seen as a consequence of Prandtl’s
limitation as mathematician witnessed by e.g. his student von Karman.

If now slightly viscous bluff body flow is computable in general by LES, a
fundamentally new capability is brought into fluid mechanics.
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Figure 30.2: Scale invariance in oilfilm representation of separation pattern on top
of wing surface at aoa = 17.



Part V

Incorrect Theory
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Chapter 31

Incorrect Theories for Uneducated

It’s all one interconnected system. Unless the overall result of that system is
for air to end up lower than it was before the plane flew by, there will be no
lift. Wings move air downward, and react by being pushed upward. That’s
what makes lift. All the rest is just interesting details[90].

The field of hydrodynamic phenomena which can be explored with exact
analysis is more and more increasing. (Zhukovsky, 1911)

31.1 The Value of Incorrect Theory

To get perspective on the New Theory Flight theory we now check out how flight
is explained in standard scientific literature and popular science. We start with
some popular theories listed as incorrect by NASA and complete the picture with
a theory due to Kutta-Zhukovsky-Prandtl viewed to offer a scientific explanation
of both lift and drag, but as we will see is also incorrect.

To properly understand a correct theory, it can be helpful to study an incorrect
theory which has gained some prominence, because even an incorrect theory may
capture an element of truth, and the correct theory is the one that captures all
elements.

However, if there is a correct theory none of the incorrect theories can survive,
as illustrated e.g. by the homogeneity of the (correct) homo sapiens without any
surviving (incorrect) Neanderthalers.
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31.2 Incorrect Theories: NASA
You have probably heared some of the explanations offered in popular science,
like higher velocity and lower pressure on the upper surface of the wing because
it is curved and air there has a longer path to travel than below? Or maybe you
are an aeroplane engineer or pilot and know very well why an airplane can fly,
because lif is generated by circulation?

In either case, you should get a bit worried by reading that the authority NASA
on its website [117] dismissses all popular science theories for lift, including
your favorite one, as being incorrect, but then refrains from presenting any theory
claimed to be correct! NASA surprisingly ends with an empty out of reach:

• To truly understand the details of the generation of lift, one has to have a
good working knowledge of the Euler Equations.

This is just a fancy way of expressing that not even NASA understands what keeps
an airplane in the air. Of course, it is not possible to find the correct theory by
removing all incorrect theories, like forming a correct sculpture out of a block of
stone by removing all pieces of stone which are not correct, because there is no list
of all theories which will give the correct theory by eliminating all the (infinitely
many) incorrect theories.

To present incorrect theories at length is risky pedagogics, since the student
can get confused about what is correct and not, but signifies the confusion and
misconceptions still surrounding the mechanisms of flight. If a correct theory was
available, there would be no reason to present incorrect theories, but the absence
of a correct theory is now seemingly covered up by presenting a multitude of
incorrect theories.

The following three incorrect theories listed by NASA are commonly pre-
sented in text books directed to a general audience. Take a look and check out
which you have met and if you they are convincing to you.

31.3 Trivial Theory: NASA
The closet NASA comes to a correct theory is the trivial theory depicted in Fig.
31.4: If there is downwash then there is lift. This follows directly by Netwon’s
3rd law, but the question is why there is downwash?

The following results were obtained by attaching wing-like surfaces to a
large rotating or whirling machine, having a diameter of 7 metres, the test
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Figure 31.1: The ”Longer Path Theory” is wrong, because an airplane can fly
upside down.

Figure 31.2: The ”Skipping Stone Theory” is Newton’s theory, which gives a way
too small lift.
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Figure 31.3: The ”Venturi Theory” of higher speed above the wing and thus lower
pressure because of the curvature of the upper surface of the wing, is wrong be-
cause an airplane can fly upside down.

Figure 31.4: Trivial tautological theory of lift presented as correct by NASA.
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surfaces being arranged at a height of 4.5 metres above ground. (Birdflight
as the Basis of Aviation )
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Chapter 32

Incorrect Theory for Educated

Lift is a lot trickier. In fact it is very controversial and often poorly explained
and, in many textbooks, flat wrong. I know, because some readers informed
me that the original version of this story was inaccurate. I’ve attempted to
correct it after researching conflicting ”expert” views on all this....If you’re
about fed up, rest assured that even engineers still argue over the details of
how all this works and what terms to use [45].

If the magnitude of the circulation is known, the Kutta-Joukowsky formula,
is of practical value for the calculation of lift. However, it must be clarified
as to what way the circulation is related to the geometry of the wing profile,
to the velocity of the incident flow, and to the angle of attack. This inter-
relation cannot be determined uniquely from theoretical considerations, so
it is necessary to look for empirical results. (Schlichting-Truckenbrodt in
Aerodynamics of the Airplane)

32.1 Newton, d’Alembert and Wright
When Lilienthal in the 1890s showed that human gliding flight was possible and
the Wright brothers in 1903 showed that powered human flight was possible by
putting a 12 hp engine on their Flyer, this was in direct contradiction to the ac-
cepted mathematical theory by Newton, who computed the lift from downwash
of air particles hitting the lower part of the wing and found it to be so small that
human flight was unthinkable.

Newton was supported by the mathematician d’Almembert who in 1755 proved
that both lift and drag was zero for for potential flow, which seemed to describe
the flow of air around a wing.
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32.2 Kutta-Zhukovsky: Circulation: Lift
To save theoretical aerodynamics from complete collapse, a theory showing sub-
stantial lift had to be invented, and such a theory was delivered in the 1902 doc-
toral thesis by the young Martin Kutta (1866 - 1944) in Germany and indepen-
dently in 1906 by the older more experienced Nikolaj Zhukovsky (1847 - 1921)
in Russia, who both modified zero lift potential flow by adding a large scale cir-
culation around the wing, as suggested already in 1892 by Frederick Lanchester
(1868 - 1946) in England. Kutta-Zhukovsky showed that if there is circulation
then there is lift, but could not explain from where the circulation came.

Figure 32.1: Top left figure shows potential flow without downwash (the incom-
ing flow is not redirected) and thus no lift. The bottom left shows a flow with
circulation resulting from adding a large scale rotational flow around the wing as
shown in the right figure.

32.3 Magnus Effect by Circulation
The incorrect circulation theory by Kutta-Zhukovsky originates from an incorrect
explanation of the Magnus Effect of a rotating ball moving through air based
on large scale circulation around the ball supposedly being created somehow by
viscous forces from the rotation, as illustrated in Fig. ??. The true explanation of
the Magnus effect is unsymmetric separation with delayed separation where the
relative velocity is smaller and the skin friction smaller, see Fig. ??.
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Figure 32.2: Kutta-Zhukovsky theory of lift combining potential flow (left) with
large scale circulation, thus changing the zero lift pressure distribution of potential
flow to lifting flow by shifting the high (H) and low (L) pressure zones at the
trailing edge of the flow by unphysical circulation around the section (middle)
resulting in flow with downwash/lift and starting vortex (right).

Figure 32.3: Potential flow augmented by circulation creating unsymmetric flow
with lift as incorrect explanation of the Magnus Effect.
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32.4 Prandtl: Boundary Layer: Drag King
This was timely done by the German physicists Ludwig Prandtl, who in a short
note in 1904 saved aerodynamics by opening the possibility that both circulation
with lift and drag somehow could originate from a thin boundary layer.

The theory by Kutta-Zhukovsky-Prandtl has become the theory for the edu-
cated specialists of aerodynamics, who very well understand that the theories for
uneducated are incorrect. Today 100 years later, this is still the theory of flight
presented in text books: Lift comes from circulation, and circulation and drag
comes from a thin boundary layer.

The original 2d circulation theory by Kutta-Zhukovsky was extended by Prandtl
using ideas put forward by Lanchester into the 3d Lifting Line Theory. Both the-
ories are unphysical being based on unstable mathematic, as discussed in more
detail in the two following sections.

There is an alternative to circulation as generation of lift, referred to as the
Coanda effect stating that upper surface suction is an effect of viscosity causing
the flow to stick to the surface, but the support of this theory in the literature is
weak.

State-of-the-art thus tells you that to compute drag and lift of an airplane you
need to resolve the boundary layer, which however requires 10 quadrillion (1016

mesh points, which will require 50 years of Moore’s law improving the computa-
tional power by a factor of 1010.

But is the theory of Kutta-Zhukovsky-Prandtl for educated correct? Do we
have to wait 50 years to compute lift and drag of an Airbus? The answer in this
book is No: Lift and drag and more generally any flow quantity of interest in
subsonic flight, can be determined by computationally solving the incompressible
Navier-Stokes equations with a slip boundary condition using millions of mesh-
points without resolving thin boundary layers.

32.5 Vortex Stretching: Kelvin’s Theorem Illposed
Formally applying the curl operator ∇× to the momentum equation of (21.1),
with ν = β = 0 for simplicity, we obtain the vorticity equation

ω̇ + (u · ∇)ω − (ω · ∇)u = ∇× f in Ω, (32.1)

which is a convection-reaction equation in the vorticity ω = ∇ × u with coeffi-
cients depending on u, of the same form as the linearized equation (26.5), with
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Figure 32.4: Prandtl’s boundary layer theory in pictures.

similar properties of exponential perturbation growth exp(|∇u|t) referred to as
vortex stretching.

Kelvin’s theorem formally follows from this equation assuming the initial vor-
ticity is zero and ∇ × f = 0 (and g = 0), but exponential perturbation growth
makes this conclusion physically incorrect: We hace seen that substantial vorticity
can develop from irrotational potential flow even with slip boundary conditions.
Kelvin’s theorem is thus illposed and thus unphysical.

The corner stone of circulation theory is thus unphysical, because stability
aspects must be taken into account in a physically meaningful statement, also
referred to as wellposedness/illposedness in mathematical literature. This is one
of several arguments showing that circulation theory is unphysical; a corner stone
of the criticism of this theory in this book.

32.6 Lifting Line Theory Illposed

Circulation theory in the form of the Prandtl/Lanchester Lifting Line Theory relies
on three mathematical theorems by Helmholtz concerning ”vortex filaments” or
lines of concentrated vorticity in inviscid incompressible flow:

1. Theorem 1: The strength of a vortex filament is constant along its length.

2. Theorem 2: A vortex filament cannot end in the fluid; it must extend to the
boundaries of the fluid or form a closed path.

3. Theorem 3: In the absence of of rotational forces, a fluid that is initially
irrotational remains irrotational. (Kelvin’s theorem).



232 CHAPTER 32. INCORRECT THEORY FOR EDUCATED

We just learned that Theorem 3 is not wellposed and thus does not describe
physics. Nevertheless, Lifting Line Theory is based on Theorem 3 with a closed
lifting line of vorticity formally adding to zero formed by (i) transversal vortic-
ity along the wing, (ii) streamwise vorticity extending from the wing tips (iii)
transversal starting vortex closing the loop, as illustrated in the left picture of
Fig. 32.5. The right picture shows Prandtl’s concept of streamwise vorticity is-
sued from the wing compensating variation in transversal vorticity along the wing,
again from an idea of closed circuits of vorticity summing to zero.

Figure 32.5: Lifting Line Theory: Closed line of vorticity formally adding to
zero (left) and streamwise vorticity compensating variation in transversal vorticity
again in circuits adding to zero. (right).

The streamwise vorticity emerging from the airfoil compensating variation of
transversal vorticity in Lifting Line Theory, superficially connects to the counter-
rotating vortex lines attaching to the trailing edge in the 3d rotational slip separa-
tion of the New Theory, but the physics is entirely different:

In the New Theory ”vortex filaments” are created on the surface from oppos-
ing flow instability, while in the Lifting Line Theory they formally appear from
variation of transversal vorticity as a consequence to the illposed Theorem 3.

Note that the ”vortex filaments” of streamwise vorticity attaching to the trail-
ing edge in the New Theory conforms to Theorem 2 with ”vortex filaments” al-
lowed to start from the boundary, as a correct statement. Theorem 1 is question-
able, Theorem 2 is ok and Theorem 3 is illposed and not ok. Lifting Line Theory
is based on Theorem 3.

One may say that the New Theory is based on unstable physics, while Lifting
Line Theory is based on illposed formal mathematics. Unstable physics is real,
while unstable formal mathematics is unreal.
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32.7 More Confusion
Many sources, in addition to NASA, give witness of the lack of convincing sci-
entific answer of how a wing can generate lift with small drag. We give here a
sample starting with more from [130]:

• “Here we are, 100 years after the Wright brothers, and there are people
who give different answers to that question,” said Dr. John D. Anderson Jr.,
the curator for aerodynamics at the Smithsonian National Air and Space
Museum in Washington. “Some of them get to be religious fervor.”

• The answer, the debaters agree, is physics, and not a long rope hanging
down from space. But they differ sharply over the physics, especially when
explaining it to nonscientists. “There is no simple one-liner answer to this,”
Dr. Anderson said.

• The simple Newtonian explanation also glosses over some of the physics,
like how does a wing divert air downward? The obvious answer – air
molecules bounce off the bottom of the wing – is only partly correct.

• If air has to follow the wing surface, that raises one last question. If there
were no attractive forces between molecules, would there be no flight?
Would a wing passing through a superfluid like ultracold helium, a bizarre
fluid that can flow literally without friction, produce no lift at all? That
has stumped many flight experts. “I’ve asked that question to several peo-
ple that understand superfluidity,” Dr. Anderson, the retired physicist, said.
“Alas! They don’t understand flight.”

• It is important to realize that, unlike in the two popular explanations de-
scribed earlier (longer path and skipping stone), lift depends on significant
contributions from both the top and bottom wing surfaces. While neither of
these explanations is perfect, they both hold some nuggets of validity. Other
explanations hold that the unequal pressure distributions cause the flow de-
flection, and still others state that the exact opposite is true. In either case,
it is clear that this is not a subject that can be explained easily using sim-
plified theories. Likewise, predicting the amount of lift created by wings has
been an equally challenging task for engineers and designers in the past. In
fact, for years, we have relied heavily on experimental data collected 70 to
80 years ago to aid in our initial designs of wing.[52]

• http : //www.youtube.com/watch?v = uUMlnIwo2Qo
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• http : //www.youtube.com/watch?v = ooQ1F2jb10A

• http : //www.youtube.com/watch?v = kXBXtaf2TTg

• http : //www.youtube.com/watch?v = 5wIq75BzOQ

• http : //www.youtube.com/watch?v = khca2FvGR− w

Still more surprising effects are obtained if the curvature is increased to 1
12

of width; these are recorded in Plate IV (see Fig. ??). For 90 degrees we
again have L = 0.13AV 2 that is to say, the same as though the surface were
plane. But at other inclinations the air pressures differ most materially from
those of a plane surface under similar inclinations and velocities. For the
sake of easy comparison, the pressures for a plane surface are shown dotted
in Plate IV., Fig. 1, and the advantages of a curved surface over a plane, for
flight purposes, are clearly shown. (Birdflight as the Basis of Aviation
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Summary of State-of-the-Art

You’d think that after a century of powered flight we’d have this lift thing
figured out. Unfortunately, it’s not as clear as we’d like. A lot of half-baked
theories attempt to explain why airplanes fly. All try to take the mysterious
world of aerodynamics and distill it into something comprehensible to the
lay audience–not an easy task. Nearly all of the common ”theories” are
misleading at best, and usually flat-out wrong [87].

A very satisfactory explanation of the physical process in the boundary layer
between a fluid and a solid body could be obtained by the hypothesis of an
adhesion of the fluid to the walls, that is, by the hypothesis of a zero relative
velocity between fluid and wall (no-slip boundary condition). (Prandtl)

Actually, through proper application of the laws of modern aerodynamics
it is possible today to derive a major portion of the aerodynamics of the
airplane from purely theoretical considerations. The very comprehensive
experimental material, available in the literature, has been included only as
far as necessary to create a better physical concept and to check the theory.
We wanted to emphasize that decisive progress has been made not through
accumulation of large numbers of experimental results, but rather through
synthesis of theoretical considerations with a few basic experimental results.
Through numerous detailed examples, we have endeavored to enhance the
reader’s comprehension of the theory. (Schlichting-Truckenbrodt)

33.1 Newton
Classical mathematical mechanics could not give an answer to the mystery of glid-
ing flight: Newton computed by elementary mechanics the lift of a tilted flat plate
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redirecting a horisontal stream of fluid particles, but obtained a disappointingly
small value proportional to the square of the angle of attack. To Newton the flight
of birds was inexplicable, and human flight certainly impossible.

33.2 D’Alembert and Potential Flow
D’Alembert followed up in 1752 by formulating his paradox about zero lift/drag
of inviscid incompressible irrotational steady flow referred to as potential flow,
which seemed to describe the airflow around a wing since the viscosity of air is
very small so that it can be viewed as being inviscid (with zero viscosity). Math-
ematically, potential flow is given as the gradient of a harmonic funtion satisfying
Laplace’s equation.

At speeds less than say 300 km/h air flow is almost incompressible, and since a
wing moves into still air the flow it could be be expected to be irrotational without
swirling rotating vortices. D’Alembert’s mathematical potential flow thus seemed
to capture physics, but nevertheless had neither lift nor drag, against all physical
experience. The wonderful mathematics of potential flow and harmonic func-
tions thus showed to be without physical relevance: This is D’Alembert’s Paradox
which came to discredit mathematical fluid mechanics from start [104, 125, 92].

To explain flight D’Alembert’s Paradox had to be resolved, but nobody could
figure out how and it was still an open problem when Orwille and Wilbur Wright
in 1903 showed that heavier-than-air human flight in fact was possible in practice,
even if mathematically it was impossible.

33.3 Kutta-Zhukovsky-Prandtl
Mathematical fluid mechanics was then saved from complete collapse by the
young mathematicians Kutta and Zhukovsky, called the father of Russian avia-
tion, who explained lift as a result of perturbing potential flow by a large-scale
circulating flow or circulation around the 2d section of a wing, and by the young
physicist Prandtl, called the father of modern fluid dynamics, who explained drag
as a result of a viscous boundary layer [119, 120, 124, 93].

This is the basis of state-of-the-art [21, 72, 74, ?, 98, 126, 137], which essen-
tially is a simplistic theory for lift without drag at small angles of attack in inviscid
flow and for drag without lift in viscous flow. However, state-of-the-art does not
supply a theory for lift-and-drag covering the real case of 3d slightly viscous tur-
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bulent flow of air around a 3d wing of a jumbojet at the critical phase of take-off
at large angle of attack and subsonic speed (270 km/hour), as evidenced in e.g.
[47, 89, 90, 91, 130, 7, 52, 113, 116]. The simplistic theory allows an aeroplane
engineer to roughly compute the lift of a wing a crusing speed at a small angle
of attack but not lift-and-drag in general [59, 131]. The lack of mathematics has
to be compensated by experiment and experience. The first take off of the new
Airbus 380 must have been a thrilling experience for the design engineers.

The state-of-the-art theory of flight can be summarized as either (i) correct and
trivial or (ii) nontrivial and incorrect:

in the following forms:

• Downwash generates lift: trivial without explanation of reason for down-
wash from suction on upper wing surface.

• Low pressure on upper surface: trivial without explanation why.

• Low pressure on curved upper surface because of higher velocity (by Bernouilli’s
law), because of longer distance: incorrect.

• Coanda effect: The flow sticks to the upper surface by viscosity: incorrect.

• Kutta-Zhukovsky: Lift comes from circulation: incorrect.

• Prandtl: Drag comes mainly from viscous boundary layer: incorrect.

33.4 Why Prandtl Was Wrong

The legacy of Prandtl as the Father of Modern Aerodynamics is that slightly vis-
cous flow around a solid body is determined by a thin boundary layer around the
body arising from a no-slip boundary condition. In particular, both drag and lift of
a body moving through a fluid are effects of a no-slip boundary condition creating
a thin boundary layer.

Computational solution of the Navier-Stokes equations with slip boundary
conditions give lift and drag of a wing in correspondence with observation. This
shows that lift and drag of a wing do not originate from thin boundary layers as-
sociated with no-slip boundary conditions, contrary to the fundamental claim of
Prandtl’s boundary layer theory.
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33.5 Why Kutta-Zhukovsky Were Wrong
Lift is generated by unsymmetric 3d rotational slip separation at a rounded trailing
edge. Circulation is not generated at a sharp trailing edge. Lift is not generated by
circulation generated at a sharp trailing edge. Kutta-Zhukovsky circulation theory
of lift is an unphysical theory.



Chapter 34

Text Books

For man flying forward with suitably curved wings, this energy under the
most favourable but probably unattainable conditions, would be 0.4hp, but
even this amount could only be exerted by man for a short time. (Birdflight
as the Basis of Aviation )

To give perspective on the New Theory of Flight it is useful to understand
how the Old Theory is presented in the literature and why it is unphysical and
thus incorrect. The text book theory of flight has been remarkably stable over 100
year with little improvement in accuracy as if the theory once and for all was set
by Kutta-Zhukovsky-Prandtl. But science does not work that way: If no progress
is made on a complex scientific topic, like flight, this is a strong indication that
what was hammered in stone is incorrect science.

The following text books all present versions of the Kutta-Zhukovsky-Prandtl
2d theory as the Old Theory of Flight:

1. Aircraft Flight, RH Barnard and Dr Philpott, Pearson Prentice Hall, 1989,1995,
2004.

2. Prandtls Essentials of Fluid Mechanics, Herbert Oertel (Ed.), Springer, 2004.

3. Aerodynamics of Wings and Bodies, Holt Ashley and Marten Landahl,
Dover, 1985 (1965).

4. Introduction to the Aerodynamics of Flight, Theodore A. Talay, Langley
Research Center.

5. Aerodynamics of the Airplane, Hermann Schlichting and Erich Trucken-
brodt, Mc Graw Hill, 1979.
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6. Airplane Aerodynamics and Performance, Jan Roskam and C T Lan, Dar-
corporation, 1997.

7. Fundamentals of Aerodynamics, John D Anderson, McGraw-Hill, 2001.

8. Fuhrer durch die Stromungslehre, L Prandtl, Hafner Pub, 1952.

9. Fundamentals of hydro- and aeromechanics, L. Prandtl, O. G. Tietjens,
1934.

10. Aerodynamicss of Wind Turbins, Martin Hansen, James and James, 2000.

11. Aerodynamics, Aeronautics and Flight Mechanics, McCormick, Wiley, 1995.

12. Aerodynamics, Krasnov, NASA, 1978.

13. Aerodynamics: Fundamentals of Theory; Aerodynamics of an Airfoil and
Wing; Methods of Aerodynamic Calculation, N. F. Krasnov, 1986.

14. Aerodynamics, von Karman, Dover, 2004.

15. Aerodynamics, N. A. V. Piercy, The English Universities Press, 2nd ed,
1947.

16. Theory of Flight, Richard von Mises, Dover, 1959.

17. Low-Speed Aerodynamics, J. Katz, A Plotkin, Cambridge University Press,
2001.

18. Incompressible Aerodynamics, B. Thwaites, Clarendon Press, 1960.

19. Aerodynamics of Low Reynolds Number Flyers, Wei Shyy, Cambridge,
2008

20. Flight Physics by Torenbeek and Wittenberg, Springer, 2009

21. Two-dimensional Problems in Hydrodynamics and Aerodynamics, L. I. Se-
dov, Interscience, 1965

22. Principles of Ideal-Fluid Aerodynamics, K. Karamcheti, Krieger, 1980

23. Low Speed Aerodynamics: From Wing Theory to Panel Methods, J. Katz
and A. Plotkin
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24. Basic Wing and Airfoil Theory, A. Pope, McGraw-Hill, 1951

25. Theory of Wing Sections, E. Abbott and A.von Doenhoff, Dover 1959

26. Encyclopedia of Flight, T. Irons-George, Salem Press, 2002.

We now comment shortly on the main message presented in a selection of the
above books.

