
The Secret of Sailing (Draft)

Claes Johnson
All Rights Reserved



2



Contents

I Basics 3

1 The Miracle of Sailing 5

2 The Miracle of Beating 9
2.1 The Principle of Drive from Lift . . . . . . . . . . . . . . . . . 9
2.2 Balance of Heeling and Drive-Drag . . . . . . . . . . . . . . . 10
2.3 The Miracle: L

D
> 10 . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Analysis of Standard Case . . . . . . . . . . . . . . . . . . . . 11

3 Americas Cup Wing-Sail 15

4 Empty State-of-the-Art Theory 17

5 Sailboats 19
5.1 Phoenician Ships . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Polynesian Outriggs . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Viking Longships . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Cogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5 Sailing Ships . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.6 Chinese Junk . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.7 The Swedish Ship Vasa . . . . . . . . . . . . . . . . . . . . . . 26
5.8 Arabian Dhow . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Riggs 31
6.1 Lateen Sail . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Gaff Rig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3 Bermuda/Marconi Rig . . . . . . . . . . . . . . . . . . . . . . 33
6.4 Sloop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3



4 CONTENTS

6.5 Clipper, Ketch, Yawl, Scooner . . . . . . . . . . . . . . . . . . 37

7 Americas Cup 39
7.1 America of New York Yacht Club . . . . . . . . . . . . . . . . 39
7.2 Shamrock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.3 The 12-metre Class . . . . . . . . . . . . . . . . . . . . . . . . 40
7.4 The 1988 Big Boat Cup . . . . . . . . . . . . . . . . . . . . . 41
7.5 IACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

II Lift and Drag 43

8 The Mystery of Flight 45
8.1 What Keeps Airplanes in the Air? . . . . . . . . . . . . . . . . 45
8.2 Understand a Miracle . . . . . . . . . . . . . . . . . . . . . . . 47
8.3 Aerodynamics as Navier-Stokes Solutions . . . . . . . . . . . . 47
8.4 Computation vs Experiments . . . . . . . . . . . . . . . . . . 49
8.5 Many Old Theories: None Correct . . . . . . . . . . . . . . . . 49
8.6 Correct New Theory: d’Alembert’s Paradox . . . . . . . . . . 51

9 Incorrect Theories for Uneducated 53
9.1 Incorrect Theories: NASA . . . . . . . . . . . . . . . . . . . . 53
9.2 Trivial Theory: NASA . . . . . . . . . . . . . . . . . . . . . . 57

10 Incorrect Theory for Educated 59
10.1 Newton, d’Alembert and Wright . . . . . . . . . . . . . . . . . 59
10.2 Kutta-Zhukovsky: Circulation: Lift . . . . . . . . . . . . . . . 59
10.3 Prandtl: Boundary Layer: Drag King . . . . . . . . . . . . . . 60
10.4 More Confusion . . . . . . . . . . . . . . . . . . . . . . . . . . 61

11 Summary of State-of-the-Art 65
11.1 Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
11.2 d’Alembert and Potential Flow . . . . . . . . . . . . . . . . . 65
11.3 Kutta-Zhukovsky-Prandtl . . . . . . . . . . . . . . . . . . . . 66
11.4 Text Book Theory of Flight . . . . . . . . . . . . . . . . . . . 67

12 Shut Up and Calculate 69
12.1 Naviers-Stokes vs Schrödinger . . . . . . . . . . . . . . . . . . 69
12.2 Compute - Analyze - Understand . . . . . . . . . . . . . . . . 70



CONTENTS 5

13 Mathematical Miracle of Flight 71
13.1 Mathematical Computation and Analysis . . . . . . . . . . . . 72

14 Observing Pressure, Lift and drag 75
14.1 Potential Flow Modified at Separation . . . . . . . . . . . . . 75
14.2 Pressure, Lift and Drag Distribution . . . . . . . . . . . . . . 76

15 Observing Velocity 81

16 Observing Vorticity 89

17 Summary of Observation 93
17.1 Summary Lift and Drag . . . . . . . . . . . . . . . . . . . . . 94

18 Computation vs Experiments 95
18.1 Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
18.2 Data for Experiments . . . . . . . . . . . . . . . . . . . . . . . 95
18.3 Comparing Computation with Experiment . . . . . . . . . . . 98

19 Sensitivity of Lift/Drag vs Discretization 99
19.1 A Posteriori Error Control by Duality . . . . . . . . . . . . . . 99
19.2 Dual Pressure and Velocity . . . . . . . . . . . . . . . . . . . . 99

20 Preparing Understanding 103
20.1 New Resolution of d’Alembert’s Paradox . . . . . . . . . . . . 103
20.2 Slip/Small Friction Boundary Conditions . . . . . . . . . . . . 103
20.3 Computable + Correct = Secret . . . . . . . . . . . . . . . . . 104
20.4 No Lift without Drag . . . . . . . . . . . . . . . . . . . . . . . 104

21 Kutta-Zhukovsky-Prandtl Incorrect 107

22 Mathematical Miracle of Sailing (delete) 109

III Mathematics 111

23 Navier-Stokes Equations 113
23.1 Conservation of Mass, Momentum and Energy . . . . . . . . . 113
23.2 Wellposedness and Clay Millennium Problem . . . . . . . . . . 115
23.3 Laminar vs Turbulent Boundary Layer . . . . . . . . . . . . . 115



6 CONTENTS

24 G2 Computational Solution 117
24.1 General Galerkin G2: Finite Element Method . . . . . . . . . 117
24.2 A Posteriori Error Control and Wellposedness . . . . . . . . . 118
24.3 What You Need to Know . . . . . . . . . . . . . . . . . . . . . 118
24.4 Turbulent Flow around a Car . . . . . . . . . . . . . . . . . . 118

25 Potential Flow 121
25.1 Euler defeated by d’Alembert . . . . . . . . . . . . . . . . . . 121
25.2 Potential Flow as Near Navier-Stokes Solution . . . . . . . . . 122
25.3 Potential Flow Separates only at Stagnation . . . . . . . . . . 123
25.4 Vortex Stretching . . . . . . . . . . . . . . . . . . . . . . . . . 123

26 D’Alembert and his Paradox 125
26.1 d’Alembert and Euler and Potential Flow . . . . . . . . . . . . 125
26.2 The Euler Equations . . . . . . . . . . . . . . . . . . . . . . . 127
26.3 Potential Flow around a Circular Cylinder . . . . . . . . . . . 128
26.4 Non-Separation of Potential Flow . . . . . . . . . . . . . . . . 131

27 Lift and Drag from Separation 133

28 Separation 135
28.1 From Unstable to Quasi-Stable Separation . . . . . . . . . . . 135
28.2 Resolution of D’Alembert’s Paradox . . . . . . . . . . . . . . . 138
28.3 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
28.4 Navier-Stokes Equations with Slip by G2 . . . . . . . . . . . . 139
28.5 Stability Analysis by Linearization . . . . . . . . . . . . . . . 140
28.6 Instability of 2d Irrotational Separation . . . . . . . . . . . . . 141
28.7 Quasi-Stable Rotational 3d Separation . . . . . . . . . . . . . 143
28.8 Quasi-Stable Potential Flow Attachment . . . . . . . . . . . . 144

29 Basic Cases 145
29.1 Circular Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . 145
29.2 NACA0012 Trailing Edge Separation . . . . . . . . . . . . . . 147
29.3 Accuracte Drag and Lift without Boundary Layer . . . . . . . 149
29.4 Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
29.5 Hill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
29.6 Flat Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

30 Energy Estimate 153



CONTENTS 7

31 G2 Computational Solution 157
31.1 Wellposedness of Mean-Value Outputs . . . . . . . . . . . . . 158



8 CONTENTS



CONTENTS 1

Foreword

Northern California has a storied, 500-year history of sailing. But
despite this rich heritage, scientists and boat designers continue to
learn more each day about what makes a sail boat move. Contrary
to what you might expect, the physics of sailing still present some
mysteries to modern sailors. (The Physics of Sailing [?])

In this book we present a mathematical theory of sailing based on a com-
bination of analysis and computation. By computing and analyzing turbulent
solutions of the incompressible Navier-Stokes equations for slightly viscous
flow subject to force boundary conditions, we uncover the combined mech-
anisms of a sail and keel of generating lift and drag with crucial lift/drag
ratio > 6 for the sail and > 10 for the keel, which can drive a sailing
boat into the wind (with an upwind velocity component). This new the-
ory is fundamentally different from that envisioned in the classical theories
by Kutta-Zhukovsky for lift in inviscid flow and by Prandtl for drag in vis-
cous flow. We show that lifting flow with large lift/drag ratio, results from
an instability mechanism at rear separation of slightly viscous flow generat-
ing counter-rotating low-pressure rolls of streamwise vorticity inititated as
surface vorticity resulting from meeting opposing flows. This mechanism is
entirely different from the circulation mechanism of Kutta-Zhukovsky the-
ory. We show that the new theory allows accurate ab initio computation
of lift, drag and heeling moments of an entire sailing boat using a million
mesh-points, instead of the impossible quadrillions of mesh-points required
according to state-of-the-art following Prandtl’s dictate of resolution of very
thin boundary layers connected with no-slip velocity boundary conditions.
The new theory thus offers a way out of the present deadlock of compu-
tational fluid mechanics of slightly viscous turbulent flow, and opens new
possibilities of realistic simulation of sailing.

Stockholm Dec 2011

Claes Johnson
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Figure 1: Seeking to balance the heeling on a beat.



Part I

Basics
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Chapter 1

The Miracle of Sailing

The pessimist complains about the wind; the optimist expects it to
change; the realist adjusts the sails. (William Arthur Ward)

He is the best sailor who can steer within the fewest points of the
wind, and extract a motive power out of the greatest obstacles. Most
begin to veer and tack as soon as the wind changes from aft, and as
within the tropics it does not blow from all points of the compass,
there are some harbors which they can never reach. (Henry David
Thoreau)

The use of boats and in particular sailing boats has been instrumental
in the development of human civilization. The big sail ships enabling World
trade were replaced by a motored ships in the late 19th century, but may
come back with increasing shortage of fuel.

The earliest representation of a ship under sail appears on an Egyptian
vase from about 3500 B.C. Advances in sailing technology from the Mid-
dle Ages onward enabled Arab, Chinese, Indian and European explorers to
make longer voyages into regions with extreme weather and climatic condi-
tions. Improvements were made in the design of sails, masts and rigging, and
navigational equipment became more sophisticated. From the 15th century
onwards, European ships went further north, stayed longer on the Grand
Banks and in the Gulf of St. Lawrence, and eventually began to explore the
Pacific Northwest and the Western Arctic.

A sailing boat is a boat with a sail and usually also a keel attached to the
hull under water. Depending on the direction of the wind to the direction of
motion of the boat, sailing relies on different physical principles.

5



6 CHAPTER 1. THE MIRACLE OF SAILING

Sailing the boat within roughly 30 degrees either side of dead downwind
(wind straight from behind) is called a run. In this case the sail is mounted
roughly perpendicular to the wind direction and propels the boat simply by
the drag from the airflow around the sail in the direction of the wind, and a
keel is not really necessary.

Figure 1.1: Lift L and drag D forces on a sail.

It is possible to also sail upwind (against the wind) by beating with close-
hauled sails at 35-80 degrees off the wind depending on the boat, and repeat-
edly changing direction by tacking, but this requires a keel. In beating both
the sail and keel act like airfoils generating forces of lift L and drag D at
certain angles of attack of the sail to the wind direction and of the keel to
the the motion of the boat through the water. A forward component of the
lift from the sail (drive) propels the boat forward, while the side component
(heeling) is balanced by lift in the opposite direction from the keel. The drive
is balanced by drag forces from sail, keel and hull.

A good, modern sloop can sail within 25 degrees of the apparent wind,
which is the real wind meeting the sail taking the boat velocity into account.
An America’s Cup racing sloop can sail within 16 degrees under ideal condi-
tions. Those figures might translate into 45 degrees and 36 degrees relative
to the actual wind, depending on boat speed.

The lift-to-drag quotient L
D

of both sail and keel needs to larger than 6-8
to allow beating at 45 degrees, and the miracle of sailing can thus be said to
be to explain why a sail and a keel is capable of generating L

D
> 6− 8 with
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a larger value the better.
A boat traveling approximately perpendicular to the wind, that is be-

tween beating and running, is reaching with again both sail and keel acting
like airfoils, with the difference to beating that sails are not close-hauled.

We focus in this book first on beating and reaching with both sail and
keel acting like the wing on an airplane with L

D
> 6− 8 at maximal lift. The

miracles of sailing and flying are thus closely connected.
When sailing dead downwind the speed of the boat is limited to the

wind speed, since drive in this case comes from drag, but in reaching with
drive from lift it is possible to go quicker than the wind speed, in which
case the apparent wind is quite different from the true wind and sails have
to be more close-hauled than with less speed. This effect(which is particu-
larly pronounced in high-speed ice-sailing with the sails always close-hauled
independent of the direction to the true wind.
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Figure 1.2: The secret of sailing: Lift L, drag D and lift-to-drag L
D

for
different (apparent) angles of attack. Note that L

D
≈ 6 at maximal lift at an

angle of attack of 20 degrees, while maximum L
D
≈ 13 is obtained at an angle

of attack of 6 degrees.



Chapter 2

The Miracle of Beating

2.1 The Principle of Drive from Lift

Let us now do some simple mathematics showing the principle of beating
under the assumption that L

D
> 10 for both sail and keel. We then proceed

as a main part of the book to explain in detail how sail and keel act to
generate L

D
> 10. Together this explains the miracle of sailing based on the

miracle of beating.

We consider beating at speed v against a wind of speed w (both vs the
water) under forces from a close-hauled sail (with beam parallel to the midline
of the boat) at a given apparent angle of attack α ≈ 15− 20 degrees, from a
keel at a certain angle of attack (leeway) β ≈ 5− 10 degrees and from drag
of the hull.

Commonly v ≈ 2
3
w corresponding to a speed of about 0.5w in the di-

rection opposite to the wind, which is roughly the same as the speed in full
downwind in the wind direction. A higher speed may thus be reached in
beating than in full downwind, while the effective speed in the full upwind
direction is the same as in the full downwind direction.

The forward drive force is given as the component F = sin(α)L of the
lift force L acting on the sail in a direction perpendicular to the apparent
wind direction with F the component of L in the forward direction of the
boat as shown in Fig. 2.1. The component H = cos(α)L perpendicular to
the direction of the boat creates heeling. The drag force D from the sail
has a component cos(α)D opposite to the drive F, and a (small) component
sin(α)D adding to the heeling, see Fig. 2.1.

9



10 CHAPTER 2. THE MIRACLE OF BEATING

The lift and drag forces on the sail from the wind are balanced by lift and
drag forces on the keel from the motion of the boat through the water at the
angle β off the direction of the midline of the boat, as shown in Fig. 2.1.

The lift coefficient LS scales with the angle of attack α until stall at an
angle of attack of 15 − 20 degrees, that is LS(α) ≈ L̄Sα with L̄S a certain
constant for α < 15 − 20. The drag coefficient increases quadratically from
a positive minimal value for α, that is DS(α) ≈ DS(0) + D̄Sα

2 with AD a
constant. The lift and drag coefficients of the keel have the same dependence
on the leeway β. The drag coefficient DH for the hull is roughly constant
up to a certain maximal speed determined by the length of the boat (scaling
roughly with the squareroot of the length).

2.2 Balance of Heeling and Drive-Drag

Balancing heeling forces from sail and keel using that cos(α) ≈ cos(β) and
sin(α)D ≈ 0, we have

L = LS(v + w)2 = LKv
2, (2.1)

where LS is the lift coefficient of the sail for a given a given apparent angle α
with L = LS(v+w)

2 the lift force scaling quadratically with the approximate
wind speed v + w vs the sail, and LK the corresponding lift coefficient for
the keel at its angle of attack β.

Balancing the drive force F with the opposite drag forces using that
cos(α) ≈ cos(β) ≈ 1 and that the keel lift has a forward drive component,
we have

F = sin(α)LS(v + w)2

= DS(v + w)2 +
DK

LK

LKv
2 − sin(β)LKv

2 +DHv
2

= DS(v + w)2 + (
DK

LK

− sin(β))LS(v + w)2 +DHv
2,

(2.2)

where we used (2.1) and DS, DK and DH denote drag coefficients for sail,
keel and hull. We thus find the following balance of drive and drag forces:

(sin(α) + sin(β)− DK

LK

− DS

LS

)LS(v + w)2 = DHv
2, (2.3)
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which together with (2.1) determines the boat speed v and leeway β for
each given apparent angle of attack α, with β < α for normal keels. With v
determined the true angle of attack ᾱ can be computed as ᾱ ≈ (1+ v

w
)α. The

boat speed in the direction opposite to the wind is then given as cos(ᾱ+β)v,
which is to be maximized in α to give maximal speed in the direction opposite
to the wind.

We see that the drive F = sin(α)LS(v+w)
2 has to balance the drag forces

from sail, keel and hull, with thus sin(α) + sin(β) ≈ α + β at least twice as
large as DS

LS
+ DK

LK
to overcome the drag DH(v) from the hull.

With α ≈≈ 20, β ≈ 10 and sin(α) + sin(β) ≈ 0.5, this requires LS

DS
and

LK

DK
to be larger than 6− 8.

2.3 The Miracle: L
D > 10

The miracle of sailing is that lift-to-drag ratios of sail and keel can be as
large as 10. This book gives a new explanation of the physics of this miracle,
which is not correctly described in the literature. The new explanation is
expected to open to new designs of sails and keels.

