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54
Vector-Valued Functions of Several
Real Variables

Auch die Chemiker müssen sich allmählich an den Gedanken gewöh-
nen, dass ihnen die theoretische Chemie ohne die Beherrschung der
Elemente der höheren Analysis ein Buch mit sieben Siegeln blieben
wird. Ein Differential- oder Integralzeichen muss aufhören, für den
Chemiker eine unverständliche Hieroglyphe zu sein, . . . wenn er sich
nicht der Gefahr aussetzen will, für die Entwicklung der theoreti-
schen Chemie jedes Verständnis zu verlieren. (H. Jahn, Grundriss
der Elektrochemie, 1895)

54.1 Introduction

We now turn to the extension of the basic concepts of real-valued functions
of one real variable, such as Lipschitz continuity and differentiability, to
vector-valued functions of several variables. We have carefully prepared the
material so that this extension will be as natural and smooth as possible.
We shall see that the proofs of the basic theorems like the Chain rule, the
Mean Value theorem, Taylor’s theorem, the Contraction Mapping theorem
and the Inverse Function theorem, extend almost word by word to the more
complicated situation of vector valued functions of several real variables.

We consider functions f : R
n → R

m that are vector valued in the sense
that the value f(x) = (f1(x), . . . , fm(x)) is a vector in R

m with components
fi : R

n → R for i = 1, . . . ,m, where with fi(x) = fi(x1, . . . , xn) and
x = (x1, . . . , xn) ∈ R

n. As usual, we view x = (x1, . . . , xn) as a n-column
vector and f(x) = (f1(x), . . . , fm(x)) as a m-column vector.
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As particular examples of vector-valued functions, we first consider
curves, which are functions g : R → R

n, and surfaces, which are func-
tions g : R

2 → R
n. We then discuss composite functions f ◦ g : R → R

m,
where g : R → R

n is a curve and f : R
n → R

m, with f ◦ g again being
a curve. We recall that f ◦ g(t) = f(g(t)).

The inputs to the functions reside in the n dimensional vector space R
n

and it is worthwhile to consider the properties of R
n. Of particular im-

portance is the notion of Cauchy sequence and convergence for sequences
{x(j)}∞j=1 of vectors x(j) = (x(j)

1 , . . . ., x
(j)
n ) ∈ R

n with coordinates x(j)
k ,

k = 1, . . . , n. We say that the sequence {x(j)}∞j=1 is a Cauchy sequence if
for all ε > 0, there is a natural number N so that

‖x(i) − x(j)‖ ≤ ε for i, j > N.

Here ‖ · ‖ denotes the Euclidean norm in R
n, that is, ‖x‖ = (

∑n
i=1 x

2
i )

1/2.
Sometimes, it is convenient to work with the norms ‖x‖1 =

∑n
i=1 |xi| or

‖x‖∞ = maxi=1,...,n |xi|. We say that the sequence {x(j)}∞j=1 of vectors
in R

n converges to x ∈ R
n if for all ε > 0, there is a natural number N so

that

‖x− x(i)‖ ≤ ε for i > N.

It is easy to show that a convergent sequence is a Cauchy sequence and con-
versely that a Cauchy sequence converges. We obtain these results applying
the corresponding results for sequences in R to each of the coordinates of
the vectors in R

n.

Example 54.1. The sequence {x(i)}∞i=1 in R
2, x(i) = (1 − i−2, exp(−i)),

converges to (1, 0).

54.2 Curves in R
n

A function g : I → R
n, where I = [a, b] is an interval of real numbers, is

a curve in R
n, see Fig. 54.1. If we use t as the independent variable ranging

over I, then we say that the curve g(t) is parametrized by the variable t.
We also refer to the set of points Γ = {g(t) ∈ R

n : t ∈ I} as the curve Γ
parameterized by the function g : I → R

n.

Example 54.2. The simplest example of a curve is a straight line. The
function g : R → R

2 given by

g(t) = x̄+ tz,

where z ∈ R
2 and x̄ ∈ R

2, is a straight line in R
2 through the point x̄ with

direction z, see Fig. 54.2.
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Fig. 54.1. The curve g : [0, 4] → R
3 with g(t) =

(
t1/2 cos(πt), t1/2 sin(πt),t

)
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Fig. 54.2. On the left: the curve g(t) = x̄+ta. On the right: a curve g(t) = (t, f(t))

Example 54.3. Let f : [a, b] → R be given, and define g : [a, b] → R
2

by g(t) = (g1(t), g2(t)) = (t, f(t)). This curve is simply the graph of the
function f : [a, b] → R, see Fig. 54.2.

54.3 Different Parameterizations of a Curve

It is possible to use different parametrizations for the set of points forming
a curve. If h : [c, d] → [a, b] is a one-to-one mapping, then the composite
function f = g ◦ h : [c, d] → R

2 is a reparameterization of the curve {g(t) :
t ∈ [a, b]} given by g : [a, b] → R

2.

Example 54.4. The function f : [0,∞) → R
3 given by

f(τ) = (τ cos(πτ2), τ sin(πτ2), τ2),

is a reparameterization of the curve g : [0,∞) → R
3 given by

g(t) = (
√
t cos(πt),

√
t sin(πt), t),

obtained setting t = h(τ) = τ2. We have f = g ◦ h.
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54.4 Surfaces in R
n, n ≥ 3

A function g : Q → R
n, where n ≥ 3 and Q is a subdomain of R

2, may
be viewed to be a surface S in R

n, see Fig. 54.3. We write g = g(y) with
y = (y1, y2) ∈ Q and say that S is parameterized by y ∈ Q. We may also
identify the surface S with the set of points S = {g(y) ∈ R

n : y ∈ Q}, and
reparameterize S by f = g ◦ h : Q̃ → R

n if h : Q̃ → Q is a one-to-one
mapping of a domain Q̃ in R

2 onto Q.

Example 54.5. The simplest example of a surface g : R
2 → R

3 is a plane
in R

3 given by

g(y) = g(y1, y2) = x̄+ y1b1 + y2b2, y ∈ R
2,

where x̄, b1, b2 ∈ R
3.

Example 54.6. Let f : [0, 1] × [0, 1] → R be given, and define g : [0, 1] ×
[0, 1] → R

3 by g(y1, y2) = (y1, y2, f(y1, y2)). This is a surface, which is the
graph of f : [0, 1] × [0, 1] → R. We also refer to this surface briefly as the
surface given by the function x3 = f(x1, x2) with (x1, x2) ∈ [0, 1]× [0, 1].
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Fig. 54.3. The surface s(y1, y2) =
(
y1, y2, y1 sin

(
(y1 + y2)π/2

))
with

−1 ≤ y1, y2 ≤ 1, or briefly the surface x3 = x1 sin
(
(x1 + x2)π/2

)
with

−1 ≤ x1, x2 ≤ 1

54.5 Lipschitz Continuity

We say that f : R
n → R

m is Lipschitz continuous on R
n if there is a con-

stant L such that

‖f(x) − f(y)‖ ≤ L‖x− y‖ for all x, y ∈ R
n. (54.1)
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This definition extends easily to functions f : A → R
m with the domain

D(f) = A being a subset of R
n. For example, A may be the unit n-cube

[0, 1]n = {x ∈ R
n : 0 ≤ xi ≤ 1, i = 1, . . . , n} or the unit n-disc {x ∈ R

n :
‖x‖ ≤ 1}.

To check if a function f : A → R
m is Lipschitz continuous on some

subset A of R
n, it suffices to check that the component functions fi : A→ R

are Lipschitz continuous. This is because

|fi(x) − fi(y)| ≤ Li‖x− y‖ for i = 1, . . . ,m,

implies

‖f(x) − f(y)‖2 =
m∑

i=1

|fi(x) − fi(y)|2 ≤
m∑

i=1

L2
i ‖x− y‖2,

which shows that ‖f(x) − f(y)‖ ≤ L‖x− y‖ with L = (
∑

i L
2
i )

1
2 .

Example 54.7. The function f : [0, 1] × [0, 1] → R
2 defined by f(x1, x2) =

(x1 + x2, x1x2), is Lipschitz continuous with Lipschitz constant L = 2.
To show this, we note that f1(x1, x2) = x1 + x2 is Lipschitz continuous
on [0, 1] × [0, 1] with Lipschitz constant L1 =

√
2 because |f1(x1, x2) −

f1(y1, y2)| ≤ |x1 − y1| + |x2 − y2| ≤
√

2‖x − y‖ by Cauchy’s inequality.
Similarly, f2(x1, x2) = x1x2 is Lipschitz continuous on [0, 1] × [0, 1] with
Lipschitz constant L2 =

√
2 since |x1x2 − y1y2| = |x1x2 − y1x2 + y1x2 −

y1y2| ≤ |x1 − y1| + |x2 − y2| ≤
√

2‖x− y‖.

Example 54.8. The function f : R
n → R

n defined by

f(x1, . . . , xn) = (xn, xn−1, . . . , x1),

is Lipschitz continuous with Lipschitz constant L = 1.

Example 54.9. A linear transformation f : R
n → R

m given by an m × n
matrix A = (aij), with f(x) = Ax and x a n-column vector, is Lipschitz
continuous with Lipschitz constant L = ‖A‖. We made this observation in
Chapter Analytic geometry in R

n. We repeat the argument:

L = max
x �=y

‖f(x) − f(y)‖
‖x− y‖ = max

x �=y

‖Ax−Ay‖
‖x− y‖

= max
x �=y

‖A(x− y)‖
‖x− y‖ = max

x �=0

‖Ax‖
‖x‖ = ‖A‖.

Concerning the definition of the matrix norm ‖A‖, we note that the function
F (x) = ‖Ax‖/‖x‖ is homogeneous of degree zero, that is, F (λx) = F (x)
for all non-zero real numbers λ, and thus ‖A‖ is the maximum value of
F (x) on the closed and bounded set {x ∈ R

n : ‖x‖ = 1}, which is a finite
real number.
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x1

x2

x

x̄

f(x)

f(x̄)

Fig. 54.4. Illustration of the mapping f(x1, x2) = (x2, x1), which is clearly
Lipschitz continuous with L = 1

We recall that if A is a diagonal n × n matrix with diagonal elements λi,
then ‖A‖ = maxi |λi|.

54.6 Differentiability: Jacobian, Gradient
and Tangent

We say that f : R
n → R

m is differentiable at x̄ ∈ R
n if there is a m×n mat-

rix M(x̄) = (mij(x̄)), called the Jacobian of the function f(x) at x̄, and
a constant Kf(x̄) such that for all x close to x̄,

f(x) = f(x̄) +M(x̄)(x− x̄) + Ef (x, x̄), (54.2)

where Ef (x, x̄) = (Ef (x, x̄)i) is an m-vector satisfying ‖Ef (x, x̄)‖ ≤
Kf(x̄)‖x − x̄‖2. We also denote the Jacobian by Df(x̄) or f ′(x̄) so that
M(x̄) = Df(x̄) = f ′(x̄). Since f(x) is a m-column vector, or m × 1 mat-
rix, and x is a n-column vector, or n×1 matrix, M(x̄)(x− x̄) is the product
of the m×nmatrixM(x̄) and the n×1 matrix x−x̄ yielding a m×1 matrix
or a m-column vector.

We say that f : A→ R
m, where A is a subset of R

n, is differentiable on
A if f(x) is differentiable at x̄ for all x̄ ∈ A. We say that f : A → R

m is
uniformly differentiable on A if the constant Kf (x̄) = Kf can be chosen
independently of x̄ ∈ A.

We now show how to determine a specific element mij(x̄) of the Jacobian
using the relation (54.2). We consider the coordinate function fi(x1, . . . , xn)
and setting x = x̄ + sej , where ej is the jth standard basis vector and s
is a small real number, we focus on the variation of fi(x1, . . . , xn) as the
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Fig. 54.5. Carl Jacobi (1804–51): “It is often more convenient to possess the
ashes of great men than to possess the men themselves during their lifetime” (on
the return of Descarte’s remains to France)

variable xj varies in a neighborhood of x̄j . The relation (54.2) states that
for small non-zero real numbers s,

fi(x̄+ sej) = fi(x̄) +mij(x̄)s+ Ef (x̄+ sej, x̄)i, (54.3)

where ‖x− x̄‖2 = ‖sej‖2 = s2 implies

|Ef (x̄+ sej , x̄)i| ≤ Kf(x̄)s2.

Note that by assumption ‖Ef (x, x̄)‖ ≤ Kf (x̄)‖x − x̄‖2, and so each coor-
dinate function Ef (x̄+ sej , x̄)i satisfies |Ef (x, x̄)i| ≤ Kf(x̄)‖x− x̄‖2.

