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Chapter 1

Prelude: Entropy Turbulence

I am an old man now, and when I die and go to heaven there are
two matters on which I hope for enlightenment. One is quantum
electrodynamics, and the other is turbulent motion of fluids. And
about the former I am rather optimistic. (Horace Lamb, 1932)

The steam engine having furnished us with a means for converting
heat into motive power, and our thoughts being thereby led to re-
gard a certain quantity of work as an equivalent for the amount of
heat expended in its production, the idea of establishing theoretically
soem fixed relation bewteen a quantity of heat and the quantity of
work whcih it can possibly produce, from which relation conclusions
regarding the nature of heat itself may be deduced, naturally presents
itself. (Clausius 1851)

1.1 Entropy

Modern physics was born from the work by the German physicist Ludwig
Boltzmann (1844-1906) on thermodynamics in the late 19th century. Boltz-
mann had taken on the mission to solve the main open problem of physics of
his time of deriving the 2nd Law of Thermodynamics from Newtonian me-
chanics of a gas viewed as a large collection of atoms or molecules interacting
by collisions.

The 2nd Law had been formulated by Rudolf Clausius in 1865 in terms
of the new concept of entropy, motivated from urgent practical needs of
improving the efficiency of steam engines as heat engines transforming heat

3



4 CHAPTER 1. PRELUDE: ENTROPY TURBULENCE

energy into mechanical energy, see Fig. 1.1. Clausius postulated that only
transformations with non-decreasing (increasing or constant) entropy were
possible, with entropy something which could only accumulate but never be
destroyed.

A transformation with strictly increasing entropy would then be irre-
versible, which in particular would explain why mechanical energy once trans-
formed into heat energy by friction cannot be retrieved and thus put a limit
on the efficiency of heat engines working in a cycle.

Clausius could not explain the physical meaning of entropy and his 2nd
Law, and this was required to keep physics and mathematics as the King
and Queen of Rational Science. The challenge was taken on by the young
ambitious Boltzmann in what was to become the project of his life, starting
from the at his time still unproven atomistic hypothesis of a gas as a large
collection of atoms.

However, the task showed to be overwhelming and Boltzmann felt forced
to give up classical deterministic Newtonian mechanics and replace it with
a new form of statistical mechanics, and in the end to give up his own life
as he lost faith in his creation. Classical deterministic Newtonian is formally
reversible and thus must be modified to show irreversibility. Boltzmann’s
resorted to statistics and paid the price. In this book we shall consider a
much less brutal modification in the form of finite precision computation at
an affordable necessary cost.

But statistical mechanics survived and is today viewed to offer a scientific
definition of entropy as a “measure of disorder” in some statistical sense.
Statistical mechanics was boosted by the discovery of atoms and prepared
the statistical interpretation of the wave function of quantum mechanics as a
probability of particle configuration, commonly believed to be an inevitable
aspect of modern physics. But statistics represents a form capitulation away
from prediction by cause-effect, which is the heart of rational science.

1.2 Turbulence

There is another fundamental problem of classical mechanics, namely the
problem of turbulence in a gas or fluid seen as a large collection of gas/fluid
particles or atoms/molecules interacting by pressure and friction forces. Tur-
bulent flow is not determinstic as concerns pointwise values in space and time,
and thus has been approached by statistical methods, however with meager
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Figure 1.1: Converting heat to kinetic (mechanical) energy in 1712.
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concrete results.
There are thus two main open problems of classical mechanics

• entropy,

• turbulence,

which have not been found a resolution within a deterministic framework,
and to be honest not really within a statistical framework either as evidenced
in quotations below.

But there is midway between full determinism and full indeterminism or
statistics, which we explored in our previous book Computational Turbulent
Incompressible Flow [20]. We showed that mean-value quantities such as
drag and lift in turbulent bluff body flow, can be computed deterministically
without resort to statistics, by solving the Euler/Navier-Stokes equations
by a certain computational method named EG2 as an acronym for Euler
General Galerkin finite element method.

EG2 opens to an exploration of turbulent flow viewing EG2 as direct
model of physics with an automatic turbulence model introducing a certain
turbulent dissipation. EG2 thus resolves the problem of turbulence in the
sense of offering a computable understandable mathematical model of tur-
bulence.

EG2 shows to satisfy a certain 2nd Law formulated without the concept
of entropy, using only the known concepts of heat energy, kinetic energy,
work toghether with turbulent dissipation, and thus offers a resolution of the
problem of formulating a 2nd Law in physical terms.

EG2 essentially replaces entropy by turbulent dissipation and the 2nd Law
comes out simply as a consequence of the inevitable presence of turbulent
dissipation in certain processes.

EG2 thus opens to a resolution of the two main problems of macroscopic
mechanics of turbulence and 2nd Law, by showing that the problems are
essentially the same and can approached by deterministic computation.

1.3 EG2 as Model of Thermodynanics

In this book we extend the scope of [20] to compressible flow described by
the Euler/Navier-Stokes equations solved by EG2 into Computational Ther-
modynamics. We thus use EG2 in an exploration of basic processes of ther-
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modynamics in heat engines, heat pumps and refrigerators with turbulent
dissipation setting limits of efficiency.

1.4 Icarus Education

This book is part of Icarus Education originating in the Body&Soul educa-
tional project [2] and including:

• Computational Calculus.

• Computational Turbulent Incompressible Flow [20].

• Mathematical Theory of Flight.

• Mathematical Theory of Sailing.

• Mathematical Physics of Blackbody Radiation.

• Many-Minds Relativity

• Many-Minds Quantum Mechanics

• Dr Faustus of Modern Physics.

• The Clock and the Arrow: A Brief Theory of Time.

1.5 EG2 Software: FEniCS: Unicorn

Open source software implementing EG2s available as the FEniCS applica-
tion Unicorn [14].

1.6 Outline

Part I Short Story recapitulates the questions and answers of classical ther-
modynamics and briefly presents the new answers offered by computational
thermodynamics. Joule’s experiment from 1845 with a gas expanding to
double volume is used to illustrate a basic problem of thermodynamics and
its resolution by EG2.
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Part II World of Thermodynamics briefly covers some of the very many
applications of thermodynamics from small to large scales.

Part III Mathematics presents a basic mathematical analysis of solutions
the Euler/Navier-Stokes equations, which we follow up in Part IV Compu-
tation with an analysis of EG2. The 2nd Law is proved and the limits of
mean-value determinism are by a posteriori error estimation based on solving
a dual lineraized problem.

Part V Model Analysis is a study of some model problems by analytical
mathematics.

Part VI Applications reaches the main goal of computing the efficiency
of heat engines, heat pumps and refrigerators in prototype form.



Chapter 2

Objective

You can fool all the people some time, and some of the people all the
time, but you cannot fool all people all the time. (Abraham Lincoln)

The physicist Arnold Sommerfeld (1868-1951) gave the following account
of his experience of thermodynamics as a scientific discipline:

• Thermodynamics is a funny subject. The first time you go through it,
you don’t understand it at all. The second time you go through it, you
think you understand it, except for one or two small points. The third
time you go through it, you know you don’t understand it, but by that
time you are so used to it, it doesn’t bother you any more.

The greatest mystery is the 2nd Law of Thermodynamics, which has haunted
many great scientists into obsession including Maxwell, Boltzmann, Planck,
Mach, Ostwald and Prigogine, ever since it was formulated in 1865 by Clau-
sius.

The 2nd Law states that a certain quantity named entropy cannot de-
crease with increasing time, and when strictly increasing characterizes an
irreversible thermodynamic process, which cannot be reversed in time, since
the reversed process would have a strictly decreasing entropy violating the
2nd Law. A direction of time or Arrow of time would thus be defined by
irreversible thermodynamics. Max Planck (1858-1947) expressed the role of
the 2nd Law as follows:

• Were it not for the existence of irreversible processes, the entire edifice
of the 2nd Law would crumble.

9



10 CHAPTER 2. OBJECTIVE

Newtonian deterministic mechanics without viscosity/friction, as well as quan-
tum mechanics, is formally time reversible, since the basic equations are in-
variant under time reversal, and Planck pointed to the need of explaining
how irreversibility can arise in a formally reversible deterministic system,
more precisely how it can be that a macroscopic process based on reversible
microscopic mechanics, can be irreversible.

Newtonian mechanics with slight viscosity from microscopic viscosity, is
easily seen to be irreversible as a consequence of the smoothing effect of
viscosity; it is of course not surprising that a processes with viscosity shows
effects of viscosity. What physicists of the late 19th century were asking was
how effects of friction/viscosity can arise in a macroscopic system based on
reversible microscopic particle/quantum mechanics without viscosity.

Ludwig Boltzmann (1844-1906) took on the challenge and came up with
a resolution in the form of statistical mechanics based on an assumption
of molecular chaos, or molecular games of roulette, supposedly reflecting a
tendency of thermodynamical processes to evolve from ordered towards dis-
ordered states, or from less probable towards more probable states, identified
by increasing entropy. But a molecular game of roulette introduces a mi-
croscopic viscous effect by assumption, and thus is similar to deterministic
mechanics with microscopic viscosity with the same lack of explicative power
of irreversibility, as noted in early criticism by Loschmidt [33] and expressed
by Eisenschitz in the introduction of his Statistical Theory of Irreversible
Processes from 1958:

• The irreversible nature of the approach to equilibrium is apparently in-
compatible with the reversibility of molecular dynamics. In resolving
this paradox the theory faces difficulties that have not yet been fully
overcome.

Further, observations of self-organization and emergence of order out of chaos
contradict steady increase of disorder/entropy. Nevertheless, in the absence
of a better explanation, statistical mechanics is today viewed by the physics
community as the foundation of thermodynamics offering a justification of
both the 2nd Law, irreversibility and the Arrow of time. But statistical
mechanics is difficult to understand and to use: The modern text-book [31]
prepares the student for (very) tough studies:

• Statistical thermodynamics is a challenging discipline... It demands an
incredible diversity of skills, from probability theory to quantum me-
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chanics to molecular modeling...transport phenomena and physical op-
tics. With continuing study and reflection you can rest assured that a
practical symbiosis will eventually bloom that simultaneously reinforces
and expands your appreciation of both microscopic and macroscopic
thermodynamics.

The objective of this book is to develop a deterministic foundation of
thermodynamics in the form of computational thermodynamics, which does
not rely on any form of statistical mechanics. We show that computational
thermodynamics offers accurate simulation and scientific understanding of
complex real thermodynamical processes, without requiring any “incredible
diversity of skills”. In short, we show that thermodynamics can be made both
understandable and applicable. The basic idea is to view physical processes
as some form of finite precision analog computation, which can be simulated
by finite precision digital computation.

We shall see that computational thermodynamics opens new possibilities
to progess with new questions and answers, in particular concerning the phe-
nomena of turbulence and shocks typically occuring in the thermodynamics
of slightly viscous flow dominating applications. The basic novelty is that
turbulent/shock solutions are computed and thus are available to inspection,
which means that the focus of the science of thermodynamics can be shifted
from a priori predictions based on analytical mathematics to a posteriori
analysis of computed turbulent solutions, which can be viewed as a veritable
shift of paradigm.

The new computational foundation is based on a 1st Law of Thermody-
namics in the form of the Euler equations of an ideal gas expressing con-
servation of mass, momentum and energy, combined with finite precision
computation in the form of a least squares stabilized finite element method
referred to as Euler General Galerkin or EG2. We prove a 2nd Law of Ther-
modynamics without the concept entropy to be a consequence of the 1st Law
combined with finite precision computation.

With a 2nd Law in this form we avoid the (difficult) main task of statisti-
cal mechanics of specifying the physical significance of entropy and motivat-
ing its tendency to increase by probabilistic considerations based on (tricky)
combinatorics. Yet, we achieve the main goal of the 2nd Law of giving a
rational expression and explanation of irreversibility in macroscopic systems
based on formally reversibe microscopic mechanics. Thus using Ockham’s
razor [34], we rationalize a scientific theory of major importance making it
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both more understandable and more useful. The new 2nd Law is closer to
classical Newtonian mechanics than the 2nd Law of statistical mechanics,
and thus can be viewed to be more fundamental.

We shall see that EG2 is not just any ad hoc computational method for
the Euler equations, but is designed to capture the fundamentals of ther-
modynamics including turbulence and shocks. We will thus view EG2 as a
constructive physical model of thermodynamics, in distinction from a clas-
sical non-constructive mathematical model without computational solution
procedure.

A fundamental question concerns wellposedness in the sense of Hadamard,
that is what aspects or outputs of turbulent/shock solutions are stable un-
der perturbations, that is what outputs change little under small pertur-
bations including perturbations from the computational discretization and
mesh. We show that wellposedness of EG2 solutions can be tested a pos-
teriori by computationally solving a dual linearized problem, through which
the output sensitivity of non-zero Euler residuals can be estimated. We find
that mean-value outputs such as drag and lift and total turbulent dissipation
are wellposed, while point-values of turbulent flow are not. We can thus a
posteriori case by case assess the quality of EG2 solutions as solutions of the
Euler equations.



Chapter 3

Classical Thermodynamics

Heat, a quantity which functions to animate, derives from an internal
fire located in the left ventricle. (Hippocrates, 460 B.C.)

3.1 Classical 1st and 2nd Laws

Thermodynamics is fundamental in a wide range of phenomena from macro-
scopic to microscopic scales. Thermodynamics essentially concerns the in-
terplay between heat energy and kinetic energy in a gas or fluid. Kinetic
energy, or mechanical energy, may generate heat energy by compression or
turbulent dissipation. Heat energy may generate kinetic energy by expansion,
but not through a reverse process of turbulent dissipation. The industrial
society of the 19th century was built on the use of steam engines, and the
initial motivation to understand thermodynamics came from a need to in-
crease the efficiency of steam engines for conversion of heat energy to useful
mechanical energy. Thermodynamics is closely connected to the dynamics
of slightly viscous and compressible gases, since substantial compression and
expansion can occur in a gas, but less in fluids (and solids).

The development of classical thermodynamics as a rational science based
on logical deduction from a set of axioms, was initiated in the 19th century
by Carnot [7], Clausius [?] and Lord Kelvin [25], who formulated the basic
axioms in the form of the 1st Law and the 2nd Law of thermodynamics.
The 1st Law states (for an isolated system) that the total energy, the sum of
kinetic and heat energy, is conserved. The 1st Law is naturally generalized
to include also conservation of mass and Newton’s law of conservation of

13



14 CHAPTER 3. CLASSICAL THERMODYNAMICS

momentum and then can be expressed as the Euler equations for a gas/fluid
with vanishing viscosity.

The 2nd Law has the form of an inequality dS ≥ 0 for a quantity named
entropy denoted by S, with dS denoting change thereof, supposedly express-
ing a basic feature of real thermodynamic processes. The classical 2nd Law
states that the entropy cannot decrease; it may stay constant or it may in-
crease, but it can never decrease (for an isolated system).

The role of the 2nd Law is to give a scientific basis to the many obser-
vations of irreversible processes, that is, processes which cannot be reversed
in time, like running a movie backwards. Time reversal of a process with
strictly increasing entropy, would correspond to a process with strictly de-
creasing entropy, which would violate the 2nd Law and therefore could not
occur. A perpetum mobile would represent a reversible process and so the
role of the 2nd Law is in particular to explain why it is imposssible to con-
struct a perpetum mobile, and why time is moving forward in the direction
an arrow of time, as expressed by Max Planck [35, 36, 37]: Were it not for
the existence of irreversible processes, the entire edifice of the 2nd Law would
crumble.

While the 1st Law in the form of the Euler equations expressing conserva-
tion of mass, momentum and total energy can be understood and motivated
on rational grounds, the nature of the 2nd Law is mysterious. It does not
seem to be a consequence of the 1st Law, since the Euler equations seem to
be time reversible, and the role of the 2nd Law is to explain irreversibility.
We repeat the questions from above since they are so central:

• If the 2nd Law is a new independent law of Nature, how can it be
justified?

• What is the physical significance of that quantity named entropy, which
Nature can only get more of and never can get rid of, like a steadily
accumulating heap of waste?

• What mechanism prevents Nature from recycling entropy?

• How can irreversiblity arise in a reversible system?

• How can viscous dissipation arise in a system with vanishing viscosity?

• Why can a gas by itself expand into a larger volume, but not by itself
contract back again, if the motion of the gas molecules is governed by



3.2. THE MYSTERY OF ENTROPY 15

the reversible Newton’s laws of motion?

• Why is there an arrow of time?

3.2 The Mystery of Entropy

These were the questions which confronted scientists in the late 19th century,
after the introduction of the concept of entropy by Clausius in 1865, and
these showed to be tough questions to answer. After much struggle, agony
and debate, the agreement of the physics community has become to view
statistical mechanics based on an assumption ofmolecular chaos as developed
by Boltzmann [4], to offer a rationalization of the classical 2nd Law in the
form of a tendency of (isolated) physical processes to move from improbable
towards more probable states, or from ordered to less ordered states.

Boltzmann’s assumption of molecular chaos in a dilute gas of colliding
molecules, is that two molecules about to collide have independent velocities,
which led to the H-theorem for Boltzmann’s equations stating that a certain
quantity denoted by H could not decrease and thus could serve as an entropy
defining an arrow of time.

Increasing disorder would thus represent increasing entropy, and the clas-
sical 2nd Law would reflect the eternal pessimistists idea that things always
get more messy, and that there is really no limit to this, except when ev-
erything is as messy as it can ever get. Of course, experience could give
(some) support this idea, but the trouble is that it prevents things from
ever becoming less messy or more structured, and thus may seem a bit too
pessimistic.

No doubt, it would seem to contradict the many observations of emergence
of ordered non-organic structures (like crystals or waves and cyclons) and
organic structures (like DNA and human beings), seemingly out of disordered
chaos, as evidenced by the physics Nobel Laureate Robert Laughlin [26].

Most trained thermodynamicists would here say that emergence of order
out of chaos, in fact does not contradict the classical 2nd Law, because
it concerns “non-isolated systems”. But they would probably insist that
the Universe as a whole (isolated system) would steadily evolve towards a
“heat-death” with maximal entropy/disorder (and no life), thus fulfilling the
pessimists expectation. The question from where the initial order came from,
would however be left open.



16 CHAPTER 3. CLASSICAL THERMODYNAMICS

The standard presentation of thermodynamics based on the 1st and 2nd
Laws, thus involves a mixture of deterministic models (Boltzmann’s equa-
tions with the H-theorem) based on statistical assumptions (molecular chaos)
making the subject admittedly difficult to both learn, teach and apply, de-
spite its strong importance.

This is primarily because the question why necessarily dS ≥ 0 and never
dS < 0, is not given a convincing understandable answer. In fact, statistical
mechanics allows dS < 0, although it is claimed to be very unlikely. The basic
objective of statistical mechanics as the basis of classical thermodynamics,
thus is to (i) give the entropy a physical meaning, and (ii) to motivate its
tendency to (usually) increase.

Before statistical mechanics, the 2nd Law was viewed as an experimen-
tal fact, which could not be rationalized theoretically. The classical view on
the 2nd Law is thus either as a statistical law of large numbers or as a an
experimental fact, both without a rational deterministic mechanistic theo-
retical foundation. The problem with thermodynamics in this form is that
it is understood by very few, if any, as indicated by the above quotes.



Chapter 4

Telling the Truth

To motivate the that thermodynamics needs a new foundation, we here col-
lect some of the many expresssions in the literature giving evidence that
classical thermodynamics is a mess:

• Every mathematician knows it is impossible to understand an elemen-
tary course in thermodynamics. (V. Arnold)

• ...no one knows what entropy is, so if you in a debate use this concept,
you will always have an advantage. (von Neumann to Shannon)

• As anyone who has taken a course in thermodynamics is well aware,
the mathematics used in proving Clausius’ theorem (the 2nd Law) is of
a very special kind, having only the most tenous relation to that known
to mathematicians. (S. Brush [?])

• Where does irreversibility come from? It does not come form Newton’s
laws. Obviously there must be some law, some obscure but fundamental
equation. perhaps in electricty, maybe in neutrino physics, in which it
does matter which way time goes. (Feynman [13])

• For three hundred years science has been dominated by a Newtonian
paradigm presenting the World either as a sterile mechanical clock or in
a state of degeneration and increasing disorder...It has always seemed
paradoxical that a theory based on Newtonian mechanics can lead to
chaos just because the number of particles is large, and it is subjectivly
decided that their precise motion cannot be observed by humans... In
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the Newtonian world of necessity, there is no arrow of time. Boltzmann
found an arrow hidden in Nature’s molecular game of roulette. (Paul
Davies [10])

• The goal of deriving the law of entropy increase from statistical me-
chanics has so far eluded the deepest thinkers. (Lieb [32])

• There are great physicists who have not understood it. (Einstein about
Boltzmann’s statistical mechanics)

• ...thermodynamics is a dismal swamp of obscurity... a prime example
to show that physicists are not exempt from the madness of crowds...
Clausius’ verbal statement of the second law makes no sense...All that
remains is a Mosaic prohibition; a century of philosophers and jour-
nalists have acclaimed this commandment; a century of mathematicians
have shuddered and averted their eyes from the unclean...Seven times
in the past thirty years have I tried to follow the argument Clausius of-
fers and seven times has it blanked and gravelled me. I cannot explain
what I cannot understand. (Truesdell [41])

• The second law of thermodynamics is, without a doubt, one of the most
perfect laws in physics. Any reproducible violation of it, however small,
would bring the discoverer great riches as well as a trip to Stockholm.
The world’s energy problems would be solved at one stroke. It is not
possible to find any other law (except, perhaps, for super selection rules
such as charge conservation) for which a proposed violation would bring
more skepticism than this one. Not even Maxwell’s laws of electricity or
Newton’s law of gravitation are so sacrosanct, for each has measurable
corrections coming from quantum effects or general relativity. The law
has caught the attention of poets and philosophers and has been called
t he greatest scientific achievement of the nineteenth century. Engels
disliked it, for it supported opposition to Dialectical Materialism, while
Pope Pius XII regarded it as proving the existence of a higher being.
(Bazarov in Thermodynamics, 1964)

• If someone points out to you that your pet theory of the universe is
in disagreement with Maxwell’s equations, then so much the worse for
Maxwell’s equations. If it is found to be contradicted by observation,
well, these experimentalists do bungle things sometimes. But if your
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theory is found to be against the second law of thermodynamics I can
give you no hope; there is nothing for it but to collapse in deepest hu-
miliation (Sir Arthur Stanley Eddington in The Nature of the Physical
World, 1915)

• A good many times I have been present at gatherings of people who,
by the standards of the traditional culture, are thought highly educated
and who have with considerable gusto been expressing their incredulity
at the illiteracy of scientists. Once or twice I have been provoked and
have asked the company how many of them could describe the Second
Law of Thermodynamics. The response was cold: it was also negative.
(C. P. Snow in 1959 Rede Lecture entitled The Two Cultures and the
Scientific Revolution).

From Challenges to the 2nd Law of Thermodynamics by V. Capek and D. P.
Sheenan:

• This monograph is the first to examine modern challenges to the 2nd
Law. For more than a century this field has lain fallow and beyond the
pale of legitimate scientific inquiry due to both a dearth of scientific
results and to a surfeit of peer pressure against such inquiry.

• It is remarkable that 20th century physics, which embraced several rad-
ical paradigm shifts, was unwilling to wrestle with this remnant of 19th
century physics, whose foundations were admittedly suspect and largely
unmodified by the discoveries of the succeeding century.

• This failure is due in part to the many strong imprimaturs placed on
it by prominent scientists like Planck, Eddington and Einstein. There
grew around the second law a nearly inpentrable mystique which only
now is being pierced.

• The 2nd Law has no general theoretical proof and, like all physical laws,
its status is tied ultimately to experiments.

• Inquiry into its status should not be stifled by certain unscientific atti-
tudes and practices that have operated thus far.

From A History of Thermodynamics: The Doctrine of Energy and Entropy
by Ingo Müller:
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• A physicist likes to be able to grasp his concepts plausibly and on an
intutive level. In that respect, however, the entropy - for all its proven
an recognized importance - is a disappointment. The formula dS = dQ

T

does not lend itself to a suggestive interpretation.

From Classical Thermodynamics as Theory of Heat Engines by C. Truesdell
and S. Bharatha:

• I do not think it s possible ton write a history of a science until that
science itself shall have been understood, thanks to a clear, explicit, and
decent logical structure. The exuberance of dim, involute, and undisci-
plined historical essays upon classical thermodynamics reflects the con-
fusion of the theory itself.

• Thermodynamics was born in obscurity and disorder, not to say confu-
sion, and there the common presentations of it has remained.

From Tragicomical History of Thermodynamics by C. Truesdell:

• Thermodynamics is the kingdom also of running current history as well
as polemics, not to mention verbosity. In no other discipline have the
same equations been published over and over again so many times by
different authors in different ill-defined notations and therefore claimed
as his own by each; in no other has a single author seen fit to publish es-
sentially the same ideas over and over again within a perieod of twenty
years; and nowhere is else is the ratio of talk and excuse to reason and
result so high...
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Old Questions

Those who have talked of “chance” are the inheritors of antique su-
perstition and ignorance...whose minds have never been illuminated
by a ray of scientific thought. (T. H. Huxley)

5.1 The Enigma

While the 1st Law in the form of conservation of energy can be viewed as a
definition of internal energy, and as such cannot be disputed, the nature of
the 2nd Law posed a main challenge to the scientists of the late 19th century
with the following basic questions:

• Is the 2nd Law a law of Nature which can be justified, or is it an
experimental fact beyond rationalization?

• What is the physical significance of that quantity named entropy, which
Nature can only get more of and never can get rid of, like a steadily
accumulating heap of waste? What mechanism prevents Nature from
recycling entropy?

• How can irreversibility arise in reversible mechanics?

The enigma Boltzmann set out to solve was to explain how in reversible
mechanics there can be irreversible processes with an Arrow of time, and
his solution was “Natures molecular game of roulette” or molecular chaos in
a particle model of a dilute gas of elastically colliding molecules, assuming
pairs of molecules about to collide to have statistically independent velocities
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before collision, but not after. From the statistical particle model Boltzmann
derived a deterministic kinetic model in the form of Boltzmann’s equation for
the particle density as a function of position, velocity and time as independent
variables. Boltzmann proved that solutions satisfy a 2nd Law referred to
as the H-theorem, as a consequence of the assumption of molecular chaos.
Boltzmann’s solution was immediately heavily criticized, in particular by
Loschmidt [33], who pointed to the (obvious) fact that assuming statistical
independence before collision, effectively defines an Arrow of time and thus
assumes what is to be demonstrated.

5.2 From Boltzmann to Planck

In “an act of despair” Max Planck stimulated by statistical mechanics pro-
posed to explain the irreversible nature of black-body radiation in terms of
statistics of light quanta, which initiated quantum mechanics. Boltzmann
was annihilated by the criticism, but not his atomic games of roulette, which
became the signum of the physics of the 20th century.

5.3 Emergence

However, the criticism remains into our days: Molecular games of roulette
with steadily increasing disorder is incompatible with emergence of ordered
structures (like crystals, waves and cyclons or DNA and human beings), as
pointed out by many including the physics Nobel Laureate Robert Laughlin
[26].

5.4 Microscopics of Microscopics

Microscopics of macroscopics in the form of games of roulette requires its
own microscopics, which leads to a neverending chain of microscopics upon
microscopics. Einstein and Schrödinger never accepted the statistical Copen-
hagen interpretation of quantum mechanics forefully advocatd by in partic-
ular Nils Bohr, who dismissed their criticism as an early onset of senility.
However, an (informal) poll taken at the 1997 UMBC quantum mechanics
workshop gave the Copenhagen interpretation less than half of the votes
(http://space.mit.edu/home/tegmark/).
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5.5 2nd Law by Statistics

The objective of statistical mechanics as the basis of classical thermodynam-
ics, is to give entropy a physical meaning, and to motivate its tendency to
increase. Before statistical mechanics, the 2nd Law was viewed as an exper-
imental fact, which could not be rationalized theoretically.

To sum up, the accepted view on the 2nd Law is either as a statistical law
of large numbers or simply as an experimental fact, both without a rational
deterministic mechanistic theoretical foundation.
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Chapter 6

New Answers

What we observe as material bodies and forces are nothing but shapes
and variations in the structure of space. Particles are just schaumkom-
men (appearances). ... Let me say at the outset, that in this discourse,
I am opposing not a few special statements of quantum physics held
today (1950s), I am opposing as it were the whole of it, I am opposing
its basic views that have been shaped 25 years ago, when Max Born
put forward his probability interpretation, which was accepted by al-
most everybody... I don’t like it, and I’m sorry I ever had anything to
do with it. (Schrödinger [39])

6.1 Computational Turbulence

In this book we present a foundation of thermodynmaics where the basic
assumption of statistical mechanics of molecular chaos, is replaced by de-
terministic finite precision computation, more precisely by a least squares
stabilized finite element method for the Euler/Navier-Stokes equations, re-
ferred to as Euler General Galerkin or EG2. In the spirit of Dijkstra [?], we
thus view EG2 as the physical model of thermodynamics, that is the Euler
equations together with a computational solution procedure, and not just
the Euler equations without constructive solution procedure as in a classical
non-computational approach.

Using EG2 as a model of thermodynamics changes the questions and
answers and opens new possibilities of progress together with new challenges
to mathematical analysis and computation. The basic new feature is that
EG2 solutions are computed and thus are available to inspection. This means
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that the analysis of solutions shifts from a priori to a posteriori ; after the
solution has been computed it can be inspected.

Inspecting computed EG2 solutions we find that they are turbulent and
have shocks, which is identified by pointwise large Euler residuals, reflecting
that pointwise solutions to the Euler equations are lacking. The enigma of
thermodynamics is thus the enigma of turbulence (since the basic nature
of shocks is understood). Computational thermodynamics thus essentially
concerns computational turbulence.

The fundamental question concerns wellposedness in the sense of Hadamard,
that is what aspects or outputs of turbulent/shock solutions are stable un-
der perturbations in the sense that small perturbations have small effects.
We show that wellposedness of EG2 solutions can be tested a posteriori by
computationally solving a dual linearized problem, through which the out-
put sensitivity of non-zero Euler residuals can be estimated. We find that
mean-value outputs such as drag and lift and total turbulent dissipation are
wellposed, while point-values of turbulent flow are not. We can thus a poste-
riori in a case by case manner, assess the quality of EG2 solutions as solutions
of the Euler equations.

6.2 Basic 2nd Law Without Entropy

We formulate a 2nd Law for EG2 without the concept of entropy, in terms
of the basic physical quantities of kinetic energy K, heat energy E, rate of
work W and shock/turbulent dissipation D > 0. The new 2nd Law reads in
the case of no exterior forcing:

K̇ = W −D, Ė = −W +D, (6.1)

where the dot indicates time differentiation. Slightly viscous flow always
develops turbulence/shocks with D > 0, and the 2nd Law thus expresses an
irreversible transfer of kinetic energy into heat energy, while the total energy
ϵ = E +K remains constant as seen by summing the two equations:

ϵ̇ = K̇ + Ė = 0. (6.2)

We see that the workW transforms heat energy into kinetic energy or kinetic
energy into heat energy depending on the sign of W :

• In expansion with W > 0, heat energy transforms into kinetic energy,
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• In compression withW < 0, kinetic energy transforms into heat energy.

On the other hand, sinceD > 0, turbulent dissipation only transforms kinetic
energy into heat energy, and not heat energy to kinetic energy. When you
rub your hands they get warm, but you cannot get your hand rubbing by
only heating them. Motion can generate heat by friction, but heat cannot
generate motion by an inverse process of friction. In this book you will
discover a mathematical explanation of this familiar experience based on
finite precision digital computation, which represents a new way of viewing
physics as a form of analog computation of finite precision.

You will find that the 2nd Law in the form (6.1) is easy to grasp intuitively
as expressing a basic balance between heat energy and kinetic energy, with
unidirectional flow of turbulent dissipation energy from kinetic to heat energy,
but also reflects a rather deep mathematical principle.

With the 2nd Law in the form (6.1), we avoid the (difficult) main task
of statistical mechanics of specifying the physical significance of entropy and
motivating its tendency to increase by probabilistic considerations based on
(tricky) combinatorics. Thus using Ockham’s razor [34], we rationalize a
scientific theory of major importance making it both more understandable
and more useful. The new 2nd Law is closer to classical Newtonian mechanics
than the 2nd Law of statistical mechanics, and thus can be viewed to be more
fundamental.