34.1 Aircraft Flight by Barnard-Philpott

• Most of the worlds aircraft are flown by people who have a false idea of
what keeps them in the air.

• Our objective is to give an accurate description of the principles of flight in
simple physical terms. In the process of doing so, we will need to demolish
some well-established myths.

• One popular and misleading explanation refers to a typical cambered wing
section profile. It is argued, that the air that takes the longer upper-surface-
route has to travel faster than that which takes the shorter under-surface-
route, in order to keep up.

• We find that the production of lift depends, rather surprisingly, on the vis-
cosity or stickiness of air

• The feature of the flows meeting at the trailing edge is known as the Kutta
conditionthe viscosity is thus ultimately responsible for the production of
lift.

• A major breakthrough came when it was realized that a wing thus behaves
rather like rotating vortex placed in an air stream. This apparent odd con-
ceptual jump was important, because it was relatively easy to mathemati-
cally analyze the effect of a simple vortex placed in a uniform flow of air.

• It is the viscosity working through the mecahsim of boundary layer sepa-
ration and starting vortex formation, that is ultimately responsible for the
generation of lift.
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We see that the authors seek to sell Kutta-Zhukovskys circulation theory, while
admitting that they find it odd, but then try to cover up by hinting at boundary
layer effects of small viscosity. This is representative of what is considered as the
scientific explanation flight presented in the literature.

The New Theory shows that lift does neither come from circulation nor form
boundary layers and thus that the authors, together with all other authors explain-
ing flight, belong to the large group of people who have a false idea of what keeps
airplanes in the air.

34.2 Mechanics of Flight by Kermode
From Preface to 11th edition by Barnard-Philpott:

• The late A. C. Kermode was a high-ranking Royal Air Force officer respon-
sible for training. He also had a vast accumulation of practice aeronautical
experience, both in the air and on the ground. It is this direct knowledge
that provided the strength and authority of this book.

This suggests that the theory is weak. From Chapter 1 Mechanics:

• The flight of an airplane provide glorious examples of the principles of me-
chanics.

The weaker the higher pitch. From Chapter 3 Aerofoils - subsonic speeds:

• An interesting way of thinking about the airflow over wings is the theory
of circulation. The fact that the air is speeded over the upper surface, and
slowed down on the under surface of a wing, can be considered as a circu-
lation round the wing superimposed upon the general sped of airflow (this
does not mean that particles of air actually travel around the wing). This
circulation is , in effect, the cause of lift. But this is not all. When the wing
starts to move, or when the lift is increased, the wing sheds and leaved be-
hind a vortex rotating in the opposite direction to the circulation round the
wing – sometimes called the starting vortex – so there is a complete system
of vortices, round the wing (then the wing-tip vortices) and finally the start-
ing vortex. The engineer power keeps renewing the circulation round the
wing.

Kermode here struggles to make sense of circulation theory: ”this does not mean
that particles of air actually travel around the wing”: circulation without circula-
tion. Reference to an experiment performed by Prandtl is made:
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• This is not just theory; the flow over the wing can clearly be seen in exper-
iments, while the starting vortex is easily demonstrated by starting to move
a model wing, or even one’s hand, through water.

But this is a misleading experiment: The vortices seen by moving a hand trough
water (in a bubble bath tub), do not explain the creation of lift of a wing.

34.3 Aerodynamics of the Airplane by Schlichting
• In many technical applications, viscous flow can be neglected in order to

simplify the laws of fluid dynamics (inviscid flow). This is down in the theory
of lift of airfoils (potential flow).

• To determine the drag of bodies, however, the viscosity has to be considered
(boundary-layer theory). The theory of inviscid, incompressible flow has
been developed mathematically in detail, giving, in many cases, a satisfac-
tory description of the actual flow, for example, in computing airfoil lift at
moderate flight velocities. On the other hand, this theory fails completely
for the computation of body drag.

• Only a very few comprehensive presentations of the scientific fundamentals
of the aerodynamics of the airplane have ever been published. The study of
the aerodynamics of the airplane requires a thorough knowledge of aerody-
namic theory. The lift can be obtained in very good approximation from the
theory of inviscid flow.

• Lift production on an airfoil is closely related to the circulation of its veloc-
ity near-field.

• There is higher pressure on the lower surface, lower pressure on the user
surface. It follows, from the Bernoulli equation, that the velocities on the
lower and upper surfaces are lower or higher, respectively. With these facts
in mind it follows that the circulation differs from zero. The velocity field
can be thought to have been produced by a clockwise-turning vortex that is
located on the airfoil. This vortex, which apparently is of basic importance
for the creation of lift, is called the bound vortex of the wing.

• If the magnitude of the circulation is known, the Kutta-Zhukovsky formula,
is of practical value for the calculation of lift.The circulation cannot be
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determined uniquely from theoretical considerations, so it is necessary to
look for empirical results. The magnitude of the circulation can be derived
from experience, namely, that there is no flow around the trailing edge. This
is the Kutta condition.

• It is seen that the viscosity of the fluid, after all, causes the formation of cir-
culation and, therefore, the establishment of lift. Viscosity of the fluid must
therefore be taken into consideration temporarily to explain the evolution of
lift, that is, the formation of the starting vortex. After the establishment of
the starting vortex and the circulation around the wing, the calculation of
lift can be done from the laws of frictionless flow using the Kutta-Zhukovsky
equation observing the Kutta condition.

We see that lift is connected to circulation which is determined by the Kutta con-
dition. We see how inviscid theory is combined with viscous effects into a mix
generating lift but no drag, which however does not describe actual physics.

34.4 Understanding Flight by Anderson-Eberhardt
This book presented as ”the simplest, most intuitive book on the toughest lessons
of flight–addresses the science of flying in terms, explanations, and illustrations
that make sense to those who most need to understand: those who fly”, seeks to
fill its mission with the following proclamations:

• There are few physical phenomena so generally studied which are as mis-
understood as the phenomenon of flight.

• Books written to train engineers often quickly delve into complicated math-
ematics....the necessary formalism is often achieved at the expense of a fun-
damental understanding of the principles of flight.

• A shortcoming of many books on the topic of aeronautics is that the informa-
tion is presented in a very complicated manner, often mistaking mathematics
for a physical explanation.

• In fact, we believe that if something can only be described in complex math-
ematical terms it is not really understood. To be able to calculate something
is not the same as understanding it.
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• Teachers and students who are looking for a better understanding of flight
will find this book useful. Even students of aeronautical engineering will be
able to learn from this book, where the physical descriptions presented will
supplement the more difficult mathematical descriptions of the profession.

• The mathematical description of lift is a general term for the analysis tools
of classical aerodynamics and computation aerodynamics. If the objective
is to accurately compute the principle or aerodynamics of a wing, these are
the tools to use, though the aerodynamic description is mathematical and
not physical. This is a point lost on many of its proponents. Fortunately, the
physical description of lift, presented here, does not require complicated
mathematics.

• The physical description of lift is based primarily on Newton’s three laws
and a phenomenon called the Coanda effect. This description is uniquely
useful for understanding the phenomena associated with flight. So why do
fluids tend to bend around a solid object? The answer is viscosity, that
characteristic that makes a fluid thick and makes it stick to a surface. When
a moving fluid comes into contact with a solid object, some of it sticks to the
surface.

Comment: We read that Anderson-Eberhardt informs us that (i) mathematics of
flight is one thing, which is difficult to understand, and (ii) physics of flight is
another thing, which is easy to understand: The Coanda effect resulting from the
viscosity of air.

Yes, (i) is correct, the mathematics of flight of Kutta-Zhukovsky-Prandtl is not
understood by any living scientist. But (ii) is plain wrong. Lift is not an effect
of viscosity, but results from the fact that air has very small viscosity, as shown
by the New Theory of Flight. The book shows that the authors do not understand
flight and so the book should more correctly be titled Not Understanding Flight.

Only when mathematics and physics come together is science created. Under-
standing in physics means understanding of a mathematical model describing real
physics. Pseudo-science is characterized by mathematics separated from physics,
as in the Kutta-Zhukovsky circulation theory.

34.5 Theory of Flight by von Mises
This book was launched as a Dover reprint in 1959 by:
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• Perhaps the most balanced, well-written account of fundamental fluid dy-
namics ever published. Mises’ classic avoids the formidable mathematical
structure of fluid dynamics, while conveying by often unorthodox methods
a full understanding of the physical phenomena and mathematical concepts
of aeronautical engineering. ”An outstanding textbook.”

The book presents the Kutta-Zhukovsky theory stating that the lift of an airfoil
results from circulation around the airfoil section generated by a sharp trailing
edge (p 179):

• It had been known from the very beginning of flight that wings with a sharp
trailing edge must be used in order to obtain a well-defined lift.

This statement does not describe physical reality, since it has been known from
the very beginning that a rounded trailing edge (of radius as large as 10

This was of course known to von Mises when he wrote his book, and so it is
natural to ask about the meaning of his statement that a sharp trailing edge ”must
be used to obtain a well-defined lift”.

What von Mises is describing is not real physics, but instead fictional physics
in the form of circulation theory stating that lift is proportional to circulation with
lift thus determined by circulation, which in general can be of any magnitude,
but for an airfoil with sharp trailing edge is determined by the Kutta condition of
smooth flow off the trailing edge. Von Mises thus says that in the fictional physics
of circulation theory, a sharp trailing edge ”must be used” to obtain a well-defined
circulation and lift.

Von Mises thus deliberate fools the reader and the world by giving the impres-
sion that his ”theory of flight” describes real physics, while in fact it only describes
mathematical peculiarities of non-real fictional physics. Von Mises thereby sets
a standard of modern aerodynamics, which can now be questioned in the light of
the New Theory of Flight.

34.6 The Simple Science of Flight by Tennekes
Henk Tennekes is Director of Research Emeritus at the Royal Netherlands Meteo-
rological Institute, Emeritus Professor of Meteorology at the Free University (VU)
in Amsterdam, and Emeritus Professor of Aerospace Engineering at Pennsylvania
State University. He is the coauthor of A First Course in Turbulence (MIT Press,
1972) and The Simple Science of Flight:
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• An investigation into how machines and living creatures fly, and of the sim-
ilarities between butterflies and Boeings, paper airplanes and plovers. A
leisurely introduction to the mechanics of flight and, beyond that, to the sci-
entific attitude that finds wonder in simple calculations, forging connections
between, say, the energy efficiency of a peanut butter sandwich and that of
the kerosene that fuels a jumbo jet.

Let us check out how Tennekes describes the ”simple science of flight”:

• Unfortunately, most of us learned in high school that one needs the Bernoulli
principle to explain the generation of lift. Your science teacher told you that
the upper surface of a wing has to have a convex curvature, so that the air
over the top has to make a longer journey than that along the bottom of
the wing.Polite fiction, indeed. It does not explain how stunt planes can fly
upside down....

• We will have to do better. I will use a version of Newton’s 2nd Law. I
will also appeal to Newton’s 3rd Law, which says that action and reaction
are equal and opposite. Applied to wings these two laws imply that a wing
produces an amount of lift that is equal to the downward impulse given to
the surrounding air. The lift of a wing is proportional to angle of attack x
density x speed squared x wing area.

This is all Tennekes has to say about the ”simple science of flight”. Simple indeed:
Upward lift on the wing is balanced by a downward force on the air from the
wing! And the formula is just trivial similarity and an assumption pulled out of
the pocket that lift scales with the angle of attack

What Tennekes offers the general reader in ”college-level courses for senior
citizens” is non-sensical triviality instead of enlightening simplicity, as if the se-
nior citizens are all Alzheimer patients.

The book, written by an author who describes himself as a turbulence spe-
cialist, gives yet another indication of the collapse of theory in the century of
aerodynamics.

Tennekes was forced out of office because he expressed skepticism to climate
alarmism and so his critique of Bernoulli was not the only case where ”he was
right after all”.

34.7 Physics of Flight Reviewed by Weltner
We read in the Introduction:
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• The explanation of the aerodynamic lift has a long history, but there is con-
troversy regarding the fundamental physics and their relation to Newtons
mechanics to date. This topic could be one of the most interesting and mo-
tivating in physics education. But the physics of flight nearly disappeared
from the curriculum in schools and basic physics courses in most European
countries. One reason, why teachers despite of students interest neglect this
topic might be the fact that the conventional explanation of the aerodynamic
lift based on Bernoullis Law has serious drawbacks and is partly erroneous.
... explanations based on Bernoullis law are dominating since the 1920s.

• This situation is changing recently. A growing number of authors question
the conventional explanation and replace it by an explanation based on fun-
damental mechanics.

Weltner eliminates Bernoulli because it requires the velocity field to be known
and also circulation theory as a mathematical trick without physics:

• The concept of circulation is a sophisticated mathematical discription of the
velocity distribution but not the cause of the latter.

Weltner instead advocates a general view - Aerodynamic lifting force as reaction
force while air is accelerated downwards by the airplane:

• The explanation based on the relation between aerodynamic lift and the
acceleration of a downward air flow prevailed in textbooks in this simple
form until 1920 without having been elaborated further. By approximately
the year 1920, when aviation gained much interest in science and public,
the explanation based on Bernoullis law appeared and displaced the ex-
planation based on reaction forces. In any case it was necessary that the
explanation of lift using Bernoullis law had to be complemented by giving
a cause for the higher streaming velocity of the wings upper surface.

But Weltner’s explanation of lift simply as a reaction, is as empty of content today
as it was when it was discarded in 1920. Weltner thus effectively reduces the
aerodynamics of flight of the 20th century to zero and gives the reason why the
physics of flight has disappeared from the curriculum.

34.8 Flight Physics by Torenbeek-Wittenberg
This book presents the fundamentals in Chapter 4 Lift and Drag at Low Speeds:
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• An aerofoil is a streamline body designed in such a way that, when set at a
suitable angle to the airflow, it produces much more lift than drag.

• Similar to the situation with circulation around a cylinder, the flow around
an aerofoil can be treated as a combination of two flow types; (a) In a
frictionless flow there are two stagnation points: one near the nose point
and one above and in front of the tail point. (b) A circulating flow. With
airflow from the left and circulation in a clockwise direction, the velocity
will increase on the upper aerofoil surface and slow down on the lower one.
(c) The result of the superposition is a flow with a higher average velocity
and a lower pressure on the upper surface than in case (a), whereas the
pressure on the lower surface is higher. The pressure difference between
both surfaces is experienced as lift.

• However, in contrast with the situation of a rotating cylinder, an aerofoil
section is not rotating, which makes it unclear how circulation arises and
what determines its value. Although just about every value of circulation
seems possible, in reality nature takes care that a certain angle of attack
only allows one type of flow. In 1902, W.M. Kutta first proposed for a
section with a sharp trailing edge that the circulation adjusts to a value
so that no air will flow around the sharp aerofoil tail from the lower to
the upper surface, or vice versa... this so-called Kutta condition leads to
a correct determination of the circulation and with that the velocity and
pressure distribution, in other words: the lift force.

• The fundamental question how circulation occurs and remains in existence
can be answered in principle by carrying out an experiment such as that
done for the first time by Ludwig Prandtl. He placed an aerofoil in a water
channel in which the flow was made visible by aluminium particles sprin-
kled on the surface....the viscous fluid cannot follow the corner at the tail
point and will separate while creating a vortex above the trailing edge. At
still higher velocity this vortex will move downstream, separate from the
wing, and will become a cast-off or starting vortex. This will be quickly left
behind and is eventually dissipated through the action of viscosity. Because
the original flow did not contain circulation, a reverse circulation will oc-
cur around the aerofoil with the opposite direction.Its circulation causes
the rear stagnation point to move towards the trailing edge. Since a start-
ing vortex originates from viscosity, there is no circulation and also no lift
created in ideal flow. Nevertheless, the lift on a section with a sharp tail
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can be determined by assuming the flow to be ideal and by making use of
the Kutta condition. For small angles of attack, viscous effects are manifest
only in the boundary layer and the lift is hardly affected by viscosity. The
discussed model is therefore a good representation of the real flow.

We see here the classical Kutta-Zhukovsky 2d circulation theory conceived 100
years ago. There is massive evidence (see e.g. Swedish Aerodynamics Dissident)
that the 2d flow thus described is unphysical and thus scientifically incorrect. We
can see how the authors struggle to cope with this fact: It is not claimed that
2d potential flow + circulation describes the real physics, only that the model is
a ”good representation” and the flow can so ”be treated” (the accepted way of
handling the contradiction between 2d theory and 3d reality).

34.9 The Physics of Flight by Lande
This book is presented by:

• When looking for a textbook on aerodynamics of the airplane for students
after their first year of college physics and algebra, the author found a cer-
tain gap between elementary introductions and more advanced representa-
tions which require a full knowledge of calculus.

Lande warms up the reader by:

• The airfoil, with its long span and curved (”cambered”) crosssection, its
blunt leading edge and sharp trailing edge, is an almost perfect instrument
of pure sustentation. The physical explanation and evaluation of the amaz-
ing qualities of the transversal wing as means of sustentation consitute the
chief topic of this book.

But Lande then only delivers the classical Kutta-Zhukovsky-Prandtl circulation
theory:

• The aerodynamic process which leads to the production of lift and drag
cannot be understood without studying the adhesion of the air to the sur-
face of the wing, and the viscosity or internal friction (stickiness) of the air
itself. Lift originates from the downward momentum imparted to the incom-
ing horizontal air current. The downward deflection is the result of wind V
and pure circulation w, as shown in the proof of K-J’s law....we found that
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vorticity superimposed on wind produces lift at right angles to the incident
wind in two-dimensional flow, without giving rise to a force of drag parallel
to the wind.

This is the standard presentation going back to Prandtl, which attributes lift to
the ”stickiness” of a viscous fluid satisfying a no-slip boundary condition. This
is misleading physics since lift in subsonic flight in reality originates from in-
compressibility and a slip boundary condition modeling the small skin friction of
slightly viscous flow, as the main message of this book.
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Chapter 35

Making of the Prandtl Myth

But the impression upon my mind is that the motions calculated above for
an absolutely inviscid liquid may be found inapplicable to a viscid liquid of
vanishing viscosity, and that a more complete treatment might even yet indi-
cate instability, perhaps of a local character, in the immediate neighbourhood
of the walls, when the viscosity is very small. (Rayleigh 1892)

35.1 By Schlichting: Student
The myth of Prandtl as the Father of Modern Fluid Mechanics was shaped by his
former students Theodor von Karman and Hermann Schlichting (photo) serving
as aeronautics expert scientists in the US and Germany during the 2nd World War.
Upon request from the Allied forces Schlichting documented Prandtl’s expertise in
the book Boundary Layer Theory, viewed as the bible of modern fluid mechanics.
It is possible to argue that the outcome of the war was influenced by incorrect
German aeronautics.

Let us analyze how Schlichting builds the Prandtl myth in the Introduction to
his book in a sequence of quotes with our comments in parenthesis:

• The present book is concerned with the branch known as boundary-layer
theory. This is the oldest branch of modern fluid dynamics; it was founded
by Prandtl in 1904 when he succeeded in showing how flows involving fluids
of very small viscosity, in particular water and air, the most important ones
from the point of view of applications, can be made amenable to mathemat-
ical analysis. (This sets the scence with boundary-layer theory opening to
technological progress by mathematical analysis in the hands of Prandtl).

253
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• This was achieved by taking the effects of friction into account only in re-
gions where they are essential, namely in the thin boundary layer which
exists in the immediate neighbourhood of a solid body. (This is a clever
circular formulation with effects of viscosity taken into account where they
are essential and should be taken into account).

• This concept made it possible to clarify many phenomena which occur in
flows and which had previously been incomprehensible. (Vague. Nothing
was clarified, only further mystified).

• Most important of all, it has become possible to subject problems connected
with the occurrence of drag to a theoretical analysis. (This is the central
dogma of Prandtl: Drag originates from boundary layer effects. We show
that thus is incorrect by obtaining correct drag without boundary layers).

• The science of aeronautical engineering was making rapid progress and
was soon able to utilize these theoretical results in practical applications.
It did, furthermore, pose many problems which could be solved with the aid
of the new boundary layer theory. Aeronautical engineers have long since
made the concept of a boundary layer one of everyday use and it is now
unthinkable to do without it. (Vague).

• In other fields of machine design in which problems of flow occur, in par-
ticular in the design of turbomachinry, the theory of boundary layers made
much slower progress, but in modern times these new concepts have come
to the fore in such applications as well. (This in an admittance that the
boundary layer theory is not useful in applications).

• Towards the end of the 18th century the science of fluid mechanics began
to develop in two directions which hadpractically no points in common.
On the one side there was the science of theoretical hydrodynamics which
was evolved from Euler’s equations of motion for a frictionless, non-viscous
fluid and which achieved a high degree of completeness. Since, however, the
results of this so-called classical science of hydrodynamics stood in glaring
contradiction to experimental results in particular as regards the very im-
portant problem of pressure losses in pipes and channels, as well as with
regard to the drag of a body which moves through a mass of fluid it had
little practical importance. For this reason, practical engineers, prompted
by the need to solve the important problems arising from the rapid progress
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in technology, developed their own highly empirical science of hydraulics.
The science of hydraulics was based on a large number of experimental data
and differed greatly in its methods and in its objects from the science of the-
oretical hydrodynamics. (This is an admittance that theory and practice do
not come together).

• At the beginning of the present century L. Prandtl distinguished himself by
showing how to unify these two divergent branches of fluid dynamics. He
achieved a high degree of correlation between theory and experiment and
paved the way to the remarkably successful development of fluid mechanics
which has taken place over the past seventy years. It had been realized even
before Prandtl that the discrepancies between the results of classical hydro-
dynamics and experiment were, in very many cases, due to the fact that the
theory neglected fluid friction. Moreover, the complete equations of motion
for flows with friction (the Navier-Stokes equations) had been known for a
long time. However, owing to the great mathematical difficulties connected
with the solution of these equations (with the exception of a small num-
ber of particular cases), the way to a theoretical treatment of viscous fluid
motion was barred. Furthermore, in the case of the two most important flu-
ids, namely water and air, the viscosity is very small and, consequently, the
forces due to viscous friction are, generally speaking, very small compared
with the remaining forces (gravity and pressure forces). For this reason it
was very difficult to comprehend that the frictional forces omitted from the
classical theory influenced the motion of a fluid to so large an extent. (The
claim that Prandtl unified mathematical theory and practice is without sub-
stance. Prandtl was mathematically naive and his dictate that Navier-Stokes
equations cannot be combined with force boundary conditions, is incorrect).

• In a paper on ”Fluid Motion with Very Small Friction”, read before the
Mathematical Congress in Heidelberg in 1004, L. Prandtl — showed how
it was possible to analyze viscous flows precisely in cases which had great
practical importance. (The paper is very short (8 sparsely typed pages) and
contains no mathematical analysis, only vague speculations, which have
showed to be misleading).

• With the aid of theoretical considerations and several simple experiments,
he proved that the flow about a solid body can be divided into two regions:
a very thin layer in the neighbourhood of the body (boundary layer) where
friction plays an essential part, and the remaining region outside this layer,
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where friction may be neglected. (This subdivision is mathematically and
physically impossible).

• On the basis of this hypothesis Prandfl succeeded in giving a physically
penetrating explanation of the importance of viscous flows, achieving at the
same time a maximum degree of simplification of the attendant mathemat-
ical difficulties. The theoretical considerations were even (then supported
by simple experiments performed in a small water tunnel which Prandtl
built with his own hands. He thus took the first step towards a reunifica-
tion of theory and practice. This boundary-layer theory proved extremely
fruitful in that it provided an effective tool for the development of fluid dy-
namics. (The claim that Prandtl unifies theory and practice with a maximum
of mathematical simplification lacks rationale).