Now, dividing by s in (54.3) and letting s tend to zero, we find that

mij(x̄) = lim
s→0

fi(x̄+ sej) − fi(x̄)
s

, (54.4)

which we can also write as

mij(x̄) = (54.5)

lim
xj→x̄j

fi(x̄1, . . . , x̄j−1, xj , x̄j+1, . . . , x̄n) − fi(x̄1, . . . , x̄j−1, x̄j , x̄j+1, . . . , x̄n)
xj − x̄j

.

We refer to mij(x̄) as the partial derivative of fi with respect to xj at x̄,
and we use the alternative notation mij(x̄) = ∂fi

∂xj
(x̄). To compute ∂fi

∂xj
(x̄)

we freeze all coordinates at x̄ but the coordinate xj and then let xj vary
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in a neighborhood of x̄j . The formula

∂fi

∂xj
(x̄) = (54.6)

lim
xj→x̄j

fi(x̄1, . . . , x̄j−1, xj , x̄j+1, . . . , x̄n) − fi(x̄1, . . . , x̄j−1, x̄j , x̄j+1, . . . , x̄n)
xj − x̄j

,

states that we compute the partial derivative with respect to the variable xj

by keeping all the other variables x1, . . . , xj−1, xj+1, . . . , xn constant. Thus,
computing partial derivatives should be a pleasure using our previous ex-
pertise of computing derivatives of functions of one real variable!

We may express the computation alternatively as follows:

∂fi

∂xj
(x̄) = mij(x̄) = g′ij(0) =

dgij

ds
(0), (54.7)

where gij(s) = fi(x̄ + sej).

Example 54.10. Let f : R
3 → R be given by f(x1, x2, x3) =

x1e
x2 sin(x3). We compute

∂f

∂x1
(x̄) = ex̄2 sin(x̄3),

∂f

∂x2
(x̄) = x̄1e

x̄2 sin(x̄3),

∂f

∂x3
(x̄) = x̄1e

x̄2 cos(x̄3),

and thus

f ′(x̄) = (ex̄2 sin(x̄3), x̄1e
x̄2 sin(x̄3), x̄1e

x̄2 cos(x̄3))

Example 54.11. If f : R
3 → R

2 is given by f(x) =
(

exp(x2
1 + x2

2)
sin(x2 + 2x3)

)

, then

f ′(x) =
(

2x1 exp(x2
1 + x2

2) 2x2 exp(x2
1 + x2

2) 0
0 cos(x2 + 2x3) 2 cos(x2 + 2x3)

)

.

We have now shown how to compute the elements of a Jacobian using
the usual rules for differentiation with respect to one real variable. This
opens a whole new world of applications to explore. The setting is thus
a differentiable function f : R

n → R
m satisfying for suitable x, x̄ ∈ R

n:

f(x) = f(x̄) + f ′(x̄)(x − x̄) + Ef (x, x̄), (54.8)

with ‖Ef (x, x̄)‖ ≤ Kf (x̄)‖x − x̄‖2, where f ′(x̄) = Df(x̄) is the Jacobian
m× n matrix with elements ∂fi

∂xj
:

f ′(x̄) = Df(x̄) =








∂f1
∂x1

(x̄) ∂f1
∂x2

(x̄) . . . ∂f1
∂xn

(x̄)
∂f2
∂x1

(x̄) ∂f2
∂x2

(x̄) . . . ∂f2
∂xn

(x̄)
. . . . . . . . .

∂fm

∂x1
(x̄) ∂fm

∂x2
(x̄) . . . ∂fm

∂xn
(x̄)







.
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Sometimes we use the following notation for the Jacobian f ′(x) of a func-
tion y = f(x) with f : R

n → R
m:

f ′(x) =
dy1, . . . , dym

dx1, . . . , dxn
(x) (54.9)

The function x → f̂(x) = f(x̄) + f ′(x̄)(x − x̄) is called the linearization
of the function x→ f(x) at x = x̄. We have

f̂(x) = f ′(x̄)x+ f(x̄) − f ′(x̄)x̄ = Ax+ b,

with A = f ′(x̄) am×nmatrix and b = f(x̄)−f ′(x̄)x̄ am-column vector. We
say that f̂(x) is an affine transformation, which is a transformation of the
form x→ Ax+b, where x is a n-column vector, A is a m×n matrix and b is
a m-column vector. The Jacobian f̂ ′(x) of the linearization f̂(x) = Ax+ b
is a constant matrix equal to the matrix A, because the partial derivatives
of Ax with respect to x are simply the elements of the matrix A.

If f : R
n → R, that is m = 1, then we also denote the Jacobian f ′ by ∇f ,

that is,

f ′(x̄) = ∇f(x̄) =
(
∂f

∂x1
(x̄), . . . ,

∂f

∂xn
(x̄)

)

.

In words, ∇f(x̄) is the n-row vector or 1×n matrix of partial derivatives of
f(x) with respect to x1, x2, . . . , xn at x̄. We refer to ∇f(x̄) as the gradient
of f(x) at x̄. If f : R

n → R is differentiable at x̄, we thus have

f(x) = f(x̄) + ∇f(x̄)(x − x̄) + Ef (x, x̄), (54.10)

with |Ef (x, x̄)| ≤ Kf (x̄)‖x − x̄‖2, and f̂(x) = f(x̄) + ∇f(x̄)(x − x̄) is the
linearization of f(x) at x = x̄. We may alternatively express the product
∇f(x̄)(x− x̄) of the n-row vector (1×n matrix) ∇f(x̄) with the n-column
vector (n× 1 matrix) (x − x̄) as the scalar product ∇f(x̄) · (x − x̄) of the
n-vector ∇f(x̄) with the n-vector (x − x̄). We thus often write (54.10) in
the form

f(x) = f(x̄) + ∇f(x̄) · (x− x̄) + Ef (x, x̄). (54.11)

Example 54.12. If f : R
3 → R is given by f(x) = x2

1 + 2x3
2 + 3x4

3, then

∇f(x) = (2x1, 6x2
2, 12x3

3).

Example 54.13. The equation x3 = f(x) with f : R
2 → R and x = (x1, x2)

represents a surface in R
3 (the graph of the function f). The linearization

x3 = f(x̄) + ∇f(x̄) · (x− x̄)

= f(x̄) +
∂f

∂x1
(x̄)(x1 − x̄1) +

∂f

∂x2
(x̄)(x2 − x̄2)

with x̄ = (x̄1, x̄2), represents the tangent plane at x = x̄, see Fig. 54.6.
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x1

x2

x3

x̄

x3 = f(x1, x2)

x3 = f(x̄) + ∇f(x̄)(x− x̄)

Fig. 54.6. The surface x3 = f(x1, x2) and its tangent plane

Example 54.14. Consider now a curve f : R → R
m, that is, f(t) =

(f1(t), . . . , fm(t)) with t ∈ R and we have a situation with n = 1. The
linearization t→ f̂(t) = f(t̄) + f ′(t̄)(t− t̄) at t̄ represents a straight line in
R

m through the point f(t̄) and the Jacobian f ′(t̄) = (f ′
1(t̄), . . . , f

′
m(t̄)) gives

the direction of the tangent to the curve f : R → R
m at f(t̄), see Fig. 54.7.

x1

x2

a bt
t s(a)

s(t)

s(b)

s′(t)

Fig. 54.7. The tangent s′(t) to a curve given by s(t)

54.7 The Chain Rule

Let g : R
n → R

m and f : R
m → R

p and consider the composite function
f ◦ g : R

n → R
p defined by f ◦ g(x) = f(g(x)). Under suitable assumptions

of differentiability and Lipschitz continuity, we shall prove a Chain rule
generalizing the Chain rule of Chapter Differentiation rules in the case
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n = m = p = 1. Using linearizations of f and g, we have

f(g(x)) = f(g(x̄)) + f ′(g(x̄))(g(x) − g(x̄)) + Ef (g(x), g(x̄))
= f(g(x̄)) + f ′(g(x̄))g′(x̄)(x− x̄) + f ′(g(x̄))Eg(x, x̄) + Ef (g(x), g(x̄)),

where we may naturally assume that

‖Ef(g(x), g(x̄))‖ ≤ Kf‖g(x) − g(x̄)‖2 ≤ KfL
2
g‖x− x̄‖2,

and ‖f ′(g(x̄))Eg(x, x̄)‖ ≤ ‖f ′(g(x̄))‖Kg‖x − x̄‖2, with suitable constants
of differentiability Kf and Kg and Lipschitz constant Lg. We have now
proved:

Theorem 54.1 (The Chain rule) If g : R
n → R

m is differentiable at
x̄ ∈ R

n, and f : R
m → R

p is differentiable at g(x̄) ∈ R
m and further

g : R
n → R

m is Lipschitz continuous, then the composite function f ◦ g :
R

n → R
p is differentiable at x̄ ∈ R

n with Jacobian

(f ◦ g)′(x̄) = f ′(g(x̄))g′(x̄).

The Chain rule has a wealth of applications and we now turn to harvest
a couple of the most basic examples.

54.8 The Mean Value Theorem

Let f : R
n → R be differentiable on R

n with a Lipschitz continuous gra-
dient, and for given x, x̄ ∈ R

n consider the function h : R → R defined
by

h(t) = f(x̄+ t(x− x̄)) = f ◦ g(t),

with g(t) = x̄+ t(x− x̄) representing the straight line through x̄ and x. We
have

f(x) − f(x̄) = h(1) − h(0) = h′(t̄),

for some t̄ ∈ [0, 1], where we applied the usual Mean Value theorem to the
function h(t). By the Chain rule we have

h′(t) = ∇f(g(t)) · g′(t) = ∇f(g(t)) · (x− x̄),

and we have now proved:

Theorem 54.2 (Mean Value theorem) Let f : R
n → R be differen-

tiable on R
n with a Lipschitz continuous gradient ∇f . Then for given x

and x̄ in R
n, there is y = x+ t̄(x− x̄) with t̄ ∈ [0, 1], such that

f(x) − f(x̄) = ∇f(y) · (x− x̄).
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With the help of the Mean Value theorem we express the difference
f(x)− f(x̄) as the scalar product of the gradient ∇f(y) with the difference
x− x̄, where y is a point somewhere on the straight line between x and x̄.

We may extend the Mean Value theorem to a function f : R
n → R

m to
take the form

f(x) − f(x̄) = f ′(y)(x− x̄),

where y is a point on the straight line between x and x̄, which may be
different for different rows of f ′(y). We may then estimate:

‖f(x) − f(x̄)‖ = ‖f ′(y) · (x− x̄)‖ ≤ ‖f ′(y)‖‖x− x̄‖,

and we may thus estimate the Lipschitz constant of f by maxy ‖f ′(y)‖ with
‖f ′(y)‖ the (Euclidean) matrix norm of f ′(y).

Example 54.15. Let f : R
n → R be given by f(x) = sin(

∑n
j=1 xj). We

have

∂f

∂xi
(x̄) = cos




n∑

j=1

x̄j



 for i = 1, . . . , n,

and thus | ∂f
∂xi

(x̄)| ≤ 1 for i = 1, . . . , n, and therefore

‖∇f(x̄)‖ ≤
√
n.

We conclude that f(x) = sin(
∑n

j=1 xj) is Lipschitz continuous with Lips-
chitz constant

√
n.

54.9 Direction of Steepest Descent
and the Gradient

Let f : R
n → R be a given function and suppose we want to study the

variation of f(x) in a neighborhood of a given point x̄ ∈ R
n. More precisely,

let x vary on the line through x̄ in a given direction z ∈ R
n, that is assume

that x = x̄ + tz where t is a real variable varying in a neighborhood of 0.
Assuming f to be differentiable, the linearization formula (54.8) implies

f(x) = f(x̄) + t∇f(x̄) · z + Ef (x, x̄), (54.12)

where |Ef (x, x̄)| ≤ t2Kf‖z‖2 and ∇f(x̄) · z is the scalar product of the
gradient ∇f(x̄) ∈ R

n and the vector z ∈ R
n. If ∇f(x̄) · z �= 0, then the

linear term t∇f(x̄)·z will dominate the quadratic term Ef (x, x̄) for small t.
So the linearization

f̂(x) = f(x̄) + t∇f(x̄) · z
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will be a good approximation of f(x) for x = x̄ + tz close to x̄. Thus if
∇f(x̄) · z �= 0, then we get good information on the variation of f(x) along
the line x = x̄ + tz by studying the linear function t → f(x̄) + t∇f(x̄) · z
with slope ∇f(x̄) ·z. In particular, if ∇f(x̄) ·z > 0 and x = x̄+tz then f̂(x)
increases as we increase t and decreases as we decrease t. Similarly, if ∇f(x̄)·
z < 0 and x = x̄+ tz then f̂(x) decreases as we increase t and increases as
we decrease t.