The new 2nd Law is a consequence of the 1st Law in the form of the
Euler equations combined with EG2 finite precision computation effectively
introducing viscosity and viscous dissipation. These effects appear as a con-
sequence of the non-existence of pointwise solutions to the Euler equations
reflecting instablities leading to the development shocks and turbulence in
which large scale kinetic energy is transferred to small scale kinetic energy
in the form of heat energy. The viscous dissipation can be interpreted as a
penalty on pointwise large Euler residuals arising in shocks/turbulence, with
the penalty being directly coupled to the violation following a principle of
criminal law exposed in [15]. EG2 thus explains the 2nd Law as a consequence
of the non-existence of pointwise solutions with small Euler residuals.

This offers an understanding to the emergence of irreversible solutions
of the formally reversible Euler equations. If pointwise solutions had ex-
isted, they would have been reversible without dissipation, but they don’t
exist, and the existing computational solutions have dissipation and thus are
irreversible.
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Chapter 7

Joule’s 1845 Experiment

The most convincing proof of the conversion of heat into living force
[vis viva] has been derived from my experiments with the electro-
magnetic engine, a machine composed of magnets and bars of iron set
in motion by an electrical battery. I have proved by actual experiment
that, in exact proportion to the force with which this machine works,
heat is abstracted from the electrical battery. You see, therefore, that
living force may be converted into heat, and that heat may be con-
verted into living force, or its equivalent attraction through space.

7.1 The Essence of Thermodynamics

We shall now discover the essence of thermodynamics as transformation be-
tween heat energy and kinetic energy in a basic experiment performed by
the James Prescott Joule (17874-1858), a manager of a brewery and hobby
scientist with special interest in electricity. Joule reflected about replacing
the brewery’s steam engine by the newly invented electrical motor and thus
became interested in the efficiency of different forms of energy conversion.
Joule’s Law gives the heat Q generated by an electrical current I through a
resistor R as Q = I2R.

In his basic thermodynamics experiment, Joule considered a gas initially
at rest, or in equilibrium, at a certain temperature and density in a certain
volume immersed into a container of water, see Fig. 7.1. At initial time a
valve was opened and the gas was allowed to expand into the double volume
while the temperature change in the water was carefully measured by Joule.

To the great surprise of both Joule and the scientific community, no
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change of the temperature of the water could be detected, in contradiction
with the expectation that the gas would cool off under expansion. More-
over, the expansion was impossible to reverse; the gas had no inclination to
contract back to the original volume.

We assume that the gas is a ideal gas satisfying the gas law

p = γρT (7.1)

where p is pressure, ρ is density and T is absolute temperature and where
0 < γ < 1 is a gas constant. This law come out as a combination of Boyle’s
law stating that pressure and density under constant temperature are propor-
tional and Charles law stating that absolute temperature and density under
constant pressure are inversely proportional.

We simulate Joule’s experiment computationally using EG2: At initial
time a valve is opened in a channel connecting two cubical chambers, a left
and a right chamber, filled with gas of the same temperature but different
density/pressure with high density/pressure in the left and low in the right
chamber. Fig. 7.2-7.3 display the time-evolution of mean temperature, den-
sity, kinetic energy, pressure and turbulent dissipation in the left and right
chambers, while Fig. 7.5-?? give snapshots of the distribution of tempera-
ture, speed, turbulent dissipation at an intermediate time.

We see that temperature drops in the left chamber as the gas expands
with heat energy transforming to kinetic energy with a maximal temperature
drop in the channel. When the cool expanding gas hits the wall opposite to
the channel inlet in the right chamber, it is heated in recompression and
turbulent/shock dissipation. The mean temperature thus drops in the left
chamber and increases in the right and after a slight rebounce settles to a
remaining density/temperature gap as the gas comes to rest with the same
pressure in the left and right chambers and the same total heat energy as
before expansion. Joule measured the total heat energy of the initial and
final equilibrium states and found them to be equal. Joule did not seek to
measure the dynamics of the process, nor the remaining temperature/density
gap.

From the 1st Law alone there are many different possible end states with
varying gaps in density/temperature. It is the 2nd Law which determines the
size of the gap, which relates to the amount of turbulent/shock dissipation
in the left and right chambers, which is determined by the dynamics of the
process including the distribution of turbulence/shock dissipation.
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Figure 7.1: Joule’s 1845 experiment

Classical thermodynamics focussing on equiblium states does not tell
which from a range of possible equlibrium end states with varying gaps, will
actually be realized, because the true end state depends on the dynamics of
the process. If anything, classical thermodynmics would predict an end state
with zero gap, which we have seen is incorrect. In short, classical equilibrium
thermodynamics excluding the dynamics cannot correctly predict transition
from one equlibrium state to another, and thus has little practical value.
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Figure 7.2: Mean density and temperature in left and right chambers as
functions of time.

The 2nd Law states that reversal of the process with the gas contracting
back to the original small volume, is impossible because the only way the



32 CHAPTER 7. JOULE’S 1845 EXPERIMENT

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

 

 

0 5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Figure 7.3: Mean kinetic energy and pressure in left and right chambers as
functions of time.

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−4

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 7.4: Mean turbulent dissipation in left and right chambers as functions
of time.
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Figure 7.5: Distribution of gas temperature at T = 3

Figure 7.6: Distribution of gas speed at T = 3
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Figure 7.7: Distribution of turbulent dissipation at T = 3

gas can be put into motion without external forcing is by expansion: Self-
expansion is possible, but not self-constraction.

We are thus able to analyze and understand the dynamics of the Joule
experiment using the 1st and the new form of the 2nd law. The experiment
displays the expansion phase of a compression refrigerator with heat being
moved by expansion from the left chamber in contact with the inside of the
refrigerator, into the right chamber in contact with the outside. The cycle is
closed by recompression under outside cooling. The efficiency connects to the
temperature drop in the left chamber and the gap, with efficiency suffering
from rebounce to small gap.

7.2 Computation of Efficiency as Refrigera-

tor

Thermodynamics was developed to understand the functioning of heat en-
gines transforming heat energy to mechanical energy, and heat pumps and
refrigerators moving heat energy from a reservoir of low temperature to reser-
voir of higher temperature at the expenense of mechanical work. We can view
these devices as different forms of a heat engine as a transformer between
mechanical energy and heat energy.
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We can use the Joule experiment as a idealized model of a heat pump
refrigerator working in a cycle absorbing heat from the exterior in the left
chamber and delivering heat to the exterior from the right chamber, corre-
sponding to moving heat from the inside of a refigerator to the outside. We
consider a model consisting of the following steps starting with a gas at rest
with ρ = T = 1 in a left box of unit volume connected to a right empty box
of the same volume through a channel with a valve closed at the start of the
cycle.

1. Open the valve and let gas expand to the double volume as in the
Joule experiment to rest state with mean temperature Tl < 1 in the
left chamber and Tr > 1 in the right.

2. Close the valve and let the gas absorb heat in the left chamber from
exterior and deliver heat in the right chamber to the exterior to restore
mean temperature T = 1.

3. Compress the gas in left and right chamber under heat exchange with
the exterior at T = 1 until ρ = 1 and open the valve. Return to 1.

For simplicity we assume that the rest states are constant in space, so that
in particular Tl and Tr are the constant tempeartures, and ρl and ρr the
constant densities, in the left and right chambers after the expansion in step
1. We have the following balance equations assuming the gas law p = γ̄ρT :

ρlTl = ρrTr =
1

2
ρl + ρr = 1 (7.2)

since also ρlTl + ρrTr = 1 by conservation of heat energy. We conclude that

Tl =
1

2ρl
Tr =

1

2(1− ρl)
. (7.3)

The heat Ql absorbed in the left chamber in step 2 equals

Ql = ρl(1−
1

2ρl
) = ρl −

1

2
(7.4)

and the work Wl and Wr performed in the left and right chambers step 3 is
given by

Wl = −
∫
pdV = γ̄

∫ 1

ρl

dρ

ρ
Wr = −

∫
pdV = γ̄

∫ 1

1−ρl

dρ

ρ
. (7.5)
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The efficency η of the device viewed as a refrigerator is the given by

η =
Ql

Wl +Wr

=
ρl − 1

2

− log(ρl(1− ρl))
(7.6)

We see that η depends on the temperature drop Tl with η = 0 in the extreme
cases of ρl =

1
2
and Tl = 1 and ρl = 1 and Tr = ∞. Maximal efficiency

≈ 0.387 is obtained for ρ ≈ 0.85 with a gap Tr − Tl ≈ 0.3.
The efficiency as a heat pump becomes the same if we view the useful

heat that which is delivered to the exterior from the right chamber in step 2.
Including some of heat from compression in step 3 as useful heat increases the
efficiency as a heat pump. We get the indication that it is easier to construct
an efficient heat pump than an efficient refrigerator.

Classical thermodynamics would, if anything, predict ρl = ρr = 1
2
and

Tl = Tr = 1 and thus η = 0. In order to find the correct rest state after adia-
batic expansion, it is necesary to follow the dynamics of the expansion with
the amount of turbulenct/shock dissipation in the two chambers determin-
ing the resulting gaps in temperature and density. Classical thermodynamics
only considers equilibrium states leaving out the turbulence/shock dynamics
and thus is basically useless for prediction of efficiency of heat engines, which
was the original goal of thermodynamics.

In the above model we set for simplicity the interior rest temperature
equal to the exterior temperature = 1, viewing the heat Q absorbed in the
left chamber as excess heat introduced into the refrigerator to be moved to
the outside. We can obviously extend the above computation to the more
realistic case of a lower interior rest temperature. In this case less heat Q
would be absorbed in step 2 decreasing the efficiency.

In a real refrigerator the expansion comes along with vaporization which
increases the temperature drop and thus the efficiency. In the applications
part we will consider more realistic heat engines including heat pumps and
refrigerators.

Note that the rapidity of the process of moving heat from the left to the
right chamber is crucial. By heat conduction alone it would be possible to
move exces heat from left to right, but that would be a slow process. With
the compression and expansion of the gas heat can quickly be transported
and that is a crucial aspect as concerns the capacity of the device.

Classical thermodynamics focussing on equilibrium states considers tran-
sitions between equalibrium states to be very slow and thus does not cover
useful applications.
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7.3 Conclusions from Joule’s Experiment

We have used Joule’s experiment to illustrate basic features of thermodynam-
ics including the essence of both aspects thermo and dynamics. We have seen
that computational thermodynamics is capable of simulating the dynamics
including turbulence and shocks, in particular during expansion where the
amount and distribution of turbulent/shock dissipation determines the gap
in density-temperature after expansion, which determines the efficiency as a
refrigerator or heat pump. We have seen the 2nd Law explain why expansion
from rest is possible without interaction with the exterior, while compression
requires exterior work.

We have found no need of any concept of entropy: The concepts of ki-
netic energy, heat energy, work and turbulent dissipation which are physical
quantities which can be measured, are sufficient to describe thermodynamics,
and entropy serves no purpose and has no physical meaning.
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Chapter 8

New Foundation

Heat, a quantity which functions to animate, derives from an internal
fire located in the left ventricle. (Hippocrates, 460 B.C.)

8.1 The Euler and Navier-Stokes Equations

The Navier-Stokes equations for a compressible gas express conservation of
mass, momentum and total energy as a system of partial differential equations
with position and time as independent variables, together with constitutive
laws defining pressure, viscous forces and diffusive heat fluxes in terms of
mass density, velocity and heat/internal energy, combined with initial condi-
tions and boundary conditions. In a perfect gas the pressure is proportional
to the internal energy. With vanishing viscosity and heat conductivity the
Navier-Stokes equations reduce to the Euler equations. The Euler/Navier-
Stokes equations represent a fluid mechanics model of thermodynamics, as
compared to a kinetic model with also particle velocity as an independent
variable.

Conservation of mass, momentum and total energy in the Euler equa-
tions formally arise by averaging over velocities in Boltzmanns kinetic model.
However, the constitutive laws of the Navier-Stokes equations including co-
efficients of viscosity and heat conductivity show to be solution dependent
and thus difficult to determine ab initio from a kinetic model, or in exper-
iments. In a Newtonian fluid the viscosity is assumed to be constant, but
this assumption is questionable for slightly viscous fluids with vastly differ-
ent effects of viscosity in turbulent and laminar flow. The existence and

39
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uniqueness (or the converse of non-existence) of solutions to the incompress-
ible Navier-Stokes equations for a Newtonian fluid represent one of the open
Clay Mathematics Institute Millenium Problems [?].

Solutions of the Navier-Stokes equations for a perfect gas formally satisfy
a 2nd Law expressing that a specific scalar entropy defined in terms of mass
density and internal energy is strictly increasing with increasing time, as an
expression of a loss of kinetic energy by positive viscous dissipation formally
obtained by forming the scalar of the momentum equation including viscous
stresses with the velocity. The 2nd Law with strictly increasing entropy for
solutions of Navier-Stokes equations enforcing irreversibility, is thus formally
equivalent to the presence of non-vanishing viscosity. For the Euler equations,
the entropy (formally) stays constant as an expression of vanishing viscosity
and reversibility.

For the Navier-Stokes equations with viscous dissipation, we might thus
simply forget the entropy inequality, because it is an automatically satisfied
derived relation.

This reduces the enigma of the 2nd Law to explaining how effects of
viscous dissipation and irreversibility can arise in a formally reversible system
such as a system of elasticly colliding particles without viscosity. Simply
claiming that viscous effects must come from somewhere is not informative.
Neither is to claim that they come from quantum mechanics (or neutrino
physics like Feynman), since quantum mechanics is formally reversible. Nor
is simply assuming constitutive laws for viscous stresses of some form, e.g.
simply assuming the fluid to be Newtonian.

Boltzmann’s answer was molecular games of roulette, but it is an answer
which poses more questions than it resolves.

8.2 Computational Thermodynamics

In this book we present a constructive deterministic fluid mechanics model
of the thermodynamics of a slightly viscous gas/fluid based on finite preci-
sion computation by a weighted least squares stabilized finite element method
for the Euler/Navier-Stokes equations with slip boundary conditions at solid
boundaries, referred to as Euler General Galerkin or EG2. For definiteness
we consider a perfect gas/fluid, but extension to more general state equations
for the pressure is possible.

Note that we start from the Euler equations with vanishing viscosity and
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heat conductivity and we thus do not need input of constitutive laws for
viscous stresses and heat diffision, only a law of state for the pressure.

The least squares stabilization in EG2 penalizes large Euler residuals by
viscosity acting in the streamline direction as a form of bulk viscosity of order
h, and is complemented by a higher-order residual dependent isotropic shear
viscosity of order h3/2 in turbulent regions, where h is the mesh size, together
referred to as EG2 viscosity.

EG2 is a constructive model in the form of the Euler equations together
with a computational solution procedure including EG2 viscosity, guaran-
teeing existence by computational construction, to be distinguished from a
formal model e.g. in the form of the Navier-Stokes equations without con-
structive solution procedure and requiring input of viscosity.

EG2 automatically introduces solution dependent viscosity and thus cir-
cumvents the difficult problem of specifying viscosity (and heat conductivity)
in a Navier-Stokes model. The only input in this regard is that the flow is
slightly viscous with Reynolds number larger than say 106, which covers many
important applications in aero- and hydrodynamics.

We discover by computation that EG2 solutions are turbulent and have
shocks, both phenomena being identified by substantial (positive) EG2 turbu-
lent/shock dissipation from EG2 viscosity with pointwise large (but weakly
small) Euler residuals. Turbulence/shocks are thus identified by substan-
tial EG2 turbulent/shock dissipation, which reflects pointwise large Euler
residuals, which reflects non-existence of pointwise solutions with pointwise
vanishing Euler residuals. We observe turbulence in EG2 solutions with
slip boundary conditions, and conclude that turbulence does not (primarily)
originate from microscopic boundary layers with no-slip boundary conditions,
contrary to state-of-the art boundary layer theory by Prandtl and Schlichting
[?, ?], but from macroscopic instability.

We motivate using slip boundary conditions (or more generally a friction
boundary condition with small friction) by the computationally and exper-
imentally verified fact that the skin friction of a turbulent boundary layer
tends to zero with viscosity and thus is (comparatively) small for slightly
viscous flow.

We prove that EG2 solutions satisfy a 2nd Law expressed in terms of
kinetic energy, internal energy, work and (positive) turbulent/shock dissi-
pation. We realize that irreversibility is a consequence of substantial tur-
bulent/shock dissipation, which is consequence of pointwise instability of
slightly viscous flow, which is reflected by non-existence of pointwise solu-
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tions to the Euler equations. We thus justify a 2nd Law without resort to
any ad hoc assumption of positive viscous dissipation or molecular chaos.

Existence of EG2 solutions is guaranteed by construction. Uniqueness re-
lates to wellposedness in the sense of Hadamard, which concerns what aspects
or outputs of EG2 turbulent/shock solutions are stable under perturbations
in the sense that small perturbations have small output effects. We define
a EG2 output to be wellposed if it is insensitive to mesh refinement and
thus can be computed with finite mesh size. We show that wellposedness of
EG2 solutions can be tested a posteriori by computationally solving a dual
linearized problem, through which the output sensitivity of non-zero Euler
residuals can be estimated. We find that mean-value outputs such as drag
and lift and total turbulent dissipation are wellposed, while point-values of
turbulent flow are not. We can thus a posteriori assess the quality of EG2
solutions as solutions of the Euler equations and identify what outputs are
wellposed and converge with decreasing mesh size.

EG2 solutions can be viewed either as exact Euler solutions subject to
perturbations from non-vanishing Euler residuals, or alternatively as ap-
proximate Navier-Stokes solutions with specific viscosity given by the mesh-
dependent EG2 viscosity, combined with slip/friction boundary conditions.

We emphasize that EG2 contributes its own mesh/solution-dependent
EG2 viscosity and thus does not require any input of viscosity (or heat con-
ductivity) coefficients, or turbulence model.

8.3 EG2 as Automatic Turbulence Model

EG2 can be viewed as a form of Large Eddy Simulation LES for slightly vis-
cous/high Reynolds number flow with an turbulence model given by the least
squares stabilization for interior turbulence and the slip boundary condition
for turbulent boundary layers.

We recall that Direct Numerical Simulation DNS by computational solu-
tion of Navier-Stokes equations with resolution of all turbulent scales includ-
ing thin boundary layers, is today possible for Reynolds numbers up to 104,
while reaching 106 is estimated to take another 50 years [?, ?].

Some form of LES with turbulence modeling is therefore needed for high
Reynolds number flow, but the design of turbulence models is an open prob-
lem since more than hundred years. EG2 offers an automatic turbulence
model based on computational principles, with automatic assessment of well-
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posedness by duality.
EG2 thus gives an answer to the enigma of the origin of viscosity in

terms of of finite precision computational simulation of turbulent flow. EG2
finite precision computation is not statistics, because statistical ensembles of
outputs do not appear, only mean-values in space-time of individual trajec-
tories/solutions.

8.4 From Probable to Necessary

The stabilization/viscous dissipation in EG2 is necessary because without
stabilization EG2 solutions cease to exist in blowup as they inevitably go
turbulent, while physical flows continue to exist without blowup even after
transition to turbulence. Viscous dissipation thus comes out from an in-
evitable development of turbulence/shocks as a result of an inherent instabil-
ity of slightly viscous flow, and a necessity to avoid blowup into non-existence,
because non-existence is not an option: The show must go on, which is not a
question of probability. EG2 viscous dissipation is thus a necessity, and not
the result of a game of roulette.

EG2 viscosity transfers kinetic energy into internal energy by pointwise
large but weakly small violation of conservation as the characterstic of turbu-
lence. By necessity, as a characteristic of turbulence, the pointwise violation
is large, yet in a sense smallest possible to prevent blowup and thus generic
and not ad hoc.

8.5 The Spirit of Dijkstra

We follow the device of the famous computer scientist Dijkstra:

• Originallly I viewed it as the function of the abstract machine to pro-
vide a truthful picture of the physical reality. Later, however, I learned
to consider the abstract machine as the true one, because that is the
only one we can think; it is the physical machine’s purpose to supply
a working model, a (hopefully) sufficiently accurate physical simulation
of the true, abstract machine.

We thus view EG2 as a constructive mathematical model (abstract machine)
of a physical reality (physical machine). We are then led to interprete the
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digital finite precision computation as some form of analog physical compu-
tation, and digital EG2 viscosity as some form of analog physical viscosity.

We compare with a classical formal mathematical model in the form of
the Navier-Stokes equations including an ad hoc model of viscosity, e.g. a
Newtonian model with constant shear viscosity. We are thus led to turn
around the common view of computational viscosity as “artificial” viscosity
and Newtonian viscosity as “physical” viscosity, and instead interprete EG2
viscosity as physical (and then Newtonian viscosity as artificial), following
von Neumann who opened compressible flow to computational simulation by
introducing artificial viscosity on physical grounds.

EG2 thus offers a model of fluid flow, which can be inspected, analyzed,
understood, utilized and evaluated, while the true physics of turbulent flow
may remain inaccessible to inspection and analyzis. Even if the mechanics of
turbulent flow in principle can be reduced to quantum mechanics on atomic
scales, such a model seems useless for predictions on macroscopic scales. For
example, determining the viscosity of water from quantum mechanics is still
an open problem.

We remark that the role of viscosity coefficients in classical modeling
is to define viscous force in terms of fluid velocity (strain). If now EG2
automatically supplies viscous forces, without input of viscosity, there is no
longer any need to define viscosity coefficients, or the Reynolds stresses of
turbulence modeling, and EG2 thus offers a simplification of fluid mechanics
and a way out of a stalemate.

Using EG2 as a model of thermodynamics changes the questions and
answers and opens new possibilities of progress together with new chal-
lenges to mathematical analysis and computation. EG2 solutions are con-
tructed/computed and thus are available to inspection, which means that
the analysis of solutions shifts from a priori to a posteriori ; after solutions
have been computed they can be inspected, their qualities can be evaluated
and interpreted in physical terms.

8.6 The Power of EG2

In related work [?, ?, 20] we have demonstrated the new capabilities of-
fered by EG2 in resolutions of both dAlemberts paradox from 1752 and the
Clay Millenium Problem on existence and uniquenes of the incompressible
Euler/Navier-Stokes equations: In short, existence follow by construction
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and uniqueness from wellposedness, both being consequences of the basic
structure of EG2 as a midway between the Scylla/Galerkin of weak solution,
which is too weak, and the Carybdis/least squares of strong solution, which
is too strong. With the proper weighting of the least squares stabilization,
EG2 manages to combine accuracy with wellposedness and thus produce
meaningful outputs.

More precisely, we will see below that output variation is bounded by
S∥hR∥0, where S is a stability factor, h is the mesh size, R is the Euler
residual and ∥ · ∥0 is a space-time L2-norm. This results from the Galerkin
orthogonality of EG2, which together with least squares stabilization intro-
ducing a bound on ∥

√
hR∥0, enforces control of output variation up to a

tolerance S
√
h. We shall find that for mean-value outputs such as drag/lift

and total turbulent dissipation, S << h−1/2 which implies wellposedness.
The unique design of EG2 with a combination of Galerkin orthogonality
and weighted least squares stabilization, thus can be motivated on rational
grounds towards the goal of producing wellposed outputs, and can then as
such be interpreted in physical terms.

EG2 shows to be a computationally affordable useful model for slightly
viscous (compressible and incompressible) flow, because mean-value outputs
can be computed without resolving boundary layers and interior turbulence
to physical scales. This reflects that mean-value outputs in slightly viscous
turbulent flow, can vary little with the viscosity (beyond the drag crisis), as
long as the viscosity is sufficiently small or the Reynolds is number sufficiently
large, as observed in both physical experiment and computation.

EG2 allows accurate prediction of the turbulent losses in a heat engine
and the drag/lift of a car and airplane with millions of mesh points [?, ?],
instead of the trillions required with DNS according to state-of-the art [?].
EG2 offers automatic turbulence modeling and assessment of wellposedness.
Adopting EG2 as a model of thermodynamics can be seen as a return to
Eulers original idea of using inviscid flow as a model of slightly visocus flow,
but with new insight and capabilities.

8.7 2nd Law for EG2

As already indicated, we formulate a 2nd Law for EG2 without the concept
of entropy, in terms of the basic physical quantities of kinetic energy K, heat
energy E, rate of work W and shock/turbulent dissipation D > 0, of the
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form

K̇ = W −D, Ė = −W +D, (8.1)

where the dot indicates time differentiation. Slightly viscous flow always
develops turbulence/shocks with D > 0, and the 2nd Law thus expresses an
irreversible transfer of kinetic energy into heat energy, while the total energy
E +K remains constant because Ė + K̇ = 0.

8.8 Irreversibility and Finite Precision

The 2nd Law (8.1) with D > 0 describes a process which is irreversible
with a forward Arrow in time, since the reversed process would correspond
to D < 0. We can understand the irreversibility as a consequence of finite
precision computation combined with a certain form of wellposedness as fol-
lows: We have noted that in viscous dissipation with D > 0 kinetic energy
is transformed into smaller scale kinetic energy in the form of internal/heat
energy. This process is wellposed e.g. in the sense that the total viscous
dissipation is insensitive to mesh refinement/vanishing viscosity. This can be
seen as feature of a process of smashing larger units into smaller pieces with
certain mean-value outputs being insensitive to the precision of the smashing
procedure.

On the other hand, in the reversed process small pieces would have to be
put together into larger units in a precise way, and such a process is very
sensitive to the precision of the assembly.

The 2nd Law (6.1) based on finite precision computation thus can be
viewed to reflect that smashing into pieces is insensitive to the precision
of the smashing, while the reversed process of reassembly is sensitive to the
precision of the assembly. The 2nd Law thus expresses a familar phenomenon
without any mystery of molecular games of roulette, just finite precision
construction/computation.

8.9 Viscosity Solutions

An EG2 solution can be viewed as particular viscosity solution of the Euler
equations, which is a solution of regularized Euler equations augmented by
additive terms modeling viscosity effects with small viscosity coefficients.
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The effective viscosity in an EG2 solution typically may be comparable to
the mesh size.

For incompressible flow the existence of viscosity solutions, with suitable
solution dependent viscosity coefficients, can be proved a priori using stan-
dard techniques of analytical mathematics. Viscosity solutions are pointwise
solutions of the regularized equations. But already the most basic prob-
lem with constant viscosity, the incompressible Navier-Stokes equations for
a Newtonian fluid, presents technical difficulties, and is one of the open Clay
Millennium Problems.

For compressible flow the technical complications are even more severe,
and it is not clear which viscosities would be required for an analytical proof
of the existence of viscosity solutions [?] to the Euler equations. Furthermore,
the question of wellposedness is typically left out, as in the formulation of the
Navier-Stokes Millennium Problem, with the motivation that first the exis-
tence problem has to be settled. Altogether, analytical mathematics seems to
have little to offer a priori concerning the existence and wellposedness of so-
lutions of the compressible Euler equations. In contrast, EG2 computational
solutions of the Euler equations seem to offer a wealth of information a pos-
teriori, in particular concerning wellposedness by duality of turbulent/shock
solutions.

An EG2 solution thus can be viewed as a specific viscosity solution with
a specific regularization from the least squares stabilization, in particular of
the momentum equation, which is necessary because pointwise momentum
balance is impossible to achieve in the presence of shocks/turbulence. The
EG2 viscosity can be viewed to be the minimal viscosity required to handle
the contradiction behind the non-existence of pointwise solutions. For a
shock EG2 could then be directly interpreted as a certain physical mechanism
preventing a shock wave from turning over, and for turbulence as a form of
automatic computational turbulence model.
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Part II

World of Thermodynamics
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Chapter 9

Transformations of Energy

God has chosen that which is the most simple in hypotheses and the
most rich in phenomena. (Leibniz, Discours de métaphysique, VI,
1686)

The sight of day and night, and the months and the revolutions of
the years, have created number and have given us conception of time,
and the power of inquiring about the nature of the Universe. (Plato
in Timaeus)

... in a purely mechanical world, the tree could become a shoot and a
seed again, the butterfly turn back into a caterpillar, and the old man
into a child. No explanation is given by the mechanistic doctrine for
the fact that it does not happen. (Ostwald)

... a complete explanation of the arrow requires explaining why the
universe started out as it did. It is a problem in cosmology. (Hawking)

9.1 Kinetic Energy and Heat Energy

Thermodynamics is fundamental in a wide range of phenomena from macro-
scopic to microscopic scales. Thermodynamics essentially concerns the in-
terplay between kinetic energy and heat energy in a gas or fluid, where heat
energy is a form of small scale kinetic energy. Thermodynamics thus con-
cerns transformations between large scale kinetic energy and small scale ki-
netic energy in the form of heat. Large scale kinetic energy, or mechanical
energy, may generate heat energy by compression or turbulent dissipation.
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Heat energy may generate (large scale) kinetic energy by expansion, but
not through a reverse process of turbulent dissipation. Thermodynamics is
closely connected to the dynamics of slightly viscous and compressible gases,
since substantial compression and expansion can occur in a gas, but less in
fluids (and solids).

9.2 Cosmology and Big Bang

Cosmology is the scientific study of the large scale properties of the Universe
as a whole, including its origin, evolution and ultimate fate. The Big Bang
model postulates that 12 to 14 billion years ago, the universe was in a very
hot very dense state, which expanded along with galaxies and stars being
formed by gravitation from variations in density, see Fig. 9.1. It is believed
that we can see remnants of the hot dense matter as the now very cold
cosmic microwave background radiation, which still pervades the universe as
a slightly varying glow across the entire sky, see Fig. 9.2, a discovery made
by the Cosmic Background Explorer COBE-telescope, which gave the Nobel
Prize in 2006 to John Mather and George Smoot. Cosmology is basically
a very (very) large scale application of thermodynamics as an interplay of
mass, momentum and energy governed by gravitational and inertial forces
and driven by nuclear reactions.

9.3 Astronomy and Nuclear Energy

The stars were formed in the early Universe by accretion of mass by gravita-
tional collaps increasing the temperature of a central core and thus igniting
the star in a nuclear fusion process with first deuterium and then hydrogen
being transformed to helium under intense release of energy (according to
Einsteins famous formula E = mc2) increasing the pressure and counterbal-
ancing the gravitational collaps. Planets may be formed from heavier atoms
and molecules created in nuclear processes in stars, and under favorable con-
ditions give rise to (intelligent) life and theories of thermodynamics. Stars
of 0.4-10 times the mass of our own Sun expand into red giant very bright
stars, when the supply of hydrogen in the core is empty and fusion starts
in an outer core. Our own Sun thus eventually will swallow the Earth into
a fusion process, but this is estimated to be a couple of billion years away.
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Figure 9.1: Thermodynamics of Big Bang from 10−41 seconds to 15 billion
years.

Figure 9.2: Cosmic back-ground radiation according to COBE.
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The thermodynamics of the Sun thus is the basis of both life and death of
the Earth.

Figure 9.3: Asteroid impact on the surface of the Earth with irreversible
transfer of large scale kinetic energy into small scale kinetic energy in the
form of heat energy.

9.4 Geology and Global Warming

Geology or earth science contains the subfields of geophysics, glaciology, vol-
canology, climatology and meteorology connecting to the the central issue of
the thermodynamics of global warming. Computational simulation of global
climate change has a very important role to play to find out what actions are
beneficial for sustainable development and long-time survival.

9.5 Black Body Radiation and the Sun

A black body absorbs incoming white light of all frequencies, from high fre-
quency ultraviolet to low frequency infrared, but only radiates low frequency



9.5. BLACK BODY RADIATION AND THE SUN 55

Figure 9.4: The Earth

Figure 9.5: Global heat balance.
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light (with color depending on the temperature of the body). This is the
basis of the gross energy balance of the Earth absorbing white light from the
hot Sun and radiating low frequency light into empty space. One can view
black body absorption/emission as an (irreversible) thermodynamic process
transforming high frequency light energy to low frequency (long wave) light
energy [24].

Figure 9.6: Life in action.

9.6 Biology and Life

Most forms of biological processes build on conversion of chemical energy
into heat and kinetic energy, and thus ultimately on Solar energy converted
to chemical energy in the photo-synthesis.