• Since the beginning of the current century the new theory has been devel-
oped at a very fast rate under the additional stimulus obtained from the
recently founded science of aerodynamics. In a very short time it became
one of the foundation stones of modern Ihiid dynamics together with the
other very important developments the aerofoil theory and the science of
gas dynamics. (This summarizes the myth of Prandtl as the Father of Mod-
ern Fluid Mechanics. The truth is that Prandtl misled a whole century of
fluid dynamicists in searching for drag and lift in a vanishingly thin bound-
ary layer).

• The existence of tangential (shearing) stresses and the condition of no slip
near solid walls constitute the essential differences between a perfect and a
real fluid. Certain fluids which are of great practical importance, such as
water and air, have very small coefficients of viscosity. In many instances,
the motion of such fluids of small viscosity agrees very well with that of a
perfect fluid, because in most eases the shearing stresses are very small.
(This is an admittance that the skin friction forces are small in the boundary
layer and thus can be approximated by a slip boundary condition, in direct
violation of Prandtl’s dictate of no-slip).

• For this reason the existence of viscosity is completely neglected in the the-
ory of perfect fluids, mainly because this introduces a far-reaching simplifi-
cation of the. equations of motion, as a result of which an extensive mathe-
matical theory becomes possible. It is, however, important to stress the fact
that even in fluids with very small viscosities, unlike in perfect fluids, the
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condition of no slip near a solid boundary prevails. This condition of no
slip introduces in many cases very large discrepancies in the laws of motion
of perfect and real fluids. In particular, the. very large discrepancy between
the value of drag in a real and a perfect fluid has its physical origin in the
condition of no slip near a wall. (This is Prandtl’s dictate of no-slip which
has made 20th century fluid mechanics both uncomputable and impossible
to rationalize).

• Foreword by Dryden: Boundary-layer theory is the cornerstone of our knowl-
edge of the flow of air and other fluids of small viscosity under circum-
stances of interest in many engineering applications. Thus many complex
problems in aerodynamics have been clarified by a study of the flow within
the boundary layer and its effect on the general flow around the body. Such
problems include the variations of minimum drag and maximum lift of air-
plane wings with Reynolds number, wind-tunnel turbulence, and other pa-
rameters. Even in those cases where a complete mathematical analysis is at
present impracticable, the boundary-layer concept has been extraordinarily
fruitfull and useful. (Big words without real substance).

35.2 By von Karman: Student
The making of the myth of Prandtl as the Father of Modern Fluid mechanics was
created also by another student Theodore von Karman in the book Aerodynamics:
Selected Topics in the Light of their Historical Development from 1954:

• At the time of the first human flight, no theory existed that would explain the
sustenation obtained by means of a curved surface at zero angle of attack.
It seemed that the mathematical theory of fluid motion was unable to ex-
plain the fundamental facts revealed by experimental aerodynamics. (This
is correct).

• The Kutta-Zhukovsky condition seems to be a reasonable hypothesis, both
because it is indicated by visual observation and also because the lift cal-
culated by means of this condition seems is in fair accordance with mea-
surements. The usefulness of the theory is restricted to a limited range of
angle of attack, comprising relatively small angles. Beyond this range the
the measured lift falls far below the values predicted by the theory. (Von
Karman here falls into the logical fallacy of confirming an assumption by
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observing a consequence: If there is circulation then there is lift, and since
lift is observed there must be circulation. This makes the theory fool-proof,
and as such pseudo-scientific).

• The man who gave modern wing theory its practical mathematical form
was one of the most prominent representatives of the science of mechanics,
and especially fluid mechanics, Ludwig Prandtl. His creates contributions
to fluid mechanics were in the field of wing theory and the theory of the
boundary layer. His control of mathematical methods and tricks was lim-
ited: many of his collaborators and followers surpassed him in solving diffi-
cult mathematical problems. but his ability to establish systems of simplified
equations which expressed the essential physical relations and dropped the
non-essentials, was unique. (This is the Prandtl myth: Prandtl reveals the
mathematical secrets of fluid mechanics without knowing much math).

• To be sure, Prandtl’s theory has limitations, as does every theory. Its first
limitation is caused by the phenomenon of stall. (By admitting limitation
the theory is strengthened. The fact that stall is not predicted, should alone
be sufficient to eliminate the theory as unphysical, and thus very dangerous
to use for the design of real airplanes).

• Our knowledge of the reasons ”why we can fly” and ”how we fly” has
increased both in scope and depth in a rather impressive way. (The qualifi-
cation ”rather” means that the knowledge is not convincing).

• We aerodynamicists were always more modest (than physicists) and did not
attempt to change basic beliefs of the human mind or to interfere with the
business of the good Lord or divine Providence. (The theory is strengthened
by showing a humble attitude, different from that of physicists).

35.3 By Prandtl: Himself
The Father of Modern Aerodynamics inspecting the Ho III 1938 Rhn Contest
Challenger: Did Germany lose the war because of incorrect aerodynamics?

On the request by NACA (US National Advisory Committee for Aeronautics)
in 1921, Ludwig Prandtl ”prepared for the reports of the committee a detailed
treatise on the present condition of those applications of hydrodynamics which
lead to the calculation of the forces acting on airplane wings and airship bodies”
(NACA Report 116 Applications of Modern Hydrodynamics to Aeronautics).
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Prandtl ”acceded to the request all the more willingly because the theories in
question have at this time reached a certain conclusion where it is worth while to
show in a comprehensive manner the leading ideas and the results of these theories
and to indicate what confirmation the theoretical results have received by tests”.

Prandtl states in his report defining the state-of-the-art with our comments in
parenthesis:

• Friction between fluid and solid body never comes into consideration in the
fields of application to be treated here, because it is established by reliable
experience that fluids like water and air never slide on the surface of the
body; what happens is, the final fluid layer immediately in contact with the
body is attached to it (is at rest relative to it), and all the friction of fluids
with solid bodies is therefore an internal friction with the fluid. (This is
Prandtl’s dictate of no-slip boundary condition which made 20th century
fluid mechanics into uncomputable magics).

• In this layer, which we call the boundary layer, the forces due to viscosity
are of the same order of magnitude as the forces due to inertia, as may be
seen without difficulty. (This is misleading: both forces due to viscosity and
inertia can be small.)

• Closer investigation concerning this shows that under certain conditions
there may occur a reversal flow in the boundary layer which is set in rotation
by the viscous forces, so that, further on, the whole flow is changed owing
to the formation of vortices. (This is Prandtl’s main thesis: The boundary
layer changes the whole flow).

• In the rear of blunt bodies vortices are formedon the other hand, in the
rear of very tapering bodiesthere is no noticeable formation of vortices.
The principal successful results of hydrodynamics apply to this casethe the-
ory can be made useful exactly for those bodies which are of most techni-
cal interest. (Prandtl’s theory is based on the formation of vortices in the
boundary layer, which Prandtl claims are not formed in the cases of interest:
Missing logic).

• On resistance of airships: It is seen that the agreement (pressure distribu-
tion) is very complete; at the rear end, however, there appears a characteris-
tic deviation in all cases, since the theoretical pressure distribution reaches
the full dynamical pressure at the point where the flow reunites again, while
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actually this rise in pressure, owing to the influence of the layer of air re-
tarded by friction, remains close to the surface. (Prandtl suggests that the
lack of pressure rise at separation in real flow is due to boundary layer fric-
tion. We show that this is incorrect: It is instead caused by 3d rotational
separation.)

• As is well known there is no resistance for the theoretical flow in a non-
voscpus fluid (potential flow). The actual drag consists of two parts, one
resulting from all the noral forces (pressures) acting on the surface of the
body, the other from all tangential forces (friction). The pressure resistance,
arises in the main from the deviation mentioned at the rear end, and is, as
is known, very small. (This is incorrect: Pressure drag is the main part of
drag in slightly viscous flow)

• We shall concern ourselves in what follows only with non viscous and in-
compressible fluid, also called ”ideal fluid”. (Confusing since friction forces
are supposed to change the flow.)

• In order that the flow may be like the actual one, the circulation must always
be so chosen that the rear rest point coincides with the trailing edge.We are
accordingly, by the help of such constructions, in the position of being able
to calculate the velocity at every point in the neighborhood of the wing
profile. The agreement on the whole is as good as can be expected from a
theory which neglects completely the viscosity. (Empty statement.)

• That a circulatory motion is essential for the production of lift of an aerofoil
is definitely established. The question is then how to reconcile this with
the proposition that the circulation around a fluid line in a non viscous
fluid remains constant.... There is instantly formed at the trailing edge a
vortex of increasing intensity (This is the mystery of circulation theory: If
circulation generates lift, the question is how circulation is generated. The
standard answer is by a non-real sharp trailing edge and starting vortex. This
is however not the real physics of 3d rotational separation at a real rounded
trailing edge.)

35.4 By Anderson: Curator of Aerodynamics
We cite from the book Fundamentals of Aerodynamics by John D Anderson:
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• The first practical theory for predicting the aerodynamic properties of a
finite wing was developed by Ludwig Prandtl and his colleagues at Gottin-
gen, Germany, during the period 1911-1918, spanning World War I. The
utility of Prandtl’s theory is so great that it is still in use today for prelimi-
nary calculations of finite-wing characteristics.

• The modern science of aerodynamics rests on a strong fundamental foun-
dation, a large percentage of which was established in one place by one
man-at the University of Gottingen by Ludwig Prandtl. Prandtl never re-
ceived a Noble Prize, although his contributions to aerodynamics and fluid
mechanics are felt by many to be of that caliber. (Anderson captures the
essential quality of Prandtl’s theory as a practical method for preliminary
calculation of wing characteristics (lift), and not a physical theory describ-
ing the true aerodynamics of the generation of lift of a wing, and thus gives
a reason why Prandtl did not get any Nobel Prize).

• By the 1930s, Prandtl was recognized worldwide as the ”elder statesman”
of fluid dynamics. Although he continued to do research in various areas,
including structural mechanics and meteorology, his ”Nobel Prize-level”
contributions to fluid dynamics had all been made.

• Prandtl remained at Gottingen throughout the turmoil of World War II,
engrossed in his work and seemingly insulated from the intense political
and physical disruptions brought about by Nazi Germany. In fact, the Ger-
man Air Ministry provided Prandtl’s laboratory with new equipment and
financial support. (Anderson emphasizes the strong connection between
Prandtl’s work and German war efforts, and thus gives another reason why
Prandtl was not near to get a Nobel Prize).

• Prandtl was considered a tedious lecturer because he could hardly make a
statement without qualifying it. However, he attracted excellent students...

• Prandtl died in 1953. He was clearly the father of modern aerodynamics-a
monumental figure in fluid dynamics. His impact will be felt for centuries
to come.

Concluding analysis: Prandtl’s message of 1921 has become the text book
canon, which however is non-physical and thus incorrect.
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Chapter 36

Confessions

We here list some of the many confessions by experts that there is no scientific
theory of flight, which is the starting point of the present study.

This is a cumbersome truth for both aerodynamicists as scientists and airlines
reassuring their passengers that air transportation is safe. The design of safe air-
planes is facilitated by correct theory. If there is no correct theory available now,
it is important to find one as soon as possible.

36.1 New York Times,
K. Chang in Staying Aloft; What Does Keep Them Up There?, Dec 9, 2003:

• To those who fear flying, it is probably disconcerting that physicists and
aeronautical engineers still passionately debate the fundamental issue un-
derlying this endeavor: what keeps planes in the air?

• Here we are, 100 years after the Wright brothers, and there are people who
give different answers to that question, said Dr. John D. Anderson Jr.

36.2 AIAA
J Hoffren, Quest for an Improved Explanation of Lift, AIAA, 2001:

• The basic physical principles tend to be buried and replaced by mystical
jargon. Classical explanations for the generation of lift do not make the
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essence of the subject clear, relying heavily on cryptical terminology and
theorems from mathematics.

• Many classical texts even appear to have a fundamental error in their un-
derlying assumptions.

• Although the subject of lift is old, it is felt that a satisfactory general but eas-
ily understandable explanation for the phenomenon (of lift), is still lacking,
and consequently there is a genuine need for one.

36.3 AVweb
• Few physical principles have ever been explained as poorly as the mecha-

nism of lift:

• Its all one interconnected system. Unless the overall result of that system is
for air to end up lower than it was before the plane flew by, there will be no
lift. Wings move air downward, and react by being pushed upward. Thats
what makes lift. All the rest is just interesting details.

36.4 Airfoil Lifting Force Misconception
W.Beaty:

• How do airplane wings really work? Amazingly enough, this question is
still argued in many places, from elementary school classrooms all the way
up to major pilot schools, and even in the engineering departments of major
aircraft companies.

• This is unexpected, since we would assume that aircraft physics was com-
pletely explored early this century. Obviously the answers must be spelled
out in detail in numerous old dusty aerodynamics texts.

• However, this is not quite the case. Those old texts contain the details of the
math, but its the interpretation of the math that causes the controversy.

• There is an ongoing Religious War over both the way we should understand
the functioning of wings, and over the way we should explain them in chil-
drens textbooks.
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36.5 Live Science
Lift is a lot trickier:

• In fact it is very controversial and often poorly explained and, in many
textbooks, flat wrong. I know, because some readers informed me that the
original version of this story was inaccurate.

• Ive attempted to correct it after researching conflicting expert views on all
this.If youre about fed up, rest assured that even engineers still argue over
the details of how all this works and what terms to use.

36.6 The Straight Dope
How Do Airplanes Fly, Really?

• Youd think that after a century of powered flight wed have this lift thing
figured out. Unfortunately, its not as clear as wed like. A lot of half-baked
theories attempt to explain why airplanes fly.

• All try to take the mysterious world of aerodynamics and distill it into some-
thing comprehensible to the lay audiencenot an easy task.

• Nearly all of the common theories are misleading at best, and usually flat-
out wrong. How can aviation be grounded in such a muddy understanding
of the un- derlying physics?

• As with many other scientific phenomena, its not always necessary to un-
derstand why something works to make use of it. We engineers are happy if
weve got enough practical knowledge to build flying aircraft.

• The rest we chalk up to magic.

36.7 Smithsonian Space Museum
Curator for aerodynamics (From Staying Aloft; What Does Keep Them Up There?):

• Some of them get to be religious fervor.The answer, the debaters agree, is
physics, and not a long rope hanging down from space. But they differ
sharply over the physics, especially when explaining it to nonscientists.
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• There is no simple one-liner answer to this.

• The simple Newtonian explanation also glosses over some of the physics,
like how does a wing divert air downward? The obvious answer air molecules
bounce off the bottom of the wing is only partly correct.

• If air has to follow the wing surface, that raises one last question. If there
were no attractive forces between molecules, would there be no flight?
Would a wing passing through a superfluid like ultracold helium, a bizarre
fluid that can flow literally without friction, produce no lift at all? That has
stumped many flight experts.

36.8 HowStuffWorks
• It is important to realize that, unlike in the two popular explanations de-

scribed earlier (longer path and skipping stone), lift depends on significant
contributions from both the top and bottom wing surfaces. While neither of
these explanations is perfect, they both hold some nuggets of validity.

• Other explanations hold that the unequal pressure distributions cause the
flow deflection, and still others state that the exact opposite is true. In either
case, it is clear that this is not a subject that can be explained easily using
simplified theories.

• Likewise, predicting the amount of lift created by wings has been an equally
challenging task for engineers and designers in the past. In fact, for years,
we have relied heavily on experimental data collected 70 to 80 years ago to
aid in our initial designs of wing.

36.9 Wikipedia Lift Force
John D. Anderson, Curator of Aerodynamics at the National Air and Space Mu-
seum:

• It is amazing that today, almost 100 years after the first flight of the Wright
Flyer, groups of engineers, scientists, pilots, and others can gather together
and have a spirited debate on how an airplane wing generates lift. Various
explanations are put forth, and the debate centers on which explanation is
the most fundamental.
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36.10 Desktop Aeronautics
Applied Aeronautics text book Preface:

• The aerodynamics of bumble bees, disk heads, weather, and many other
things is not a solved problem. While it is impressive that the methods in
use today do so well, we are still not able to predict many flows.
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Chapter 37

Aristotele

Probable impossibilities are to be preferred to improbable possibilities. (Aris-
totle)

In all things of nature there is something of the marvelous. (Aristotle)

We have seen that the secret of flying is how to generate large lift by the motion
of a wing through air at the expense of small drag. Approaching this problem we
face the general problem of motion, seriously addressed already by the Greek
philosopher Zeno in his famous paradox about the arrow, which in every single
moment along its path seems to be frozen into immobility, but yet effectively is
moving. Today we are familiar with many forms of motion and most people would
probably say that Zeno’s paradox must have been resolved since long, although
they would not be able to account for the details of the resolution.

However, the true nature of e.g. the motion of light through vacuum still seems
to be hidden to us, while the motion through a gas/fluid like air or water can be
approached following an idea presented already by Aristotle in the 4th century BC
known as antiperistasis. Aristotle states in his Physics that that a body in motion
through air is pushed from behind by the stream of air around the body contracting
in the rear after having been expanded in the front. This is like the peristaltic
muscle contractions that propels foodstuffs distally through the esophagus and
intestines, which is like the squeezing of an object through a lubricated elastic
tube by the combined action of the object expanding the tube in the front and the
tube contracting in the rear of the object, as expressed in the words of Aristotle:

• Thirdly, in point of fact things that are thrown move though that which gave
them their impulse is not touching them, either by reason of mutual replace-
ment, as some maintain, or because the air that has been pushed pushes
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them with a movement quicker than the natural locomotion of the projectile
wherewith it moves to its proper place. But in a void none of these things
can take place; the only way anything can move is by riding on something
else.

• Fourthly, no one could say why a thing once set in motion should stop any-
where; for why should it stop here rather than here? So that a thing will
either be at rest or must be moved ad infinitum, unless something stronger
than it impedes it.

• Fifthly, things are now thought to move into the void because it yields; but
in a void this quality is present equally everywhere, so that things should
move in all directions.

Of course, we say today that according to Newton’s 2nd law, a body will con-
tinue in rectilinear motion at constant speed unless acted upon by some force,
while to Aristotle sustained motion would require a force pushing from behind.
Nevertheless, we will find that there is something in Aristotle’s antiperistasis
which correctly describes an important aspect of motion through air, if not through
vacuum, but you cannot fly in vaccum...

37.1 Liberation from Aristotle

The renewal of learning in Europe, that began with 12th century Scholasticism,
came to an end about the time of the Black Death, but the Northern Renaissance
(in contrast to th Italian) showed a decisive shift in focus from Aristoteleian nat-
ural philosophy to chemistry and the biological sciences. Thus modern science
in Europe was resumed in a period of great upheaval: the Protestant Reformation
and Catholic Counter-Reformation; the discovery of the Americas by Christopher
Columbus; the Fall of Constantinople; but also the re-discovery of Aristotle dur-
ing the Scholastic period presaged large social and political changes. Thus, a suit-
able environment was created in which it became possible to question scientific
doctrine, in much the same way that Martin Luther and John Calvin questioned
religious doctrine. The works of Ptolemy (astronomy) and Galen (medicine) were
found not always to match everyday observations.

The willingness to question previously held truths and search for new answers
opened the Scientific Revolution by Copernicus’ De Revolutionibus in 1543 stating
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that the Earth moved around the Sun, followed by Newton’s Principia Mathemat-
ica in 1687.
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Chapter 38

Medieval Islamic Physics of Motion

When hearing something unusual, do not preemptively reject it, for that
would be folly. Indeed, horrible things may be true, and familiar and praised
things may prove to be lies. Truth is truth unto itself, not because [many]
people say it is. (Ibn Al-Nafis, 1213-1288 A.D.)

We start by observing reality we try to select solid (unchanging) observa-
tions that are not affected by how we perceive (measure) them. We then
proceed by increasing our research and measurement, subjecting premises
to criticism, and being cautious in drawing conclusions In all we do, our
purpose should be balanced not arbitrary, the search for truth, not support of
opinions...Hopefully, by following this method, this road to the truth that
we can be confident in, we shall arrive to our objective, where we feel
certain that we have, by criticism and caution, removed discord and sus-
picion...Yet we are but human, subject to human frailties, against which we
must fight with all our human might. God help us in all our endeavors. (Ibn
Al-Haytham)

The knowledge of anything, since all things have causes, is not acquired or
complete unless it is known by its causes. (Avicenna)

Medieval Islamic developments in mechanics prepared for the liberation of
science from Christian Scholasticism following Aristotle’s legacy, through the
new mechanics of Galileo and Newton leading into the Enlightment and mod-
ern Europe. We recall some early Islamic scientists questioning Aristotle, and
preparing for human flight...

275



276 CHAPTER 38. MEDIEVAL ISLAMIC PHYSICS OF MOTION

38.1 Avicenna

Avicenna (980-1037) a foremost Persian polymath developed an elaborate theory
of motion, in which he made a distinction between the inclination and force of a
projectile, and concluded that motion was a result of an inclination (mayl) trans-
ferred to the projectile by the thrower, and that projectile motion in a vacuum
would not cease. He viewed inclination as a permanent force whose effect is dis-
sipated by external forces such as air resistance. He also developed the concept of
momentum, referring to impetus as being proportional to weight times velocity.
His theory of motion was also consistent with the concept of inertia in classical
mechanics, and later formed the basis of Jean Buridan’s theory of impetus and
exerted an influence on the work of Galileo Galilei.

38.2 Abu’l-Barakat

Hibat Allah Abu’l-Barakat al-Baghdaadi (1080-1165) wrote a critique of Aris-
totelian physics where he was the first to negate Aristotle’s idea that a constant
force produces uniform motion, as he realized that a force applied continuously
produces acceleration as an early foreshadowing of Newton’s second law of mo-
tion. He described acceleration as the rate of change of velocity and modified
Avicenna’s view on projectile motion stating that the mover imparts a violent in-
clination on the moved and that this diminishes as the moving object distances
itself from the mover. Abu’l-Barakat also suggested that motion is relative.

38.3 Biruni

Another prominent Persian polymath, Abu Rayan Biruni, engaged in a written
debate with Avicenna, with Biruni criticizing the Peripatetic school for its ad-
herence to Aristotelian physics and natural philosophy preserved in a book enti-
tled al-As’ila wal-Ajwiba (Questions and Answers). al-Biruni attacks Aristotle’s
theories on physics and cosmology, and questions almost all of the fundamental
Aristotelian physical axioms. He rejects the notion that heavenly bodies have an
inherent nature and asserts that their “motion could very well be compulsory” and
maintains that “there is no observable evidence that rules out the possibility of
vacuum”; and states that there is no inherent reason why planetary orbits must
be circular and cannot be elliptical. He also argues that “the metaphysical ax-
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ioms on which philosophers build their physical theories do not constitute valid
evidence for the mathematical astronomer”, which marks the first real distinction
between the vocations of the philosopher-metaphysician (like Aristotle and Avi-
cenna) and that of the mathematician-scientist (al-Biruni himsel). In contrast to
the philosophers, the only evidence that al-Biruni considered reliable were either
mathematical or empirical evidence, and his systematic application of rigorous
mathematical reasoning later led to the mathematization of Islamic astronomy
and the mathematization of nature.

38.4 Biruni’s Questions
Biruni began the debate by asking Avicenna eighteen questions, ten of which were
criticisms of Aristotle’s On the Heavens, which represents an early example of the
scientific method of questioning basic postulates which we seek to use in thi book.

The first question criticized the Aristotelian theory of gravity for denying the
existence of levity or gravity in the celestial spheres, and the Aristotelian notion
of circular motion being an innate property of the heavenly bodies.

Biruni’s second question criticizes Aristotle’s over-reliance on more ancient
views concerning the heavens, while the third criticizes the Aristotelian view that
space has only six directions. The fourth question deals with the continuity and
discontinuity of physical bodies, while the fifth criticizes the Peripatetic denial
of the possibility of there existing another world completely different from the
world known to them. In his sixth question, Biruni rejects Aristotle’s view on the
celestial spheres having circular orbits rather than elliptic orbits. In his seventh
question, he rejects Aristotle’s notion that the motion of the heavens begins from
the right side and from the east, while his eighth question concerns Aristotle’s
view on the fire element being spherical.

