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Abstract

We present evidence that the problem of breakdown/blowup of smooth
solutions of the Euler and Navier-Stokes equations, is closely related to
Hadamard’s concepts of wellposedness and illposedness. We present a
combined criterion for blowup, based on detecting increasing L2-residuals
and stability factors, which can be tested computationally on meshes of
finite mesh size.

1 The Clay Navier-Stokes Millennium Problem

The Clay Mathematics Institute Millennium Problem on the incompressible
Navier-Stokes equations [5, 8] asks for a proof of (I) global existence of smooth
solutions for all smooth data, or a proof of the converse (II) non global existence
of a smooth solution for some smooth data, referred to as breakdown or blowup.

The analogous problem for the inviscid incompressible Euler equations is
mentioned briefly in [8] and in [7] described as “a major open problem in PDE
theory, of far greater physical importance than the blowup problem for Navier-
Stokes equations, which of course is known to the nonspecialists because it is
a Clay Millenium Problem”. In the recent survey [3] the problem is described
as “one of the most important and challenging open problems in mathematical
fluid mechanics”. Since the viscosity the Millennium Problem is allowed to be
arbitarily small and solutions of the Euler equations are defined as viscosity
solutions of the Navier-Stokes equations under vanishing viscosity, the Euler
equations effectively are included in the Millenium Problem as a limit case.

In [16] we presented evidence that a specific initially smooth solution of the
Euler equations, potential flow around a circular cylinder, in finite time exhibits
blowup into a turbulent non-smooth solution, that is we presented evidence of
(II). More generally, we presented evidence that all (non-trivial) initially smooth
Euler solutions exhibit blowup into turbulent solutions. In particular, we argued
that blowup can be detected computationally on computational meshes of finite
mesh size. This work closely connects to the new resolution of d’Alembert’s
paradox presented in [15].
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2 The Beale-Kato-Majda Non Blowup Criterion

In [8, 6, 7, 12] existence of a smooth velocity-pressure solution (u, p) of the
incompressible Euler equations in R

3 over the time interval [0, T ], is identified
by the following non-blowup criterion by Beale-Kato-Madja [1]:

C(ω) =

∫ T

0

‖ω(·, t)‖∞dt <∞, (1)

where ω(x, t) = ∇× u(x, t) is the vorticity at (x, t) ∈ R
3 × [0, T ] and ‖ · ‖∞ the

maximum-norm over R
3. More precisely, it is proved (under zero forcing) that

for s ≥ 3 there is a constant C (depending on C(ω), T and ‖u(0)‖s), such that

max
0≤t≤T

‖u(t)‖s ≤ exp(CC(ω))‖u(0)‖s, (2)

where ‖ · ‖s is the Hs(R3)-norm. In particular, it is argued that if C(ω) < ∞,
then also exp(CC(ω)) < ∞ and thus that if the inital velocity u(0) ∈ Hs(R3),
then u(t) ∈ Hs(R3) for 0 < t ≤ T . In other words, it is argued that initial
smoothness is preserved modulo the exponential growth factor exp(CC(ω)).
The non blowup criterion (1) thus states that if ‖ω(t)‖∞ does not blow up to
infinity as required for violation of (1), then neither the stronger norms ‖u(t)‖s

for s ≥ 3 blow up to infinity for 0 ≤ t ≤ T .
In [16] we questioned the relevance of this conclusion with the argument that

since an exponential factor can be very large even if the exponent is not large
(compare googol = 10100 with 100), it is not clear that (2) implies smoothness
in the sense that ‖u(t)‖s is bounded if ‖u(0)‖s is bounded. A statement about
smoothness as boundedness of derivatives, can obviously be questioned under
multiplication by googol.

There is another aspect of (1), which is even more cumbersome, namely
that it seems in a sense to be void of application: There is strong evidence
that (1) is never true, because all Euler solutions blow up for T non small
[16]. Thus the implication (1) ⇒ (2) seems to be empty. We meet here the
same situation as with the computational non-blowup criterion for Navier-Stokes
solutions presented in [4], which also seems void of application in the case of
small viscosity [16]. Any criterion for non-blowup would be vacous, if there
is always blowup. Of course, one could argue that (1) can be turned into a
criterion for blowup of the form C(ω) = ∞, which however, would be trivial in
the sense that if ω = ∇ × u blows up, then so does a derivative of u, namely
∇× u. Motivated by a blowup condition of the form C(ω) = ∞, considerable
effort has gone into finding Euler solutions developing infinite vorticity, however
without any definitive results [7, 12].