Alternatively, we may consider the composite function Fz : R → R de-
fined by Fz(t) = f(gz(t)) with gz : R → R

n given by gz(t) = x̄+ tz. Obvi-
ously, Fz(t) describes the variation of f(x) on the straight line through x̄
with direction z, with Fz(0) = f(x̄). Of course, the derivative F ′

z(0) gives
important information on this variation close to x̄. By the Chain rule we
have

F ′
z(0) = ∇f(x̄)z = ∇f(x̄) · z,

and we retrieve ∇f(x̄) · z as a quantity of interest. In particular, the sign
of ∇f(x̄) · z determines if Fz(t) is increasing or decreasing at t = 0.

We may now ask how to choose the direction z to get maximal increase or
decrease. We assume ∇f(x̄) �= 0 to avoid the trivial case with F ′

z(0) = 0 for
all z. It is then natural to normalize z so ‖z‖ = 1 and we study the quantity
F ′

z(0) = ∇f(x̄) · z as we vary z ∈ R
n with ‖z‖ = 1. We conclude that the

scalar product ∇f(x̄) · z is maximized if we choose z in the direction of the
gradient ∇f(x̄),

z =
∇f(x̄)
‖∇f(x̄)‖ ,

which is called the direction of steepest ascent. For this gives

max
‖z‖=1

F ′
z(0) = ∇f(x̄) · ∇f(x̄)

‖∇f(x̄)‖ = ‖∇f(x̄)‖.

Similarly, the scalar product is minimized if we choose z in the opposite
direction of the gradient ∇f(x̄),

z = − ∇f(x̄)
‖∇f(x̄)‖ ,

which is called the direction of steepest descent, see Fig. 54.8. For then

min
‖z‖=1

F ′
z(0) = −∇f(x̄) · ∇f(x̄)

‖∇f(x̄)‖ = −‖∇f(x̄)‖.

If ∇f(x̄) = 0, then x̄ is said to be a stationary point. If x̄ is a stationary
point, then evidently ∇f(x̄) · z = 0 for any direction z and

f(x) = f(x̄) + Ef (x, x̄).

The difference f(x)−f(x̄) is then quadratically small in the distance ‖x−x̄‖,
that is |f(x) − f(x̄)| ≤ Kf‖x− x̄‖2, and f(x) is very close to the constant
value f(x̄) for x close to x̄.
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Fig. 54.8. Directions of steepest descent on a “hiking map”

54.10 A Minimum Point Is a Stationary Point

Suppose x̄ ∈ R
n is a minimum point for the function f : R

n → R, that is

f(x) ≥ f(x̄) for x ∈ R
n. (54.13)

We shall show that if f(x) is differentiable at a minimum point x̄, then

∇f(x̄) = 0. (54.14)

For if ∇f(x̄) �= 0, then we could move in the direction of steepest descent
from x̄ to a point x close to x̄ with f(x) < f(x̄), contradicting (54.13).
Consequently, in order to find minimum points of a function f : R

n → R,
we are led to try to solve the equation g(x) = 0, where g = ∇f : R

n → R
n.

Here, we interpret ∇f(x) as a n-column vector.
A whole world of applications in mechanics, physics and other areas may

be formulated as solving equations of the form ∇f(x) = 0, that is as finding
stationary points. We shall meet many applications below.

54.11 The Method of Steepest Descent

Let f : R
n → R be given and consider the problem of finding a minimum

point x̄. To do so it is natural to try a method of Steepest Descent: Given
an approximation ȳ of x̄ with ∇f(ȳ) �= 0, we move from ȳ to a new point y
in the direction of steepest descent:

y = ȳ − α
∇f(ȳ)

‖∇f(ȳ)‖ ,
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where α > 0 is a step length to be chosen. We know that f(y) decreases
as α increases from 0 and the question is just to find a reasonable value
of α. This can be done by increasing α in small steps until f(y) doesn’t
decrease anymore. The procedure is then repeated with ȳ replaced by y.
Evidently, the method of Steepest Descent is closely connected to Fixed
Point Iteration for solving the equation ∇f(x) = 0 in the form

x = x− α∇f(x)

where we let α > 0 include the normalizing factor 1/‖∇f(ȳ)‖.

Fig. 54.9. The method of Steepest Descent for f(x1, x2) = x1 sin(x1 + x2)
+x2 cos(2x1 − 3x2) starting at (.5, .5) with α = .3

54.12 Directional Derivatives

Consider a function f : R
n → R, let gz(t) = x̄ + tz with z ∈ R

n a given
vector normalized to ‖z‖ = 1, and consider the composite function Fz(t) =
f(x̄+ tz). The Chain rule implies

F ′
z(0) = ∇f(x̄) · z,

and

∇f(x̄) · z

is called the derivative of f(x) in the direction z at x̄, see Fig. 54.10.
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Fig. 54.10. Illustration of directional derivative

54.13 Higher Order Partial Derivatives

Let f : R
n → R be differentiable on R

n. Each partial derivative ∂f
∂xi

(x̄) is
a function of x̄ ∈ R

n may be itself be differentiable. We denote its partial
derivatives by

∂

∂xj

∂f

∂xi
(x̄) =

∂2f

∂xj∂xi
(x̄), i, j = 1, . . . , n, x̄ ∈ R

n,

which are called the partial derivatives of f of second order at x̄. It turns out
that under appropriate continuity assumptions, the order of differentiation
does not matter. In other words, we shall prove that

∂2f

∂xj∂xi
(x̄) =

∂2f

∂xi∂xj
(x̄).

We carry out the proof in the case n = 2 with i = 1 and j = 2. We rewrite
the expression

A = f(x1, x2) − f(x̄1, x2) − f(x1, x̄2) + f(x̄1, x̄2), (54.15)

as
A = f(x1, x2) − f(x1, x̄2) − f(x̄1, x2) + f(x̄1, x̄2), (54.16)

by shifting the order of the two mid terms. First, we set F (x1, x2) =
f(x1, x2) − f(x̄1, x2) and use (54.15) to write

A = F (x1, x2) − F (x1, x̄2).



54.14 Taylor’s Theorem 803

The Mean Value theorem implies

A =
∂F

∂x2
(x1, y2)(x2 − x̄2) =

(
∂f

∂x2
(x1, y2) −

∂f

∂x2
(x̄1, y2)

)

(x2 − x̄2)

for some y2 ∈ [x̄2, x2]. We use the Mean value theorem once again to get

A =
∂2f

∂x1∂x2
(y1, y2)(x1 − x̄1)(x2 − x̄2),

with y1 ∈ [x̄1, x1]. We next rewrite A using (54.16) in the form

A = G(x1, x2) −G(x̄1, x2),

where G(x1, x2) = f(x1, x2) − f(x1, x̄2). Using the Mean Value theorem
twice as above, we obtain

A =
∂2f

∂x2∂x1
(z1, z2)(x1 − x̄1)(x2 − x̄2),

where zi ∈ [x̄i, xi], i = 1, 2. Assuming the second partial derivatives are
Lipschitz continuous at x̄ and letting xi tend to x̄i for i = 1, 2 gives

∂2f

∂x1∂x2
(x̄) =

∂2f

∂x2∂x1
(x̄).

We have proved the following fundamental result:

Theorem 54.3 If the partial derivatives of second order of a function f :
R

n → R are all Lipschitz continuous, then the order of application of the
derivatives of second order is irrelevant.

The result directly generalizes to higher order partial derivatives: if the
derivatives are Lipschitz continuous, then the order of application doesn’t
matter. What a relief!

54.14 Taylor’s Theorem

Suppose f : R
n → R has Lipschitz continuous partial derivatives of order 2.

For given x, x̄ ∈ R
n, consider the function h : R → R defined by

h(t) = f(x̄+ t(x− x̄)) = f ◦ g(t),

where g(t) = x̄ + t(x − x̄) is the straight line through x̄ and x. Clearly
h(1) = f(x) and h(0) = f(x̄), so the Taylor’s theorem applied to h(t) gives

h(1) = h(0) + h′(0) +
1
2
h′′(t̄),
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for some t̄ ∈ [0, 1]. We compute using the Chain rule:

h′(t) = ∇f(g(t)) · (x− x̄) =
n∑

i=1

∂f

∂xi
(g(t))(xi − x̄i),

and similarly by a further differentiation with respect to t:

h′′(t) =
n∑

i=1

n∑

j=1

∂2f

∂xi∂xj
(g(t))(xi − x̄i)(xj − x̄j).

We thus obtain

f(x) = f(x̄)+∇f(x̄)·(x− x̄)+
1
2

n∑

i,j=1

∂2f

∂xi∂xj
(y)(xi− x̄i)(xj − x̄j), (54.17)

for some y = x̄+ t̄(x− x̄) with t ∈ [0, 1]. The n×n matrix H(x̄) = (hij(x̄))
with elements hij(x̄) = ∂2f

∂xi∂xj
(x̄) is called the Hessian of f(x) at x = x̄.

The Hessian is the matrix of all second partial derivatives of f : R
n → R.

With matrix vector notation with x a n-column vector, we can write

n∑

i,j=1

∂2f

∂xi∂xj
(y)(xi − x̄i)(xj − x̄j) = (x− x̄)	H(y)(x− x̄).

We summarize:

Theorem 54.4 (Taylor’s theorem) Let f : R
n → R be twice differen-

tiable with Lipschitz continuous Hessian H = (hij) with elements hij =
∂2f

∂xi∂xj
. Then, for given x and x̄ ∈ R

n, there is y = x + t̄(x − x̄) with
t̄ ∈ [0, 1], such that

f(x) = f(x̄) + ∇f(x̄) · (x− x̄) +
1
2

n∑

i,j=1

∂2f

∂xi∂xj
(y)(xi − x̄i)(xj − x̄j)

= f(x̄) + ∇f(x̄) · (x− x̄) +
1
2
(x− x̄)	H(y)(x− x̄).

54.15 The Contraction Mapping Theorem

We shall now prove the following generalization of the Contraction Mapping
theorem.

Theorem 54.5 If g : R
n → R

n is Lipschitz continuous with Lipschitz
constant L < 1, then the equation x = g(x) has a unique solution x̄ =
limi→∞ x(i), where {x(i)}∞i=1 is a sequence in R

n generated by Fixed Point
Iteration: x(i) = g(x(i−1)), i = 1, 2, . . ., starting with any initial value x(0).
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The proof is word by word the same as in the case g : R → R considered in
Chapter Fixed Points and Contraction Mappings. We repeat the proof for
the convenience of the reader. Subtracting the equation x(k) = g(x(k−1))
from x(k+1) = g(x(k)), we get

x(k+1) − x(k) = g(x(k)) − g(x(k−1)),

and using the Lipschitz continuity of g, we thus have

‖x(k+1) − x(k)‖ ≤ L‖x(k) − x(k−1)‖.

Repeating this estimate, we find that

‖x(k+1) − x(k)‖ ≤ Lk‖x(1) − x(0)‖,

and thus for j > i

‖x(i) − x(j)‖ ≤
j−1∑

k=i

‖x(k) − x(k+1)‖

≤ ‖x(1) − x(0)‖
j−1∑

k=i

Lk = ‖x(1) − x(0)‖Li 1 − Lj−i

1 − L
.

Since L < 1, {x(i)}∞i=1 is a Cauchy sequence in R
n, and therefore converges

to a limit x̄ = limi→∞ x(i). Passing to the limit in the equation x(i) =
g(x(i−1)) shows that x̄ = g(x̄) and thus x̄ is a fixed point of g : R

n → R
n.

Uniqueness follows from the fact that if ȳ = g(ȳ), then ‖x̄− ȳ‖ = ‖g(x̄) −
g(ȳ)‖ ≤ L‖x̄− ȳ‖ which is impossible unless ȳ = x̄, because L < 1.

Example 54.16. Consider the function g : R
2 → R

2 defined by g(x) =
(g1(x), g2(x)) with

g1(x) =
1

4 + |x1| + |x2|
, g2(x) =

1
4 + | sin(x1)| + | cos(x2)|

.