2.4 Analysis of Standard Case

Simplifying (2.4) to
sin(α)LS(v + w)2 = DHv

2, (2.4)

and using that LS = L̄S α and sin(α) ≈ α (measuring here α in radians), we
find that

v = γw, γ =
Aα

1− Aα
, A =

√
L̄S

DH

. (2.5)

With α = 0.25 as maximal value and A = 1.6, we have Aα = 0.4 and γ = 2
3

representing a standard case.
To check if the upwind velocity v̄(α) ≡ cos(α)v is maximized for α = 0.25,

we differentiate to get

dv̄

dα
= cos(α)

dv

dα
− sin(α)v,

dv

dα
=

Aw

(1− Aα)2
, (2.6)

which shows that dv̄
dα
> 0 for α = 0.25.
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The progress upwind with the lift-drag curves according to Fig. 1.2 is
thus optimized at maximal lift LS from the sail at maximal angle of attack
α ≈ 18 slightly before stall with LS

DS
= 6− 8, while the angle of attack of the

keel β typically is smaller (5− 10) and LK

DK
larger ≈ 12.
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Figure 2.1: Lift L and drag D from sail at beating with drive F = sin(α)L
at angle of attack α, balanced by lift and drag from the keel at the angle
of attack β (plus drag from the hull). Notice that the wind approaches the
sail from the left, while the water approaches the keel from the right, giving
opposite lift forces.
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Chapter 3

Americas Cup Wing-Sail

AC45 is a forerunner to the next generation of Americas Cup boats: A wing-
sailed catamaran designed for speed over 30 mph and close racing.

Figure 3.1: AC 45 wing sail.

• AC45, Capsize, Wing sail
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Figure 3.2: AC 45 beating.



Chapter 4

Empty State-of-the-Art Theory

To get motivation to go into the new theory of sailing it may help to under-
stand that state-of-the-art has very little to offer to explain the miracle of
sailing. Here is what the web offers:

• School of Physics U of New South Wales: Newton’s old theory (incor-
rect)

• physicstoday: Bernoulli or Newton? (both incorrect or empty)

• Wikipedia: Like an airplane wing (empty)

• U of Alaska-Fairbanks: Bernoulli (incorrect or empty)

• Real World Physics Problems: Newton (incorrect)

• Teacher’s Domain: Like an airplane wing, Bernoulli (incorrect or empty)

• U of North Carolina: Bernoulli (incorrect or empty)

• howstuffworks: Bernoulli (incorrect or empty)

• The Physics of Sailing Explained: Bernoulli (incorrect or empty)

The most ambitious treatment is given in Physics of Sailing by J. Kimball,
where both Bernoulli and Kutta-Zhukovsky’s circulation theory (incorrect)
are presented, but with a disappointing sum-up on p 163:

17
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• The sail experiences lift because the sail deflects the wind. Equal and
opposite forces mean that is the sail pushes the wind in one direction,
the wind pushes the sail the other way.

• This explanation, which relies only on the rule of equal and opposite
forces, is surely correct.

Yes, it is surely correct, as any empty theory which explains nothing, as
illustrated in the above picture.

We see that there is surely a great need for a correct theory which explains
the physics of sailing and that there is no such theory in state-of-the-art. Our
work fills this gap in physics theory and in particular shows that the state-of-
the-art explanations represented by Newton, Bernoulli or Kutta-Zhukovsky
are all incorrect.

Of course, the physics of flying and sailing is not of any interest to physi-
cists of today paralyzed by string theory, but it is an interesting problem of
physics of importance to many.

Figure 4.1: Empty explanation of lift of a sail as a reaction force from redi-
rection of airflow.



Chapter 5

Sailboats

If one does not know to which port one is sailing, no wind is favourable.
(Seneca)

When everything seems to be going against you, remember that the
airplane takes off against the wind, not with it. (Henry Ford)

A certain amount of opposition is a great help to a man. Kites rise
against and not with the wind. Even a head wind is better than none.
No man ever worked his passage anywhere in a dead calm. Let no
man wax pale, therefore, because of opposition. (John Neal)

Since ancient times, people have been sailing in sailboats, as a quicker
way to get across body of water then using a row boat. The ancient Romans
combined both rowing and sailing into one boat and built a formidable navy
of booats with many sails and slaves at oars in the hull. When man fitted
his ship with a sail he probably made the most cost efficient way to travel.
The fastest and most efficient sail boats of the 19th century were the clipper
ships relying only on wind power.

Ancient sail boats used hand woven sails that were very durable and could
stand the onslaught of the salty waves and the wind. Modern sails are made
of lightweight polyester which can withstand dampness better than the sails
made from natural fiber.

5.1 Phoenician Ships

The best seafarers and ship builders of the ancient world were the Phoenicians
using well designed ships for carrying both cargo and supplies needed by the

19



20 CHAPTER 5. SAILBOATS

sailors. Both war and merchant ships were made with foresails, the sail hung
on the forward mast or stay, with the mainsail in the centre of the boat. The
keeled boat or ship is very likely a Phoenician invention. Both with oars and
sails they plied the waters of the Mediterranean and eager for scarce trade
goods, the Phoenicians passed the pillars of Hercules to the Atlantic, and
south to trade ivory with the West Africans, and north to the British Isles
seeking tin and lead.

The history of the Phoenicians spans centuries. From crude dugout ca-
noes through keeled oared boats and on to keeled ships with both sail and
oars. There are images of Phoenician ships on many ancient coins. The
Phoenicians of Tyre had the great benefit of being a port city at the end of
great caravan routes. They exploited this to the extreme, and founded trad-
ing colonies in many locations around the Mediterranean. The Phoenicians
are the forebears of the Carthaginians, and they invented double decked war
galleys called biremes whose bronze beaks or rams were greatly feared by
opposing ships. The Greeks of Corinth are said to have one upped this idea
with the invention of the trireme, and by the time of the Carthaginians the
idea of extra oar decks for increased power and speed had been pushed to
the extreme in the form of four and five decked warships.

Figure 5.1: Phoenician round ships.

5.2 Polynesian Outriggs

The Polynesian people are considered to be by ancestry a subset of the sea-
migrating Austronesian people and the tracing of Polynesian languages places
their prehistoric origins in the Malay archipelago some 3000-8000 years ago.

Between 300 and 500 AD, the Polynesians discovered and settled Rapa
Nui (Easter Island). Around AD 500 Hawai’i was settled by the Polynesians
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and around AD 1000 Aotearoa (New Zealand). The migration of the Poly-
nesians is impressive considering that the islands settled by them are spread
out over great distances the Pacific Ocean covers nearly a half of the Earth’s
surface area. Most contemporary cultures, by comparison, never voyaged
beyond sight of land. Polynesians used outriggs, the predecessors of todays
catamarans:

Figure 5.2: Zanzibar outrigg with lateen sail still common.

5.3 Viking Longships

Viking longships were ships primarily used by the Scandinavian Vikings and
the Saxon people to raid coastal and inland settlements during the Euro-
pean Middle Ages. The vessels were also used for long distance trade and
commerce, and for exploratory voyages to Iceland, Greenland, and beyond.
Longship design evolved over several centuries and was fully developed by
about the 9th century. The character and appearance of these ships have
been reflected in Scandinavian boat-building traditions until today.

The longship was characterized as a graceful, long, narrow, light wooden
boat with a shallow draft hull designed for speed. The ship’s shallow draft
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allowed navigation in waters only one meter deep and permitted beach land-
ings, while its light weight enabled it to be carried over portages. Longships
were also double-ended, the symmetrical bow and stern allowing the ship to
reverse direction quickly, without having to turn around. Longships were
fitted with oars along almost the entire length of the boat itself. Later ver-
sions sported a rectangular sail on a single mast which was used to replace
or augment the effort of the rowers, particularly during long journeys. Long-
ships were the epitome of Scandinavian naval power at the time, although
earlier shipbuilding techniques in ancient Greece and Rome, were far more
sophisticated and varied, especially in terms of joinery.

Figure 5.3: Reconstructed viking longship.

Even though no longship sail has been found, accounts verify that long-
ships had square sails. Sails measured perhaps 35 to 40 feet (12 m) across,
and were made of wadmill (rough wool) which was woven by looms. Unlike
the knarrs, the longship sail was not stitched. The sail was held in place by
the mast. The mast was supported by a large block of wood called ”kerling”
(”Old Woman” in Old Norse). (Trent) The kerling was made of oak, and
was as tall as a Viking man. The kerling lay across the two ribs and ran
width-wise along the keel. The kerling also had a companion: the ”mast
fish”, a wooden piece above the kerling that provided extra help in keeping
the mast erect.
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The longship had two methods of propulsion: oars and sail. At sea,
the sail enabled longships to travel faster than by oar and to cover long
distances overseas. Sails could be raised or lowered quickly. Oars were used
when near the coast or in a river, to gain speed quickly, and when there was
an adverse (or insufficient) wind. In combat, the variability of wind power
made rowing the chief means of propulsion. Longships were not fitted with
benches. When rowing, the crew sat on sea chests (chests containing their
personal possessions) that would otherwise take up space. The chests were
made the same size and were the perfect height for a Viking to sit on and
row. Longships had hooks for oars to fit into, but smaller oars were also
used, with crooks or bends to be used as oarlocks. If there were no holes
then a loop of rope kept the oars in place.

The longship was a master of all trades: it was wide and stable, yet light,
fast and nimble. With all these qualities combined in one ship, the longship
was unrivaled for centuries, until the arrival of the great cog.

In Scandinavia, the longship was the usual vessel for war even with the
introduction of cogs in the 12th-13th century by the late 14th century, these
low-boarded vessels were at a disadvantage against newer, taller vessels -
when the Victual Brothers, in the employee of the Hansa, attacked Bergen
in the autumn of 1393, the ”great ships” of the pirates could not be boarded
by the norwegian levy ships called out by Margaret I of Denmark and the
raiders were able to sack the town with impunity. While earlier times had
seen larger and taller longships in service, by this time the authorities had
also gone over to other types of ships for warfare.

5.4 Cogs

A cog is a type of ship that first appeared in the 10th century, and was
widely used from around the 12th century on. Cogs were generally built of
oak, which was an abundant timber in the Baltic. This vessel was fitted
with a single mast and a square-rigged single sail. Even though this type
of rigging prohibited sailing into the wind, it could be handled by a smaller
crew, which reduced operational costs. These vessels were mostly associated
with seagoing trade in medieval Europe, particularly in the Baltic Sea region.
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Figure 5.4: British cog.

5.5 Sailing Ships

The caravel was a small ship made of the common beachwood found on the
shores of Europe. These ships had three masts, the mizzen carrying a lateen
sail, while the fore and main were square rigged. Larger ones had a square
rigged foremast, while the main, mizzen, and bonaventure were lateen rigged.
Christopher Columbus’ Pinta and Nina were caravels. Also, Vasco Da Gama
and other Portuguese explorers used the caravel to reach India via the Cape
of Good Hope. John Cabot’s ship Mattew was alos a caravel. Magellan had
a caravel in his posession when he commanded the first circumnavagation.
Caravels were capable ships and perfect for those first voyages out from the
shores of Europe by Spain, Portugal, and England. They were faster than
many other ships, but carried few guns. They were essentially merchant ships
ranging from 60 to 200 tons.

The carrack was similar in rig to the caravel. These ships usually had
the same sail arrangements as a Caravel, but with the addition of a spritsail
on the bowsprit, and a topsail on the main mast. Carracks were also quite
larger. The Portuguese were well known around the world for their huge, if
unseaworthy, carracks. In Japan, Portuguese carracks were known as ’black
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ships’, because of the black tar that covered their sides. The fore and after
castles on these ships extended much higher than they needed to be, causing
them to tip over in strong winds. Columbus’ Santa Maria was a small carrack.
The advent of the galleon made the carrack obsolete.

The sloop was a small craft with almost yacht characteristics. These
ships had one mast, being square rigged with a gaff-spanker and jibs. Even-
tually, the speed of these ships brought an entire fleet, used to hunt down
pirates in the late 17th century.

Seemigly a greatly generalized term, the word barque applies to a number
of small merchant and coastal vessels. These ships range from fully lateen
rigged to square rigged ships. These ships usually did not exceed 300 tons,
and sometimes had oars to propell them through poor winds or into the eye
of the wind.

A very well specified ship, flutes had the hull qualities of the smaller
ships (a shallow draft), but had more cargo space and were square rigged
with a lateen sail on the mizzen. Though these ships had more space, they
lacked oars so going into the wind brought them to a halt. The Dutch used
these ships commonly, and the English did aswell, only to a lesser extent.
Flutes were common in the Caribbean, Dutch coastal waters, and the ports
of Britain. It was a very popular ship type.

The frigate was a light, fast, but heavily armed warship used by all Euro-
pean nations. Square rigged as was the sail arrangement of most ships of its
size, making it a fast and formidable opponent in battle. These ships usually
sailed alone but when ever pirates spotted them, the pirates would fade into
the distance. Such ships had the quality of being faster than anything more
heavily armed, and more heavily armed than anything faster. 20 to 30 guns
was the usual weapons compliment of frigates in this age.

The spanish galeon most heavily armed and largest merchant vessel
of the period, they were cumbersome and slow. Such ships were employed
by Spanish Treasure Fleets that carried gold, silver, and jewels from the
Caribbean to Spain. They often had a large compliment of guns and crews
to protect them if they were ever let a-stray from the fleet. Much of the
Spanish Armada was made up of such ships, totalling 64 galleons. The
average galleon carried a spritsail, top and course on the fore mast, top and
main on the main mast, and lateen rigged mizzen and bonaventure. These
ships had reduced upper superstructure, making them seaworthy enough to
travel the globe. They best sailed with the main course furled.
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5.6 Chinese Junk

A junk is a Chinese sailing vessel originally developed during the Han Dy-
nasty (220 BC200 AD) and further evolved to represent one of the most
successful ship types in history. Unlike a traditional square rigged ship, the
sails of a junk can be moved inward, toward the long axis of the ship, al-
lowing the junk to sail into the wind. The sails include several horizontal
members, called ”battens”, which provide shape and strength. Junk sails
are controlled at their trailing edge by lines much in the same way as the
mainsail on a typical sailboat; however, in the junk sail each batten has a
line attached to its trailing edge where on a typical sailboat this line (the
sheet) is attached only to the boom. The sails can also be easily reefed and
adjusted for fullness, to accommodate various wind strengths. The battens
also make the sails more resistant than traditional sails to large tears, as a
tear is typically limited to a single ”panel” between battens. Junk sails have
much in common with the most aerodynamically efficient sails used today
in windsurfers or catamarans, although their design can be traced back as
early the 3rd century AD. The standing rigging is simple or absent. The
sail-plan is also spread out between multiple masts, allowing for a powerful
sail surface, and a good repartition of efforts. The rig allows for good sailing
into the wind.

The bottom is flat with no keel (similar to a sampan), so that the boat
relies on a daggerboard or very large rudder to prevent the boat from slipping
sideways in the water.The largest junks were built for world exploration in
the 1400s, and were over 120 metres in length.

5.7 The Swedish Ship Vasa

Vasa was a warship built for King Gustavus Adolphus of Sweden from 1626
to 1628. The ship foundered and sank after sailing less than a nautical mile
(ca 2 km) into her maiden voyage on 10 August 1628. Vasa fell into obscurity
after initial attempts at recovering her valuable cannons in the 17th century
but was located again in the late 1950s and salvaged with a largely intact
hull and later put into the Vasa Museum in Stockholm.

Vasa was too top-heavy with two gun-decks and insufficient ballast and
was known to be unstable already in port. Nevertheless, because King Gus-
tavus Adolphus was impatient to see Vasa join the Baltic fleet in the Thirty
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Figure 5.5: Junk.

Figure 5.6: The stern of the Vasa Ship with excessive decoration.
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Years’ War, she was allowed to set sail and foundered a few minutes later
when she first encountered a wind stronger than a breeze.

5.8 Arabian Dhow

A dhow is a traditional Arab sailing vessel with one or more lateen sails, as
described below. They are primarily used along the coasts of the Arabian
Peninsula, Pakistan, India, and East Africa. Larger dhows have crews of
approximately thirty, while smaller dhows typically have crews of around
twelve.

Up to the 1960s, dhows made commercial journeys between the Persian
Gulf and East Africa using sails as their only means of propulsion. Their
cargo was mostly dates and fish to East Africa and mangrove timber to the
lands in the Persian Gulf. They sailed south with the monsoon in winter or
early spring and back again to Arabia in late spring or early summer. The
term ”dhow” is also applied to small, traditionally-constructed vessels used
for trade in the Red Sea and the Persian Gulf area and the Indian Ocean
from Madagascar to the Gulf of Bengal. Such vessels typically weigh 300 to
500 tons, and have a long, thin hull design.
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Figure 5.7: Dhow with lateen sail.

Figure 5.8: Building a dhow on Zanibar in 2005.
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Chapter 6

Riggs

6.1 Lateen Sail

The lateen sail was used in Arabian Seas at least since the fourth century
B.C. A lateen (from a la trina, meaning triangular) or latin-rig is a triangular
sail set on a long yard mounted at an angle on the mast, and running in a
fore-and-aft direction.

In western culture, the rig is originally reported found on sailing ships
about the Mediterranean Sea, where the sail plan may have originated with
the Arab traders plying the coastal routes of the spice trade across the Red
Sea and Indian Ocean. The lateen is used today in a slightly different form
on small recreational boats like the highly popular Sunfish, but is still used as
a working rig by coastal fishermen in the Mediterranean outside East Africa
and the northwestern parts of the Indian Ocean, where it is the standard rig
for feluccas and dhows.

Until the 14th century, the lateen sail was employed primarily on the
Mediterranean Sea and Indian Ocean, while the Atlantic and Baltic vessels
relied on square sails. The Northern European adoption of the lateen in the
Late Middle Ages was a specialized sail that was one of the technological
developments in shipbuilding that made ships more maneuverable, thus, in
the historian’s traditional progression, permitting merchants to sail out of
the Mediterranean and into the Atlantic Ocean; caravels typically mounted
three or more lateens. However, the great size of the lateen yardarm makes
it difficult and dangerous to handle on large ships in stormy weather, and by
the eighteenth century the lateen was restricted to the mizzen mast. In the
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Figure 6.1: Contemporary version of lateen sail.

early nineteenth century the lateen was replaced in European ships by the
driver or spanker.

