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Abstract.

We present analytical and computational evidence of blowup of initially smooth
solutions of the incompressible Euler equations into non-smooth turbulent solutions.
We detect blowup by observing increasing L2-residuals of computed solutions under
decreasing mesh size.
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1 The Clay Navier-Stokes Millennium Problem

The Clay Mathematics Institute Millennium Problem on the incompressible
Navier-Stokes equations formulated by Fefferman [7] asks for a proof of (I) global
existence of smooth solutions for all smooth data, or a proof of the converse (II)
non global existence of a smooth solution for some smooth data, referred to as
breakdown or blowup. A proof of (I) may have to be analytical to cover all
smooth data, while it is conceivable that the converse (II) can be proved by
computation for a specific choice of smooth data.

In this note we address the analogous problem for the inviscid incompressible
Euler equations, which for some reason is not explicitely a Millennium Problem,
although mentioned briefly in [7] and in [6] referred to as “a major open problem
in PDE theory, of far greater physical importance than the blowup problem for
Navier-Stokes equations, which of course is known to the nonspecialists because
it is a Clay Millenium Problem”. In fact, since the viscosity in the Navier-Stokes
equations is allowed to be arbitarily small and solutions of the Euler equations
are defined as viscosity solutions of the Navier-Stokes equations under vanishing
viscosity, the Euler equations effectively are included in the Millenium Problem.

We present evidence that a specific initially smooth solution of the Euler equa-
tions, potential flow around a circular cylinder, in finite time exhibits blowup
into a turbulent non-smooth solution, that is we present evidence of (II). More
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generally, we present evidence that all (non-trivial) initially smooth Euler solu-
tions exhibit blowup into turbulent solutions. This work closely connects to the
new resolution of d’Alembert’s paradox presented in [15].

We solve the Euler equations computationally using a least squares residual-
stabilized finite element method referred to as EG2 as an acronym of Euler
General Galerkin. We shall see that EG2 is not just any ad hoc computational
method but captures fundamentals.

We use an objective operational definition of non smooth solution of the Euler
equations as a viscosity solution with substantial effect of vanishing viscosity in
the form of substantial turbulent viscous dissipation, which characterizes a turbu-
lent solution. We find that an initially smooth EG2 solution becomes turbulent
and thus shows blowup into a non-smooth solution. We present evidence that
blowup detection is stable under infinite mesh refinement/vanishing viscosity, so
that detection of blowup of a EG2 solution on a mesh of finite mesh size can be
used as detection of blowup under vanishing viscosity.

Since our evidence is critically based on computation, we are led to the general
question of the significance of computational solutions to differential equations.
A basic question is what quality requirements should be put on computed solu-
tions of differential equations to allow them to replace exact solutions. We shall
see that an affirmative answer can be given in terms of Hadamard’s notion of
wellposedness [9] and residual-based a posteriori error estimation [13]. We first
recall some basic facts of general nature and we then turn to the Euler blowup
problem, starting with compressible flow and then addressing the Millennium
problem of incompressible flow under vanishing viscosity.

2 Existence of Exact Solution from Computed Solution

Consider an equation A(x) = b, where A : R → R is a continuously differen-
tiable function with derivative A′(x) and b ∈ R is a given real number. Assume
that for some X ∈ R and some (small) positive error tolerance TOL,

2S|R(X)| < TOL,(2.1)

where R(X) = A(X) − b is the residual of X , S = |A′(X)−1| is a stability
factor and S|A′(y) − A′(X)| < 1

2 for |y − X | < TOL. Then there is x ∈ R

with |x − X | < TOL such that A(x) = b. This follows from the contraction
mapping principle applied to the mapping y → y−A′(X)−1(A(y)− b), and can
be generalized to Banach spaces.

The existence of a computed approximate solution X with sufficiently small
residual R(X) modulo the stability factor S, thus guarantees the existence of
an exact solution x with vanishing residual R(x) = 0 within distance 2SR. A
result of this nature for the Navier-Stokes equations is given in [2, 4].

The (potentially immense) advantage of a computed solution is that it is avail-
able for inspection, while an exact root only known to exist (e.g. by contrac-
tion mapping) in general cannot be inspected. For example, the computation
2−1.42 = 0.04, shows that

√
2 ≈ 1.4 with an error less than (2.8)−10.04 < 0.015,

while inspecting the mere symbol
√

2 reveals nothing about its value.



BLOWUP of EULER SOLUTIONS 3

3 Wellposedness

Since Hadamard [9] it is well understood that solving (differential) equations,
perturbations of data have to be taken into account. If a vanishingly small per-
turbation can have a major effect on a solution, then the solution (or problem) is
illposed, and in this case the solution may not carry any meaningful information
and thus may be meaningless from both mathematical and applications points
of view. According to Hadamard, only a wellposed solution, for which small
perturbations have small effects (in some suitable sense), can be meaningful. In
this perspective it is remarkable that wellposedness is not an issue in the Mil-
lenium Problem formulation [7]. However, Fefferman wants to give “reasonable
lee-way (in the problem formulation) to solvers while retaining the heart of the
problem”, and we use this lee-way to bring wellposedness into the heart of a
meaningful discussion of the Millennium Problem.

Perturbations of the data b of an equation A(x) = b have the form A(x) = b+R
with a small perturbation R. An approximate solution X of A(x) = b with resid-
ual R(X) = A(X)− b, thus can be viewed as an exact solution of the perturbed
equation A(X) = b + R ≡ b̄, with here an x satisfying A(x) = b appearing as
an approximate solution satisfying A(x) = b̄ − R. For a wellposed solution the
distinction between an exact solution x and and approximate solution X disap-
pears, since both can be viewed as equally representative solutions to perturbed
equations.