We have

| ∂gi

∂xj
| ≤ 1

16
,

and thus by simple estimates

‖g(x) − g(y)‖ ≤ 1
4
‖x− y‖,

which shows that g : R
2 → R

2 is Lipschitz continuous with Lipschitz
constant Lg ≤ 1

4 . The equation x = g(x) thus has a unique solution.
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54.16 Solving f(x) = 0 with f : R
n → R

n

The Contraction Mapping theorem can be applied as follows. Suppose f :
R

n → R
n is given and we want to solve the equation f(x) = 0. Introduce

g(x) = x−Af(x),

where A is some non-singular n×n matrix with constant coefficients to be
chosen. The equation x = g(x) is then equivalent to the equation f(x) = 0.
If g : R

n → R
n is Lipschitz continuous with Lipschitz constant L < 1,

then g(x) has a unique fixed point x̄ and thus f(x̄) = 0. We have

g′(x) = I −Af ′(x),

and thus we are led to choose the matrix A so that

‖I −Af ′(x)‖ ≤ 1

for x close to the root x̄. The ideal choice seems to be:

A = f ′(x̄)−1,

assuming that f ′(x̄) is non-singular, since then g′(x̄) = 0. In applications,
we may seek to choose A close to f ′(x̄)−1 with the hope that the corre-
sponding g′(x) = I − Af ′(x) will have ‖g′x)TS

c‖ small for x close to the
root x̄, leading to a quick convergence. In Newton’s method we choose
A = f ′(x)−1, see below.

Example 54.17. Consider the initial value problem u̇(t) = f(u(t)) for t > 0,
u(0) = u0, where f : R

n → R
n is a given Lipschitz continuous function with

Lipschitz constant Lf , and as usual u̇ = du
dt . Consider the backward Euler

method
U(ti) = U(ti−1) + kif(U(ti)), (54.18)

where 0 = t0 < t1 < t2 . . . is a sequence of increasing discrete time levels
with time steps ki = ti − ti−1. To determine U(ti) ∈ R

n satisfying (54.18)
having already determined U(ti−1), we have to solve the nonlinear system
of equations

V = U(ti−1) + kif(V ) (54.19)

in the unknown V ∈ R
n. This equation is of the form V = g(V ) with

g(V ) = U(ti−1) + kif(V ) and g : R
n → R

n.

Therefore, we use the Fixed Point Iteration

V (m) = U(ti−1) + kif(V (m−1)), m = 1, 2, . . . ,

choosing say V (0) = U(ti−1) to try to solve for the new value. If Lf denotes
the Lipschitz constant of f : R

n → R
n, then

‖g(V ) − g(W )‖ = ‖ki(f(V ) − f(W ))‖ ≤ kiLf‖V −W‖, V,W ∈ R
n,

TS
c Is there an opening parenthesis missing here?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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and thus g : R
n → R

n is Lipschitz continuous with Lipschitz constant
Lg = kiLf . Now Lg < 1 if the time step ki satisfies ki < 1/Lf and thus the
Fixed Point Iteration to determine U(ti) in (54.18) converges if ki < 1/Lf .
This gives a method for numerical solution of a very large class of initial
value problems of the form u̇(t) = f(u(t)) for t > 0, u(0) = u0. The only
restriction is to choose sufficiently small time steps, which however can be
a severe restriction if the Lipschitz constant Lf is very large in the sense
of requiring massive computational work (very small time steps). Thus,
caution for large Lipschitz constants Lf !!

54.17 The Inverse Function Theorem

Suppose f : R
n → R

n is a given function and let ȳ = f(x̄), where x̄ ∈ R
n

is given. We shall prove that if f ′(x̄) is non-singular, then for y ∈ R
n close

to ȳ, the equation
f(x) = y (54.20)

has a unique solution x. Thus, we can define x as a function of y for y close
to ȳ, which is called the inverse function x = f−1(y) of y = f(x). To show
that (54.20) has a unique solution x for any given y close to ȳ, we consider
the Fixed Point iteration for x = g(x) with g(x) = x− (f ′(x̄))−1(f(x)− y),
which has the fixed point x satisfying f(x) = y as desired. The iteration is

x(j) = x(j−1) − (f ′(x̄))−1(f(x(j−1)) − y), j = 1, 2, . . . ,

with x(0) = x̄. To analyze the convergence, we subtract

x(j−1) = x(j−2) − (f ′(x̄))−1(f(x(j−2)) − y)

and write ej = x(j) − x(j−1) to get

ej = ej−1 − (f ′(x̄))−1(f(x(j−1) − f(x(j−2)) for j = 1, 2, . . . .

The Mean Value theorem implies

fi(x(j−1)) − fi(x(j−2)) = f ′(z)ej−1,

where z lies on the straight line between x(j−1) and x(j−2). Note there
might be possibly different z for different rows of f ′(z). We conclude that

ej =
(
I − (f ′(x̄))−1f ′(z)

)
ej−1.

Assuming now that
‖I − (f ′(x̄))−1f ′(z)‖ ≤ θ, (54.21)

where θ < 1 is a positive constant, we have

‖ej‖ ≤ θ‖ej−1‖.
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As in the proof of the Contraction Mapping theorem, this shows that the
sequence {x(j)}∞j=1 is a Cauchy sequence and thus converges to a vec-
tor x ∈ R

n satisfying f(x) = y.
The condition for convergence is obviously (54.21). This condition is sat-

isfied if the coefficients of the Jacobian f ′(x) are Lipschitz continuous close
to x̄ and f ′(x̄) is non-singular so that (f ′(x̄))−1 exists, and we restrict y to
be sufficiently close to ȳ.

We summarize in the following (very famous):

Theorem 54.6 (Inverse Function theorem) Let f : R
n → R

n and as-
sume the coefficients of f ′(x) are Lipschitz continuous close to x̄ and f ′(x̄)
is non-singular. Then for y sufficiently close to ȳ = f(x̄), the equation
f(x) = y has a unique solution x. This defines x as a function x = f−1(y)
of y.

Carl Jacobi (1804–51), German mathematician, was the first to study the
role of the determinant of the Jacobian in the inverse function theorem, and
also gave important contributions to many areas of mathematics including
the budding theory of first order partial differential equations.

54.18 The Implicit Function Theorem

There is an important generalization of the Inverse Function theorem. Let
f : R

n × R
m → R

n be a given function with value f(x, y) ∈ R
n for x ∈ R

n

and y ∈ R
m. Assume that f(x̄, ȳ) = 0 and consider the equation in x ∈ R

n,

f(x, y) = 0,

for y ∈ R
m close to ȳ. In the case of the Inverse Function theorem we

considered a special case of this situation with f : R
n × R → R

n defined
by f(x, y) = g(x) − y with g : R

n → R
n.

We define the Jacobian f ′
x(x, y) of f(x, y) with respect to x at (x, y) to

be the n× n matrix with elements

∂fi

∂xj
(x, y).

Assuming now that f ′
x(x̄, ȳ) is non-singular, we consider the Fixed Point

iteration:

x(j) = x(j−1) − (f ′
x(x̄, ȳ))−1f(x(j−1), y),

connected to solving the equation f(x, y) = 0. Arguing as above, we can
show this iteration generates a sequence {x(j)}j=1∞ that converges
to x ∈ R

n satisfying f(x, y) = 0 assuming f ′
x(x, y) is Lipschitz continu-

ous for x close to x̄ and y close to ȳ. This defines x as a function g(y) of y
for y close to ȳ. We have now proved the (also very famous):
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Theorem 54.7 (Implicit Function theorem) Let f : R
n × R

m → R
n

with f(x, y) ∈ R
n and x ∈ R

n and y ∈ R
m, and assume that f(x̄, ȳ) = 0.

Assume that the Jacobian f ′
x(x, y) with respect to x is Lipschitz continuous

for x close to x̄ and y close to ȳ, and that f ′
x(x̄, ȳ) is non-singular. Then

for y close to ȳ, the equation f(x, y) = 0 has a unique solution x = g(y).
This defines x as a function g(y) of y.

54.19 Newton’s Method

We next turn to Newton’s method for solving an equation f(x) = 0 with
f : R

n → R
n, which reads:

x(i+1) = x(i) − f ′(x(i))−1f(x(i)), for i = 0, 1, 2, . . . , (54.22)

where x(0) is an initial approximation. Newton’s method corresponds to
Fixed Point iteration for x = g(x) with g(x) = x − f ′(x)−1f(x). We shall
prove that Newton’s method converges quadratically close to a root x̄ when
f ′(x̄) is non-singular. The argument is the same is as in the case n = 1
considered above. Setting ei = x̄ − x(i), and using x̄ = x̄ − f ′(x(i))−1f(x̄)
if f(x̄) = 0, we have

x̄− x(i+1) = x̄− x(i) − f ′(x(i))−1(f(x̄) − f(x(i)))

= x̄− x(i) − f ′(x(i))−1(f ′(x(i)) + Ef (x(i), x̄)) = f ′(x(i))−1Ef (x(i), x̄).

We conclude that

‖x̄− x(i+1)‖ ≤ C‖x̄− x(i)‖2

provided

‖f ′(x(i))−1‖ ≤ C,

where C is some positive constant. We have proved the following funda-
mental result:

Theorem 54.8 (Newton’s method) If x̄ is a root of f : R
n → R

n such
that f(x) is uniformly differentiable with a Lipschitz continuous derivative
close to x̄ and f ′(x̄) is non-singular, then Newton’s method for solving
f(x) = 0 converges quadratically if started sufficiently close to x̄.

In concrete implementations of Newton’s method we may rewrite (54.22)
as

f ′(x(i))z = −f(x(i)),

x(i+1) = x(i) + z,

where f ′(x(i))z = −f(x(i)) is a system of equations in z that is solved by
Gaussian elimination or by some iterative method.
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Example 54.18. We return to the equation (54.19), that is,

h(V ) = V − kif(V ) − U(ti−1) = 0.

To apply Newton’s method to solve the equation h(V ) = 0, we compute

h′(v) = I − kif
′(v),

and conclude that h′(v) will be non-singular at v, if ki < ‖f ′(v)‖−1. We
conclude that Newton’s method converges if ki is sufficiently small and we
start close to the root. Again the restriction on the time step is connected
to the Lipschitz constant Lf of f , since Lf reflects the size of ‖f ′(v)‖.

54.20 Differentiation Under the Integral Sign

Finally, we show that if the limits of integration of an integral are indepen-
dent of a variable x1, then the operation of taking the partial derivative
with respect x1 can be moved past the integral sign. Let then f : R

2 → R

be a function of two real variables x1 and x2 and consider the integral

∫ 1

0

f(x1, x2) dx2 = g(x1),

which is a function g(x1) of x1. We shall now prove that

dg

dx1
(x̄1) =

∫ 1

0

∂f

∂x1
(x̄1, x2) dx2, (54.23)

which is referred to as “differentiation under the integral sign”. The proof
starts by writing

f(x1, x2) = f(x̄1, x2) +
∂f

∂x1
(x̄1, x2)(x1 − x̄1) + Ef (x1, x̄1, x2),

where we assume that

|Ef (x1, x̄1, x2)| ≤ Kf(x̄1 − x1)2.

Taylor’s theorem implies this is true provided the second partial derivatives
of f are bounded. Integration with respect to x2 yields

∫ 1

0

f(x1, x2) dx2 =
∫ 1

0

f(x̄1, x2) dx2

+ (x1 − x̄1)
∫ 1

0

∂f

∂x1
(x̄1, x2) dx2 +

∫ 1

0

Ef (x1, x̄1, x2) dx2.
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Since
∣
∣
∣
∣

∫ 1

0

Ef (x1, x̄1, x2) dx2

∣
∣
∣
∣ ≤ Kf(x̄1 − x1)2

(54.23) follows after dividing by (x1 − x̄1) and taking the limit as x1 tends
to x̄1. We summarize:

Theorem 54.9 (Differentiation under the integral sign) If the sec-
ond partial derivatives of f(x1, x2) are bounded, then for x1 ∈ R,

d

dx1

∫ 1

0

f(x1, x2) dx2 =
∫ 1

0

∂f

∂x1
(x1, x2) dx2 (54.24)

Example 54.19.

d

dx

∫ 1

0

(1 + xy2)−1 dy =
∫ 1

0

∂

∂x
(1 + xy2)−1 dy = −

∫ 1

0

y2

(1 + xy2)2
dy.

Chapter 54 Problems

54.1. Sketch the following surfaces in R
3: (a) Γ = {x : x3 = x2

1 + x2
2}, (b)

Γ = {x : x3 = x2
1 − x2

2}, (c) Γ = {x : x3 = x1 + x2
2}, (d) Γ = {x : x3 = x4

1 + x6
2}.

Determine the tangent planes to the surfaces at different points.

54.2. Determine whether the following functions are Lipschitz continuous or not
on {x : |x| < 1} and determine Lipschitz constants:

� (a) f : R
3 → R

3 where f(x) = x|x|2,
� (b) f : R

3 → R where f(x) = sin |x|2,
� (c) f : R

2 → R
3 where f(x) = (x1, x2, sin |x|2),

� (d) f : R
3 → R where f(x) = 1/|x|,

� (e) f : R
3 → R

3 where f(x) = x sin(|x|), (optional)

� (f) f : R
3 → R where f(x) = sin(|x|)/|x|. (optional)

54.3. For the functions in the previous exercise, determine which are contractions
in {x : |x| < 1} and find their fixed points (optional).