The ninth question concerns the movement of heat, and the tenth question con-
cerns the transformation of elements. The eleventh question concerns the burning
of bodies by radiation reflecting off a flask filled with water, and the twelfth con-
cerns the natural tendency of the classical elements in their upward and downward
movements.

The thirteenth question deals with vision, while the fourteenth concerns habi-
tation on different parts of Earth. His fifteenth question asks how two opposite
squares in a square divided into four can be tangential, while the sixteenth question
concerns vacuum. His seventeenth question asks “if things expand upon heating
and contract upon cooling, why does a flask filled with water break when water
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freezes in it?” His eighteenth and final question concerns the observable phe-
nomenon of ice floating on water. After Avicenna responded to the questions,
Biruni was unsatisfied with some of the answers and wrote back commenting on
them.

38.5 Ibn al-Haytham
Ibn al-Haytham (965-1039) discussed the theory of attraction between masses,
and it seems that he was aware of the magnitude of acceleration due to gravity
and he stated that the heavenly bodies “were accountable to the laws of physics”.
Ibn al-Haytham also enunciated the law of inertia, later known as Newton’s first
law of motion, when he stated that a body moves perpetually unless an external
force stops it or changes its direction of motion. He also developed the concept of
momentum, though he did not quantify this concept mathematically. Nobel Prize
winning physicist Abdus Salam wrote the following on Ibn al-Haytham: Ibn-al-
Haitham was one of the greatest physicists of all time. He made experimental
contributions of the highest order in optics. He enunciated that a ray of light, in
passing through a medium, takes the path which is the easier and “quicker”. In
this he was anticipating Fermat’s Principle of Least Time by many centuries. He
enunciated the law of inertia, later to become Newton’s first law of motion. Part
V of Roger Bacon’s Opus Majus is practically an annotation to Ibn al Haitham’s
Optics.

38.6 Others
Ibn Bajjah (d. 1138) argued that there is always a reaction force for every force
exerted, connecting to Newton’s 3rd law, though he did not refer to the reaction
force as being equal to the exerted force, which had an important influence on later
physicists like Galileo. Averroes (1126-1198) defined and measured force as “the
rate at which work is done in changing the kinetic condition of a material body’
and correctly argued “that the effect and measure of force is change in the kinetic
condition of a materially resistant mass.” In the 13th century, Nasir al-Din al-Tusi
stated an early version of the law of conservation of mass, noting that a body of
matter is able to change, but is not able to disappear. In the early 16th century,
al-Birjandi developed a hypothesis similar to Galileo’s notion of “circular inertia.

At night I would return home, set out a lamp before me, and devote myself
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to reading and writing. Whenever sleep overcame me or I became conscious
of weakening, I would turn aside to drink a cup of wine, so that my strength
would return to me. Then I would return to reading. And whenever sleep
seized me I would see those very problems in my dream; and many questions
became clear to me in my sleep. I continued in this until all of the sciences
were deeply rooted within me and I understood them as is humanly possible.
Everything which I knew at the time is just as I know it now; I have not
added anything to it to this day. Thus I mastered the logical, natural, and
mathematical sciences, and I had now reached the science. (Avicenna)
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Chapter 39

Leonardo da Vinci

The noblest pleasure is the joy of understanding. (da Vinci)

Although nature commences with reason and ends in experience it is nec-
essary for us to do the opposite, that is to commence with experience and
from this to proceed to investigate the reason...He who loves practice with-
out theory is like the sailor who boards ship without a rudder and compass
and never knows where he may cast. (da Vinci)

For once you have tasted flight you will walk the earth with your eyes turned
skywards, for there you have been and there you will long to return. (da
Vinci)

Life is pretty simple: You do some stuff. Most fails. Some works. You do
more of what works. If it works big, others quickly copy it. Then you do
something else. The trick is the doing something else. (da Vinci)

Nothing strengthens authority so much as silence...You do ill if you praise,
but worse if you censure, what you do not understand...There are three
classes of people: those who see, those who see when they are shown, those
who do not see...And many have made a trade of delusions and false mira-
cles, deceiving the stupid multitude...Beware of the teaching of these specu-
lators, because their reasoning is not confirmed by experience. (da Vinci)

39.1 The Polymath
Leonardo da Vinci (1452-1519) is the greatest polymath, universal genious, homo
universale or renaissance man all times, with remarkable achievements as a sci-
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entist, mathematician, engineer, inventor, anatomist, painter, sculptor, architect,
botanist, musician and writer.

Born as the illegitimate son of a notary, Piero da Vinci, and a peasant woman,
Caterina, at Vinci in the region of Florence, Leonardo was educated in the studio
of the renowned Florentine painter, Verrocchio. Much of his earlier working life
was spent in the service of Ludovico il Moro in Milan. He later worked in Rome,
Bologna and Venice and spent his last years in France, at the home awarded him
by King Francois I.

As an artist Leonardo created the most famous, most reproduced and most par-
odied portrait and religious painting of all time: Mona Lisa and The Last Supper.
As a scientist, he greatly advanced the state of knowledge in the fields of anatomy,
civil engineering, optics, and hydrodynamics. As an engineer he conceptualised
a helicopter, a tank, concentrated solar power, a calculator, the double hull and
outlined a rudimentary theory of plate tectonics.

39.2 The Notebooks
Da Vinci recorded his discoveries in journals or Notebooks mostly written in
mirror-image cursive, probably for practical expediency because Leonardo was
left-handed, rather than for reasons of secrecy because it appears they were in-
tended for publication. Although his language was clear and expressive, Leonardo
preferred illustration to the written word stating, in the spirit of modern pedagog-
ics:

• The more detail you write concerning it the more you will confuse the
reader.

It is believed that there were at least 50 notebooks left in the hands of da Vinci’s
pupil Francesco Melzi at the master’s death in 1519, of which 28 remains, but
they were virtually unknown during his life-time and remained hidden for over
two centuries. His wonderful ideas were forgotten; his inventions were not tested
and built for hundreds of years. Dan Brown’s best-seller The Da Vinci Code have
stimulated renewed interest in da Vinci and his complex and inquiring intelli-
gence. Today we can recoognize as an early precursor of an entire lineage oc
scientists and philosophers whose central focus was the nature of organic form
[4].

Leonardo planned to treat four major themes: the science of painting, architec-
ture, the elements of mechanics, and a general work on human anatomy. To these
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themes were eventually added notes on his studies of botany, geology, flight, and
hydrology. His intention was to combine all his investigations with a unified world
view:

• Plan of Book 15: First write of all water, in each of its motions; then de-
scribe all its bottoms and their various materials, always referring to the
propositions concerning the said waters; and let the order be good, for oth-
erwise the work will be confused. Describe all the forms taken by water
from its greatest to its smallest wave, and their causes.

Da Vinci made impressive and comprehensive investigations into aerodynam-
ics collected into his Codex on the Flight of Birds from 1505, and designed a large
variety of ornithopters for muscle-powered human flight using flapping wings.
After extensive testing da Vinci concluded that even if both arms and legs got in-
volved through elaborate mechanics, human power was insufficient for flapping
flight, but during his last years in Florence he began to experiment with designs
of flying machines that had fixed wings, not unlike modern hang-gliders.

39.3 The Scientist
Da Vinci observes the dynamics of the physical world with mountains, rivers,
plants and the human body in ceaseless movement and transformation, according
to a basic principle of science:

• Necessity is the theme and inventor of nature, the curb and the rule.

Da Vinci recognized the two basic forces of fluid mechanics to be inertial and
viscous forces, realized that water is incompressible and though it assumes an
infinite number of shapes, its mass and volume is always conserved. Below we
will return to the following deep insights expressed by da Vinci:

• In order to give the true science of the movements of the birds in the air, it
is necessary to first give the science of the winds.

• As much force is exerted by the object against the air as by the air against
the object.

• The spiral or rotary movement of every liquid is so much swifter as it is
nearer to the center of revolution. What we are here proposing is a fact
worthy of admiration, since the circular movement of a wheel is so much
slower as it is nearer to the center of the rotating object.
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• I have found among the excessive and impossible delsusions of men, the
search for continuous motion, which is called by some the perpetual wheel.

Figure 39.1: Da Vinci studies of bird wings and flight

39.4 The Mathematician
Da Vinci had a great admiration for mathematics:

• A bird is an instrument working according to mathematical law, which is
within the capacity of man to reproduce.

• There is no certainty, where one cannot apply any of the mathematical sci-
ences, nor those which are connected with the mathematical sciences.

• Mechanics are the Paradise of mathematical science, because here we come
to the fruits of mathematics.

• Let no man who is not a mathematician read my principles.
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Although da Vinci had little technical training in mathematics, he understood ba-
sic principles such as the law of free fall motion long before Galileo and conser-
vation of mass:

• The natural motion of heavy things, at each degree of its descent acquires a
degree of velocity.

• If the water does not increase, nor diminish, in a river which may be of vary-
ing turtuoisities, breadths and dephts, the water will pass in equal quantities
in equal times through every degree of the length of the river

Da Vinci adopted Aristotle’s principle of motion:

• Of everything that moves, the space which it acquires is as great as that
which it leaves.

He also formulated basic priniciples of differential geometry:

• The line is made with the movement of the point.

• The surface is made by the tramsversal movement of the line.

• The body is made by the movement of the extension of the surface.

Figure 39.2: Da Vinci design of a glider



286 CHAPTER 39. LEONARDO DA VINCI

39.5 The Engineer
Between 1480 and 1505 da Vinci made a series of studies of birds and bats and
developed sketches of flying machines, including gliders and more or less impos-
sible devices including a flying machine like a boat. The pilot was intended to lie
stretched out and to pull at oars which would propel the craft through air rather
than water. Although this does not work for larger devices, this is essentially the
mechanism for flight of small insects experiencing a substantial viscosity of air.

The modern helicopter invented by the Ukrainian-American engineer Igor
Sikorsky in the 1930s, was probably inspired by a design by da Vinci with a helical
screw instead of rotor blades (which of course did not work). The most inventive
of da Vinci’s flying machines was the glider in Fig.39.2 with the following control
technique:

• this [man] will move on the right side if he bends the right arm and extends
the left arm; and he will then move from right to left by changing the position
of the arms.

39.6 The Philosopher
Da Vinci expressed a view on the interaction of body and soul connecting that of
Descartes leading into modern conceptions of mind-brain interaction:

• It could be said that such an instrument designed by man is lacking only the
soul of the bird, which must be counterfeited with the soul of man...However,
the soul of the bird will certainly respond better to the needs of its limbs than
would the soul of the man, separated from them and especially from their
almost imperceptible balancing movements

• Spiritual movement flowing through the limbs of sentient animals, broadens
their muscles. Thus boadened, these muscles become shortened and draw
back the tendons that are connected to them. This is the origin of force in
human limbs...Material movement arises from the immaterial.
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Newton’s Incorrect Theory

Dubito ergo cogito; cogito ergo sum. (Descartes)

The foolish dog barks at the flying bird. (Bob Marley)

The man who has no imagination has no wings. (Muhammad Ali)

When a distinguished but elderly scientist states that something is possible,
he is almost certainly right. When he states that something is impossible, he
is very probably wrong. (Arthur C. Clarke)

We know that a surfing board or water skis can carry the weight of a person,
but only in sufficiently rapid motion depending on the weight of the person and
the area exposed to the water surface. The vertical force or lift is a reaction to a
constant downward push of water as the board meets new water in its horsiontal
motion. Without horisontal motion the board with the person will sink into the
water. This is illustrated in Fig.??.

Newton was the first scientist to seek to develop a theory of lift and drag, and
suggested that they should both be proportional to the density of the fluid and the
square of the speed, which turns out to be more or less correct. Using a surfing
board (or skipping stone) argument, which according to NASA we now know is
wrong, Newton derived the above formula

L = sin2(α)ρU2, (40.1)

for the lift L of a tilted flat plate of unit area with a quadratic dependence on the
angle of attack α. This formula follows from the fact that the mass ρU sin(α) hits
the plate from below per unit time and gets redirected with a downward velocity
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U sin(α) corresponding to a change of momentum equal to sin2(α)ρU2, which
equals the lift force L by Newton’s 2nd law.

Newton’s formula explains the force acting on a surf board on water. The ratio
of density of water to that of air is about 1000 and thus surfing on air requires
about 30 times as large speed as surfing on water, because lift scales with the
speed squared. Water skiing is possible at a speed of about 20 knots, which would
require a speed about 1000 km/h, close to the speed of sound, for surfing on air.
We understand that Newton’s formula grossly under-estimates the lift, at least for
subsonic speeds. We understand that flying in the air is not at all like surfing on
water. Newton could thus prove that subsonic flight is impossible in theory, and
so must have viewed the the flight of birds with surprise. Apparently birds were
not willing to abide by the laws of Newtonian mechanics, but how could they take
this liberty?

It is possible that Newton contributed to delaying human flight by making it
seem impossible. Only after powered human flight had been demonstrated to be
possible by the Wright brothers in 1903, did mathematicians replace Newton’s er-
ronous lift formula with a formula compatible with flight, although the derivation
of the new formula again turned out to be incorrect, as we will discover below...

Figure 40.1: Incorrect explanation by Newton of lift by surfing.
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Robins and the Magnus Effect

The greates part of military projectiles will at the time of their discharge
acquire a whirling motion by rubbing against the inside of their respective
pieces; and this whirling motion will cause them to strike the air very differ-
ently, from what the would do, had they no other but a progressive motion.
By this means it will happen, that the resistance of the air will not always
be directly opposed to their flight; but will frequently act in a line oblique to
their course, and will thereby force them to deviate from the regular track,
they would otherwise describe. (Robins in [65])

The English engineer Benjamin Robins (1707-1751), called the father of bal-
listics, introduced the concept of rifling the bore of guns to improve the accuracy
of projectiles by spinning. In experiments with a whirling arm device he dis-
covered that a spinning projectile experiences a transverse lift force, which he
recorded in [65] in 1742. Euler translated Robins’ book to German, but added
a critical remark stating that on mathematical symmetry grounds the lift must be
zero, and thus the measured lift must have been an effect of a non-symmetric pro-
jectile resulting from manufacturing irregularities. Recognized as the dominant
hydrodynamicist of the eighteenth century, Euler far overshadowed Robins, and
thus Robins’ finding was not taken seriously for another century. In 1853 Gustav
Magnus (1802-1870) in [62] suggested that the lift of a spinning ball, the so-called
Magnus effect, was real and resulted from a whirlpool of rotating air around a ball
creating a non-symmetric flow pattern with lift, an idea which was later taken
up by Kutta and Zhukovsky as the decisive feature of their lift theory based on
circulation.

Magnus suggested that, because of the whirlpool, for a topspin ball the air
velocity would be larger below than above and thus result in a downward lift force
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because the pressure would be smaller below than above by Bernouilli. Magnus
thus claimed to explain why a topspin tennis ball curves down, and a backspin
curves up.

We shall see below that this explanation is incorrect: There is no whirlpool of
rotating air around a spinning ball, nor is it any circulation around a wing. In both
cases the lift has a different origin. We shall see that finding the real cause of the
Magnus effect will lead us to an explanation of also the lift of a wing.

In 1749 Robins left the center stage of England, when he was appointed the
engineer-general of the East India Company to improve the fortifications at St.
David, Madras, where he died of fever at an early age of forty-four.

Figure 41.1: Built in 1930 (USA), the 921-V is reported to have been flown at least
once - ending it’s short carreer with a crash landing. Three cylinders with disks
performing as winglets driven by a separate engine. Probably the only aircraft
equipped with cylinder wings which made it into the air...

41.1 Early Pioneers
The flight of birds has always challenged human curiosity with the dream of hu-
man flight described already in the Greek myth about the inventor and master
craftsman Deadalus, who built wings for himself and his son Icarus to escape
from imprisonment in the Labyrinth of Knossos on the island of Crete. The lead-
ing scholar Abbas Ibn Firnas of the Islamic culture in Cordoba in Spain studied
the mechanics of flight and in 875 AD survived one successful flight on a pair of
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wings made of feathers on a wooden frame. Some hundred years later the great
Turkish scholar Al-Djawhari tied two pieces of wood to his arms and climbed the
roof of a tall mosque in Nisabur, Arabia, and announced to a large crowd:

• O People! No one has made this discovery before. Now I will fly before your
very eyes. The most important thing on Earth is to fly to the skies. That I
will do now.

Unfortunately, he did not, but fell straight to the ground and was killed. It would
take 900 years before the dream of Al-Djawhari became true, after many unsuc-
cessful attempts. One of the more succesful was made by Hezarfen Ahmet Celebi,
who in 1638 inspired by work of Leonardo da Vinci, after nine experimental at-
tempts and careful studies of eagles in flight, took off from the 183 foot tall Galata
Tower near the Bosphorus in Istanbul and successfully landed on the other side of
the Bosphorus. The word Hezarfen means expert in 1000 sciences and a reward
of 1000 gold pieces was given to Hezarfen for his achievement.

Figure 41.2: Abbas Ibn Firnas flying from the Mosque of Cordoba in 875 AD.

The understanding of why it is possible to fly has haunted scientists since the
birth of mathematical mechanics in the 17th century. To fly, an upward force on
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the wing, referred to as lift L, has to be generated from the flow of air around the
wing, while the air resistance to motion or drag D, is not too big. The mystery is
how a sufficiently large ratio L

D
can be created. In the gliding flight of birds and

airplanes with fixed wings at subsonic speeds, L
D

is typically between 10 and 20,
which means that a good glider can glide up to 20 meters upon loosing 1 meter in
altitude, or that Charles Lindberg could cross the Atlantic in 1927 at a speed of 50
m/s in his 2000 kg Spirit of St Louis at an effective engine thrust of 150 kp (with
L
D
= 2000/150 ≈ 13) from 100 horse powers (because 1 hp = 75 kpm/s).
By elementary Newtonian mechanics, lift must be accompanied by downwash

with the wing redirecting air downwards. The enigma of flight is the mechanism
generating substantial downwash under small drag, which is also the enigma of
sailing against the wind with both sail and keel acting like wings creating lift.

Classical mathematical mechanics could not give an answer. Newton com-
puted the lift of a tilted flat plate (of unit area) redirecting a horisontal stream of
fluid particles of speed U and density ρ, but obtained a disappointingly small value
approximately proportional to the square of the tilting angle or angle of attack α
(in radians with one radian = π

180
degrees):

L = sin2(α)ρU2, (41.1)

since sin(α) ≈ α (for small α). The French mathematician Jean le Rond d’Alembert
(1717-1783) followed up in 1752 with a computation based on potential flow (in-
viscid incompressible irrotational stationary flow), showing that both the drag and
lift of a body of any shape (in particular a wing) is zero, referred to as d’Alembert’s
paradox, since it contradicts observations and thus belongs to fiction. To explain
flight d’Alembert’s paradox had to be resolved.

But the dream was not given up and experiments could not be stopped only
because a convincing theory was lacking; undeniably it was possible for birds to
fly without any theory, so maybe it could somehow be possible for humans as
well.

The first published paper on aviation was Sketch of a Machine for Flying in
the Air by the Swedish polymath Emanuel Swedenborg, published in 1716, de-
scribing a flying machine consisting of a light frame covered with strong canvas
and provided with two large oars or wings moving on a horizontal axis, arranged
so that the upstroke met with no resistance while the downstroke provided lifting
power. Swedenborg understood that the machine would not fly, but suggested it
as a start and was confident that the problem would be solved:

• It seems easier to talk of such a machine than to put it into actuality, for it
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requires greater force and less weight than exists in a human body. The sci-
ence of mechanics might perhaps suggest a means, namely, a strong spiral
spring. If these advantages and requisites are observed, perhaps in time to
come some one might know how better to utilize our sketch and cause some
addition to be made so as to accomplish that which we can only suggest.
Yet there are sufficient proofs and examples from nature that such flights
can take place without danger, although when the first trials are made you
may have to pay for the experience, and not mind an arm or leg.

Swedenborg would prove prescient in his observation that powering the aircraft
through the air was the crux of flying.

41.2 Cayley

The British engineer Sir George Cayley (1773-1857), known as the father of aero-
dynamics, was the first person to identify the lift and drag forces of flight, discov-
ered that a curved lifting surface would generate more lift than a flat surface of
equal area. and designed different gliders as shown in Fig.41.3. In 1804 Cayley
designed and built a model monoplane glider of strikingly modern appearance.
with a cruciform tail, a kite-shaped wing mounted at a high angle of incidence
and a moveable weight to alter the center of gravity.

In 1810 Cayley published his now-classic three-part treatise On Aerial Navi-
gation, the first to state that lift, propulsion and control were the three requisite
elements to successful flight, and that the propulsion system should generate thrust
while the wings should be shaped so as to create lift. Cayley observed that birds
soared long distances by simply twisting their arched wing surfaces and deduced
that fixed-wing machines would fly if the wings were cambered. Thus, one hun-
dred years before the Wright brothers flew their glider, Cayley had established
the basic principles and configuration of the modern airplane, complete with fixed
wings, fuselage, and a tail unit with elevators and rudder, and had constructed a
series of models to demonstrate his ideas. In 1849 Cayley built a large gliding
machine, along the lines of his 1799 design, and tested the device with a 10-year
old boy aboard. The gliding machine carried the boy aloft on at least one short
flight.

Cayley recognized and searched for solutions to the basic problems of flight
including the ratio of lift to wing area, determination of the center of wing pres-
sure, the importance of streamlined shapes, the recognition that a tail assembly
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was essential to stability and control, the concept of a braced biplane structure for
strength, the concept of a wheeled undercarriage, and the need for a lightweight
source of power. Cayley correctly predicted that sustained flight would not occur
until a lightweight engine was developed to provide adequate thrust and lift.

Figure 41.3: Different gliders designed by Cayley.

Cayley’s efforts were continued by William Henson who designed a large
passenger-carrying steam-powered monoplane, with a wing span of 150 feet,
named The Henson Aerial Steam Carriage for which he received a patent in 1843,
but it could not fly. The Aerial Transit Company’s publicist, Frederick Marriott,
had a number of prints made in 1843 depicting the Aerial Steam Carriage over the
pyramids in Egypt, in India, over London, England, and other places, which drew
considerable interest from the press.



41.3. LILIENTHAL AND WRIGHT 295

In 1856, the French aviator Jean-Marie Le Bris made the first flight higher
than his point of departure, by having his glider L’Albatros artificiel pulled by a
horse on a beach. He reportedly achieved a height of 100 meters, over a distance
of 200 meters. In 1874, Félix du Temple built the Monoplane, a large plane made
of aluminium in Brest, France, with a wingspan of 13 meters and a weight of only
80 kilograms (without pilot). Several trials were made with the plane, and it is
generally recognized that it achieved lift off under its own power after a ski-jump
run, glided for a short time and returned safely to the ground, making it the first
successful powered flight in history, although the flight was only a short distance
and a short time.

The British marine engineer Francis Wenham (1824-1908) discovered, while
unsuccessfully attempting to build a series of unmanned gliders, that the most of
the lift from a bird-like wing was generated at the leading edge, and concluded
that long, thin wings would be better than the bat-like ones suggested by many,
because they would have more leading edge for their weight. He presented a pa-
per on his work to the newly formed Royal Aeronautical Society of Great Britain
in 1866, and decided to prove it by building the world’s first wind tunnel in 1871.
Members of the Society used the tunnel and learned that cambered wings gener-
ated considerably more lift than expected by Cayley’s Newtonian reasoning, with
lift-to-drag ratios of about 5:1 at 15 degrees. This clearly demonstrated the ability
to build practical heavier-than-air flying machines; what remained was the prob-
lem of controlling the flight and powering them.