Wellposedness of a certain output functional M(x) of the solution x to an
equation A(x) = b with respect to perturbations of data b, can be expressed in
a stability estimate of the form

|M(x) −M(X)| ≤ S‖R‖,(3.1)

where A(X) = b+R, S is a stability factor, and ‖ · ‖ is a certain residual norm.
The output M(x) is wellposed with respect to residual perturbations measured
in the ‖ · ‖-norm, if S is of moderate size in the sense that S‖R‖ can be made
small. In a wellposed problem, small residual perturbations thus have small
effects on the output.

Note that sometimes wellposedness is replaced by “continuous dependence on
data” without the quantitative requirement that the dependence should be Lip-
schitz continuous with Lipschitz constant of moderate size, which is needed to
express that small perturbations have small output effects. However, without
this quantitative aspect, the distinction between wellposed and illposed problem
becomes blurred and both scientific and mathematical rigor suffers. This criti-
cism extendss to the use of smooth or C∞ without quantitative measure of the
size of derivatives, as in the formulation of the Millennium problem [7].

4 The Role of Computation

The above discussion is motivated by a common attitude among both pure and
applied mathematicians that computed solutions to differential equations “prove
nothing”. This belief is probably rooted in the classical a priori error analysis
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of difference methods for computing solutions to differential equations, based
on the concept of truncation error, which is the residual obtained inserting the
exact solution into the difference equation of the difference method. However,
this corresponds to a thought experiment, since the exact solution is unknown
along with the truncation error. Nevertheless the exact solution is given the
major role and is viewed as an approximate solution of the difference equation,
while the finite difference solution is not viewed as an approximate solution of
the differential equation.

In the a posteriori error analysis of finite element methods including EG2,
instead the computed solution is inserted into the differential equation resulting
in a computable residual. The computed finite element solution thus has the
major role and in case of wellposedness is a representive solution as much as any
exact solution subject to perturbations. This is a key aspect with potentially far-
reaching consequences as concerns the role of computation in the mathematics
of solving wellposed (differential) equations.

In the case of the Euler equations, we shall see wellposed EG2-solutions tak-
ing over the whole scene, since wellposed exact global solutions simply do not
seem to exist. The thought experiment of inserting a wellposed exact solution
into an Euler difference equation, thus may have no meaning, while inserting a
wellposed computed finite element solution into the Euler equations definitely
has a meaning.

5 Blowup for Compressible Flow

The Euler equations express conservation of mass, momentum and total en-
ergy of a fluid with vanishingly small viscosity (inviscid fluid). In the case of
compressible flow, it is well known that initially smooth solutions to the Eu-
ler equations in general develop into discontinuous shock solutions in finite time.
Such shock solutions thus exhibit blowup in the sense that they develop infinitely
large derivatives and Euler residuals at the shock and there violate the Euler
equations pointwise. The formation of shocks shows non-existence of pointwise
solutions to the compressible Euler equations. Concepts of weak solution have
been developed accomodating after-blowup shock solutions with Euler residuals
being large in a strong (pointwise) sense and vanishingly small in a weak sense
(combined with entropy inequalities).

Viscosity solutions of the Euler equations are solutions to regularized Euler
equations augmented by viscous terms with small viscosity coefficients. Proving
convergence of viscosity solutions to weak solutions of the Euler equations as
the viscosity tends to zero, is a longstanding open problem, only settled in very
restricted model cases. Even the problem of existence of viscosity solutions is
open in the general case [8].

A way out of this unfortunate stalemate is offered by computation: EG2-
solutions can be viewed as specific viscosity solutions of the Euler equations with
specific viscous regularization depending on the mesh size, and since EG2 solu-
tions are computed they exist and are available for inspection. This is analogous
to the existence proof by Descartes based on the a posteriori observation: Cog-
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ito, ergo sum or I think, therefore I exist, (as compared to an analytical/logical
a priori proof of the existence of God attempted by many philosophers without
clear success). A computational foundation of thermodynamics based on EG2
for compressible flow is developed on [14].

6 The Blowup Problem for Incompressible Flow

Incompressible flow does not form shocks and one may ask if initially smooth
solutions of the incompressible Euler equations exhibit blowup or not, which is
the Millennium Problem in the case of vanishing viscosity. The existing litera-
ture, see [5, 10, 11, 12] and references therein, is not decisive and evidence for
both blowup and not blowup is presented. The study has further been limited in
time to before blowup, discarding the highly relevant question of what happens
after blowup.

In this note we present evidence of blowup for the incompressible Euler equa-
tions drawing from our recent work [13] and references therein, widening the
study to both before and after blowup. We compute specific viscosity solu-
tions by EG2 and we discover wellposedness of mean-value outputs such as drag
and lift (coefficients), showing that EG2 solutions are representative Euler solu-
tions. We find that the phenomenon of turbulence in incompressible flow, plays
a similar role in blowup as that of shock formation in compressible flow: Ini-
tially smooth viscosity solutions of the incompressible Euler equations in general
in finite time show blowup into turbulent solutions, characterized by pointwise
large (weakly small) Euler residuals and substantial turbulent dissipation. We
give evidence that the blowup into turbulence results from pointwise instabil-
ity, forcing smooth solutions to develop into turbulent solutions, as a parallel
to the inevitable shock formation in compressible flow. Since viscosity solutions
are turbulent with derivatives becoming unbounded in turbulent regions, a limit
would there be nowhere differentiable and have infinitely small scales, like a
very complex Weierstrass function. No evidence for the existence of such a limit
seems to be available; only viscosity solutions are thinkable and computed EG2
solutions do exist.

In the work cited in [5, 6, 10, 11, 12], blowup is identified by the development
of an infinite velocity gradient of a specific initially smooth exact Euler solution
as time approaches a blowup time. This form of blowup detection, which we
refer to as local blowup, requires pointwise accurate information (analytically
or computationally) of the blowup to infinity, which (so far) has shown to be
impossible to obtain. In this approach, wellposedness is left out assuming no
perturbations from data or solution procedure. Further, the question of what
happens beyond blowup is left out. Altogether, the approach of local blowup
has not been conclusive.