One of the disadvantages of the lateen, especially in the modern form
described below, is the fact that it has a ”bad tack”. Since the sail is to the
side of the mast, on one tack that puts the mast directly against the sail
on the leeward side, where it can significantly interfere with the airflow over
the sail. On the other tack the sail is pushed away from the mast, greatly
reducing the interference. On modern lateens, with their typically shallower
angles, this tends to disrupt the airflow over a larger area of the sail.

The lateen rig was also the ancestor of the Bermuda rig, by way of the
Dutch bezaan rig. In the 16th Century, when Spain ruled the Netherlands,
Moorish lateen rigs were introduced to Dutch boat builders who soon modi-
fied the design by omitting the mast and fastening the lower end of the yard
directly to the deck, the yard becoming a raked mast with a full-length, trian-
gular (leg-of-mutton) mainsail aft. Introduced to Bermuda early in the 17th
Century, this developed into the Bermuda rig, which, in the 20th Century,
was adopted almost universally for small sailing vessels.
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6.2 Gaff Rig

Gaff rig is a sailing rig (configuration of sails) in which the sail is four-
cornered, fore-and-aft rigged, controlled at its peak and, usually, its entire
head by a spar (pole) called the gaff. The gaff enables a fore and aft sail
to be four sided, rather than triangular, and as much as doubles the sail
area that can be carried by that mast and boom (if a boom is used in the
particular rig). A sail hoisted from a gaff is called a gaff rigged sail. Gaff
rig remains the most popular rig for schooner and barquentine mainsails and
other course sails, and spanker sails on a square rigged vessel are always gaff
rigged. On other rigs, particularly the sloop, ketch and yawl, gaff rigged sails
were once common but have now been largely replaced by the Bermuda rig
sail.

Figure 6.2: Gaff rigg

6.3 Bermuda/Marconi Rig

The term Bermuda rig refers to a configuration of mast and rigging for a type
of sailboat and is also known as a Marconi rig; this is the typical configuration
for most modern sailboats. Developed in Bermuda in the 17th century, the
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Figure 6.3: Bermuda rig with masthead jib.

term Marconi was a much later reference to the inventor Guglielmo Marconi,
whose wireless radio masts the Bermuda rigs were said to resemble.

The rig consists of a triangular sail set aft of the mast with its head raised
to the top of the mast; its luff runs down the mast and is normally attached
to it for its entire length; its tack is attached at the base of the mast; its
foot controlled by a boom; and its clew attached to the aft end of the boom,
which is controlled by its sheet. Originally developed for smaller Bermudian
vessels, and ultimately adapted to the larger, ocean-going Bermuda sloop,
the Bermuda sail is either set as a mainsail on the main mast, or as the
course (the principal sail) on another mast. The Bermuda rigging has largely
replaced the older gaff rigged fore-and-aft sails, except notably on schooners.

The traditional design as developed in Bermuda featured very tall, raked
masts, long bowsprits and booms, and vast areas of sail. Modern design has
omitted the bowsprit (although it is coming back in the Volvo Ocean Race)
and otherwise become less extreme.

The main controls on a Bermuda sail are: The halyard used to raise the
head, and sometimes to tension the luff. The outhaul used to tension the
foot by hauling the clew towards the end of the boom. The sheet used to
haul the boom down and towards the center of the boat. The vang or kicking
strap which runs between a point partway along the boom and the base of
the mast, and is used to haul the boom down when on a run.
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Figure 6.4: Beating in Volvo Ocean Race.

Figure 6.5: Reaching in Volvo Ocean Race
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Figure 6.6: Main sail and jib in beating.

Figure 6.7: Main sail and jib in beating.
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6.4 Sloop

Today, the most common sailboat is the sloop which features one mast and
two sails, a normal mainsail and a foresail. This simple configuration is very
efficient for sailing towards the wind. The mainsail is attached to the mast
and the boom, which is a spar capable of swinging across the boat, depending
on the direction of the wind. Depending on the size and design of the foresail
it can be called a jib, genoa, or spinnaker; it is possible but not common for
a sloop to carry two foresails from the one forestay at one time (wing on
wing). The forestay is a line or cable running from near the top of the mast
to a point near the bow.

Figure 6.8: Beating optimist.

6.5 Clipper, Ketch, Yawl, Scooner
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Figure 6.9: Reaching windsurfer

Figure 6.10: The author’s P28 on a beat outside Tjörn on the West Coast of
Sweden.



Chapter 7

Americas Cup

Design has taken the place of what sailing used to be. (Dennis Conner)

Writing criticism is to writing fiction and poetry as hugging the shore
is to sailing in the open sea. (John Updike)

7.1 America of New York Yacht Club

The Americas Cup is the most prestigious regatta and match race in the
sport of sailing, and the oldest active trophy in international sport, predat-
ing the Modern Olympics by 45 years. The regattas origins date back to
1851 when the 31 m schooner-yacht America, owned by a syndicate that rep-
resented the New York Yacht Club, raced 15 yachts representing the Royal
Yacht Squadron around the Isle of Wight. America won by 20 minutes.
Apocryphally, Queen Victoria asked who was second; the answer famously
was: “Ah, Your Majesty, there is no second”. The trophy remained in the
hands of the New York Yacht Club of the United States from 1852 until 1983
when the Cup was won by the challenger, Australia II of Australia.

The Americas Cup regatta is a challenge-driven series of match races
between two yachts. Since the 1992 match, the regatta has been sailed with
the International Americas Cup Class (IACC) sloop monohull class. Boats
that conform to the IACC rules typically have a length of about 23 m.
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Figure 7.1: Americas Cup 1895

7.2 Shamrock

One of the most famous and determined challengers was Scottish tea baron
Sir Thomas Lipton. Between 1899 and 1930 he mounted five challenges, all in
yachts named Shamrock, to gain publicity for his company, though his original
entry was at the personal request of the Prince of Wales in hopes of repairing
trans-Atlantic ill-will generated by the contentious earlier challenger, who
had accused the NYYC of cheating. Lipton was preparing for his sixth
challenge when he died in 1931. The yachts used during the Lipton era were
very large sailing sloops in the J-class with Shamrock V still sailing today
measuring 36 m long.

7.3 The 12-metre Class

After World War II, the huge and expensive J-class yachts were replaced by
the much smaller 12-metre class yachts, which measure from approximately
20 to 23 m overall. The New York Yacht Club’s unbeaten streak continued
in eight more defenses, running from 1958 to 1980. The inventor of the
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cunningham sail control device to increase performance, Briggs Cunningham,
skippered the Columbia during its 1958 victory against Sceptre in the first
challenge after 1937. In 1983 Australia II won the Americas Cup 4-3 breaking
the 132-year winning streak, sporting a new innovative winged keel. Beaten
skipper Dennis Conner won the Cup back four years later with Stars&Stripes.

7.4 The 1988 Big Boat Cup

In 1988 a New Zealand syndicate lodged a surprise Big Boat challenge un-
der the original rules of the Cup Trust Deed with a gigantic yacht named
New Zealand even larger than a J-class yacht. Conner’s syndicate, however,
recognised that a catamaran was not expressly prohibited under the rules,
and the two yachts raced under the simple terms of the Deed in September
1988. New Zealand predictably lost by a huge margin in what most observers
described then and since as the most controversial cup match ever.

Figure 7.2: Beating

7.5 IACC

In the wake of the 1988 challenge, the International Americas Cup Class
IACC of yachts was introduced, replacing the 12-metre class that had been
used since 1958. First raced in 1992, the IACC yachts were used until the
2007 America’s Cup. In 1992, USA-23 skippered by billionaire Bill Koch
defeated the Italian challenger Il Moro di Venezia owned by billionaire Raul
Gardini 5-1.
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In 1995, The Royal New Zealand Yacht Squadron syndicate Team New
Zealand with Black Magic skippered by Russell Coutts defeated Dennis Con-
nors Stars&Stripes 5-0, and at Auckland in 1999-2000 defeated Italy’s Chal-
lenger in the first America’s Cup without an American challenger or defender.
In 2003, several strong challengers vied for the cup in Auckland during the
challenger selection series. Notably a number of original members of Team
New Zealand including previous helmsman Russell Coutts were key mem-
bers of the Swiss challenge Alinghi sponsored by pharmaceutical billionaire
Ernesto Bertarelli, and won the Cup with surprising ease 5-0. Alinghi suc-
cessfully defended the Cup 2007 by beating Emirates Team New Zealand 5-2
in Valencia.

The status of the 33rd America’s Cup regatta is currently being litigated,
with a resolution expected by April, 2009.

Figure 7.3: Old and new design
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Lift and Drag
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Chapter 8

The Mystery of Flight

Few physical principles have ever been explained as poorly as the
mechanism of lift [90].

8.1 What Keeps Airplanes in the Air?

The mystery of the flight of birds must have captured already the imagination
of the early cave man, but it has remained a mystery from scientific point of
view into our days of airborne mass transportation. How can that be? Isn’t
it known what keeps an airplane in the air? Is there no answer to give a
curious child or someone with fear of flying? No, not if we seek a real answer
[91]:

• How do airplane wings really work? Amazingly enough, this question
is still argued in many places, from elementary school classrooms all
the way up to major pilot schools, and even in the engineering depart-
ments of major aircraft companies. This is unexpected, since we would
assume that aircraft physics was completely explored early this century.
Obviously the answers must be spelled out in detail in numerous old
dusty aerodynamics texts. However, this is not quite the case. Those
old texts contain the details of the math, but it’s the interpretation of
the math that causes the controversy. There is an ongoing Religious
War over both the way we should understand the functioning of wings,
and over the way we should explain them in children’s textbooks.

Of course you don’t expect birds to understand why they can fly. You
probably believe that somehow evolution has designed birds so that they can
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fly, presumably by some trial and error process over millions of year, while
keeping human beings on the ground despite many efforts until Orwille and
Wilbur Wright in 1903 showed that powered human flight in fact is possible
by getting their Flyer into sustained flight with the help of a 12 horse-power
engine.

But like the birds, Orwille and Wilbur did not have to really understand
why what they managed to do was possible; they just managed somehow
to do it by trial and error, building on the careful studies of bird wings by
Lilienthal from the 1890s.

Orwille and Wilbur had computed that with a lift to drag ratio of 10 and
a velocity of 10 meter per second, 4 effective horse-powers would get the 300
kg of the Flyer off ground at an effective thrust of 30 kp, and it worked! A
human being of 75 kg capabable of delivering 1 horse power should also be
able to take off...

Science is about understanding and understanding flight is to be able to
explain from the principles of fluid mechanics how a wing can generate large
lift at small drag, that is, to explain the miracle of Fig. [?].

Figure 8.1: How can a 400 ton Airbus380 take off at an engine thrust of 40
tons?
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8.2 Understand a Miracle

The challenge from a scientific point of view is to explain using mathematics
how a fixed wing by moving horisontally through air can generate a large
lift L balancing gravitation while the drag D as the horisontal force on the
wing from the air is small. The lift to drag quotient L/D is typically of size
10− 20 in the gliding flight of birds and of airplanes at subsonic speeds, and
can reach 70 for an extreme glider, which can glide 70 meters upon loosing
1 meter in altitude.

Charles Lindberg crossed the Atlantic in 1927 at a speed of 50 m/s in
his 2000 kg Spirit of St Louis at an effective engine thrust of 150 kp (with
L
D
= 2000/150 ≈ 13) from 100 horse powers.

By Newton’s 3rd law, lift must be accompanied by downwash with the
wing redirecting air downwards. The enigma of flight is the mechanism of
a wing generating substantial downwash at small drag, which is also the
enigma of sailing against the wind with both sail and keel acting like wings
creating substantial lift.

Flying on wings and sailing against the wind is a miracle, and the chal-
lenge from scientific point of view is explain the miracle of L/D > 10. NASA
pretends to explain the miracle of the flight of the Flyer in Fig. 8.2 as a
conseqence of Newton’s Third Law. Do you get it?

Flying on a barn door tilted at 45 degrees with L/D ≈ 1 would not be
a scientific miracle, but only a rocket can generate a thrust equal to its own
weight and then only for a short period of time, and air transportation by
rockets is nothing for birds and ordinary people, only for astronauts.

The lift force L increases quadratically with the speed and linearly with
the angle of attack, that is the tilting of the wing from the direction of flight,
until stall at about 15 degrees, when the drag abruptly increases and L/D
becomes too small for sustained flight.

8.3 Aerodynamics as Navier-Stokes Solutions

Fluid mechanics is well described by the Navier-Stokes equations expressing
conservation of mass, momentum and energy, but there are two basic issues
to handle: The viscosity of the fluid is needed as input and the equations in
general have turbulent solutions defying analytical description and thus have
to be solved computationally using computers.
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Figure 8.2: Tautological explanation of the flight of The Flyer by NASA::
There is upward lift on the wing from the air as a reaction to a downward
push on the air from the wing.

In aerodynamics or fluid dynamics of air with small viscosity, these issues
come together in a fortunate way: The precise value of the small viscosity
shows to be largely irrelevant as concerns macroscopic quantities such as lift
and drag, and the turbulent solutions always appearing in slightly viscous
flow, show to be computable.

We shall find that there is a catch here, which we will adress shortly, but
fortunately a catch which can be overcome, because in Einstein’s words:

• Subtle is the Lord, but malicious He is not.

This means that the secret of flight can be uncovered by solving the Navier-
Stokes equations and analyzing the computed solutions. We thus have at
our disposal a complete fluid mechanics laboratory where we can study every
aspect of the flow around a wing, or an entire airplane in the critical dynamics
of take-off and landing, and also the flapping flight of bird. Nature can hide
its secrets in real analog form, but not in digital simulation.

This leads to the program of this book:

• Solve the Navier-Stokes equations computationally.
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• Study the computed turbulent solutions.

• Discover the mechanism creating large lift at small drag.

• Formalize the discovery into a new understandable theory of flight.

8.4 Computation vs Experiments

In Fig. 8.3 we show computed lift and drag (coefficients) CL and CD of
a long NACA012 wing under varying angles of attack from cruising over
take-off/landing to stall, obtained by solving the Navier-Stokes equations
using automatically adapted meshes with less than 106 mesh points (blue
curve) compared to measured values in wind tunnel experiments. The com-
putational values lie within the range of the experimental values and thus
evidently capture reality.

The message is that it is possible to compute the lift and drag of an
airplane in the whole range of angles of attack, from small angles of stationary
cruising at high speed, to large angles close to stall in the dynamics of start
and landing at low speed. This is a happy new message, since state-of-the-art
tells [59] that 50 years of doubled computer power every 18 months are need
to make computation of lift and drag of an airplane possible by solving the
Navier-Stokes equations.

We hope this gives the reader motivation to continue reading to discover
how a wing generates large lift at small drag, the mystery of flight.

8.5 Many Old Theories: None Correct

Before revealing the essence of the new theory we address some of the many
incorrect explanations of flight that you find in text books and media. If
many different theories of a certain physical phenomenon coexist over time,
which has been the case as concerns flight over a period of 100 years, it is a
sign that none of the theories is correct. Right?

If there is a correct theory none of the incorrect theories can survive, as
illustrated e.g. by the homogeneity of the (correct) homo sapiens without
any surviving (incorrect) Neanderthalers.

To properly understand the correct theory, it is useful to study (some of
the) incorrect theories, because even an incorrect theories usually contains
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Figure 8.3: Evidence that computation of lift and drag coefficients CL and
CD of a wing is possible from small angles of attack at crusing to large angles
at start and landing: The blue curve shows computed coefficients by solving
the Navier-Stokes equations by Unicorn [?] compared to different wind tunnel
experiments by Gregory/O’Reilly and Ladson.
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an element of truth, and the correct theory is the one that best captures
most elements of truth.

8.6 Correct New Theory: d’Alembert’s Para-

dox

The new flight theory to be presented can be shown to be correct as far
as the Navier-Stokes equations describe fluid mechanics, because the new
flight theory directly reflects properties of Navier-Stokes solutions. The key
to uncover the mathematical secret of flight came from a correct resolution
of d’Alembert’s paradox form 1752 presented in our book [103] and article
[104] 255 years later and then with the help of computation.

Our resolution of d’Alembert’s paradox is fundamentally different from
the one suggested by the young German physicist Ludwig Prandtl, called the
father of modern fluid mechanics, timely presented after the Flyer had been
seen flying to form the basis of 20th century theory of flight.

By studying computed Navier-Stokes solutions, which Prandtl could not
do, we discover that Prandtl’s resolution of d’Alembert’s paradox does not
correctly describe the essential physics, nor does the flight theory conceived
by the father of modern fluid mechanics. A study of the new flight theory thus
naturally starts with a study of the new resolution of d’Alembert’s paradox.

Before proceeding to the study of the new flight theory we will to get
perspective recall how flight is explained in standard scientific literature and
popular science. We start out with some popular theories listed as incorrect
by NASA and complete the picture with a theory due to Kutta-Zhukovsky-
Prandtl viewed to offer a scientific explanation of both lift and drag, but as
we will see is also incorrect.
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Chapter 9

Incorrect Theories for
Uneducated

It’s all one interconnected system. Unless the overall result of that
system is for air to end up lower than it was before the plane flew by,
there will be no lift. Wings move air downward, and react by being
pushed upward. That’s what makes lift. All the rest is just interesting
details[90].

The field of hydrodynamic phenomena which can be explored with
exact analysis is more and more increasing. (Zhukovsky, 1911)

9.1 Incorrect Theories: NASA

You have probably heared some of the explanations offered in popular science, like
higher velocity and lower pressure on the upper surface of the wing because it is
curved and air there has a longer path to travel than below? Or maybe you are an
aeroplane engineer or pilot and know very well why an airplane can fly, because
lif is generated by circulation?