3 Illposedness and Blowup

In [16] we pointed to the fact that since Hadamard [9], it is well understood
that solving differential equations such as the Euler equations, perturbations of
data (forcing and initial/boundary values) have to be taken into account. If a
vanishingly small perturbation can have a major effect on a solution, then the
solution (or problem) is illposed, and in this case the solution may not carry any

2



meaningful information and thus may be meaningless from both mathematical
and applications points of view. According to Hadamard, only a wellposed solu-
tion, for which small perturbations have small effects (in some suitable sense),
can be meaningful. In this perspective it is remarkable that wellposedness is
not an issue in the Millenium Problem formulation [8]. It may be connected to
a common misinterpretation of wellposedness as “continuous dependence” with
the essential quantitative aspect of requiring small effects of small perturbations
being lost.

It is thus natural to view the bound (2) with a very large exponential fac-
tor, rather as an expression of illposedness and blowup, than non-blowup: If
‖u(T )‖s = 10100 while ‖u(0)‖s = 100, then initial data shows blowup by a
factor 1098, which expresses (extreme) illposedness in the Hs-norm.

The objective of this note is to substantiate that there is a close connection
between blowup and illposedness. This opens to detecting blowup by compu-
tationally detecting strong perturbation growth, again as in [16] on meshes of
finite mesh size.

On the other hand, seekingas in [12] to detect blowup by computationally
showing that C(ω) = ∞, in principle requires an infinitely small mesh size
capturing a vorticity tending pointwise to infinity, which is impossible to realize.
Accordingly, blowup is not detected in [12], despite that double exponential
growth of the vorticity is discovered, which we argue is an indication illposedness
and blowup.

4 The Euler Blowup Problem

The Euler equations express conservation of mass, momentum and total en-
ergy of a fluid with vanishingly small viscosity (inviscid fluid). In the case of
compressible flow, it is well known that initially smooth solutions to the Euler
equations in general develop into discontinuous shock solutions in finite time.
Such shock solutions thus exhibit blowup in the sense that they have infinitely
large derivatives and Euler residuals at the shock violating the Euler equations
pointwise. The formation of shocks shows non-existence of pointwise solutions
to the compressible Euler equations. Concepts of weak solution have been de-
veloped accomodating after-blowup shock solutions with Euler residuals being
large in a strong (pointwise) sense and vanishingly small in a weak sense, but
both the existence and uniqueness of weak solutions represent open problems
since long.

Regularized Euler equations are augmented by a viscous term with small pos-
itive viscosity coefficient with the effect that the blowup to infinity of derivates
and Euler residuals is curbed. Existence of pointwise solutions to suitably reg-
ularized Euler equations, referred to as viscosity solutions, follows by standard
analytical techniques, see [6, 14]. Viscosity solutions have pointwise (strongly)
large and weakly small Euler residuals as a reflection of the non-existence of
pointwise (strong) solutions to the Euler equations.

Proving convergence of viscosity solutions to weak solution limits of the Euler
equations under vanishing viscosity, has remained a main challenge to analyt-
ical mathematics since the 1950s, but the progress has been limited to model
problems; the difficulty is related to the non-existence of pointwise solutions
and lack of viscosity in the Euler equations. Accordingly we have proposed as
a possibly more fruitful object of mathematical study wellposedness of viscosity
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solutions under vanishing viscosity, that is, what outputs of viscosity solutions
are wellposed under vanishing viscosity [13].

Incompressible flow does not form shocks and one may ask if initially smooth
solutions of the incompressible Euler equations exhibit blowup or not, which
is the Millennium Problem in the case of vanishing viscosity. The existing
literature, see [6, 10, 11, 12] and references therein is not decisive and evidence
for both blowup and not blowup is presented. The study has further been
limited in time to before blowup, discarding the highly relevant question of
what happens after blowup.