We use a different approach based on convergence of globally defined EG2 so-
lutions under decreasing mesh-size, taking wellposedness into account. Blowup
is then identified by increasing space-time L2-norms of Euler residuals with de-
creasing mesh size. We give evidence that blowup can be detected by computa-
tion with finite mesh size thus without requiring the mesh size to tend to zero,
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which is impossible to realize. We also include the process after blowup. In
this approach, which we refer to as global blowup, we thus avoid the seemingly
impossible task of a providing a precise analysis of the route to local blowup
of a smooth exact Euler solution. Instead we observe initial smooth poten-
tial flow develop into turbulent flow identified by increasing L2-residuals under
decreasing mesh size. In this approach there is no pointwise unique route to
blowup with a unique blowup time, since the transition to turbulence feeds on
the mesh-dependent residual perturbations in EG2 computation. We show that
the transition to turbulence in potential flow is driven by exponential perturba-
tion growth in time with corresponding logarithmic growth in the mesh size of
the effective time to transition. We thus study global blowup of EG2/viscosity
solutions under decreasing mesh size/viscosity including wellposedness, and not
as in [5, 10, 11, 12] local blowup of exact Euler solutions without wellposedness.

Fefferman’s problem formulation does not give a precise definition of blowup,
other than the converse of global existence of a smooth solution, with a vague
definition of “smooth”. Again we use his “lee-way” and suggest to define blowup
in terms of global blowup of viscosity solutions as indicated. We note that
the approach of local blowup is taken over from the basic existence theory of
ordinary differential equations, where divergence to infinity in time is the only
way existence can be violated. However, partial differential equations such as
the Euler equations have a much richer blowup structure in space (when subject
to perturbations), which seems to be inaccessible to a pointwise analysis.

7 Blowup Detection by Finite Mesh Size Computation

A key issue in global blowup detection by computation is if a finite mesh size
computation can be sufficient. Let us first address this question in an elementary
example: Consider the non-smooth shock solution u(x) = 1 for x < 0 and
u(x) = −1 for x > 0 of the stationary Burgers equation uu′ = 0, where u′ = ∂u

∂x ,
which is a 1d model of the (compressible) Euler equations. This is a typical
Burgers solution, which is a piecewise smooth function with a finite number of
jump discontinuities. Let h > 0 and define Uh(x) = 1 for x < −h, Uh(x) = −x

h
for −h ≤ x ≤ h, Uh(x) = −1 for x > h, as a corresponding viscosity solution.
We have ∫ h

−h

(UhU
′
h)2dx =

2

3h

and thus the L2-norm of the Burgers residual UhU
′
h scales like h−1/2. Detecting

h−1/2 increase of L2-residuals under decreasing mesh size would then be identi-
fied with blowup into a shock, since in smooth parts the residual would decrease
like h. In this case the shock would be correctly detected with a finite mesh size.

We may compare with detecting shocks by local blowup, resolving the flow
pointwise as the shock is forming. This requires mesh refinement without limit,
and like Achilles will never reach the goal.

More generally, to accurately detect a shock in a Burgers solution u, the
smooth part of u has to be resolved in order to correctly single out a shock
from a smooth part. Now, the general structure of Burgers solutions as being
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piecewise smooth with jumps allows detection with a finite mesh size. The
structure of Burgers solutions with a resolvable smooth part and sharp shocks
with no smallest scale, thus makes blowup detection possible without requiring
the mesh size to be infinitely small. Thus beyond the resolvable scale of the
smooth part there can be no surprises to be found by decreasing the mesh size,
since all there is are shocks separated by smooth parts.

Massive evidence indicates that incompressible Euler solutions have a similar
general structure with a smooth (laminar) part resolvable with finite mesh size
combined with a turbulent part with no smallest scale and thus unresolvable on
all meshes. Again we have a dichotomy into a resolvable and an unresolvable
part, allowing accurate blowup detection with finite mesh size/viscosity. Massive
evidence indicates that a flow becomes partly turbulent if the Reynolds number
Re is large enough, where Re = UL

ν with U a representative velocity, L a length
scale and ν the viscosity. In particular, there is massive evidence that if a flow
is partly turbulent for a particular Reynolds number, it will remain so under
decreasing viscosity and increasing Reynolds number. This can be motivated by
rescaling decreasing the length scale with the viscosity (thus focussing on a part
of the fluid domain) keeping the Reynolds number constant and thus expecting
the flow to remain turbulent.

This opens the possibility of detecting blowup of Euler solutions from finite
mesh size computation, in particular because EG2 solutions satisfy slip boundary
conditions and thus lack the thin boundary layers of slightly viscous Navier-
Stokes solutions satisfying no-slip boundary conditions, which are unresolvable
on any foreseeable computer. EG2 thus introduces viscous regularization in the
interior of the fluid domain combined with a weak Neumann velocity condition
in the tangential direction allowing slip. This is motivated by the experimentally
observed fact that the skin friction from non-zero tangential velocities on the
boundary, tends to zero as the viscosity tends to zero. This connects back
to Eulers original idea of the Euler equations with slip as a useful model of
slightly viscous flow, as developed in detail in [13], in contrast to the legacy of
Prandtl discarding Euler solutions because they do not satisfy no-slip boundary
conditions, thus requiring the resolution of thin boundary layers of Navier-Stokes
solutions, which however is impossible. We find that EG2/slip allows simulation
of flows with large Reynolds numbers (Re ≥ 106 say) on meshes with 106 mesh
points, rather than 1016 as required for no-slip according to state-of-the-art CFD
[16].