Muscle contraction occurs when a muscle fiber generates tension through
actin and myosin cross-bridge cycling shortening the fiber fueled by Ada-
nenosine TriPhosphate ATP. Locomotion in most higher animals is possible
only through the repeated contraction of many muscles at the correct times
controlled by the central nervous system, the brain and spinal cord. Vol-
untary muscle contractions are initiated in the brain, while the spinal cord
initiates involuntary reflexes.

The emergence of biological life may naively appear to contradict the 2nd
Law in its classical form, by creating ordered structures out of disordered,
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Figure 9.7: Muscle contraction by actin-myosin twitch fueled by ATP.

while the death of a living organism when order dissolves into disorder, re-
flects the classical 2nd Law very well. We shall see that in the new formu-
lation of the 2nd Law not relying on notions of ordered/unordered, there is
nothing (in principle) that prevents ordered structures to develop from un-
ordered (for example in Irak), assuming there is some input of energy (oil).

9.7 Molecular Biology and Protein Folding

Biology builds on cell microbiology based on the thermodynamics of chemical
reactions of protein synthesis from amino acid molecules according to the
instructions of DNA. Computational thermodynamics of the cell is becoming
an increasingly important tool in medicine and drug design.

9.8 Quantum Physics and Chemistry

The thermodynamics of chemical reactions and radiation build on the quan-
tum mechanics of electrons, and the thermodynamics of nuclear reactions
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Figure 9.8: Inside a plant cell.

build on quantum electrodynamics of elementary particles. Computational
solution of the equations of quantum mechanics presents a tough challenge,
because of the richness of the the wave function solution with in principle
three independent space coordinates for each particle (electron) involved.
Methods reducing the dimensionality are today routinely used in massive
computations in quantum chemistry, and could open to new insights of the
nature of the quarks of elementary particle physics.

9.9 Energy Generation and Consumption

Our industrial society is based on production and consumption of energy in
thermodynamic energy conversion processes of the form:

• nuclear/fossile/biological/chemical → heat/kinetic/electric,

• wind/wave kinetic → electric,

• solar radiation → heat/electric.

• electric → heat/kinetic.

In all conversion of energy, minimization of losses into useless heat is of prime
concern, for which computational thermodynamics opens new possibilities.
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9.10 Heat Engines and Industrialization

The industrial society of the 19th century was built on the use of steam en-
gines, and the initial motivation to understand thermodynamics came from a
need to increase the efficiency of steam engines for conversion of heat energy
to useful mechanical energy. A steam engine is a particular form of a heat

Figure 9.9: Converting heat to kinetic (mechanical) energy in 1712.

engine converting heat to mechanical work in a thermodynamical process.
The modern combustion engine in a car is a form of heat engine generating
kinetic energy from explosive burning of fuel. The efficiency of a heat engine
is of prime importance, and can be studied by computational thermodynam-
ics. The necessary cooling of a car engine represents a loss of energy which
is not transformed into useful mechanical work.
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9.11 Heat Pumps and Oil Crisis

The heat pump is replacing the increasingly expensive oil for heating of
houses. A heat pump converts low temperature heat energy from the earth or
the air to higher temperature useful heat energy, by supplying the necessary
conversion energy from electricity. The efficiency is today typically around
2/3, that is, for 1/3 unit of electric energy, you get out 1 unit of useful heat
energy. You can thus reduce your electrical bill by a factor of 3 by chang-
ing from full electrical heating of your house to heating by an efficient heat
pump. Of course, it is of interest to seek to increase the efficieny even more.
Can we reach 99% efficiency, and if not why? We will address this question
below.

9.12 Refrigerators and Urban Civilization

A refrigerator is a form of heat pump taking heat from the inside of the
refrigerator and delivering it to the exterior at higher temperature. The
refrigerator is an absolute necessity of modern urban civilization.

The standard design builds on cycling a fluid alternating between expan-
sion/evaporation to gas phase with temperature drop, and compression/condensation
to liquid phase with temperature increase, with the cold gas in contact with
the interior of the refrigerator and the warm liquid phase in contact with the
exterior. The cooling process with heat flowing from cold to hot (contrary
to its natural tendency to flow from hot to cold) is thus maintained by an
(electric) compressor consuming energy.

The first design of an absorption refrigerator, without compressor and
moving parts and thus silent, was invented by the two young Swedish engi-
neering students Carl Munters and Baltzar von Platen during their class in
thermodynamics at the Royal Institute of Technology in 1922 (although they
slept through the lectures working all night on their invention). This inven-
tion together with a vacuum cleaner gave the impetus of the quick expansion
of the Electrolux company. The production of the Munters-Platen refrigera-
tor has continued at Motala in Sweden uninterrupted since 1925 with today
a total of 10 million units being produced. We hope this book may be useful
for young minds of today for new inventions.
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Figure 9.10: Inside a refrigerator: The principle of preservation of food.

9.13 Information and Communication

Information theory was created by Shannon [40] in the 1940s borrowing the
concept of entropy from thermodynamics, with the idea of measuring com-
munication channel capacity requirements for different types of information.
Random information would then represent information with maximal en-
tropy, in principle requiring maximal capacity (although random information
would seem like useless information).

Alternatively, one can view communication of information as a thermo-
dynamic flow with the heat energy representing loss or destruction of in-
formation during the communication. More generally, not only creation but
also destruction of information represent fundamental aspects of physical and
biological processes.

9.14 Economy and Welfare

One can also view an evolving economy as a thermodynamic flow process
transforming resources into utilities. In (a free) economy turbulent dissipa-
tion could be viewed as a measure of necessary losses during the process,
in the form of interest rates, taxes, bribes, thefts, which cannot (fully) be
avoided. The flow of the World economy represents a complex process of
prime importance to all of us. An economist with (some) understanding of
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Figure 9.11: Flow of information in a flower.

the process can be raised to fame and fortune.

Figure 9.12: Flow of information in an office of the last century.

9.15 Emergence: A New Approach to Physics

Ilya Prigogine received the Nobel Prize in Chemistry in 1977 for his work
on non-equlibrium thermodynamics proposing a new (statistical) approach
to the 2nd Law allowing ordered structures to develop from non-ordered, see
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Fig. 9.13 and 9.14. Even if Prigogine did not convince the physics community
at large, he at least showed the severe short-coming of the classical 2nd Law
seemingly preventing order from develping from chaos.

Emergence is the process of complex pattern formation from more basic
constituent parts or “particles”, that is the formation of order out of chaos.
Turbulence shows phenomena of both emergence and featureless chaos, none
of which can be understood by considering only a single fluid particle, only by
considering the interaction of many. The (new) 2nd Law expresses a collective
behavior of many fluid particles to form turbulent flow with an irreversible
transfer of large scale kinetic energy to heat energy. Thus thermodynamics
naturally connects to the new approach to physics based on emergence, which
is now developing (emerging) with input from e.g. 1988 Nobel Laurate Robert
Laughlin [26], and which is radically different from the reductionist approach
of elementary particle physics completely dominating the scene since the
birth of quantum mechanics in the beginning of the last century.

Since emergence concerns the interaction of many particles, analytical
methods fall short (which lies behind the reductionist obsession with a sin-
gle particle hopefully allowing analytical mathematical description), while
computational methods open new possiblities of simulating emergent and
turbulent phenomena, as is shown in this book.

9.16 The Battle between Growth and Decay

We shall see that turbulent flow and thus thermodynamics (the World) can
be viewed as a battle between a growth process of differentiation by advection
and a decay process of mixing by diffusion according to:

• growth: increase difference-differentiate-separate: advection

• decay: decreasse difference–uniformize-mix: diffusion.

The classical 2nd Law captures the diffusion process with mixing and de-
creasing difference. But it does not capture the advection process allowing
increasing difference and separation, which is a severe short-coming. The new
2nd Law captures both processes. In the thermodynamics of Prigogine the
two processes are represented by “Unstable Dynamical Systems” and “Dis-
sipative Structures”, but Prigogine sticks to “Randomness”, see Fig. 9.13.
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Figure 9.13: The World according to Ilya Prigogine.

Figure 9.14: Ilya Prigogine receiving the Nobel Prize in Chemistry in 1977
from the hands of King Karl XVI Gustav.



9.17. PHYSICS: FLOW OF INFORMATION: COMPUTATION 65

9.17 Physics: Flow of Information: Compu-

tation

The basic idea of this book is to view thermodynamics as a form of analog
computation, which can be simulated by digital computation. Both analog
physics and digital computation can be seen as flows of information reflect-
ing the flow of mass, momentum and energy in a physical system and the
flow of digits from input to output in the execution of a subroutine of the
computational code.

For a computer programmer the information flow is represented in the
flow chart of a computer code, which is essential for the understanding of the
code. Likewise, a flow chart of the analog computation of a physical process
can help the physicist to understanding.

9.18 Thermodynamics as a “Best of Worlds”

The above survey indicates that thermodynamics is a fundamental part of
science and technology and thus serves a very important role in our society.
Thermodynamics is maybe the scientific field closest to Leibniz’ definition of
a Best of Worlds as a world, which is richest in variation of ordered complex
structures or emergence, such as different forms of life and conscience, while
being governed by simplest possible principles or laws.

I say that I am strongly inclined to believe that heat is of the same
kind, and that material things which make us hot and feel hot (such
as we call by the general name fire are a multitude of tiny corpuscles
of such and such a shape, and moving at such and such a speed. When
they meet our bodies, they penetrate them with their extreme subtlety,
and the way they touch our substance as they pass through it is sensed
by us as the affection we call “heat”. It is pleasant or unpleasant in
proportion to the number and speed of the particles as they prick
and penetrate it. This penetration is pleasant if it is beneficial to our
insensible vital functions, and unpleasant when it causes too much of
a separation and dissolution of our substance. (Galieo in The Assayer,
1623)
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Chapter 10

Classical Thermodynamics

Neither Herr Boltzmann nor Herr Planck has given a defnition of W ...
Usually W is put equal to the number of complexions. In order to
calculate W , one needs a complete (molecular-mechanical) theory of
the system under consideration. Therefore it is dubious whether the
Boltzmann principle has any meaning without a complete molecular-
mechanical theory or some other theory which describes the elemen-
tary processes (and such a theory is missing). (Einstein)

The reversibility of the mechanical theory suggested for many years
that any observable motion should have a twin reverdes motion which
can also be observed. The consequences of reversibility, however, seem
contrary to our intuition: Although salt spontaneously dissolves in
water, no one has ever seen salt precipitate from an unsaturated so-
lution. (Joel Keizer in Statistical Thermodynamics of Nonequilibrium
processes)

Mechanically, the task seems impossible, and we will just have to get
used to it (statistics of quanta) (Planck 1909).

10.1 The 1st and 2nd Laws of Thermodynam-

ics

The development of classical thermodynamics was initiated in the 19th cen-
tury by Carnot [7], Clausius [8, 9] and Lord Kelvin [25], who formulated basic
axioms in the form of the 1st Law and the 2nd Law of thermodynamics. The

67



68 CHAPTER 10. CLASSICAL THERMODYNAMICS

1st Law states conservation of total energy as the sum of kinetic, potential
and heat energy. The 1st Law can be viewed as a definition of heat energy as
any loss of kinetic/potential energy in conserved total energy. The classical
2nd Law has several forms from the formulation by Carnot in terms of heat
engines to that by Clausius in terms of entropy:

• Carnot 1824: No heat engine can be more efficient than a Carnot engine
with efficiency 1− tc/th operating between two temperatures th and tc <
th.

• Clausius 1850: It is impossible for heat to flow from a colder body to
a warmer body without any work having been done to accomplish the
flow. Energy will not flow spontaneoulsy from a low temperature object
to a higher temperature object.

• Kelvin-Planck 1851 [25]: It is impossible to obtain a process that, oper-
ating in cycle, produces no other effect than the subtraction of a positive
amount of heat from a reservoir and the production of an equal amount
of work.

• Clausius 1865: In any cyclic process the entropy cannot decrease.

Clausius’, Kelvin-Planck’s and Carnot’s formulations are negative and ex-
press impossibilitities, which are tricky to dechiffer: If somebody claims hav-
ing constructed an engine more efficient than a Carnot engine, then Carnot
would say that it is not a heat engine. Or if we observe heat flow from a cold
to a warm body (which we will do below), then Clausius would say that it is
not spontaneous and Kelvin-Planck that some other effect must have been
produced.

The only statement of the above versions of the 2nd Law which is positive
in form, is the last one about entropy. But this formulation requires a speci-
fication of the physical significance of entropy, and this has shown to be very
difficult, if not impossible to achieve. In particular, nobody has found any
sensor of entropy in Nature, and the physical mechanism preventing entropy
from decreasing has remained mysterious.

To give perspective we recall the presentations of thermodynamics and
statistical mechanics from the standard source Wikipedia representing a form
of common understanding as of today.
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Figure 10.1: Sadi Carnot: No heat engine can be more efficient than a Carnot
engine.

Figure 10.2: Rudolf Clausius: The energy of the world is constant. Its entropy
tends to a maximum.
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Figure 10.3: Lord Kelvin to assistent while making observations: I am never
content until I have constructed a mechanical model of what I am studying.
If I succeed in making one, I understand; otherwise I do not.
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10.2 Thermodynamics in Wikipedia

Thermodynamics (from the Greek thermos meaning heat and dynamis mean-
ing power) is a branch of physics that studies the effects of changes in tem-
perature, pressure, and volume on physical systems at the macroscopic scale
by analyzing the collective motion of their particles using statistics. Roughly,
heat means ”energy in transit” and dynamics relates to ”movement”; thus,
in essence thermodynamics studies the movement of energy and how energy
instills movement. Historically, thermodynamics developed out of the need to
increase the efficiency of early steam engines.

The starting point for most thermodynamic considerations are the laws of
thermodynamics, which postulate that energy can be exchanged between phys-
ical systems as heat or work. They also postulate the existence of a quantity
named entropy, which can be defined for any system. In thermodynamics,
interactions between large ensembles of objects are studied and categorized.
Central to this are the concepts of system and surroundings. A system is
composed of particles, whose average motions define its properties, which in
turn are related to one another through equations of state. Properties can be
combined to express internal energy and thermodynamic potentials are useful
for determining conditions for equilibrium and spontaneous processes.

With these tools, thermodynamics describes how systems respond to changes
in their surroundings. This can be applied to a wide variety of topics in sci-
ence and engineering, such as engines, phase transitions, chemical reactions,
transport phenomena, and even black holes. The results of thermodynamics
are essential for other fields of physics and for chemistry, chemical engineer-
ing, cell biology, biomedical engineering, and materials science to name a
few.

10.3 Statistical Mechanics in Wikipedia

Statistical mechanics is the application of statistics, which includes mathe-
matical tools for dealing with large populations, to the field of mechanics,
which is concerned with the motion of particles or objects when subjected to
a force.

It provides a framework for relating the microscopic properties of individ-
ual atoms and molecules to the macroscopic or bulk properties of materials
that can be observed in everyday life, therefore explaining thermodynamics
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Figure 10.4: Lord Kelvin in his last lecture: Do not imagine that mathe-
matics is hard and crabbed, and repulsive to common sense. It is merely the
etherialization of common sense.
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as a natural result of statistics and mechanics (classical and quantum) at the
microscopic level. In particular, it can be used to calculate the thermody-
namic properties of bulk materials from the spectroscopic data of individual
molecules.

This ability to make macroscopic predictions based on microscopic proper-
ties is the main asset of statistical mechanics over thermodynamics. Both the-
ories are governed by the second law of thermodynamics through the medium
of entropy. However, Entropy in thermodynamics can only be known empir-
ically, whereas in Statistical mechanics, it is a function of the distribution of
the system on its micro-states.

Figure 10.5: Ludwig Boltzmann: Available energy is the main object at stake
in the struggle for existence and the evolution of the world.

10.4 The 2nd Law in Popular Science

In The Cosmic Blueprint by the physicist Paul Davies, we read on statistical
mechanics and the 2nd Law:

• One of the states will represent “maximal disorder”, which is the state
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Figure 10.6: Loschmidt: I consider irreversibility in reversible systems to be
paradoxical. Indeed very paradoxical, yes.

attainable in a maximal number of ways, or the macro-state with a
maximal number of corresponding micro-states.

• The maximally disordered state thus corresponds to thermodynamic
equilibrium.

• One can define a statistical quantity representing the “degree of disor-
der” of a (macro)state, in terms of the number of corresponding mi-
crostates.

• Boltzmann showed that if the molecular collisions are chaotic (in a
rather precise sense), this quantity will with an overwhelming probabil-
ity increase.

• Boltzmann had thus found a quantity in statistical mechanics corre-
sponding to thermodynamic entropy.

• Boltzmann thus gave a demonstration, at least in a simple gas model,
of “why” entropy tends to increase.
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Davies description illustrates that there are two different notions of entropy
and two corresponding versions of the 2nd Law, one in classical thermody-
namics and one in statistical mechanics. The 2nd Law in classical thermody-
namics is usually considered to represent an experimental (deterministic) fact
without rational theoretical basis, while the 2nd Law in statistical mechanics
is motivated by combinatorics. Boltzmann’s goal thus was to rationalize the
2nd Law of thermodynamics by replacing it with the 2nd Law of statistical
mechanics.

10.5 The 2nd Law for Young Scientists

There are several educational sites directed to young scientists seeking to
explain the 2nd Law, where you can read:

• The 2nd Law is the most misunderstood, abused, and needlessly con-
fused principle of physics. (www.ftexploring.com)

• There are as many forms of the 2nd Law as there have been discussions
of it (P.W. Bridgman, 1941)

• Nothing in life is certain, except death, taxes and the 2nd Law (Seth
Lloyd)

• We have people making decisions at a government level who don’t know
the 2nd Law. Who does? (Sting)

10.6 Reflections on the 2nd Law

A popular idea when presenting the 2nd Law to non-specialists of thermody-
namics is to say that it represents a “general tendency (of energy) to spread
out or disperse”, or a “general tendency to decrease difference by mixing”.
The ambition to justify the 2nd Law this way without reference to entropy
or combinatorics is admirable, but it only captures one side of the truth, and
is similar in spirit to ad hoc viscous regularization also decreasing difference.

Thus, to say to a young eager student searching for knowledge, that the
2nd Law expresses that “differences tend to decrease”, will not be convincing,
in particular not in academics or sports. If you believe it should be, try it
out and notice the dissapointment of the student, when you cannot answer
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the natural question: Why do differences have to decrease and if they have
to, how can differences emerge and increase? We believe that students thirst
for knowledge should be acknowledged and satisfied, and this book seeks to
fill this need.

If now the 2nd Law is so difficult to formulate and justify, why has it
been formulated at all? We have already said that it is a common belief that
without a 2nd Law of some form or the other, there would be no Arrow of
time pointing forward in time. Processes would seem to be reversible and
there would seem to be no limitation on the possibilitities of transforming one
form of energy to another, as long as the total energy is constant. But this is
not what we observe: time is always moving forward and transforming heat
energy generated by friction from kinetic or potential energy, back to kinetic
or potential energy, seems impossible: We may observe that a stone dropped
to the ground heats up, but nobody has ever observed a stone on the ground
lifting itself by cooling off. Or a smashed Chinese vase reassembling by itself
(although some biological organisms seem to have this capacity). Certain
processes thus seem to be irreversible with time reversal being impossible,
which gives time a direction forward and thus defines an Arrow.

On the other hand, classical Newtonian or Hamiltonian mechanics (with-
out friction and viscosity) appears to be reversible with no preferred direction
of time and no Arrow, and the question then comes up what the mechanics
behind irreversibility might be, if it is not Newtonian or Hamiltonian? This
is the puzzle of Loschmidt’s paradox, to which we will return below. Simply
adding viscosity in an ad hoc fashion does not give a good answer.

Scientists in the late 19th century thus were searching for foundation of
thermodynamics in the form of a 2nd Law expressing that a certain quan-
tity named entropy could never decrease and when increasing strictly would
signfy irreversibility. The scientific challenge became to give the entropy a
physical molecular-mechanistic meaning, which could justify the 2nd Law.
This turned out to be very difficult to achieve, and as a last resort statis-
tical methods were introduced by Boltzmann. Many prominent scientists
including Maxwell had a hard time following Boltzmann’s arguments, and
statistical mechanics was initially viewed with considerable suspicion. During
the 20th century the critics and their criticism gradually faded, and statis-
tical mechanics is today often presented as an accepted truth, seemingly
questioned by few even if not understood by many.

More precisely, there was (and still is) a desperate need to find a 2nd
Law defining an Arrow; without any scientific explanation of such a seemingly
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simple thing as why time is always moving forward and not backward, physics
and mathematics risk to loose credibility at a very high cost. The accepted
way out of the dilemma is statistical mechanics. In this book we present a new
resolution with based on deterministic finite precision computation instead
of statistics. In statistical mechanics microscopical particles play roulette,
while our particles follow deterministic laws albeit with finite precision. One
can view finite precision computation as a very primitive form of statistics,
so primitive that it is not statistics any more, and thus it is free of the
complications of statistics.
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Chapter 11

Classical vs Basic 2nd Law

Emergence means complex organizational structure growing out of
simple rules. Emergence means stable inevitability in the way certain
things are. Emergence means unpredictability, in the sense of small
events (possibly) causing great and qualitative changes in larger ones.
(Robert Laughlin in A Different Universe, 2005)

Classical thermodynamics is based on a 1st Law stating conservation of
total energy combined with a 2nd Law involving entropy in the form

τdS = dE + pdV, dS ≥ 0, (11.1)

where τ is (absolute) temperature, S entropy, E internal energy, p pressure
and V volume, and d represents change. The enigma of classical thermo-
dynamics is to give the entropy S a physical meaning and to motivate why
dS ≥ 0.

Computational thermodynamics is based on a 1st Law stating conserva-
tion of mass, momentum and total energy combined with a 2nd Law without
entropy in the form

dE + pdV = D ≥ 0 (11.2)

which is a different way of expressing Ė +W = D ≥ 0, the second equation
of (6.1), including equality. Since the temperature τ > 0, we see that the
two forms of the 2nd Law effectively express the same relation

τdS = D ≥ 0.

We refer to the 2nd Law in the form (15.1) as the Classical 2nd Law and
in the form (15.1) as the Basic 2nd Law. The basic features of the Basic 2nd
Law are
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(B1) it is a consequence of the 1st Law and finite precision computation,

(B2) it is formulated in terms of the physical concepts of internal energy,
work and turbulent dissipation, and does not involve entropy.

The basic difficulties of the Classical 2nd Law are:

(C1) the entropy S has unclear physical significance,

(C2) the inequality dS ≥ 0 requires a motivation.

We see that the role of entropy change dS in the Classical 2nd Law is in the
Basic 2nd Law taken over by turbulent diffusion D. While D has a direct
physical meaning as a mechanism of generating heat, which can be observed
and computed, change of entropy dS has not. Altogether (B1-2) offer great
advantages over (C1-2).

11.1 The Seduction of the Classical 2nd Law

If now entropy is such a difficult concept, why was it introduced at all through
the relation τdS = dE+pdV ? To find out, let us see what the mathematics of
Calculus says: For a perfect gas with pV = γτ , with 0 < γ < 1 a gas constant,
and E = τ assuming normalization to unit specific heat, the Classical 2nd
law

dS =
dE

τ
+
pdV

τ
=
dτ

τ
+ γ

dV

V

is an exact differential and thus defines (up to a constant)

S = log(τV γ)

as a state variable in terms of τ and V . For a Calculus enthousiast, and the
thermodynamicists of the 19th century were, this is irresistible: It invites to
use a 2nd Law in the form dS ≥ 0 to identify irreversible processes between
different equilibrium states defined by certain combination of the state vari-
ables of temperature τ and volume V . Only processes with non-decreasing
entropy S could be physically possible and a strictly increasing entropy would
identify and irreversible process. Wonderful! It suggested that the complex
dynamics from one equilibrium state to another could be left out, and the
thermodynamisist would (miracously) be able to say if a process would be
possibel or not. Not bad!
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Processes could thus be predicted to move from equilibrium states with
low entropy (small S) to equilibrium states with higher entropy (larger S),
but not the other way. In short, it captured a form of thermodynamics
without dynamics, which however showed to be too simplistic.

We shall see, as can be expected, that the true dynamics must be taken
into account and then the new 2nd Law without entropy serves the same role
as the classical 2nd Law with entropy. Whereas temperature and volume have
a clear physical significane, entropy has not, and why dS ≥ 0 has remained
mysterious. Moreover for a general gas, dS = dE

τ
+ pdV

τ
may not be exact,

and then S is not a state variable and then the main reason to introduce S
disappears.

The second law of thermodynamics is, without a doubt, one of the
most perfect laws in physics. Any reproducible violation of it, how-
ever small, would bring the discoverer great riches as well as a trip
to Stockholm. The world’s energy problems would be solved at one
stroke. It is not possible to find any other law (except, perhaps, for
super selection rules such as charge conservation) for which a pro-
posed violation would bring more skepticism than this one. Not even
Maxwell’s laws of electricity or Newton’s law of gravitation are so
sacrosanct, for each has measurable corrections coming from quantum
effects or general relativity. The law has caught the attention of poets
and philosophers and has been called t he greatest scientific achieve-
ment of the nineteenth century. Engels disliked it, for it supported
opposition to Dialectical Materialism, while Pope Pius XII regarded
it as proving the existence of a higher being. (Bazarov in Thermody-
namics, 1964)

There is at present in the material world a universal tendency to the
dissipation of mechanical energy. — We have the sober scientific cer-
tainty that the heavens and earth shall “wax old as doth a garment.”
— Although mechanical energy is indestructible, there is a universal
tendency to its dissipation, which produces throughout the system a
gradual augmentation and diffusion of heat, cessation of motion and
exhaustion of the potential energy of the material Universe. — Any
restoration of mechanical energy, without more than an equivalent
of dissipation, is impossible in inanimate material processes, and is
probably never effected by means of organized matter, either endowed
with vegetable life, or subjected to the will of an animated creature.
— Nothing can be more fatal to progress than a too confident reliance
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on mathematical symbols; for the student is only too apt to take the
easier course, and consider the formula not the fact as the physical re-
ality. — I have no satisfaction in formulas unless I feel their numerical
magnitude. (Lord Kelvin)

11.2 Lord Kelvin

We recall Lord Kelvin:

• There is at present in the material world a universal tendency to the
dissipation of mechanical energy

• We have the sober scientific certainty that the heavens and earth shall
“wax old as doth a garment.” — Although mechanical energy is inde-
structible, there is a universal tendency to its dissipation, which pro-
duces throughout the system a gradual augmentation and diffusion of
heat, cessation of motion and exhaustion of the potential energy of the
material Universe

• Any restoration of mechanical energy, without more than an equivalent
of dissipation, is impossible in inanimate material processes, and is
probably never effected by means of organized matter, either endowed
with vegetable life, or subjected to the will of an animated creature.

• Nothing can be more fatal to progress than a too confident reliance on
mathematical symbols; for the student is only too apt to take the easier
course, and consider the formula not the fact as the physical reality.

• I have no satisfaction in formulas unless I feel their numerical magni-
tude.

11.3 Classical Analysis of Joule’s Experiment

Let us now see what classical thermodynamics can offer to help us understand
Joule’s experiment.

We recall that classical thermodynamics concerns transformations be-
tween equilibrium states. The initial state, denoted by subindex i, with the
gas at rest in the left chamber is an equilibrium state with ui = 0 and say
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ρi = 1, Vi = 1, τi = 1 and thus pi = γ and Si = log(τV γ) = 0. Clearly,
in the final state, denoted by a subindex f , ρf = 1/2 and Vf = 2, but clas-
sical thermodynamics does not specify the temperature τf , nor the velocity
uf . If we assume that τf = 1, which by energy conservation is the same as
assuming that uf = 0, then we find Sf = γ log(2) > Si = 0 and thus the
transformation from the initial equilibrium state (ρi, Vi, τi, ui) = (1, 1, 1, 0)
to the equilibrium state (ρf , Vf , τf , uf ) = (0.5, 2, 1, 0) in the double volume,
satisfies the classical 2nd Law.

We compare assuming instead τf = 1/2 (and pf = 1/4), which gives
Sf = log(2γ−1) < 0 = Si, which violates the 2nd Law. But as soon as
τf ≥ 2−γ the 2nd Law dS ≥ 0 will be satisfied. Thus any τf ≥ 2−γ seems to
be possible, while we know that only τf = 1 actually occurs. The classical 2nd
Law does not supply the information that uf = 0, because it does not involve
the dynamics taking one equilibrium state into another. On the other hand,
taking as above the dynamics including turbulent dissipation into account,
shows that uf = 0 and τf = 1.

The objective of statistical mechanics is to motivate that dS ≥ 0 viewing
the final state as being “less ordered” or “more probable”, because the gas
“is more spread out”, and the reverse process with the gas contracting back
to the initial small volume, if not completely impossible, would be “improba-
ble”. But to say that a probable state is is more probable than an improbable
state, or that things “in general tend to spread out”, is not science.

We conclude that taking the true dynamics of the process and the new
2nd Law into account including in particular the second phase with heat
generation from shocks or turbulence, we can understand the observation of
constant temperature and irreversibility in a deterministic fashion without
using any mystics of entropy ultimately based on mystics of statistics.
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Chapter 12

The Euler Equations

However sublime are the researches on fluids which we owe to Messrs
Bernoulli, Clairaut and d’Alembert, they flow so naturally from my
two general formulae that one cannot sufficiently admire this accord of
their profound meditations with the simplicity of the principles from
which I have drawn my equations ...(Euler 1752)

I know that most men, including those at ease with problems of the
highest complexity, can seldom accept even the simplest and most
obvious truth if it be such as would oblige them to admit the falsity
of conclusions which they have delighted in explaining to colleagues,
which they have proudly taught to others, and which they have woven,
thread by thread, into the fabric of their lives. (Tolstoy)

12.1 Conservation of Mass, Momentum and

Energy

Computational thermodynamics is based on a 1st Law in the form of the
Euler equations for an ideal perfect gas/fluid expressing conservation of mass,
momentum and total energy as a system of partial differential equations. We
formulate these equations for a gas/fluid enclosed in a fixed (open) domain
Ω in three-dimensional space R3 with boundary Γ over a time interval [0, T ]
with intial time zero and final time T (from now on T denotes final time
and not temperature as above). The Euler equations model a gas/fluid with
vanishing (very small) viscosity and heat conductivity. The Euler equations
then represent a Hamiltonian system.
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We seek the density ρ, momentum m = ρu with u = (u1, u2, u3) the
velocity, and the total energy ϵ as functions of (x, t) ∈ Ω ∪ Γ× [0, T ], where
x = (x1, x2, x3) denotes the coordinates in R3 and ui is the velocity in the
xi-direction. The Euler equations for û ≡ (ρ, u, ϵ) read with Q = Ω× I and
I = (0, T ]:

ρ̇+∇ · (ρu) = 0 in Q,
ṁi +∇ · (miu) + p,i = fi in Q, i = 1, 2, 3,

ϵ̇+∇ · (ϵu+ pu) = g in Q,
u · n = 0 on Γ× I,

û(·, 0) = û0 in Ω,

(12.1)

where p = p(x, t) is the pressure of the fluid, v,i =
∂v
∂xi

is the partial derivative

with respect to xi, v̇ = ∂v
∂t

is the partial derivative with respect to time t, n
denotes the outward unit normal to Γ and f = (f1, f2, f3) is a given volume
force (like gravity) acting on the fluid, g is a given heat source, and û0 = û0(x)
represent initial conditions. Further, the total energy ϵ = k + e, where

k =
ρ|u|2

2

is the kinetic energy with |u|2 =
∑3

i=1 u
2
i , and

e = ρτ

is the internal energy or heat energy with τ the temperature, assuming the
heat capacity is equal to one. The boundary condition is a slip bound-
ary condition requiring the normal velocity u · n to vanish corresponding to
an inpenetrable boundary with zero friction. Below we will consider other
boundary conditions including inflow and outflow conditions and non-zero
friction. Of course, ∇ · v =

∑
i vi,i denotes the divergence of v = (v1, v2, v3)

(and ∇w = (w,1, w,2, w,3) the gradient).
There are five equations in the Euler system (12.1), while the number of

unknowns including the pressure is six, and so we need one more equation,
which may be a state equation for a compressible gas expressing the pressure
p as a function of density ρ and temperature τ , e.g. the state equation

p = γρτ (12.2)

of a perfect gas, with here 0 < γ < 1 a gas constant (equal to cp
cv

− 1 where
cp the specific heat under constant pressure and cv that under constant).
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For a mono-atomic gas γ = 2/3. The additional equation may alternatively
express that the fluid is incompressible in the form ∇ · u = 0 in Q. Note
that the gas constant γ is here defined as γ = γ̄ − 1 with γ̄ = cp

cv
the most

commonly used gas constant.
The extension of the Euler equations to include viscous forces and heat

flow by conduction are referred to as the Navier–Stokes equations, which are
no longer represent a Hamiltonian system. The Navier–Stokes and Euler
equations describe a very rich complex world of fluid dynamics.