54.4. Linearize the following functions on R
3 at x = (1, 2, 3):

� (a) f(x) = |x|2,
� (b) f(x) = sin(|x|2),
� (c) f(x) = (|x|2, sin(x2)),

� (d) f(x) = (|x|2, sin(x2), x1x2 cos(x3)).
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54.5. Compute the determinant of the Jacobian of the following functions: (a)
f(x) = (x3

1 − 3x1x
2
2, 3x1x

2
2 − x3

2), (b) f(x) = (x1e
x2 cos(x3), x1e

x2 sin(x3), x1e
x2).

54.6. Compute the second order Taylor polynomials at (0, 0, 0) of the following
functions f : R

3 → R: (a) f(x) =
√

1 + x1 + x2 + x3, (b) f(x) = (x1 − 1)x2x3,
(c) f(x) = sin(cos(x1x2x3)), (d) exp(−x2

1−x2
2−x2

3), (e) try to estimate the errors
in the approximations in (a)-(d).

54.7. Linearize f ◦ s, where f(x) = x1x2x3 at t = 1 with (a) s(t) = (t, t2, t3),
(b) s(t) = (cos(t), sin(t), t), (c) s(t) = (t, 1, t−1).

54.8. Evaluate
∫∞
0
yne−xy dy for x > 0 by repeated differentiation with respect

to x of
∫∞
0
e−xy dy.

54.9. Try to minimize the function u(x) = x2
1+x

2
2+2x2

3 by starting at x = (1, 1, 1)
using the method of steepest descent. Seek the largest step length for which the
iteration converges.

54.10. Compute the roots of the equation (x2
1 −x2

2 −3x1 +x2 +4, 2x1x2 −3x2 −
x1 + 3) = (0, 0) using Newton’s method.

54.11. Generalize Taylor’s theorem for a function f : R
n → R to third order.

54.12. Is the function f(x1, x2) =
x2

1 − x2
2

x2
1 + x2

2

Lipschitz continuous close to (0, 0)?

Jacobi and Euler were kindred spirits in the way they created their
mathematics. Both were prolific writers and even more prolific calcu-
lators; both drew a great deal of insight from immense algorithmical
work; both laboured in many fields of mathematics (Euler, in this re-
spect, greatly surpassed Jacobi); and both at any moment could draw
from the vast armoury of mathematical methods just those weapons
which would promise the best results in the attack of a given prob-
lem. (Sciba)



55
Level Curves/Surfaces
and the Gradient

It would make no sense to overload the student with all kinds of
little things that might be of occasional use. Instead, it is important
that students become familiar with ways to think mathematically,
recognize the need for applying mathematical methods to engineering
problems, realize that mathematics is a systematic science built on
relatively few principles and get a firm grasp for the interrelation
between theory, computing and experiment. (E. Kreyszig, in Preface
to Advanced Engineering Mathematics, 1993)

55.1 Level Curves

A level curve of a function u : R
2 → R is a curve g : [a, b] → R

2 such that

u(g(t)) = c for t ∈ [a, b], (55.1)

where c is a constant. A level curve is also called an isoline. The points x
on a level curve x = g(t) satisfying (55.1), all have the same function
value u(x) = u(g(t)) = c. By plotting the level curves or isolines for a col-
lection of different constants c, we get a level curve plot or contour plot
of the function u(x). The level curves are the projections onto R

2 of the
intersections of the planes x3 = c in R

3 with the graph {x ∈ R
2 : x3 =

u(x1, x2), (x1, x2) ∈ R
2}. We illustrate in Fig. 55.2.

Example 55.1. The level curves of the function u(x) = x2
1 + x2

2 are the
circles x2

1 + x2
2 = c with c ≥ 0 a constant. The level curves of the function



814 55. Level Curves/Surfaces and the Gradient

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 55.1. Projection onto R
2 of the intersection of x3 = c and x3 = u(x1, x2

(with u(x1, x2) = 1 − exp(−x2
1 − x2

2) and c = .5) gives a level curve
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Fig. 55.2. A plot of a surface and the corresponding contour plot with contour
curves shown every .7 units starting at the maximum height of 4

u(x) = 2x2
1 + x2

2 are the ellipses 2x2
1 + x2

2 = c with c ≥ 0. The level curves
of the function u(x) = x2

1 − x2 are the parabolas x2 = x2
1 − c with c a

constant.

Example 55.2. A hiking map indicates the level curves of the function
u : R

2 → R that gives the height of a point x ∈ R
2 above a reference

level, like the see level. The difference in height between two nearby level
curves is typically 10 meters. The change in height between two points can
be obtained by counting the number of contour lines intersected by a line
joining the two points. This is useful when planning a hiking trip. Recall
Fig. 54.8.

A level curve u(g(t)) = c may be thought of as the shore-lines with the sea
level equal to c above the reference level.
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55.2 Local Existence of Level Curves

The local existence of level curves follows from the following special case of
the Implicit Function theorem, where the level curve is given by t→ (t, g(t))
or t→ (g(t), t), where g : R → R.

Theorem 55.1 Assume u : R
2 → R has continuous partial derivatives and

u(x̄1, x̄2) = c. If ∂u
∂x2

(x̄1, x̄2) �= 0, then there is a δ > 0 such that u(x1, x2) = c

has a unique solution x2 = g(x1) for |x1 − x̄1| < δ. If ∂u
∂x1

(x̄1, x̄2) �= 0, then
there is a δ > 0 such that u(x1, x2) = c has a unique solution x1 = g(x2)
for |x2 − x̄2| < δ.

Notice that if ∂u
∂x2

(x̄1, x̄2) = 0, then the level curve is parallel to the
x2-axis, and thus we cannot expect the equation u(x1, x2) = c to define x2

as a function of x1 (a corresponding function x2 = g(x1) would then have
infinite slope at x1 = x̄1).

x1

x2

u(x, y) = x2 + y2 = 1

x2 = g(x1) =
√

1 − x2
1

Fig. 55.3. x2 = −
√

1 − x2
1 giving one piece of the level curve

u(x1, x2) = x2
1 + x2

2 = 1

55.3 Level Curves and the Gradient

Differentiating both sides of (55.1), we get using the Chain rule

d

dt
u(g(t)) = ∇u(x) · g′(t) =

∂u

∂x1
(g(t))g′1(t) +

∂u

∂x2
(g(t))g′2(t) = 0.

Since g′(t) = (g′1(t), g
′
2(t)) is the direction of the tangent of the curve g(t),

this means that the direction g′(t) of a level curve of a function u : R
2 → R

is orthogonal to the gradient ∇u(g(t)). Recall that the gradient ∇u(x)
points in the direction of the steepest ascent of the function u(x) at x,
and the direction perpendicular to the gradient (the direction of the level
curve) is a direction in which u stays constant, see Fig. 55.4. Moving along
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a level curve the function stays constant, and moving in the direction of
the gradient the function increases as quickly as possible!

Since the gradient ∇(x̄) is a normal to the tangent to the level curve
through x̄, we can write the equation for the tangent to the level curve
through x̄ in the form ∇u(x̄) · (x− x̄) = 0.

x1

x2

u = c

u < c

u > c

∇u

Fig. 55.4. The gradient of ∇u(x) of a function u : R
2 → R is orthogonal to the

level curve of u through x

We summarize:

Theorem 55.2 The gradient ∇u(g(t)) of a function u : R
2 → R is or-

thogonal to the tangent g′(t) of a level curve g : I → R. We can write
the equation for the tangent to the level curve through x̄ in the form
∇u(x̄) · (x − x̄) = 0.

Example 55.3. Consider the function u(x1, x2) = x2
1 + x2

2 with circular
level curves g(t) = (g1(t), g2(t)) satisfying g2

1(t) + g2
2(t) = c2. We have

∇u(x) = (2x1, 2x2) and differentiating g2
1(t) + g2

2(t) = c2 with respect to t
we get 0 = 2g1(t)g′1(t) + 2g2(t)g′2(t) = ∇u(g(t)) · g′(t) as expected. Alter-
natively, parameterizing a level curve g(t) satisfying g2

1(t) + g2
2(t) = c2

by g(t) = c(cos(t), sin(t)), we have g′(t) = c(− sin(t), cos(t)) =
(−x2(t), x1(t)) with x = g(t). We check that ∇u(g(t)) · g′(t) =
2(x1(t), x2(t)) × (−x2(t), x1(t)) = 0.

Example 55.4. If u : R
2 → R is of the form u(x1, x2) = f(x1) − x2, where

f : R → R, then ∇u(x) = (f ′(x1),−1). A level curve u(g(t)) = c can
be parameterized by g(t) = (t, f(t) − c), and g′(t) = (1, f ′(t)). Clearly,
∇u(g(t)) · g′(t) = (f ′(t),−1) · (1, f ′(t)) = 0.

55.4 Level Surfaces

A level surface of a function u : R
3 → R is a surface g : Q → R

3, where Q
is a subset of R

2, such that
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u(g(y)) = c for y ∈ Q, (55.2)

where c is a constant. A level surface is also called an isosurface. The
points on a level surface g(t) satisfying (55.1) all have the same function
value u(g(y)) = c.
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Fig. 55.5. A piece of the level surface u(x1, x2, x3) = x2
1 + x2

3 = 1

55.5 Local Existence of Level Surfaces

The local existence of level surfaces follows from the following special case
of the Implicit Function theorem. We find that the level surface is param-
eterized as g(y1, y2) = (y1, y2, f(y1, y2)), g(y1, y3) = (y1, f(y1, y2), y3) or
g(y2, y3) = (f(y2, y3), y2, y3) with some function f : R

2 → R, depending on
which partial derivative is non-zero.

Theorem 55.3 Assume u : R
3 → R has continuous partial derivatives

and u(x̄1, x̄2, x̄3) = c, where c is a constant. If ∂u/∂x3 �= 0, then there is
a δ > 0 such that u(x1, x2, x3) = c has a unique solution x3 = f(x1, x2)
for ‖(x1, x2) − (x̄1, x̄2)‖ < δ. If ∂u/∂x2 �= 0, then there is a δ > 0 such
that u(x1, x2, x3) = c has a unique solution x2 = g(x1, x3) for ‖(x1, x3) −
(x̄1, x̄3)‖ < δ. If ∂u/∂x1 �= 0, then there is a δ > 0 such that u(x1, x2, x3) = c
has a unique solution x1 = g(x2, x3) for ‖(x2, x3) − (x̄2, x̄3)‖ < δ.

55.6 Level Surfaces and the Gradient

Differentiating both sides of (55.2) with respect to y1 and y2, where y =
(y1, y2), we get using the Chain rule

∂

∂yi
u(g(y)) = ∇u(g(y)) · g′,i(y) = 0, i = 1, 2,
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where we use the notation

g′,i(y) =
∂

∂yi
g(y).

We use the comma in g′,i to indicate differentiation with respect to xi,
while gi will denote component i of g = (g1, g2, g3). We recall that the
tangent plane (linearization) of g(y) at x̄ = g(ȳ) is given by (y1, y2) →
g(ȳ) + (y1 − ȳ1)g′,1(ȳ) + (y2 − ȳ2)g′,2(ȳ), and we conclude that ∇u(g(ȳ))
is orthogonal to the tangent plane of the level surface through x̄ = g(ȳ).
We say that ∇u(g(ȳ)) is orthogonal to the level surface u(x) = c through
x̄ = g(ȳ), or that ∇u(g(ȳ)) is a normal to the level surface u(x) = c at
x̄ = g(ȳ), see Fig. 55.6. Since ∇u(x̄) thus is a normal to the tangent plane
at x, the equation for the tangent plane to a level surface through x̄ can
also be written ∇u(x̄) · (x− x̄) = 0.
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grad u 

ds 
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ds 

dt 
1 

Fig. 55.6. The gradient ∇u(x) = (2x1,−1, 2x3) of u(x1, x2, x3) = x2
1 + x2

3 − x2

is orthogonal to a level surface (x1, x3) → g(x1, x3) = (x1, x
2
1 + x2

3 + c, x3) since
g′1 = (1, 2x1, 0) and g′3 = (0, 2x3, 1)

We summarize:

Theorem 55.4 The gradient ∇u(x̄) of a function u : R
3 → R, is orthogo-

nal to the tangent plane (y1, y2) → g(ȳ)+(y1− ȳ1)g′,1(ȳ)+(y2− ȳ2)g′,2(ȳ) of
a level surface y → x = g(y), where x̄ = g(ȳ). The equation for the tangent
plane of a level surface through x̄ can also be written ∇u(x̄) · (x− x̄) = 0.