The Euler equations with slip boundary conditions thus are useful, because
solutions can be computed by EG2 and can provide important information,
such as the drag of a car, see Fig. 20.3 below, while the Navier-Stokes equations
with non-slip boundary conditions seem less useful, because solutions cannot
be computed. In particular, there may be strong reason to include the Euler
equations as a most useful limit case of the Navier-Stokes Millenium Problem,
instead of discarding it on formal reasons.
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8 Evidence of Blowup of Incompressible Flow

For the discussion we focus on blowup of potential flow around a circular
cylinder, and refer to a variety of similar results in our cited work. We summarize
the evidence in [13] for blowup of Euler solutions starting from smooth potential
flow as follows:

(a) EG2 solutions are representative viscosity solutions to the Euler equations
in the sense that mean value outputs such as drag and lift coefficients and
total turbulent dissipation, are wellposed under H−1 residual perturba-
tions.

(b) EG2 solutions show under finite mesh refinement substantial turbulent
dissipation with L2-residuals increasing like h−1/2, while H−1-residuals
decrease like h1/2.

(c) Outputs such as drag and lift of the potential solution have exponentially
large computed stability factors.

(d) The potential solution is linearly pointwise exponentially unstable.

(e) Detecting blowup into turbulence in an EG2 computation with a certain
finite mesh size, indicates blowup also for smaller mesh sizes.

Here (a)-(c) are shown by computation, while (d) follows by a simple analytical
argument. Now, (c) supported by (d) shows that the potential solution is not
wellposed and thus is not a representative solution. On the other hand, by (a)
EG2 solutions are wellposed representative solutions and since they by (b) show
to be turbulent, they give computational evidence of blowup of the potential
solution. Since the potential solution is resolvable with finite mesh size, there is
strong evidence that the turbulent blowup detection is correct.

Note that (e) is motivated by the fact that the effective Reynolds number in
EG2 scales with h−1, so that decreasing the mesh size increases the effective
Reynolds number, and thus by the above scaling argument turbulence cannot
disappear under mesh refinement. Of course a pure mathematician could ques-
tion this statement, claiming that we have not “proved” that decreasing the
mesh size/viscosity could not indicate instead non blowup. Of course, the ques-
tion is what exactly is meant by a “proof”. Ultimately it must come down to
an agreement among specialists. Of course, one may turn the question around
and ask anyone disputing the correctness of the blowup detection, to present
any argument supporting the idea that further decrease of mesh size/viscosity
could turn a turbulent solution into a fully laminar solution. We believe there
is no such argument.

We may compare with Perleman’s proof of the Poincaré conjecture, another
Millennium Problem, which is now under scrutiny by a group of specialists filling
in many missing details of Perelman’s original argument. Will it be possible
to work out every detail into a formal proof beyond any possible question by
anybody? If so, why did not Perelman write down this proof to start with?
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The wellposedness (a) follows from observing that the stability factor S in the
form of the H1-norm of the solution to a dual linearized problem, linearized at
computed solutions, is of moderate size. An EG2 solution with residual R and
stability factor S is thus showed to be representative by showing that it passes
the test

SR ≤ TOL.(8.1)

In order to be a representative solution, it is not enough to have a small residual
R; in addition SR has to be small according to (8.1). This test will disqualifies
the potential solution as a representative solution because the corresponding S
is exponentially large. The stability test (8.1) is a new crucial tool offered by
computation, inaccessible to mere analysis.

We sum up: EG2 solutions are specific viscosity solutions of the Euler equa-
tions with specific viscosity arising from least squares penalization of the Euler
residual, roughly speaking corresponding to introducing a standard viscosity
proportional to the mesh size. Inspecting EG2 solutions we find that they are
turbulent, in the sense that their Euler residuals are small weakly but large
strongly, and wellposed in the sense that certain mean-value outputs are stable
under mesh refinement. In short, we present evidence that the Euler equations
have wellposed non-smooth turbulent solutions for a variety of data, but no
smooth wellposed solutions. We detect blowup into turbulence with finite mesh
size and use a scaling argument to take this as evidence of blowup for smaller
mesh size in accessible to computation. We thus argue that blowup can be
detected by finite mesh size computation.

The computations in [13] were performed on a PC on meshes with up to
200.000 mesh points. We are now computing consistent results on a Blue Gene
with 2000 processors on meshes with up to 100 million mesh points. These new
results will be published shortly.

9 The Tolerance

For turbulent solutions there is for each choice of output a minimal possible
tolerance TOLm > 0. For example, if the output is the instantaneous drag d(t)
at time t, then TOLm cannot be smaller than the amplitude δ of the fluctuation
of d(t) in time, and δ > 0. If the output is a drag coefficient, that is a certain
meanvalue in time of d(t), that is a meanvalue over a certain number M of
periods of fluctuation of d(t), then it may be expected that

TOLm ≈ δ

Mθ
,

where 0.5 ≤ θ ≤ 1. In other words, the output of turbulent flow is not determined
up to a certain minimal tolerance, and once this tolerance has been reached in
computation, further mesh refinement does not improve the quality of the output
information. In practice, one may have with suitable normalization TOLm ≈ 0.1
for d(t), TOLm ≈ 0.01 for drag coefficients, but rarely TOLm ≈ 0.001 for any
output.
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This is different from laminar flow, for which with sufficient mesh refinement
any tolerance can be reached even for pointwise outputs. For turbulent flow the
minimal tolerance thus can be reached with a finite mesh size, while for laminar
flow further mesh refinement always decreases the tolerance.

EG2 finite mesh size computation for turbulent flow, thus can give best possible
output information, and a computed finite mesh size EG2 solution thus can be
fully representative in the sense that there is no better representative. This
supports the claim of this note that blowup of Euler solutions can be proved by
EG2 finite mesh size computation. The issue thus is not to compute on finest
possible meshes using maximal computational power, but rather the opposite.