In either case, you should get a bit worried by reading that the authority
NASA on its website [117] dismissses all popular science theories for lift, including
your favorite one, as being incorrect, but then refrains from presenting any theory
claimed to be correct! NASA surprisingly ends with an empty out of reach:

• To truly understand the details of the generation of lift, one has to have a
good working knowledge of the Euler Equations.

This is just a fancy way of expressing that not even NASA [?] understands what
keeps an airplane in the air. Of course, it is not possible to find the correct theory
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by removing all incorrect theories, like forming a correct sculpture out of a block
of stone by removing all pieces of stone which are not correct, because there are
infinitely many incorrect theories and not even NASA can list them all.

To present incorrect theories at length is risky pedagogics, since the student
can get confused about what is correct and not, but signifies the confusion and
misconceptions still surrounding the mechanisms of flight. If a correct theory was
available, there would be no reason to present incorrect theories, but the absence of
a correct theory is now seemingly covered up by presenting a multitude of incorrect
theories.

The following three incorrect theories listed by NASA are commonly presented
in text books directed to a general audience. Take a look and check out which you
have met and if you they are convincing to you.

Figure 9.1: The ‘longer path theory is wrong becasue an airplane can fly
upside down.
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Figure 9.2: The “skipping stone is Newton’s theory, which gives a way too
small lift.
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Figure 9.3: The “Bernouilli theory of higher speed above the wing and thus
lower pressure because of the curvature of the wing, is wrong because an
airplane can fly upside down.
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9.2 Trivial Theory: NASA

The closet NASA comes to a correct theory is the trivial theory depicted in Fig.
9.4: If there is downwash then there is lift. This follows directly by Netwon’s 3rd
law, but the question is why there is downwash?

Figure 9.4: Trivial tautological theory of lift presented as correct by NASA.
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Chapter 10

Incorrect Theory for Educated

Lift is a lot trickier. In fact it is very controversial and often poorly
explained and, in many textbooks, flat wrong. I know, because some
readers informed me that the original version of this story was inaccu-
rate. I’ve attempted to correct it after researching conflicting ”expert”
views on all this....If you’re about fed up, rest assured that even engi-
neers still argue over the details of how all this works and what terms
to use [45].

10.1 Newton, d’Alembert and Wright

When the Wright brothers in 1903 showed that powered human flight was
possible by putting a 12 hp engine on their Flyer, this was in direct contra-
diction to the accepted mathematical theory by Newton, who computed the
lift from downwash of air particles hitting the lower part of the wing and
found it to be so small that human flight was unthinkable.

Newton was supported by the mathematician d’Almembert who in 1755
proved that both lift and drag was zero for for potential flow, which seemed
to describe the flow of air around a wing.

10.2 Kutta-Zhukovsky: Circulation: Lift

To save theoretical aerodynamics from complete collapse, a theory showing
substantial lift had to be invented, and such a theory was delivered by Kutta
in Germany and Zhukovsky in Russia 1904-6, who modified zero lift potential
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flow by adding a large scale circulation around the wing. Kutta-Zhukovsky
showed that if there is circulation then there is lift, but could not explain
from where the circulation came.

Figure 10.1: Top left figure shows potential flow without downwash (the
incoming flow is not redirected) and thus no lift. The bottom left shows
a flow with circulation resulting from adding a large scale rotational flow
around the wing as shown in the right figure.

10.3 Prandtl: Boundary Layer: Drag King

This was timely done by the German physicists Ludwig Prandtl, who in a
short note in 1904 saved aerodynamics by opening the possibility that both
circulation with lift and drag somehow originiate from a thin boundary layer.

The theory by Kutta-Zhukovsky-Prandtl has become the theory for the
educated specialists of aerodynamics, who very well understand that the
theories for uneducated are incorrect. Today 100 years later, this is still the
theory of flight presented in text books: Lift comes from circulation, and
circulation and drag comes from a thin boundary layer.

There is an alternative to circulation as generation of lift, referred to as
the Coanda effect stating that upper surface suction is an effect of viscosity
causing the flow to stick to the surface, but the support of this theory in the
literature is weak.
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Figure 10.2: Kutta-Zhukovsky theory of lift combining potential flow (left)
with large scale circulation, thus changing the zero lift pressure distribution
of potential flow to lifting flow by shifting the high (H) and low (L) pressure
zones at the trailing edge of the flow by unphysical circulation around the
section (middle) resulting in flow with downwash/lift and starting vortex
(right).

State-of-the-art thus tells you that to compute drag and lift of an airplane
you need to resolve the boundary layer, which however requires 10 quadrillion
(1016 mesh points, which will require 50 years of Moore’s law improving the
computational power by a factor of 1010.

But is the theory of Kutta-Zhukovsky-Prandtl for educated correct? Do
we have to wait 50 years to compute lift and drag of an Airbus?

Figure 10.3: Prandtl’s boundary layer theory in pictures.

10.4 More Confusion

Many sources, in addition to NASA, give witness of the lack of convincing
scientific answer of how a wing can generate lift with small drag. We give
here a sample starting with more from [130]:
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• “Here we are, 100 years after the Wright brothers, and there are people
who give different answers to that question,” said Dr. John D. Ander-
son Jr., the curator for aerodynamics at the Smithsonian National Air
and Space Museum in Washington. “Some of them get to be religious
fervor.”

• The answer, the debaters agree, is physics, and not a long rope hanging
down from space. But they differ sharply over the physics, especially
when explaining it to nonscientists. “There is no simple one-liner an-
swer to this,” Dr. Anderson said.

• The simple Newtonian explanation also glosses over some of the physics,
like how does a wing divert air downward? The obvious answer – air
molecules bounce off the bottom of the wing – is only partly correct.

• If air has to follow the wing surface, that raises one last question. If
there were no attractive forces between molecules, would there be no
flight? Would a wing passing through a superfluid like ultracold helium,
a bizarre fluid that can flow literally without friction, produce no lift at
all? That has stumped many flight experts. “I’ve asked that question to
several people that understand superfluidity,” Dr. Anderson, the retired
physicist, said. “Alas! They don’t understand flight.”

• It is important to realize that, unlike in the two popular explanations
described earlier (longer path and skipping stone), lift depends on signif-
icant contributions from both the top and bottom wing surfaces. While
neither of these explanations is perfect, they both hold some nuggets of
validity. Other explanations hold that the unequal pressure distributions
cause the flow deflection, and still others state that the exact opposite
is true. In either case, it is clear that this is not a subject that can
be explained easily using simplified theories. Likewise, predicting the
amount of lift created by wings has been an equally challenging task for
engineers and designers in the past. In fact, for years, we have relied
heavily on experimental data collected 70 to 80 years ago to aid in our
initial designs of wing.[52]

• http : //www.youtube.com/watch?v = uUMlnIwo2Qo

• http : //www.youtube.com/watch?v = ooQ1F2jb10A

• http : //www.youtube.com/watch?v = kXBXtaf2TTg
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• http : //www.youtube.com/watch?v = 5wIq75BzOQ

• http : //www.youtube.com/watch?v = khca2FvGR− w
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Chapter 11

Summary of State-of-the-Art

You’d think that after a century of powered flight we’d have this lift
thing figured out. Unfortunately, it’s not as clear as we’d like. A lot
of half-baked theories attempt to explain why airplanes fly. All try to
take the mysterious world of aerodynamics and distill it into something
comprehensible to the lay audience–not an easy task. Nearly all of the
common ”theories” are misleading at best, and usually flat-out wrong
[87].

11.1 Newton

Classical mathematical mechanics could not give an answer to the mystery of
gliding flight: Newton computed by elementary mechanics the lift of a tilted
flat plate redirecting a horisontal stream of fluid particles, but obtained a
disappointingly small value proportional to the square of the angle of attack.
To Newton the flight of birds was inexplicable, and human flight certainly
impossible.

11.2 d’Alembert and Potential Flow

D’Alembert followed up in 1752 by formulating his paradox about zero lift/drag
of inviscid incompressible irrotational steady flow referred to as potential flow,
which seemed to describe the airflow around a wing since the viscosity of air
is very small so that it can be viewed as being inviscid (with zero viscosity).
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Mathematically, potential flow is given as the gradient of a harmonic funtion
satisfying Laplace’s equation.

At speeds less than say 300 km/h air flow is almost incompressible, and
since a wing moves into still air the flow it could be be expected to be ir-
rotational without swirling rotating vortices. D’Alembert’s mathematical
potential flow thus seemed to capture physics, but nevertheless had neither
lift nor drag, against all physical experience. The wonderful mathematics of
potential flow and harmonic functions thus showed to be without physical rel-
evance: This is D’Alembert’s paradox which came to discredit mathematical
fluid mechanics from start [104, 125, 92].

To explain flight d’Alembert’s paradox had to be resolved, but nobody
could figure out how and it was still an open problem when Orwille and
Wilbur Wright in 1903 showed that heavier-than-air human flight in fact was
possible in practice, even if mathematically it was impossible.

11.3 Kutta-Zhukovsky-Prandtl

Mathematical fluid mechanics was then saved from complete collapse by the
young mathematicians Kutta and Zhukovsky, called the father of Russian
aviation, who explained lift as a result of perturbing potential flow by a
large-scale circulating flow or circulation around the two-dimensional section
of a wing, and by the young physicist Prandtl, called the father of modern
fluid dynamics, who explained drag as a result of a viscous boundary layer
[119, 120, 124, 93].

This is the basis of state-of-the-art [21, 72, 74, ?, 98, 126, 137], which
essentially is a simplistic theory for lift without drag at small angles of attack
in inviscid flow and for drag without lift in viscous flow. However, state-of-
the-art does not supply a theory for lift-and-drag covering the real case of 3d
slightly viscous turbulent flow of air around a 3d wing of a jumbojet at the
critical phase of take-off at large angle of attack (12 degrees) and subsonic
speed (270 km/hour), as evidenced in e.g. [47, 89, 90, 91, 130, 7, 52, 113, 116].
The simplistic theory allows an aeroplane engineer to roughly compute the
lift of a wing a crusing speed at a small angle of attack, but not the drag,
and not lift-and-drag at the critical phase of take-off [59, 131]. The lack of
mathematics has to be compensated by experiment and experience. The first
take off of the new Airbus 380 must have been a thrilling experience for the
design engineers.
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The state-of-the-art theory of flight can be summarized as either

• correct and trivial,

• nontrivial and incorrect,

in the following forms:

• Downwash generates lift: trivial without explanation of reason for
downwash from suction on upper wing surface.

• Low pressure on upper surface: trivial without explanation why.

• Low pressure on curved upper surface because of higher velocity (by
Bernouilli’s law), because of longer distance: incorrect.

• Coanda effect: The flow sticks to the upper surface by viscosity: incor-
rect.

• Kutta-Zhukovsky: Lift comes from circulation: incorrect.

• Prandtl: Drag comes mainly from viscous boundary layer: incorrect.

11.4 Text Book Theory of Flight

The following text books all present versions of the Kutta-Zhukovsky-Prandtl
theory of flight:

• Prandtl-Essentials of Fluid Mechanics, Herbert Oertel (Ed.)

• Aerodynamics of Wingd and Bodies, Holt Ashley and Marten Landahl,

• Introduction to the Aerodynamics of Flight, Theodore A. Talay, Lan-
gley Reserach Center,

• Aerodynamics of the Airpoplane, Hermann Schlichting and Erich Truck-
enbrodt,Mac Graw Hill

• Airplane Aerodynamics and Performance, Jan Roskam and C T Lan,

• Fundamentals of Aerodynamics, John D Anderson,

• Fuhrer durch die Stromungslehre, L Prandtl,...
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• Aerodynamicss of Wind Turbins, Martin Hansen,

• Aerodynamics, Aeronautics and Flight Mechanics, McCormick,

• Aerodynamics, Krasnov,

• Aerodynamics, von Karmann,

• Theory of Flight, Richard von Mises.

The text book theory of flight has been remarkably stable over 100 year
with little improvement in accuracy as if the theory once and for all was set
by Kutta-Zhukovsky-Prandtl. But science does not work that way: If no
progress is made on a complex scientific topic, like flight, this is a strong
indication that what was hammered in stone is incorrect science. This book
will help the reader to decide if such a suspicion is well founded.



Chapter 12

Shut Up and Calculate

How can aviation be grounded in such a muddy understanding of the
underlying physics? As with many other scientific phenomena, it’s not
always necessary to understand why something works to make use of
it. We engineers are happy if we’ve got enough practical knowledge
to build flying aircraft. The rest we chalk up to magic [87].

12.1 Naviers-Stokes vs Schrödinger

The interpretation of the wave functions of the new quantum mechanics of
the atomic world as solutions of Schrödinger’s wave equations, was intensely
debated in the 1920s by Schrödinger, Bohr, Born and Dirac without reach-
ing any agreement. This led a frustated Dirac in an effort to get out of
the scientific dead lock to make the appeal ”shut up and calculate”: Simply
solve the Schrödinger equation and take what you get as physics. However,
Dirac’s appeal did not and still does not help much because analytical solu-
tion of Schrödinger’s equation is possible only for the Hydrogen atom with
one electron, and computational solution involves 3N space dimensions for
N particles, which even today is possible only for small N .

The debate thus is shifted to different techniques of solving Schrödinger’s
equation, considered to harbor the truth, and the debate goes on.

Similarly, solutions of the Navier-Stokes equations may be expected to
tell the physics of flight, and so the question is if they are computable or as
uncomputable as Schrödinger’s equation?

Navier-Stokes solutions at the high Reynold’s numbers of flight are tur-
bulent and have thin boundary layers and the standard wisdom expressed
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by Kim an Moin [43] is that computational resolution requires quadrillions
of mesh points beyond the capacity of any forseeable computer.

But there is trick, or mircale, which make the Navier-Stokes equations
computable: If we combine the Navier-Stokes equations with a slip boundary
condition modeling that the friction force from the air on the wing is small,
which it is for slightly viscous flow, then there is no Prandtl boundary layer to
resolve and then solutions of the Naviers-Stokes equations can be computed
with 106 mesh points, and the lift and drag of these solutions agree very
well with experiments. Thus Dirac’s appeal works out for flight described by
Navier-Stokes equations.

Chosing a slip (or small friction) boundary condition, which we can do
because it is a good model of actual physics, we gain in two essential aspects:
Solutions become computable and computed solutions tell the truth.

The truth we find this way is that neither lift nor drag originate from a
thin boundary layer, and thus that the Kutta-Zhukovsky-Prandtl theory is
unphysical and incorrect. State-of-the-art today thus presents a theory of
flight which is both unphysical and uncomputable.

12.2 Compute - Analyze - Understand

Computed solutions show that a wing creates lift as a reaction force down-
wash, with less than 1/3 coming from the lower wing surface pushing air down
and the major remaining part from the upper surface sucking air down, with
a resulting lift/drag quotient L

D
> 10.

You could stop here following the device of the physicist Dirac of “shut
up and calculate” but as a scientist and rational human beings you would
certainly like to “understand” the solutions, that is describe the “mechanism”
making a wing generate large lift with small drag.



Chapter 13

Mathematical Miracle of Flight

...do steady ow ever occur in nature, or have we been pursuing fantasy
all along? If steady flows do occur, which ones occur? Are they stable,
or will a small perturbation of the ow cause it to drift to another
steady solution, or even an unsteady one? The answer to none of these
questions is known. (Marvin Shinbrot in Lectures on Fluid Mechanics,
1970)

Computing turbulent solutions of the Navier-Stokes equations led us to a
resolution of d’Alembert’s paradox, which revealed the miracle of flight as we
show in this book. You will find that it is quite easy to grasp, because it can
be explained using different levels of mathematics. We start out easy with the
basic principle in concept form and then indicate some of the mathematics
with references to more details. Supporting information is given in the Google
knols [135] and [111].

To understand flight means to identify the relevant mathematical aspects
of solutions to the Navier-Stokes equations, and this is what this book will
help you to do. The code words of the mathematical mircale of flight:

• Non-separation of potential flow before trailing edge creating suction
on the upper surface of wing and downwash.

• Slip-separation at trailing edge with small drag instead of potential flow
separation destroying lift.

This principle is pictured in Fig. 13.1 supported by computational simu-
lations in Fig. 13.2- ??. We see the zero lift/drag of potential flow being
replaced by real flow with low-pressure trailing edge slip separation with
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streamwise vorticity swirling flow shown in Fig. 13.3. We shall below ana-
lyze this pictures in more detail to reach a real understanding of how a wing
is capable of generating at the ame time big lift and small drag, the enigma
of flight. The reader may anticipate the analysis by a study of the pictures.

The enigma of flight is why the air flow separates from the upper wing
surface at the trailing edge, and not before, with the flow after separation
being redirected downwards according to the tilting of the wing or angle of
attack. We will reveal the secret to be an effect of a fortunate combination of
features of slightly viscous incompressible flow including a crucial instability
mechanism at separation analogous to that seen in the swirling flow down a
bathtub drain, generating both suction on the upper wing surface and drag.

We show that this mechanism of lift and drag is operational for angles
of attack smaller than a critical value of about 15 degrees depending on the
shape of the wing, for which the flow separates from the upper wing surface
well before the trailing edge with a sudden increase of drag and decrease of
lift referred to as stall.

Figure 13.1: Correct explanation of lift by perturbation of potential flow
(left) at separation from physical low-pressure turbulent counter-rotating
rolls (middle) changing the pressure and velocity at the trailing edge into
a flow with downwash and lift (right).