In 1866 the Polish illiterate peasant Jan Wnek built and flew a controllable
glider launching himself from a special ramp on top of the Odporyszow church
tower 95 m high above the valley below, especially during religious festivals, car-
nivals and New Year celebrations.

41.3 Lilienthal and Wright
The German engineer Otto Lilienthal (1848-1896) expanded Wenham’s work,
made careful studies of the gliding flight of birds recorded in Birdflight as the
Basis of Aviation [25] and designed a series of ever-better hang gliders allowing
him to make 2000 successful heavier-than-air gliding flights starting from a little
artificial hill, before in 1896 he broke his neck falling to the ground after having
stalled at 15 meters altitude. Lilienthal rigorously documented his work, including
photographs, and for this reason is one of the best known of the early pioneers.

The first sustained powered heavier-than-air flights were performed by the two
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brothers Orwille and Wilbur Wright, who on the windy dunes of Kill Devils Hills
at Kitty Hawk, North Carolina, on December 17 in 1903, managed to get their 400
kg airplane Flyer off ground into sustained flight using a 12 horse power engine.
The modern era of aviation had started.



Chapter 42

Lilienthal and Bird Flight

To invent an airplane is nothing. To build one is something. But to fly is
everything. (Lilienthal)

Sacrifices must be made! (Lilienthal near death after breaking his spine in
an airplane crash in a glider of his design).

No one can realize how substantial the air is, until he feels its supporting
power beneath him. It inspires confidence at once. (Lilienthal)

We returned home, after these experiments, with the conviction that sailing
flight was not the exclusive prerogative of birds. (Lilienthal, 1874)

Otto Lilienthal gives in Bird Flight as a Basis of Aviation [25] the following
description of bird flight:

• From all the foregoing results it appears obvious that in order to discover
the principles which facilitate flight, and to eventually enable man to fly, we
must take the bird for our model. A specially suitable species of birds to act
as our model is the sea-gull.

• How does the gull fly? At the very first glance we notice that the slender,
slightly curved wings execute a peculiar motion, in so far as only the wing-
tips move appreciably up and down, whilst the broader arm-portions near
the body take little part in this movement, a condition of things which is
illustrated in Fig. 76.
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Figure 42.1: Lilienthal’s analysis of a stork in flight.

• May we not assume that the comparatively motionless parts of the wings
enable the gull to sail along, whilst the tips, consisting of easily rotating
feathers, serve to compensate for the loss of forward velocity ? It is unmis-
takable that the wide Portion of the wing close to the body, which does little
work and has little movement, is intended for sustaining, whilst the nar-
rower tips, with their much greater amplitude of movement, have to furnish
the tractive power necessary to compensate for the resistance of the bird’s
body and for any possible restraining component.

• This being conceded, we are forced to consider the flying apparatus of the
bird as a most ingenious and perfect mechanism, which has its fulcrum in
the shoulder joint, which moves up and down, and by virtue of its artic-
ulation permits of increased lift or fall as well as of rotation of the light
tips.

• The arm portion of the wing is heavy, containing bones, muscles , and ten-
dons, and therefore opposes considerable inertia to any rapid movement.
But it is well fitted for supporting, because being close to the body, the air
pressure upon it acts on a short lever arm, and the bending strain is there-
fore less severe on the wing. The tip is very light, consisting of feathers only,
and can be lifted and depressed in rapid succession. If the air pressure pro-
duced by it increased in proportion to the greater amplitude of movement,
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it would require a large amount of work; and would also unduly strain the
wings; we therefore conclude that the real function of the wing-tips is not
so much the generation of a great lifting effect, but rather the production of
a smaller, but tractive effect directed forward.

• In fact, actual observation leaves no doubt on this point. It is only necessary
to watch the gull during sunshine, and from the light effects we tan distinctly
perceive the changing inclination of the wing-tips, as shown in Figs. 77 and
78, which refer to the upstroke and downstroke of the wings respectively
. The gull , flying away from us, presents at the upstroke, Fig. 77, the
upper side of its wings strongly illuminated by the sun, whilst during the
downstroke (Fig. 78) we have tlie shaded camber presented to us from the
back. The tip evidently ascends with the leading edge raised, and descends
with the leading edge depressed, both phases resulting in a tractive effect.

Da Vinci had made similar observations in Codex on Bird Flight:

• Those feathers which are farthest from their fastening will be the most flex-
ible; then the tops of the feathers of the wings will be always higher than
their origins, so that we may with reason say, that the bones of the wings
will be lower in the lowering of the wings than any other part of the wings,
and in the raising these bones of the wing will always be higher than any
other part of such a wing. Because the heaviest part always makes itself the
guide of the movement.

• The kite and other birds which beat their wings little, go seeking the course
of the wind, and when the wind prevails on high then they will be seen at a
great height, and if it prevails low they will hold themselves low.

• When the wind does not prevail in the air, then the kite beats its wings
several times in its flight in such a way that it raises itself high and acquires
a start, with which start, descending afterwards a little, it goes a long way
without beating its wings, and when it is descended it does the same thing
over again, and so it does successively, and this descent without flapping
the wings serves it as a means of resting itself in the air after the aforesaid
beating of the wings.

• When a bird which is in equilibrium throws the centre of resistance of the
wings behind the centre of gravity, then such a bird will descend with its
head down. This bird which finds itself in equilibrium shall have the centre
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of resistance of the wings more forward than the bird’s centre of gravity,
then such a bird will fall with its tail turned to the earth.

• When the bird is in the position and wishes to rise it will raise its shoulders
and the air will press between its sides and the point of the wings so that
it will be condensed and will give the bird the movement toward the ascent
and will produce a momentum in the air, which momentum of the air will by
its condensation push the bird up.

The observations of the wingbeat cycle by da Vinci and Lilienthal da Vinci
can be summarized as follows:

• a forward downstroke with the wing increasingly twisted towards the tip
with the leading edge down,

• a backward upstroke with the wing twisted the other way with the leading
edge up.

Below we shall analyze the lift and drag generated at different moments of the
wingbeat cycle, and thus give a scientific explanation of the secret of bird flight.
We compare with with the lack of a scientific theory of bird flight according to
state-of-the-art [17]:

• Always there have been several different versions of the flapping flight the-
ory. They all exist in parallel and their specifications are widely distributed.
Calculating the balance of forces even of a straight and merely slowly flap-
ping wing remained difficult to the present day. In general, it is only possible
in a simplified way. Furthermore, the known drives mechanism and espe-
cially wing designs leave a lot to be desired. In every respect ornithopters
are still standing at the beginning of their design development.
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Figure 42.2: Lilienthal getting ready to simulate a stork in flight.
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Chapter 43

Wilbur and Orwille Wright

It is possible to fly without motors, but not without knowledge and skill.
(Wilbur Wright)

The desire to fly is an idea handed down to us by our ancestors who...looked
enviously on the birds soaring freely through space...on the infinite highway
of the air. (Wilbur Wright)

The natural function of the wing is to soar upwards and carry that which is
heavy up to the place where dwells the race of gods. More than any other
thing that pertains to the body it partakes of the nature of the divine. (Plato
in Phaedrus)

Sometimes, flying feels too godlike to be attained by man. Sometimes, the
world from above seems too beautiful, too wonderful, too distant for human
eyes to see . . . (Charles Lindbergh in The Spirit of St. Louis)

More than anything else the sensation is one of perfect peace mingled with
an excitement that strains every nerve to the utmost, if you can conceive of
such a combination. (Wilbur Wright)

The exhilaration of flying is too keen, the pleasure too great, for it to be
neglected as a sport. (Orwille Wright)

The first successful powered piloted controled flight was performed by the
brothers Orwille and Wilbur Wright on December 17 1903 on the windy fields of
Kitty Hawk, North Carolina, with Orwille winning the bet to be the pilot of the
Flyer and Wilbur watching on ground, see Fig 43.1. In the words of the Wright
brothers from Century Magazine, September 1908:
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• The flight lasted only twelve seconds, a flight very modest compared with
that of birds, but it was, nevertheless, the first in the history of the world in
which a machine carrying a man had raised itself by its own power into the
air in free flight, had sailed forward on a level course without reduction of
speed, and had finally landed without being wrecked. The second and third
flights were a little longer, and the fourth lasted fifty-nine seconds, covering
a distance of 852 feet over the ground against a twenty-mile wind.

Figure 43.1: Orwille Wright (1871-1948) and Wilbur Wright (1867-1912) and the
lift-off at Kitty Hawk, North Carolina, the 17th December 1903.

The work preceeding the success was described by Wilbur Wright in an address
to the Western Society of Engineers in 1901 entitled Some Aeronautical Experi-
ments:

• The difficulties which obstruct the pathway to success in flying-machine
construction are of three general classes: (1) Those which relate to the
construction of the sustaining wings; (2) those which relate to the genera-
tion and application of the power required to drive the machine through the
air; (3) those relating to the balancing and steering of the machine after it
is actually in flight. Of these difficulties two are already to a certain extent
solved. Men already know how to construct wings or aeroplanes which,
when driven through the air at sufficient speed, will not only sustain the
weight of the wings themselves, but also that of the engine and of the engi-
neer as well. Men also know how to build engines and screws of sufficient
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lightness and power to drive these planes at sustaining speed. As long ago
as 1884 a machine weighing 8,000 pounds demonstrated its power both to
lift itself from the ground and to maintain a speed of from 30 to 40 miles
per hour, but failed of success owing to the inability to balance and steer
it properly. This inability to balance and steer still confronts students of
the flying problem, although nearly eight years have passed. When this one
feature has been worked out, the age of flying machines will have arrived,
for all other difficulties are of minor importance.

• The person who merely watches the flight of a bird gathers the impression
that the bird has nothing to think of but the flapping of its wings. As a matter
of fact this is a very small part of its mental labor. To even mention all the
things the bird must constantly keep in mind in order to fly securely through
the air would take a considerable part of the evening. If I take this piece
of paper, and after placing it parallel with the ground, quickly let it fall,
it will not settle steadily down as a staid, sensible piece of paper ought to
do, but it insists on contravening every recognized rule of decorum, turning
over and darting hither and thither in the most erratic manner, much after
the style of an untrained horse. Yet this is the style of steed that men must
learn to manage before flying can become an everyday sport. The bird has
learned this art of equilibrium, and learned it so thoroughly that its skill
is not apparent to our sight. We only learn to appreciate it when we try to
imitate it. Now, there are two ways of learning to ride a fractious horse:
One is to get on him and learn by actual practice how each motion and
trick may be best met; the other is to sit on a fence and watch the beast
a while, and then retire to the house and at leisure figure out the best way
of overcoming his jumps and kicks. The latter system is the safest, but the
former, on the whole, turns out the larger proportion of good riders. It is
very much the same in learning to ride a flying machine; if you are looking
for perfect safety, you will do well to sit on a fence and watch the birds; but if
you really wish to learn, you must mount a machine and become acquainted
with its tricks by actual trial.

• Herr Otto Lilienthal seems to have been the first man who really compre-
hended that balancing was the first instead of the last of the great problems
in connection with human flight. He began where others left off, and thus
saved the many thousands of dollars that it had theretofore been customary
to spend in building and fitting expensive engines to machines which were
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uncontrollable when tried. He built a pair of wings of a size suitable to sus-
tain his own weight, and made use of gravity as his motor. This motor not
only cost him nothing to begin with, but it required no expensive fuel while
in operation, and never had to be sent to the shop for repairs. It had one se-
rious drawback, however, in that it always insisted on fixing the conditions
under which it would work. These were, that the man should first betake
himself and machine to the top of a hill and fly with a downward as well
as a forward motion. Unless these conditions were complied with, gravity
served no better than a balky horse – it would not work at all. Although
Lilienthal must have thought the conditions were rather hard, he neverthe-
less accepted them till something better should turn up; and in this manner
he made some two thousand flights, in a few cases landing at a point more
than 1,000 feet distant from his place of starting. Other men, no doubt, long
before had thought of trying such a plan. Lilienthal not only thought, but
acted; and in so doing probably made the greatest contribution to the so-
lution of the flying problem that has ever been made by any one man. He
demonstrated the feasibility of actual practice in the air, without which suc-
cess is impossible. Herr Lilienthal was followed by Mr. Pilcher, a young
English engineer, and by Mr. Chanute, a distinguished member of the soci-
ety I now address. A few others have built gliding machines, but nearly all
that is of real value is due to the experiments conducted under the direction
of the three men just mentioned.

The Wrights built The Flyer in 1903 using spruce and ash covered with muslin,
with wings designed with a 1-in-20 camber. Since they could not find a suitable
automobile engine for the task, they commissioned their employee Charlie Tay-
lor to build a new design from scratch. A sprocket chain drive, borrowing from
bicycle technology, powered the twin propellers, which were also made by hand.
The Flyer was a canard biplane configuration. As with the gliders, the pilot flew
lying on his stomach on the lower wing with his head toward the front of the craft
in an effort to reduce drag, and steered by moving a cradle attached to his hips.
The cradle pulled wires which warped the wings and turned the rudder simulta-
neously for lateral control, while a forward horisontal stabilizer (forward canard)
was controled by the left hand.

To sum up, the Wright brothers were the first to solve the combined problem
of (1) generation of lift by (sufficiently large) wings, (2) generation of thrust by
a propeller powerd by a (sufficiently light) combustion engine and (3) horisontal
control of balance under different speeds and angles of attack as well as lateral
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control. The data of the Flyer were:

• wingspan: 12.3 m

• wing area: 47 m2

• length: 6.4 m

• height: 2.8 m

• weight (empty): 274 kg

• engine: gasoline 12 hp

At a lift/drag ratio of 10 the drag would be about 35 kp to carry a total weight of
350 kp, which at a speed of 10 m/s would require about 5 effective hp.

The Flyer had a forward canard for horisontal control, like the modern Swedish
jet fighter JAS Gripen, which is an unstable configuration requiring careful control
to fly, but allowing quick turns. The Wrights later replaced the canard with the
conventional aft tail to improve stability. The stability of an airplane is similar to
that of a boat, with the important design feature being the relative position of the
center of gravity and the center of the forces from the fluid (center of buoyancy
for a boat), with the center of gravity ahead (below) giving stability.
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Chapter 44

Lift by Circulation

Man must rise above the Earthto the top of the atmosphere and beyondfor
only thus will he fully understand the world in which he lives. (Socrates)

A single lifetime, even though entirely devoted to the sky, would not be
enough for the study of so vast a subject. A time will come when our de-
scendants will be amazed that we did not know things that are so plain to
them. (Seneca)

All the perplexities, confusion and distress in America arise, not from de-
fects in their Constitution or Confederation, not from want of honor or
virtue, so much as from the downright ignorance of the nature of coin, credit
and circulation. (John Adams)

If you would be a real seeker after truth, it is necessary that at least once in
your life you doubt, as far as possible, all things. (Descartes)

44.1 Lanchester
Frederick Lanchester, (1868-1946) was an English polymath and engineer who
made important contributions to automotive engineering, aerodynamics and co-
invented the field of operations research. He was also a pioneer British motor
car builder, a hobby he eventually turned into a successful car company, and is
considered one of the big three English car engineers, the others being Harry
Ricardo and Henry Royce.

Lanchester began to study aeronautics seriously in 1892, eleven years before
the first successful powered flight. Whilst crossing the Atlantic on a trip to the
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United States, Lanchester studied the flight of herring gulls, seeing how they were
able to use motionless wings to catch up-currents of air. He took measurements of
various birds to see how the centre of gravity compared with the centre of support.
As a result of his deliberations, Lanchester, eventually formulated his circulation
theory, which still serves as the basis of modern lift theory. In 1894 he tested his
theory on a number of models. In 1897 he presented a paper entitled The soaring
of birds and the possibilities of mechanical flight to the Physical Society, but it
was rejected, being too advanced for its time. Lanchester realised that powered
flight required an engine with a far higher power to weight ratio than any existing
engine. He proposed to design and build such an engine, but was advised that no
one would take him seriously [1].

Stimulated by Lilienthal’s successful flights and his widely spread book Bird
Flight as the Basis of Aviation from 1899, the mathematician Martin Kutta (1867-
1944) in his thesis presented in 1902 modified the erronous classical potential
flow solution by including a new term corresponding to a rotating flow around the
wing with the strength of the vortex determined so that the combined flow velocity
became zero at the trailing edge of the wing. This Kutta condition reflected the
observation of Lilienthal that the flow should come off the wing smoothly, at least
for small angles of attack. The strength of the vortex was equal to the circulation
around the wing of the velocity, which was also equal to the lift. Kutta could this
way predict the lift of various wings with a precision of practical interest. But the
calculation assumed the flow to be fully two-dimensional and the wings to be very
long and became inaccurate for shorter wings and large angles of attack.

44.2 Kutta
Stimulated by Lilienthal’s successful flights and his widely spread book Bird
Flight as the Basis of Aviation from 1899, the mathematician Martin Kutta (1867-
1944) in his thesis presented in 1902 modified the erronous classical potential
flow solution by including a new term corresponding to a rotating flow around the
wing with the strength of the vortex determined so that the combined flow velocity
became zero at the trailing edge of the wing. This Kutta condition reflected the
observation of Lilienthal that the flow should come off the wing smoothly, at least
for small angles of attack. The strength of the vortex was equal to the circulation
around the wing of the velocity, which was also equal to the lift. Kutta could this
way predict the lift of various wings with a precision of practical interest. But the
calculation assumed the flow to be fully two-dimensional and the wings to be very
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Figure 44.1: Generation of lift according to Kutta-Zhukovsky theory, as extended
by Prandtl by connecting the circulation around the wing to the starting vortex by
so-called trailing vortices from the wing tips. The circulation around the wing and
starting vortices are unphysical, while the trailing vortices from the wing tips are
real and often can be observed by condensation in damp weather.

long and became inaccurate for shorter wings and large angles of attack.

44.3 Zhukovsky
The mathematician Nikolai Zhukovsky (1847-1921), called the father of Russian
aviation, in 1906 independently derived the same mathematics for computing lift
as Kutta, after having observed several of Lilienthal’s flights, which he presented
before the Society of Friends of the Natural Sciences in Moscow as:

• The most important invention of recent years in the area of aviation is the
flying machine of the German engineer Otto Lilienthal.

Zhukovsky also purchased one of the eight gliders which Lilienthal sold to mem-
bers of the public.

Kutta and Zhukovsky thus could modify the mathemathical potential theory of
lift of a wing to give reasonable results, but of course could not give anything but
a very heuristic justification of their Kutta-Zhukovsky condition for the velocity
at the trailing edge of the wing, and could not treat realistic wings in three di-
mensions. Further, their modified potential solutions are not turbulent, and as we
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will see below, their calculations were merely happy coincidences (knowing ahead
the correct answer to obtain) without connection to the physics of real turbulent
flow: There is no circulation around a wing, and connecting lift to circulation is
unphysical.

It is remarkable that 400 years passed between Leonardo da Vinci’s investiga-
tions and the largely similar ones by Lilienthal. Why did it take so long time from
almost success to success? What was the role of the misleading mathematics of
Newton and d’Alembert, still influencing the judgement of e.g. Lord Kelvin in the
late 19th century?

Figure 44.2: Hurricane with physical circulation.



Chapter 45

The Disastrous Legacy of Prandtl

45.1 Critique by Lancaster and Birkhoff
Prandtl’s contribution to fluid mechanics was to explain separation, drag and lift as
effects of a very small (vanishingly small) viscosity. This view has been seriously
questioned, however with little effect since no alternative to Prandtl’s theory has
been in sight. Lancaster states already in 1907 in his in Aerodynamics[44]:

• According to the mathematical theory of Euler and Lagrange, all bodies are
of streamline form (with zero dragh and lift). This conclusion, which would
otherwise constitute a reductio ad absurdum, is usually explained on the
gorund the fluid of theory is inviscid, whereas real possess viscosity. It is
questionable of this expanlanation alone is adequate.

Birkhoff follows up in his Hydromechanics from 1950 [92]:

• The art of knowing “how to apply” hydrodynamical theories can be learned
even more effectively, in my opinion, by studying the paradoxes I will de-
scribe (e.g d’Alemberts paradox). Moreover, I think that to attribute them
all to the neglect of viscosity is an oversimplification. The root lies deeper,
in lack of precisely that deductive rigor whose importance is so commonly
minimized by physicists and engineers.

However, critique of Prandtl was not well received, as shown in the review of
Birkhoff’s book by James. J. Stoker [86]. The result is that Prandtl still domi-
nates fluid mechanics today, although the belief in Prandtl’s boundary layer theory
(BLT) seems to be fading as expressed by Cowley [93]:
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• But is BLT a 20th century paradox? One may argue, yes, since for quanti-
tative agreement with experiment BLT will be outgunned by computational
fluid dynmaics in the 21st century.

The 21st century is now here, and yes, computational fluid mechanics reveals a
different scenario than Prandtl’s.

But Prandtl’s influence is still strong, as evidenced by the common belief that
accurate computational simulation requires very thin boundary layers to be re-
solved. Thus Kim and Moin [43] claim that to correctly predict lift and drag of
an aircraft at the relevant Reynolds number of size 108, requires computation on
meshes with more than 1016 mesh points, which is way out of reach for any fore-
seeable computer. This puts CFD into a deadlock: Either compute at irrelevant
too small Reynolds numbers or invent turbulence models, which has shown to be
very difficult.

Techniques for preventing laminar separation based on suction and blowing
have been suggested. In the recent study [128] computational simulations are
presented of synthetic jet control for a NACA 0015 wing at Reynolds number
896.000 (based on the chord length) for different angles of attack. As indicated,
the relevant Reynolds number is two orders of magnitude larger, and the relevance
of the study can be questioned. The effects of the synthetic jet control may simply
be overshadowed by turbulent boundary layers.

45.2 Can You Prove that Prandtl Was Incorrect?
Lancaster and Birkhoff did not accept Prandtl’s explanation of the generation of
drag and lift as an effect of a vanishingly thin boundary layer. We have said that it
is difficult to directly prove that an infinitely small cause cannot have a large effect,
without access to an infinitely precise mathematical model or laboratory, which
are not available. So Prandtl can be pretty safe to direct attacks, but not to indi-
rect: Suppose you eliminate that vanishingly small cause from the consideration
altogether, and yet obtain good correspondence between theory and experiment,
that is, suppose you observe the effect without the infinitely small cause. Then
you can say that the small cause has little to do with the effect.

This is what we do: We compute turbulent solutions of the incompressible
Navier-Stokes equations with slip boundary conditions, requiring only the normal
velocity to vanish letting the tangential velocity be free, and we obtain drag and
lift which fit with experiments. We thus obtain the effect (drag and lift) without
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Prandtl’s cause consisting of a viscous boundary layer with no-slip boundary con-
dition requiring also the tangential velocity to vanish. We conclude that the origin
of drag and lift in slightly viscous flow, is not viscous boundary layers with no-slip
boundary conditions.