10 Smooth Solutions and Non-Blowup

In [2, 4] a technique related to (2.1) is presented for proving existence of
a strong solution to the Navier-Stokes equations by computation: It is proved
that (i) if an approximate solution has a sufficiently small residual, then a strong
(smooth) exact solution exits, and (ii) if a smooth exact solution exists, then
there is an approximate solution with strongly small residual. The net result
of [4] is thus that existence of a smooth exact solution, and thus non-blowup,
can be verified by computation, with the important qualification of sufficiently
fine mesh size in order to guarantee sufficiently small residual. In other words
the implication notB → notA is proved in [4], where A = blowup of exact
solution, and B = blowup of Galerkin approximate solutions. The trouble with
this implication is that notB is never true, not even under vanishing mesh size:
Computed solutions with finite mesh size show blowup which does not disappear
under vanishing mesh size. The implication notB → notA thus is empty.

On the other hand, we give evidence that blowup can correctly be detected by
computations with finite mesh size based on the observed fact that full output
information of turbulent Euler solutions can be obtained by finite mesh size
computation. This is in contrast to computation of smooth solutions without
blowup for which no finite mesh size can give full information. To sum up,
turbulent flow is ideally suited to computation, since analytical information is
fully missing and computation can give full information.

11 The Incompressible Euler Equations

We recall the Euler equations expressing conservation of momentum and mass
of an incompressible inviscid fluid enclosed in a volume Ω in R

3 with boundary
Γ : Find the velocity u = (u1, u2, u3) and pressure p depending on (x, t) ∈ Ω̄× I
with Ω̄ = Ω ∪ Γ, such that

u̇+ (u · ∇)u+ ∇p = f in Ω × I,
∇ · u = 0 in Ω × I,
u · n = g on Γ × I,

u(·, 0) = u0 in Ω,

(11.1)

where n denotes the outward unit normal to Γ, f is a given volume force, g
is a given inflow/outflow velocity, u0 is a given initial condition, u̇ = ∂u

∂t and
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I = [0, T ] a given time interval. We notice the slip boundary condition expressing
inflow/outflow with zero friction.

The Euler equations in the pointwise form (11.1) look deceptively simple, but
have a major drawback: They cannot be solved exactly in a pointwise (not even
weak) sense, because of blowup by exponential instability into turbulence!

12 Exponential Instability

The lack of viscosity with regularizing effect make the Euler equations inac-
cessible to an analytical mathematical study. The difficulty is exposed by formal
linearization: Subtracting the Euler equations for two solutions (u, p) and (ū, p̄)
with corresponding (slightly) different data, we obtain the following linearized
equation for the difference (v, q) ≡ (u− ū, p− p̄):

v̇ + (u · ∇)v + (v · ∇)ū+ ∇q = f − f̄ in Ω × I,
∇ · v = 0 in Ω × I,
v · n = g − ḡ on Γ × I,

v(·, 0) = u0 − ū0 in Ω.

(12.1)

Formally, with u and ū given, this is a linear convection-reaction problem for
(v, q) with the reaction term given by the 3× 3 matrix ∇ū. By the incompress-
iblity, the trace of ∇ū is zero, which shows that in general ∇ū has eigenvalues
with real value of both signs, of the size of |∇u| (with | · | some matrix norm),
thus with at least one exponentially unstable eigenvalue. Thus we expect to
generically find exponential perturbation growth with exponent |∇u|. In par-
ticular, as we will see below, a smooth stationary potential solution is unstable
and under infinitesimal perturbations in finite time develops into a turbulent
solution with |∇u| large, as an analogue to the formation of shocks in com-
pressible flow. Birkhoff questions in [3] if there is any stable Euler solution,
but gets a devastating review in [18]. Fefferman states in [7]: “Many numerical
computations appear to exhibit blowup for solutions of the Euler equations, but
the extreme numerical instability of the equations makes it very hard to draw
reliable conclusions”. It is natural to ask why Fefferman views “the extreme
numerical instability of the equations”, not as a sign of instability and blowup,
but only as an obstacle to conclusion.

13 Gronwall Stability Estimates

In the analytical mathematical theory of partial differential equations, Gron-
wall type estimates are commonly used to assess the stability of the linearized
problem (12.1). A typical such estimate is obtained multiplying the momentum
equation of (12.1) by v, assuming f̄ = f and ḡ = g, and integrating in space to
obtain an estimate of the form

dw

dt
≤ ‖∇ū‖∞w on I,
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where w(t) = ‖v(t)‖2
0 with ‖ · ‖0 the L2(Ω) norm and ‖ · ‖∞ the L∞(Ω)-norm.

By integration in time it follows that

w(T ) ≤ exp(C)w(0),

where

C = C(∇ū) = exp(

∫ T

0

‖∇ū(t)‖∞ dt).(13.1)

It is then commonly argued that if C < ∞, then also exp(C) < ∞, and in
particular that w(T ) = 0 if w(0) = 0 showing uniqueness.

However, insisting that C < ∞ and exp(C) < ∞ express the same mathe-
matical inequality does not (as in the Clay problem formulation) acknowledge
the importance of Hadamard’s distinction between a wellposed problem with
moderate stability factor (C) and an illposed problem with large stability fac-
tor (exp(C)). Already the very moderate values ‖∇ū‖∞ = 20 and T = 15 will
give exp(C) = exp(300) ∼ 10100 = googol which is much bigger than the total
number of atoms on the Universe estimated to be around 1080. A solution with
stability factor of googol size is not wellposed. Note that Google derives its name
from googol; making no distinction between 10100 and 100 would be like mak-
ing no distinction beween the entire Google and one single paragraph, or more
precisely making no distintion between a natural number n and the totality of
numbers formed by n digits.

For potential flow, |∇ū| ∼ 1 indicating a perturbation growth of exp(T ) and
thus a transition time T ∼ log(1/h), since the residual perturbation is of size
h as long as the solution is smooth. We thus expect to see a weak logarithmic
dependence of the transition time on the mesh size (since all perturbations come
from the EG2 mesh computation).