Example 55.5. Consider the function u(x) = x2
1 + x2

2 + x2
3 with the level

surfaces g(y) satisfying g2
1(y) + g2

2(y) + s23(y) = c2 representing spheres
centered at the origin with radii c. The gradient ∇(x) = 2x is evidently
orthogonal to a tangent plane of a level surface at x.

Example 55.6. If u : R
3→ R is of the form u(x1, x2, x3)=f(x1, x2)−x3,

where f : R → R, then ∇u(x) = (f ′
,1(x1, x2), f ′

,2(x1, x2),−1). A level sur-
face u(g(y)) = c can be parameterized by g(y)=(y1, y2, f(y1, y2) − c), and
g′1(y) = (1, 0, f ′

,1(y)) and g′2(y) = (0, 1, f ′
,2(y)). Clearly, ∇u(g(y)) ·g′,i(y) = 0

for i = 1, 2.
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Chapter 55 Problems

55.1. Sketch the following surfaces in R
3: (a) Γ = {x : x2

1 + x2
2 = x3},

(b) Γ = {x : x2
1 + x2

2 = x2
3}, (c) Γ = {x : x2

1 + x2
2 = −x2

3},
(d) Γ = {x : x2

1 + 2x2
2 + 3x2

3 = 6}. Determine the tangent planes to the sur-
faces at various points.

55.2. Find parametrization of the curves for the intersections of the surfaces in
the previous exercise with the plane x3 = 1.

55.3. Show that the surface Γ = {x : x2
1+2x2

2+3x2
3+x1x

3
3 = 7} can be expressed

in the form x3 = g(x1, x2) close to (1, 1, 1).

55.4. Compute the gradients of the following functions f : R
3 → R:

(a) f(x) = xn1 (xn2 + xn3 ), (b) f(x) = |x|, (c) f(x) = |x|2, (d) f(x) = 1/|x|,
(e) f(x) = exp(x1x2x3).

55.5. For each of the functions in the previous exercise, determine the equation
for the tangent plane to the level surface f(x) = f(1, 1, 1) at x = (1, 1, 1).

55.6. Determine the equation for the tangent plane at x = (1, 2, 3) for the
following surfaces: (a) x3 = 3

2
x1x2, (b) x2

1 + x2
2 + x2

3 = 14, (c) x2 = sin(2πx1) +
2 cos(2πx3).

55.7. Determine the tangent plane and normal vector to the ellipse x2
1+3x2

2 = 10
at x = (1,

√
3).

55.8. Let f : Q→ R, where Q = [0, 1]× [0, 1] is the unit square, satisfy f(x) = 0
for x on the boundary of Q. Prove under convenient assumptions that there is
a point y ∈ Q such that ∇f(y) = 0.





56
Linearization and Stability
of Initial Value Problems

The logos of somewome to that base anything, when most charac-
teristically mantissa minus, comes to nullum in the endth: orso, here
is nowet badder than the sin of Aha with his cosin Lil, verswaysed
on coversvised, and all that’s consecants and cotangincies. . .
(Finnegans Wake, James Joyce)

56.1 Introduction

We continue the study of the general initial value problem (40.1), now
focussing on the stability of solutions, which is a measure of the sensitivity of
solutions to perturbations in given data. This is a fundamentally important
aspect of the behavior of solutions, which we touched upon in Chapter The
general initial value problem, and which we now consider more closely.

We consider an autonomous problem of the form

u̇(t) = f(u(t)) for 0 < t ≤ T, u(0) = u0, (56.1)

where f : R
d → R

d is a given bounded Lipschitz continuous function,
u0 ∈ R

d is a given initial value, and we seek a solution u : [0, T ] → R
d,

where we think of [0, T ] as a given time interval. To study the stability of
a given solution u(t) to small perturbations in given data, e.g. in the given
initial data u0, we will consider an associated linearized problem that arises
upon linearizing the function v → f(v) around the solution u(t).
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56.2 Stationary Solutions

We consider first the simplest case of a stationary solution u(t) = ū for
0 ≤ t ≤ T , that is a solution u(t) of (56.1) that is independent of time t.
Since u̇(t) = 0 if u(t) is independent of time, u(t) = ū is a stationary
solution if f(ū) = 0 and u0 = ū, where ū = (ū1, . . . , ūd) ∈ R

d. The equa-
tion f(ū) = 0 corresponds to a system of d equations fi(ū1, . . . , ūd) = 0,
i = 1, . . . , d, in d unknowns ū1, . . . , ūd, where the fi are the components
of f . We studied such systems of equations in Chapter Vector-valued func-
tions of several real variables. Here, we assume the existence of a stationary
solution u(t) = ū so that ū ∈ R

d satisfies the equation f(ū) = 0. In gen-
eral, there may be several roots ū of the equation f(v) = 0 and thus there
may be several stationary solutions. We also refer to a stationary solution
u(t) = ū as an equilibrium solution.

Example 56.1. The stationary solutions ū of the Crash model
{
u̇1 + νu1 − κu1u2 = ν t > 0,
u̇2 + 2νu2 − νu2u1 = 0 t > 0,

(56.2)

of the form u̇ = f(u) with f(u) = (−νu1 + κu1u2 + ν,−2νu2 + νu2u1), are
ū = (1, 0) and ū = (2, ν

κ ).

56.3 Linearization at a Stationary Solution

We shall now study perturbations of a given stationary solution under
small perturbations of initial data. We thus assume f(ū) = 0 and denote
the corresponding equilibrium solution by ū(t) for t > 0, that is ū(t) = ū
for t > 0. We consider the initial value problem (56.1) with u0 = ū + ϕ0,
where ϕ0 ∈ R

d is a given small perturbation of the initial data ū. We denote
the corresponding solution by u(t) and focus attention on the corresponding
perturbation in the solution, that is ψ(t) = u(t)− ū(t) = u(t)− ū. We want
to derive a differential equation for the perturbation ψ(t), and to this end
we linearize f at ū and write

f(u(t)) = f(ū+ ψ(t)) = f(ū) + f ′(ū)ψ(t) + e(t),

where f ′(ū) is the Jacobian of f : R
d → R

d at ū and the error term e(t) is
quadratic in ψ(t) (and thus is very small if ψ(t) is small). Since f(ū) = 0
and u(t) satisfies (56.1), we have

ψ̇(t) =
d

dt
(ū+ ψ(t)))TS

d = f (u(t)) = f ′(ū)ψ(t) + e(t).

TS
d Please check this parenthesis.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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Neglecting the quadratic term e(t), we are led to a linear initial value
problem,

ϕ̇(t) = f ′(ū)ϕ(t) for t > 0, ϕ(0) = ϕ0, (56.3)
where ϕ(t) is an approximation of the perturbation ψ(t) = u(t) − ū up to
a second order term. We refer to (56.3) as the linearized problem associated
to the stationary solution ū of (56.1). Since f ′(ū) is a constant d×d matrix,
we can express the solution to (56.3) using the matrix exponential as

ϕ(t) = exp(tA)ϕ0 for 0 < t ≤ T, (56.4)

where A = f ′(ū). We thus have a formula that describes the evolution of
perturbation ϕ(t) starting from an initial perturbation ϕ(0) = ϕ0. Depend-
ing on the nature of the matrix exp(tA), the perturbation may increase or
decrease with time, reflecting a stronger or lesser sensitivity of the solu-
tion u(t) to perturbations in initial data and therefore different stability
features of the given problem.

We know that if A is diagonalizable, so that A = BΛB−1 where B is
a non-singular d×d matrix and Λ is a diagonal matrix with the eigenvalues
λ1, . . . , λd of A on the diagonal, then

ϕ(t) = B exp(tΛ)B−1ϕ0 for t ≥ 0. (56.5)

We see that each component of ϕ(t) is a linear combination of exp(tλ1), . . . ,
exp(tλd) and the sign of the real part Re λi of λi determines if the cor-
responding term grows or decays exponentially. If some Re λi > 0, then
we have exponential growth of certain perturbations, which indicates that
the corresponding stationary solution ū is unstable. On the other hand, if
all Re λi ≤ 0, then we would expect ū to be stable.

These considerations are qualitative in nature, and to be more precise we
should base judgements of stability or instability on quantitative estimates
of perturbation growth. In the diagonalizable case, (56.5) implies in the
Euclidean vector and matrix norms that

‖ϕ(t)‖ ≤ ‖B‖‖B−1‖ max
i=1,...,d

exp(tλi)‖ϕ0‖. (56.6)

We see that the maximal perturbation growth is governed by the maximal
exponential factors exp(tλi) as well as the factors ‖B‖ and ‖B−1‖ related to
the transformation matrix B. If the transformation matrix B is orthogonal,
then ‖B‖ = ‖B−1‖ = 1, and the perturbation growth is governed solely by
the exponential factors exp(tλi). We give this case special attention:

56.4 Stability Analysis when f ′(ū) Is Symmetric

If A = f ′(ū) is symmetric so that A = QΛQ−1 with Q orthogonal and Λ
a diagonal matrix with real diagonal elements λi, then

‖ϕ(t)‖ ≤ max
i=1,...,d

exp(tλi)‖ϕ0‖. (56.7)
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In particular, if all eigenvalues λi ≤ 0 then perturbations ϕ(t) cannot grow
with time, and we say that the solution ū is stable. On the other hand, if
some eigenvalue λi > 0 and the corresponding eigenvector is gi then ϕ(t) =
exp(tλi)gi solves the linearized initial value problem (56.3) with ϕ0 = gi,
and evidently the particular perturbation ϕ(t) grows exponentially. We
then say that the solution ū is unstable. Of course, the size of the positive
eigenvalues influence the perturbation growth, so that if λi > 0 is small,
then then growth is slow and the instability is mild. Likewise, if λi is small
negative, then the exponential decay is slow.

56.5 Stability Factors

We may express the stability features of a particular perturbation ϕ0

through a stability factor S(T, ϕ0) defined as follows:

S(T, ϕ0) = max
0≤t≤T

‖ϕ(t)‖
‖ϕ0‖ .

where ϕ(t) solves the linearized problem (56.3) with initial data ϕ0. The
stability factor S(T, ϕ0) measures the maximal growth of the norm of ϕ(t)
over the time interval [0, T ] versus the norm of the initial value ϕ0.

We can now seek to capture the overall stability features of a stationary
solution ū by maximization over all different perturbations:

S(T ) = max
ϕ0 �=0

S(T, ϕ0).

If the stability factor S(T ) is large, then some perturbations grow very
much over the time interval [0, T ], which indicates a strong sensitivity to
perturbations or instability. On the other hand, if S(T ) is of moderate size
then the perturbation growth is moderate, which signifies stability. Using
the Euclidean matrix norm, we can also express S(T ) as

S(T ) = max
0≤t≤T

‖ exp(tA)‖.

Example 56.2. If A = f ′(ū) is symmetric with eigenvalues λ1, . . . , λd, then

S(T ) = max
i=1,...,d

max
0≤t≤T

exp(tλi).

In particular, if all λi ≤ 0, then S(T ) = 1.

Example 56.3. The initial value problem for a pendulum takes the form

u̇1 = u2, u̇2 = − sin(u1) for t > 0,
u1(0) = u01, u2(0) = u02,
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corresponding to f(u) = (u2,− sin(u1) and the equilibrium solutions are
ū = (0, 0) and ū = (π, 0). We have

f ′(ū) =
(

0 1
− cos(ū1) 0

)

,

and the linearized problem at ū = (0, 0) thus takes the form

ϕ̇(t) =
(

0 1
−1 0

)

ϕ(t) ≡ A0ϕ(t) for t > 0, ϕ(0) = ϕ0,

with solution

ϕ1(t) = ϕ0
1 cos(t) + ϕ0

2 sin(t), ϕ2(t) = −ϕ0
1 sin(t) + ϕ0

2 cos(t).

It follows by a direct computation (or using that
(

cos(t) sin(t)
− sin(t) cos(t)

)

is an

orthogonal matrix), that for t > 0

‖ϕ(t)‖2 = ‖ϕ0‖2,

and thus the norm ‖ϕ(t)‖ of a solution ϕ(t) of the linearized equations is
constant in time, which means that the stability factor S(T ) = 1 for all
T > 0. We conclude that if the norm of a perturbation is small initially,
it will stay small for all time. This means that the equilibrium solution
ū = (0, 0) is stable. More precisely, if the pendulum is perturbed initially a
little from its bottom position, the pendulum will oscillate back and forth
around the bottom position with constant amplitude. This fits our direct
experimental experience of course.