We have motivated the use of slip boundary condition by the fact that the skin
friction of a turbulent boundary layer (the tangential force from a no-slip boundary
condition), tends to zero with the viscosity, which is supported by both experiment
and computation, also indicating that boundary layers in general are turbulent.
More generally, we use a friction-force boundary condition as a model of the skin
friction effect of a turbulent boundary layer, with a (small) friction coefficient de-
termined by the Reynolds number Re = UL

ν
, where U is a representative velocity,

L a length scale and ν the viscosity. The limit case of zero friction with slip then
corresponds to vanishing viscosity/very large Reynolds number, while large fric-
tion models no-slip of relevance for small to moderately large Reynolds numbers.
In mathematical terms we combine the Navier-Stokes equations with a natural
(Neumann/Robin type) boundary condition for the tangential stress, instead of an
essential (Dirichlet type) condition for the tangential velocity as Prandtl did.
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Chapter 46

Prandtl and Boundary Layers

On an increase of pressure, while the free fluid transforms part of its kinetic
energy into potential energy, the transition layers instead, having lost a part
of their kinetic energy (due to friction), have no longer a sufficient quantity
to enable them to enter a field of higher pressure, and therefore turn aside
from it. (Prandtl)

The modern world of aerodynamics and fluid dy- namics is still dominated
by Prandtls idea. By every right, his boundary-layer concept was worthy of
the Nobel Prize. He never received it, however; some say the Nobel Com-
mittee was reluctant to award the prize for accomplish- ments in classical
physics...(John D. Anderson in [2])

No flying machine will ever fly from New York to Paris. (Orville Wright)

46.1 Separation
The generation of lift and drag of a wing is closely connected to problem of sep-
aration in fluid mechanics: As a body moves through a slightly viscous fluid
initially at rest, like a car or airplane moving through still air, or equivalently as
a fluid flows around a body at rest, fluid particles are deviated by the body in a
contracting flow switching to an expanding flow at a crest and eventually separate
away from the body somewhere in the rear, at or after the crest. In the front there
is typically a stagnation point, where the fluid velocity vanishes allowing laminar
attachment at stagnation to the boundary. On the other hand the fluid mechanics
of the turbulent separation occuring in the rear in slightly viscous flow, which
creates drag and lift forces, appears to be largely unknown, despite its crucial

317



318 CHAPTER 46. PRANDTL AND BOUNDARY LAYERS

importance in many applications, including flying and sailing. The basic study
concerns separation from a convex body like a sphere, circular cylinder, wing, car
or boat hull.

Figure 46.1: Prandtl’s idea of laminar viscous separation with no-slip caused by
an adverse pressure gradient, which is does not describe the turbulent slightly
viscous separation with slip in the flow of air around a wing.

46.2 Boundary Layers
In 1904 the young German physicist Ludwig Prandtl (1875-1953) suggested in a
10 page sketchy presentation entitled Motion of Fluids with Very Little Viscosity
[119] at the Third International Congress of Mathematics in Heidelberg, that the
substantial drag of a bluff body moving through a fluid with very small viscosity
(such as air or water), possibly could arise from the presence of of a thin laminar
boundary layer, where the fluid velocity radpidly changes from its free-stream
value to zero on the boundary corresponding to a no-slip boundary condition,
causing the flow to separate from the boundary brought to stagnation under an
adverse pressure gradient (negative pressure gradient in the flow direction), to
form a low-pressure wake behind the body. But the acceptance of Prandtl’s ideas
was slow [2]:

• Prandtls idea (about the boundary layer) went virtually unnoticed by any-
body outside of Göttingen... The fifth and sixth editions of Lambs classic
text Hydrodynamics published in 1924, devoted only one paragraph to the
boundary-layer concept.

However, Prandtl had two forceful students, Theodore von Karman (who em-
igrated to the US in 1930) and Hermann Schlichting (who stayed in Germany),
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who crowned Prandtl as the father of modern fluid mechanics. Prandtl’s main
ideas are described as follows in Schlichting’s treatise Boundary Layer Theory
from 1951:

• Boundary layer flow has the peculiar property that under certain conditions
the flow in the immediate neighbourhood of a solid wall becomes reversed
causing the boundary layer to separate from it. This is accompanied by
a more or less pronounced formation of eddies in the wake of the body.
Thus the pressure distribution is changed and differs markedly from that in
a frictionless stream. The deviation in pressure distribution from that of the
ideal is the cause of form drag, and its calculation is thus made possible
with the aid of boundary layer theory.

• The first important question to answer is to find when separation of the flow
from the wall may occur. When a region with an adverse pressure gradi-
ent exists along the wall, the retarded fluid particles cannot, in general,
penetrate too far into the region of increased pressure owing to their small
kinetic energy. Thus the boundary layer is deflected sideways from the wall,
separates from it, and moves into the main stream. In general the fluid par-
ticles follow the pressure gradient and move in a direction opposite to the
external stream.

• In some cases the boundary layer increases its thickness considerably in the
downstream direction and the flow in the boundary layer becomes reversed.
This causes the decelerated fluid particles to be forced outwards, which
means that the boundary layer is separated from the wall. We then speak
of boundary layer separation. This phenomenon is always associated with
the formation of vortices and with large energy losses in the wake of the
body. The large drag can be explained by the existence of large deviation
in pressure distribution (from potential flow), which is a consequence of
boundary-layer separation.

• Downstream the pressure minimum the discrepancies increase very fast on
approaching the separation point (for circular cylinder).

• The circumstance that real flows can support considerable rates of pressure
increase (adverse pressure gradients) in a large number of cases without
separation is due to the fact that the flow is mostly turbulent. The best known
examples include cases of flow past circular cylinders and spheres, when
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separation occurs much further upstream in laminar than in turbulent flow.
It is nevertheless useful to consider laminar flow because it is much more
amenable to mathematical treatment than is the case of turbulent flow....At
the present time these very complicated phenomena (separation in turbulent
flow) are far from being understood completely...

• The form drag which does not exist in frictionless subsonic flow, is due
to the fact that the presence of the boundary layer modifies the pressure
distribution on the body as compared with ideal flow, but its computation is
very difficult.

• The origin of pressure drag lies in the fact that the boundary layer exerts
a displacement action on the external stream. This modifies somewhat the
pressure distribution on the body surface. In contrast with potential flow
(d’Alembert’s paradox), the resultant of this pressure distribution modified
by friction no longer vanishes but produces a preessure drag which must be
added to skin friction. The two together give form drag.

• In the case of the most important fluids, namely water and air, the viscos-
ity is very small and, consequently, the forces due to viscous friction are,
generally speaking, very small compared with the remaining forces (gravity
and pressure forces). For this resaon it was very difficult to comprehend that
very small frictional forces omitted in classical (inviscid) theory influenced
the motion of a fluid to so large extent.

Prandtl described the difficulties himself in Applied Hydro- and Aeromechanics
from 1934:

• Only in the case where the “boundary layer” formed under the influence of
the viscosity remains in contact with the body, can an approximation of the
actual fluid motion by means of a theory in terms of the ideal frictionsless
fluid be attempted, whereas in all cases where the boundary leaves the body,
a theoretical treatment leads to results which do not coincide at all with
experiment. And it had to be confessed that the latter case occurs most
frequently.

In a nutshell, these quotes present much of the essence of modern fluid mechan-
ics propagated in standard books and courses in fluid mechanics: Drag and lift in
slightly viscous flow are claimed to arise from separation in a thin viscous laminar
boundary layer brought to stagnation with reversed flow due to an adverse pressure
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gradient. On the other hand, both Prandtl and Schlichting admit that this standard
scenario does not describe turbulent flow, always arising in slightly viscous flow,
but persists that “it is nevertheless useful to consider laminar flow because it is
much more amenable to mathematical treatment”. However, turbulent and lami-
nar flow have different properties, and drawing conclusions about turbulent flow
from studies of laminar flow can be grossly misleading.

46.3 Prandtl’s Resolution of d’Alembert’s Paradox
The commonly accepted resolution of d’Alembert’s Paradox propagated in the
fluid dynamics literature is attributed to Prandtl, who in his 1904 article suggested
that drag/lift possibly could result from transversal vorticity caused by tripping of
the flow by a no-slip boundary condition and thereby changing the global flow.
Prandtl was inspired by Saint-Venant stating in 1846 [85]:

• But one finds another result (non-zero drag) if, instead of an inviscid fluid
– object of the calculations of the geometers Euler of the last century – one
uses a real fluid, composed of a finite number of molecules and exerting in
its state of motion unequal pressure forces having components tangential
to the surface elements through which they act; components to which we
refer as the friction of the fluid, a name which has been given to them since
Descartes and Newton until Venturi.

Saint-Venant and Prandtl thus suggested that drag in a real fluid possibly could
result from tangential frictional forces in a thin viscous boundary layer creating
transversal vorticity, and accordingly inviscid potential flow could be discarded
because it has no boundary layer. These suggestions have over time been trans-
formed to become an accepted fact of modern fluid dynamics, questioned by few.
The mathematician Garret Birkhoff (1911-1996) conjectured in [92] that drag in-
stead could be the result of an instability of potential flow, but after a devastating
review [86], Birkhoff did not pursue this line of thought, and even partly changed
position in a second edition of the book.

But we shall see that Birkhoff was correct: Potential flow with zero drag is
unstable, and this is the reason it cannot be observed. What can be observed is
turbulent flow with substantial drag, and there are aspects or outputs of turbu-
lent flow which are wellposed in the sense that they do not change under small
perturbations, while potential flow is illposed with respect to all outputs of any
significance and thus unphysical.
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Figure 46.2: Horisontal boundary layers with streaks of streamwise vorticity (top
view above), and turbulent boundary layer (side view below).



Part VII

AIAA and New Theory
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Chapter 47

A Kuhnian Case Study

The reception by the scientific community of our New Theory of Flight offers
material for a case study in the sociology of science in the spirit of Thomas Kuhn
and his influential The Structure of Scientific Revolutions. We have here a clear
case of a New Theory challenging the Old Theory of Kutta-Zhukovsky-Prandtl,
which has dominated the thinking of aerodynamicists over a century with little
change.

The New Theory reflects a breakthrough in computational solution of the
Naviers-Stokes allowing accurate simulation of slightly viscous turbulent flow
with millions of meshpoints feasible on todays supercomputers, by breaking the
dictate of Prandtl requiring resolution of thin boundary layers far beyond present
computability. In short, the breakthrough boils down to using a slip boundary con-
dition on solid wall, instead of Prandtl’s no-slip condition forming thin boundary
layers beyond resolution.

The New Theory consists of a mathematical analysis of solutions of the Navier-
Stokes equations describing the airflow around a wing in understandable form as
potential flow modified by 3d rotational separation. The New Theory illustrates
that understanding in physics means understanding essential aspect of a mathe-
matical model.

The New Theory is not a refinement of the Old Theory but a restart from funda-
mentals. In this sense it similar to the heliocentric vs the geocentric astronomical
theory.

As study material we reprint below our article New Theory of Flight submitted
to AIAA Journal in March 2012 and the communication with AIAA including
referee reports together with our rebuttal and analysis. Notice in particular:
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• AIAA is critical to current text-book theory of the aerodynamics of flight,
which is described as an incomplete classical theory.

• AIAA seeks in lengthy referee/editor reports to fill in the missing parts of
the incomplete classical theory, which cannot be found in text-books.

• AIAA thus defends the Old Theory, while admitting that it is today found
incomplete, because the once complete theory has been forgotten.

• AIAA expresses appreciation of essential parts of the article: 3d separation,
computational solution of the Navier-Stokes equations with slip boundary
condition, and our analysis of computations.

• AIAA does not really question the New Theory, only defends the Old The-
ory, and then rejects the New Theory without scientific reason.

Of course this recepetion of the New Theory by AIAA is to be expected since
AIAA has invested so much in the Old Theory. On the other hand, it is a risky
strategy to just swipe the New Theory off the table: There is massive evidence that
the New Theory is correct, recorded in this book, and this evidence will not just
simply disappear by closing the eyes. In any case, the reception of the New Theory
by the establishment of the Old Theory offers material for a Kuhnian study.

Figure 47.1: Kuhn’s Structure of Scientific Revolutions with fluid dynamics front
cover.



Chapter 48

AIAA Rejection Letter

Dear Drs Hoffman, Jansson and Johnson:

In view of the criticisms of the reviewer(s), your manuscript New Theory of Fligh
has been declined for publication in the AIAA Journal.

Please carefully read the attached reviews. Your paper is unusual in that it chal-
lenges our existing understanding of aerodynamics. I believe the reviewers have
treated your paper fairly and have given thoughtful, well-reasoned critiques of
your paper. They have not been simply dismissive in their response. I hope you
will follow their suggestions for further reading so that you may better understand
the basis of their remarks.

Thank you for considering the AIAA Journal for the publication of your research.
I hope the outcome of this specific submission will not discourage you from the
submission of future manuscripts.

Sincerely, Gregory Blaisdell AIAA Journal Associate Editor

Figure 48.1: AIAA The World’s Forum for Aerospace Leadership.
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Chapter 49

Referee Report 1

The paper essentially consists of two related parts:

• (a) An attempt to discredit the authors version of the existing circulation
theory by Kutta- Zhukovsky-Prandtl formed 100 years ago.

• (b) The presentation of their new theory to calculate and explain the physics
of the flow past a lifting wing.

First of all, there is no circulation theory by Kutta-Joukowski-Prandtl that has
remained untouched for a century. In fact, the authors appear to misunderstand
boundary-layer theory (and the context it provides for potential flow theory) and
seem unaware of decades of research of modern modifications to it. The authors
provide no documented scientific evidence to discredit the current state of the art.

They claim that a circulation theory of lift (potential flow) and a boundary-
layer theory (viscous flow) are unrelated. First of all, the concept of circulation
is not necessary for the physical explanation of lift-the physical Kutta condition
leads to the correct (as verified by experiment) solution to the potential flow prob-
lem. Circulation enters the mathematical problem for the incompressible potential
flow past an airfoil since the problem is non-unique without its specification.

More importantly, Prandtls boundary-layer theory is not a viscous theory for
drag but an asymptotic theory for the solution to the Navier-Stokes equations at
large Reynolds number. Potential flow is not presented as the solution for lift but
as the first term in an asymptotic expansion-the potential flow and boundary-layer
theories are connected through the matching process. The versions of potential
theory and boundary-layer theory the authors present are only the first terms in
the expansion. Their claim that the theories of Kutta-Joukowski and Prandtl are
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both incorrect at separation (undefined by the authors but apparently only consid-
ered at the trailing edge) does not take into account the extensive research into the
potential flow-boundary-layer coupling. In fact, the inclusion of the effect of the
displacement thickness in the second-order potential flow solution renders argu-
ments associated with a trailing-edge stagnation point moot. (The trailing-edge
stagnation point does not appear for a cusped trailing edge). In addition, prob-
lems arising with the calculation of the boundary layer past the trailing edge or a
separation point are addressed with a strong-interaction version of the boundary-
layer equations (see the discussion in Chapter 14 of Katz and Plotkin which also
includes a detailed discussion of the matching process referred to above).

An example of an approach which blends the potential and viscous flows to
provide well- accepted solutions for the lifting flow past an airfoil is given in the
XFOIL code of Drela (also described in Chapter 14 of Katz and Plotkin).

The authors new approach is to solve the Navier-Stokes equations numerically
with an unphysical slip boundary condition. They state that We will discover that
solutions of the Navier-Stokes equations with small viscosity and skin friction can
be viewed as modified potential solutions, which are partly turbulent and which
arise from the instability of potential flow at separation. The slip boundary condi-
tion does not give rise to boundary layers and the real flow may thus stay close to
potential flow before separation.

The authors must demonstrate that the slip boundary condition somehow matches
the physics of viscous flow near a solid boundary. They do not do this. They there-
fore create a mathematical problem which isnt based on the physics and use it to
claim the absence of boundary layers. They claim that potential flow is a model of
the complete flow and that an instability at separation leads to the correct resulting
flow. How do the authors even define separation in a potential flow? The authors
create their model to explain lift but it must also describe the complete flowfield.
The failure of their model to reproduce the flowfield for a well-documented ex-
ample is demonstrated in their solution for the zero angle-of-attack flow (no lift)
past a NACA 0012 airfoil. They state that the drag results from 3d rotational sep-
aration at the trailing edge. There is no boundary layer. How would their model
behave in the limit of a symmetric airfoil of vanishing thickness at zero angle of
attack? Where would the drag come from? The drag is not calculated by an in-
tegration of wall shear stress (can the shear stress be found with the authors slip
boundary condition?). In addition, they even introduce leading edge suction into
the drag discussion when it is only defined with respect to linearized potential
flow aerodynamics.
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In summary, the authors have not presented us with an aerodynamic theory
alternative to the modern boundary-layer theory in the literature which addresses
lift and drag. At most, perhaps they present a numerical model of the governing
equations which avoids the need to discretize the boundary layer. They would
however need to demonstrate how drag is calculated with such a model and that
the results match with detailed experiments.
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Chapter 50

Referee Report 2

The classical theory of flight is one the most beautiful and subtle achievements
of applied mathematics. However, it is no longer of interest to mathematicians,
because they know that it has been a solved problem for many decades (although
they have forgotten the details). Obviously, it remains of interest to engineers on
account of its predictive ability, but it can be employed very successfully with-
out knowledge of the subtleties. Aerodynamics today is therefore almost always
taught in a truncated version that retains all of the utility, but has lost much of the
profundity. Even the truncated version is no longer as highly respected as it used
to be, because Computational Fluid Dynamics delivers, with no requirement for
deep thought, most of the practical answers that are needed. In consequence, there
are many employed today in the aerospace industry, and even in academia, whose
grasp of the basic theory of flight contains many gaps. These gaps are apparent
to thoughtful students, who frequently attempt to fill them in for themselves, al-
though the remedy is usually worse than the disease. I believe that the authors
of the paper under review would have no quarrel with the orthodox theory if they
knew all of the details, although they are right to quarrel with the truncated version
that they, like others, have apparently received.

The authors citation from Hoffren reveals the unfortunate mathphobia that
many critics display. Understanding flight requires intuiting the behavior of an
intangible medium for which our evolution has provided no apt language; it is
hardly surprising that an exact understanding requires the use of abstract thought,
but the gap is not unbridgeable. The response from the New York Times is merely
irresponsible journalism, but undoubtedly an air of mystery does pervade flight,
and the attempt to dispel it by simplified accounts does as much harm as good. The
present authors may be innocent of mathphobia; nevertheless they unfortunately
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feed the flames of irresponsible journalism. All of the criticisms that comprise
Section I of their paper can be answered, and I will try to do this below.

The authors experience great difficulty with the relationship between potential
flow and real flow. This is not surprising because it is glossed over in the great
majority of contemporary texts. There is a mathematical subtlety involved because
the flow of a fluid at infinite Reynolds number (zero viscosity) is not always the
same as the limit at very small viscosity (it is a singular perturbation problem),
and so the question is what light can be shed by the former on the latter?

Let us deal first with the issue of how circulation arises. Circulation is simply
the integral of vorticity, so first we need to ask how voticity arises. The authors
have written down the compressible Navier-Stokes equations, and in suitable text-
books they will find, derived from these, the vorticity transport equation. There is
only one term in this equation that accounts for the creation of vorticity, and that
applies only to compressible flows. There is no way to create vorticity within a
viscous incompressible fluid. Vorticity can be created only at a solid boundary. It
travels into the interior solely by diffusion, but once there, it can be transported,
stretched, and compressed. So the circulation required for Joukowski theory is
an integral of the vorticity contained in the boundary layer. In the limit of van-
ishingly small viscosity, the boundary layer has no thickness, but is still present
as an infinitesimal layer of infinite vorticity and hence making a finite contribu-
tion to circulation. The flow outside of the boundary layer is not potential flow
modified by circulation. It IS potential flow because its vorticity is zero (and the
circulation around any contour that does NOT enclose the airfoil is therefore zero)
but it obeys boundary conditions that allow for circulation around the airfoil. The
citation from [20] is absolutely correct. The above is Prandtls brilliant insight,
which explains what Kutta and Joukowsky could only hypothesize. It is of course
no criticism whatsoever of any scientific theory that its insights were arrived at
gradually.

Many people have difficulty understanding how the apparently local process
of vorticity generation can give rise to circulation at infinity. There is a tendency
to suppose that the vorticity must be spread by viscosity, which does not seem
plausible, and is indeed too slow, by many orders of magnitude. But by definition
the circulations around any two contours, both of which surround the airfoil and
are therefore separated only by irrotational flow, must be identical. Again, this
strikes people as physically implausible. But what happens is that the circulation
at infinity is set up by acoustic waves, and, if the flow really were incompressible,
these travel infinitely fast. What acoustic waves cannot do is create vorticity.

It still remains to be explained why that particular value of circulation that
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forces separation to the trailing edge is observed (the Kutta condition). Again,
this is glossed over in contemporary texts, but has nothing to do with any insta-
bility of potential flow. It is due to instability of the boundary layer (which in
real flows is present at any Reynolds number). Suppose the trailing edge T is
sharp, and suppose that the rear stagnation point S is somewhere else. The static
pressure is maximum at S (by Bernoullis Theorem) and so the flow from T to S
will be against an adverse pressure gradient. This is now a problem in boundary
layer theory, which tells us that the boundary layer is probably unstable. There
is no absolute certainty involved, because details may be important —such as
the actual radius of the trailing edge, the structural rigidity, and very importantly
the Reynolds number. At the extremely low Reynolds numbers that characterize
microbial swimming, the boundary layer is extremely thick and quite stable. At
Reynolds numbers that characterize the flight of birds and aircraft, there can be
small effects of the radius, as the authors notice. In engineering and in nature, the
radius is always made as small as practical, otherwise the stall behavior may be
impaired.

No Kutta condition applies at the leading edge L, because the flow from a
forward separation point S to L involves a favorable pressure gradient. Leading
edges are usually rounded because (a) there is no need to make them sharp, and
(b) the flow from L in the direction opposite to S is now in an adverse pressure
gradient that needs to be kept small.

The authors greatly underestimate the classical theory, most likely because the
usual truncated exposition has not shown it to them in its proper light. If they take
time to realize how its parts fit together, they will come to see that is a masterpiece
of physical modeling.

Section II describes the computer code that is their basis for disputing the
classical theory. This is their area of expertise, and it may be assumed that their
description is accurate. However, they state that real flow may thus stay close
to potential flow before separation Most emphatically this is not true. The real
flow (by which they mean their computed flow) always contains a boundary layer
whose influence is not negligible at any Reynolds number. This is characteristic
of singular perturbation problems, and is the reason why Prandtls insight was
transformative to the theory of flight.

Section III gives the authors intuitive version of their account. Taking their
numbered points in order,

1. This is true, although its implications need to be based on a sound under-
standing of what is, and what is not, potential flow.
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2. The authors do not give a mechanism by means of which separation would
avoid the building up of pressure. Do they have in mind the separation of
a finite boundary layer? In that case, whatever the mechanism, the effect
surely involves its thickness, so how do they explain the almost total in-
dependence of lift coefficients to several orders of magnitude in Reynolds
number? (This is different from the scale invariance of the inviscid flow). If
they are thinking of some idealized infinitesimal layer, what do they mean
by separation? And by what mechanism is its influence conveyed?

3. This merely states a standard definition, and suggests no consequences.

4. I do not understand this sentence. Would not suction from above and push
from below cause Upwash? The truth is that the suction, the push, and the
downwash (together with upwash ahead of the wing), are all consequences
of circulation. This is because that is how Laplaces equation behaves. It
is the inevitable consequence of acoustic disturbances having come into
equilibrium.

5. I will leave this to the point where it is developed in more detail.

Section IV states that sharp trailing edges are not necessary. This will not come
as a surprise to any practicing aerodynamicist. As CFD practitioners, the authors
are familiar with the NACA 0012 airfoil that they employ as a test case, and will
know that it represents a standard thickness distribution, empirically derived and
algebraically described. If they evaluate the formula for this thickness distribution
at x=c, taking the formula from an original source, they will find that the thickness
there is (I think I remember) about 0.5

Section V invokes scale invariance to explain how, within their theory, the lift
and drag would be independent of trailing edge radius.

Section VI criticizes the classical solution on these grounds:

• There is no mechanism for generating large-scale circulation. Indeed there
is; this was discussed earlier.

• The high pressure predicted at the trailing edge is not seen in experiments
or computations. This also deserves an answer. The prediction of potential
theory is that stagnation pressure will be achieved at the trailing edge if
the included angle there is non-zero (for a cusped trailing edge there is no
stagnation point). Nevertheless, this pressure decays very rapidly (like some
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very small negative power of distance) even in ideal flows, provided that the
included angle is small. In real (or even computed) flows, the boundary
layer absorbs most of the change in slope, even at high Reynolds numbers.
The pressure distribution is of course dictated by the displacement surface,
which is not singular.