We emphasize the importance of making a distinction between C and exp(C)
in connection with wellposedness. Without this distinction Hadamard’s funda-
mental concept of wellposedness looses its meaning along with mathematical
analysis of differential equations.

14 The Vorticity Equation

Formally applying the curl operator ∇× to the momentum equation we obtain
the vorticity equation

ω̇ + (u · ∇)ω − (ω · ∇)u = ∇× f in Ω,(14.1)

which is a convection-reaction equation in the vorticity ω = ∇ × u with coeffi-
cients depending on u, of the same form as the linearized equation (12.1), with
similar properties of exponential instability referred to as vortex stretching. The
vorticity is thus locally subject to exponential growth with exponent |∇u|.

In classical analysis it is often argued that from the vorticity equation (20.2),
it follows that vorticity cannot be generated starting from potential flow with
zero vorticity and f = 0, which is Kelvin’s theorem. But this is an incorrect
conclusion, since perturbations of f̄ of f with ∇ × f̄ 6= 0 must be taken into
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account. What you effectively see in computations is local exponential growth
of vorticity in vortex stretching, even if ∇ × f = 0, which is a main route of
instability to turbulence.

15 The Beale-Kato-Majda Blowup Criterion

A corner stone in the approach of local blowup presented in [5, 6] is a result
from 1984 by Beale-Kato-Majda [1] stating that “the maximum norm of the
vorticity alone controls the breakdown of smooth solutions for the 3d Euler
equations”: An initially smooth Euler solution does not blow up on [0, T ] if and
only if

C(ω) =

∫ T

0

‖ω(t)‖∞dt <∞,(15.1)

(or replacing ω with the symmetric part of ∇u [17]). This result is based on
Gronwall estimates without distinction between C(ω) and exp(C(ω)) and with-
out taking illposedness with exponential perturbation growth of size exp(C(ω))
into account, and thus its relevance can be questioned.

16 Viscous Regularization

We define the Euler residual by

R(u, p) ≡ f − (u̇+ (u · ∇)u+ ∇p),(16.1)

which is the residual of the momentum equation, assuming for simplicity that
the incompressiblity equation ∇ · u = 0 is not subject to perturbations. The
regularized Euler equations take the form: Find (uν , pν) such that

R(uν , pν) = −∇ · (ν∇uν) in Ω × I,
∇ · uν = 0 in Ω × I,
uν · n = g on Γ × I,

uν(·, 0) = u0 in Ω,

(16.2)

where ν > 0 is a small viscosity, together with a homogeneous Neumann bound-
ary condition for the tangential velocity. Notice that we keep the slip boundary
condition uν · n = g, which eliminates viscous Dirichlet no-slip boundary lay-
ers. The turbulence we will discover thus does not emanate from viscous no-slip
boundary layers (which is a common misconception). We consider here for sim-
plicity a standard ad hoc regularization and return to computational regulariza-
tion below. Existence of a pointwise solution (uν , pν) of (16.2) (allowing ν to
have a certain dependence on |∇u|), follows by standard techniques, see e.g. [5].
Notice that the Euler residual R(uν , pν) equals the viscous term −∇ · (ν∇uν),
which suggests an interpretation of the viscous term in the form of the Euler
residual.

The standard energy estimate for (16.2) is obtained by multiplying the mo-
mentum equation with uν and integrating in space and time, to get in the case
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f = 0 and g = 0,

∫ t

0

∫
Ω

R(uν , pν) · uν dxdt = D(uν ; t) ≡
∫ t

0

∫
Ω

ν|∇uν(s, x)|2dxds,(16.3)

from which follows by standard manipulations of the left hand side,

K(uν(t)) +D(uν ; t) = K(u0), t > 0,(16.4)

where

K(uν(t)) =
1

2

∫
Ω

|uν(t, x)|2dx.

This estimate shows a balance of the kinetic energy K(uν(t)) and the viscous
dissipation D(uν ; t), with any loss in kinetic energy appearing as viscous dis-
sipation, and vice versa. In particular D(uν ; t) ≤ K(0) and thus the viscous
dissipation is bounded (if f = 0 and g = 0).

Turbulent solutions of (16.2) are characterized by substantial turbulent dissi-
pation, that is (for t bounded away from zero),

D(t) ≡ lim
ν→0

D(uν ; t) >> 0.(16.5)

That a substantial positive limit exists is Kolmogorov’s conjecture, which is con-
sistent with

‖∇uν‖0 ∼ 1√
ν
, ‖R(uν , pν)‖0 ∼ 1√

ν
,(16.6)

where ‖ · ‖0 denotes the L2(Q)-norm with Q = Ω × I . On the other hand, it
follows by standard arguments from (16.4) that

‖R(uν , pν)‖−1 ≤
√
ν,(16.7)

where ‖ · ‖−1 is the norm in L2(I ;H
−1(Ω)). Kolmogorov thus conjectures that

the Euler residual R(uν , pν) is strongly (in L2) large, while being small weakly
(in H−1).

17 EG2 Regularization

An EG2 solution (U, P ) on a mesh with local mesh size h(x, t) according to
[13], satisfies the following energy estimate (with f = 0 and g = 0):

K(U(t)) +Dh(U ; t) = K(u0),(17.1)

where

Dh(U ; t) =

∫ t

0

∫
Ω

hR(U, P )2 dxdt,(17.2)

is an analog of D(uν ; t) with h ∼ ν. We see that the EG2 viscosity arises
from penalization of a non-zero Euler residual R(U, P ) with the penalty directly
connecting to the violation (according the theory of criminology). A turbulent
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solution is characterized by substantial dissipation Dh(U ; t) with ‖R(U, P )‖0 ∼
h−1/2, and

‖R(U, P )‖−1 ≤
√
h(17.3)

in accordance with (16.6) and (16.7). Inspection of computed EG2 solutions
show that they are turbulent with substantial turbulent dissipation.