In [16] we presented evidence of blowup for the incompressible Euler equa-
tions drawing from our recent work [13] and references therein, widening the
study to both before and after blowup. We computed specific viscosity solu-
tions by a least squares residul-stabilized finite element method referred to as Eu-
ler General Galerkin or EG2. We detected wellposedness of mean-value outputs
such as drag and lift (coefficients). We found that the phenomenon of turbulence
in incompressible flow, plays a similar role in blowup as that of shock formation
in compressible flow: Initially smooth solutions of regularized incompressible
Euler equations in general in finite time show blowup into turbulent solutions,
characterized by pointwise large (weakly small) Euler residuals and substantial
turbulent dissipation. We gave evidence that the blowup into turbulence results
from pointwise instability, forcing smooth solutions to develop into turbulent
solutions, as a parallel to the inevitable shock formation in compressible flow.

We detected blowup by increasing space-time L2-norms of EG2 Euler residu-
als with decreasing mesh size, and gave evidence that blowup can be detected by
computation with finite mesh size. We also included the process after blowup.
We referred to this approach as global blowup, as compared to local blowup
based on (1) used in [12]. We thus avoided the seemingly impossible task of
a providing a precise analysis of the route to local blowup of a smooth exact
Euler solution. Instead we observed initial smooth potential flow develop into
turbulent flow identified by increasing L2-residuals under decreasing mesh size.
In this approach there is no pointwise unique route to blowup with a unique
blowup time, since the transition to turbulence feeds on the mesh-dependent
residual perturbations in EG2 computation. We showed that the transition to
turbulence in potential flow is driven by exponential perturbation growth in time
with corresponding logarithmic growth in the mesh size of the effective time to
transition. We thus studied global blowup of EG2/viscosity solutions under de-
creasing mesh size/viscosity including wellposedness, and not as in [6, 10, 11, 12]
local blowup of exact Euler solutions without wellposedness.

5 Blowup Detection for Burgers Solutions

As an instructive model of the Euler equations, we consider Burgers’ equation:
Find the scalar function u(x, t) defined on R × [0, T ] such that

u̇+ uu′ = 0 in R × (0, T ],

u(0, x) = u0(x),
(3)

where u0 is a given initial value (with compact support) and u̇ = ∂u
∂t and u′ = ∂u

∂x .
It is well known that all initially smooth solutions in finite time develop into
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piecewise smooth discontinuous shock solutions with (a finite number of) jump
discontinuities (with the left hand limit larger than the right hand limit). All
initially smooth solution thus exhibit blowup into non-smooth shock solutions.

Wellposedness of a Burgers’ solution u is governed by stability properties of
the linearized Burgers’ equation:

v̇ + uv′ + u′v = 0 in R × (0, T ],

v(0, x) = v0(x),
(4)

where v represents a perturbation. This is a linear convection-reaction problem
with convection coefficient u and reaction coefficient u′. The solution u is said
to be wellposed in the L2-norm ‖ · ‖0 if for t > 0

‖v(·, t)‖0 ≤ K‖v0‖0, (5)

where K is of moderate size. If K is exponentially large (K ≥ exp(C) with C
of moderate size, e.g. K = 10100 with C = 100), then the solution u is illposed
(in L2).

To study the well/illposedness of a Burgers solution u, we multiply the lin-
earised equation (4) by v, and integrate in space to obtain

d

dt
‖v(·, t)‖2

0 +

∫
R

u′(x, t)v2(x, t) dx = 0, (6)

which shows that the growth of ‖v(·, t)‖2 directly connects to the reaction co-
efficient u′(x, t). If u′ ≥ 0 everywhere, there is only decay, while if somewhere
u′(x, t) < 0, then exponential growth is possible. By a Gronwall estimate, we
have

‖v(T )‖2
0 ≤ exp(C(u′))‖v(0)‖2

0, (7)

where

C(u′) =

∫ T

0

‖u′−(·, t)‖∞dt, (8)

with u′− the negative part of u′. We thus may expect for the corresponding
perturbation growth

‖v(T )‖0

‖v(0)‖0
≈ exp(C(u′)/2) (9)

if the support of v suitably overlaps with the region where −u′
− attains its

maximum. In particular we expect strong perturbation growth in L2 at shocks
with −u′ >> 1.