Note that the linearized operator A0 is non-symmetric; the eigenvalues
of A0 are purely imaginary ±i, which says that ‖ϕ(t)‖ = ‖ϕ0‖, that is a
perturbation neither grows nor decays. Another way to derive this fact is to
use the fact that A0 is antisymmetric, that is A	

0 = −A0, which shows that
(A0ϕ,ϕ) = (ϕ,A	

0 ϕ) = −(ϕ,A0ϕ) = −(A0ϕ,ϕ), and thus (A0ϕ,ϕ) = 0,
where (·, ·) is the R

2 scalar product. It follows from the equation ϕ̇ = A0ϕ
upon multiplication by ϕ that 0 = (ϕ̇, ϕ) = 1

2
d
dt (ϕ,ϕ) = 1

2
d
dt‖ϕ‖2, which

proves that ‖ϕ(t)‖2 = ‖ϕ0‖2.

The linearized problem at ū = (π, 0) reads

ϕ̇(t) =
(

0 1
1 0

)

ϕ(t) ≡ Aπϕ(t) for t > 0, ϕ(0) = ϕ0,

with symmetric matrix Aπ with eigenvalues ±1. Since one eigenvalue is
positive, the stationary solution ū = (π, 0) is unstable. More precisely, the
solution is given by

ϕ1 =
ϕ0

1

2
(et + e−t) +

ϕ0
2

2
(et − e−t), ϕ2 =

ϕ0
1

2
(et − e−t) +

ϕ0
2

2
(et + e−t),
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and due to the exponential factor et, perturbations will grow exponentially
in time, and thus an initially small perturbation will become large as soon
as t ≥ 10 say. Physically, this means that if the pendulum is perturbed
initially a little from its top position, the pendulum will eventually move
away from the top position, even if the initial perturbation is very small.
This fact of course has direct experimental evidence: to balance a pendulum
with the weight in the top position is tricky business. Small perturbations
quickly grow to large perturbations and the equilibrium solution (π, 0) of
the pendulum is unstable.

Example 56.4. The linearization of the Crash model (56.2) at the equilib-
rium solution ū = (1, 0), takes the form

ϕ̇(t) =
(
−ν κ
0 −ν

)

ϕ(t) ≡ Aν,κϕ(t) for t > 0, ϕ(0) = ϕ0, (56.8)

The solution is given by ϕ2(t) = ϕ0
2 exp(−νt), and ϕ1(t) =

tκ exp(−νt)ϕ0
2 + exp(−νt)ϕ0

1. Clearly, ϕ2(t) decays monotonically to zero
and so does ϕ1(t) if κ = 0. But, if κ �= 0 then ϕ1(t) reaches the following
value, assuming for simplicity that ϕ01 = 0,

ϕ1(ν−1) = ν−1κ exp(−1)ϕ0
2,

which contains the factor ν−1 that is large if ν is small. In other words,
the stability factor S(ν−1) ∼ ν−1, which is large if ν is small. Eventually,
however, ϕ1(t) decays to zero. As a result, the equilibrium solution (1, 0) is
stable only to small perturbations, since we saw in the Chapter The Crash
model that (1, 0) is unstable to perturbations above a certain threshold de-
pending on λ. Note that here the Jacobian f ′(ū) = Aν,κ has a double eigen-
value −ν, but Aν,κ is non-symmetric and the space of eigenvectors is one-
dimensional and is spanned by (1, 0). As a result, the term tκ exp(−νt)ϕ0

2

with linear growth in t appears; thus in this highly non-symmetric problem
(if ν is small), large perturbation growth ∼ ν−1 is possible although all
eigenvalues are non-positive.

The matrix Aν,κ is an example of a non-normal matrix. A non-normal
matrix A is a matrix such that A	A �= AA	. A non-normal matrix may
or may not be diagonalizable, and if diagonalizable so that A = BΛB−1,
we may have ‖B‖ or ‖B−1 large, resulting in large stability factors in the
corresponding linearized problem, as we just saw (cf. Problem 56.5).

The linearization at the equilibrium solution ū = (2, ν
κ ) takes the form

ϕ̇(t) =
(

0 2κ
ν2

κ 0

)

ϕ(t) for t > 0, ϕ(0) = ϕ0. (56.9)

The eigenvalues of the Jacobian are ±
√

2ν and the solution is a linear
combination of exp(

√
2νt) and exp(−

√
2νt) and thus has one exponentially
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growing part with growth factor exp(
√

2νt). The equilibrium solution u =
(2, ν

κ ) is thus unstable.

56.6 Stability of Time-Dependent Solutions

We now seek to extend the scope to linearization and linearized stability
for a time-dependent solution ū(t) of (56.1). We want to study solutions of
the form u(t) = ū(t)+ψ(t), where ψ(t) is a perturbation. Using d

dt ū = f(ū)
and linearizing f at ū(t), we obtain

d

dt
(ū+ ψ)(t) = f(ū(t)) + f ′(ū(t))ψ(t) + e(t),

with e(t) quadratic in ψ(t). This leads to the linearized equation

ϕ̇(t) = A(t)ϕ(t) for t > 0, ϕ(0) = ϕ0, (56.10)

where A(t) = f ′(ū(t)) is an d × d matrix that now depends on t if ū(t)
depends on t. We have no analytical solution formula to this general prob-
lem and thus although the stability properties of the given solution ū(t)
are expressed through the solutions ϕ(t) of the linearized problem (56.10),
it may be difficult to analytically assess these properties. We may define
stability factors S(T, ϕ0) and S(T ) just as above, and we may say that
a solution ū(t) is stable if S(T ) is moderately large, and unstable if S(T ) is
large. To determine S(T ) in general, we have to use numerical methods and
solve (56.10) with different initial data ϕ0. We return to the computation
of stability factors in the next chapter on adaptive solvers for initial value
problems.

56.7 Sum Up

The question of stability of solutions to initial value problems is of fun-
damental importance. We can give an affirmative answer in the case of
a stationary solution with corresponding symmetric Jacobian. In this case
a positive eigenvalue signifies instability, with the instability increasing with
increasing eigenvalue, and all eigenvalues non-positive means stability. The
case of an anti-symmetric Jacobian also signifies stability with the norm of
perturbations being constant in time. If the Jacobian is non-normal we have
to watch out and remember that just looking at the sign of the real part
of eigenvalues may be misleading: in the non-normal case algebraic growth
may in fact dominate slow exponential decay for finite time. In these cases
and also for time-dependent solutions, an analytical stability analysis may
be out of reach and the desired information about stability may be obtained
by numerical solution of the associated linearized problem.
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Chapter 56 Problems

56.1. Determine the stationary solutions to the system

u̇1 = u2(1 − u2
1),

u̇2 = 2 − u1u2,

and study the stability of these solutions.

56.2. Determine the stationary solutions to the following system (Minea’s equa-
tion) for different values of δ > 0 and γ,

u̇1 = −u1 − δ(u2
2 + u2

3) + γ,

u̇2 = −u2 − δu1u2,

u̇3 = −u3 − δu1u3,

and study the stability of these solutions.

56.3. Determine the stationary solutions of the system (56.1) with (a) f(u) =
(u1(1−u2), u2(1−u1)), (b) f(u) = (−2(u1−10)+u2 exp(u1),−2u2−u2 exp(u1)),
(c) f(u) = (u1 +u1u

2
2 +u1u

2
3,−u1 +u2 −u2u3 +u1u2u3, u2 +u3 −u2

1), and study
the stability of these solutions.

56.4. Determine the stationary solutions of the system (56.1) with (56.1) with
(a) f(u) = (−1001u1 + 999u2, 999u1 − 1001u2), (b) f(u) = (−u1 + 3u2 + 5u3,−
4u2 + 6u3, u3), (c) f(u) = (u2,−u1 − 4u2), and study the stability of these solu-
tions.

56.5. Analyze the stability of the following variant of the linearized problem
(56.8) with ε > 0 small,

ϕ̇(t) =

(
−ν κ
ε −ν

)

ϕ(t) ≡ Aν,κ,εϕ(t) for t > 0, ϕ(0) = ϕ0, (56.11)

by diagonalizing the matrix ≡ Aν,κ,ε. Note that the diagonalization degenerates
as ε tends to zero (that is, the two eigenvectors become parallel). Check if Aν,κ,ε
is a normal or non-normal matrix.



57
Adaptive Solvers for IVPs

On two occasions I have been asked (by members of Parliament),
“Pray, Mr Babbage, if you put into the machine wrong figures, will
the right answer come out?”. I am not able rightly to apprehend
the kind of confusion of ideas that could provoke such a question.
(Babbage (1792–1871))

57.1 Introduction

In this chapter, we discuss the important issue of adaptive error control for
numerical methods for initial value problems. This is the subject of auto-
mated choice of the time step with the purpose of controlling the numerical
error to within a given tolerance level. The basic idea is to combine feed-back
information from the computation concerning the residual of the computed
solution and the results of auxiliary computations of stability factors. We
focus first on on the cG(1) method and then comment on the backward Eu-
ler method, also referred to as dG(0), the discontinuous Galerkin method
with piecewise constants.

We also discuss the application of cG(1) and dG(0) to a class of so-called
stiff IVPs typically arising in chemical reaction modeling.
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57.2 The cG(1) Method

We recall that cG(1), the continuous Galerkin method with polynomials of
order 1, for the initial value problem u̇(t) = f(u(t)) for t > 0, u(0) = u0,
with f : R

d → R
d, takes the form

U(tn) = U(tn−1) +
∫ tn

tn−1

f(U(t)) dt, n = 1, 2, . . . , (57.1)

where U(t) is continuous piecewise linear with nodal values U(tn) ∈ R
d

at an increasing sequence of discrete time levels 0 = t0 < t1 < . . ., and
U(0) = u0. If we evaluate the integral in (57.1) with the midpoint quadra-
ture rule, we obtain the Midpoint method:

U(tn) = U(tn−1) + knf

(
U(tn) + U(tn−1)

2

)

, n = 1, 2, . . . , (57.2)

where kn = tn − tn−1 is the time step. The cG(1)-method is the first
in a family of cG(q)-methods with q = 1, 2, . . . ,, where the solution is
approximated by continuous piecewise polynomials of order q. The Galerkin
“orthogonality” of cG(1) is expressed by the fact that the method can be
formulated

∫ tn

tn−1

(U̇(t) − f(U(t))) · v dt = 0, n = 1, 2, . . . , (57.3)

for all v ∈ R
d. This says that the residual

R(U(t) = U̇(t) − f(U(t)), t ∈ [0, T ], (57.4)

of the continuous piecewise linear approximate solution U(t) is orthogonal
to the constant functions v(t) = v ∈ R

d on each subinterval (tn−1, tn). The
residual u̇(t) − f(u(t)) of the exact solution is zero since u̇(t) = f(u(t)),
while the residual of R(U(t)) of the approximate solution U(t) is non-zero
in general. Similarly, in cG(q) the residual is orthogonal on (tn−1, tn) to
polynomials of degree q−1. Note that (57.1) is a vector equation that reads

Ui(tn) = Ui(tn−1) +
∫ tn

tn−1

fi(U(t)) dt, n = 1, 2, . . . , i = 1, . . . , d,

as can be seen from (57.3) upon setting v = ei, i = 1, . . . , d.
We will now study the problem of automatic step-size control with the

purpose of keeping the error

‖u(T )− U(T )‖ ≤ TOL,

where T = tN is a final time and TOL is a given tolerance, while using
as few time steps as possible. The objective is the same as that of com-
puting an integral over an interval [0, T ] using numerical quadrature to
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a certain tolerance using as few quadrature points as possible. This is ex-
actly the problem we meet in the case of a scalar initial value problem
u̇(t) = f(u(t), t) with f(u(t), t) = f(t).

We shall derive an a posteriori error estimate in which the final error
‖u(T )−U(T )‖ is estimated in terms of the residualR(U(t) = U̇(t)−f(U(t))
and certain stability factors that measure the accumulation of the numerical
errors introduced in each time step.

The a posteriori error estimate takes the form

‖u(T )− U(T )‖ ≤ Sc(T ) max
0≤t≤T

‖k(t)R(U(t)‖, (57.5)

where k(t) = kn = tn − tn−1 for t ∈ [tn−1, tn) and where the stability
factor Sc(T ) is defined as follows. We consider the linearized problem

−ϕ̇(t) = A	(t)ϕ(t) for 0 < t < T, ϕ(T ) = ϕ0, (57.6)

where

A(t) =
∫ 1

0

f ′(su(t) + (1 − s)U(t)) ds.