13.1 Mathematical Computation and Analy-

sis

We present below a mathematical analysis of the computed solutions showing
that lift and drag result from a specific 3d instability mechanism generating
low-pressure rolls of streamwise vorticity attaching at separation. This anal-
ysis gives a new resolution of d’Alembert’s paradox of zero drag in inviscid
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Figure 13.2: Pressure distribution with big leading edge lift (suction above
and push below) and small drag at α = 5. Notice that the high pressure at
the trailing edge of potential flow is missing thus maintaining big lift.

Figure 13.3: Turbulent separation by surface vorticity forming counter-
rotating low-pressure rolls in flow around a circular cylinder, illustrating
separation at the trailing edge of a wing [101].
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flow [?], which is fundamentally different from the accepted resolution by
Prandtl based on boundary layer effects.

We show that lifting flow results from an instability at rear separation gen-
erating counter-rotating low-pressure rolls of streamwise vorticity inititated
as surface vorticity resulting from meeting opposing flows. This mechanism
is entirely different from the mechanism based on global circulation of Kutta-
Zhukovsky theory. We show that the new theory allows accurate computation
of lift, drag and twisting moments of an entire airplane using a few millions of
mesh-points, instead of the impossible quadrillions of mesh-points required
according to state-of-the-art following Prandtl’s dictate of resolution of very
thin boundary layers connected with no-slip velocity boundary conditions.

The new theory thus offers a way out of the present deadlock of compu-
tational aerodynamics of slightly viscous turbulent flow.



Chapter 14

Observing Pressure, Lift and
drag

14.1 Potential Flow Modified at Separation

We will now uncover the secret of flight in more detail by inspecting compu-
tational solutions of Navier-Stokes equations with a slip boundary condition.
The distribution of the pressure over the wing surface determines both lift
and drag. The pressure acts in a direction normal to the wing surface and
its components perpendicular and parallel and perpendicular to the motion
of the wing give the distributions of lift and drag over the wing surface
which give the total lift L and drag D with by integration. We discover that
L/D ≈ 30−50 for α < 14 as recorded in Fig. 8.3, which captures the miracle
of flight.

We will then inspect the velocity and the vorticity and the seek to ra-
tionalize what we have seen in terms of basic fluid mechanics. We will find
that the flow can be described as a modified form of potential flow with the
modification resulting from a specific form of separation at the trailing edge
which we will describe as slip separation with point stagnation.

The flow before separation thus will seen to be close to potential flow
and there conform with Bernoulli’s Principle stating that the sum of kinetic
energy 1

2
|u|2 with u velocity and pressure p remains constant over the region

of potential flow:
1

2
|u|2 + p = constant, (14.1)

expressing that the pressure is low where the velocity is high and vive versa.
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We recall the principal description in Fig. 13.1 with full potential flow to
the left with high pressure H on top of the wing and low pressure L below at
the trailing edge destroying lift, and to the right the real flow modified by a
certain perturbation at the trailing edge switching H and L to generate lift.

14.2 Pressure, Lift and Drag Distribution

Fig. 14.2-14.2 show the pressure distribution for α = 4, 10, 12, 17. We observe

• low pressure on top/front of the leading edge and high pressure below
as expected from potentiual flow,

• no high pressure on top of the trailing edge in contrast to potential
flow,

• the pressure distribution intensifies with increasing angle of attack,

• max negative pressure (lift) 5 times bigger than max pressure (drag)
on leading edge for α = 10,

Fig. 14.5 shows the distributions of lift and drag over the surface of the
wing section for α = 0, 2, 4, 10, 18. We observe

• lift increases and peaks at the leading edge as α increases towards stall,

• both lift and drag are small att the trailing edge,

• the negative lift on the lower surface for small α shifts to positive lift
for larger α,

• the lift from the upper surface is several times bigger than from the
lower surface

• leading edge suction: negative/positive drag on the upper/lower leading
edge balance to give small net drag,

• main drag from leading edge for smaller α.

Altogether, we see that the miracle of L
D
> 10 results from the facts that

• main lift and drag come from leading edge,
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• minimal pressure several times bigger than the maximal pressure on
the leading edge (factor 5 say)

• leading edge suction reduces drag (another factor 2 say).

Figure 14.1: Pressure distribution at α = 4.
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Figure 14.2: Pressure at α = 10.

Figure 14.3: Pressure distribution at α = 12.
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Figure 14.4: Pressure at α = 17.
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Figure 14.5: G2 computation of normalized local lift force (upper) and drag
force (lower) contributions acting along the lower and upper parts of the
wing, for angles of attack 0, 2 ,4 ,10 and 18◦, each curve translated 0.2 to
the right and 1.0 up, with the zero force level indicated for each curve.



Chapter 15

Observing Velocity

Fig. 15 and 15 show the velocity for α = 10, 14, 17. We observe

• high velocity on top/front of the leading edge and low velocity below
in conformity with Bernoulli’s Principle,

• a wake with low velocity develops as stall is approached,

• well before stall the flow separates smoothly at the trailing edge and
not as potential flow at stagnation before the trailing edge,

• the separation moves forward from the trailing edge on the upper sur-
face as stall is approached.

Fig. 15.3 and 15.4 show oilfilm plots of the velocity at the trailing edge.
We observe

• rotational slip separation with point stagnation in a zig-zag pattern

• generating rolls of streamwise vorticity with low pressure.

Fig. 15.6-15.10 also show the zig-zag velocity separation pattern with point
stagnation.
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Figure 15.1: Velocity magnitude around the airfoil for α = 10 (top), 14
(center) and 17 (bottom).
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Figure 15.2: Velocity magnitude on the airfoil surface for α = 10 (top),
14 (center) and 17 (bottom) showing that separation pattern moves up the
airfoil with increasing α towards stall.
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Figure 15.3: G2 oilfilm plots showing separation pattern with point stagna-
tion for aoa = 4.

Figure 15.4: G2 oilfilm plots showing separation pattern with point stagna-
tion aoa = 12.
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Figure 15.5: Velocity aoa = 10.

Figure 15.6: Trailing edge zig-zag velocity pattern aoa = 04.
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Figure 15.7: Trailing edge zig-zag velocity aoa = 10.

Figure 15.8: Zigzag velocity aoa = 12.
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Figure 15.9: Trailing edge zig-zag velocity aoa = 12.

Figure 15.10: Trailing edge zig-zag velocity aoa = 17.
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Chapter 16

Observing Vorticity

Fig. 16.1-16.3 shows side view of pressure, velocity and top view of vorticity
for α = 2, 4, 8, 10, 14, 18. We observe

• development of rolls of streamwise vorticity at separation at the trailing
edge as illustrated in Fig. 13.1,

• pressure is small inside rolls of streamwise vorticity generating som
drag,

• separation moves from the trailing edge to upper surface as α approches
stall.

Below we will in more detail study the dynamics of the generation of stream-
wise vorticity as the generic structure of rotational slip separation with point
stagnation.
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Figure 16.1: G2 computation of velocity magnitude (upper), pressure (mid-
dle), and non-transversal vorticity (lower), for angles of attack 2, 4, and 8◦

(from left to right). Notice in particular the rolls of streamwise vorticity at
separation.
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Figure 16.2: G2 computation of velocity magnitude (upper), pressure (mid-
dle), and topview of non-transversal vorticity (lower), for angles of attack 10,
14, and 18◦ (from left to right). Notice in particular the rolls of streamwise
vorticity at separation.
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Figure 16.3: G2 computation of velocity magnitude (upper), pressure (mid-
dle), and non-transversal vorticity (lower), for angles of attack 20, 22, and
24◦ (from left to right).
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Summary of Observation

Phase 1: 0 ≤ α ≤ 8

At zero angle of attack with zero lift there is high pressure at the leading edge
and equal low pressures on the upper and lower crests of the wing because
the flow is essentially potential and thus satisfies Bernouilli’s law of high/low
pressure where velocity is low/high. The drag is about 0.01 and results
from rolls of low-pressure streamwise vorticity attaching to the trailing edge.
As α increases the low pressure below gets depleted as the incoming flow
becomes parallel to the lower surface at the trailing edge for α = 6, while
the low pressure above intenisfies and moves towards the leading edge. The
streamwise vortices at the trailing edge essentially stay constant in strength
but gradually shift attachement towards the upper surface. The high pressure
at the leading edge moves somewhat down, but contributes little to lift. Drag
increases only slowly because of negative drag at the leading edge.

Phase 2: 8 ≤ α ≤ 12

The low pressure on top of the leading edge intensifies to create a normal
gradient preventing separation, and thus creates lift by suction peaking on
top of the leading edge. The slip boundary condition prevents separation and
downwash is created with the help of the low-pressure wake of streamwise
vorticity at rear separation. The high pressure at the leading edge moves
further down and the pressure below increases slowly, contributing to the
main lift coming from suction above. The net drag from the upper surface
is close to zero because of the negative drag at the leading edge, known as
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leading edge suction, while the drag from the lower surface increases (linearly)
with the angle of the incoming flow, with somewhat increased but still small
drag slope. This explains why the line to a flying kite can be almost vertical
even in strong wind, and that a thick wing can have less drag than a thin.

Phase 3: 12 ≤ α ≤ 14

Beginning stall with lift non-increasing while drag is increasing super-linearly.

Phase 4: 14 ≤ α ≤ 16

Stall with rapidly increasing drag.

17.1 Summary Lift and Drag

The lift generation in Phase 1 and 3 can rather easily be envisioned, while
both the lift and drag in Phase 2 results from a (fortunate) intricate interplay
of stability and instability of potential flow: The main lift comes from up-
per surface suction arising from a turbulent boundary layer with small skin
friction combined with rear separation instability generating low-pressure
streamwise vorticity, while the drag is kept small by negative drag from the
leading edge.

We can thus summarize as follows:

• Substantial lift from suction on upper surface.

• Small drag from suction on leading edge.



Chapter 18

Computation vs Experiments

The computations shown are obtained by the finite element solver G2 with
automatic mesh adaption from a posteriori error estimation of lift and drag
by based on sensitivity information obtained by solving a linearized dual
Navier-Stoke problem.

18.1 Meshes

We show below computational automatically adapted 3d meshes with up to
800.000 mesh points together with snapshots of computed turbulent veloci-
ties.

18.2 Data for Experiments

Ladson 1
Re = 8.95e6,M = 0.15 Grit level 60W (wraparound). grit acts to trip
the boundary layer.

Ladson 2
Re = 6.00e6,M = 0.15 Grit level 60W (wraparound).

Ladson 3
Re = 8.95e6,M = 0.30 Grit level 120W (wraparound).

Gregory/O’Reilly
Re = 2.88e6,M = 0.16

95



96 CHAPTER 18. COMPUTATION VS EXPERIMENTS

Figure 18.1: Automatically adapted meshes for aoa = 10, with inital mesh
top, iteration 4 center, and iteration 8 bottom.
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Figure 18.2: Automatically adapted meshes for α = 14 , with mesh top,
iteration 4 center and iteration 8 bottom.
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where the wraparound grit in the Ladson experiments acts to trip the bound-
ary layer.

18.3 Comparing Computation with Experi-

ment

Fig. ?? shows that G2 computations lie within variations in experiments
[55, 58]. (Valid point?)

Computations more precise than experiment:
G2 with slip models a very large Reynolds number representative of e.g.

a jumbojet, which cannot be attained in wind tunnel where scale model are
used. Upscaling of test results is cumbersome because boundary layers do
not scale. This means that computations can be closer to reality than wind
tunnel experiments.

Of particular importance is the maximal lift coefficient, which cannot be
predicted by Kutta-Zhukovsky nor in model experiments.



Chapter 19

Sensitivity of Lift/Drag vs
Discretization

19.1 A Posteriori Error Control by Duality

G2 is equipped with automatic a posteriori error estimation in chosen output
quantities such as lift and drag, which expresses the sensitivity of lift and
drag with respect to the residual of a computed Navier-Stokes solution in
terms of a weight function obtained by solving a dual linearized Navier-
Stokes equation with the size of derivatives of the dual velocity and pressure
representing the weight. G2 automatically adapts the computational mesh
according to the weight so as to optimize computational resources.

19.2 Dual Pressure and Velocity

In Fig. 19.1-19.4 we show dual pressure and velocity for lift/drag indicating
mesh refinement where derivatives are large.
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Figure 19.1: Dual pressure α = 4.

Figure 19.2: Dual pressure α = 12.
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Figure 19.3: Dual velocity α = 4.

Figure 19.4: Dual velocity α = 12.
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Chapter 20

Preparing Understanding

20.1 New Resolution of d’Alembert’s Para-

dox

We have said that the new flight theory comes out of a new resolution of
d’Alembert’s paradox [103, 104, 102]. The new resolution is based on a
stability analysis showing that zero-lift/drag potential flow is unstable and
in both computation and reality is replaced by turbulent flow with both lift
and drag.

The new resolution is fundamentally different from the classical official
resolution attributed to Prandtl [120, 124, 137], which disqualifies potential
flow because it satisfies a slip boundary condition allowing fluid particles to
glide along the boundary without friction force, and does not satisfy a no-
slip boundary condition requiring the fluid particles to stick to the boundary
with zero relative velocity and connect to the free-stream flow through a thin
boundary layer, as demanded by Prandtl.

20.2 Slip/Small Friction Boundary Conditions

In contrast to Prandtl, we complement in the new theory Navier-Stokes equa-
tions with a friction force boundary condition for tangential forces on the
boundary with a small friction coefficient as a model of the small skin fric-
tion resulting from a turbulent boundary layer of slightly viscous flow. In
the limit of zero boundary friction this becomes a slip boundary condition,
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which means that potential flow can be seen as a solution of the Navier-
Stokes equations subject to a small perturbation from small viscous stresses.
In the new theory we then disqualify potential flow because it is unstable,
that is on physical grounds, and not as Prandtl on formal grounds because
it does not satisfy no-slip boundary conditions.

The Navier-Stokes equations can be complemented by no-slip or slip/friction
boundary conditions, just like Poisson’s equation can be complemented by
Dirichlet or Neumann boundary conditions. The choice of boundary condi-
tions depends on which data is available. In the aerodynamics of larger birds
and airplanes, the skin friction is small and can be approximated by zero
friction or a slip boundary condition.

For small insects viscous effects become important, which changes the
physics of flight and makes gliding flight impossible. An albatross is a very
good glider, while a fruit fly cannot glide at all in the syrup-like air it meets
and can only move by using some form of paddling.

20.3 Computable + Correct = Secret

We solve the Navier-Stokes equations (NS) with slip/friction boundary con-
dition using an adaptive stabilized finite element method with duality-based
a posteriori error control referred to as General Galerkin or G2 presented in
detail in [103] and available in executable open source form from [132]. The
stabilization in G2 acts as an automatic computational turbulence model, and
the only input is the geometry of the wing. We thus find by computation
that lift is not connected to circulation in contradiction to Kutta-Zhukovsky’s
theory and that the curse of Prandtl’s laminar boundary layer theory (also
questioned in [92, 93, 72]) can be circumvented. Altogether, we show in this
book that ab initio computational fluid mechanics opens new possibilities of
flight simulation ready to be explored and utilized.

• NS with no-slip: uncomputable: hides the secret,

• NS with slip: computable: reveals the secret.

20.4 No Lift without Drag

The zero-drag of potential flow has been (and still is) leading aerodynamicis
to search for wings with lift but without drag [3], which we have seen is not
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a feature of Navier-Stokes solutions, and thus is unrealistic.
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Chapter 21

Kutta-Zhukovsky-Prandtl
Incorrect

The Kutta-Zhukovsky theory states that substantial lift comes from substan-
tial circulation, but does not tell how the wing manages to cause substantial
circulation of air around itself. Computing solutions of the Navier-Stokes
equations shows that the wing does not do that as shown in Fig. 21.1, where
the circulation is computed around the curve of the section of the section
of the wing: The lift is substantial and increases linearly with the angle of
attack until stall begins, while the circulation remains small. Evidently, lift
does not originate from circulation.
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Figure 21.1: Lift coefficient and circulation as functions of the angle of attack.
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Chapter 22

Mathematical Miracle of
Sailing (delete)

By denying scientific principles, one may maintain any paradox. (Galileo
Galilei)

Both the sail and keel of a sailing boat under tacking against the wind,
act like wings generating lift and drag, but the action, geometrical shape and
angle of attack of the sail and the keel are different. The effective angle of
attack of a sail is typically 15-20 degrees and that of a keel 5-10 degrees, for
reasons which we now give.

The boat is pulled forward by the sail, assuming for simplicity that the
beam is parallel to the direction of the boat at a minimal tacking angle, by
the component L sin(15) of the lift L, as above assumed to be perpendicular
to the effective wind direction, but also by the following contributions from
the drag assumed to be parallel to the effective wind direction: The negative
drag on the leeeward side at the leading edge close to the mast gives a positive
pull which largely compensates for the positive drag from the rear leeward
side, while there is less positive drag from the windward side of the sail as
compared to a wing profile, because of the difference in shape. The result
is a forward pull ≈ sin(15)L ≈ 0.2L combined with a side (heeling) force
≈ L cos(15) ≈ L, which tilts the boat and needs to be balanced by lift from
the the keel in the opposite direction. Assuming the lift/drag ratio for the
keel is 13, the forward pull is then reduced to ≈ (0.2−1/13)L ≈ 0.1L, which
can be used to overcome the drag from the hull minus the keel.
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The shape of a sail is different from that of a wing which gives smaller
drag from the windward side and thus improved forward pull, while the keel
has the shape of a symmetrical wing and acts like a wing. A sail with aoa
15 − 20 degrees gives maximal pull forward at maximal heeling/lift with
contribution also from the rear part of the sail, like for a wing just before
stall, while the drag is smaller than for a wing at 15-20 degrees aoa (for which
the lift/drag ratio is 4-3), with the motivation given above. The lift/drag
curve for a sail is thus different from that of wing with lift/drag ratio at aoa
15-20 much larger for a sail. On the other hand, a keel with aoa 5-10 degrees
has a lift/drag ratio about 13. A sail at aoa 15-20 thus gives maximal pull
at strong heeling force and small drag, which together with a keel at aoa
5-10 with strong lift and small drag, makes an efficient combination. This
explains why modern designs combine a deep narrow keel acting efficiently
for small aoa, with a broader sail acting efficiently at a larger aoa.