The Euler equations (12.1) represents a one-species model, which we be-
low will extended to a many-species model including chemical reactions with
chemical energy adding to the total energy.

The Euler equations represent, up to the gas constant γ, a parameter-
free model. The determination of parameters such as viscosity and heat
conductivity coefficients relevant for complex flows, can be a very difficult (or
simply hopeless) task, since the coefficients in general are solution dependent
(and the solution depends on the coefficients). In the Euler equations the
coefficients are simply put to zero with the motivation that they are small,
while their actual values are irrelevant and thus do not have to be determined.

We will find that mean-value outputs are insensitive to the values of vis-
cosity and heat conductivity, once they are small enough, which is reflected in
mesh independence in EG2. EG2 thus comes out as an essentially parameter-
free model, and we will discover the remarkable (surprising) fact is that EG2
can accurately predict key outputs such as drag and lift of bluff bodies and
and total losses in thermodynamical processes.

12.2 Internal Energy Formulation

We shall below use a formulation of the Euler equations in terms of the
internal energy e instead of the total energy ϵ, which reads: Find û = (ρ,m, e)
such that

ρ̇+∇ · (ρu) = 0 in Q,
ṁi +∇ · (miu) + γe,i = fi in Q, i = 1, 2, 3,
ė+∇ · (eu) + γe∇ · u = g in Q,

u · n = 0 on Γ× I,
û(·, 0) = û0 in Ω,

(12.3)

where we have used that p = γe. We will consider (12.3) to express the
1st Law as conservation of mass, momentum and internal energy. Strictly
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speaking, here only mass is conserved, because of the presence of f in the
momentum equation and γe∇ · u and g in the equation for internal energy,
and so conservation of momentum and internal energy is interpreted modulo
the effects of these source terms.

We will below write the Euler equations:

ρ̇+∇ · (ρu) = 0 in Q,
ṁ+∇ · (mu) + γ∇e = f in Q,
ė+∇ · (eu) + γe∇ · u = g in Q,

u · n = 0 on Γ× I,
û(·, 0) = û0 in Ω,

(12.4)

with ṁ + ∇ · (mu) + γ∇e = f the same as ṁi + ∇ · (miu) + γe,i = fi for
i = 1, 2, 3.

12.3 Derivation of the Euler Equations

We now show that the Euler equations (12.1)/(12.3) express conservation
of mass, momentum and total/internal energy in the conservation variables
(ρ,m, e). To this end consider a fixed small volume V in Ω with boundary
S. Mass conservation implies that∫

V

ρ̇ dx =
∂

∂t

∫
V

ρ dx = −
∫
S

(ρv) · n ds

expressing that the rate of increase of total mass in the fixed volume V is
equal to the rate of inflow through the boundary S. The Divergence Theorem
(see e.g. B&S Vol 3) states that∫

V

∇ · (ρv) dx =

∫
S

(ρv) · n ds,

and we thus conclude that∫
V

ρ̇ dx+

∫
V

∇ · (ρv) dx = 0

for all volumes V . Assuming that the integrands are continuous, we thus
obtain the equation for mass conservation ρ̇+∇ · (ρv) = 0.

We obtain the differential equation expressing conservation of each com-
ponent of the momentum mi similarly, noting that by Newtons second law
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the rate of change of momentum is given by the corresponding component
−p,i of the pressure gradient ∇p with increasing pressure retarding the flow,
combined with volume force fi.

Finally, the equation expressing conservation of total energy ϵ is obtained
as above using the Divergence Theorem, noting that the rate of change of
the total energy over a volume V convected by the flow, is equal to the work
pu · n performed on the boundary of V per unit time step. The equation for
the internal energy expresses that the work p∇·u by compression/expansion
is balanced by heat energy.

12.4 Incompressible Flow

In an incompressible fluid the density ρ does not change if we follow the
motion of the fluid particles of the flow. We can express this fact in the
differential equation form

Duρ ≡ ρ̇+ u · ∇ρ = 0

where Duρ is the convective derivative of ρ with respect to the velocity u. We
obtain the convective derivative by computing the change in time following
the trajectory x(t) of a fluid particle satisfying the differential equation ẋ(t) =
u(x, t). Differentiating ρ(x(t), t) with respect to time, we obtain by the chain
rule:

d

dt
ρ(x(t), t) = (ρ̇+ ẋ · ∇ρ)(x(t), t) = Duρ(x(t), t).

Since mass conservation reads Duρ+ρ∇·u = 0, we conclude that the velocity
u in incompressible flow is characterized by the equation

∇ · u = 0 in Q. (12.5)

The Euler equations for incompressible flow thus take the form: Find û
and p such that

ρ̇+∇ · (ρu) = 0 in Q,
ṁ+∇ · (mu) +∇p = f in Q,

∇ · u = 0 in Q,
ϵ̇+∇ · (ϵu+ pu) = 0 in Q,

u · n = g on Γ× I,
û(·, 0) = û0 in Ω,

(12.6)
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where the incompressibility condition ∇·u = 0 replaces the equation of state
for the pressure p. In this case the energy equation is decoupled from the
density and momentum equations; it is possible to solve for (ρ, u, p) from the
first three equations and then for the energy ϵ.

If ρ0 is constant, with ρ0 = 1 say, then the first equation is trivially
satisfied with ρ = 1, and (u, p) are solvable from the equations

u̇+∇ · (uu) +∇p = f in Q, i = 1, 2, 3,
∇ · u = 0 in Q,
u · n = 0 on Γ× I,

u(·, 0) = u0 in Ω,

(12.7)

which are the usual incompressible Euler equations with constant density
and the energy equation left out.

12.5 Continuum and Particle Models

The Euler equations formally represent a continuum model with no smallest
scale, since there is no smallest scale of the set of real numbers R, and
there is no viscosity or heat conduction which could define a smallest scale.
It is well known that the Euler equations in general lack exact pointwise
solutions, because of the appearance of turbulence and shocks, and our model
of thermodynamics is instead EG2, where the Euler equations are solved
computationally by a finite element method on a mesh of finite precision of
mesh size h (variable in space and time).

We may think of the finite element computation as a finite precision
computation with a fixed number of digits (e.g. single precision with about
7 digits) instead of computing with real numbers with infinitely many digits
with infinite precision (which is impossible). Typical meshes have a mesh
size of 10−2 on the unit cube with 106 mesh points. A gas has about 1024

molecules per mole, and thus the values of density, momentum and energy at
each mesh point represent mean values of about 1018 molecules, thus mean
values over incredibly many ”fluid particles”.

A computational particle model of a gas accounting for the position and
velocity of each of the 1024 particles in each mole, is inconceivable on any
kind of thinkable computer. Thus, only some form of continuum model can
be used for macroscopic phenomena of fluid flow.
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With EG2 we stay within a deterministic framework and only add a
restriction of finite precision computation to the formally Hamiltonian Euler
equations. A world of thermodynamics governed by Hamiltonian mechanics
combined with finite precision computation, follows the laws of mechanics as
far as possible taking the finite precision into account, but is not based on
any microscopic games of roulette as statistical mechanics. The difference of
scientific paradigm is fundamental. We are thus led to a model of the World
as a giant clock with finite precision as a computer age alternative Laplace’s
classical clock with infinite precision as well as Boltzmann’s micriscopical
games of roulette.

In EG2 the mesh size h enters as a parameter which can be given a phys-
ical significance as a smallest scale in space and time. We shall discover that
mean values of EG2-solutions, or mean-value outputs, show little dependence
on the mesh size h, and we shall also uncover (some of) the mathematical
rationale behind this remarkable feature. This opens the possibility of accu-
rately simulating real phenomena using a coarser mesh size than the physical
smallest scale, which is like computing with say 106 “super-particles” instead
of 1024 “real particles”, thus making an impossible simulation possible.

12.6 Boltzmann’s Equation

Boltzmann starts from a molecular particle model of a dilute gas as a very
large collection of elastically colliding little spherical particles/molecules ac-
cording to classical Newtonian mechanics. This model is formally reversible
without effects of viscosity, simply because each elastic collision is reversible.
From this particle model Boltzmann derives a continuum model from an
assumption of molecular chaos requiring particles to have statistically inde-
pendent velocities before collision, in the form of Boltzmann’s equation:

ḟ + v · ∇xf + F · ∇vf = Q(f, f), (12.8)

where f(x, v, t) is the number of gas molecules at the position x moving with
velocity v per volume dxdv, at time t, F is an applied force, and ∇x is the
gradient with respect to x, ∇v the gradient with respect to v, and Q(f, f)
is Boltzmann’s collision operator representing the rate of change of f(x, v, t)
due to (elastic) molecule collisions. Boltzmann’s collision term has a certain
dissipative character, from which Boltzmann derived his famous H-Theorem
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stating that Ḣ ≥ 0, where

H(t) =

∫
f log(f)dxdv

is Boltzmann’s H-function. Irreversibility would then be signified by a strictly
decreasing H-function, and thus −H could be viewed as a strictly increasing
entropy. Boltzmann’s equation is deterministic, but it is derived from a
statistical assumptiopn of molecular chaos requiring the velocities of two
molecules about to collide to be statistically independent before collision,
but not after. The assumption of molecular chaos is what gives the collision
term its dissipative character with H(t) strictly decreasing as the gas steadily
moves towards its equilibrium distribution with minimal H and Q = 0.

The motivation of the assumption of molecular chaos is the weak point of
Boltzmann’s gas kinetics: Statistical independence before collision but not
after, obviously introduces a direction of time by direct assumption. The
main head-ache of Boltzmann was thus to motivate this assumption, in or-
der not to simply assume what was to be proved, namely time-directionality.
To do so he tried various options and finally seemed to converge to the idea
that the probability of a macro-state should be related to the number of
underlying micro-states, and thus the H-theorem would reflect a tendency of
the gas molecules to move from a less probable to a more probable distribu-
tions, with the final equilibrium position as the most probable one. To count
the number of micro-states underlying a certain macrostate requires (tricky)
combinatorics, and this is what makes Boltzmann’s statistical mechanics so
difficult to understand (for most people). We will come back to this aspect
in an account (and resolution) of Gibb’s paradox exhibiting difficulties of
combinatorics in gas kinetics.

We shall below recall that Boltzmann defines the entropy S of a certain
macrostate as being proportional to log(W ) where W is the number of cor-
responding microstates. Boltzmann thus plays with two different definitions
of entropy, one statistical in terms of the number of microstates, W and
one deterministic in terms of the H-function, which is very confusing to the
non-specialist of statistical mechanics.

Did Boltzmann thereby resolve the enigma how irreversibility can arise
in a formally reversible Newtonian model like a swarm of elastically colliding
particles? Not really, because his basic roulette assumption, also referred to
as molecular chaos, is asymmetric in time (two particles play roulette before
collision), and thus introduces viscosity by assumption. Boltzmann thus
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assumed what was to be proved, namely the occurence of effects of viscosity
and time asymmetry, and therefore met strong opposition by in particular
Loschmidt [33].

12.7 Euler’s Equations from Boltzmann’s

The Euler equations of fluid mechanics (12.1) can formally be derived from
Boltzmann’s equation of gas kinetics (12.8), by integration over the velocity
variable v and defining with M the mass of a molecule,

ρ(x, t) =M

∫
f(x, t, v) dv,

m(x, t) =M

∫
f(x, t, v)v dv

e(x, t) =
M

2

∫
f(x, t, v)|v − u|2 dv,

(12.9)

where as usual u = m/ρ. We note in particular that the internal (heat)
energy e is defined as a form of (small scale) kinetic energy measuring the
standard deviation from the mean velocity u.

12.8 Navier-Stokes Equations

In the Navier-Stokes equations the momentum equation is augmented by a
viscous term of the form

−∇ · (ν∇u)−∇(µ∇ · u), (12.10)

where ν > 0 is a shear viscosity coefficient and µ > 0 a bulk viscosity. The
equation for the heat energy is similarly augmented by a heat conduction
term of the form −∇ · (κ∇e) with κ > 0 a heat conductivity. The determi-
nation of correct values of these coefficients in turbulent flow is very compli-
cated, or more precisely in practice impossible, because the coefficients are
solution dependent. We stay away from this complications by assuming the
coefficients to be small and we then effectively put them to zero in the Euler
equations, just as Euler did. The mesh-independence of certain mean-value
outputs then reflects that the mean-values are insenistive to the absolute size
of viscosities and heat conductivity, as long as they are small.
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Figure 12.1: The shock wave of a supersonic airplane made visible by con-
densation

A theory is the more impressive the greater the simplicity of its premises,
the more different kinds of things it relates, and the more extended
its area of applicability. Therefore the deep impression that classical
thermodynamics made upon me. It is the only physical theory of uni-
versal content which I am convinced will never be overthrown, within
the framework of applicability of its basic concepts.(Einstein)

Nothing in life is certain except death, taxes and the second law of
thermodynamics. All three are processes in which useful or accessible
forms of some quantity, such as energy or money, are transformed
into useless, inaccessible forms of the same quantity. That is not to
say that these three processes don’t have fringe benefits: taxes pay
for roads and schools; the second law of thermodynamics drives cars,
computers and metabolism; and death, at the very least, opens up
tenured faculty positions. (Seth Lloyd, in Nature, 2004)



Chapter 13

Viscosity Solutions to 1d Euler

The total energy of the universe is constant; the total entropy is con-
tinually increasing. (Rudolf Clausius 1865)

You believe in the God who plays dice, and I in complete law and order
in a world which objectively exists, and which I, in a wild speculative
way, am tryin to capture. Even the great initial success of Quan-
tum Theory does not make me believe in the fundamental dice-game,
although I am well aware that younger collegues interpret this as a
consequence of senility. No doubt the day will come when we will see
those instictive attitude was the correct one. Some physicists. among
them myself, cannot believe that we must abandon, actually and for-
ever, the idea of direct representation of physical reality in space and
time; or that we must accept then the view that events in nature are
analogous to a game of chance...In any case I am convinced that He
does not throw dice. (Einstein)

13.1 Regularization of Hamiltonian Systems

We present in this chapter a short-cut to the computational foundation of
thermodynamics in the setting of the Euler equations in one space dimension
(1d). In particular, we motivate a 2nd Law, which we will below show to be
satisfied by EG2 in the full 3d case.

We use the standard approach of viscous regularization motivated by
the fact that the Euler equations do not admit exact pointwise solutions,
because of the inevitable appearance of turbulence/shocks. We will view
EG2 solutions as specific regularized solutions, which are computed and thus

97
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can be inspected. We shall below in more detail investigate the precise form
of the regularization in EG2, and discover that it has interesting features,
not only from mathematical and computational, but also from physical point
of view.

The basic idea in viscous regularization of a Hamiltonian system described
by an equation H(u) = 0 over a domain Ω× [0, 1] in space-time, such as the
Euler equations, is to perturb the equation H(u) = 0 into

H(uν) = ν∆uν in Ω× [0, 1],

where ν > 0 is a small parameter representing a small (shear) viscosity, and
the Laplacian has a regularizing or smoothing effect on the solution.

The presence of the Laplacian (or possibly a higher order regularizing
differential operator such as the biLaplacian), makes it possible in some cases
to prove the existence of a pointwise solution uν to the regularized problem, a
viscosity solution, by standard techniques of mathematical analysis involving
Sobolev and Gronwall inequalities, while the original Hamiltonian system
is inaccessible to analysis because the equation H(u) = 0 lacks pointwise
solutions. For the compressible Euler equations, technical difficulties have
hitherto prevented a full proof in the general case, which however is not
crucial for the computational foundation since it is based on computed EG2-
solutions and not viscosity solutions. We here use viscosity solutions to
formally illustrate basic features of EG2-solutions such as the 2nd Law, which
we then verify directly for EG2-solutions. EG2 can be viewed as specific
viscosity solutions, which are computed and thus do exist.

If the regularized solution uν is smooth in the sense that ∆uν is of moder-
ates size, then the perturbation ν∆uν will be small, because ν is small, and
thus the regularized solution uν will be an approximate pointwise solution
of the Hamiltonian system with the Hamiltonian residual H(uν) being small
in a pointwise sense. In this case the the perturbation can be said to be
regular, and is inessential in the sense that already the original problem has
a pointwise solution and regularization is not needed.

However, we consider problems where the Hamiltonian residual H(uν)
is not small (in fact large) in regions with shocks/turbulence, while H(uν)
remains small in a weak norm, so that ûν still is an approximate solution to
the Hamiltonian system, but now only in a weak (but not pointwise) sense.
The viscous term ν∆u will thus be pointwise large, which is reflected by the
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fact that the total dissipation

D(uν) =

∫
Ω

ν|∇uν |2dx

is not small (of moderate size). In particular, the regularized solution uν
is non-smooth in the sense that |∇uν | and |∆uν | are locally very large (of
size ν−1 and ν−2 at shocks and of size ν−1/2 and ν−3/2 in turbulent regions,
respectively). In this case the perturbation is singular, and is essential in
the sense that only the regularized problem has pointwise solutions. We thus
consider a Hamiltonian system with singular perturbation.

We understand that D(uν) results from multiplication of −ν∆uν by uν
and integration (by parts) over Ω. Typically, D(uν) will have a positive limit
as ν tends to zero, which expresses an independence of the specific form of the
regularization, that is the specific value of ν, with always the term −ν∆uν
balancing the non-zero Hamiltonian residual H(uν), with ∆uν getting larger
as ν gets smaller.

We will thus view the appearance of the regularization term as a math-
ematical formality and we do not seek to connect it to any physical “shear
viscosity”. This is because the appearance of “shear viscosity” in Hamilto-
nian systems without viscosity, such as the Euler equations, represents the
main mystery of the classical 2nd Law. We thus do not accept the common
argument that “there is always some form of (shear) viscosity, which we can
model by a Laplacian”. The key question is from where such a viscosity
comes in a inviscid flow.

We shall see that EG2 offers a new answer to this key question, where the
viscosity appears as a loss of kinetic energy because the momentum equa-
tion cannot be satisfied pointwise, and not as any form of classical (shear)
viscosity. The loss of kinetic energy (which is transformed into heat energy)
can be viewed as a “fine” to be paid because the law H(u) = 0 is heav-
ily violated pointwise. The fine can take many forms, since there are many
possible forms of regularization, while the violation essentially remains the
same. We shall see that EG2 penalizes a large residual H(û), while classical
viscous regularization penalizes all large derivates, not only the particular
combination of the residual.

EG2 thus has “fine-tuned” penalization with the fine being as close as
possible to the violation, like a pencillin with narrow spectrum killing only
microbes producing the symptom, which suggests that EG2 can be given a
physical significance. On the ohter hand, classical viscous regularization, is
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more like a broad band penicillin killing both microbes and healthy bacteria,
and its physical signicance has remained a mystery.

To sum up, we start from a Hamiltonian system without pointwise solu-
tions (the Euler equations), which we replace by a regularized system with
pointwise solutions (by viscous regularization or EG2), which can be viewed
as approximate solutions to the original system. We find that certain mean-
values of the regularized solutions show little dependence on the specific form
of the regularization (the viscosity or the mesh size), and thus can be viewed
as stable outputs of approximate solutions to the original system. We first
carry out the argmument for viscous regularization and then return below to
the real case of EG2 regularization.

13.2 1d Euler

We consider an inviscid perfect gas enclosed in a tube represented by the
interval Ω = (0, 1) in space over a time interval I = (0, 1] and we assume
that f = 0 and g = 0. The 1d Euler equations expressing the 1st Law
as conservation of mass, momentum and internal energy, formally take the
form: Find û ≡ (ρ,m, e) such that with v′ = ∂v

∂x

Rρ(û) ≡ ρ̇+ (ρu)′ = 0 in Q,
Rm(û) ≡ ṁ+ (mu+ p)′ = 0 in Q,
Re(û) ≡ ė+ (eu)′ + pu′ = 0 in Q,

u(0, t) = u(1, t) = 0 t ∈ I,
û(·, 0) = û0 in Ω,

(13.1)

where p = γe with γ > 0 and u = m
ρ
, or in short form

R(û) = 0 in Q,
u(0, t) = u(1, t) = 0 t ∈ I,

û(·, 0) = û0 in Ω,
(13.2)

where R = (Rρ, Rm, Re).

13.3 Formal Reversiblity

The Euler equations (13.1) without regularization are formally reversible:
Changing the sign of the velocity u and the direction of time (the sign of the
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time-derivative u̇), the Euler equations obviously remain unchanged. This
means that if û(t) is a solution to the Euler equations in forward time on
[0, T ] taking the initial value û(0) to the final value û(T ), we obtain a solution
in backward time taking û(T ) back to û(0) by reversing the velocity at time
t̄. Of course we can view this solution as proceeding in forward time by just
continuing counting time forward after the velocity reversal.

We conclude that if the Euler equations have a pointwise solution then it
can be turned into a perpetuum mobile running for ever without consuming
any energy, for ever bouncing back and forth by repeated reversal of the
velocity at two given time instances.

13.4 Factual Irreversibility

The trouble with the above argument is that the Euler equations lack point-
wise solutions and thus the implication is empty. In contrast viscosity solu-
tions to the regularized Euler equations exist, but these solutions are turbu-
lent with substantial turbulent dissipation and thus are irreversible. There-
fore a perpetuum mobile is impossible.

We sum up: The exact solutions which would have been reversible if
they had existed, do not exist. The viscosity solutions which do exist, are
not reversible. This is the main lesson of this book, and resolves the main
open problem of classical thermodynamics: Loschmidt’s paradox asking how
irreversibility can arise in a reversible system.

13.5 Energy Estimates for Viscosity Solutions

We shall now prove that a viscosity solutions of the regularized 1d Euler
equations (13.1) is a dissipative weak solution of the Euler equations in the
sense that its Euler residual is small in a weak sense and it satisfies a 2nd Law
expressing an irreversible transfer from kinetic to heat energy in the form of
turbulent/shock dissipation. In short we prove that viscosity solutions are
dissipative weak solutions of the Euler equations.

We thus consider the following regularized version of (13.1): Find ûν,µ ≡
û = (ρ,m, e) such that
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ρ̇+ (ρu)′ = 0 in Q,
ṁ+ (mu+ p)′ = (νu′)′ + (µpu′)′ in Q,
ė+ (eu)′ + pu′ = ν(u′)2 in Q,
u(0, t) = u(1, t) = 0 t ∈ I,

û(·, 0) = û0 in Ω,

(13.3)

where p = γe, and ν > 0 and µ ≥ 0 are small parameters with ν representing
shear viscosity and µ a form of bulk viscosity with µ = 0 if u′ < 0. For
simplicity, we here suppress the subindices ν and µ. We here use the balance
equation for the internal energy e, modified to account for the contribution
to the internal energy from shear viscosity, but without contribution from
bulk viscosity, which we consider as a penalty. We observe that only the
velocity u is subject to regularization, which gives (as we will see below) the
momentum equation a different quality than the balance equations for mass
and internal energy, both involving u as a coefficient.

We shall see that it is natural to choose the regularization parameter ν
much smaller than µ, and thus the main effect of the regularization comes
from the bulk viscosity µ, rather than from the usual shear viscosity ν. We
shall see that the bulk viscosity prevents fluid particles from colliding, or more
precisely, prevents faster fluid particles to overtake slower particles (along the
same streamline), which thus is the main effect of the regularization and not
shear viscosity.

We shall now prove that û = ûν,µ satisfies

∥Rm(û)∥−1 ≤
√
ν

√
µ
+
√
µ, (13.4)

where ∥ · ∥−1 denotes the L2(I;H
−1(J))-norm, while obviously Rρ(û) = 0

and Re(û) ≥ in a pointwise sense in Ω× I. Further, we shall observe that û
satisfies the following 2nd Law:

K̇ ≤ W −D, Ė = −W +D,

where

K =

∫
J

kdx, E =

∫
J

edx, W =

∫
J

pu′dx, D =

∫
J

ν(u′)2 dx > 0.

Choosing µ = ϵ and ν = ϵ2, we can assure that ∥Rm(ûν,µ)∥−1 ≤ 2
√
ϵ

for any positive ϵ. We shall prove the following result on the existence of
dissipative weak approximate solutions to the 1d Euler equations:
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A viscosity solution û of the regularized Euler equations (13.1) satisfies

Rρ(û) = 0 in Ω× I, ∥Rm(û)∥−1 ≤ TOL, Re(û) ≥ 0 in Ω× I,

where TOL =
√
ν√
µ
+
√
µ, together with the 2nd Law

K̇ ≤ W −D, Ė = −W +D, D > 0. (13.5)

We understand that Theorem 13.5 states certain properties of the regular-
ized solution uν,µ in terms of its Euler residuals, without explicitely referring
to the regularization, where the 2nd Law compensates for the fact that the
momentum residual Rm(û) is only required to be small in a weak norm, and
Re(û) is allowed to be pointwise positive. We note that by the 2nd Law
(13.5) it follows that

K̇ + Ė ≤ 0 (13.6)

stating that the integral (or totality) in space of the total energy ϵ cannot
increase.

To make the notion of dissipative weak solution really useful, we have to
connect it to output uniqueness. We will return to this basic aspect below
in the context of EG2, using directly the properties of EG2 without passing
through Theorem 13.5. We can thus view Theorem 13.5 as a connection
to a classical analytical technique of regularized solutions, which we will
not pursue in detail, because what we can compute are EG2 solutions, not
classical regularized solutions, and because a EG2 solution can be viewed as
a (new) form of regularized solution.

Since the concept of weak solution can be viewed as expressing a form
of approximate solution, with an exact solution being a (strong) pointwise
solution, we can condense the notation to dissipative weak solution. In short,
we will thus prove the existence of dissipative weak solutions to the Euler
equations and below see that a EG2 solution is a dissipative weak solution.

Proof of Theorem 6.1: The basic technical step is to multiply the momen-
tum equation by u, omitting for simplicity the indices ν and µ, and use the
mass balance equation in the form u2

2
(ρ̇+ (ρu)′) = 0, to get

k̇ + (ku)′ + p′u− µ(pu′)′u− νu′′u = 0. (13.7)

By integration in space it follows that K̇ ≤ W −D, and similarly it follows
that Ė = −W + D from the equation for e, which proves the 2nd Law.
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Adding next (14.6) to the equation for the internal energy e and integrating
in space, gives

K̇ + Ė +

∫ 1

0

µp(u′)2 dx = 0,

and thus after integration in time

K(1) + E(1) +

∫
Q

µp(u′)2 dxdt = K(0) + E(0). (13.8)

We now need to show that E(1) ≥ 0 (or more generally that E(t) > 0
for t ∈ I), and to this end we rewrite the equation for the internal energy as
follows:

De

Dt
+ (γ + 1)eu′ = ν(u′)2,

where De
Dt

= ė+ue′ is the material derivative of e following the fluid particles
with velocity u. Assuming that e(x, 0) > 0 for 0 ≤ x ≤ 1, it follows that
e(x, 1) > 0 for 0 ≤ x ≤ 1, and thus E(1) > 0. Assuming K(0) + E(0) = 1
the energy estimate (14.7) thus shows that∫

Q

µp(u′)2 dxdt ≤ 1, (13.9)

and also that E(t) ≤ 1 for t ∈ I.
Next, integrating (14.6) in space and time gives

K(1) +

∫
Q

ν(u′)2dxdt =

∫
Q

pu′dxdt−
∫
Q

µp(u′)2dxdt ≤ 1

µ

∫
Q

pdxdt ≤ 1

µ
,

where we used that
∫
Q
pdxdt = γ

∫
Q
edxdt ≤

∫
I
E(t)dt ≤ 1. It follows that∫

Q

ν(u′)2dxdt ≤ 1

µ
. (13.10)

By standard estimation it follows from (14.8) and (14.9) that

∥Rm(û)∥−1 ≤
√
µ+

√
ν

√
µ
,

and the proof can be completed in an obvious fashion.



13.6. IRREVERSIBILITY BY THE 2ND LAW 105

13.6 Irreversibility by the 2nd Law

The 2nd Law (13.5) states an irreversible transfer of kinetic energy to heat
energy for in the presence of shocks with D > 0, which is the generic case.
On the other hand, the sign of W is variable and thus the corresponding
energy transfer may go in either direction.

13.7 Compression and Expansion

The 2nd Law (13.5) states that there is a transfer of kinetic energy to heat
energy if W < 0, that is under compression with u′ < 0, and a transfer from
heat to kinetic energy if W > 0, that is under expansion with u′ > 0. As we
just remarked, there is a transfer from kinetic to heat energy for solutions
with shocks with D > 0.

Returning to Joule’s experiment, we see by the 2nd Law that contraction
back to the original volume from the final rest state in the double volume,
is impossible, because the only way the gas can be set into motion is by
expansion.
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Chapter 14

Viscosity Solutions to 3d Euler

Everyone knows that heat can produce motion. That it possesses
vast motive power no one can doubt, in these days when the steam
engine is everywhere so well known. The study of these engines is of
great interest, their importance is enormous, their use is continually
increasing, and they seem desined to produce a great revolution in the
civilized world. (Carnot [7] 1824).

But maybe that is our mistake: maybe there are no particle posi-
tions and velocities, but only waves. It is just that we try to fit the
waves to our preconceived ideas of positions and velocities. The result-
ing mismatch is the cause of the apparent unpredictability.(Stephen
Hawking)

What wanted to say was just this: In the present circumstances the
only profession I would choose would be one where earning a living
had nothing to do with the search for knowledge”. (Einstein’s last
letter to Born Jan 17 1955 shortly before his death on the 18th of
April, probably referring to Born’s statistical interpretation of quan-
tum mechanics).

14.1 3d Euler

We now show that the above result for the 1d Euler equations directly extends
to 3d. We thus consider the 3d Euler equations for an inviscid perfect gas
enclosed in a volume Ω in R3 with boundary Γ over a time interval I = (0, 1],
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assuming as above that the applied force f = 0: Find û = (ρ,m, e) depending
on (x, t) ∈ Q ≡ Ω× I such that

Rρ(û) ≡ ρ̇+∇ · (ρu) = 0 in Q,
Rm(û) ≡ ṁ+∇ · (mu) +∇p = 0 in Q,
Re(û) ≡ ė+∇ · (eu) + p∇ · u = 0 in Q,

u · n = 0 on Γ× I
û(·, 0) = û0 in Ω,

(14.1)

where u = m
ρ
and p = γe with γ > 0.

14.2 Energy Estimates for Viscosity Solutions

We consider the following regularized version of (14.1): Find ûν,µ ≡ û =
(ρ,m, e) such that

Rρ(û) = 0 in Q,
Rm(û) = ∇ · (ν∇u) +∇(µp∇ · u) in Q,
Re(û) = ν|∇u|2 in Q,
u = ∂u

∂n
= 0 on Γ× I,

û(·, 0) = û0 in Ω,

(14.2)

where ν > 0 is a shear viscocity and µ ≥ 0 a bulk viscosity with µ = 0 if
∇ · u < 0, and |∇u|2 =

∑3
i=1 |∇ui|2.

As already indicated, the existence of a pointwise solution ûν,µ to the
regularized problem is an open problem of mathematical analysis. However,
we only use the regularized problem to formally illustrate basic properties of
EG2-solutions, which we prove directly below.

We shall now prove that û = ûν,µ satisfies

∥Rm(û)∥−1 ≤
√
ν

√
µ
+
√
µ, (14.3)

where ∥ · ∥−1 denotes the L2(I;H
−1(Ω))-norm, while we may assume that

Rρ(û) = 0 and Re(û) ≥ 0 in a pointwise sense in Q. We shall also find that
û satisfies the following 2nd Law:

K̇ ≤ W −D, Ė = −W +D,
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where

K =

∫
Ω

k dx, E =

∫
Ω

e dx, W =

∫
Ω

p∇ · u dx, D =

∫
Ω

ν|∇u|2 dx.