• The classical solution is a mathematical trick to introduce lift. Nothing
could be further from the truth. It is in full accordance with physical un-
derstanding and experimental observations. The trick, if it deserves to be so
called, lies in condensing this to a simple boundary condition, the effect of
which is to force the zero-viscosity solution to obey the boundary condition
for the small-viscosity solution. The authors are of course familiar with the
fact that when one loses the highest order derivatives from a pde, the ability
to impose a boundary condition is also lost.

Section VII describes the authors computational experiments, which are three-
dimensional as, of course, are real wings. It is well known that it is extremely
hard, and probably impossible, to produce two-dimensional flow experimentally.
It should be, and usually is, impossible to produce it in a three-dimensional com-
putation. I would have been extremely surprised if the computations had not
shown small irregular spanwise variations of the kind presented. In fact, the result
is exactly consistent with the expectation that a 3D realization of a 2D flow will
behave very similarly to the 2D flow, but with 3D features that are usually small.
Although there are examples where the 3D features are not small, a guiding prin-
ciple of aerodynamic design is to avoid surprises, and this is another reason for
designers to prefer sharp trailing edges. There is a computation that the authors
should have made, which is to run their code in 2D mode and compare the out-
come. I confidently predict that at a low angle of attack there will be almost no
difference in the forces.

Section VII fails almost every test for the proper reporting of computational
results. The description of the code omits many details that might be important.
Additionally, for these particular tests, the following questions should have been
answered. What was the radius of the trailing edge as a fraction of the chord?
What was the Reynolds number? What was the Mach number? What was the
mesh size in the trailing edge region? Have they estimated the errors or run con-
vergence tests? Remarks elsewhere in the text suggest that this may have been
run with the dissipative terms turned off to simulate a potential flow. It should
be realized that the resulting first-order system is mathematically different from
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the second-order potential flow equation. This is because the first- order system
permits vortical solutions but the second-order equation (by definition) does not.
However, In the first-order system, the numerical dissipation will remain, and will
serve a function, similar to that of the physical dissipation, of removing energy
from the high-frequency modes. Calculations of this kind are often referred to as
Implicit Large Eddy Simulation, and are a recognized, but somewhat controver-
sial, approach to modeling some aspects of turbulence. Is that what is being done?
In any case, the mere fact of vorticity being observed means that the code did not
simulate a potential flow.

If the authors do believe that they are modeling potential flow, it would explain
why the observed drag is said to be accounted for by the separation effect. They
think that the drag should theoretically be zero and they need to provide an expla-
nation. They need look no further than the numerical dissipation. It is notoriously
hard to create an Euler code that does not predict drag at subcritical conditions,
especially when compressible codes are run at low Mach numbers. They should
make the test suggested above, of running their code in 2D mode, which would
eliminate their explanation but leave other explanations in place. What happens
to the drag? I very strongly recommend that they do this experiment.

The thrust of the paper so far is that classical explanations of flight, based on
two-dimensional potential flow, are wrong because they are thought to be self-
evidently inconsistent. Now in section VIII the line is taken that the classical
explanations are wrong because the true explanation involves three-dimensional
flow. I cannot see how this helps. If the authors had been correct previously–that
the classical explanation offers no mechanism to generate circulation–there would
still be no such mechanism. If the authors deny that circulation exists, let them
calculate it from their simulations; it will be there.

However, the authors are correct that separation might be fundamentally dif-
ferent in 3D than in 2D. One of the best-known examples is the industrial aero-
dynamics problem of flow past a tall cylindrical chimney. This might naively be
supposed to be two-dimensional in planes parallel to the ground, but in practice is
always three-dimensional, asymmetric and unsteady, resulting in variable forces
perpendicular to the oncoming wind. It is customary to place a spiral band around
such chimneys to prevent the flows at different heights from being phase-locked.
In the present case, the intuitive expectation would be that such 3D perturbations
would appear, but only at the small scale of the trailing edge radius, at least for
small incidence. Since the streamwise vorticity must vanish in the mean, the
velocities induced by it must substantially cancel. (Incidentally, the matter of in-
duced velocity is also frequently misunderstood. To forestall that possibility, it
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should be realized that induced velocity does not need mysterious mechanisms to
explain it, but is a necessary consequence of vector calculus. The name is unfor-
tunate).

There follows a stability analysis of the linearized Euler equations. This is of
doubtful validity because it assumes that a perturbation with non-zero curl can be
introduced into an irrotational flow. Physically this cannot be done; I have already
explained that there is no mechanism even within the Navier-Stokes equations for
vorticity creation, merely the evolution of vorticity already present. Creation must
take place at solid surfaces and involve viscosity, or must require external body
forces. There is nothing at all wrong with Kelvins Theorem.

Regrettably, it is my conclusion that publication of any of this material, in any
form, would be highly retrogressive. The authors have put their fingers accurately
on many of the defects in the truncated versions of aerodynamic theory that are
now current. However, they have not realized that all these difficult issues were
struggled with years ago by the founding fathers of the subject, and resolved in
completely satisfactory ways. Sadly, the outcomes of those struggles have since
been simplified or discarded in modern presentations to create a pragmatic treat-
ment focusing on utility. Undergraduate textbooks these days all too often simply
omit anything that students find difficult.

The authors have then sought their own explanations, stimulated by interest-
ing results from their Navier-Stokes code. However, they have failed to ask ques-
tions that would have been suggested by any experienced practical aerodynami-
cist. Consequently, they have simply added to a proliferating literature of theories
of flight that serves only to confuse students and mislead the public. I wish it were
possible to retract what has already been written.

This review is very much longer than I would normally write, because I believe
that serious issues of substantial public interest are involved. Even so, it may be
too brief to carry conviction with the authors, so I am going to recommend some
reading books. One is History of Aerodynamics by J D Anderson, and another is
An Informal Introduction to Theoretical Fluid Mechanics by M J Lighthill. These
are both accounts intended for a non-specialist but technically-literate readership.
A book intended for specialists, but that is old enough not to have succumbed
to the almost universal dumbing down, is Theory of Flight, by R. von Mises.
All of these sources should be consulted before the authors attempt any response
to reviews. If there are any statements about two-dimensional flow concerning
which they feel skeptical, they have only to run their own code and retrieve the
appropriate data. Finally the authors have respected colleagues in the aerospace
department at KTH, with whom they should consult freely.
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Chapter 51

Short Analysis of Referee Reports

The referee reports offer shocking evidence as concerns the state-of-the-art of
aerodynamics represented by AIAA, The Worlds Forum for Aerospace Leader-
ship, and give ample evidence that the existing theory is insufficient.

Reviewer 2 starts out with:

• The classical theory of flight is no longer of interest to mathematicians,
because they know that it has been a solved problem for many decades
(although they have forgotten the details).

• Obviously, it remains of interest to engineers on account of its predictive
ability, but it can be employed very successfully without knowledge of the
subtleties.

• Aerodynamics today is therefore almost always taught in a truncated ver-
sion that retains all of the utility, but has lost much of the profundity.

• Even the truncated version is no longer as highly respected as it used to be,
because Computational Fluid Dynamics delivers, with no requirement for
deep thought, most of the practical answers that are needed.

• In consequence, there are many employed today in the aerospace industry,
and even in academia, whose grasp of the basic theory of flight contains
many gaps.

• These gaps are apparent to thoughtful students, who frequently attempt to
fill them in for themselves, although the remedy is usually worse than the
disease.
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• I believe that the authors of the paper under review would have no quar-
rel with the orthodox theory if they knew all of the details, although they
are right to quarrel with the truncated version that they, like others, have
apparently received.

What Reviewer 2 effectively says is that the theory of flight is a mess, abandoned
by mathematicians and not understood by engineers designing airplanes. This is
serious criticism of the existing theory, by the reviewer.

Reveiwer 2 then continues by dismissing the criticism published in AIAA J
and NYT/John D. Anderson (and many other places):

• The authors citation from Hoffren reveals the unfortunate mathphobia that
many critics display.

• The response from the New York Times is merely irresponsible journalism,
but undoubtedly an air of mystery does pervade flight, and the attempt to
dispel it by simplified accounts does as much harm as good.

Reviewer 2 then pleads for mysticism instead of science:

• Understanding flight requires intuiting the behavior of an intangible medium
for which our evolution has provided no apt language.

Finally, Reviewer 2 starts out into a lengthy attempt to resurrect the theory that
has collapsed:

• All of the criticisms that comprise Section I of their paper can be answered,
and I will try to do this below.

Reviewer 1 dismisses our article by:

• The authors provide no documented scientific evidence to discredit the cur-
rent state of the art.

Reviewer 1 thereby dismisses all the criticism of the current state of the art, ac-
knowledged by Reviewer 2, and expressed by AIAA/Hoffren among many. Both
reviewers thus defend the existing theory without seriously taking our criticism
into account.

They do not show that they have read and understood our arguments, which is
necessary to give an evaluation. Instead they display a large number of miscon-
ceptions as concerns both mathematics and computation underlying the theory of
flight. I will return to these misconceptions in an upcoming post.
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Analysis of Referee Report 2

The tone is set in the first sentence:

• The classical theory of flight is one the most beautiful and subtle achieve-
ments of applied mathematics.

This is copied from Stoker’s review of Birkhoff’s critical book Hydromechan-
ics, which elevates classical theory to a level beyond critique. Nevertheless the
reviewer delivers a 6 page defense of classical theory:

• All of the criticisms that comprise Section I of their paper can be answered,
and I will try to do this below.

The defense contains many remarkable and incorrect statements with our com-
ments in parenthesis:

• There is a mathematical subtlety involved because the flow of a fluid at
infinite Reynolds number (zero viscosity) is not always the same as the limit
at very small viscosity (it is a singular perturbation problem), and so the
question is what light can be shed by the former on the latter? (This is so
subtle that it is meaningless.)

• There is no way to create vorticity within a viscous incompressible fluid.
Vorticity can be created only at a solid boundary. (This is incorrect as shown
on Kelvin’s Theorem Unphysical.)

• In the limit of vanishingly small viscosity, the boundary layer has no thick-
ness, but is still present as an infinitesimal layer of infinite vorticity and
hence making a finite contribution to circulation. (Meaningless statement
without quantification.)
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• Vorticity can be created only at a solid boundary. It travels into the interior
solely by diffusion....There is a tendency to suppose that the vorticity must
be spread by viscosity, which does not seem plausible...(Contradiction.)

• But what happens is that the circulation at infinity is set up by acoustic
waves, and, if the flow really were incompressible, these travel infinitely
fast. What acoustic waves cannot do is create vorticity. (Mind boggling.)

• The authors greatly underestimate the classical theory, most likely because
the usual truncated exposition has not shown it to them in its proper light. If
they take time to realize how its parts fit together, they will come to see that
is a masterpiece of physical modeling. (The reviewer greatly overestimates
classical theory; if it was such a masterpiece the reviewer’s rescue operation
would not be needed.)

• The real flow (by which they mean their computed flow) always contains a
boundary layer whose influence is not negligible at any Reynolds number.
This is characteristic of singular perturbation problems, and is the reason
why Prandtls insight was transformative to the theory of flight. (This is
incorrect and is precisely the key element of our criticism of Prandtl which
the reviewer does not address.)

• As described earlier, the desirability of the sharp edge lies in forcing the
boundary layer to negotiate an adverse pressure gradient before it could
reach any other stagnation point. It is not necessary for the trailing edge to
be absolutely sharp to achieve this aim. But the shaper the edge is, the more
certain the effect, and the more likely to remain effective at high angles of
attack. (This is incorrect. If it was correct that only a sharp trailing edge
would a have a ”certain effect”, there would be no air transportation.)

• The trick (Kutta condition) if it deserves to be so called, lies in condensing
this to a simple boundary condition, the effect of which is to force the zero-
viscosity solution to obey the boundary condition for the small-viscosity
solution. (This is incorrect as shown on The Kutta Trick is Illegal.)

• It is well known that it is extremely hard, and probably impossible, to pro-
duce two-dimensional flow experimentally. It should be, and usually is,
impossible to produce it in a three-dimensional computation. (Confusion
about the non-physical 2d problem, which lacks all relevance.)
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• Calculations of this kind (Unicorn) are often referred to as Implicit Large
Eddy Simulation, and are a recognized, but somewhat controversial, ap-
proach to modeling some aspects of turbulence. Is that what is being done?
In any case, the mere fact of vorticity being observed means that the code
did not simulate a potential flow. (Total confusion concerning the computa-
tional solution of the Navier-Stokes equations supporting the theory.)

• There follows a stability analysis of the linearized Euler equations. This is
of doubtful validity (But is it valid?) because it assumes that a perturbation
with non-zero curl can be introduced into an irrotational flow. Physically
this cannot be done; I have already explained that there is no mechanism
even within the Navier-Stokes equations for vorticity creation, merely the
evolution of vorticity already present. Creation must take place at solid
surfaces and involve viscosity, or must require externabody forces. There is
nothing at all wrong with Kelvins Theorem. (Yes, it is, see Kelvin’s Theorem
Unphysical.)

• Regrettably, it is my conclusion that publication of any of this material, in
any form, would be highly retrogressive. (Not anything in any form?)

• The authors have put their fingers accurately on many of the defects in the
truncated versions of aerodynamic theory that are now current. (Compare
previous statement)

• However, they have not realized that all these difficult issues were struggled
with years ago by the founding fathers of the subject, and resolved in com-
pletely satisfactory ways. (Incorrect, as shown by the reviewers attempt to
rescue the fathers) Sadly, the outcomes of those struggles have since been
simplified or discarded in modern presentations to create a pragmatic treat-
ment focusing on utility. (Yes, it is a sad state-of-the-art.)

• This review is very much longer than I would normally write, because I
believe that serious issues of substantial public interest are involved. (Yes
the issues are important and require reviewers with deep insight into both
mathematics, computation and fluid mechanics, and Reviewer 2 does not
meet these requirements.)

Summary: The reviewer has not read and understood the article. The reviewer
seeks to stop the article, because it questions the dogmas set by the fathers of
aerodynamics 100 years ago. We share the criticism with many, but we are unique
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by offering a new correct understandable theory of flight backed by solid math,
computation, physics and observation. It is not very clever by AIAA to dismiss
our work on loose grounds. It will not disappear.



Chapter 53

Analysis of Referee Report 1

The punch line is:

• The authors provide no documented scientific evidence to discredit the cur-
rent state of the art.

Yes, we do and we are not alone: Very substantial criticism of the Kutta-Zhukovsky-
Prandtl theory of lift has been expressed by many scientists ever since this theory
was conceived 100 years ago.

The reviewer then branches out into a sequence of incoherent statements with-
out meaning:

• First of all, the concept of circulation is not necessary for the physical ex-
planation of lift-the physical Kutta condition leads to the correct (as verified
by experiment) solution to the potential flow problem. Circulation enters the
mathematical problem for the incompressible potential flow past an airfoil
since the problem is non-unique without its specification.

• More importantly, Prandtls boundary-layer theory is not a viscous theory
for drag but an asymptotic theory for the solution to the Navier-Stokes equa-
tions at large Reynolds number.

• Potential flow is not presented as the solution for lift but as the first term in
an asymptotic expansion - the potential flow and boundary-layer theories
are connected through the matching process.

• The versions of potential theory and boundary-layer theory the authors
present are only the first terms in the expansion.
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• Their claim that the theories of Kutta-Joukowski and Prandtl are both incor-
rect at separation (undefined by the authors but apparently only considered
at the trailing edge) does not take into account the extensive research into
the potential flow-boundary-layer coupling.

• In fact, the inclusion of the effect of the displacement thickness in the
second-order potential flow solution renders arguments associated with a
trailing-edge stagnation point moot. (The trailing edge stagnation point
does not appear for a cusped trailing edge).

• In addition, problems arising with the calculation of the boundary layer
past the trailing edge or a separation point are addressed with a strong-
interaction version of the boundary-layer equations (see the discussion in
Chapter 14 of Katz and Plotkin which also includes a detailed discussion of
the matching process referred to above).

After this excursion into terra incognita the reviewer returns to our article:

• The authors new approach is to solve the Navier-Stokes equations numeri-
cally with an unphysical slip boundary condition.

• The authors must demonstrate that the slip boundary condition somehow
matches the physics of viscous flow near a solid boundary. They do not do
this.

Yes, this is precisely what we do. We show that slip models the small skin fric-
tion of slightly viscous flow and that solution of Navier-Stokes with slip matches
observation. This is a key point of our article.

The reviewer concludes with:

• In summary, the authors have not presented us with an aerodynamic the-
ory alternative to the modern boundary-layer theory in the literature which
addresses lift and drag.

• At most, perhaps they present a numerical model of the governing equations
which avoids the need to discretize the boundary layer.

• They would however need to demonstrate how drag is calculated with such
a model and that the results match with detailed experiments.
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The reviewer has understood one of our major points: Discretization of the bound-
ary layer is not necessary, which makes it possible to solve the Navier-Stokes
equations with millions of mesh points, instead of the impossible quadrillions re-
quired by state-of-the-art. But the reviewer then falls back to misunderstanding:
We compute both lift and drag for all angles of attack in close correspondence to
observation.

Altogether, this is a very poor report by a reviewer who misrepresents key
aspects of the article. The report does not meet the standards of AIAA as The
World’s Forum for Aerospace Leadership.
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Chapter 54

Rebuttal by Authors Version 1

54.1 Our Criticism of 2d Kutta-Zhukovsky Circula-
tion Theory of Lift

Classical Kutta-Zhukovsky circulation theory of lift, as a 2d theory for a 3d real
phenomenon, is unphysical. The Kutta condition of specifying the velocity to
be zero at a point on the boundary of inviscid flow where the flow is not enter-
ing (including the trailing edge), is mathematically meaningless and physically
impossible.

The classical proof of Kelvin’s theorem is incorrect from wellposedness, since
the vorticity equation can exhibit exponential growth of perturbations, and pertur-
bation is part of wellposedness.

54.2 Our Criticism of Prandtl’s Boundary Layer The-
ory of Drag

Prandtl’s boundary layer theory attributes drag to the presence of boundary layers.
We compute drag in slightly viscous flow accordance with observation by solv-
ing the Navier-Stokes equations with slip boundary condition without presence of
boundary layers. We conclude that the major part of drag (form drag) in slightly
viscous flow does not originate from any boundary layer, and thus that Prandtl’s
theory does not cover the major part of drag in slightly viscous flow.
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54.3 Our New Theory of Flight
The reviewers do not question that our New Theory of Flight describes real 3d
flow.

What they question is our criticism of classical 2d theory: Instead of frankly
admitting that it is unphysical and thus incorrect, as we do, the reviewers want
to describe classical theory as correct in principle as a 2d theory, even if this 2d
theory does not really describe real 3d flow. This is a common way of handling
the unphysical aspect of classical 2d theory; admitting that it is 2d and thus in a
sense unphysical as any model (no model is perfect) but insisting that anyway it
is correct in some sense as a 2d flow model, which somehow ”represents real 3d
flow” without describing the actual 3d physics. Thus correct even if incorrect, as
any model (no model is perfect). This is the split between theory and practice
which has troubled fluid mechanics starting with d’Alembert’s paradox in 1752.

The reviewers claim that a slip boundary condition does not describe the
physics of slightly viscous flow. This is not correct because the skin friction of
slightly viscous flow is small and slip models small skin friction. Slip is also a
mathematical meaningful (and possible) boundary condition. The reviewers are
stuck to a Prandtl dictate to use no-slip with lacks both mathematics and physics
rationale.

Altogether, the criticism of the New Theory is weak, and the defense of the
Old Theory is also weak.

Reviewer 2 offers the following starting point for the continued discussion
with AIAA: I believe that serious issues of substantial public interest are involved.
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Rebuttal by Authors Version 2

In our paper we question the classical theory for subsonic flight currently being
propagated, based on 2d potential flow with the circulation theory for lift with
drag resulting from skin friction in the boundary layer.

We present instead a flight theory based directly on the fundamental laws of
conservation of mass and momentum, in the form of the 3d Navier- Stokes equa-
tions, without any assumption of 2d irrotational flow. Based on the development
of theory, computations and experiments over the last decades, we find that it is
now possible to describe the basic physics and mathematics of flight in 3d turbu-
lent flow.

Both reviewers defend the classical theory, even if it is clear that the real 3d
flow observed in experiments cannot be reproduced with any 2d theory. In partic-
ular, we show that potential flow is not stable in 3d, which means that it cannot
exist as a stable physical flow, and that the classical proof of Kelvin’s Theorem is
incorrect from the point of view of wellposedness with respect to small perturba-
tions.

We show this in computational experiments where the flow is initialized as
potential, and we show this with a linear stability analysis. Both the computa-
tional experiments and the linear stability analysis show that streamwise vorticity
develops at the trailing edge, which is also observed in physical experiments with
a close match in lift, drag and pressure coefficients.

In this new flow configuration observed in computations and in physical ex-
periments, the main part of the drag results from the change in the pressure distri-
bution at the trailing edge, which dominates any contribution from skin friction in
the boundary layer.

et cet with arguments form the above analysis of the referee reports....
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Chapter 56

Defense by AIAA

Dear Drs Hoffman, Jansson and Johnson:
I have read your response to the reviewers comments and gone back over

the reviews and your paper. I agree with the reviewers assessment of your pa-
per. (Note: below I refer to Reviewers 1 and 2 as they are listed in the AIAA
manuscript review system; on Professor Johnsons website the two are reversed.)
Reviewer 1, especially, has given a thorough, articulate and gentle explanation of
the deficiencies of your paper. After reading your paper and your responses to
the reviewers comments, I can see several misconceptions you have concerning
basic concepts in fluid mechanics. My goal below is not simply to reiterate the
comments of the reviewers, but to help you see some of the areas where you need
to improve your understanding. I will try to be clear and direct in my comments
to avoid any misunderstanding.

First, one of your major objections to the classical theory of the generation of
lift is that the potential flow solution has a stagnation point at the (sharp) trailing
edge and, therefore, produces a pressure distribution with a high value of pressure
at the trailing edge. This high value of pressure is not observed in experimen-
tal measurements. Also, the pressure distribution from the potential flow solu-
tion does not give rise to any drag, which is incorrect from common experience
(dAlemberts paradox). What you seem to be missing, which reviewer 1 alluded
to, is that this view of the classical theory is truncated; it is not a correct view.

High Reynolds number flow around an airfoil (or a wing in 3-D) is, as re-
viewer 1 said, a singular perturbation problem, where a small parameter (1/Re)
multiplies the term in the momentum equation with the highest order derivative.
The potential flow solution you object to is only the leading order inviscid (outer)
solution. The complete theory treats the coupled viscous-inviscid interaction by
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determining the viscous boundary layer (inner) solution, finding the displacement
thickness of the boundary layer, adding that to the starting geometry to find the
effective shape of the airfoil (thus accounting for the viscous displacement of the
streamlines in the outer inviscid part of the flow field), recomputing the potential
flow solution, and then iterating this process until a converged solution is found.
This results in a pressure distribution that does not have a high value of pressure
at the trailing edge, in agreement with experimental measurements. This iteration
process is what is done by the airfoil analysis program XFOIL, which reviewer 2
mentioned. XFOIL is widely used in teaching aerodynamics, and I use it in my
classes.