Using a symmetrical wing as a sail would be inefficient, since the lift/drag
ratio is poor at maximal lift at aoa 15-20. On the other hand, using a sail
as a wing can only be efficient at a large angle of attack, and thus is not
suitable for cruising. This material is developed in more detail in [108].



Part III

Mathematics
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Chapter 23

Navier-Stokes Equations

Waves follow our boat as we meander across the lake, and turbulent
air currents follow our flight in a modern jet. Mathematicians and
physicists believe that an explanation for and the prediction of both
the breeze and the turbulence can be found through an understanding
of solutions to the Navier-Stokes equations. Although these equations
were written down in the 19th Century, our understanding of them
remains minimal. The challenge is to make substantial progress to-
ward a mathematical theory which will unlock the secrets hidden in
the Navier-Stokes equations. (Clay Mathematics Institute Millennium
Problem [106])

23.1 Conservation of Mass, Momentum and

Energy

The basic mathematical model of fluid mechanics takes the form of the
Navier-Stokes equations expressing conservation of mass, momentum and
energy of a viscous fluid in the conservation variables of density, momentum
and energy with the viscosity as a given coefficient. For an incompressible
fluid the equations can be formulated in terms velocity and pressure, re-
ferred to as the incompressible Navier-Stokes equations, with a decoupled
energy equation.

The fluid mechanics of subsonic flight is modeled by the incompressible
Navier-Stokes equations for a slightly viscous fluid, which is the focus of
this book. The Reynolds number Re = UL

ν
where U is a characteristic fluid
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velocity, L a characteristic length and ν the fluid viscosity, is used to identify
the high Reynolds number flow occuring in aerodynamics with Re of size 108

for large airplanes.
The incompressible Navier-Stokes equations are complemented by initial

values for velocity, and boundary conditions specifying either velocities or
forces on the boundary. A no-slip boundary condition sets the fluid velocity
to zero on the boundary, while a slip boundary condition sets the velocity
normal to the boundary to zero together with the tangential (friction) force.
The slip condition is a limit case of a combined normal velocity-tangential
stress boundary condition with the tangential stress set to zero as a model
of zero skin friction.

The Navier-Stokes equations for an incompressible fluid of unit density
with small viscosity ν > 0 and small skin friction β ≥ 0 filling a volume Ω in
R3 surrounding a solid body with boundary Γ over a time interval I = [0, T ],
read as follows: Find the velocity u = (u1, u2, u3) and pressure p depending
on (x, t) ∈ Ω ∪ Γ× I, such that

u̇+ (u · ∇)u+∇p−∇ · σ = f in Ω× I,
∇ · u = 0 in Ω× I,
un = g on Γ× I,
σs = βus on Γ× I,

u(·, 0) = u0 in Ω,

(23.1)

where un is the fluid velocity normal to Γ, us is the tangential velocity,
σ = 2νϵ(u) is the viscous (shear) stress with ϵ(u) the usual velocity strain, σs
is the tangential stress, f is a given volume force, g is a given inflow/outflow
velocity with g = 0 on a non-penetrable boundary, and u0 is a given initial
condition.

We notice the skin friction boundary condition coupling the tangential
stress σs to the tangential velocity us with the friction coefficient β with
β = 0 for slip, and β >> 1 for no-slip. We note that β is related to the
standard skin friction coefficient cf = 2τ

U2 with τ the tangential stress per
unit area, by the relation β = U

2
cf . In particular, β tends to zero with cf (if

U stays bounded).
Prandtl insisted on using a no-slip velocity boundary condition with

us = 0 on Γ, because his resolution of d’Alembert’s paradox hinged on dis-
criminating potential flow by this condition. On the oher hand, with the new
resolution of d’Alembert’s paradox, relying instead on instability of poten-
tial flow, we are free to choose instead a friction force boundary condition,
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if data is available. Now, experiments show [124, 28] that the skin friction
coefficient decreases with increasing Reynolds number Re as cf ∼ Re−0.2, so
that cf ≈ 0.0005 for Re = 1010 and cf ≈ 0.007 for Re = 105. Accordingly
we model a turbulent boundary layer by a friction boundary condition with
a friction parameter β ≈ 0.03URe−0.2. For very large Reynolds numbers, we
can effectively use β = 0 in G2 computation corresponding to slip boundary
conditions.

23.2 Wellposedness and Clay Millennium Prob-

lem

The mathematician J. Hadamard identified in 1902 [95] wellposedness as a
necessary requirement of a solution of a mathematical model, such as the
Navier-Stokes equations, in order to have physical relevance: Only wellposed
solutions which are suitably stable in the sense that small perturbations have
small effects when properly measured, have physical significance as observ-
able pheonomena.

Leray’s requirement of wellposedness is absolutely fundamental, but the
question whether solutions of the Navier-Stokes equations are wellposed, has
not been studied because of lack mathematical techniques for quantitative
analysis. This is evidenced in the formulation of the Clay Millennium Prize
Problem on the Navier-Stokes equations excluding wellposedness [106, 102].

The mathematical Garret Birkhoff became heavily criticized for posing
this question in [92], which stopped him from further studies. The first step
towards resolution of d’Alembert’s paradox and the mathematical secret of
flight is thus to pose the question if potential flow is wellposed, and then to
realize that it is not. It took 256 years to take these steps.

23.3 Laminar vs Turbulent Boundary Layer

As developed in more detail in [134], we make a distinction between lami-
nar (boundary layer) separation modeled by no-slip and turbulent (boundary
layer) separation modeled by slip/small friction. Note that laminar separa-
tion cannot be modeled by slip, since a laminar boundary layer needs to be
resolved with no-slip to get correct (early) separation. On the other hand,
as will be seen below, in turbulent (but not in laminar) flow the interior
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turbulence dominates the skin friction turbulence indicating that the effect
of a turbulent boundary layer can be modeled by slip/small friction, which
can be justified by an posteriori sensitivity analysis as shown in [134].

We thus assume that the boundary layer is turbulent and is modeled by
slip/small friction, which effectively includes the case of laminar separation
followed by reattachment into a turbulent boundary layer.
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G2 Computational Solution

24.1 General Galerkin G2: Finite Element

Method

We show in [103, 102, 104] that the Navier-Stokes equations (23.1) can be
solved by a weighted least squares residual stabilized finite element referred
to as General Galerkin or G2.

Writing the Navier-Stokes equations in symbolic form as R(u, p) = 0,
the G2 method determines a piecewise linear computational solution (U, P )
on a given finite element mesh such that the residual R(U, P ) is small in a
mean-value sense (Galerkin property) and with a certain weighted control of
R(U, P ) in a least-square sense (residual stabilization).

G2 produces turbulent solutions characterized by substantial turbulent
dissipation from the least squares residual stabilization acting as an au-
tomatic turbulence model, reflecting that R(U, P ) cannot be made small
pointwise in turbulent regions.

G2 is equipped with automatic a posteriori error control guaranteeing
correct lift and drag coefficients [103, 34, 33, 38, 99, 100] up to an error
tolerance of a few percent on meshes with a few hundred thousand or million
mesh points number of mesh points depending on geometry complexity.

G2 with slip is thus capable of modeling slightly viscous turbulent flow
with Re > 106 of relevance in many applications in aero/hydro dynamics,
including flying, sailing, boating and car racing, with possible millions of
mesh points, to be compared with the impossible quadrillions required [43]
for boundary layer resolution.
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G2 with slip works because slip is good model of the turbulent boundary
layer od slightly viscous flow, and interior turbulence does not have to be
resolved to physical scales to capture mean-value outputs [103].

G2 with slip thus offers a wealth of infomation at affordable cost, while
Prandtl’s requirement of boundary layer resolution cannot be met by any
forseeable computer.

24.2 A Posteriori Error Control and Well-

posedness

G2 is an adaptive finite element method with duality-residual based error
control of the principal form

dM(U, P ) ≤ S∥hR(U, P )∥ (24.1)

dM(U, P ) is the variation of a certain mean-value outputM(U, P ) such as lift
or drag coeffiients of a computed Navier-Stokes solution (U, P ) with Navier-
Stokes residual R(U, P ) on a mesh with mesh size h and S is a stability factor
measuring certain norms of an associated dual solution and ∥ · ∥ is a mean
square integral norm.

If in a G2 computation S∥hR(U, P ) < TOL, the output M(U, P ) is
guaranteed to change less than TOL under any mesh refinement.

24.3 What You Need to Know

To understand flight it is not necessary to get into the details of G2; it is
sufficient to understand that G2 solves the Navier-Stokes equations with an
automatic control of the the computational error, which guarantees that G2
solutions are proper solutions capable of unraveling the secrets hidden in
the Navier-Stokes equations, thereby offering valuable information for both
understanding and design.

24.4 Turbulent Flow around a Car

In Fig. 24.1 we show computed turbulent G2 flow around a car with substan-
tial drag in accordance with wind-tunnel experiments. We see a pattern of
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streamwise vorticity forming in the rear wake. We also see surface vorticity
forming on the hood transversal to the main flow direction. We will discover
similar features in the flow of air around a wing...
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Figure 24.1: Velocity of turbulent flow around a car



Chapter 25

Potential Flow

Because of d’Alembert’s paradox) fluid mecahnics was from start split
into the field of hydraulics, observing phenomena which could not be
explained, and mathematical or theoretical fluid mechanics explaining
phenomena which could not be observed. (Chemistry Nobel Laureate
Sir Cyril Hinshelwood [63])

25.1 Euler defeated by d’Alembert

Mathematical fluid mechanics started when Euler in the 1740s discovered
certain solutions in two space dimensions of the Navier-Stokes equations with
vanishingly small viscosity, with velocities of the form u = ∇φ, where the
potential φ is a harmonic function satisfying ∆φ = 0 in the fluid. These were
named potential solutions characterized as

• inviscid: vanishingly small viscosity,

• incompressible: ∇ · u = 0,

• irrotational: ∇× u = 0

• stationary: u̇ = 0.

This promised a fluid mechanics boom for mathematicians as experts of har-
monic functions, but the success story quickly collapsed when d’Alembert in
1752 showed that both lift and drag of potential solutions are zero, which
showed that the wonderful potential solutions were unphysical and thus were

121



122 CHAPTER 25. POTENTIAL FLOW

doomed as useless. But potential solution were essentially the only solutions
which could be constructed analytically, which led to a long-lasting split of
fluid mechanics into:

• practical fluid mechanics or hydraulics: observing phenomena which
cannot be explained (non-zero lift and drag),

• theoretical fluid mechanics: explaining phenomena which cannot be
observed (zero drag and lift),

according to the above quote.
We shall see that it took 254 years to resolve the paradox, but once it

was resolved the mystery of flight could be uncovered without split between
theory and reality.

25.2 Potential Flow as Near Navier-Stokes

Solution

Potential flow (u, p) with velocity u = ∇φ, where φ is harmonic in Ω and
satisfies a homogeneous Neumann condition on Γ and suitable conditions at
infinity, can be seen as a solution of the Navier-Stokes equations for slightly
viscous flow with slip boundary condition, subject to

• perturbation of the volume force f = 0 in the form of σ = ∇· (2νϵ(u)),

• perturbation of zero friction in the form of σs = 2νϵ(u)s,

with both perturbations being small because ν is small and a potential flow
velocity u is smooth. Potential flow can thus be seen as a solution of the
Navier-Stokes equations with small force perturbations tending to zero with
the viscosity. We can thus express d’Alembert’s paradox as the zero lift/drag
of a Navier-Stokes solution in the form of a potential solution, and resolve
the paradox by realizing that potential flow is unstable and thus cannot be
observed as a physical flow.

Potential flow is like an inverted pendulum, which cannot be observed
in reality because it is unstable and under infinitesimal perturbations turns
into a swinging motion. A stationary inverted pendulum is a fictious mathe-
matical solution without physical correspondence because it is unstable. You
can only observe phenomena which in some sense are stable, and an inverted
pendelum or potential flow is not stable in any sense.
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25.3 Potential Flow Separates only at Stag-

nation

Potential flow has the following crucial property which partly will be inherited
by real turbulent flow, and which explains why a flow over a wing subject to
small skin friction can avoid separating at the crest and thus generate down-
wash, unlike viscous flow with no-slip, which separates at the crest without
downwash. We will conclude that gliding flight is possible only in slightly
viscous incompressible flow. For simplicity we consider two-dimensional po-
tential flow around a cylindrical body such as a long wing (or cylinder).

Theorem. Let φ be harmonic in the domain Ω in the plane and satisfy a
homogeneous Neumann condition on the smooth boundary Γ of Ω. Then the
streamlines of the corresponding velocity u = ∇φ can only separate from Γ
at a point of stagnation with u = ∇φ = 0.
Proof. Let ψ be a harmonic conjugate to φ with the pair (φ, ψ) satisfying
the Cauchy-Riemann equations (locally) in Ω. Then the level lines of ψ are
the streamlines of φ and vice versa. This means that as long as ∇φ ̸= 0, the
boundary curve Γ will be a streamline of u and thus fluid particles cannot
separate from Γ in bounded time.

25.4 Vortex Stretching

Formally applying the curl operator∇× to the momentum equation of (23.1),
with ν = β = 0 for simplicity, we obtain the vorticity equation

ω̇ + (u · ∇)ω − (ω · ∇)u = ∇× f in Ω, (25.1)

which is a convection-reaction equation in the vorticity ω = ∇ × u with
coefficients depending on u, of the same form as the linearized equation
(??), with similar properties of exponential perturbation growth exp(|∇u|t)
referred to as vortex stretching. Kelvin’s theorem formally follows from this
equation assuming the initial vorticity is zero and ∇×f = 0 (and g = 0), but
exponential perturbation growth makes this conclusion physically incorrect:
We will see below that large vorticity can develop from irrotational potential
flow even with slip boundary conditions. , by properly understanding both
the physical and unphysical aspects of potential solutions.
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Chapter 26

D’Alembert and his Paradox

To those who ask what the infinitely small quantity in mathematics
is, we answer that it is actually zero. Hence there are not so many
mysteries hidden in this concept as they are usually believed to be.
(Leonhard Euler)

High office, is like a pyramid; only two kinds of animals reach the
summit– reptiles and eagles. (d’Alembert)

Just go on . . . and faith will soon return. (d’Alembert to a friend
hesitant with respect to infinitesimals)

If one looks at all closely at the middle of our own century, the events
that occupy us, our customs, our achievements and even our topics of
conversation, it is difficult not to see that a very remarkable change
in several respects has come into our ideas; a change which, by its
rapidity, seems to us to foreshadow another still greater. Time alone
will tell the aim, the nature and limits of this revolution, whose in-
conveniences and advantages our posterity will recognize better than
we can. (d’Alembert on the Enlightment)

26.1 d’Alembert and Euler and Potential Flow

Working on a 1749 Prize Problem of the Berlin Academy on flow drag,
d’Alembert was led to the following contradiction referred to as d’Alembert’s
paradox [75, 76, 77, 78, 83] between observation and theoretical prediction:
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• It seems to me that the theory (potential flow), developed in all possible
rigor, gives, at least in several cases, a strictly vanishing resistance, a
singular paradox which I leave to future Geometers to elucidate.

The great mathmatician Leonard Euler(1707-1783) had come to same con-
clusion of zero drag of potential flow in his work on gunnery [79] from 1745
based on the observation that in potential flow the high pressure forming in
front of the body is balanced by an equally high pressure in the back, in the
case of a boat moving through water expressed as

• ...the boat would be slowed down at the prow as much as it would be
pushed at the poop...

This is the idea of Aristotle adopted by da Vinci, which we met above in the
form of peristaltic motion.

More precisely, d’Alembert’s paradox concerns the contradiction between
observations of substantial drag/lift of a body moving through a slightly vis-
cous fluid such as air and water, with the mathematical prediction of zero
drag/lift of potential flow defined as inviscid, incompressible, irrotational
and stationary flow. Evidently, flying is incompatible with potential flow,
and in order to explain flight d’Alembert’s paradox had to be resolved. But
d’Alembert couldn’t do it and all the great mathematical brains of the 18th
and 19th century stumbled on it: Nobody could see that any of the as-
sumptions (i)-(iv) were wrong and the paradox remained unsolved. We shall
resolve the paradox below and find the true reason that potential flow with
zero drag/lift is never observed. And the true reason is not (iii).

We recall that a flow is irrotational if the flow velocity u has zero vorticity,
that is if∇×u = 0, in which case (for a simply connected domain) the velocity
u is given as the gradient of a potential function: u = ∇φ where φ is the
potential. If u is also incompressible, then

∆φ = ∇ · ∇φ = ∇ · u = 0

and thus the potential φ is a harmonic function satisfying Laplace’s equation:

∆φ = 0. (26.1)

This promised to open fluid mechanics for take-over by harmonic functions
in the hands of mathematicians, supported by Kelvin’s theorem stating that
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Figure 26.1: D’Alembert formulating his paradox.

without external forcing, an incompressible inviscid flow will stay irrota-
tional if initiated as irrotational. Mathematicians thus expected to find an
abundance of potential flows governed by harmonic potentials in the fluid
mechanics of slightly viscous flow, but such flows did not seem to appear in
reality, and nobody could understand why.