Choosing µ = ϵ and ν = ϵ2, we can assure that ∥Rm(ûν,µ)∥−1 ≤ TOL for
any positive tolerance TOL. We shall thus show the following formal result
on the existence of dissipative weak approximate solutions to the 3d Euler
equations:

A viscosity solution û of the regularized Euler equations (14.1) satisfies

Rρ(û) = 0 in Ω× I, ∥Rm(û)∥−1 ≤ TOL, Re(û) ≥ 0 in Ω× I,

where TOL =
√
ν√
µ
+
√
µ, together with the 2nd Law

K̇ ≤ W −D, Ė = −W +D, D > 0. (14.4)

As above, we note that Theorem 13.5 states certain properties of the
regularized solution uν,µ in terms of its Euler residuals, without explicitely
referring to the regularization, where the 2nd Law compensates for the fact
that the momentum residual Rm(û) is only required to be small in a weak
norm, and Re(û) is allowed to be pointwise positive. We note that by the
2nd Law it follows that

K̇ + Ė ≤ 0 (14.5)

stating that the integral (or totality) in space of the total energy ϵ cannot
increase. We shall see below that a EG2 solution is a dissipative weak ap-
proximate solution.

Proof of 14.2: The basic technical step is to multiply the momentum equa-

tion by u, and use the mass balance equation in the form |u|2
2
(ρ̇+∇·(ρu) = 0,

to get

k̇ +∇ · (ku) + p∇ · u−∇(µp∇ · u) +∇ · (ν∇u) · u = 0. (14.6)

By integration in space it follows that K̇ ≤ W −D, and similarly it follows
that Ė = −W + D from the equation for e, which proves the 2nd Law.
Adding next (14.6) to the equation for the internal energy e and integrating
in space, gives

K̇ + Ė +

∫
Ω

µp(∇ · u)2 dx = 0,
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and thus after integration in time

K(1) + E(1) +

∫
Q

µp(∇ · u)2 dxdt = K(0) + E(0). (14.7)

We now need to show that E(1) ≥ 0 (or more generally that E(t) > 0
for t ∈ I), and to this end we rewrite the equation for the internal energy as
follows:

De

Dt
+ (γ + 1)e∇ · u = ν|∇u|2,

where De
Dt

= ė + u · ∇e is the material derivative of e following the fluid
particles with velocity u. Assuming that e(x, 0) > 0 for x ∈ Ω, it follows
that e(x, 1) > 0 for x ∈ Ω, and thus E(1) > 0. Assuming K(0) + E(0) = 1
the energy estimate (14.7) thus shows that∫

Q

µp(∇ · u)2 dxdt ≤ 1, (14.8)

and also that E(t) ≤ 1 for t ∈ I.
Next, integrating (14.6) in space and time gives

K(1)+

∫
Q

ν|∇u|2dxdt =
∫
Q

p∇·udxdt−
∫
Q

µp(∇·u)2dxdt ≤ 1

µ

∫
Q

pdxdt ≤ 1

µ
,

where we used that
∫
Q
pdxdt = γ

∫
Q
edxdt ≤

∫
I
E(t)dt ≤ 1. It follows that∫

Q

ν|∇u|2dxdt ≤ 1

µ
. (14.9)

By standard estimation it follows from (14.8) and (14.9) that

∥Rm(û)∥−1 ≤
√
µ+

√
ν

√
µ
,

and the proof can be completed in an obvious fashion.

14.3 Irreversibility by the 2nd Law

The 2nd Law (14.4) states an irreversible transfer of kinetic energy to heat
energy in the presence of shocks/turbulence with D > 0, which is the generic
case. On the other hand, the sign ofW is variable and thus the corresponding
energy transfer may go in either direction.
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14.4 Compression and Expansion

The 2nd Law (14.4) states that there is a transfer of kinetic energy to heat
energy if W < 0, that is under compression with u′ < 0, and a transfer from
heat to kinetic energy if W > 0, that is under expansion with ∇ · u > 0.

Returning to Joule’s experiment, we see by the 2nd Law that contraction
back to the original volume from the final rest state in the double volume,
is impossible, because the only way the gas can be set into motion is by
expansion.

14.5 A 2nd Law witout Entropy

We note that the 2nd Law (14.4) is expressed in terms of the kinetic energy
K, the heat enargy E and the work W , and does not involve any concept of
entropy S. This relieves us from the task of finding a physical significance
of S and a physical justification of a classical 2nd Law of the form dS ≥ 0.
We thus circumvent the main difficulty of classical thermodynamics based on
statistical mechanics, while we reach the same goal as statistical mechanics
of explaining irreversibility in formally reversible Newtonian mechanics.

Note that since the new 2nd Law is a consequence of the 1st Law and
EG2 computation, we can “forget” the 2nd Law: It is automatically satisfied
without special attention. This is like ‘forgetting” to keep the balance while
walking, because is automatically maintained without conscious attention.
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Chapter 15

Classical vs New 2nd Law

It seems to me that the concept of probability is terribly mishan-
dled these days. A probabilistic assertion presupposes the full re-
ality of its subject. No reasonable person would express a conjec-
ture as to whether Caesar rolled a five with his dice at the Rubicon.
But the quantum mechanics people sometimes act as if probabilistic
statements were to be applied just to events whose reality is vague.
(Schrödinger to Einstein 1950)

What you cannot speak of, you have to be quite. (Wittgenstein)

15.1 Basics of Classical Thermodynamics

Classical thermodynamics is based on the relation

τds = dτ + pdv, (15.1)

where ds represents change of entropy s per unit mass, dv change of volume
v and dτ denotes the change of temperature or internal energy per unit mass
τ , combined with a 2nd Law in the form

ds ≥ 0, (15.2)

The rationale behind the 2nd Law in this form was the main mystery of
science in the later half of the 19th century, and in an attempt to motivate it
on a molecular-mechanistic basis, Boltzmann invented statistical mechanics.
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15.2 Entropy of a Perfect Gas

Integrating the classical 2nd Law τds = dτ + pdv for a perfect gas with
p = γρτ and dv = d(1

ρ
) = −dρ

ρ2
, we get

ds =
dτ

τ
+
p

τ
d(
1

ρ
) =

dτ

τ
− γ

dρ

ρ
,

and thus conclude that with e = ρτ ,

s = log(τρ−γ) = log(eρ−(γ+1)), (15.3)

up to a constant. Thus, the entropy s = s(ρ, τ) for a perfect gas is a simple
function of the physical quantities ρ and τ (or e) suggesting that s might
have a physical significance, because ρ and τ have. Of course, we could get
used to a quantity s defined this way, but the basic questions remains:

• What is the physical significance of s?

• Why is ds ≥ 0?

15.3 Comparing the Classical and New 2nd

Law

We have with Du = ∂
∂t
+u ·∇ the material derivative following fluid particles,

ρDus =
ρ

e
Due−(γ+1)Duρ =

1

τ
(Due+(γ+1)ρτ∇·u) = 1

τ
(Due+e∇·u+γρτ∇·u)

since by mass conservation Duρ = −ρ∇·u. It follows that the entropy S = ρs
satisfies

Ṡ +∇ · (Su) = ρDus =
1

τ
(ė+∇ · (eu) + p∇ · u) = 1

τ
Re(û) ≥ 0, (15.4)

where we used the 2nd Law according to Theorem 7.1 in the form Re(û) ≥
0. We summarize in A solution û of the regularized Euler equations (14.2)
satisfies

Ṡ +∇ · (Su) = 1

τ
Re(û) ≥ 0 in Q, (15.5)

where S = ρ log(τρ−γ).
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It is natural to refer to (15.5) as the 2nd Law in classical entropy form,
which we may express symbolically as dS ≥ 0. We have thus shown that
that the new 2nd Law effectively includes the classical 2nd Law in the form
dS ≥ 0, without reference to S, only to the physically significant quantities
K, E and W .

We thus circumvent what is perceived as the main difficulty of classical
thermodynamics and what motivated the introduction of statistical mechan-
ics, namely to give the entropy S a physical meaning and justifying that
dS ≥ 0. We have just seen that we can motivate dS ≥ 0 by viscous regu-
larization (below by EG2 finite computation) without statistical mechanics,
as a consequence of the 2nd Law in the form Re(û) ≥ 0. The result is that
we can motivate the 2nd Law in any of its forms without resort to statistical
mechanics.

15.4 Local and Global Forms od the 2nd Law

The 2nd Law (14.4) is expressed in global form, while (15.5) has a pointwise
form, and one may ask if the pointwise version is more informative than the
global?

Now, the 2nd Law is a consequence of the viscous regularization in the
pointwise equations (14.2), which thus can be viewed to contain in pointwise
form the origin of the 2nd Law. In particular, the internal energy equation
Re(û) = ν(∆u)2 expresses in pointwise form an irreversible transfer of kinetic
energy into heat energy.

Whatever form of the 2nd Law we choose, global or poinwise, it will
automatically be satisfied by solutions of the regularized problem, and for
the main objective of expressing irreversiblity, the global form is sufficient.
We hereby follow the device of Ockham that in science you should not worry
about what you don’t have to worry about. In particular, we do not have to
worry about the entropy S and the 2nd Law in the form dS ≥ 0.

15.5 Boltzmann’s Entropy

Boltzmann’s great invention is considered to be his definition of the entropy
S of a certain macro-state, not by (15.3), but instead by the following formula
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engraved on his grave-stone:

S = k log(W ), (15.6)

whereW is the number of micro-states corresponding to the macro-state and
k ≈ 10−23 Joule/Kelvin, is a (very small) constant referred to as Boltzmann’s
constant. Boltzmann thus proposed a probabilistic definition of entropy,
where W would be a measure of the probability of the occurence of a certain
macro-state, and Boltzmann then motivated the inequality dS ≥ 0 as a
tendency of a to dilute gas to move from less probable to more probable
macro-states, or from macro-states with fewer corresponding micro-states to
macro-states with a larger number of corresponding micro-states, or from
ordered to less ordered states.

Classical thermodynamics thus plays with two different definitions of en-
tropy, the deterministic (15.3), and the statistical (15.6). This is confusing,
in particular to the non-specialist, and is the main reason that classical ther-
modynamics is so difficult to grasp.

We understand that Boltzmann’s motivation to give a probabilistic defi-
nition of S, was to be able to motivate dS ≥ 0, by probability. Boltzmann
admits that with the probabilistic definition, it is possible that dS < 0, al-
though he claims that it is very unlikely to happen. On the other hand, the
new 2nd Law shows that dS < 0 can never happen.

Again, in the new foundation of thermodynamics including the new 2nd
Law, entropy does not appear, and in particular the need of defining entropy
using probability does not arise. More precisely, as already pointed out, we
show below that the classical 2nd Law dS ≥ 0 with S defined deterministi-
cally by (15.3), is contained in the new 2nd Law, and thus there is no need
to resort to cumbersome probabilistic arguments to motivate not even the
classical 2nd Law (15.3).

In short, with the new 2nd Law, the main reason to introduce statistical
mechanics seems to dissappear. This makes thermodynamics understandable
to the many users, who are not specialists of statistical mechanics, to which
this book is addressed.

15.6 Extension to Non-Perfect Gases

The 1st Law expressing conservation of mass, momentum and total energy
holds for all gases/fluids, but the gas law defining the pressure in terms of the
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conservation variables in general differs from the law of a perfect gas p = γρτ ,
and the dependence of internal energy E on temperature τ may differ from
direct proportionality. As noted above, for a general gas the classical 2nd
Law τdS = dE + pdV may not define S as a state variable in terms of
conservation variables. Further, the statistical mechanics of a general gases
is largely unknown. On the other hand, the new 2nd Law without entropy,
readily extends to the case of a general gas.
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Part IV

Computation
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Chapter 16

G2 as Turbulence Model

For three hundred years science has been dominated by a Newtonian
paradigm presenting the World either as a sterile mechanical clock
or in a state of degeneration and increasing disorder...It has always
seemed paradoxical that a theory based on Newtonian mechanics can
lead to chaos just because the number of particles is large, and it is
subjectivly decided that their precise motion cannot be observed by
humans... In the Newtonian world of necessity, there is no arrow of
time. Boltzmann found an arrow hidden in Nature’s molecular game
of roulette. (Paul Davies in The Cosmic Blueprint, 1987)

16.1 EG2 as a Continuum Model

As a model of thermodynamics we start from a formal continuum model, in
the form of the Euler equations for an ideal (inviscid) gas/fluid expressing
conservation of mass, momentum and energy as a system of differential equa-
tions. We view the Euler equations as a formal model since no procedure for
solving the equations is included in merely formulating the equations. A real
model also includes a constructive (computational) solution procedure. The
distinction between formal and real model is absolutely crucial for the Euler
equations, since exact pointwise solutions are lacking and thus the formal
model has no output, and the real (computational) model will have output
and serve as our model of thermodynamics.

To obtain a real model of thermodynamics we apply a residual-stabilized
finite element method in the form of EG2 to the Euler equations using a
finite element mesh of local mesh size h in space-time. The resulting EG2
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model is fed into a computer as a system of algebraic equations, which can
be solved to produce a computational solution to the Euler equations on the
given mesh.

Figure 16.1: Turbulent flow around a car generating drag.

An EG2 solution is a representative of a family of EG2 solutions on dif-
ferent meshes. We are interested in quantitive aspects or outputs of EG2
solutions, which converge under mesh refinement referred to as stable out-
puts. We will find that global mean values such as drag (resistance to motion)
and lift, are stable outputs and thus are not sensitive to the mesh once suffi-
ciently fine, while pointwise outputs are unstable. We can thus view EG2 as
a new form of (real) continuum model for which solutions are computable,
while the unsolvable Euler equations represent a formal continuum model
without output. It is the combination of the Euler equations with finite
precision computation which gives valuable output.

We discover that EG2 solutions of the Euler equations are turbulent and
have shocks reflecting that pointwise solutions are lacking. We find that
both turbulence and shocks cause a transfer of large scale kinetic energy into
small scale kinetic energy in the form of heat, also referred to as turbulent
dissipation, which can be viewed as a penalty paid in kinetic energy from
pointwise violation of conservation of momemtum.

Note that we do not start from the Navier-Stokes equations already con-
taining viscous dissipation by assumption, which would be analogous to
Boltzmann’s assumption of molecular chaos. Effects of viscous dissipation
in EG2 arise from an impossibility in turbulent flow of achieving a small
momentum residual, with the resulting penalty acting like a viscosity. The
viscous dissipation in turbulent EG2 flow thus can understood as an effect
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of finite precision computation, while the (true) nature of physical viscosity
has shown to be difficult to unmask. Without residual stabilization, compu-
tation of EG2 solutions show to be impossible in the presence of turbulence
and shocks. With stabilization EG2 solutions can be computed and show to
accurately describe thermodynamics including turbulence and shocks.

16.2 Regularization, Finite Precision and Sta-

bility

EG2 solutions can be viewed as pointwise solutions to regularized perturbed
Euler equations with a specific regularization resulting from least squares
residual-based stabilization directly connecting penalty to violation.

We show that EG2 solutions satisfy a 2nd Law, as a consequence of the 1st
Law and stabilization. We can view the 2nd Law to express an interplay of
stability and finite precision computation expressing that unstable processes
require infinite precision for exact execution, and thus cannot be realized,
while stable processes only require finite precision and thus can be realized.

To smash a (very expensive very old) Chinese vase into pieces (e.g. by
mistake dropping it on the floor), does not require much of precision, while
reversing the process and reassembling all the little pieces would require a
very high precision.

Stability is here related to the process output. The result of smashing
a vase is a smashed vase and the precise location of the pieces is irrelevant.
This allows quick low precision (brutal) smashing: No matter how you smash,
the output is a smashed vase. On the other hand, the output of the reverse
restoration process is the original vase, and to achieve this result slow high
precision (careful) assembly is required. So even if in a pointwise sense both
the smashing and the assembly are unstable, the smashing is stable in the
sense that the output of a smashed vase can be quickly be achieved with low
precision. Reversing the smashing in time would involve quick high-precision
assembly, which cannot be done, and thus smashing is an irreversible process.
This is the essence of the new 2nd Law in a nutshell illustrating its basic
ingredients of (output) stability and finite precision.

If you do not have an expensive Chinese vase to spare, you can instead
drop a stone to the ground and notice that it heats up as the (large scale)
potential energy of the stone is converted first to (large scale) kinetic energy
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as the stone falls and picks up speed, and then at impact is converted to
(small scale) kinetic energy perceived as heat, cf. Fig 9.3. To get a noticable
temperature increase you may have to repeatedly drop the stone. In each
drop the total energy is conserved as the large scale potential energy is trans-
formed to small scale kinetic energy in the form of heat energy. Reversal of
the process would involve a stone lifting itself by cooling off, a phenomenon
nobody has ever observed: The reason is that the precision required to co-
ordinate the small scale heat energy into large scale potential energy cannot
be attained in a physical process (while the forward process of dropping the
stone does not require much of precision).

We shall find that turbulent flow has a particular form of output stabil-
ity with mean-values being stable and thus computable, while point-values
are unstable and thus uncomputable. This is evidenced in duality-based
posteriori error estimation, where the stability of mean-value outputs of
shock/turbulent flow results from cancellation in an associated dual prob-
lem with highly oscillating coefficients reflecting the complexity of turbulent
flow. This fits with the observation that the World of thermodynamics is
complex and pointwise chaotic, but because of the complexity, mean-value
order can develop from pointwise chaos.

The fact that mean-values are stable and computable thus results form
the complexity of turbulent flow:

• Complex (turbulent) structures are stable and thus exist.

• Simple (laminar) structures are unstable and thus do not exist.

This fits with the observation that the existing world of thermodynamics is
complex and not simple.

EG2 thermodynamics represents a form of deterministic chaos, where the
mechanism is open to inspection and can be used for prediction. Statistical
mechanics is based on ad hoc assumption not open to inspection, and is
difficult to use for prediction.

We shall see that turbulence/shocks appear as a consequence of an im-
possibility to satisfy the Euler equations in a pointwise sense: This is like a
wave building up when approaching a shore and eventually, when it cannot
build up any more, breaks up into a turbulent cascade in which the large scale
kinetic energy of the coherent wave is transformed into small scale incoherent
heat energy, in an obviously irreversible process.
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The aspect of sharpening or increasing gradients in a wave building up,
which preceeds the resolution into a turbulent cascade, is a fundamental
aspect of the stability of irreversible processes and closely couples to finite
precision: It is the finite precision which sets a limit to the sharpening and
ultimately forces the process to choose the only option available in an im-
possible situation: turbulent dissipation.

Figure 16.2: The irreversible process of a breaking wave illustrates the 2nd
Law.

16.3 Finite Precision vs Uncertainty

The idea that the World performs some form of analog finite precision com-
putation when evolving from one time instant to the next, may seem new
(and repugnant) to physicists. But this is not necessary, since the pillars
of modern physics, statistical mechanics and quantum mechanics, both in-
volve uncertainty of microscopics, which can be viewed as a form of finite
precision. Thus, both finite precision computation in the form of EG2 and
statistical/quantum mechanics involve an essential aspect of modern physics
of imprecision of microscopics. An advantage of finite precision computa-
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tion is that no data on statistical distributions is required, only deterministic
data.

16.4 Internal Energy or Heat Energy

Heat energy is also referred to as internal energy. The new 2nd Law expresses
a transfer of kinetic energy into internal energy. The irreversibility of this
process means that kinetic energy once converted to “internal” energy, cannot
be retrieved and thus is “lost”: The energy has been locked in “internally”.
We shall understand below that this is because small kinetic (internal) energy
cannot be coordinated (because of finite precision) in a reversed process of
recovering large scale kinetic energy. Thus the term “internal” seems to
capture the physics in a suggestive metaphor.

We shall see that the new 2nd Law in a way is not new, since it is so
completely basic and results from an energy balance obtained by the ba-
sic operation of multiplication of the momentum equation by the velocity
combined with the finite precision computation of EG2 as a specific form
of regularization. Yet the new 2nd Law is non-standard and thus (surpris-
ingly so), in fact in a certain sense is new, in particular when seen as an
interplay of stability and finite precision. A basic observation is that generi-
cally D > 0 because of the presence of turbulence/shocks in all inviscid flow,
except trivial flow with constant velocity.

The novelty of the new 2nd Law thus can (and hopefully will) be debated,
since it is so completely basic, but it is undeniable that it can replace the
classical 2nd Law without any reference to entropy, and is a consequence of
the 1st Law and certain finite precision computation, which appears to be
genuinely new and open to a simplification of the difficult subject of classical
thermodynamics.

16.5 Maxwell’s Demon and Separation

Mixing can be done quickly with low precision (brutally), while unmix-
ing/separation must be done with high precision and thus must be slow, if at
all feasible. Compare quickly mixing milk into your coffee with a spoon with
the impossible reversed process. Quick (brutal) mixing is irreversible. But
what about slow mixing, is it also irreversible? Is slow unmixing possible?
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This connects to Maxwell’s Demon who is supposed to separate/unmix
slow gas molecules from fast ones through a gate allowing only fast molecules
to pass. Because all fast molecules would have to pass through the gate, one
by one, the separation would have to be slow, since the molecules would only
present themselves by some natural process at the gate and could not be
quickly forced through the gate by the Demon. Maxwell’s Demon could thus
be expexted to reverse slow mixing but not fast mixing.

Now, does Maxwell’s Demon exist? Are there processes of slow unmix-
ing/separation? Yes, in Nature there are two basic processes of slow unmix-
ing: sedimentation in geology and osmosis in biology, both contradicting the
popular science version of 2nd Law stating that “everything has a tendency
to disperse”, which we met above.

In sedimentation in the sea, gravitation makes certain particles fall to the
bottom quicker than others, which (very slowly) produces layers of different
material. In osmosis a solvent like water moves through a semi-permeable
membrane from a solute of small concentration to a solute of higher concen-
tration. Osmosis is the mechanism through which a tree can suck up water
from the ground all the way to the top of the tree, and thus separate water
out of the ground into the cells.

Unmixing/separation is a form of sorting. We know that digital sorting
can be made quickly with high precision by computers, but is quick analog
sorting possible? Yes, a high speed separator can do the job essentially
by a process of sedimentation driven by strong inertial forces from quick
rotation. But biology has not developed high speed separators, which make
many biological processes irreversible. And a high speed separator does not
exactly reverse a process of mixing.

We understand that separation of a substance out of a mixture with other
substances, involves identification and transport of the substance. This can
be performed quickly in digital form, if the process is digitized, but in analog
form only slowly, by processes like sedimentation or osmosis.

16.6 Mixing-Unmixing vs Precision

We note that a process of mixing

(m1) decreases macroscopic difference,

(m2) increases microscopic difference,
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while a process of unmixing

(u1) increases macroscopic difference,

(u2) decreases microscopic difference.

We understand that both (m1) and (m2) and also (u1) may be performed
with low precision, while (u2) requires high precision on microscopic scales
for identification and separation, which in analog form cannot be quick. Thus
quick mixing cannot be reversed.

Figure 16.3: Emergence of organized structures in turbulent flow according
to Leonardo da Vinci.

The second law of thermodynamics is, without a doubt, one of the
most perfect laws in physics. Any reproducible violation of it, how-
ever small, would bring the discoverer great riches as well as a trip
to Stockholm. The world’s energy problems would be solved at one
stroke. It is not possible to find any other law (except, perhaps, for
super selection rules such as charge conservation) for which a pro-
posed violation would bring more skepticism than this one. Not even
Maxwell’s laws of electricity or Newton’s law of gravitation are so
sacrosanct, for each has measurable corrections coming from quantum
effects or general relativity. The law has caught the attention of poets
and philosophers and has been called t he greatest scientific achieve-
ment of the nineteenth century. Engels disliked it, for it supported
opposition to Dialectical Materialism, while Pope Pius XII regarded
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it as proving the existence of a higher being. (Bazarov in Thermody-
namics, 1964)

There is at present in the material world a universal tendency to the
dissipation of mechanical energy. — We have the sober scientific cer-
tainty that the heavens and earth shall “wax old as doth a garment.”
— Although mechanical energy is indestructible, there is a universal
tendency to its dissipation, which produces throughout the system a
gradual augmentation and diffusion of heat, cessation of motion and
exhaustion of the potential energy of the material Universe. — Any
restoration of mechanical energy, without more than an equivalent
of dissipation, is impossible in inanimate material processes, and is
probably never effected by means of organized matter, either endowed
with vegetable life, or subjected to the will of an animated creature.
— Nothing can be more fatal to progress than a too confident reliance
on mathematical symbols; for the student is only too apt to take the
easier course, and consider the formula not the fact as the physical re-
ality. — I have no satisfaction in formulas unless I feel their numerical
magnitude. (Lord Kelvin)
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Chapter 17

EG2

The 2nd Law cannot be derived from purely mechanical laws. It car-
ries the stamp of the essentially statistical nature of heat. (Bergmann
[1])

Therefore I feel that the Heisenberg-Bohr (Copenhagen) statistical
interpretation of quantum mechanics is dead. (Zeh [44])

If a scientist says that something is possible he is almost certainly
right, but if he says that it is impossible he is probably wrong. (Arthur
C. Clarke)

17.1 Introduction

We refer to [20] for a detailed presentation of EG2 for the incompressible
Euler equations. The extension to the compressible Euler equations has the
principal form: Find û ∈ Vh such that

((R(û), v̂)) + ((hR(û), R′(û, v̂))) = 0 for v̂ ∈ Vh (17.1)

where Vh is a space-time finite element space on a mesh with mesh size h,
((·, ·)) denotes space-time L2 scalar products, and R′(û, v̂) is a lineariza-
tion of the Euler residual R(û) at û such that R′(û, û) = R(û), which
leads to residual least squares stabilization through the positive penalty term
((hR(û), R(û)) obtained choosing v̂ = û.

In the actual implementation of EG2 on cG(1)cG(1)-form stated below,
the stabilization has a reduced form involving only some of the terms sum-
ming to the residual. The rationale is that the stabilization has an effect
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when the residual is large pointwise, and then stabilizing one term of the
residual suffices. A residual-based shock-capturing stabilization with viscos-
ity coefficient ∼ h2|R(û)| is also used, which eliminates (small) oscillations
at shocks, but shock-capturing alone is not sufficient.

The 2nd Law satisfied by EG2 shows that the stabilization effectively
concerns one term of the momentum equation, and not the mass and energy
equations. The motivation is that since the momentum equation will not
be pointwise (strongly) small, only weakly small, a stabilization is required
because the the balance of kinetic energy results from multiplication of the
momentum equation by the velocity and this operation is not stable under
weak convergence to zero of the momentum residual. On the other hand,
the mass and energy equations are not similarly multiplied by density and
energy, and thus do not need (the same form) of stabilization.

17.2 EG2 in cG(1)cg(1) Form

EG2 in cG(1)cG(1)-form for the Euler equations (14.1) is a time-stepping
method defined by find û = (ρ,m, e) ∈ Vh such that for all (ρ̄, ū, ē) ∈ Wh

((Rρ(û), ρ̄)) + ((δu · ∇ρ, u · ∇ρ̄)) = 0,

((Rm(û), ū)) + ((δu · ∇m,u · ∇ū)) = 0,

((Re(û), ē)) + ((δu · ∇e, u · ∇ē)) = ((dh, ē)),

(17.2)

where

dh =
3∑

i=1

δρ(u · ∇ui)2, (17.3)

and Vh is a trial space of continuous piecewise linear functions on a space-time
mesh of size h satisfying the initial condition û(0) = û0 with u ∈ Vh defined
by nodal interpolation of m

ρ
, andWh is a corresponding test space of function

which are continuous piecewise linear in space and piecewise constant in time,
all functions satisfying the boundary condition u · n = 0 at the nodes on Γ.
The space-time mesh is organized into space-time slabs between discrete time
levels, and the velocity in the stabilization terms is averaged over each time
step. Further, ((·, ·)) denotes relevant L2(Q) scalar products. Finally, the
least squares stabilization weight δ = ch

|u| with c ≈ 0.5, and shock-capturing

viscosity with viscosity coffecient νi ∼ h2|Ri(û)|2, i = ρ,m, e, is also added
to each equation separately, which eliminates the small oscillations occuring
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at shocks with only least squares stabilization. For small densities (almost
vacuum), the velocity is computed by u = m

ρ+ϵ
with ϵ > 0 suitably small.

EG2 (17.2) combines a weak satisfaction of the Euler equations with a
weighted least squares control of (a part of) the momentum residual Rm(û)
and represents a midway between the Scylla of weak solution and Caryb-
dis of least squares strong solution. The form of the stabilization terms in
the density and energy equations secures exact global conservation since the
stabilization terms vanish with ρ̄ = ē ≡ 1. Notice that choosing ρ̄ = ρ
(mean-value over time step) gives a bound on

∫
Q
δ(u · ∇ρ)2dxdt in terms of∫

Q
ρ2∇ · udxdt, with a similar control of e.

Notice that EG2 as expressed in (17.2) has a remarkable simplicity, as
compared to finite difference methods based on diagonalization of the full
system together with Riemann solvers, and also compared to stabilized fi-
nite element methods using diagonalization of the full linearized operator.
In (17.2) each scalar convection equation is stabilized separately without
diagonalization. In particular, the net numerical dissipation dh has a contri-
bution from each separate momentum/velocity component, but there is no
net numerical dissipation in mass and internal energy.

17.3 The 2nd Law for EG2

Choosing ū in the momentum equation as the time average of u over the time

step, and subtracting the mass equation with ρ̄ = Ih(
|u|2
2
), where Ih(

|u|2
2
) is a

nodal interpolant of |u|2
2
, we obtain

K̇ =W −Dh, (17.4)

where

Dh =

∫
Q

dh dxdt, (17.5)

modulo the additive term

I = |((Rρ,
|u|2

2
− Ih(

|u|2

2
)))|

which by super-approximation as in [20] can be estimated as follows,

I ≤ C∥h2Rρ(û)|∇u|2∥0,
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where ∥ · ∥0 is the L2(Q)-norm and C ∼ 1 is an interpolation constant. As-
suming |Rρ(û)| ∼ h−1/2 and |∇u| ∼ h−1/2, we obtain I ∼

√
h, indicating that

I is a small perturbation, which in computation can be checked a posteriori.
Finally choosing in the equation for internal energy ē = 1, we obtain

Ė = −W +Dh,

and we thus obtain the following 2nd Law for EG2 (modulo a
√
h correction)

K̇ = W −Dh, Ė = −W +Dh. (17.6)

For solutions with turbulence/shocks, Dh >> 0 expressing a substantial irre-
versible transfer of kinetic energy into heat energy, just as above for regular-
ized solutions. We note that in EG2 only the momentum equation is subject
to viscous regularization, since Dh expresses a penalty on the term u · ∇ui
appearing in the momentum residual. A turbulent solution is identified by
Dh ∼ 1 under mesh refinement.

17.4 The Stabilization in EG2

We have seen that the stabilization in EG2 is expressed by the dissipative
term Dh ∼ 1 which can be viewed as a weighted least squares control of the
term ρu · ∇ui in the momentum residual. The rationale is that least squares
control of a part of a residual which is large, effectively may give control
of the entire residual, and thus EG2 gives a least squares control of the
momentum residual. But the EG2 stabilization does not correspond to an ad
hoc viscosity, as in classical regularization, but to a form of penalty arising
because Euler residuals of turbulent/shock solutions cannot be pointwise
small.

In particular the dissipative mechanism of EG2 does not correspond to a
shear viscosity acting in all directions, as in standard ad hoc regularization,
but rather to a form of bulk viscosity in the form of streamline diffusion pre-
venting fluid particles from colliding while allowing strong shear, connecting
to the streamline diffusion method presented in [11].