EG2 explains the occurence of viscous effects in Euler solutions in a new
way, not simply assuming ad hoc that “there is always some small constant
shear viscosity”, but from the impossibility of pointwise exact conservation of
momentum. EG2 viscosity is not a simple constant shear viscosity but rather a
solution dependent bulk (or streamline) viscosity [13, 14].

18 Wellposedness of Mean-Value Outputs

Let M(v) =
∫

Q
vψdxdt be a mean-value output of a velocity v defined by a

smooth weight-function ψ(x, t), and let (u, p) and (U, P ) be two EG2-solutions
on two meshes with maximal mesh size h. Let (ϕ, θ) be the solution to the dual
linearized problem

−ϕ̇− (u · ∇)ϕ+ ∇U>ϕ+ ∇θ = ψ in Ω × I,
∇ · ϕ = 0 in Ω × I,
ϕ · n = g on Γ × I,

ϕ(·, T ) = 0 in Ω,

(18.1)

where > denotes transpose. Multiplying the first equation by u − U and inte-
grating by parts, we obtain the following output error representation [13, 14]

M(u) −M(U) =

∫
Q

(R(u, p) −R(U, P )) · ϕdxdt(18.2)

from which follows the a posteriori error estimate as an analog to (3.1):

|M(u) −M(U)| ≤ S(‖R(u, p)‖−1 + ‖R(U, P )‖−1),(18.3)

where the stability factor

S = S(u, U,M) = S(u, U) = ‖ϕ‖H1(Q).(18.4)

In [13] we present a variety of evidence, obtained by computational solution of
the dual problem, that for global mean-value outputs such as drag and lift, S <<
1/

√
h, while ‖R‖−1 ∼

√
h in conformity with (16.7), allowing EG2 solutions to

pass the wellposedness test (8.1) for TOL ≥ TOLm. The minimal tolerance
TOLm is determined computationally by observing stationarity of output quality
under mesh refinement [13]. We thus find evidence of wellposedness of mean-
value outputs of EG2 solutions to tolerances of interest showing that finite mesh
size EG2 solutions are representative solutions of the Euler equations.

Similarly we may test the wellposedness of any approximate Euler solution
(u, p) by the corresponding stability factor S(u, u). Given two approximate
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solutions (u, p) and (U, P ), there are thus four related stability factors, namely
S(u, u), S(u, U), S(U, u) and S(U,U) connecting to four dual problems with
various (perturbations) of the advection/reaction coefficients. We give in [13]
evidence that for EG2 solutions, these stability factors are of the same moderate
size. If (u, p) is an unstable potential solution, then S(u, u) is very large which
disqualifies a potential solution as a non-wellposed solution without significance.

We can thus test wellposedness of a single solution (u, p) on a single mesh,
typically and EG2 solution, by the size of the corresponding stability factor
S(u, u). This is analogous to testing the wellposedness of a solution x to a
scalar equation A(x) = b by the size of the stability factor S = |A′(x)−1|. For
a single solution with moderate size S(u, u), the output effect of a (sufficiently
small) residual perturbation dR is bounded by S(u, u)‖dR‖−1. For two EG2
solutions (u, p) and (U, P ) the stability factors S(u, U) and S(U, u) offer tests of
wellposedness for residual perturbations which are not necessarily very small.

19 Stability of the Dual Linearized Problem

A crude analytical stability analysis of the dual linearized problem (18.1) using
Gronwall type estimates, indicates that the dual problem is pointwise exponen-
tially unstable because the reaction coefficient ∇U is locally very large, in which
case effectively S = ∞. This is consistent with massive observation that point-
values of turbulent flow are non-unique or unstable.

On the other hand we observe computationally that S is not large for mean-
value outputs of turbulent solutions. We explain in [13] this remarkable fact as
an effect of cancellation from the following two sources:

(i) rapidly oscillating reaction coefficients of turbulent solutions,

(ii) smooth data in the dual problem for mean-value outputs.

For a laminar solution there is no cancellation, and therefore not even mean-
values are unique. This is d’Alembert’s paradox: A potential laminar solution
has zero drag, while an arbitrarily small perturbation will turn it into a turbulent
solution with substantial drag. The drag of a laminar solution is thus non-
unique in the sense that an arbitrarily small perturbation will change the drag
substantially. The stability factor is infinite for a laminar solution because of
lack of cancellation [13].

20 Flow around Circular Cylinder

We now present one of several examples of blowup in [13]. We consider poten-
tial flow (stationary inviscid incompressible irrotational flow) of a fluid of unit
density filling R

3 with coordinates x = (x1, x2, x3) and moving with velocity
(1, 0, 0) at infinity, around a circular cylinder of unit radius with axis along the
x3-axis. We recall that the potential flow is constant in the x3-direction and is
given (in polar coordinates (r, θ) in a (x1, x2)-plane) by the potential function

ϕ(r, θ) = (r +
1

r
) cos(θ)
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with corresponding velocity components

ur ≡ ∂ϕ

∂r
= (1 − 1

r2
) cos(θ), us ≡ ∂u

∂s
≡ 1

r

∂ϕ

∂θ
= −(1 +

1

r2
) sin(θ).

This is a fully symmetric solution with zero drag, see Fig. 20.1.
We find that an EG2 solution initiated as the potential flow with zero drag

over time exhibits blowup into a turbulent solution with substantial turbulent
dissipation in a low pressure turbulent wake, as displayed in Fig. 20.1, with
substantial drag with drag coeffient ≈ 1.0 in accordance with experiments for
high Reynolds number flow (beyond the drag crisis). In particular we find strong
vorticity in the streamline direction attaching at rear separation coupled with low
pressure generating drag. Below we describe a scenario based on the linearized
equations for the blowup of the potential solution into the turbulent solution
with strong streamwise vorticity generated at rear separation.