26.2 The Euler Equations

The basic equations in fluid mechanics expressing conservation of momentum
or Newton’s 2nd law connecting force to accelleration combined with conser-
vation of mass in the form of incompressibility, were formulated by Euler
in 1755 as the Euler equations for an incompressible inviscid fluid (of unit
density) enclosed in a volume Ω in R3 with boundary Γ: Find the velocity
u = (u1, u2, u3) and pressure p such that

u̇+ (u · ∇)u+∇p = f in Ω× I,
∇ · u = 0 in Ω× I,
u · n = g on Γ× I,

u(·, 0) = u0 in Ω,

(26.2)
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where the dot signifies differentiation with respect to time, n denotes the out-
ward unit normal to Γ, f is a given volume force, g is a given inflow/outflow
velocity, u0 is a given initial condition and I = [0, T ] a given time interval.
We notice the slip boundary condition u · n = 0 modeling a non-penetrable
boundary with zero friction.

The momentum equation can alternatively be formulated as

u̇+∇(
1

2
|u|2 + p) + u× ω = f (26.3)

where
ω = ∇× u

is the vorticity of the velocity u, which follows from the following calculus
identity:

1

2
∇|u|2 = (u · ∇)u+ u× (∇× u).

For a stationary irrotational velocity u with u̇ = 0 and ω = ∇ × u = 0, we
find that if f = 0, then

1

2
|u|2 + p = C (26.4)

where C is a constant, which is nothing but Bernouilli’s principle coupling
small velocity to large pressure and vice versa.

We conclude that a potential flow velocity u = ∇φ solves the Euler
equations with the pressure p given by Bernouilli’s law.

Kelvin’s theorem states that if the initial velocity u0 is irrotational and
∇ × f = 0 and g = 0, then a smooth Euler solution velocity will remain
irrotational for positive time. Below we will question the validity of Kelvin’s
theorem on the ground that solutions of the Euler equations in general are
not smooth, even if data are.

26.3 Potential Flow around a Circular Cylin-

der

To understand how a wing generates lift and drag it is instructive to first
consider the corresponding problem for a circular cylinder, which we can view
as a wing with circular cross-section. Of course you cannot fly with such a
wing, but a wing is similar to a half cylinder which can be analyzed starting
with a full cylinder.
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Figure 26.2: First page of Euler’s General Principles concerning the Motion
of Fluids from 1757 [80].
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We start considering potential flow around a circular cylinder of unit
radius with axis along the x3-axis in three-dimensional space with coordinates
(x1, x2, x3), assuming the flow velocity is (1, 0, 0) at infinity, see Fig. 29.1
showing a section of through the cylinder with the flow horisontal from left
to right. We can equally well think of the cylinder moving transversally
through a fluid at rest. Potential flow around the cylinder is constant in the

Figure 26.3: Potential flow past a circular cylinder: streamlines and fluid
speed (left) and pressure (right) in a (x1, x2)-plane with horisontal x1-axis in
the flow direction.

x3-direction and is symmetric in x1 and x2 with zero drag/lift with the flow
velocity given as the gradient of the potential

φ(r, θ) = (r +
1

r
) cos(θ),

in polar coordinates (r, θ) in the (x1, x2)-plane. The corresponding pressure
(vanishing at infinity) is determined by Bernouilli’s law as:

p = − 1

2r4
+

1

r2
cos(2θ).

In its simplicity potential flow is truely remarkable: It is a solution of
the Euler equations for inviscid flow with slip boundary condition, which
separates at the back of cylinder at the line (1, 0, x3), with equally high
pressure in the front and the back and low pressure on top and bottom
(with the low pressure three times as big as the high pressure), resulting in
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zero drag/lift. This is d’Alembert’s paradox: All experience indicates that a
circular cylinder subject to air flow has substantial drag, but potential flow
has zero drag.

We understand that the high pressure in the back, balancing the high
pressure up front, can be seen as pushing the body through the fluid according
to the principle of of motion of Aristotle and da Vinci. We shall discover that
there is something which is correct in this view. But the net push from behind
in real flow must be smaller than in potential flow, and so real flow must be
different form potential flow in the rear, but how and why? We shall see that
the correct answer to these questions hide the secret of flight.

26.4 Non-Separation of Potential Flow

Direct computation shows that on the cylinder boundary

∂p

∂n
=
U2

R
, (26.5)

where n is the outward unit normal to the boundary, ∂p
∂n

is the gradient of the
pressure in the unit normal direction or normal pressure gradient into the
fluid, U is the flow speed and R = 1 the radius of curvature of the boundary
(positive for a concave fluid domain thus positive for the cylinder). The
relation (26.5) is Newton’s law expressing that fluid particles gliding along
the boundary must be accellerated in the normal direction by the normal
pressure gradient force in order to follow the curvature of the boundary.
More generally, (26.5) is the criterion for non-separation: Fluid particles will
stay close to the boundary as long as (26.5) is satisfied, while if

∂p

∂n
<
U2

R
, (26.6)

then fluid particles will separate away from the boundary tangentially. In
particular, as we will see below, laminar flow separates on the crest or
top/bottom of the cylinder, since the normal pressure gradient is small in
a laminar boundary layer with no-slip boundary condition [124, 134].

We sum up so far: The Euler equations express conservation of mass and
momentum for an inviscid incompressible fluid. Potential flow is smooth and
satisfies the Euler equations. D’Alembert’s paradox compares inviscid poten-
tial flow having zero drag/lift with slightly viscous flow having substantial
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drag/lift. Potential flow has a positive normal pressure gradient preventing
separation allowing the pressure to build up on the back to push the cylinder
through the fluid without drag. We shall see that this is a bit too optimistic,
but only a bit; there is some push also in real (slightly viscous) flow...



Chapter 27

Lift and Drag from Separation

The fear of making permanent commitments can change the mutual
love of husband and wife into two loves of self - two loves existing side
by side, until they end in separation. (Pope John Paul II)

We now turn to a detailed mathematical analysis of flow separation, which
we will find uncovers the secret of generation of both lift and drag of a body
moving through air such as a wing. We know that the flow around the body
attaches somewhere in the front, typically around a point of stagnation, where
the flow velocity is zero, and separates somewhere somehow in the rear. In
many cases attachment is governed by smooth (laminar) potential flow, while
separation effectively is a generator of turbulence. We shall thus find that
drag can be seen as a “cost of separation”, which for a wing also pays for
generating lift.

We will present a scenario for separation in slightly viscous turbulent
flow, which is fundamentally different from the scenario for viscous laminar
flow by Prandtl based on adverse pressure gradients retarding the flow to
stagnation at separation. We make a distinction betweeen separation from a
laminar boundary layer with no-slip boundary condition and from a turbulent
boundary layer with slip. We thus make a distinction between

• laminar separation with no-slip in (very) viscous flow

considered by Prandtl of relevance for viscous flow, and

• turbulent separation with slip in slightly viscous flow

of relevance in aerodynamics.
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We noted above that separation occurs if ∂p
∂n
< U2

R
, where ∂p

∂n
is the pres-

sure gradient normal to the boundary into the fluid, U is a flow speed close
to the boundary and R the curvature of the boundary, positive for a convex
body. We note that in a laminar boundary layer ∂p

∂n
> 0 only in contracting

flow, which causes separation as soon as the flow expands after the crest of
the body. We observe that in a turbulent boundary layer with slip, ∂p

∂n
> 0

is possible also in expanding flow which can delay separation. We present a
basic mechanism for tangential separation with slip based on instability at
rear points of stagnation generating low-pressure rolls of streamwise vorticity
reducing ∂p

∂n
.

We give evidence that Prandtl’s boundary layer theory for laminar sepa-
ration has fallen into this trap, with the unfortunate result is that much re-
search and effort has gone into preventing laminar separation in flows which
effectively are turbulent with turbulent separation. We present a scenario for
turbulent separation without stagnation supported by analysis, computation
and experiments, which is radically different from Prandtl’s scenario for lam-
inar separation at stagnation. The fundamental question concerns the fluid
dynamics of separation without stagnation, since in slightly viscous flow the
friction is too small to bring fluid particles to rest. We shall find an answer
which connects to the familiar experience of the rotating flow through a bath-
tub drain, which in reality replaces the theoretically possible but unstable
fully radial flow.

We will see that laminar separation with no-slip occurs at the crest of
a wing without generating lift, while turbulent separation is delayed and
thereby generates lift.
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Separation

28.1 From Unstable to Quasi-Stable Separa-

tion

We are concerned with the fundamental problem of fluid mechanics of the
motion of a solid body, such as a subsonic airplane, car or boat, through a
slightly viscous incompressible fluid such as air at subsonic speeds or water.
We focus on incompressible flow at large Reynolds number (of size 106 or
larger) around both bluff and streamlined bodies, which is always partly
turbulent.

The basic problem is to determine the forces acting on the surface of
the body from the motion through the fluid, with the drag being the total
force in the direction of the flow and the lift the total force in a transversal
direction to the flow.

As a body moves through a fluid initially at rest, like a car or airplane
moving through still air, or equivalently as a fluid flows around a body at
rest, approaching fluid particles are deviated by the body in contracting flow,
switch to expanding flow at a crest and eventually leave the body. The flow is
said to attach in the front and separate in the back as fluid particles approach
and leave a proximity of the body surface.

In high Reynolds number slightly viscous flow the tangential forces on the
surface, or skin friction forces are small and both drag and lift mainly result
from pressure forces and the pressure distribution at turbulent separation is
of particular concern.

Separation requires stagnation of the flow to zero velocity somewhere in
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Figure 28.1: Unstable irrotational separation of potential flow around a cir-
cular cylinder (left) from line of stagnation surrounded by a high pressure
zone indicated by +, with corresponding opposing flow instability (right).

the back of the body as opposing flows are meeting. Stagnation requires
retardation of the flow, which requires a streamwise increasing pressure, or
adverse pressure gradient. We show by a linearized stability analysis that
retardation from opposing flows is exponentially unstable, which in particular
shows potential flow to be unstable as indictaed in Fig. 28.1. Since unstable
flow cannot persist over time, we expect to find a quasi-stable separation
pattern resulting from the most unstable mode of potential flow, as a flow
without streamwise retardation from opposing flows. By quasi-stable we
mean a flow which is not exponentially unstable and thus may have a certain
permanence over time.

Both experiment and computation show that there is such a quasi-stable
separation pattern arising from transversal reorganization of opposing po-
tential flow in the back into a set of counter-rotating vortex tubes of swirling
flow (streamwise vorticity) attaching to the body, accompanied by a zig-zag
pattern of alternating low and high pressure zones around points of stagna-
tion with low pressure inside the vortex tubes. This pattern is illustrated in
Fig. 2 for a cylinder along with computation and experiment, where we see
how the flow finds a way to separate with unstable streamwise retardation in
opposing flows replaced by quasi-stable transversal accelleration close to the
surface before separation and in the swirling flow after separation. We see
this phenomenon in the swirling flow in a bathtub drain, which is a stable
configuration with transversal accelleration replacing the unstable opposing
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flow retardation of fully radial flow.

Figure 28.2: Quasi-stable 3d rotational separation from alternating high/low
pressure: principle, computation and experiment

We refer to this quasi-stable pattern as 3d rotational separation. This is
a macroscopic phenomenon with the stagnation points spaced as widely as
possibe. From macroscopic point of view the small skin friction of slightly
viscous flow can be modeled with a slip boundary condition expressing van-
ishing skin friction. We show that computational solution of Navier-Stokes
equations with slip is possible at affordable cost, because with slip there
are no boundary layers to resolve, which makes it possible to compute both
drag and lift of a of a car, boat or airplane arbitrary shape without the
quadrillions of mesh points for boundary layer resolution commonly believed
to be required [43].

The single high pressure zone stretching along the stagnation line of po-
tential flow around a circular cylinder (creating instability) in Fig. 28.1, is
thus broken down into a pattern of high and low pressure zones by the de-
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velopment of low pressure vortical flow in Fig. 2, which allows the fluid to
separate without unstable streamwise retardation in opposing flow. The so
modified pressure creates drag of a bluff body and lift of a wing from the
zero drag and lift of potential flow.

28.2 Resolution of D’Alembert’s Paradox

Potential flow can be viewed as an approximate solution of the Navier-Stokes
equations at high Reynolds number with a slip boundary condition, but po-
tential flow is unphysical because both drag and lift are zero, as expressed
in d’Alembert’s paradox [104]. Inspection of potential flow shows unstable
irrotational separation of retarding opposing flow, which is impossible to ob-
serve as a physical flow. D’Alembert’s paradox is thus resolved by observing
that potential flow with zero drag and lift is unstable [104] and thus unphys-
ical, and not by the official resolution suggested by Prandtl stating that the
unphysical feature is the slip boundary condition.

Although 3d rotational separation has a macroscopic features the flow
is turbulent at separation in the sense that the dissipation in the flow is
substantial even though the viscosity is very small, following the definition
of turbulent flow in [103].

28.3 Main Result

We present evidence in the form of mathematical stability analysis and com-
putation that high Reynolds number incompressible flow around a body mov-
ing through a fluid can be described as

• quasi-stable potential flow before separation,

• quasi-stable 3d rotational separation.

This scenario is also supported by observation presented in e.g. [121, 122,
?] and our evidence thus consists of mathematical theory/computation and
observation in strong accord.

We show that both drag and lift critically depend on the pressure distri-
bution of 3d rotational separation. We remark that in the attaching flow in
the front the flow is retarded by the body and not by opposing flows as in
the back, which allows stable potential flow attachment. We show that drag
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and lift of a body of arbitrary shape can be accurately computed by solving
the Navier-Stokes equations with slip.

The description and analysis of the crucial flow feature of separation
presented here is fundamentally different from that of Prandtl, named the
father of modern fluid mechanics, based on the idea that both drag and lift
originate from a thin viscous boundary layer, where the flow speed relative
to the body rapidly changes from the free stream speed to zero at the body
surface corresponding to a no-slip boundary condition. Prandtl’s scenario for
separation, which has dominated 20th century fluid, can be described as 2d
boundary layer no-slip separation, to be compared with our entirely different
scenario of 3d no-boundary layer slip separation.

The unphysical aspect of Prandtl’s scenario of separation is illuminated
in [?]:

• The passage from the familiar 2d to the mysterious 3d requires a com-
plete reconsideration of concepts apparently obvious (separation and
reattachment points, separated bubble, recirculation zone) but inappro-
priate and even dangerous to use in 3d flows.

28.4 Navier-Stokes Equations with Slip by G2

We recall Navier-Stokes equations for incompressible flow with a slip bound-
ary condition according to (??) with β = 0: Find the velocity u = (u1, u2, u3)
and pressure p depending on (x, t) ∈ Ω ∪ Γ× I, such that

u̇+ (u · ∇)u+∇p−∇ · σ = f in Ω× I,
∇ · u = 0 in Ω× I,
un = g on Γ× I,
σs = 0 on Γ× I,

u(·, 0) = u0 in Ω,

(28.1)

and that solutions can be computed using G2.

We have found that that G2 with slip is capable of modeling slightly
viscous turbulent flow with Re > 106 of relevance in many applications in
aero/hydro dynamics, including flying, sailing, boating and car racing, with
hundred thousands of mesh points in simple geometry and millions in com-
plex geometry, while according to state-of-the-art quadrillions is required [43].
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This is because a friction-force/slip boundary condition can model a turbu-
lent boundary layer, and interior turbulence does not have to be resolved to
physical scales to capture mean-value outputs [103].

28.5 Stability Analysis by Linearization

The stability of a Navier-Stokes solution is expressed by the linearized equa-
tions

v̇ + (u · ∇)v + (v · ∇)ū+∇q = f − f̄ in Ω× I,
∇ · v = 0 in Ω× I,
v · n = g − ḡ on Γ× I,

v(·, 0) = u0 − ū0 in Ω,

(28.2)

where (u, p) and (ū, p̄) are two Euler solutions with slightly different data,
and (v, q) ≡ (u − ū, p − p̄). Formally, with u and ū given, this is a linear
convection-reaction problem for (v, q) with growth properties governed by
the reaction term given by the 3×3 matrix ∇ū. By the incompressiblity, the
trace of ∇ū is zero, which shows that in general ∇ū has eigenvalues with real
values of both signs, of the size of |∇u| (with | · | some matrix norm), thus
with at least one exponentially unstable eigenvalue, except in the neutrally
stable case with purely imaginary eigenvalues, or in the non-normal case of
degenerate eigenvalues representing parallel shear flow [103].

The linearized equations in velocity-pressure indicate that, as an effect of
the reaction term (v · ∇)ū:

• streamwise retardation is exponentially unstable in velocity,

• transversal accelleration is neutrally stable,

where transversal signifies a direction orthogonal to the flow direction.
Additional stability information is obtained by applying the curl operator

∇× to the momentum equation to give the vorticity equation

ω̇ + (u · ∇)ω − (ω · ∇)u = ∇× f in Ω, (28.3)

which is also a convection-reaction equation in the vorticity ω = ∇ × u
with coefficients depending on u, of the same form as the linearized equation
(28.5), with a sign change of the reaction term. The vorticity is thus locally
subject to exponential growth with exponent |∇u|:
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• streamwise accelleration is exponentially unstable in streamwise vor-
ticity.

We sum up as follows: The linearized equations (28.5) and (29.3) indicate
exponential growth of perturbation of velocity in streamwise retardation and
of streamwise vorticity in streamwise accelleration. We shall see in more
detail below 3d rotational separation results from exponential instability of
potential flow in retardation followed by vortex stretching in accelleration,
with the retardation replaced by neutrally stable transversal accelleration.

Note that in classical analysis it is often argued that from the vorticity
equation (29.3), it follows that vorticity cannot be generated starting from
potential flow with zero vorticity and f = 0, which is Kelvin’s theorem. But
this is an incorrect conclusion, since perturbations of f̄ of f with ∇× f̄ ̸= 0
must be taken into account, even if f = 0. What you effectively see in
computations is local exponential growth of vorticity on the body surface
in rear retardation and by vortex stretching in accelleration, even if f = 0,
which is a main route of instability to turbulence as well as separation.