Chapter 18

Output Wellposedness by
Duality

In love all the contradiction of existence merge themselves and are
lost. Only in love are unity and duality not at variance. Love must be
one and two at the same time. Only love is motion and rest in one.
(Rabindranath Tagore, Literature Nobel Prize 1913)

Those who have talked of “chance” are the inheritors of antique su-
perstition and ignorance...whose minds have never been illuminated
by a ray of scientific thought. (T. H. Huxley)

18.1 A Posteriori Error Estimation

Consider a mean-value output M(û) in the form of a space-time integral

M(û) = ((û, ψ̂)) (18.1)

defined by a smooth (positive) weight function ψ̂ with ∥ψ∥0 = 1, where as
above ∥ · ∥0 is the L2(Q)-norm. Let û and ŵ be two EG2 solutions on two
meshes with joint maximal meshsize h. By the mean-value theorem their
residual difference can be expressed as

R(û)−R(ŵ) = R′(û, ŵ) · (û− ŵ),

where R′(û, ŵ) is a linearization of R(·). Letting φ̂ be the solution of the
dual linearized equation

R′⊤φ̂ = ψ̂, (18.2)
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where ⊤ denotes transpose, we obtain the following basic output error rep-
resentation:

M(û)−M(ŵ) = ((û− ŵ, R′⊤φ̂)) = ((R(û)−R(ŵ), φ̂)). (18.3)

We can thus estimate the output error in terms of the residuals as follows:

|M(û)−M(ŵ| ≤ S(∥R(û)∥−1 + (∥R(ŵ)∥−1) (18.4)

or alteratively, using also Galerkin orthogonality as in [20]

|M(û)−M(ŵ| ≤ S(∥hR(û)∥0 + (∥hR(ŵ)∥0), (18.5)

where
S = S(û, ŵ) = ∥φ̂∥1 (18.6)

with ∥ · ∥1 the H1(Q)-norm.
For a given output M(û), we choose an error tolerance TOL and define

a G2-solution û to be wellposed up to the tolerance TOL, if

S∥hR(û)∥0 ≤ TOL/2, (18.7)

where S = S(û, û). Given two wellposed G2 solutions û and ŵ, we may
expect

|M(û)−M(ŵ| ≤ TOL, (18.8)

up to a variation of the corresponding stability factors, which can be com-
puted a posteriori. A solution which is not wellposed with respect to some
tolerance of interest, is said to be illposed.

Turbulence is characterized by

Dh ∼ ∥
√
hR(û)∥0 ∼ 1 (18.9)

under mesh refinement. We may thus expect an outputM(û) to be wellposed
up to the tolerance TOL if

S(û, û) . TOL

2
√
h
. (18.10)

A wellposed output can be uniquely computed up to a tolerance TOL of
interest, but an illposed cannot.

Computational results, some of which is presented below and more on the
book web page [?], show that indeed ∥hR(û)∥0 ∼

√
h conformiing (18.9), and

that the corresponding stability factors S(û, û) for global mean-values such
as drag, lift and total turbulent dissipation, can satisfy (18.10) for toleralnces
TOL of interest. In short, global mean-value outputs can be wellposed, and
thus represent stable computable emergent aspects of turbulent flow.



Chapter 19

Linearized Equations and
Acoustics

De Broglie, the creator of wave mechanics, accepted the results of
quantum mechanics just as Schrödinger did, but not the statistical
interpretation. (Born in the Born-Einstein Letters)

19.1 Linearization

Consider a solution û = (ρ,m, e) of the Euler equations:

ρ̇+∇ · (ρu) = ρ̇+∇ ·m = 0 in Q,
ṁ+∇ · (mu) + γ∇e = f in Q,
ė+∇ · (eu) + γe∇ · u = g in Q,

u · n = 0 on Γ× I
û(·, 0) = û0 in Ω,

(19.1)

where u = m
ρ
. The corresponding linearized Euler equations, linearized at û,

take the following form in û = (ρ,m, e) representing a perturbation of û with
corresponding perturbation of data, with u defined by m = ρu+ ρu:

ρ̇+∇ · (ρu) +∇ · (ρu) = ρ̇+∇ ·m = 0 in Q,
ṁ+∇ · (mu) +∇ · (mu) + γ∇e = f in Q,

ė+∇ · (eu) +∇ · (eu) + γe∇ · u+ γe∇ · u = g in Q,
u · n = 0 on Γ× I,

û(·, 0) = û0 in Ω,

(19.2)
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or alternatively with Dw = ẇ + u · ∇w the u-convective derivative:

Dρ+ ρ∇ · u+∇ · (ρu) = 0 in Q,
Dm+m∇ · u+∇ · (mu) + γ∇e = f in Q,

De+ u · ∇e+ (γ + 1)e∇ · u+ (γ + 1)e∇ · u = g in Q,
u · n = 0 on Γ× I

û(·, 0) = û0 in Ω.

(19.3)

This is a linear convection-reaction system with coefficients depending on the
base flow û and the stability properties of this system govern the perturbation
growth.

19.2 Wave Equation

Let û be a constant ground state with velocity u = 0 and temperature τ = 1.
If τ is not subject to perturbation, so that e = ρ, then (19.2) reduces to
(leaving out initial and boundary conditions):

ρ̇+∇ ·m = 0 in Q,
ṁ+ γ∇ρ = f in Q,

(19.4)

which leads to the wave equation for the density perturbation, assuming
∇ · f = 0:

ρ̈− γ∆ρ = 0 in Q. (19.5)

Small density-pressure variations at constant temperature around a constant
ground state thus obeys the linear wave equation with wave speed c =

√
γ.

Allowing a non-zero velocity of the ground state, but still constant unit
temperaure, the linearized equations reduce to (assuming e = 0):

ρ̇+∇ ·m = 0 in Q,
ṁ+ 2∇ · (mu)−∇ · (ρuu) + γ∇ρ = f in Q,

(19.6)

which is a generalized wave equation with contributions from convection with
velocity u.

19.3 Acoustics

Acoustics concerns propagation of (usually small) density-pressure variations
in a fluid. Acoustics simulation can be based on (i) directly solving the Euler
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equations for the full state (ground state plus perturbation), or (ii) solving
the Euler equations for the ground state followed by solution of the linearized
Euler equations for the perturbation with the ground state given. We just
saw that the simplest model for acoustics is the wave equation (19.5) as a
basic case of (b). In general, (ii) may be expected to give higher accuracy at
the expense of solving both the Euler and linearized Euler equations.

The wave equation can be used for progagation of sound waves in in
a fluid at rest, but for the generation of sound in e.g. human speech or
musical instruments, fluid-structure interaction is used, which requires the
Euler equations for the (usually turbulent) flow and an elasticity model for
the structure (e.g, vocal chords).

19.4 Linearized Stability

The nature of the linearized system (19.2) depends on the ground state and
ranges from its simplest incarnation in the form of the wave equation (19.5)
for a constant ground state, to a highly complex problem for a turbulent
ground state. Below we analyze the linearized problem for a shocks and rar-
efaction waves in a model case, and in [20] we discuss the case of turbulent
incompressible flow. For now, we only observe that the equation for ρ con-
tains the term ρ∇·u, and the same for m and e, which indicates exponential
perturbation growth along particle paths under compression with ∇ · u < 0,
which occurs when a compression shock is forming.
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Chapter 20

Dual Linearized Problem

Those who do not understand the nature of sin and virtue are attached
to duality; they wander around deluded. (Sri Guru Granth Sahib)

Formally multiplying the linearized equation (19.2) by the dual variable
φ̂ = (ρd, φ, ed) and integrating by parts and varying û, we obtain the following
dual problem

−ρ̇d +
∑

j u · ∇φjuj +
e
ρ
u · ∇ed + γ

ρ
u · ∇(eed) = ψρ,

−φ̇− u · ∇φ−
∑

i ui∇φi −∇ρd − e
ρ
∇ed − γ

ρ
∇(eed) = ψ,

−ėd − u · ∇ed + γ∇ · ued − γ∇ · φ = ψe,

(20.1)

where the data ψ̂ = (ψρ, ψ, ψe) defines the output. We check by writing the
Euler equations alternatively in the variables û = (ρ, u, e):

ρ̇+∇ · (ρu) = 0,
ρ̇u+ ρu̇+∇ · (ρuu) + γ∇e = f,

ė+∇ · (eu) + γe∇ · u = g,
(20.2)

with corresponding dual linearized problem in φ̂ = (ρd, φ, ed):

−ρ̇d − u · ∇ρd − u · φ̇−
∑

i uiu · ∇φi = ψρ,
−ρφ̇− ρu · ∇φ− ρ∇ρd − e∇ed − γ∇(eed)− ρ

∑
i ui∇φi = ψ,

−ėd − u · ∇ed + γ∇ · ued − γ∇ · φ = ψe,

which by eliminating φ̇ from the first equation using the second gives

−ρ̇d +
∑

j u · ∇φjuj +
e
ρ
u · ∇ed + γ

ρ
u · ∇(eed) = ψρ,

−φ̇− u · ∇φ−
∑

i ui∇φi −∇ρd − e
ρ
∇ed − γ

ρ
∇(eed) = ψ,

−ėd − u · ∇ed + γ∇ · ued − γ∇ · φ = ψe,
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which is the same as (20.1) with a properly modified right hand side.
The dual problem (20.1) is solved backward in time on [0, T ] with e.g.

φ̂(·, T ) = 0, for simplicity with stabilization by artificial diffusion of size h
in each equation instead of least squares stabilization. The crucial stability
factor is defined by S = ∥φ∥H1(Q)/∥ψ∥L2(Q), which bounds the error in the
output (û, ψ)Q by S∥hR(û)∥L2(Q).



Chapter 21

EG2 as a Model of Physics

Die Welt ist alles, was der Fall ist. (Wittgenstein)

21.1 A Dissipative Mechanism

We propose to view EG2 as a real model of thermodynamics with output, as
compared to the Euler equations, which represent a formal model without
output. We have seen that the least squares stabilization introduces a specific
form of viscosity and that an EG2 solution û has Euler momentum residual
Rm(û) typically satisfying

∥Rm(û)∥−1 ∼
√
h, ∥Rm(û)∥0 ∼

1√
h
. (21.1)

Roughly speaking this means that local mean-values of the Euler momentum
residual Rm(û) are small, and that point-values not too large. Momentum
balance is thus (heavily) violated locally and then penalized by a viscous
dissipative mechanism consuming kinetic energy, while momentum balance
is satisfied in a local mean value sense. Turbulence creates violent kinet-
ics violating momentum balance locally, and is countered by a dissipative
mechanism on kinetic energy curbing the violation. EG2 flow thus is out
of momentum balance in a pointwise sense but in balance in a mean-value
sense. It is thus possible to interprete EG2 in physical terms as a dissipative
mechanism compensating local imbalance of momentum.

The reason EG2 cannot satisfy pointwise momentum balance is that the
Euler equations lack pointwise solutions. Facing the impossibility of point-
wise solution, EG2 reacts by producing an approximate solution in which
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some of the kinetic energy by turbulent/shock dissipation. The total dissi-
pation shows to be a stable output under vanishing mesh size and occurs
mainly on the finest scale of the mesh. The turbulent/shock dissipation thus
is “smart” and does not act on coarser scales.

The key here is to realize that the dissipative stabilization is (i) necessary,
(ii) substantial, (iii) irreversible, (iii) not a numerical artifact which can be
diminished by increasing the precision. The key new fact behind (i)-(iv) is
the non-existence of pointwise solutions to the Euler equations. Note that
(iii) reflects the well-known difficulty of getting a refund of a fine which has
been paid.

21.2 From Exact to Computational Solutions

The nonexistence of (stable) pointwise solutions to the Euler equations upsets
classical mathematics: With nonexistent exact solutions, the attention has to
move to existing approximate solutions, and thus the computational aspect
takes the lead before analytical mathematics. This suggests an entire shift
of paradigm, which we can now only vaguely imagine.

The non-existence of pointwise solutions to the Euler equations, which
may be viewed as a failure of mathematics, in fact may be turned around
into an advantage from a computational point of view: If there were an exact
solution, one could always ask for more precision in computing this solution
requiring finer resolution and higher computational cost, but if there is no
exact solution, then we could be relieved from this demand beyond a certain
point. A key feature in this situation is that the absolute size of the fine
scales no longer are important, and this could save computational work. In
turbulence this means that mean value outputs may be computed on meshes
which do not resolve the turbulent vortices to their actual physical scale.

In order for a Hamiltonian system to develop turbulence, it has to be rich
enough in degrees of freedom. In particular, the incompressible or compress-
ible Euler equations in less than three space dimensions are not rich enough,
even if the mesh is very fine. On the other hand, turbulence invariably de-
velops in three dimensions once the mesh is fine enough. Our experience
with turbulent solutions of the incompresible Navier-Stokes equations indi-
cates that a mesh with 100.000 mesh points in space may suffice in simple
geometries, while in more complex geometries millions, but not billions, of
mesh points may be needed.



21.3. IMPERFECT NATURE AND MATHEMATICS? 145

21.3 Imperfect Nature and Mathematics?

How shall be interprete that the Euler equations do not have pointwise solu-
tions? Does this express an imperfection of both mathematics and physics?
We can make a parallel with the squareroot of two

√
2, which is the length

of the diagonal in a square with side length 1. We know that the Pythagore-
ans discovered that

√
2 is not a rational number. This knowledge had to

be kept secret, since it indicated an imperfection in the creation by God
formed as relations between natural numbers according the basic belief of the
Pythagoreans. Eventually this unsolvable conflict ruined their philosophical
school and gave room for the Euclidean school based on geometry instead
of natural numbers. Civilization did not recover until Descartes resurrected
numbers and gave geometry an algebraic form, which opened for Calculus
and the scientific revolution.

But how is the Pythagorean paradox of non-existence of
√
2 as a rational

number handled today? Well, we know that the accepted mathematical
solution since Cantor and Dedekind is to extend the rational numbers to the
real numbers, some of which like

√
2 are called irrational, and which can

only be described approximately using rational numbers. We may say that
this solution in fact is a kind of non-solution, since it acknowledges the fact
that the equation x2 = 2 cannot be solved exacly using rational numbers,
and since the existence of irrational numbers (as infinite decimal expansions
or Cauchy sequences of rational numbers) has a different nature than the
existence of natural numbers or rational numbers. The non-existence is thus
handled by expanding the solution concept until existence can be assured.

We handle the non-existence of pointwise solutions to the Euler equa-
tions similarly, that is, by extending the solution concept to approximate
solution in a weak sense combined with some control of pointwise residuals.
Doing so we necessarily introduce a dissipation causing irreversibility. In
this case, the non-existence of solutions thus has a cost: irreversibility. In
the perfect World, pointwise solutions would exist, but this World cannot
be constructed neither mathematically nor physically, and in a constructible
World necessarily there will exist irreversible phenomena as a consequence
of the non-existence of pointwise solutions. The non-existence of pointwise
solution reflects the development of complex solutions with small scales, and
thus the non-existence also relects a complexity of the constructible World.
The perfect World would lack this complexity, so in addition to being non-
existent it would also probably be pretty non-interesting. The World we live
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in thus does not seem to be perfect, but it surely is complex and interesting.
An imperfect World of mathematics and physics, where equations cannot

be solved exactly or laws of physics cannot be exactly satisfied, is unthinkable
to the classical mathematician and physicist, but nevertheless seems “to be
the case” in Wittengenstein’s words. The perfect World “is not the case”
and thus can be only marginal of interest.

The contradiction of a non-existing perfect World, and an existing imper-
fect World, has been met by statistical mechanics and quantum mechanics
based on microscopical games of Roulette. We propose to resolve the con-
tradiction instead by finite precision computation, because it is simpler and
more useful.

21.4 Idealism and Materialism

From philosophical point of view, we may say that the traditional paradigm of
both mathematics and physics is Platonistic in the sense that it assumes the
existence of an Ideal World, where equations/laws are satisfied exactly. We
may say that this is an Ideal World of infinities because exact satisfaction of
e.g. the equation x2 = 2 requires infinitely many decimals. This is the math-
ematical Ideal World of Cantor, which represents a formalist/logicist school.
In strong opposition to this school of infinities, is Brouwer’s constructivist
school, which only deals with mathematicial objects that can be constructed
or computed in a finite number of steps. In the constructivists Constructible
World, the set of natural numbers does not exist as a completed mathemat-
ical object as in Cantors Ideal World, but only as a never-ending project
where always a next natural number can be constructed if needed, which fol-
lows the suggestions of e.g. Aristotle and Gauss. The Constructible World
is finitary and thus inherently computational, while Cantors Ideal World is
non-finitary and non-computational.
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Figure 21.1: Cantor and Brouwer.
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Chapter 22

Thermodynamics of Reactive
Flow

To every action there is always opposed an equal reaction: or, the
mutual actions of two bodies upon each other are always equal, and
directed to contrary parts. (Newton’s 3rd Law)

President Bush gave his first-ever presidential radio address in both
English and Spanish. Reaction was mixed, however, as people were
trying to figure out which one was which. (Dennis Miller)

22.1 Reactive Euler Equations

We now generalize the Euler equations (12.1) to a mixture of N gas species,
undergoing M chemical reactions: We seek the species densities ρ1, ..., ρN ,
themixture momentum m = ρu with u = (u1, u2, u3) themixture velocity and
ρ =

∑
i ρi the mixture density, and the mixture internal energy e satisfying

ρ̇i +∇ · (ρiu) = si, in Q, i = 1, ..., N,
ṁ+∇ · (mu) +∇p = f in Q,
ė+∇ · (eu) + p∇ · u =

∑
i siri in Q,

u · n = 0 on Γ× I,
û(·, 0) = û0 in Ω,

(22.1)
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where si is the net reaction rate of species i from all the reactions, and we
assume the following constitutive relations

e =
N∑
i=1

ρiri + ρτ

with τ the mixture temperature and ri the heat of formation of species i,
together with a mixture pressure p given as the sum of the partial pressures
from the different species:

p = Cτ
∑
i

ρi
Wi

.

where Wi is the molecular weight of species i and C a positive constant.
Evidently, we assume here that the species velocities are all equal to the
mixture velocity and that all species take on the mixture temperature.

22.2 Reaction Rates

We assume that the reaction rate si of species i is given by an Arrhenius law
of the form

si =Wi

M∑
k=1

(ν ′′i,k − ν ′i,k)BkT
αke−

Eα,k
RT

N∏
j=1

(
Xjp

RT
)ν

′
j,k ,

where the ν are stochiometric coefficients, R is the gas cosntant, the Bk are
reaction constants, Eα,k is an activation energy, and

Xi =

ρi
ρWi∑
j

ρj
ρWj

is the mole fraction of species i.

22.3 The 2nd Law for Reactive Euler

The new 2nd Law takes the form:

K̇ = W −D, (22.2)
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Ė = −W +D +
∑
i

siri, (22.3)

where D ≥ 0 is the turbulent dissipation, and

k =
ρ|u|2

2
, K =

∫
Ω

k dx, E =

∫
Ω

e dx, W =

∫
Ω

p∇ · u dx.

The 2nd Law shows irreversibility of turbulent mixing and heating, while the
chemical reactions as such, are reversible.

22.4 Simulation of Combustion
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Chapter 23

Loschmidt’s and Gibbs’
Paradoxes

How wonderful that we have met with a paradox. Now we have some
hope of making progress.
(Nils Bohr)

There is apparently a contradiction between the law of increasing en-
tropy and the principles of Newtonian mechanics, since the latter do
not recognize any difference between past and future times. This is
the so-called reversibility paradox (Umkehreinwand) which was ad-
vanced as an objection to Boltzmann’s theory by Loschmidt 1876-77.
(Translators foreword to Lectures on Gas Theory by Boltzmann).

Neither Herr Boltzmann nor Herr Planck has given a definition of
W ... Usually W is put equal to the number of complexions. In order
to calculate W , one needs a complete (molecular-mechanical) theory
of the system under consideration. Therefore it is dubious whether the
Boltzmann principle has any meaning without a complete molecular-
mechanical theory or some other theory which describes the elemen-
tary processes (and such a theory is missing). (Einstein)

23.1 Scientific Paradoxes

We now present new resolutions of Loschmidt’s paradox on irreversibility
in reversible Hamiltonian systems and Gibbs’ paradox on inextensivity of
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Boltzmann’s entropy. We first give some give some general comments on the
role of paradoxes in science.

The above citation by the physicist Nils Bohr illustrates the role of a
paradox in the development of a physical theory, as a striking formulation
of a contradiction within the theory, or between a prediction of the theory
and a factual observation. Scientific progress can be made by showing that
the contradiction is only apparent, thus improving the understanding of the
meaning of a theory remaining correct, or that the contradiction is real, thus
showing that the theory is not correct and thereby opening for a new better
theory to be developed. A theory predicting that an apple let free to fall,
will stay where it is, will be contradicted by Newton’s observation that the
apple falls to the ground, and thus will have to be abandoned.

The first known paradoxes were formulated by Zeno of Elea (490-430 BC)
on the (still) puzzling nature of motion: Zeno asked e.g. how it can be that
a flying arrow, which at each instant looks just the same as a motionless
arrow, can be moving? Modern physics harbors many unresolved paradoxes
including the wave-particle duality of quantum mechanics and time dilation
of special relativity.

Since an unresolved paradox is a deadly threat to a theory, it has to be
resolved by showing that the contradiction is only apparent and not real, “at
any price, no matter how high that might be...” from the above citation of the
famous physicist Max Planck facing in 1900 the paradox of the ultra-violet
catastrophy in the classical theory of black-body radiation.

If a paradox cannot be resolved by showing that the contradiction is only
apparent and not real, it can be covered up by presenting new information.
When asked where the tortoises can be seen, which according to a certain
(ancient) theory support the Earth, the cover up would be to claim that they
are invisible (but still there).

In Loschmidt’s paradox formulated in 1876 [33], mathematics of Hamil-
tonian systems (with zero viscosity) predicts that time reversal and a per-
petuum mobile is possible. But everybody (except possibly a physics special-
ist) knows that time is always moving forward and that a perpetuum mobile
is impossible, even though ultimately the World is based on Hamiltonian
(quantum) mechanics.

In Gibbs’ paradox formulated in 1875, statistical mechanics predicts that
removing a membrane separating two volumes of equal gases at rest in the
same state (same density, temperature and pressure), will result in a sig-
nificant increase of entropy. But everybody (except a statistical mechanics
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specialist) understands that removing (or inserting) a membrane in such a
situation changes nothing.

23.2 Cover Up

The cover up of Loschmidt’s paradox by Boltzmann [4] is to introduce statis-
tical mechanics based on microscopic games of roulette. Statistical mechanics
poses difficulties of falsification required by Popper in a scientific theory, since
the validity of Boltzmann’s basic microscopic assumption of statistical inde-
pendence in a gas with each mole consisting of 6 ·1023 molecules, seems to be
beyond the possibility of any kind of conceivable experiment or mathematics;
only indirect evidence in the form of macroscopic observations seem to be
possible, which is far from enough. In fact, it is known that Boltzmann’s
assumption can only be (nearly) true in the very special case of a very dilute
gas with rare collisions, and the derivation of Boltzmann equations for more
general situations seems to pose unsurmountable problems.

The cover up of Gibbs’ paradox by Gibbs’ himself [?], is to change the
counting of microstates underlying Boltzmann’s definition of entropy in sta-
tistical mechanics, to give no change of entropy for equal gases, but retaining
a substantial entropy change as soon as the two gases differ slightly. We will
below argue that such a discontinuous change is not scientifically convinc-
ing, and present a different resolution based on computational turbulence
avoiding tricky statistics.

23.3 Resolution of Loschmidt’s Paradox

We have seen that the Euler equations are formally reversible but in real-
ity are irreversible, because pointwise solutions to the Euler equations are
non-existing. The irreversiblity arises because pointwise conservation of mo-
mentum is impossible to achieve, while the flow cannot cease to exist. The
only way out is to violate momentum balance and pay a penalty in the form
of turbulent dissipation with an irreversible transfer from kinetic to heat
energy.

In other words, pointwsie solutions of the Euler equations would have
been reversible had they only existed, but they do not exist, and the weak
dissipative solutions which do exist are irreversible and thus define an Arrow
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of time.
More generally, Hamiltonian systems sufficiently complex to allow turbu-

lence, have an Arrow of time defined without any reference to a concepts of
entropy and statistical mechanics.

23.4 Gibbs’ Paradox

On Boltzmann’s tombstone the famous formula

S = k log(W ) (23.1)

is engraved, where k is Boltzmann’s constant (k ≈ 10−23 joules/kelvin) and
W denotes the probability of a certain state representing the number of
”complexions” or “microstates” corresponding to a “macrostate”. Increasing
entropy would then reflect that Nature would tend to move from less probable
to more probable states or towards states with more complexions. However,
the crucial questions why and how Nature would seek to always increase
entropy, was left without any answer.

The definition S = k log(W ) is different from the classical expression S =
S = log τρ−γ = log(τV γ) derived above, which illustrates some of confusion
surrounding the classical concept of entropy in classical thermodynamics.

Boltzmann’s statistical mechanics poses serious difficulties from scientific
point of view and paradoxes line up. One of them is Gibbs’ paradox [?] illus-
trating the difficulty of defining entropy by counting micro-states: Consider a
volume V divided by a membrane into two equal volumes V/2 filled with two
different types of gas at rest with the same density and temperature. Remove
the membrane and let both gases expand to the double volume and come to
rest in a mixed state. Gibbs recalls that according to Boltzmann the entropy
of each gas would then increase by the factor γ(log(V )−log(V/2)) = γ log(2),
since for constant temperature S = γ log(V ) with V the volume of the gas.
The entropy of the system would then also increase by a γ log(2) factor.

Gibbs then compares with the case with the gases being of the same type
in which case removal of a membrane would change nothing and in particular
the entropy should not change, in contrast to the above case. In other words,
the entropy should be extensive in the sense that the entropy of a gas over a
volume V should be equal to the sum of the entropies over two volumes V/2.
To achieve this, Gibbs suggested to change the counting of microstates in
the case of equal gases, taking into account permutations of equal molecules,
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but was then faced with a paradoxical discontinuos behavior of the entropy:
No change for the same type of gas, and a log(2) change as soon as the types
of gas differ only the slightest.

23.5 New Resolution of Gibbs’Paradox

With our experience from the Joule-Thomson experiment, we can easily re-
solve this paradox. It suffices to note that an initial pressure difference re-
sulting from different state equations for two types of gas in the two volumes,
would drive a process towards equal pressure in the full volume, with the as-
sociated turbulent dissipation (entropy production) being small if the initial
pressure difference is small, that is, if the type of gas is nearly the same.
In particular, for equal gases nothing would happen and there would be no
sudden entropy jump under a slight change of gas, as in Gibbs’ resolution by
recounting microstates.

We understand that the Gibbs’paradox results from Boltzmann’s idea to
define entropy by counting microstates, and thus is (one of many) indications
that statistical mechanics creates more problems than it solves, and from
scientific point of view therefore is questionable.
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Figure 23.1: Boltzmann’s tombstone with S = k log(W ).
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Model Analysis
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Chapter 24

Burgers Equation

Some physicists. among them myself, cannot believe that we must
abandon, actually and forever, the idea of direct representation of
physical reality in space and time; or that we must accept then the
view that events in nature are analogous to a game of chance. (Ein-
stein 1954)

24.1 A Model of the Euler Equations

As an instructive model of the Euler equations exhibiting basic aspects of
shock waves and rarefaction waves, we consider the following scalar conserva-
tion law, referred to as Burgers equation: Find the scalar function u = u(x, t)
such that

u̇+ (f(u))′ = 0 in Q,
u(·, 0) = u0,

(24.1)

where f(u) = u2/2, Q ≡ R × I with I = (0, T ], and we assume that the
initial data u0(x) vanishes for large |x|.

Burgers equation takes the pointwise form u̇+uu′ = 0 for a differentiable
pointwise solution u, which expresses that u(x, t) is constant with values
u0(x̄) along straight lines x = st + x̄ with slope s = u0(x̄)), that is, along
characteristics defined by dx

dt
= u(x, t) with x(0) = x̄.

If u0(x) is increasing with increasing x and is smooth, then there is a
pointwise solution u(t, x) for all time given by the simple recipe

u(x, t) = u0(x̄) for x = u0(x̄)t+ x̄. (24.2)
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However, if the initial data u0(x) somewhere is strictly decreasing, which of
course will always be the case if u0(x) vanishes for large |x|, then character-
istics will cross in finite time with different values and the solution formula
gives conflicting function values, which can be interpreted as breakdown of
the pointwise solution. The result is that there is no differentiable function
u(x, t) satisfying Burger’s equation u̇+ uu′ = 0 pointwise. We shall see that
this corresponds to the occurence of shocks, which are represented by dis-
continuous functions, which satisfy the differential equation in a weak sense,
and in a pointwise sense only away from discontinuities or jumps.

What to do with an equation without pointwise solution? Of course, we
regularize and consider instead the viscous/regularized Burgers equation:

u̇+ uu′ − νu′′ = 0 in Q,
u(·, 0) = u0,

(24.3)

with ν > 0 a small viscosity. This problem can be solved uniquely in a
pointwise sense for all initial data, and as above the solution can be viewed
as an approximate weak solution to the original inviscid Burgers equation
satisfying a 2nd Law of the form

K̇(u; t) = −Dν(u; t) for t ∈ I, (24.4)

where

K(u; t) =

∫
R

u(x, t)2

2
dx, Dν(u; t) =

∫
R
ν(u′(x, t))2 dx. (24.5)

The 2nd Law follows by multiplication of the viscous Burgers’ equation by u
and integration (by parts) with respect to x.

To give a perspective we now briefly recall the basics of the mathematical
theory for conservation laws developed in the 1950s motivated by the Eu-
ler equations of compressible flow, in the model setting of Burgers equation.
The basic idea is to introduce the concept of weak solution allowing discon-
tinuous solutions, and complement by a 2nd Law. We shall see that the 2nd
Law singles out physical shocks, which are discontinuous weak solutions sat-
isfying the 2nd Law, from non-physical shocks which are discontinuous weak
solutions violating the 2nd Law.

We also present an alternative approach to single out physical shocks
based on a stability analysis showing that a a physical shock is stable and
represents a an observable physical phenomenon (like the “bang” from a
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supersonic airplane), while a non-physical shock is unstable and thus does
not represent any observable physical phenomenon.

Burgers equation is formally reversible: If u(x, t) is a pointwise solu-
tion in forward time on [0, T ], so is −u(x, T − t) in reverse time. Burgers
equation thus is formally reversible system, but in reality is irreversible, as
a consequence of the non-existence of stable pointwise solutions. We thus
use Burgers equation to illustrate that a World governed by the formally
reversible Euler equations, is an irreversible World, that is a world with an
Arrow of time.

24.2 Weak Solutions

A possibly discontinuous function u(x, t) is said to be a weak solution to
Burgers’ equation if∫

R×R+

(−uφ̇− f(u)φ′)dx dt−
∫
R
u0(x)φ(x, 0) dx = 0 (24.6)

for all differentiable test functions φ such that φ(x, t) vanishes for large (x, t),
assuming here I = (0,∞). This equation is obtained from (24.1) by multi-
plication by φ and integration by parts, shifting the derivatives onto φ, thus
allowing u to be discontinuous.

24.3 The Rankine-Huginiot Condition

A discontinuous function u(x, t) defined by u(x, t) = u+ if x > st and
u(x, t) = u− if x < st, where u+ and u− are two constant states and s
is a constant, corresponding to a discontinuity propagating with speed s, is a
weak solution to Burgers’ equation if the shock speed satisfies the Rankine-
Hugoniot condition

s =
[f(u)]

[u]
, (24.7)

where [u] = u+ − u− and [f(u)] = f(u+) − f(u−). With f(u) = u2/2 as in
Burgers’ equation, we have

s = (u+ + u−)/2. (24.8)
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The Rankine-Hugoniot condition expresses the conservation law (Burgers’
equation) in weak form for a piecewise constant discontinuous solution can-
didate u.

24.4 Rarefaction wave

The solution to Burgers equation with the increasing discontinuous initial
data u0(x) = 0 for x < 0, and u0(x) = 1 for x > 0, is a rarefaction wave
given by

u(x, t) = 0 for x < 0,
u(x, t) = x

t
for 0 ≤ x

t
≤ 1,

u(x, t) = 1 for 1 < x
t
.