The pressure near the trailing edge differs from that of the leading order in-
viscid potential flow solution because of the displacement effect of the viscous
boundary layer. As a result the pressure does contribute to the drag; this is termed
form drag. Both pressure and skin friction contribute to drag. Which one is domi-
nant depends on the airfoil design, angle of attack and Reynolds number. At small
angles of attack the skin friction contribution can be much larger than the contri-
bution from the pressure; while pressure or form drag is more important at higher
angles of attack where the airfoil acts more like a bluff body. DAlemberts paradox
is no longer a paradox. His potential flow solution lacked two effects due to vis-
cosity that create drag skin friction and form drag due to the displacement effect
of the boundary layer. Please note that, contrary to what is sometimes stated, form
drag does not only occur due to boundary layer separation. Even if the boundary
layer does not separate, the displacement effect of the boundary layer will alter
the potential flow solution and result in drag due to pressure.

As reviewer 1 said, it is the truncated form of the classical theory that you ob-
ject to. Unfortunately, the complete theory is not always taught, with the result that
many students have misunderstandings concerning flow over airfoils and wings.
In my department we do not require our students to take a course in perturbation
methods; as reviewer 1 said, aerospace engineers today use computational fluid
dynamics; and, as a result, they lose sight of some of the theoretical underpinnings
of what we study.

Many of the concepts associated with viscous boundary layers, viscous-inviscid
interactions, circulation, vorticity and the generation of lift, are not intuitively ob-
vious. One of my main jobs as an educator in the area of fluid mechanics is to build
up my students intuition by increasing their understanding of basic concepts.

Another set of basic concepts that you misunderstand deal with circulation and
vorticity. They are related, but they are not the same, and both are important to
understanding the fluid mechanics of airfoils and wings. I do not have the time
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or space to elaborate in detail; these are concepts that are taught over the course
of a full semester. However, there are two points I want to clarify. First Kelvins
theorem, that circulation does not change for a closed loop moving as a material
curve (moving with the fluid), only depends on the assumptions of (i) inviscid
flow, (ii) incompressible (low-speed) flow, and (iii) a conservative body force (e.g.,
gravity). The flow can be unsteady, 3-D and rotational (nonzero vorticity) and
the theorem still holds. It is not invalidated by there being fluctuations in the
freestream or instabilities in the flow (more on that below).

One important difference to see between circulation and vorticity is that when
a vortex is stretched, as by a strain field discussed in your linear stability analysis,
the vorticity is increased as the vortex radius decreases and vortex lines become
concentrated, but the circulation remains fixed, in agreement with Kelvins the-
orem. The vorticity is twice the local rotation rate of fluid elements, and the in-
crease in vorticity is similar to the increase in rotation rate of an ice skater when he
spins and then brings his arms in tight. His rotation rate increases, but his angular
momentum remains constant (not accounting for friction). Kelvins theorem deals
with circulation, and it is in fact the circulation around the airfoil that is important
to the lift.

The second point I want to make concerns the generation of vorticity. What
reviewer 1 stated about vorticity not being generated in the interior of the flow un-
der the assumptions of (i) incompressible flow and (ii) a conservative body force
is correct. This can be proved mathematically from the basic governing equations.
In the discussion above about a strained vortex, the vorticity increases locally be-
cause the vortex lines become more concentrated; however, no new vorticity is
generated. New vorticity is generated on solid surfaces through the action of pres-
sure gradients or unsteady motion of the solid surface. This point is discussed
well in the text Incompressible Flow by Panton. The generation of vorticity on
solid surfaces is one of the more difficult subjects included in my graduate intro-
ductory fluid mechanics course. The fact that some of the concepts are difficult to
understand does not make them wrong.

The last technical point I want to make concerns the trailing edge instability
and your linear analysis. It is well known that vorticity in a strain field, such as
near a stagnation point, results in vortex stretching and an exponential increase in
vorticity. The solution for this is worked out in the book The Structure of Tur-
bulent Shear Flow by Townsend and is part of the rapid distortion theory of tur-
bulence. As discussed above, the increase in vorticity magnitude does not mean
an increase in circulation. The trailing edge vortices in your simulations form in
counter-rotating pairs. Their net circulation is zero, and their presence does not
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alter the circulation or the lift on the airfoil. I also want to point out a flaw in
your analysis. Fluctuations in the flow are not introduced by a non-conservative
body force, as you state. For flow over an airfoil or wing, there is no such non-
conservative body force. The only body force acting is gravity, and it is conserva-
tive and, therefore, does not generate vorticity. Instead fluctuations come from the
freestream, as turbulence from upstream is convected toward the airfoil; fluctua-
tions near the trailing edge also come from turbulent flow in the boundary layers
or, in the case of a separated boundary layer, turbulence produced in the free shear
layer.

Lastly, both reviewer 1 and I had suggested that you contact colleagues at
KTH who could help explain some of these concepts to you. In response to one
of your previous comments, I want to say that doing so is not a requirement for
submitting papers to AIAA. That suggestion was made because there are basic
concepts in fluid mechanics that you do not understand, and it is easier to explain
those concepts face to face over a period of time, rather than through the limited
medium of email. I know some of your colleagues in the Mechanics Department
at KTH, and I have a lot of respect for their knowledge of fundamental fluid me-
chanics and applied mathematics. I strongly suggest you talk with them, or take
some of the courses they offer.

Sincerely,
Greg Blaisdell AIAA Journal Associate Editor



Chapter 57

Analysis of Defense by AIAA 1

AIAA does not respond to any point in our rebuttal connected to our article. In
fact, AIAA does not give any evaluation of the New Theory of Flight at all, and
in particular does not claim that it is incorrect. What AIAA does is only to defend
the Old Theory according to the following plan:

• After reading your paper and your responses to the reviewers comments, I
can see several misconceptions you have concerning basic concepts in fluid
mechanics. My goal below is not simply to reiterate the comments of the
reviewers, but to help you see some of the areas where you need to improve
your understanding. I will try to be clear and direct in my comments to
avoid any misunderstanding.

Like one of the reviewers, Blaisdell then sets out on a mission to teach us about
the Old Theory, which is exactly the theory we have studied very carefully and
found to be incorrect. Blaisdell starts out with:

• High Reynolds number flow around an airfoil (or a wing in 3-D) is, as
reviewer 1 said, a singular perturbation problem, where a small param-
eter (1/Re) multiplies the term in the momentum equation with the high-
est order derivative. The potential flow solution you object to is only the
leading order inviscid (outer) solution. The complete theory treats the cou-
pled viscous-inviscid interaction by determining the viscous boundary layer
(inner) solution, finding the displacement thickness of the boundary layer,
adding that to the starting geometry to find the effective shape of the airfoil
(thus accounting for the viscous displacement of the streamlines in the outer
inviscid part of the flow field), recomputing the potential flow solution, and
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then iterating this process until a converged solution is found. This results
in a pressure distribution that does not have a high value of pressure at the
trailing edge, in agreement with experimental measurements. This iteration
process is what is done by the airfoil analysis program XFOIL, which re-
viewer 2 mentioned. XFOIL is widely used in teaching aerodynamics, and I
use it in my classes.

But XFOIL is a 2d panel code which is unphysical, because the physics is true 3d.
The fact that Blaisdell teaches incorrect physics signifies the present sad state of
aerodynamics education, acknowledged by Blaisdell himself:

• Unfortunately, the complete theory is not always taught, with the result that
many students have misunderstandings concerning flow over airfoils and
wings.

• In my department we do not require our students to take a course in per-
turbation methods; as reviewer 1 said, aerospace engineers today use com-
putational fluid dynamics; and, as a result, they lose sight of some of the
theoretical underpinnings of what we study.

Blaisdell continues with more confession:

• Many of the concepts associated with viscous boundary layers, viscous-
inviscid interactions, circulation, vorticity and the generation of lift, are not
intuitively obvious.

• One of my main jobs as an educator in the area of fluid mechanics is to
build up my students intuition by increasing their understanding of basic
concepts.

• The generation of vorticity on solid surfaces is one of the more difficult
subjects included in my graduate introductory fluid mechanics course. The
fact that some of the concepts are difficult to understand does not make them
wrong.

No, it does not necessarily make them wrong, but neither correct. After more
defense of exactly what we criticize (Kelvin’s theorem, boundary layer generation
of vorticity, circulation et cet), without reading our criticism, Blaisdell concludes
by renewing the advice to take some fluid mechanics course at KTH:
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• Lastly, both reviewer 1 and I had suggested that you contact colleagues at
KTH who could help explain some of these concepts to you. In response to
one of your previous comments, I want to say that doing so is not a require-
ment for submitting papers to AIAA. That suggestion was made because
there are basic concepts in fluid mechanics that you do not understand, and
it is easier to explain those concepts face to face over a period of time,
rather than through the limited medium of email. I know some of your col-
leagues in the Mechanics Department at KTH, and I have a lot of respect for
their knowledge of fundamental fluid mechanics and applied mathematics.
I strongly suggest you talk with them, or take some of the courses they offer.

These are my so respected colleagues at KTH, who are so good friends with Blais-
dell, but refuse to speak to CJ. What a world of science.
Summary: AIAA does not claim that the New Theory is incorrect, that our
3d Navier-Stokes/slip computations do not describe the real physics of the flow
around a wing, or that our analysis of the computations is incorrect. AIAA only
defends the Old Theory, while admitting that it is so difficult that it cannot be
taught to new generations of engineers responsible for constructing the new air-
planes to carry new generations of people safely and efficiently.

AIAA actively suppresses discussion of a very important scientific issue, by
intimidating power play. It is not admirable and will not work in the long run.
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Analysis of Defense by AIAA 2

Blaisdell formulates his goal to be to re-educate (or brain-wash) us and teach us
the Old Theory, which is exactly the theory which we have studied very carefully
and found to be incorrect:

• I can see several misconceptions you have concerning basic concepts in
fluid mechanics. My goal below is ... to help you see some of the areas
where you need to improve your understanding....there are basic concepts
in fluid mechanics that you do not understand.

• What you seem to be missing ... is that this (our) view of the classical
theory is truncated; it is not a correct view.... it is the truncated form of the
classical theory that you object to. Unfortunately, the complete theory is not
always taught, with the result that many students have misunderstandings
concerning flow over airfoils and wings.

• Another set of basic concepts that you misunderstand deal with circulation
and vorticity. They are related, but they are not the same, and both are
important to understanding the fluid mechanics of airfoils and wings.

In his re-education mission Blaisdell seeks to force us to accept precisely what we
have shown to be incorrect physics:

• At small angles of attack the skin friction contribution can be much larger
than the contribution from the pressure; while pressure or form drag is
more important at higher angles of attack where the airfoil acts more like a
bluff body. The trailing edge vortices in your simulations form in counter-
rotating pairs. Their net circulation is zero, and their presence does not
alter the circulation or the lift on the airfoil.
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• What reviewer 1 stated about vorticity not being generated in the inte-
rior of the flow under the assumptions of (i) incompressible flow and (ii) a
conservative body force, is correct. Kelvins theorem, that circulation does
not change for a closed loop moving as a material curve (moving with the
fluid), only depends on the assumptions of (i) inviscid flow, (ii) incompress-
ible (low-speed) flow, and (iii) a conservative body force (e.g., gravity).

However, Blaisdell is struck by disbelief from the mounting difficulties in his
presentation and seeks to encourage himself by twisting lack of evidence into its
opposite:

• Many of the concepts associated with viscous boundary layers, viscous-
inviscid interactions, circulation, vorticity and the generation of lift, are not
intuitively obvious.

• The generation of vorticity on solid surfaces is one of the more difficult
subjects included in my graduate introductory fluid mechanics course.

• The fact that some of the concepts are difficult to understand does not make
them wrong.

Blaisdell’s long lecture is essentially a repetition of the long lecture by Reviewer
2 analyzed in a previous post.

Like Blaisdell, Reviewer 2 not only lectures but also admits that aerodynamics
education of today is a mess:

• Aerodynamics today is therefore almost always taught in a truncated ver-
sion that retains all of the utility, but has lost much of the profundity.

• Even the truncated version is no longer as highly respected as it used to
be, because Computational Fluid Dynamics delivers, with no requirement
for deep thought, most of the practical answers that are needed. In conse-
quence, there are many employed today in the aerospace industry, and even
in academia, whose grasp of the basic theory of flight contains many gaps.
These gaps are apparent to thoughtful students, who frequently attempt to
fill them in for themselves, although the remedy is usually worse than the
disease.

• ... simplified or discarded in modern presentations to create a pragmatic
treatment focusing on utility. Undergraduate textbooks these days all too
often simply omit anything that students find difficult.
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• I believe that the authors ... are right to quarrel with the truncated version
that they, like others, have apparently received

. Reviewer 2 cannot but acknowledge important merits of our article, which Blais-
dell ignores:

• The authors have put their fingers accurately on many of the defects in the
truncated versions of aerodynamic theory that are now current.

• However, the authors are correct that separation might be fundamentally
different in 3D than in 2D.

• The authors have then sought their own explanations, stimulated by inter-
esting results from their Navier-Stokes code.

Reviewer 1 acknowledges one of our key points:

• At most, perhaps they present a numerical model of the governing equations
which avoids the need to discretize the boundary layer.

But Reviewer 1 does not understand that this suddenly makes the Navier-Stokes
equations computable from being uncomputable by Prandtl’s dictate of bound-
ary layer resolution, and thus fundamentally changes both theory and practice of
aerodynamics.
Summary: What is specially remarkable is the fervor of the re-education the
editor and reviewers want us to undergo (like e.g. the Emperor in Red China):
They want to be sure that we come out of the process fully re-educated to the
correct belief of basic concepts. No effort should be spared to reach this goal, as
if our ideas somehow are dangerous to AIAA and thus have to be suppressed. But
why spend so much energy on cranks?
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Letter to Editor-in-Chief AIAA J

To AIAA Journal Editor-in-Chief Peretz P. Friedmann
Concerning New Theory of Flight submitted to AIAA Journal
In March 2012 we submitted the article New Theory of Flight to AIAA Jour-

nal. The article presents a new mathematical description of the generation of lift
and drag from the flow of air around a wing, which is fundamentally different
from the current textbook theory based on the work by Kutta-Zhukovsky-Prandtl.
Our new theory is based on a mathematical analysis of computed solutions of the
3d Navier-Stokes equations with lift and drag within experimental error tolerance
for all angles of attack including stall and beyond.

The assigned AIAA Journal editor Gregory Blaisdell acknowledges that our
article ”is unusual in that it challenges our existing understanding of aerodynam-
ics”. However, the challenge is not really evaluated by the reviewers and the
editor, who instead respond by a lengthy defense of exactly the existing theory we
question using exactly the same arguments we question, without actually consid-
ering our arguments and evidence.

One of the reviewers states: ”The authors provide no documented scientific
evidence to discredit the current state of the art, but acknowledges that: At most,
perhaps they present a numerical model of the governing equations which avoids
the need to discretize the boundary layer.

Our objective is not to ”discredit” classical theory. But we do present a new
theory made possible through the recent developments in computational modeling
of turbulent flow based on the Navier-Stokes equations, which allows for quanti-
tative prediction of the full 3d flow field including aerodynamic forces, also for
separated flow beyond stall. Our evidence consists of accurate solutions of the 3d
Navier-Stokes equations in close correspondence with observation, and an analy-
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sis of these solutions.
We therefore request a new review process by AIAA of our article, without

being simply discarding in a defense of the classical theory.
Sincerely, JH, JJ and CJ
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Chapter 60

Redundant Material

By Newton’s 3rd law, lift must be accompanied by downwash with the wing redi-
recting air downwards. The enigma of flight is the mechanism of a wing gen-
erating substantial downwash at small drag, which is also the enigma of sailing
against the wind with both sail and keel acting like wings creating substantial lift.

Flying on wings and sailing against the wind is a miracle, and the challenge
from scientific point of view is explain the miracle of L/D > 10. NASA pretends
to explain the miracle of the flight of the Flyer in Fig. 1.4 as a conseqence of
Newton’s Third Law. Do you get it?

Flying on a barn door tilted at 45 degrees with L/D ≈ 1 would not be a
scientific miracle, but only a rocket can generate a thrust equal to its own weight
and then only for a short period of time, and air transportation by rockets is nothing
for birds and ordinary people, only for astronauts.

The lift force L increases quadratically with the speed and linearly with the
angle of attack, that is the tilting of the wing from the direction of flight, until
stall at about 15 degrees, when the drag abruptly increases and L/D becomes too
small for sustained flight.

381


	I Short Story of Flight
	From Old to New Theory of Flight
	What Keeps Planes in the Air?
	Basic Lift and Drag Formula
	Basic Objective of Theory of Flight
	Text Book Theory of Flight
	New Theory of Flight
	3d Rotational Separation: Elegant
	Elegant Separation: Minimal Stagnation
	Bluff Body Flow: Computable Understandable
	From Symmetric to Unsymmetric Separation
	From Old Theory to New Theory
	Butterfly in Brazil and Tornado in Texas
	Lift and Drag without Boundary Layer
	Why Slip is a Physical Boundary Condition
	From Unphysical 2d model to Physical 3d Model
	Flight and Turbulence
	Compute-Analyze-Understand
	Computation vs Experiments
	Aerodynamics as Navier-Stokes Solutions
	Flight Control
	Flight Simulator based on New Theory of Flight

	Short History of Aviation
	Leonardo da Vinci, Newton and d'Alembert
	Cayley and Lilienthal
	Kutta, Zhukovsky and the Wright Brothers
	The Modern Era of Aviation
	Bairstow vs Glauert/Prandtl/Lanchester
	State-of-the-Art in England 1920
	First Study of Stability of Flight
	The Paradox of Circulation Theory
	Timeline of Old Theory of Flight

	New Perspective on History
	The Official Doctrine
	How to View History of Hydrodynamics

	Euler and Navier-Stokes Equations
	Model of Fluid Mechanics
	Boundary Conditions

	D'Alembert's Paradox
	D'Alembert and Euler and Potential Flow
	What's Wrong with the Potential Solution?
	Prandtl's Resolution in 1904
	The Mantra of Modern Fluid Mechanics
	New Resolution 2008
	Suppression of Birkhoff's Innocent Question

	From Circular Cylinder to Wing
	One Way to Construct a Wing
	The Princeton Sailwing
	What to Look For

	Potential Flow
	Circular Cylinder vs Wing
	Analytical Solution for Circular Cylinder
	Non-Separation of Potential Flow
	2d Stable Attachment 3d Unstable Separation
	Lift of Half Cylinder
	Drag from Frontal Part of Half Cylinder

	Real Flow: Circular Cylinder
	3d Rotational Slip Separation
	Drag

	Real Flow: Wing
	From Potential Flow to Real Flow
	What to Observe
	What the New Theory Offers

	Mathematical Miracle of Flight
	Mathematical Miracle of Sailing
	Sail and Keel Act Like Wings
	Basic Action
	Sail vs Wing
	Americas Cup Wing-Sail

	Real and Virtual Wind Tunnels
	Data
	Classical Data
	Boeing 787-8 Dreamliner


	II Observing Navier-Stokes
	Shut Up and Calculate
	Naviers-Stokes vs Schrödinger
	Compute - Analyze - Understand

	Observing Pressure, Lift and Drag
	Potential Flow with 3d Rotational Separation
	Pressure
	Lift and Drag Distribution
	Pressure Distribution
	Total Lift and Drag

	Observing Velocity
	Observing Vorticity
	Summary of Observation
	Summary Lift and Drag

	Computation vs Experiments
	Data for Experiments
	Comparing Computation with Experiment

	Preparing Understanding
	New Resolution of D'Alembert's Paradox
	Slip/Small Friction Boundary Conditions
	Computable + Correct = Secret
	No Lift without Drag


	III Solving Navier-Stokes
	Navier-Stokes Equations
	Conservation of Mass, Momentum and Energy
	Wellposedness and Clay Millennium Problem
	Laminar vs Turbulent Boundary Layer

	G2 Computational Solution
	G2: Stabilized Finite Element Method
	Wellposedness of Mean-Value Outputs
	Computed Dual Velocity-Pressure
	Computational Meshes
	What You Need to Know


	IV Understanding Navier-Stokes
	The Secret
	Potential Flow
	The Euler Equations
	Euler's Optimism vs D'Alembert's Paradox
	Potential Flow as Near Navier-Stokes Solution
	2d Potential Flow Separates only at Stagnation
	Point Stagnation vs Line Stagnation
	Bernoulli's Principle
	Potential Flow: Unstable in 3d Stable in 2d

	3D Slip Separation
	Rotational Separation
	From Unstable to Quasi-Stable Separation
	Stability Analysis by Linearization
	Instability of 2d Irrotational Separation
	Quasi-Stable Rotational 3d Separation
	Quasi-Stable Potential Flow Attachment
	Resolution of D'Alembert's Paradox
	Magnus Effect by Unsymmetric Separation

	Parallel Separation
	Flat Plate Separation
	Bluff Body Flow
	Scale Invariance and LES
	Effect of Shear Layers
	Effect of Trailing Edge Diameter
	Large Eddy Simulation (LES)


	V Incorrect Theory
	Incorrect Theories for Uneducated
	The Value of Incorrect Theory
	Incorrect Theories: NASA
	Trivial Theory: NASA

	Incorrect Theory for Educated
	Newton, d'Alembert and Wright
	Kutta-Zhukovsky: Circulation: Lift
	Magnus Effect by Circulation
	Prandtl: Boundary Layer: Drag King
	Vortex Stretching: Kelvin's Theorem Illposed
	Lifting Line Theory Illposed
	More Confusion

	Summary of State-of-the-Art
	Newton
	D'Alembert and Potential Flow
	Kutta-Zhukovsky-Prandtl
	Why Prandtl Was Wrong
	Why Kutta-Zhukovsky Were Wrong

	Text Books
	Aircraft Flight by Barnard-Philpott
	Mechanics of Flight by Kermode
	Aerodynamics of the Airplane by Schlichting
	Understanding Flight by Anderson-Eberhardt
	Theory of Flight by von Mises
	The Simple Science of Flight by Tennekes
	Physics of Flight Reviewed by Weltner
	Flight Physics by Torenbeek-Wittenberg
	The Physics of Flight by Lande

	Making of the Prandtl Myth
	By Schlichting: Student
	By von Karman: Student
	By Prandtl: Himself
	By Anderson: Curator of Aerodynamics

	Confessions
	New York Times, 
	AIAA
	AVweb
	Airfoil Lifting Force Misconception
	Live Science
	The Straight Dope
	Smithsonian Space Museum
	HowStuffWorks
	Wikipedia Lift Force
	Desktop Aeronautics


	VI History
	Aristotele
	Liberation from Aristotle

	Medieval Islamic Physics of Motion
	Avicenna
	Abu'l-Barakat
	Biruni
	Biruni's Questions
	Ibn al-Haytham
	Others

	Leonardo da Vinci
	The Polymath
	The Notebooks
	The Scientist
	The Mathematician
	The Engineer
	The Philosopher

	Newton's Incorrect Theory
	Robins and the Magnus Effect
	Early Pioneers
	Cayley
	Lilienthal and Wright

	Lilienthal and Bird Flight
	Wilbur and Orwille Wright
	Lift by Circulation
	Lanchester
	Kutta
	Zhukovsky

	The Disastrous Legacy of Prandtl
	Critique by Lancaster and Birkhoff
	Can You Prove that Prandtl Was Incorrect?

	Prandtl and Boundary Layers
	Separation
	Boundary Layers
	Prandtl's Resolution of d'Alembert's Paradox


	VII AIAA and New Theory
	A Kuhnian Case Study
	AIAA Rejection Letter
	Referee Report 1
	Referee Report 2
	Short Analysis of Referee Reports
	Analysis of Referee Report 2
	Analysis of Referee Report 1
	Rebuttal by Authors Version 1
	Our Criticism of 2d Kutta-Zhukovsky Circulation Theory of Lift
	Our Criticism of Prandtl's Boundary Layer Theory of Drag
	Our New Theory of Flight

	Rebuttal by Authors Version 2
	Defense by AIAA
	Analysis of Defense by AIAA 1
	Analysis of Defense by AIAA 2
	Letter to Editor-in-Chief AIAA J
	Redundant Material