The linearized Burgers equation also governs the smoothness of Burgers so-
lutions: For example, differentiating Burgers equation with respect to x leads to
the linearized equation (4) with v = u′. For a shock solution (9) then expresses
the strong growth of u′ as a shock is forming and initial smoothness is lost.
Other derivatives are handled similarly [1, 17].

This analysis shows that there is a direct coupling between shock develop-
ment, blowup and illposedness: As a shock is forming from smooth initial data,
−u′ blows up to infinity along with perturbations expressing illposedness. This
identification makes it possible to detect blowup of a solution u in two differ-
ent ways: (i) by shock development and (ii) by illposedness of the linearized
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equations. In both cases, the key question is if the detection can be made
computationally on a mesh of finite mesh size.

We recall the discussion of (i) in [16]: Consider the stationary non-smooth
shock solution u(x) = 1 for x < 0 and u(x) = −1 for x > 0, which can
develop from smooth initial data. Let h > 0 and define Uh(x) = 1 for x < −h,
Uh(x) = −x

h for −h ≤ x ≤ h, Uh(x) = −1 for x > h, represent a corresponding
computational (continuous piecewise linear finite element) solution on a mesh
with mesh size h. We have

∫ h

−h

(UhU
′
h)2dx =

2

3h

and thus the L2-norm of the Burgers residual UhU
′
h scales like h−1/2. Detecting

h−1/2 increase of L2-residuals under decreasing mesh size would then be identi-
fied with blowup into a shock, since in smooth parts the residual would decrease
like h. Apparently, the shock would be correctly detected with a finite mesh
size.

We may compare with detecting shocks by local blowup, resolving the flow
pointwise as the shock is forming. This requires mesh refinement without limit,
and like Achilles will never reach the goal.

We compare with a rarefaction wave u(x, t) = x
t for |x| ≤ t, u(x, t) = −1 for

x < −t, u(x, t) = 1 for x > t, with corresponding initial data u0(x) = −1 for
x < 0 and u0(x) = 1 for x > 0. In this case u′ ≥ 0, showing that ‖v(t)‖ ≤ ‖v(0)‖
indicating wellposedness and non-blowup. In this case we can assume Uh = u,
because u(·, t) is continuous piecewise linear, and thus the Euler residual will
be small and also indicate non-blowup.

More generally, to accurately detect a shock in a Burgers solution u, the
smooth part of u has to be resolved in order to correctly single out a shock
from a smooth part. Now, the general structure of Burgers solutions as being
piecewise smooth with jumps allows detection with a finite mesh size. The
structure of Burgers solutions with a resolvable smooth part and sharp shocks
with no smallest scale, thus makes blowup detection possible without requiring
the mesh size to be infinitely small. Thus beyond the resolvable scale of the
smooth part there are can be no surprises to be found by decreasing the mesh
size, since all there is are shocks separated by smooth parts.

Computational blowup detection by (ii) is based on solving the linearized
equation with a suitable perturbation designed to capture strong perturbation
growth. Since the local perturbation growth is governed by −u′

−(x, t), we ex-
pect to find increasing local perturbation growth with mesh refinement since
−u′−(x, t) is increasing locally with decreasing mesh size.

We can now combine (i) and (ii) into a double criterion of blowup based on
increasing L2-residuals and perturbation growth with decreasing mesh size, for
which finite mesh size can be sufficient.

In [14] we show by a refined stability analysis of the linearized problem,
that in EG2 computation a shock is in fact wellposed, because the Galerkin
orthogonality of EG2 give EG2 perturbations a special quality escaping from
the illposedness of general L2-perturbations.
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6 The Incompressible Euler Equations

We now turn to detection of blowup of solutions of the incompressible Euler
equations expressing conservation of momentum and mass of an incompressible
inviscid fluid enclosed in a volume Ω in R

3 with boundary Γ : Find the velocity
u = (u1, u2, u3) and pressure p depending on (x, t) ∈ Ω̄ × I with Ω̄ = Ω ∪ Γ,
such that

u̇+ (u · ∇)u+ ∇p = f in Ω × I,
∇ · u = 0 in Ω × I,
u · n = g on Γ × I,

u(·, 0) = u0 in Ω,

(10)

where n denotes the outward unit normal to Γ, f is a given volume force,
g is a given inflow/outflow velocity, u0 is a given initial condition, u̇ = ∂u

∂t
and I = (0, T ] a given time interval. We notice the slip boundary condition
expressing inflow/outflow with zero friction.