(24.9)

This is a continuous function for t > 0 which satisfies (24.1) pointwise for
t > 0 off the lines x = 0 and x = t and can be viewed as a pointwise
solution (since it is continuous and piecewise differentiable). In a rarefaction
wave, an initial discontinuity separating two constant states develops into a
continuous linear transition from one state to the other of width t in space,
corresponding to “fan-like” level curves in space-time as shown in Fig. 24.1.

x

t

u = 0
u = x / t

u = 1

Figure 24.1: Characteristics of a rarefaction wave.
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24.5 Shock

The solution with decreasing discontinuous initial data u0(x) = 1 for x < 0,
and u0(x) = 0 for x > 0, is a discontinuous shock wave moving with speed 1

2
:

u(x, t) = 1 for x < t
2
,

u(x, t) = 0 for x > t
2
,

(24.10)

as shown in Fig 24.2. We shall motivate that this is a physical shock satifying
a 2nd Law.

x

t

u = 1 u = 0

Figure 24.2: Characteristics of a shock

24.6 Weak solutions may be non-unique

The rarefaction wave initial data u0(x) = 0 for x < 0 and u0(x) = 1 for
x > 0, also admits the alternative discontinuous weak solution

u(x, t) = 0 for x < t
2
,

u(x, t) = 1 for x > t
2
,

(24.11)

corresponding to a discontinuity {x, t) : x = st} moving with speed s = 1
2
.

This solution is obviously different from the rarefaction wave solution (24.9),
which since it is a pointwise solution, also is a weak solution. Thus, we have in
this case two different weak solutions, and thus we have an example of non-
uniqueness of weak solutions. We shall see that the discontinuos solution
(24.11) violates the 2nd Law and thus is a non-physical shock solution. The
physical solution in this case is the rarefaction wave (which satisfies the 2nd
Law with equality).
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24.7 The 2nd Law for Burgers Equation

We now check if (24.11) satisfies the appropriate form of the 2nd Law (24.4)
restricting space to −1 ≤ x ≤ 1 and time to 0 ≤ t ≤ 1 assuming the
boundary conditions u(−1, t) = 0 and u(1, t) = 1. In this setting, we obtain
by multiplication of the viscous Burgers equation with u and integrating by
parts and using the sign of the viscous term, the following form of the 2nd
Law

−Dν(u; t) = K̇(u; t) +

∫ 1

−1

(
u3

3
)′ = K̇(u; t) +

1

3
(24.12)

But for (24.11) we have K̇ = −1
2

d
dt

t
2
= −1

4
, which violates (24.12).

Changing to the boundary conditions to u(−1, t) = 1 and u(1, t) = 0, the
2nd Law changes to

−Dν(u; t) = K̇(u; t) +

∫ 1

−1

(
u3

3
)′ = K̇(u, t)− 1

3
, (24.13)

which is satisfied by (24.10) since now K̇ = 1
2

d
dt

t
2
= 1

4
< 1

3
.

We conclude that a discontinuous function u(x, t) with the constant states
u− for x < st and u+ for x > st corresponds to a physical shock solution
with shock speed (u− + u+)/2 if u− > u+, and to a non-physical shock if
u− < u+.

We furher see that a shock dissipates substantial kinetic energy into heat
since for a viscous profile of width ν joining two states u− and u+

Dν(u; t) ≡
∫
R
ν(u′)2 dx ≈ (u− − u+)

2 (24.14)

for small ν.

24.8 Burning Books

The 2nd Law states that the characteristics of a physical shock “converge
into” the shock, corresponding to u− > u+. For the unphysical shock solutin
corresponding to the rarefaction initial data with u− < u+, the character-
istics appear to “emerge from” the discontinuity. The 2nd Law thus allows
information (features of the solution) to be “destroyed” (in a shock with con-
verging characteristics), but not “created out of nothing” (in an unphysical
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rarefaction with diverging characteristics). This connects to the essence of ir-
reversibility: Burning books can readily be done without any sophistication,
while recovering the original text from the ashes is impossible.

24.9 Stability of a Rarefaction Wave

We shall now see that the 2nd Law can be replaced by a stability analysis
in its main mission to distingush physical shocks from unphysical shocks.
This reflects the fact that a stable process can be physically realized and
observed, while an unstable process will have no permanence and thus will
be very difficult (or impossible) to realize.

The stability of a solution u(x, t) is governed by the linearized equation

ẇ + (uw)′ = 0 in R× R+ (24.15)

where w represents a (small) perturbation (tending to zero for |x| tending to
infinity), and the solution u acts as a given coefficient. The growth properties
of the solution w of the linearized equation determines the stability: If w
grows quickly in time, then the solution u is unstable, and if w stays bounded,
then u is stable. Of course, stability connects to finite precision: the level of
the perturbation represents the precision.

We first consider the case of a rarefaction wave given by (24.9). Multiply-
ing by w and integrating in space, we obtain by a simple computation using
the fact that u′(x, t) = 1/t for 0 ≤ x ≤ t and u′(x, t) = 0 else,

d

dt

∫
R
w2(x, t) dx+

∫ t

0

w2(x, t)
1

t
dx = 0, for t > 0,

from which follows that∫
R
w2(x, t) dx ≤

∫
R
w2(x, 0) dx for t > 0. (24.16)

This inequality shows that the L2-norm in space of a perturbation from initial
data does not grow with time, which proves stability of a rarefaction wave.
Note that this argument builds on the fact that the rarefaction wave u(x, t)
is increasing in x so that u′ is non-negative.
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24.10 Stability of Shock

The stability proof used above to prove stability of a rarefaction wave, does
not work the same way for a shock, since in this case u(x, t) is decreasing
with x. In fact a shock does not satisfy an L2 stability estimate of the form
(24.16). However, one can prove instead an L1-bound of the form∫

R
|w(x, t)| dx ≤

∫
R
|w(x, 0)| dx for t > 0. (24.17)

This follows by multiplying (24.15) by sgn(w) = +1 if w > 0 and −1 if
w < 0, to get by integration by parts:

d

dt

∫
R
|w(x, t)| dx+ (u− − u+)|w(

t

2
, t)| = 0, (24.18)

and using the fact that for a shock u+ < u−. Moreover, we will below
with a different type of stability estimate show that a shock is stable from
computational G2 point of view, Thus, a shock is a stable phenomenon from
both physical and computational point of view.

24.11 Instability of Non-Physical Shock

We saw above that the rarefaction wave solution is stable, and we now study
the stability of the alternative weak solution (24.11). By the same argument
as used to prove (24.18) we obtain

d

dt

∫
R
|w(x, t)| dx = (u+ − u−)|w(

t

2
, t)|, (24.19)

where now u+ > u−. In this case,
∫
R |w(x, t)| dx can grow arbitrarily fast,

since the positive right hand side in (24.19) in no way can be controled by
the left hand side. We thus conclude that an unphysical shock is unstable.

24.12 2nd Law = Stability + Finite Precision

We thus have two methods to single out physical shocks, one based on stabil-
ity, and the other based on the 2nd Law. This shows that ultimately the 2nd
Law expresses a stability condition, reflecting that Nature only can realize
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phenomena which are properly stable, in its analog finite precision computa-
tion. We thus may view the 2nd Law to express a combination of stability
and finite precision.

24.13 A Traffic Model

The equation (24.1) with f(u) = u(1 − u) models the flow of cars along
a highway represented by the x-axis with 0 ≤ u ≤ 1 the car density and
0 ≤ v = (1 − u) ≤ 1 the car velocity as a function of density: Sparse cars
(u ≈ 0) move fast (v ≈ 1) and packed cars (u = 1) stand still (v = 0). The
equation (24.1) then expresses conservation of mass in the sense that there
are no side roads through which cars can enter or exit (and they cannot
simply disappear into the sky).

We understand that if u(x, t) is increasing in x so that the car density
increases in the direction of motion, then the car velocity will be decreasing
in the direction of motion which means that faster cars behind will approach
slower cars ahead. But the x-axis is a one-lane street and does not allow a
faster car to overtake a slower car, and so eventually faster cars will have to
break in order to not run into slower cars ahead, that is, the law v = (1− u)
will have to be violated and thus the conservation law (24.1) cannot be
satisfied pointwise. In the inviscid equation (24.1) this will correspond to
the appearence of a shock. The corresponding regularized equation takes the
form

u̇+ ((u(1− u))′ − νu′′ = 0,

which we formally can write as

u̇+ (uv)′ = 0

with the modified velocity law

v = (1− u− ν

u
u′),

with the effect that in the dangerous case of increasing density (u′ > 0),
faster cars will be slowed down more than slower cars and collisions from
behind will thus be avoided.

In this model the shock corresponds to the well-known situation when
an inexperienced driver suddenly steps on the brake to avoid collision into a
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cue, which in the regularized problem corresponds to the smoother action of
an experienced driver slowing down because the car density is larger ahead
than behind.

24.14 Non-Existence Exact Euler Solutions

We have seen that the inviscid Burgers equation has discontinuous shock
solutions, which can be viewed as weak solutions satisfying a 2nd Law. One
can thus speak about a shock solution as an exact weak solution of Burgers
equation satisfying a 2nd Law, and this solution is the limit of regularized
solutions as the viscosity tends to zero. The goal of the classical mathemat-
ical analysis of conservation laws based on regularization, is to establish a
corresponding result for the Euler equations: The goal is thus to prove the
existence of a function satisfying the Euler equations in a weak sense together
with a 2nd Law, as a limit of regularized solutions.

However, this goal has not been reached, and we have good reasons to
believe that it cannot be reached. This is because of the appearence of
turbulent solutions to the regularized Euler equations which do not seem
have a limit in the form of a function. It is thus not meaningful to speak
about exact solutions to the Euler equations, because such objects do not
exist, but we may speak about regularized solutions because they do exist and
we may view such solutions as approximate solutions to the Euler equations.

With this perspective it is reasonable to view a shock solution not as is
usual as an exact weak solution to the Euler equations, but rather to view a
viscous shock solution, an exact solution to the regularized Euler equations,
as an approximate solution to the Euler equations. Thus only strong point-
wise solutions could deserve the title of “exact solution”; a weak solution
which is not a strong solution like a shock, could only be an approximate
solution. This may seem to differ from the common way of looking at weak
solutions of differential equations, as functions satisfying the differential equa-
tion “weakly exactly”, but this is not completely natural since the notion of
“weakly” has an element of “inexactly” built in. Only a strong pointwise
solution can be an exact solution. I somebody offers you to buy an unknown
painting by van Gogh, which you are only allowed to inspect from a distance
of 10 meters, you may get suspicious and refrain from a deal.
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BurgersG2

But maybe that is our mistake: maybe there are no particle positions
and velocities, but only waves. It is just that we try to fit the waves to
our preconceived ideas of positions and velocities. The resulting mis-
match is the cause of the apparent unpredictability. (Stephen Hawking
1988)

25.1 Introduction

We will now consider G2 applied to Burgers’ equation as a simple version of
EG2. We recall that G2 is Galerkin’s finite element method combined with
a weighted least-squares control of the residual. G2 is based on piecewise
polynomial approximation in space-time and offers spectrum of computa-
tional methods depending on the choice of the space-time mesh, as presented
in detail in [11, 20]. G2 uses piecewise polynomials which are continuous
in space and possibly discontinuous in time. These variants are referred to
as cG(p)cG(q) or cG(p)dG(q) with cG(p) referring to continuous piecewise
approximation of degree p in space, and cG(q)/dG(q) referring to contin-
uous/discontinuous approxiamtion in time of degree q. G2 is Eulerian if
the space-time mesh oriented along the space and time coordinate axis, is
Lagrangean if the space-time mesh is oriented along particle paths in space-
time, and Arbitrary Lagrangean-Eulerian or ALE if the space-time mesh is
oriented according to some other feature such as space-time gradients of the
solution. Lagrangean variants are also referred to as characteristic Galerkin,
and Eulerian variants as streamline diffusion methods.

171
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In all these variants the space-time mesh is usually organized in space-
time slabs between discrete time levels, and G2 then gives a time-stepping
method allowing the solution to be computed form one time level to the
next progessing in time. The space mesh may be changed across the discrete
time levels to avoid mesh distortion and allow mesh adaption. In dG(q) the
approximation is discontinuous in time and the space mesh may vary from
one slab to the next. If the space mesh is changed across a discrete time
level in cG(q), then a projection from the previous mesh to the new mesh
is performed. The projection is built into the Galerkin method through a
jump term corresponding to a L2 projection. The discrete solution between
the discrete time levels may be viewed as an approximate transport step, and
the whole process may be viewed as a method of the basic form projection-
transport.

The traditional finite difference methods are of Eulerian type with the
first order Lax-Friedrichs’ scheme from the 50s as a prototype on conserva-
tion form and with artificial viscosity proportional to the mesh size. The
next generation of classical schemes originates from Godunov’s method in
1d, which is of the form projection-transport with piecewise constant (dis-
continuous) approximation and a Riemann solver for the transport step. The
multi-dimensional finite volume schemes developed in recent decades, use
discontinuous polynomial approximation with numerical fluxes often con-
structed using 1d Riemann solvers. All these methods may alternatively be
viewed as particular G2 methods.

25.2 Semi-Discrete G2 for Burgers Equation

For the purpose of analysis displaying essential aspects, we consider a semi-
discrete G2 method for Burgers equation with cG(1) discretization in space.
Full discretization with cG(q) or dG(q) in time can be analyzed similarly.
Let then for a given mesh on R with mesh size h, Vh be the set of continuous
functions v(x, t) which for t ∈ I = [0, T ] are piecewise linear in x on the
mesh. The simplest version of semidiscrete G2 takes the form: Find U ∈ Vh
such that

((R(U), v)) + ((hU ′, v′)) = 0 ∀v ∈ Vh, (25.1)

where R(U) = U̇ + UU ′ is the Burgers residual, ((v, w)) =
∫
Q
vw dxdt with

Q = R × I and U(x, 0) ∈ Vh interpolates u0(x). This is equivalent to a
system of ordinary differential equations in time. We have here replaced
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residual stabilization by (hU ′, v′), and we thus consider a Galerkin method
in space for a viscous Burgers equation with viscosity ν = h.

25.3 Basic Energy Estimate as 2nd Law

Choosing v = U in (25.1), we obtain by integration by parts over R the
following direct analog of (24.4):

K̇(U ; t) = −Dh(U ; t), for t ∈ I.

In the presence of shocks, Dh(U ; t) will be substantial and thus U ′ will at
shocks be large (∼ h−1).

25.4 A Posteriori Error Estimation by Dual-

ity

We shall now prove we the following a posteriori error estimate, where u is
the solution of the viscous Burgers equation with ν = h:

∥u− U∥Q ≤ S∥hR(U)∥Q, (25.2)

where ∥ · ∥Q is the L2(Q)-norm and

S =
∥hφ′′∥Q
∥e∥Q

, (25.3)

is a stability factor defined by the solution φ of the following linearized dual
problem:

−φ̇− aφ′ − hφ′′ = e, in Q,
φ(x, t) → 0, x→ ±∞, t ∈ I,
φ(x, T ) = 0, x ∈ R,

(25.4)

where a = (u + U)/2. We notice that the dual problem has a viscous term
with viscsoity coefficient h.

To prove the a posteriori error estimate (25.2) we multiply (25.4) by u−U
and integrate in space and time to get the error representation

∥u− U∥2Q = ((R(U), φ)) + ((hU ′, φ′)).
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We then use the Galerkin orthogonality (25.1) with v = Φ ∈ Vh an interpolant
of the dual solution φ, to get

∥u− U∥2Q = ((R(U), φ− Φ)) + ((hU ′, φ′ − Φ′)),

which combined with an interpolation error bound of the form

∥φ− Φ∥Q + ∥h(φ′ − Φ′)∥Q ≤ Ci∥h2φ′′∥Q,

where Ci is an interpolation constant, shows that

∥u− U∥2Q ≤ Ci∥hR(U)∥Q∥hφ′′∥Q,

where R(U) has been augmented by the contribution ∥hU ′∥Q, which proves
(25.2), setting Ci = 1 for simplicity.

By the basic energy stability estimate, we have

∥hU ′∥Q ≤
√
h if ∥u0∥R = 1,

suggesting the same estimate for ∥hR(U)∥Q, which of course is checked a
posteriori, and thus we expect

∥u− U∥Q ≤ S
√
h. (25.5)

We shall now prove that for a shock S ∼ 1, which shows that a shock
is computable with G2, with a L2(Q) error of size

√
h, which is optimal

from approximation point of view (if we consider the exact solution u to be
discontinuous) and U is continuous in x on the mesh.

25.5 Stability Estimate for a Shock

We shall now investigate the stability properties of the dual problem (25.4)
and seek to bound hφ′′ in terms of the right hand side e. For simplicity we
linearize at the exact solution u(x, t) (instead of the mean value (u+ U)/2)
and thus consider the dual problem

−φ̇− uφ′ − hφ′′ = e, in Q,
φ(·, T ) = 0.

(25.6)

The stability properties are largely determined by the sign of u′, which reflects
the change of the direction u of the characteristics. If u′ ≤ 0, then the
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characteristics converge with increasing t, which typically occurs in the case
of a shock. If u′ ≥ 0, then the characteristics diverge, which typically occurs
in the case of a rarefaction. If u′ is bounded below by a moderate constant,
e.g. u′ ≥ 0, then we may estimate ∥φ∥L∞(L2(R)) and ∥

√
hφ′∥Q in terms of a

moderate constant times ∥e∥Q, which we refer to as weak stability. If u′ is
bounded above by a moderate constant, e.g. u′ ≤ 0, then we may estimate
∥hφ′′∥Q in terms of a moderate constant times ∥e∥Q, which we refer to as
strong stability, because we estimate second derivatives of φ, cf. (25.3). These
estimates are proved by multiplying by φ and −hφ′′, respectively, bringing
in the positive stabilizing terms 1

2
u′φ2 and −1

2
hu′(φ′)2, respectively.

We now give the details in the case of a shock with u′ ≤ 0, where we
assume u is differentiable with a very large negative x-derivative close to
the shock. We indicate the general nature of the characteristics of the dual
problem in Fig 25.5. We shall prove that the solution φ of (25.6) satisfies

∥hφ′′∥Q + ∥φ̇+ uφ′∥Q + sup
0<t<T

∥h1/2φ′(·, t)∥R ≤ 3∥e∥Q. (25.7)

To see this we multiply the first equation in (25.6) by −hφ′′, integrating by
parts with respect to x, and integrating in time over (τ, T ) with 0 < τ < T ,
we get with Qτ = R× (τ, T )

1
2

∫
R h (φ

′(·, τ))2 dx+
∫
Qτ

(hφ′′)2 dxdt+
∫
Qτ

1
2

(
uh (φ′)2

)′
dxdt

≤ 1
2

∫
Qτ

(
hu′ (φ′)2 + e2 + (hφ′′)2

)
dxdt,

(25.8)

which proves the desired result stating that S ∼ 1 for a shock.
As comparison, let us now attempt to derive a weak stability estimate for

(25.6) in the case u is a shock. Multiplication by φ and integration over Qτ

gives
1
2

∫
R
φ2(x, τ) dx+ h

∫
Qτ

(φ′(x, t))2 dxdt

= −1
2

∫
Qτ
u′φ2(x, t) dx+

∫
R
e(x, t)φ(x, t) dx.

Since u′ is large negative in the case of a shock, we have large positive term
of the right hand side, and using a Gronwall inequality would results in a
very large stability factor. On the other hand, we show below weak stability
for a rarefaction wave with u′ ≥ 0, reflecting the above stability result for
the perturbation equation.

Summing up, we see that for a shock, the linearized dual problem statisfies
a strong stability estimate with a stability factor of moderat size, while a
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Figure 25.1: Characteristics of the dual problem for a regularized shock
solution.

corresponding weak stability estimate appears to have a very large stability
factor. These stability features may be understood in a qualitative sense,
by pondering the directionality of the characteristics and the nature of the
L2-norm.

25.6 Stability Estimates for a RarefactionWave

We now consider the linearized dual Burgers’ equation (25.6), linearized at
the exact solution u(x, t) = x/t, corresponding to a rarefaction wave. Mul-
tiplying now (25.6) by −htφ′′, and using standard manipulations, we obtain
the following weighted norm strong stability estimate for 0 < τ < T ,

∥τ 1/2h1/2φ′∥+ ∥ωhφ′′∥Qτ ≤ ∥ωe∥Qτ , (25.9)

where ω(t) = t1/2 acts as a weight.
A weighted norm analog of the a posteriori error estimate (25.2) takes

the form
∥ω−1e∥QN

≤ Sω∥ω−1hR(U)∥QN
(25.10)

with Sω defined by the direct weighted norm analog of (25.3). The esti-
mate (25.9) then shows that Sω ∼ 1, and thus a rarefaction wave solution
is computable in the weighted norm with computational work corresponding
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to interpolation. Note that the presence of the weight t−1/2 will force more
stringent demands on the mesh for t close to zero, which will force an ac-
curate resolution of the initial phase of the rarefaction. This is intuitively
reasonable and corresponds to the fact that an initial error in the computa-
tion of a rarefaction will get amplified as time goes, because characteristics
diverge forward in time. On the other hand, in the case of a shock, an initial
error may be eliminated at later times, because of converging characteristics,
Thus, a rarefaction is more delicate to compute than a shock, which we will
see in the computational results we now present.

25.7 Dual Solution and Stability Factors

We display below G2 computations of a combination of a rarefaction wave
and a shock using the cG(1)dG(0)- method on a uniform space mesh with
h = 10−3 and time step 10−4 taken from [3]. We plot the computed solution
at t=0, t=0.3 , t=0.8, t=1 in Fig 25.2. We see that the initial discontinuity
develops into a rarefaction and that a shock is formed for t ≈ 0.5.
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Figure 25.2: A combined rarefaction and shock wave

We solve the dual problem using the following different approximations



178 CHAPTER 25. BURGERSG2

of the coefficient a = (u + U)/2 and the error e, with ū the analytical,
inviscid solution, and U(h) the finite element solution on a mesh of size h:
(i) a = (ū + U(h)) and e = ū − U(h), (ii) a = U(h) and e = ū − U(h), (iii)
a = (U(h/4) + U(h))/2 and e = U(h/4)− U(h). We plot the corresponding
dual solutions φ at the same time levels as above, but in revers e order (t=1,
t=0.8, t=0.3 , t=0) in Fig 25.7. We also plot in Fig. 25.4 the corresponding

0 10.5

-0.2

-0.1

0

0.1

-0.15

-0.05

0.05

0.15

0 10.5

-0.2

-0.1

0

0.1

-0.15

-0.05

0.05

0.15

0 10.5

-0.2

-0.1

0

0.1

-0.15

-0.05

0.05

0.15

0 10.5
-0.2

-0.1

0

0.1

-0.15

-0.05

0.05

Figure 25.3: Dual solution in reverse time.

second derivatives φ′′. We note the change of |φ′′|, which may be viewed
as a weight in the a posteriori error estimate, from being large close to the
shock at final time towards being large close to the initial discontinuity at
(x, t) = (0.2, 0) initiating the rarefaction. We see that that it is the data
from the rarefaction at final time which generates the large values of φ′′ at
t = 0, and not those from the shock. This indicates that a rarefaction is
more delicate to compute than a shock.

We plot in Fig. 25.5 the strong stability factor S defined by (25.3) for
(i)-(iii) and h = 0.0001, h = 0.00005, h = 0.00001. We see that S ∼ 1, which
shows that the Burgers’ solution consisting of a rarefaction and shock wave
is computable in L2(QN) with work comparable to interpolation.
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Figure 25.4: Second deriatives of the dual solution in reverse time
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Figure 25.5: Strong stability factor for different h
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25.8 Turbulent Bluff Body Flow

We show EG2 flow with shocks around a sphere and cylinder in Figs. 25.6
and 25.8. This section will be extended with turbulent/shock flow around a
cube and sphere.

Figure 25.6: Flow around a sphere

25.9 Turbulent Flow in Heat Engines and Re-

frigerators

This section will contain EG2 simulations of diffuser flow with gas expand-
ing under cooling while getting heated by turbulence, with the objective of
computing losses and efficiency.
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Figure 25.7: Mesh around a sphere

Figure 25.8: Section of 2d flow around a cylinder
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Chapter 26

Supersonic Flow around a
sphere

Experimental data for compressible flow around a sphere for different Mach
numbers and Reynolds numbers are available over the number of publications
starting from the 18th century. A review article by Miller & Bailey [?] studies
the experiments of the 18th and 19th centuries for different Mach numbers
0.2 ≤M ≤ 2.0 at Re ≈ 107. The analyses in the mentioned article show that
the experimental data obtained three centuries ago are in good agreement to
the modern data.

Sphere measurements obtained by [?] and [?] show that regardless of
the diameter size of the sphere, the drag coefficient increases rapidly in the
transonic region and for M ≥ 1.6 and Re ≥ 105 it stays to be constant
with further increases in Reynolds number. Experimental analyses in [?] and
earlier in [?] show that the drag coefficient slowly decreases when the Mach
number increases above M ≥ 2 for the flow with Re ' 106. We leave a
complete discussion for different Mach numbers for future research, but in
this paper we present results for only one Mach number, in order to see if
the G2 solution gives a correct result according to the experiment.

We use Algorithm ?? for the supersonic flow around a sphere with di-
ameter d = 0.074 at Mach number M = 2. For this Mach number the flow
characterized by a detached three dimensional bow shock wave in front of the
sphere and is in a mixed subsonic and supersonic flow behind the sonic line
M = 1. Here the pressure drag at the stagnation point is high compared to
the subsonic case. An attached shock wave develops in the rear of the sphere,
which is also counted as a substantial source of the pressure drag. Therefore,

183
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the area for the pressure stagnation point and attached shock waves should
be resolved by computation for the correct drag coefficient. We observe from
the results that the adaptive G2 method tries to resolve these regions.

We present the results from the simulation in Table 26.1. 10% of the
largest cells are refined during the adaptive algorithm. We start with an
initial coarse mesh, which has 9 720 vertices and 53 312 cells, which reaches
168 820 vertices and 918 605 cells after 9th adaptive iteration. The error

bound of the drag coefficient
∑
n,K

ηKn converge by the mesh refinement, as the

drag coefficient approximately stays around the experimental data Cdp ≈ 1.
In Figure 26.3 the drag coefficients are plotted after each adaptive iterations.

We plot the solution of the adaptive algorithm in Figure 26.1 after eight
refinements. The right column of the figure shows the primal solutions and
the left column presents the corresponding dual solutions. The magnitude
of the dual solution is high in the areas with the significant contribution to
the pressure drag force. The plot of the primal pressure shows that already
in eight adaptive step the pressure structures are close to be resolved.

In Figure 26.2 we present the initial coarse mesh and the mesh after
nine adaptive refinements. After each refinement the boundary nodes, which
appear from the Rivara algorithm are projected to the surface of the sphere.
Also, we notice that similar to the 2D result, the algorithm focuses to resolve
the pressure stagnation point, area of the sonic line and attached shock wave,
which is expected since they are the main source of pressure drag. With ad
hoc refinement, for instance residual based or gradient based adaptation, the
region with strong shocks are well resolved. However, we notice that the
duality based adaptive algorithm does not resolve a propagating bow shock
and other strong discontinuities, it only refines the areas with the largest error
contribution. Consequently, it significantly decreases the computational cost
of the drag force computation.
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Figure 26.1: Supersonic flow around a sphere: the dual solution at time
t = 0 of density (top-left), pressure (middle-left) and magnitude of velocity
(bottom-left); the primal solution at time t = 0.5 of density (top-right), pres-
sure (middle-right) and magnitude of velocity (bottom-right). The contours
are plotted in the collormap. The sonic line in red is plotted together with
the dual solution.



186 CHAPTER 26. SUPERSONIC FLOW AROUND A SPHERE

Figure 26.2: Supersonic flow around a sphere: the (x, y) - view of the mesh
for the initial mesh (top-left), four times (top-right) and nine times (middle-
left) adaptive refinement according to the drag force together, the sonic line
is plotted in red, (y, z) - view of the mesh for x = xs of the initial mesh
(middle-right), where xs - is x coordinate of the center of sphere, the finest
mesh close to the stagnation point of pressure x = xs − d/2 (below-left), and
the finest mesh at x = xs + 0.02 from back (below-right)
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Figure 26.3: Supersonic flow around a sphere: the drag coefficient Cdp in
different adaptive iterations.
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Table 26.1: The convergence history of the drag coefficient. Here C̄dp is a
mean value of Cdp over the time interval [t−ϵt, t], where ϵt is a small number,

and
∑
n,K

ηKn denotes a sum of error indicators.

#iter #vertices #cells S C̄dp

∑
n,K

ηKn

0 9720 53312 0.8218 0.8115 1.5018
1 17405 94572 0.9571 0.8360 1.3096
2 22915 124884 1.1586 0.8502 1.0234
3 29686 160313 1.4233 0.9085 0.8651
4 39328 212637 1.6683 0.9474 0.7352
5 51746 280031 1.8440 0.9705 0.6236
6 69418 376144 2.0050 0.9873 0.5429
7 93696 508209 2.0538 0.9982 0.4532
8 126012 685079 2.1038 1.0046 0.3844
9 168820 918605 2.0541 1.0081 0.3199
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Chapter 27

Carnot Heat Engine

No heat engine can be more efficient than a Carnot engine with ef-
ficiency 1 − τc

τh
, when operating between two temperatures τh and

τc < τh. (Carnot 1824)

27.1 Introduction

We now pass on to basic applications including heat engines, heat pumps
and refrigerators, which are cyclic thermodynamics processes sharing essen-
tial aspects. A main issue is the losses caused by turbulence/shocks, which
determine the efficiency of the device. We show that EG2 allows simulatation
of real processes including accurate computation of losses and efficiency.

We start recalling the theoretical analysis the ideal Carnot heat engine
and the Carnot heat pump offered by classical thermodynamics, and then pass
on to EG2 simulation and analysis of real engines, pumps and refrigerators.

27.2 Heat Engines

A heat engine is a cyclic thermodynamic process converting heat energy
to useful mechanical work. The efficiency of a heat engine is the quotient
between the useful mechanical work and the heat energy supplied. Carnot
claimed that no heat engine operating between two temperatures τh = τhot
and τc = τcold < τh, can have an efficiency exceeding 1 − τc

τh
. A heat engine

with small temperature difference with τc
τh

≈ 1, thus would be very inefficient.
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To show this Carnot assumed that a heat engine is a cyclic thermody-
namic process of a perfect gas connecting four states 1-4 through the following
consecutive sub-processess:

(12) isothermal expansion absorbing heat at τh from a recervoir,

(23) adiabatic expansion to temperature τc < τh,

(34) isothermal compression delivering heat at τc to a recervoir,

(41) adiabatic compression to temperature τh,

where (ij) is the process leading from state i to state j. We recall that adiabatic
means that there is no exchange of heat with the surrounding reservoirs, and
isothermal that the temperature stays constant. Carnot defined a Carnot
heat engine to be an ideal reversible heat engine operating without losses.
Any real heat engine would be subject to losses and thus, by definition, would
be less efficient than a Carnot heat engine.

Figure 27.1: Carnot heat engine cycle.

27.3 Classical Efficiency of a Carnot Heat En-

gine

We now recall the classical analyis showing that the efficiency of a Carnot
heat engine is 1 − τc

τh
. It is based on energy balance in the form dQ =

dτ + pdV = dE + dW , where dQ is supplied heat energy, dτ change of
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internal energy, dV change of volume V and dW change of work W . We
note that in process 12 and 23 work is done by the process (dV > 0) and in
step 34 and 41 on the process (dV < 0). Noting that dQ = 0 in process 23
and 41, we obtain integrating dτ + pdV = 0,

W23 =

∫ 3

2

pdV = τh − τc = −
∫ 1

4

pdV = −W41,

where Wij is the work in process ij. Further, recalling the state equation of
a perfect gas pV = (γ − 1)τ , we get integrating 0 = dτ

τ
+ (γ − 1)dV

V
over the

processes 23 and 41,

(γ − 1) log(
V3
V2

) = − log(
τc
τh
) = −(γ − 1) log(

V1
V4

), (27.1)

where Vi is the volume of state i. Further, since dτ = 0 in process 12 and 34

W12 = Q12, W34 = Q34,

where Qij is the heat energy absorbed/released in process ij. Using that
p = (γ − 1)τh/V in process 12, we have

W12 =

∫ 2

1

pdv = (γ − 1)τh

∫ 2

1

dV

V
= (γ − 1)τh log(

V2
V1

),

and similarly

W34 = (γ − 1)τc log(
V4
V3

).

We conclude since by (27.1), log(V2

V1
) = log(V3

V4
)

−W34

W12

=
τc
τh
.