We observe [13] a (relative) fluctuation of the momentary drag d(t) of about
20% with corresponding minimal (relative) tolerance TOLm ≈ 0.2. For the drag-
coefficient, which is a mean-values in time, we may reach TOLm ≈ 0.01 according
to aposteriori estimation by duality [13], while a relative tolerance of 0.001 may
be uattainable. We thus find that the drag of EG2 solutions is wellposed to
a certain minimal tolerance TOLm ≈ 0.01. We thus find EG2 solutions to be
representative solutions with blowup and we thus obtain evidence of (II).

21 An Analysis of Blowup at Rear Separation

We now analyze the mechanism underlying the generation of low pressure
streamwise streaks at rear separation through the linearized problems (12.1) in
velocity-pressure and (20.2) in vorticity. As a model of potential flow at rear
separation, we consider the potential flow u = (x1,−x2, 0) in the half-plane
{x1 > 0}. Assuming x1 and x2 are small, we approximate the ϕ2-equation of
(12.1) by

ϕ̇2 − ϕ2 = f2

where f2 = f2(x3) is an oscillating mesh residual perturbation depending on
x3 (including also a pressure-gradient), for example f2(x3) = h sin(x3/δ), with
δ > 0. It is natural to assume that the amplitude of f2 decreases with δ. We
conclude, assuming φ2(0, x) = 0, that

ϕ2(t, x3) = t exp(t)f2(x3),

and for the discussion, we assume ϕ3 = 0. Next we approximate the ω1-vorticity
equation for x2 small and x1 ≥ x̄1 > 0 with x̄1 small, by

ω̇1 + x1
∂ω1

∂x1
− ω1 = 0,

with the “inflow boundary condition”

ω1(x̄1, x2, x3) =
∂v2
∂x3

= t exp(t)
∂f2
∂x3

.
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The equation for ω1 thus exhibits exponential growth, which is combined with
exponential growth of the “inflow condition”. Altogether we expect exp(t) per-
turbation growth of residual perturbations of size h, resulting in a global change
of the flow after time T ∼ log(1/h), which can be traced in the computations.

We thus understand that the formation of streamwise streaks as the result
of a force perturbation oscillating in the x3 direction, which in the retardation
of the flow in the x2-direction creates exponentially increasing vorticity in the
x1-direction, which acts as inflow to the ω1-vorticity equation with exponential
growth by vortex stretching. Thus, there is exponential growth at rear sepa-
ration in both the retardation in the x2-direction and the accelleration in the
x1 direction. Note that since the perturbation is convected with the base flow,
the absolute size of the growth is related to the length of time the perturbation
stays in a zone of exponential growth. Since the combined exponential growth is
independent of δ, it follows that large-scale perturbations with large amplitude
have largest growth, which is also seen in computations with δ the distance be-
tween streamwise streaks as seen in Fig. 20.2 which does not seem to decrease
with decreasing h.

Notice that at forward separation the retardation does not come form opposing
flows, and the zone of exponential growth of ω2 is short, resulting in much smaller
perturbation growth than at rear separation.

22 Summary

We have detected blowup of smooth potential flow into non-smooth turbulent
flow in computed EG2 solutions. We have found by duality-based a posteri-
ori error estimation that mean-value outputs of EG2 solutions are wellposed to
tolerances of interest, showing that EG2 solutions are representative viscosity
solutions of the Euler equations. We have given evidence that correct blowup de-
tection is possible with finite mesh size. Altogether, we have presented evidence
of (II).
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tion physique. Princeton University Bulletin, 49-52, 1902.

10. J. Deng, T. Y. Hou, and X. Yu, Geometric properties and the non-blowup of
the three-dimensional Euler equation, Comm. PDEs, 30:1 (2005), 225-243.

11. J. Deng, T. Y. Hou, and X. Yu, Improved Geometric Conditions for Non-
blowup of the 3D Incompressible Euler Equation, Communication in Partial
Differential Equations, 31 (2006), 293-306.

12. T. Y. Hou and R. Li, Dynamic Depletion of Vortex Stretching and Non-
Blowup of the 3-D Incompressible Euler Equations, J. Nonlinear Science, 16
(2006), 639-664.

13. J. Hoffman and C. Johnson, Computational Turbulent Incompressible Flow,
Springer, 2007.

14. J. Hoffman and C. Johnson, Computational Thermodynamics, Springer, 2008.

15. J. Hoffman and C. Johnson, Resolution of d’Alembert’s paradox, to appear
in Journal of Mathematical Fluid Mechanics.

16. P. Moin and J. Kim, Tackling turbulence by supercomputers, Scientific Amer-
ican, 1997.

17. G. Ponce, Remarks on a paper by J.T. Beale, T. Kato and A. Majda, Com-
mun. Math. Phys. 98, 349-352, 1985.

18. J. Stoker, Bull. Amer. Math. Soc. Am. Math., Vol 57(6), pp 497-99.



20 JOHAN HOFFMAN and CLAES JOHNSON

Figure 20.1: Flow past a cylinder; velocity (top) and pressure (bottom) for potential
solution (left) and and EG2 turbulent solution (right). Notice the fully symmetric
potential flow with zero drag, a and the low pressure wake from strong streamwise
vorticity of the turbulent solution generating drag.
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Figure 20.2: Levels surfaces of strong vorticity in EG2 solution: streamwise |ω1| (left)
and transversal |ω2| (middle) and |ω3| (right), at three times t1 < t2 < t3 (upper,
middle, lower), in the x1x3-plane.

Figure 20.3: Streamlines and magnitude of tangential velocity for EG2 solution for flow
around a car with turbulent wake and correct (substantial) drag (courtesy of Volvo Car
for the geometry).