7 Exponential Instability

Subtracting the Euler equations for two solutions (u, p) and (ū, p̄) with corre-
sponding (slightly) different data, we obtain the following linearized equation
for the difference (v, q) ≡ (u− ū, p− p̄):

v̇ + (u · ∇)v + (v · ∇)ū+ ∇q = f − f̄ in Ω × I,
∇ · v = 0 in Ω × I,
v · n = g − ḡ on Γ × I,

v(·, 0) = u0 − ū0 in Ω.

(11)

With u and ū given, this is a linear convection-reaction problem for (v, q) with
the reaction term given by the 3×3 matrix ∇ū, similar to the linearized Burgers
equation. By the incompressiblity, the trace of ∇ū is zero, which shows that
in general ∇ū has eigenvalues with real value of both signs, of the size of |∇ū|
(with | · | som matrix norm), thus with at least one exponentially unstable
eigenvalue. Thus we expect to generically find exponential perturbation growth
with exponent |∇u| and thus illposedness.

Birkhoff questions in [2] if there is any stable Euler solution, but gets a dev-
astating review in [18]. Fefferman states in [8]: “Many numerical computations
appear to exhibit blowup for solutions of the Euler equations, but the extreme
numerical instability of the equations makes it very hard to draw reliable con-
clusions”. It is natural to ask why Fefferman views “the extreme numerical
instability of the equations”, not as a sign of instability or illposedness and
blowup, but only as an obstacle to conclusion.

8 Gronwall Stability Estimates

Multiplying the momentum equation of (11) by v, assuming f̄ = f and ḡ = g,
and integrating in space, we obtain an estimate of the form

dw

dt
≤ ‖∇ū‖∞w on I,

7



where w(t) = ‖v(t)‖2
L2(Ω) and ‖ · ‖∞ the L∞(Ω)-norm. By integration in time

we obtain the following analogue of (8):

w(T ) ≤ exp(C(∇ū))w(0),

where

C(∇ū) = exp(

∫ T

0

‖∇ū(t)‖∞ dt), (12)

replaces the constant Cω appearing in (2), c.f. [17].

9 The Vorticity Equation

Formally applying the curl operator ∇× to the momentum equation we obtain
the vorticity equation

ω̇ + (u · ∇)ω − (ω · ∇)u = ∇× f in Ω, (13)

which is a convection-reaction equation in the vorticity ω = ∇× u with coeffi-
cients depending on u, of the same form as the linearized equation (11), with
similar properties of exponential instability referred to as vortex stretching. The
vorticity is thus locally subject to exponential growth with exponent |∇u|.

In classical analysis it is often argued that from the vorticity equation (13),
it follows that vorticity cannot be generated starting from potential flow with
zero vorticity and f = 0, which is Kelvin’s theorem. But this is an incorrect
conclusion, since perturbations of f̄ of f with ∇ × f̄ 6= 0 must be taken into
account. What you effectively see in computations is local exponential growth
of vorticity in vortex stretching, even if ∇ × f = 0, which is a main route of
instability to turbulence.

10 Viscous Regularization

We define the Euler residual by

R(u, p) ≡ u̇+ (u · ∇)u+ ∇p− f, (14)

which is the residual of the momentum equation, assuming for simplicity that
the incompressiblity equation ∇ · u = 0 is not subject to perturbations. The
regularized Euler equations take the form: Find (uν , pν) such that

R(uν , pν) = −∇ · (ν∇uν) in Ω × I,
∇ · uν = 0 in Ω × I,
uν · n = g on Γ × I,

uν(·, 0) = u0 in Ω,

(15)

where ν > 0 is a small viscosity, together with a homogeneous Neumann bound-
ary condition for the tangential velocity. Notice that we keep the slip boundary
condition uν ·n = g, which eliminates viscous Dirichlet no-slip boundary layers.
The turbulence we discover thus does not emanate from viscous no-slip bound-
ary layers (which is a common misconception). We consider here for simplicity
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a standard ad hoc regularization and return to computational regularization
below. Existence of a pointwise solution (uν , pν) of (15) (allowing ν to have a
certain dependence on |∇u|), follows by standard techniques, see e.g. [6]. Notice
that the Euler residual R(uν , pν) equals the viscous term −∇ · (ν∇uν), which
suggests an interpretation of the viscous term in the form of the Euler residual.