Thus the efficiency ηe of a Carnot heat engine, the quotient of performed
work and used energy, is given by

ηe =
W12 +W23 +W34 +W41

Q12

=
W12 +W34

W12

= 1− τc
τh
,

as announced. The argument is based on an energy balance in the form
0 = dτ + pdV = dτ + dW in the adiabatic processes 23 and 34, and in the
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form dQ = dW in the isothermal processes 12 and 34. Apparently we have
assumed that there is no loss in any these processes: A Carnot engine is a
heat engine without losses.

In a realization of the above cyclic process 1-4 the flow will be partly
turbulent, in which case both W12 > 0 and W34 < 0 can only decrease.
It follows that no heat engine based on the cyclic process 1-4 can be more
efficient than a Carnot engine. A Carnot engine is really the best heat engine
of the form 1-4. But of course, the real issue is the efficiency of a real heat
engine, to which we return below.



Chapter 28

Carnot Heat Pump

No heat pump can be more efficient than a Carnot heat pump with
efficiency τh/(τh − τc) operating between two temperatures τh and
τc < τh. (Carnot)

28.1 Classical Efficiency of a Carnot Heat Pump

Running a Carnot heat engine in reverse, we get a Carnot heat pump ab-
sorbing energy from a heat recervoir at low temperature and delivering heat
energy to a recervoir at higher temperature τh > τc at the expense of me-
chanical work, consisting of the following processes:

(21) isothermal compression delivering heat energy at τh to a recervoir,

(14) adiabatic expansion to temperature τc,

(43) isothermal expansion absorbing heat energy at τc from a recervoir,

(32) adiabatic compression to temperature τh,

where now in step 21 and 32 work is done on the process and the work in step
32 and 14 as above sums to zero. The efficiency ηp of Carnot heat pump is
commonly measured by the quotient of delivered heat energy −Q21 divided
by the total work W supplied

ηp =
−Q21

W
=
Q12

W
=

1

ηe
. (28.1)
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A Carnot heat pump is an ideal heat pump without losses, while in a real
heat pump the inevitable turbulence/shocks in the expansion steps 14 and
43 would increase the temperature and thus reduce the heat absorption in
step 43, thus reducing Q43 and then also −Q21 and the efficiency.

Carnot’s analysis captured in (28.1) suggests that a lousy heat engine
would be an excellent heat pump (and vice versa). Of course, reality does
not work this way, because of the inevitable losses from turbulence. Thus,
Carnot’s analysis at best only gives a very rough idea of the efficiency of
a heat engine or heat pump. We observe the obvious fact that even if the
efficiency of a Carnot heat pump working with a small temperature drop
would seem to be formidable according to classical analysis, it would tend to
give a small output −Q12 in absolute terms.

Figure 28.1: Carnot heat pump.



Chapter 29

Real Heat Engines

29.1 EG2 Model of Real Heat Engine

We simulate by EG2 a real heat engine operating through the same cycle of
steps as the Carnot heat engine. We find that each step involves a certain
loss due to turbulence/shocks and the total loss determines the efficiency as
compared to a Carnot engine.
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Figure 29.1: A heat engine prototype



Chapter 30

Real Heat Pumps

30.1 Increasing Efficiency by Phase Transi-

tion

To increase the efficiency of a heat pump, the cycle may be formed to contain
a changes of phase from fluid to gas phase (evaporation) in the expansion step
43 and from ghas phase to fluid phase (condensation) in step 21. The latent
heat being released during condensation and absorbed during the vaporiza-
tion increase both Q43 and −Q21 without increasing W , and thus increases
efficiency.

30.2 EG2 Model of Real Heat Pump

We simulate a simple heat pump consisting of two chambers 1 and 2 con-
nected with a channel as in Joule’s experiment. We assume the fluid moves
back and forth between the two chambers being in liquid phase in chamber
1 at pressure p > pc and in gas phase in chamber 2 at pressure p < pc, with
pc the condensation/vaporization pressure, in the following cyclic process:

1. Open the valve in the channel and let the fluid at temperature Th and
pressure p > pc in chamber 1 expand into chamber 2 while evaporating
into the gas phase at pressure p < pc under temperture drop below Tc
in chamber 2. Close the valve.

2. Let chamber 2 absorb heat from a surrounding reservoir at temperature
Tc.
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Figure 30.1: Principle of a heat pump.

3. Open the valve and start a compressor in the channel forcing the gas
to move from chamber 2 into chamber 1, while changing to fluid phase
under release of heat, to reach a temperture above Th in chamber 1.
Close the valve and stop the compressor.

4. Let the chamber 2 supply heat to a surrounding reservoir at temperture
Th, and go back to 1.

The heat consumed for evaporation and heat released by condensation is
modeled by defining the internal energy e to be

e = ρ(T ±∆H) (30.1)

where ∆H is a constant heat of formation, or change of enthalpy H, the
plus-sign is used if p > pc, the minus-sign if p < pc, and pc is the pressure at
which condensation and evaporation takes place. For simplicity we assume
that pc does not depend on temperature.

We model the cyclic process by the one-fluid compressible Euler equations
with internal energy given by (30.1), the heat release in chamber 2 and the
heat absorbtion in chamber 2 by suitable source terms in the energy equation,
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and the compression in the channel by a volume force in the momentum
equation. We compute the efficiency ηp as defined above.
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Chapter 31

Refrigerators

The final aim of all science is to resolve itself into mechanics. (Helmholtz)

The orbit of the electron obeys no law....All is caprice, the calculable
world has become incalculable....superstitions have risen from the dead
and cast down the mighty from their seats and put paper crowns on
presumptious fools. (Bernard Shaw in Too True to be Good)

31.1 Importance of Cooling

Without refrigerators, modern society and urban life, would be very compli-
cated, if not impossible. The traditional method for storing food by cooling
in countries with a Winter season, used well into the middle of the 19th cen-
tury, was to store ice harvested in the Winter, typically under thick layers of
saw dust, to use it over the Summer season. To cool a multi-million city this
way would require enormous installations.

31.2 The Compressor Refrigerator

A refrigerator is a form of heat pump, absorbing heat energy from a reservoir
at low temperature (the inside of the refrigerator) and delivering heat energy
to a reservoir at higher temperature (to the surrounding room). The above
analysis directly applies and the maximal Carnot efficiency is given by

ηr =
Q43

W
=

1

ηe
. (31.1)

203



204 CHAPTER 31. REFRIGERATORS

A refrigerator would suffer losses in the expansion steps 14 and 43 increas-
ing the temperature and reducing the heat absorption in process 43, thus
reducing Q43 and the efficiency.

A regular refrigerator uses a compressor for the condensation from gas to
fluid phase. A compressor is a mechanical device with a rotating fan powered
by electricity, which causes a certain noise.

Figure 31.1: Principle of a compressor refrigerator

31.3 Absorption Refrigerator of Platen/Munters

An absorption refrigerator uses a different method that requires no moving
parts (thus reducing noise) and is powered only by heat. By supplying heat
you thus generate cold, which is apparent contradiction with the 2nd Law
in Clausius form stating that heat can only “spontaneously”go from hot to
cold. Typically, it uses three substances: ammonia, hydrogen gas, and water.
Normally, ammonia is a gas at room temperature (with a boiling point of
-33C), but the system is pressurized to the point that the ammonia is a liquid
at room temperature.



31.3. ABSORPTION REFRIGERATOR OF PLATEN/MUNTERS 205

We cite from Wikipedia: The cooling cycle starts at the evaporator, where
liquefied anhydrous ammonia enters. (Anhydrous means there is no water in
the ammonia, which is critical for exploiting its sub-zero boiling point.) The
”evaporator” contains another gas (in this case, hydrogen), whose presence
lowers the partial pressure of the ammonia in that part of the system. The
total pressure in the system is still the same, but now not all of the pressure
is being exerted by ammonia, as much of it is due to the pressure of the
hydrogen. Ammonia doesn’t react with hydrogen - the hydrogen is there solely
to take up space - creating a void that still has the same pressure as the rest of
the system, but not in the form of ammonia. Per Dalton’s law, the ammonia
behaves only in response to the proportion of the pressure represented by the
ammonia, as if there was a vacuum and the hydrogen wasn’t there. Because a
substance’s boiling point changes with pressure, the lowered partial pressure of
ammonia changes the ammonia’s boiling point, bringing it low enough that it
can now boil below room temperature, as though it wasn’t under the pressure
of the system in the first place. When it boils, it takes some heat away with
it from the evaporator - which produces the ”cold” desired in the refrigerator.

The next step is getting the liquid ammonia back, as now it’s a gas and
mixed with hydrogen. Getting the hydrogen away is simple, and this is where
the ”absorber” comes in. Ammonia readily mixes with water, and hydrogen
does not. The absorber is simply a downhill flow of tubes in which the mixture
of gases flows in contact with water being dripped from above. Once the water
reaches the bottom, it’s thoroughly mixed with the ammonia, and the hydrogen
stays still (though it can flow freely back to the evaporator).

At this point, the ammonia is a liquid mixed with water and still not
usable for refrigeration, as the mixture won’t boil at a low enough temperature
to be a worthwhile refrigerant. It’s now necessary to separate the ammonia
from the water. This is where the heat from the flame comes in. When the
right amount of heat is applied to the mixture, the ammonia bubbles out.
This phase is called the ”generator”. The ammonia isn’t quite dry yet - the
bubbles contain gas but they’re made of water, so the pipe twists and turns
and contains a few minor obstacles that pop the bubbles so the gas can move
on. The water that results from the bubbles isn’t bad - it takes care of another
need, and that is the circulation of water through the previous absorption step.
Because that water has risen a bit while it was bubbling upwards, the flow of
that water falling back down due to gravity can be used for this purpose. The
maze that makes the ammonia gas go one way and the bubble water go the
other is called the ”separator”.
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The next step is the condenser. The condenser is a sort of heat sink or
heat exchanger that cools the hot ammonia gas back down to room tempera-
ture. Because of the pressure and the purity of the gas (there is no hydrogen
here), the ammonia condenses back into a liquid, and at that point, it’s suit-
able as a refrigerant and the cycle starts over again.

The absorption refrigerator was invented by Baltzar von Platen and Carl
Munters in 1922, while they were still students at the Royal Institute of Tech-
nology in Stockholm, Sweden. Commercial production began in 1923 by the
newly formed company AB Arctic, which was bought by Electrolux in 1925.

31.4 Simulation of Compressor Refrigerator
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Cosmology

According to the Perfect Cosmological Principle, the Universe on a
large scale looks the same everywhere and at all times. (Fred Hoyle)

The thermodynamic properties of self-gravitating systems are still un-
clear...The tendency of increasing granularity with time (in a self-
gravitating system), so important to the structure and development
of the Universe, seems to represent a fundamental principle. (Paul
Davies [10])

GRAVITATION: The universal property of all material objects to
attract each other.
GRAVITON: A hypothetical particle which, when passing to and fro
in virtual form bewteen two masses, in large numbers, is thought to
mediate the gravitational attraction between them. (Guillemin [16])

32.1 Euler’s Equations with Gravitation

The Euler equations including gravitational forces from the mass distribu-
tion can be viewed as a basic (non-relativistic) cosmological model. We thus
consider an inviscid perfect gas enclosed in a volume Ω in R3 with boundary
Γ (or the whole of R3), over a time interval I = (0, 1], assuming that the gas
is subject to a gravitational force ∇φ, where φ is a gravitational potential
coupled (at each time instant) to the mass distribution ρ through Poisson’s
equation ∆φ = ρ with (for simplicity) φ = 0 on Γ. This is a self-gravitating
system since the gravitational force depends on the mass-distribution
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Replacing ρ by ∆φ, we are led to the following version of Euler’s equations
with gravitation: Find û = (φ,m, e) depending on (x, t) ∈ Q ≡ Ω × I such
that

∆φ̇+∇ ·m = 0 in Q,
ṁ+∇ · (mu) +∇p− ρ∇φ = 0 in Q,

ė+∇ · (eu) + p∇ · u = 0 in Q,
u · n = 0 on Γ× I
φ = 0 on Γ× I

û(·, 0) = û0 in Ω,

(32.1)

where u = m
∆φ

, p = (γ − 1)e with γ > 1, and we normalize the gravitational
constant to unity.

32.2 The Hen and the Egg

An interesting aspect of this model with the gravitational potential φ as a
primary variable and the mass distribution ρ as a derived quantity, is that
it does not include action at distance in the same way as the conventional
model with φ derived from ρ through Poisson’s equation ∆φ = ρ. Instead
we have to deal with the new equation ∆φ̇+∇ ·m = 0, still containing the
Laplacian.

Considering the equation ∆φ = ρ as defining φ in terms of ρ or vice versa,
of course connects to which comes first: the egg or the hen.

Choosing (in an exam for example) to explain either how a hen can lay
an egg or how an egg can develop into a hen, you may go for the first op-
tion as appearing to be (somewhat) simpler to deal with. The idea would
be that it would be advantageous to choose the more complex object of the
potential/hen rather than the simpler mass/egg, as the primary unknown
which will come out by solving the equations, (by some form of computa-
tion). Thus the more complex object, the potential/hen will be “created by
computation” in front of our eyes, thus relieving us from explaining how a
mass/egg can create a potential/hen. But doing so we have to deal with the
equation ∆φ̇+∇ ·m = 0 expressing “mass conservation” in a non-standard
form, which admittedly seems to involve action at distance if we rewrite it
in the form. φ̇ + (∆)−1∇ · m = 0 for the purpose of explicitly updating φ
by time-stepping. What can we do to allow time-stepping without inverting
the Laplacian?
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32.3 Perturbed Mass Conservation

Well, we may consider to perturb the equation for mass conservation ∆φ̇ +
∇ ·m = 0 into:

κφ̈−∆φ̇−∇ ·m = 0

with κ a small positive constant, now allowing time stepping without invert-
ing the Laplacian. Of course, you could regularize the equation ∆φ = ρ
similarly into κφ̇−∆φ = ρ keeping mass conservation in the standard form
ρ̇ + ∇ · (ρu) = 0. In any case, (32.1) with φ instead of ρ and a perturbed
equation for mass conservation, is a model without action at distance.

32.4 Gravitons?

Solving Poisson’s equation ∆φ = ρ equation for the gravitational potential
φ in terms of the density ρ, reflect that (somehow) a mass distribution “cre-
ates” its own gravitational field (seemingly infinitely fast). The physics of
this creation of a hen out of an egg in the form of a gravitational poten-
tial/force from a mass distribution, is unknown: A conjecture is that the
gravitational field is established through an exchange of certain hypothetical
particles called “gravitons”. But no gravitons have been detected despite
intense search.

The reverse question is how a hen can lay an egg or how a gravitational
potential can “create” a mass. A potential with a sharp peak of the form

1
4π|x−x̄| , would then represent a unit mass at position x̄. In this perspective
a tendency of “mass lumping” from very small initial density variations, is
to be expected from the fact that application of the Laplacian may enhances
variations and thus create positive and negative peaks/masses out of nothing,
with masses of different equal signs attracting each other and masses with
different signs repelleing each other. Our Universe with positive masses would
thus have a twin Universe with negative masses.

In this model, it is thus the gravitational potential φ, which is given
initially and which evolves in time (together with momentum and energy)
and from which the mass density ρ is generated by ∆φ = ρ in a local “creation
process”. We here avoid action at distance and we also get a hint to the
possible nature of all the “dark mass” seemingly required to account for the
observed gravitational forces on cosmic scales, as mollified potential peaks
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not strong enough to “create visible mass”, but yet having gradients and
exerting gravitational forces.

32.5 The 2nd Law with Gravitation

The 2nd Law with gravitation takes the form

K̇ = W −D + P, Ė = −W +D, D > 0, (32.2)

where

P = −
∫
Ω

ρ∇φ · u dx = +

∫
Ω

φ∇ ·mdx = −
∫
Ω

φρ̇ dx = Φ̇,

Φ = −1

2

∫
Ω

φ∆φdx =
1

2

∫
Ω

|∇φ|2 dx.

By summation, we have

d

dt
(K + E − Φ) = 0

stating that the total energy, the sum of kinetic, heat and gravitational energy
K + E − Φ, is conserved.

32.6 Irreversibility and Heat Death

A natural scenario is to start with a hot compressed gas at rest, which is let
free to expand in a Big Bang with W −D−P > 0 setting the gas in motion
untilW −D−P < 0 and K = 0, whereupon the gas contracts by gravitation
back to a hot compressed state in a Big Crunch allowing the process to start
all over with a new Big Bang.

In each cycle of this process some kinetic energy would irreversibly be
transformed into heat energy, which ultimately could lead to a stationary
state with W = D and P = 0, a heat death. But the whole process may have
many cycles....and so there may have been Worlds and intelligent cultures
including thermodynamics even before the Big Bang of the World we happen
to live in...
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32.7 EG2 Simulations of a Self-Gravitating

Gas

We give below some results from G2 solutions of (32.1) showing the develop-
ment mass granularity from uniform mass distributions under expansion.

Figure 32.1: Cosmology theories
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Figure 32.2: Big Bang expansion



Chapter 33

Information

The fundamental problem of communication is that of reproducing
at one point either exactly or approximately a message selected at
another point. (Shannon in [40], 1948)

You should call it entropy for two reasons; in the first place your un-
certainty function has been used in statistical mechanics under that
name, so it already has a name. In the second place, and more im-
portant, no one knows what entropy really is, so in a debate you will
always have an advantage. (von Neumann to Shannon)

33.1 Introduction

Information theory was created by Shannon [40] in the 1940s borrowing the
concept of entropy from thermodynamics. We now explore if the new foun-
dation of thermodynamics presented may open to a new approach to infor-
mation theory. We thus consider a model of information flow in the form
of the Euler equations for a variable density incompressible fluid flow with
the distribution in space of mass density representing information like a mes-
sage, image or movie, which is being transported or communicated from one
location to another by the fluid flow. The key question is what aspects of the
information which can be communicated to what precision. We expect to
see fine details of an image being distorted or destroyed by the communica-
tion, while gross features may remain unaltered. We introduce a measure of
irrecoverable loss of information, which couples to increase of entropy in the
classical setting, which corresponds to information which cannot be retrieved.
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We thus distinguish between recoverable information, which can be recovered
from a distorted image by some form of image processing, and irrecoverable
information which cannot be recovered by image processing.

33.2 Entropy vs Loss of Information

In Shannon’s information theory the notion of entropy is used to measure
the randomness or complexity of the information to be communicated, with
random complex information requiring more work to communicate than or-
ganized simple information. Shannon’s entropy thus is a measure of the work
to communicate certain information, assuming that the communication itself
does not distort the information. In this setting information is coded into a
digital representation, which is communicated without loss of any digits and
then is decoded after reception. The main question then concerns the number
of digits required to represent the information, which directly couples to the
work of accurate communication of the digits. In Shannon’s theory the digi-
tal coding in general introduces a certain loss of information, with more loss
for complex information, while the communication of the digital representa-
tion is assumed to be without loss. Shannon’s entropy thus may be viewed
as a measure of loss of information arising from the digital representation
but not from the communication.

Our notion of entropy is a bit different and measures the total loss of
information taking into account not only the loss from digital representa-
tion, but also from the communication process itself. In our setting, the
digital representation of the information as a mass density, is a finite ele-
ment approximation on a mesh of certain mesh size h, which can be viewed
as generalized Fourier or wavelet representation, and the communication is
realized through a finite element solution of the Euler equations. The mesh
size h directly couples to the work required for the communication.

The main aspects influencing the total loss of information, and thus the
error in the communication, relate to (a) the complexity of the information
and (b) the complexity of the communication process, where (b) can be
viewed as a measure of the distortion from the communication process. We
identify the following basic cases:

(i) simple information and simple communication,

(ii) complex information and simple communication,
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(iii) simple information and complex communication,

(iv) complex information and complex communication.

We will see that in (i) the loss of information typically is small, in case (ii)
and (iii) it is of medium size, and in case (iv) it is large. We will see that
(i) requires little work (h is not small), (ii) and (iii) require medium work
and (iv) large work (h small), for the same accuracy. We shall see that if the
communication is partly turbulent, which is the generic case, then the loss of
information cannot be made arbitrarily small by decreasing h, relecting that
the turbulent dissipation has a non-zero limit as h tends to zero.

33.3 A Model Problem

As a simple model of communication, we consider the following 1d transport
equation:

ρ̇+ ρ′ =0 for 0 < x < 1 , 0 < t ≤ 2,

ρ(x, 0) =0 for 0 < x < 1
(33.1)

where ρ̇ = ∂ρ
∂t
, ρ′ = ∂ρ

∂x
, and ρ(0, t) = ρ−(t) with 0 ≤ t ≤ 1 represents an input

signal and ρ+(t) = ρ(1, t) with 1 ≤ t ≤ 2 the corresponding output signal.
Since the solution to the convection equation is given by ρ(x, t) = ρ(0, t− x)
for t ≥ x, we simply have ρ+(t) = ρ(1, t) = ρ(0, t − 1) = ρ−(t − 1) for
1 ≤ t ≤ 2, that is, the output signal is equal to the input signal with a unit
time delay.

Let now ρh be a finite element computational solution of the convection
problem representing a realization of the communication from input to output
with a certain imprecision due to the numerics. More precisely, let ρh ∈ Vh
be a cG(1)-solution determined by

((ρ̇h+ρ
′
h, v))+(ρ(0, ·)−ρ−, v(0, ·))+((hρ′h, v

′)) = 0, for all v ∈ Vh, (33.2)

where Vh is the set of continuous piecewise linear functions on a space-time
mesh of Q = [0, 1] × [0, 2] with mesh size h, ((v, w)) =

∫
Q
vw dxdt and

(v, w) =
∫ 1

0
vw dx. Here, the first two terms come out of Galerkin’s cG(1)-

method and boil down to a centered difference scheme on a regular mesh and
the the third term is a stabilizing artifical viscosity term. More generally, we
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may apply the G2 (General Galerkin) method with a residual-based artificial
viscosity.

We observe observe the reverse communication process taking ρ+ to ρ−,
would read: Find ρ ∈ Vh such that

((v,−ρ̇h − ρ′h)) + (ρ(1, ·)− ρ+, v(1, ·)) + ((hρ′h, v
′)) = 0, for all v ∈ Vh,

where (v, w) =
∫ 2

1
vw dx. This means that neglecting the viscous terms, we

could retrieve ρ−h exactly from ρ+h by time stepping backwards in time. In
contrast, we cannot “undo” the effect of the viscous term in a process from
ρ−h to ρ+h , since time stepping backwards with the artificial viscosity present
would just add more diffusion to the process.

To study the resulting output error in the communication from ρ− to ρ+,
let ψ(t) with 1 ≤ t ≤ 2 be a given weight function, and let φ(x, t) solve the
dual problem

−φ̇− φ′ =0 for 0 < x < 1 , 0 < t ≤ 2,

φ(x, 2) =0 for 0 < x < 1,

φ(1, t) =ψ(t) for 1 < t < 2.

(33.3)

Multiplying the dual equation by e = ρ− ρh, integrating by parts and using
(33.2) assuming ρh(0, ·) = ρ−, we obtain the following error representation:

Eh ≡
∫ 2

1

(ρ+−ρh(1, ·))ψdt =
∫ 2

1

e(1, t)ψ(t) dt = ((R(ρh), φ−φh))+((hρ′h, φ
′
h)),

where R(v) = v̇ + v′, and φh ∈ Vh is a finite element approximation φ.
It is now natural to define I = (R(ρh), φ−φh)) to represent a recoverable

error, and II = ((hρ′h, φ
′
h)) an irrecoverable error. In particular, choosing

φh to be a cG(1)-approximation, we can make the I vanish, which may be
viewed as retrieving ρ− by backwards time stepping. With this motivation
we now focus on the irrecoverable part II of the error, neglecting here the
recoverable part I, and thus consider the error representation

Eh ≈ ((hρ′h, φ
′
h)). (33.4)

We can now rephraze the above basic cases as follows: (i) ρh and φh

smooth, (ii) ρh smooth and φh non-smooth , (iii) ρh non-smooth and φh

smooth, and (iv) ρh non-smooth and φh non-smooth. We will then typically
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have in case (i): Eh ≈ h, in cases (ii) and (iii): Eh ≈
√
h and in case (iv):

Eh ≈ 1. We may refer to (i) and (ii) as laminar cases and (iii) and (iv) as
turbulent cases. With a smooth φ, we measure the output error in a weak
mean value sense, and with a non-smooth φh we measure the error in a more
pointwise sense. We see that in the case of non-smooth ρh, only mean-value
outputs can be meaningful.

Viewing entropy as a measure of loss of information, we may say that (i)
has small entropy production or little loss of information, (ii) and (iii) has
medium entropy production and loss of information while (iv) has massive
entropy production and loss of information.

33.4 Simulations in Model Problem

33.5 Euler’s Equations

We now generalize to the Euler equations for a variable density incompress-
ible fluid over a time interval I = (0, T ), in a cylinder Ω = {x = (x1, x2, x3) =
(x1, x̄) : 0 ≤ x1 ≤ L, |x̄| ≤ R} of length L and radius R, with boundary Γ
with outward unit normal n, take the form: Find the density ρ(x, t), the flow
velocity u(x, t) and pressure p(x, t), such that

ρ̇+∇ · (ρu) = 0 in Ω× I,

u̇+ u · ∇u+ ∇p
ρ

= 0 in Ω× I,

∇ · u = 0 in Ω× I,

u · n = u− on Γ− × I,

ρ = ρ− on Γ− × I,

ρ(·, 0) = ρ0, u(·, 0) = u0 in Ω,

(33.5)

where the fluid enters Ω through Γ− = {x ∈ Γ : x1 = 0} with a given inflow
velocity u · n = g < 0 and leaves through Γ+ = {x ∈ Γ : x1 = L} with
u ·n > 0, and u ·n = 0 on the remaining (inpenetrable) part of the boundary.
Here ρ(0, ·, ·) = ρ− represents a given input signal, or rather movie, consisting
of a sequence of time dependent 2d images ρ−(·, t) with t ∈ I, defined on the
cylinder cross section ω = {x̄ : |x̄| ≤ R}, which is transported by the flow
through the channel to an output movie ρ+(·, t) = ρ(L, ·, t) for t in a relevant



218 CHAPTER 33. INFORMATION

interval. The communication thus concerns the transformation of ρ− to ρ+.
The basic problem concerns the distortion d = ρ+ − ρ−, which measures the
accuracy of the communication.

It is natural to assume that ρ = ρ̄+ ρ̃ where ρ̄ is a constant given “back-
ground” and ρ̃ contains the information of interest. Replacing ρ by ρ̄ the
second equation (momentum equation) takes the form u̇ + u · ∇u +∇p̄ = 0
with the modified pressure p̄ = p/ρ̄. This decouples ρ from the last two
equations, which determine (u, p̄) as a solution to the (unit density) incom-
pressible Euler equations. In this case, ρ thus can be determined from the
first equation alone, which with (u, p̄) given is a linear convection equation.
For simplicity we consider this decoupled situation below, in which the image
itself is not influencing the flow, and thus is transported “passively”.

The solution (u, p̄) to the (unit density) incompressible Euler equations
in general is (partly) turbulent with a complex flow velocity u, and thus the
image ρ(·, t) in general is convected in a (partly) complex convection field
with a corresponding distortion. For short time also a laminar smooth flow
velocity u is possible. Thus the image can be convected by a laminar or
turbulent flow velocity, with vastly different distortion effects.

33.6 Finite Precision Euler Solution: G2

We solve the Euler equations (33.5) using as above a stabilized cG(1)-method
on a finite element mesh in space-time with mesh size h(x, t), and denote the
finite element solution by ûh = (ρh, uh, ph) with output ρ+h . We will compare
with a non-distorted output ρ+ = ρ− convected by a constant velocity field
ū(x, t) = (ū1, 0, 0), where ū1 is a representative inflow velocity. We will thus
as a measure of the distortion, use the mean value

Eh =

∫
ω

(ρ− − ρ+h )ψ dx̄ dt. (33.6)

where ψ(x̄, t) is a weight function.

33.7 Error Estimation by Duality

As in the model problem, we may assume that (see [20] for details)

Eh ≈ ((h∇ρh,∇φh)),
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where ((v, w)) =
∫ T

0

∫
Ω
vw dx dt, and φh is an approximate solution of the

dual problem

−φ̇− uh · ∇φ = 0 in Ω× I,

φ(L, ·, ·) = ψ in ω × I,

,

φ(·, T ) = 0 in Ω,

,

33.8 Laminar and Turbulent Communication

As in the model problem, Eh depends both on∇ρh and∇φh. If u is turbulent,
then Eh may be small if ψ is smooth with large support, corresponding to
a gross feature of interest. If u is laminar, then Eh may be small also for a
small feature of interest.

33.9 The 2nd Law

The basic energy balance for ρh reflecting the structure of the stabilized cG(1)
method, reads:∫

I+

∫
ω

ρh(L, x̄, t)
2 dx dt+D(ρh) =

∫
I−

∫
ω

ρh(0, x̄, t)
2 dx dt

where

D(uh; ρh) =

∫ T

0

∫
Ω

h|∇ρh|2 dx dt,

and I− and I+ are relevant time intervals for input and output, respectively.
As above, D(uh; ρh) represents an irrecoverable loss of information. Revers-
ing the process letting ρh convect backwards in time starting from ρh(·, T ),
we have an analogous energy balance with a new dissipation term of positive
sign, showing that the initial data ρ(·, 0) cannot be fully recovered.
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33.10 Dissipation of Information

As a rough measure of the amount of irrecoverable information we may use
the total dissipation of information:

Dh =

∫ T

0

∫
Ω

h|∇ρh|2 dx dt.

33.11 Simulations

We consider communication in cylindrical channels of different length. If the
channel is short enough, then the flow may stay laminar all along the channel
and the image suffer little distortion, while if the flow gets turbulent, then
the image may get more distorted. Because of boundary layer effects the
distortion will usually be bigger close to the boundary.

We also study the effects of different obstructions in the channel perturb-
ing the flow, modeling a communication system with bottle-necks.

Figure 33.1: Flow of information at New York Stock Exchange



Chapter 34

Traffic Flow

I think the idea of getting out of a traffic jam and getting out of
work each week and going and doing all this stuff would be really
exhausting.(Paul McCarthy)

34.1 A Model of Traffic Flow

We return to the simple traffic model which we considered above as a variant
of Burgers equation: Find the density ρ(x, t) and the velocity u(x, t) such
that

ρ̇+ (uρ)′ = 0 for x ∈ R, t > 0,

ρ(x, 0) = ρ0(x) for x ∈ R,
(34.1)

combined with the constitutive law u = (1 − ρ), assuming 0 ≤ ρ(x) ≤ 1 for
x ∈ R.

34.2 Shocks and Congestions

We have seen that a shock corresponds to the abrupt changes of density and
velocity encountered when the end of que of packed cars at rest is propagating
in the opposite direction to the direction of the traffic.
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34.3 Rarefactions and Traffic Lights

A rarefaction solution corresponds to the situation when at a traffic light
turning green, the cars gradually accelerate one after the other. A nonphys-
ical shock solution corresponds to the familiar situation when the driver in
the first car at the traffic light, does not notice the light turning green, with
the instability of this situation being illustrated by the fact that a slight
“honk” usually will alert the driver to get going and allowing the rarefaction
to develop. Instead of a honk a little bit of viscosity will get the car going.

Figure 34.1: Traffic flow in the Bay Area



Chapter 35

Economy

As every individual, therefore, endeavours as much as he can both to
employ his capital in the support of domestic industry, and so to direct
that industry that its produce may be of the greatest value; every
individual necessarily labours to render the annual value of society as
great as he can. He generally, indeed, neither intends to promote the
public interest, nor knows how much he is promoting it. By preferring
the support of domestic to that of foreign industry, he intends only his
own security; and by directing that industry in such a manner as its
produce may be of the greatest value, he intends only his own gain,
and he is in this, as in many other cases, led by an invisible hand to
promote an end which was no part of his intention. Nor is it always
the worse for the society that it was no part of it. By pursuing his
own interest he frequently promotes that of society more effectually
than when he really intends to promote it. I have never known much
good done by those who affected to trade for the public good. It is an
affectation, indeed, not very common among merchants, and very few
words need be employed in dissuading them from it. (Adam Smith)

35.1 A Flow Model

We model an economy as a form of of reactive flow in a network.
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