28.6 Instability of 2d Irrotational Separation

We now analyze the stability of 2d irrotational separation considered by
Planck in the following model of the potential flow around a circular cylinder
studied in more detail below: u(x) = (x1,−x2, 0) in the half-plane {x1 > 0}
with stagnation along the line (0, 0, x3) and

∂u1
∂x1

= 1 and
∂u2
∂x2

= −1, (28.4)

expressing that the fluid is squeezed by retardation in the x2-direction and
accelleration in the x1-direction. We first focus on the retardation with the
main stability feature of (28.5) captured in the following simplified version
of the v2-equation of (28.5), assuming x1 and x2 are small,

v̇2 − v2 = f2,

where we assume f2 = f2(x3) to be an oscillating perturbation depending
on x3 of a certain wave length δ and amplitude h, for example f2(x3) =
h sin(2πx3/δ), expecting the amplitude to decrease with the wave length.
We find, assuming v2(0, x) = 0, that

v2(t, x3) = (exp(t)− 1)f2(x3).
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We next turn to the accelleration and then focus on the ω1-vorticity equation,
for x2 small and x1 ≥ x̄1 > 0 with x̄1 small, approximated by

ω̇1 + x1
∂ω1

∂x1
− ω1 = 0,

with the “inflow boundary condition”

ω1(x̄1, x2, x3) =
∂v2
∂x3

= (exp(t)− 1)
∂f2
∂x3

.

The equation for ω1 thus exhibits exponential growth, which is combined
with exponential growth of the “inflow condition”. We can see these features
in principle and computational simulation in Fig. ?? showing how oppos-
ing flows at separation generate a pattern of alternating surface vortices
from pushes of fluid up/down, which act as initial conditions for vorticity
stretching into the fluid generating counter-rotating low-pressure tubes of
streamwise vorticity.

The above model study can be extended to the full linearized equations
linearized at u(x) = (x1,−x2, 0):

Dv1 + v1 = − ∂q
∂x1
,

Dv2 − v2 = − ∂q
∂x2

+ f2(x3),

Dv3 = − ∂q
∂x3
,

∇ · v = 0

(28.5)

where Dv = v̇+u ·∇v is the convective derivative with velocity u and f2(x3)
as before. We here need to show that the force perturbation f2(x3) will not
get cancelled by the pressure term − ∂q

∂x2
in which case the exponential growth

of v2 would get cancelled. Now f2(x3) will induce a variation of v2 in the
x3 direction, but this variation does not upset the incompressibility since it
involves the variation in x2. Thus, there is no reason for the pressure q to
compensate for the force perturbation f2 and thus exponential growth of v2
is secured.

We thus find streamwise vorticity generated by a force perturbation os-
cillating in the x3 direction, which in the retardation of the flow in the x2-
direction creates exponentially increasing vorticity in the x1-direction, which
acts as inflow to the ω1-vorticity equation with exponential growth by vortex
stretching. Thus, we find exponential growth at rear separation in both the
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retardation in the x2-direction and the accelleration in the x1 direction, as a
result of the squeezing expressed by (28.4).

Since the combined exponential growth is independent of δ, it follows that
large-scale perturbations with large amplitude have largest growth, which is
also seen in computations with δ the distance between streamwise rolls as
seen in Fig. 29.3 which does not seem to decrease with decreasing h. The
perturbed flow with swirling separation is large scale phenomenon, which we
show below is more stable than potential flow.

The corresponding pressure perturbation changes the high pressure at
separation of potential flow into a zig-zag alternating more stable pattern
of high and low pressure with high pressure zones deviating opposing flow
into non-opposing streaks which are captured by low pressure to form rolls
of streamwise vorticity allowing the flow to spiral away from the body. This
is similar to the vortex formed in a bathtub rain.

Notice that in attachment in the front the retardation does not come from
opposing flows but from the solid body, and the zone of exponential growth
of ω2 is short, resulting in much smaller perturbation growth than at rear
separation.

We shall see that the tubes of low-pressure streamwise vorticity change the
normal pressure gradient to allow separation without unstable retardation,
but the price is generation of drag by negative pressure inside the vortex
tubes as a “cost of separation”.

28.7 Quasi-Stable Rotational 3d Separation

We discover in computation and experiment that the rotational 3d separ-
tion pattern just detected as the most unstable mode of 2d, represents a
quasi-stable flow with unstable retardation in opposing flows replaced by
transversal acceleration.

As a model of flow with transversal accelleration we consider the potential
velocity u = (0, x3,−x2) of a constant rotation in the x1-direction, with
corresponding linearized equations linearized problem

v̇1 = 0, v̇2 + v3 = 0, v̇3 − v2 = 0, (28.6)

which model a neutrally stable harmonic oscillator without exponential growth
corresponding to imaginary eigenvalues of ∇u.
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Further, shear flow may represented by (x2, 0, 0), which is marginal un-
stable with linear perturbation growth from degenerate zero eigenvalues of
∇u, as analyzed in detail in [103].

28.8 Quasi-Stable Potential Flow Attachment

The above analysis also shows that potential flow attachment, even though
it involves streamwise retardation, is quasi-stable. This is because the initial
perturbation f2 in the above analysis is forced to be zero by the slip boundary
condition requiring the normal velocity to vanish. In short, potential flow
attachment is stable because the flow is retarded by the solid body and not
by opposing flows as in separation.

This argument further shows that a flow retarded by a high pressure zone
is quasi-stable in approach because it is similar to attachment.
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Basic Cases

29.1 Circular Cylinder

We consider the flow around a around a long circular cylinder of unit radius
with axis along the x3-axis in R3 with coordinates x = (x1, x2, x3), assuming
the flow velocity is (1, 0, 0) at infinity.

29.1.1 Unstable Unphysical Potential Flow

Potential flow as inviscid, irrotational, incompressible stationary flow, is
given in polar coordinates (r, θ) in a plane orthogonal to the cylinder axis by
the potential function, see Fig. 29.1,

φ(r, θ) = (r +
1

r
) cos(θ)

with corresponding velocity components

ur ≡
∂φ

∂r
= (1− 1

r2
) cos(θ), us ≡

1

r

∂φ

∂θ
= −(1 +

1

r2
) sin(θ)

with streamlines being level lines of the conjugate potential function

ψ ≡ (r − 1

r
) sin(θ).

Potential flow is constant in the direction of the cylinder axis with velocity
(ur, us) = (1, 0) for r large, is fully symmetric with zero drag/lift, attaches
and separates at the lines of stagnation (r, θ) = (1, π) in the front and (r, θ) =
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Figure 29.1: Potential flow past a circular cylinder: fully symmetric velocity
(left) and pressure (right).

(1, 0) in the back. Potential flow shows exponentially unstable 2d irrotational
separation but quasi-stable 2d attachment. Potential flow thus represents
physical flow before separation but not in separation and after separation.

By Bernouilli’s principle the pressure is given by

p = − 1

2r4
+

1

r2
cos(2θ)

when normalized to vanish at infinity. We compute

∂p

∂θ
= − 2

r2
sin(2θ)),

∂p

∂r
=

2

r3
(
1

r2
− cos(2θ)),

and discover an adverse pressure gradient in the back. Further, the normal
pressure gradient on the boundary

∂p

∂r
= 4 sin2(θ) ≥ 0

is precisely the force required to accelerate fluid particles with speed 2| sin(θ)|
to follow the circular boundary without separation, by satisfying the condi-
tion of non-separation on a curve with curvature R

∂p

∂n
=
U2

R
. (29.1)
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We note, coupling to the above discussion relating to (??), that ∂us

∂r
=

2
r3
sin(θ) = 2 at the crest. We further compute

∂ψ

∂r
=

1

r2
sin(θ)

which shows that fluid particles decrease their distance to the boundary in
front of the cylinder and increase their distance in the rear, but the flow only
separates at rear stagnation.

29.1.2 Quasi-Stable Physical Turbulent Flow

Solving Navier-Stokes equations with very small viscsoity and slip boundary
condition by G2 we find the a a flow initialized as potential flow develops
into a turbulent solution with rotational separation as identified above, in
shown in Fig. 29.2 and 29.3.

Figure 29.2: Turbulent flow past a cylinder; velocity (left) and pressure
(right). Notice the low pressure wake of strong streamwise vorticity gen-
erating drag.

29.2 NACA0012 Trailing Edge Separation

The separation at the trailing edge of a wing is similar to that of a circular
cylinder, as shown in Fig. 29.2 for a NACA012 wing at 5 degrees angle of
attack.
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Figure 29.3: Levels surfaces of strong vorticity in EG2 solution: streamwise
|ω1| (left) and transversal |ω2| (middle) and |ω3| (right), at two times t1 < t2
(upper, lower), in the x1x3-plane.

Figure 29.4: Velocity, pressure and vorticity at trailing edge separation for
NACA0012 wing. Notice the zig-zag pattern of the velocity.
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Figure 29.5: Evidence that drag and lift of a wing can be computed by solving
the Navier-Stokes equations with slip without resolving any boundary layers.

29.3 Accuracte Drag and Lift without Bound-

ary Layer

We compare in Fig. 29.6 drag and lift of a long NACA0012 wing for different
angles of attack including stall computed by solving the of Navier-Stokes
equations with slip using Unicorn ??, with different experiments and notice
good agreement. We conclude that drag and lift are computable without
resolving and boundary layers.

29.4 Sphere

Potential flow around a sphere is exponentially unstable at its point of stag-
nation at separation and develops a quasi-stable separation pattern of four
counterrotating rolls of streamwise vorticity as shown in Fig. 29.4.
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Figure 29.6: Pattern of exponential instability of potential flow around a
sphere at point of stagnation forming four counterrotating rolls of streamwise
vorticity, shown in computation.

29.5 Hill

In Fig. 29.7 we show turbulent Euler flow over a hill with separation after the
crest by again the mechanism of tangential separation through generation of
surface vorticity.

29.6 Flat Plate

The experience reported above suggests the following scenario for separation
into a turbulent boundary layer over a flat plate as a representation of a
smooth boundary: (i) Rolls of streamwise vorticity are formed by non-modal
linear perturbation growth referred to as the Taylor Görtler mechanism in
[103]. (ii) The rolls create opposing transversal flows (as in the back of
cylinder), which generate surface vorticity which is stretched into the fluid
while being bent into to streamwise direction, as evidenced in e.g. [29, 30].
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Figure 29.7: Separation after crest of hill by surface vorticity from opposing
flow.
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Figure 29.8: Shear flow over flat plate generates x1 vorticity which gener-
ates secondary transversal opposing flow which generates rolls of x2-vorticity
attaching to the plate and bending into the flow, like a forest of sea tulips
attaching to the sea bottom.
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Energy Estimate

The standard energy estimate for (23.1) is obtained by multiplying the mo-
mentum equation

u̇+ (u · ∇)u+∇p−∇ · σ − f = 0,

with u and integrating in space and time, to get in the case f = 0 and g = 0,∫ t

0

∫
Ω

Rν(u, p) · u dxdt = Dν(u; t) +Bβ(u; t) (30.1)

where

Rν(u, p) = u̇+ (u · ∇)u+∇p

is the Euler residual for a given solution (u, p) with ν > 0,

Dν(u; t) =

∫ t

0

∫
Ω

ν|ϵ(u(t̄, x))|2dxdt̄

is the internal turbulent viscous dissipation, and

Bβ(u; t) =

∫ t

0

∫
Γ

β|us(t̄, x)|2dxdt̄

is the boundary turbulent viscous dissipation, from which follows by standard
manipulations of the left hand side of (30.1),

Kν(u; t) +Dν(u; t) +Bβ(u; t) = K(u0), t > 0, (30.2)
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where

Kν(u; t) =
1

2

∫
Ω

|u(t, x)|2dx.

This estimate shows a balance of the kinetic energy K(u; t) and the turbu-
lent viscous dissipation Dν(u; t) + Bβ(u; t), with any loss in kinetic energy
appearing as viscous dissipation, and vice versa. In particular,

Dν(u; t) +Bβ(u; t) ≤ K(u0),

and thus the viscous dissipation is bounded (if f = 0 and g = 0).
Turbulent solutions of (23.1) are characterized by substantial internal tur-

bulent dissipation, that is (for t bounded away from zero),

D(t) ≡ lim
ν→0

D(uν ; t) >> 0, (30.3)

which is Kolmogorov’s conjecture [97]. On the other hand, the skin friction
dissipation decreases with decreasing friction

lim
ν→0

Bβ(u; t) = 0, (30.4)

since β ∼ ν0.2 tends to zero with the viscosity ν and the tangential veloc-
ity us approaches the (bounded) free-stream velocity. We thus find evidence
that the interior turbulent dissipation dominates the skin friction dissipation,
which supports the use of slip as a model of a turbulent boundray layer, but
which is not in accordance with Prandtl’s (unproven) conjecture that sub-
stantial drag and turbulent dissipation originates from the boundary layer.

Kolmogorov’s conjecture (30.3) is consistent with

∥∇u∥0 ∼
1√
ν
, ∥Rν(u, p)∥0 ∼

1√
ν
, (30.5)

where ∥ · ∥0 denotes the L2(Q)-norm with Q = Ω× I. On the other hand, it
follows by standard arguments from (30.2) that

∥Rν(u, p)∥−1 ≤
√
ν, (30.6)

where ∥ · ∥−1 is the norm in L2(I;H
−1(Ω)). Kolmogorov thus conjectures

that the Euler residual Rν(u, p) for small ν is strongly (in L2) large, while
being small weakly (in H−1).
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Altogether, we understand that the resolution of d’Alembert’s paradox of
explaining substantial drag from vanishing viscosity, consists of realizing that
the internal turbulent dissipationD can be positive under vanishing viscosity,
while the skin friction dissipation B will vanish. In contradiction to Prandtl,
we conclude that drag does not result from boundary layer effects, but from
internal turbulent dissipation, originating from instability at separation.
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Chapter 31

G2 Computational Solution

We show in [103, 102, 104] that the Navier-Stokes equations (23.1) can be
solved by G2 producing turbulent solutions characterized by substantial tur-
bulent dissipation from the least squares stabilization acting as an automatic
turbulence model, reflecting that the Euler residual cannot be made point-
wise small in turbulent regions. G2 has a posteriori error control based on
duality and shows output uniqueness in mean-values such as lift and drag
[103, 99, 100]

We find that G2 with slip is capable of modeling slightly viscous turbulent
flow withRe > 106 of relevance in many applications in aero/hydro dynamics,
including flying, sailing, boating and car racing, with hundred thousands of
mesh points in simple geometry and millions in complex geometry, while
according to state-of-the-art quadrillions is required [59]. This is because a
friction-force/slip boundary condition can model a turbulent boundary layer,
and interior turbulence does not have to be resolved to physical scales to
capture mean-value outputs [103].

The idea of circumventing boundary layer resolution by relaxing no-slip
boundary conditions introduced in [99, 103], was used in [115, 26] in the form
of weak satisfaction of no-slip, which however misses the main point of using
a force condition instead of a velocity condition in a model of a turbulent
boundary layer.

A G2 solution (U, P ) on a mesh with local mesh size h(x, t) according to
[103], satisfies the following energy estimate (with f = 0, g = 0 and β = 0):

K(U(t)) +Dh(U ; t) = K(u0), (31.1)
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where

Dh(U ; t) =

∫ t

0

∫
Ω

h|Rh(U, P )|2 dxdt, (31.2)

is an analog of Dν(u; t) with h ∼ ν, where Rh(U, P ) is the Euler residual of
(U, P ). We see that the G2 turbulent viscosity Dh(U ; t) arises from penaliza-
tion of a non-zero Euler residual Rh(U, P ) with the penalty directly connect-
ing to the violation (according the theory of criminology). A turbulent solu-
tion is characterized by substantial dissipation Dh(U ; t) with ∥Rh(U, P )∥0 ∼
h−1/2, and

∥Rh(U, P )∥−1 ≤
√
h (31.3)

in accordance with (30.5) and (30.6).

31.1 Wellposedness of Mean-Value Outputs

Let M(v) =
∫
Q
vψ dxdt be a mean-value output of a velocity v defined by a

smooth weight-function ψ(x, t), and let (u, p) and (U, P ) be two G2-solutions
on two meshes with maximal mesh size h. Let (φ, θ) be the solution to the
dual linearized problem

−φ̇− (u · ∇)φ+∇U⊤φ+∇θ = ψ in Ω× I,
∇ · φ = 0 in Ω× I,
φ · n = g on Γ× I,

φ(·, T ) = 0 in Ω,

(31.4)

where ⊤ denotes transpose. Multiplying the first equation by u − U and
integrating by parts, we obtain the following output error representation
[103]:

M(u)−M(U) =

∫
Q

(Rh(u, p)−Rh(U, P )) · φdxdt (31.5)

where for simplicity the dissipative terms are here omitted, from which follows
the a posteriori error estimate:

|M(u)−M(U)| ≤ S(∥Rh(u, p)∥−1 + ∥Rh(U, P )∥−1), (31.6)

where the stability factor

S = S(u, U,M) = S(u, U) = ∥φ∥H1(Q). (31.7)
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In [103] we present a variety of evidence, obtained by computational solu-
tion of the dual problem, that for global mean-value outputs such as drag and
lift, S << 1/

√
h, while ∥Rh∥−1 ∼

√
h, allowing computation of of drag/lift

with a posteriori error control of the output within a tolerance of a few per-
cent. In short, mean-value outputs such as lift and drag are wellposed and
thus physically meaningful.

We explain in [103] the crucial fact that S << 1/
√
h, heuristically as an

effect of cancellation of rapidly oscillating reaction coefficients of turbulent
solutions combined with smooth data in the dual problem for mean-value
outputs. In smooth potential flow there is no cancellation, which explains
why zero lift/drag cannot be observed in physical flows.
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[80] Leonard Euler, Principes généraux du mouvement des fluides, Académie
Royale des Sciences et des Belles-Lettres de Berlin, Mémoires 11, 274-315,
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