The standard energy estimate for (15) is obtained by multiplying the mo-
mentum equation with uν and integrating in space and time, to get in the case
f = 0 and g = 0,

∫ t

0

∫
Ω

R(uν , pν) · uν dxdt = D(uν ; t) ≡
∫ t

0

∫
Ω

ν|∇uν(s, x)|2dxds, (16)

from which follows by standard manipulations of the left hand side,

K(uν(t)) +D(uν ; t) = K(u0), t > 0, (17)

where

K(uν(t)) =
1

2

∫
Ω

|uν(t, x)|2dx.

This estimate shows a balance of the kinetic energy K(uν(t)) and the viscous
dissipation D(uν ; t), with any loss in kinetic energy appearing as viscous dis-
sipation, and vice versa. In particular D(uν ; t) ≤ K(0) and thus the viscous
dissipation is bounded (if f = 0 and g = 0).

Turbulent solutions of (15) are characterized by substantial turbulent dissi-
pation, that is (for t bounded away from zero),

D(t) ≡ lim
ν→0

D(uν ; t) >> 0. (18)

That a positive limit (∼ 1) exists is Kolmogorov’s conjecture, which is consistent
with

‖∇uν‖0 ∼ 1√
ν
, ‖R(uν , pν)‖0 ∼ 1√

ν
, (19)

where ‖ · ‖0 denotes the L2(Q)-norm with Q = Ω × I . On the other hand, it
follows by standard arguments from (17) that

‖R(uν , pν)‖−1 ≤
√
ν, (20)

where ‖ · ‖−1 is the norm in L2(I ;H
−1(Ω)). Kolmogorov thus conjectures that

the Euler residual R(uν , pν) is strongly (in L2) large, while being small weakly
(in H−1).

11 EG2 Regularization

An EG2 solution (U, P ) on a mesh with local mesh size h(x, t) according to [13],
satisfies the following energy estimate (with f = 0 and g = 0):

K(U(t)) +Dh(U ; t) = K(u0), (21)

where

Dh(U ; t) =

∫ t

0

∫
Ω

hR(U, P )2 dxdt, (22)
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is an analog of D(uν ; t) with h ∼ ν. We see that the EG2 viscosity arises
from penalization of a non-zero Euler residual R(U, P ) with the penalty directly
connecting to the violation (according the theory of criminology). A turbulent
solution is characterized by substantial dissipation Dh(U ; t) with ‖R(U, P )‖0 ∼
h−1/2, and

‖R(U, P )‖−1 ≤
√
h (23)

in accordance with (19) and (20).
EG2 explains the occurence of viscous effects in Euler solutions in a new

way, not simply assuming ad hoc that “there is always some small constant
shear viscosity”, but from the impossibility of pointwise exact conservation of
momentum. EG2 viscosity is not a simple constant shear viscosity but rather a
solution dependent bulk (or streamline) viscosity [13, 14].

12 Wellposedness of Mean-Value Outputs

Let M(v) =
∫

Q vψdxdt be a mean-value output of a velocity v defined by a

smooth weight-function ψ(x, t), and let (u, p) and (U, P ) be two EG2-solutions
on two meshes with maximal mesh size h. Let (ϕ, θ) be the solution to the dual
linearized problem

−ϕ̇− (u · ∇)ϕ + ∇U>ϕ+ ∇θ = ψ in Ω × I,
∇ · ϕ = 0 in Ω × I,
ϕ · n = g on Γ × I,

ϕ(·, T ) = 0 in Ω,

(24)

where > denotes transpose. Multiplying the first equation by u − U and inte-
grating by parts, we obtain the following output error representation [13, 14]

M(u) −M(U) =

∫
Q

(R(u, p) −R(U, P )) · ϕdxdt (25)

from which follows the a posteriori error estimate

|M(u) −M(U)| ≤ S(‖R(u, p)‖−1 + ‖R(U, P )‖−1), (26)

where the stability factor

S = S(u, U,M) = S(u, U) = ‖ϕ‖H1(Q). (27)

In [13] we presented a variety of evidence, obtained by computational solution
of the dual problem, that for global mean-value outputs such as drag and lift,
S << 1/

√
h, while ‖R‖−1 ∼

√
h in conformity with (20). This allows an EG2

solution (U, P ) to pass a wellposedness test of the form

S(U,U)‖R(U, P )‖−1 ≤ TOL (28)

for tolerances TOL > 0 and mesh sizes h of interest, because S(U,U) of mod-
erate size.
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A crude analytical stability analysis of the dual linearized problem (24) using
Gronwall type estimates, indicates that the dual problem is pointwise exponen-
tially unstable because the reaction coefficient ∇U is locally very large, in which
case effectively S(U,U) = ∞. This is consistent with massive observation that
point-values of turbulent flow are non-unique or illposed.

On the other hand we observe computationally that S is not large for mean-
value outputs of turbulent solutions. We explain in [13] this remarkable fact as
an effect of cancellation from the following two sources:

(i) rapidly oscillating reaction coefficients of turbulent solutions,

(ii) smooth data in the dual problem for mean-value outputs.

For a laminar solution there is no cancellation, and therefore not even mean-
values are unique. This is d’Alembert’s paradox: A potential laminar solution
has zero drag, while an arbitrarily small perturbation will turn it into a turbulent
solution with substantial drag. The drag of a laminar solution is thus non-
unique in the sense that an arbitrarily small perturbation will change the drag
substantially. The stability factor is infinite for a laminar solution because of
lack of cancellation [13].

13 Blowup Detection for Euler Solutions

To detect blowup in general should be an easier task than to accurately compute
a wellposed output, because blowup can be viewed as a very crude output.
We now consider the problem of detecting blowup of an incompressible Euler
solution according to (i) and (ii) starting with (i).

Massive evidence indicates that incompressible Euler solutions have a gen-
eral structure simular to that of a Burgers solution, with a smooth (laminar)
part resolvable with finite mesh size combined with a turbulent part with no
smallest scale and thus unresolvable on all meshes. Again we seem to have a
dichotomy into a resolvable and an unresolvable part, allowing accurate blowup
detection with finite mesh size/viscosity. Massive evidence indicates that a flow
becomes partly turbulent if the Reynolds number Re is large enough, where
Re = UL

ν with U a representative velocity, L a length scale and ν the viscosity.
In particular, there is massive evidence that if a flow is partly turbulent for a
particular Reynolds number, it will remain so under decreasing viscosity and
increasing Reynolds number. This can be motivated by rescaling decreasing the
length scale with the viscosity (thus focussing on a part of the fluid domain)
keeping the Reynolds number constant and thus expecting the flow to remain
turbulent.

This seems to open the possibility of detecting blowup of Euler solutions from
finite mesh size computation, by detecting ‖R(U, P )‖0 ∼ h−1/2. This is possible
partly because EG2 solutions satisfy slip boundary conditions and thus lack the
thin boundary layers of slightly viscous Navier-Stokes solutions satisfying no-
slip boundary conditions, which are unresolvable on any foreseeable computer.
This connects back to Eulers original idea of the Euler equations as a useful
model of slightly viscous flow, as developed in detail in [13], in contrast to the
legacy of Prandtl discarding Euler solutions because they do not satisfy no-slip
boundary conditions, thus requiring the resolution of thin boundary layers of
Navier-Stokes solutions, which however is impossible. The Euler equations thus
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are useful, because solutions can be computed and can provide information,
while the Navier-Stokes equations seem less useful, because solutions cannot be
computed.

Using the approach (ii), we compute stability factors (by solving the dual
problem computationally) with different data corresponding to different out-
puts. As shown in [13] we then find stability factors increasing much more
quickly for pointwise outputs than for mean-value outputs with decreasing mesh
size, and we can use the quick increase for pointwise outputs as a sign of blowup.

Altogether, we can combine (i) and (ii) to a double criterion of blowup, which
can be tested computationally on a sequence of meshes with decreasing finite
mesh size.
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