We note that replacing u(t) by U(t) gives the following approximate formula
for A(t),

A(t) ≈ f ′(U(t)),

assuming U(t) is close to u(t). We conclude that A(t) is close to the Ja-
cobian f ′(u(t)) of f(v) at v = u(t) if U(t) is a reasonable approximation
of u(t) Note that the dual A	(t) of A(t) occurs in (57.6). Note further that
the linearized dual problem (57.6) runs backward in time since the initial
value ϕ(T ) = ϕ0 is specified at time t = T . We are now ready to introduce
the following stability factors:

Sd(T ) = max
ϕ0∈Rd

‖ϕ(t)‖
‖ϕ0‖ ,

Sc(T ) = max
ϕ0∈Rd

∫ t

0
‖ϕ̇(s)‖ ds
‖ϕ0‖ ,

(57.7)

where ϕ solves (57.6). We note that the stability factors measure different
features of the the dual solution ϕ. The stability factor Sd(t) measures the
maximal perturbation growth over the time interval [0, T ]. We met this
factor in the previous chapter. We shall see that this factor is tailored to
measure the effect of an error in the initial data u0 and the “d” in Sd

refers to “data”. The stability factor Sc(t) measures the integral of ‖ϕ̇‖
over [0, T ] and is geared to evaluate the error in cG(1) and the “c” in Sc

refers to “computation”.
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We shall give the proof of (57.5) below, first in a very simple case
with n = 1 and f(u(t)) = au(t) with a a constant and then in the gen-
eral case. The proofs are very similar. Before plunging into the proofs, we
shall try to digest the a posteriori error estimate, and see how it can be
used to design an adaptive algorithm aiming at controlling the final error
‖u(T )−U(T )‖ on a given tolerance level with as few time steps as possible.

The stability factors Sc(T ) and Sd(T ) can be computed by numerically
solving the linearized dual problem (57.6) with ϕ0 = ei for i = 1, . . . , d. If d
is large, then we may reduce the variation of the initial data by limiting the
error control to certain components only, or by trying to choose ϕ0 parallel
to u(T ) − U(T ), which we approximate as Uh(T ) − UH(T ) with Uh(T )
and UH(T ) being approximations computed with two different tolerances.

57.3 Adaptive Time Step Control for cG(1)

We recall the basic error estimate (57.5):

‖u(T )− U(T )‖ ≤ Sc(T ) max
0≤t≤T

‖k(t))R(t)‖, (57.8)

where R(t) = U̇(t)− f(U(t)) and we assume that the stability factor S(T )
has been computed or estimated. We will return to this issue below. To
achieve ‖u(T ) − U(T )‖ ≤ TOL, we use (57.5) to choose the time steps
kn = tn − tn−1 so that

k(t) = kn ≈ TOL

Sc(T )Rn
for t ∈ [tn−1, tn), (57.9)

where

Rn = max
tn−1≤t≤tn

‖U̇(t) − f(U(t))‖

is the residual on the time interval [tn−1, tn). Note that the residual Rn

is computable from the computed solution U(t) and if Sc(T ) is known,
timestepalg gives an equation for the time step kn = tn − tn−1, where tn−1

already known. As with adaptive numerical quadrature, (57.9) yields a non-
linear equation for the time step kn = tn − tn−1 that we can seek to solve
using some form of trial-and-error strategy or by prediction, e.g. replac-
ing Rn by Rn−1.

57.4 Analysis of cG(1) for a Linear Scalar IVP

We shall now prove an a posteriori error estimate for cG(1) for a a linear
scalar IVP of the form

u̇(t) = au(t) + f(t) for t > 0, u(0) = u0, (57.10)
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where a is a constant and f(t) is a given function. The analysis is based
on representing the error in terms of the solution ϕ(t) of the following dual
problem: {

−ϕ̇ = aϕ for T > t ≥ 0,
ϕ(T ) = e(T ),

(57.11)

where e = u−U . Note again that (57.11) runs “backwards” in time starting
at time tN and that the time derivative term ϕ̇ has a minus sign. We start
from the identity

|e(T )|2 = |e(T )|2 +
∫ T

0

e (−ϕ̇− aϕ) dt,

and integrate by parts to get the following representation of |e(T )|2,

|e(T )|2 =
∫ T

0

(ė− ae)ϕdt+ e(0)ϕ(0),

where we allow U(0) to be different from u(0), corresponding to an error in
the initial value u(0). Since u solves the differential equation (57.10), that
is u̇+ au = f , we have

ė− au = u̇− au− U̇ + aU = f − U̇ + aU,

and thus we obtain the following representation of the error |e(T )|2 in terms
of the residual R(U) = U̇ − aU − f and the dual solution ϕ,

|e(T )|2 =
∫ T

0

(f + aU − U̇)ϕdt+ e(0)ϕ(0) = −
∫ tN

0

R(U)ϕdt+ e(0)ϕ(0).

(57.12)
Next, we use the Galerkin orthogonality of cG(1),

∫ tn

tn−1

R(U) dt = 0 for n = 1, 2, . . . ,

to rewrite (57.12) as

e(T )2 = −
∫ T

0

R(U)(ϕ− ϕ̄) dt+ e(0)ϕ(0), (57.13)

where ϕ̄ is the mean-value of ϕ over each time interval, that is

ϕ̄(t) =
1
kn

∫ tn

tn−1

ϕ(s) ds for t ∈ [tn−1, tn).

We shall now use ∫

In

|ϕ− ϕ̄| dt ≤ kn

∫

In

|ϕ̇| dt,
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which follows by integration from the facts that

ϕ(t) − ϕ̄(t) =
1
kn

∫ tn

tn−1

(ϕ(t) − ϕ(s)) ds,

and

|ϕ(t) − ϕ(s)| ≤
∫ t

s

|ϕ̇(σ)| dσ ≤
∫ tn

tn−1

|ϕ̇(σ)| dσ for s, t ∈ [tn−1, tn].

Thus, (57.13) implies

|e(T )|2 ≤
N∑

n=1

Rn

∫

In

|ϕ− ϕ̄|dt+ |e(0)||ϕ(0)|

≤
N∑

n=1

knRn

∫

In

|ϕ̇|dt+ |e(0)||ϕ(0)|,
(57.14)

where

Rn = max
tn−1≤t≤tn

|R(U(t))|.

Bringing out the max of knRn over n, we get

|e(T )|2 ≤ max
1≤n≤N

knRn

∫ tN

0

|ϕ̇| dt+ |e(0)||ϕ(0)|.

Recalling that ϕ(T ) = e(T ) and using the definitions of Sc(tN ) and Sd(tN ),
we get the following final estimate,

|e(T )| ≤ Sc(T ) max
0≤t≤T

|k(t)R(U(t))| + Sd(T )|e(0)|.

The stability factors Sc(T ) and Sd(T ) measure the effects of the accu-
mulation of error in the approximation. To give the analysis a quantitative
meaning, we have to give a quantitative bound of this factor. The following
lemma gives an estimate for Sc(T ) and Sd(T ) in the cases a ≤ 0 and the
case a ≥ 0 with possibly vastly different stability factors. We notice that
the solution ϕ(t) of (57.11) is given by the explicit formula

ϕ(t) = e(T ) exp(a(T − t)).

We see that if a ≤ 0, then the solution ϕ(t) decays as t decreases from T ,
and the case a ≤ 0 is thus the “stable case”. If a > 0 then the exponential
factor exp(aT ) enters, and depending on the size of a this case is “unstable”.
More precisely, we conclude directly from the explicit solution formula that

Lemma 57.1 The stability factors Sc(T ) and Sd(T ) satisfy if a > 0,

Sd(T ) ≤ exp(aT ), Sc(T ) ≤ exp(aT ), (57.15)

and if a ≤ 0, then
Sd(T ) ≤ 1, Sc(T ) ≤ 1. (57.16)
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57.5 Analysis of cG(1) for a General IVP

The extension of the a posteriori error analysis to a general IVP u̇ = f(u)
with f : R

d → R
d goes as follows. We recall that the linearized dual problem

takes the form

−ϕ̇(t) = A	(t)ϕ(t) for 0 < t < T, ϕ(T ) = e(T ), (57.17)

with

A(t) =
∫ 1

0

f ′(su(t) + (1 − s)U(t)) ds,

where u(t) is the exact solution and U(t) the approximate solution. We
now use the fact that

A(t)e(t) =
∫ 1

0

f ′(su(t) + (1 − s)U(t))e(t) ds

=
∫ 1

0

d

ds
f(su(t) + (1 − s)U(t)) ds = f(u(t)) − f(U(t)),

(57.18)

where we used the Chain rule and the Fundamental Theorem of Calculus.
We start from the identity

‖e(T )‖2 = ‖e(T )‖2 +
∫ T

0

e · (−ϕ̇−A	ϕ) dt,

and integrate by parts to get the error representation,

‖e(T )‖2 =
∫ T

0

(ė−Ae) · ϕdt+ e(0) · ϕ(0),

where we allow U(0) to be different from u(0), corresponding to an error in
the initial value u(0). Since u solves the differential equation u̇− f(u) = 0,
(57.18) implies

ė−Ae = u̇− f(u) − U̇ + f(U) = −U̇ + f(U),

and thus we obtain the following representation of the error ‖e(T )‖2 in
terms of the residual R(U) = U̇ − f(U) and the dual solution ϕ,

‖e(T )‖2 = −
∫ tN

0

R(U)ϕdt+ e(0)ϕ(0). (57.19)

From this point, the proof proceeds just as in the scalar case considered
above and we thus obtain the following a posteriori error estimate

‖e(T )‖ ≤ Sc(T ) max
0≤t≤T

‖k(t)R(U(t))‖ + Sd(T )‖e(0)‖,
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which can be used a basis for adaptive time step control as described above.
The stability factors Sc(T ) and Sd(T ) may be estimated by solving the
dual problem with suitable initial data. The proof of the a posteriori error
estimate shows that the stability factors may be defined by

Sd(T ) =
‖ϕ(t)‖
‖e(T )‖ ,

Sc(T ) =

∫ t

0
‖ϕ̇(s)‖ ds
‖e(T )‖ ,

(57.20)

where ϕ solves the linearized dual problem with initial data ϕ(T ) = e(T ).
As indicated, to compute the stability factors Sd(T ) and Sc(T ), we may
solve the dual problem with some estimation of e(T ) obtained by solving
the initial value problem with two tolerances and approximating e(T ) by
the difference of the corresponding approximate solutions. Alternatively,
choosing ϕ(T ) = ei, we obtain a posteriori error control for error compo-
nent ei(T ). If d is not large, we may this way control all components of the
error, and if d is large, we may choose a couple different i at random.

The size of the stability factors indicate the degree of stability of the
solution u(t) being computed. If the stability factors are large, the residu-
als R(U(t) and e(0) have to be made correspondingly smaller by choosing
smaller time steps and the computational problem is more demanding.

57.6 Analysis of Backward Euler for a General IVP

We now derive an a posteriori error estimate for the backward Euler method
for the IVP (56.1):

U(tn) = U(tn−1) + knf(U(tn)), n = 1, 2, . . . , N, U(0) = u0.

We associate a function U(t) defined on [0, T ] to the function values U(tn),
n = 0, 1, . . . , N, as follows:

U(t) = U(tn) for t ∈ (tn−1, tn].

In other words,U(t) is piecewise constant on [0, T ] and takes the value U(tn)
on (tn−1, tn], and thus takes a jump from the value U(tn−1) to the
value U(tn) at the time level tn−1.

We can now write the backward Euler method as,

U(tn) = U(tn−1) +
∫ tn

tn−1

f(U(t)) dt,

or equivalently

U(tn) · v = U(tn−1) · v +
∫ tn

tn−1

f(U(t)) · v dt, (57.21)
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for all v ∈ R
d. This method os also referred to as dG(0), that is the dis-

continuous Galerkin method of order zero, corresponding to approximating
the exact solution by a piecewise constant function U(t) satisfying the or-
thogonality condition (57.21).

We are now ready to derive an a posteriori error estimate following the
same strategy as for the cG(1) method. We start from the identity

‖e(T )‖2 = ‖e(T )‖2 +
N∑

n=1

∫ tn

tn−1

e · (−ϕ̇−A	ϕ) dt,

and integrate by parts on each subinterval (tn−1, tn) to get the following
error representation,

‖e(T )‖2 =
N∑

n=1

∫ tn

tn−1

(ė−Ae) · ϕdt

−
N−1∑

n=2

(U(tn) − U(tn−1))ϕ(tn−1),

where the last term results from the jumps of U(t) at the the nodes t = tn−1

and we assume U(0) = u(0) for simplicity. Since u solves the differential
equation u̇− f(u) = 0, (57.18) and the fact that U̇ on (tn−1, tn) imply

ė−Ae = u̇− f(u) − U̇ + f(U) = −U̇ + f(U) = f(U) on (tn−1, tn),

and thus we obtain

‖e(T )‖2 = −
N−1∑

n=2

(U(tn) − U(tn−1))ϕ(tn−1) +
∫ tN

0

f(U)ϕdt.

Using (57.21) with v = ϕ̄, the mean value of ϕ as above, we get

‖e(T )‖2 = −
N−1∑

n=2

(U(tn) − U(tn−1)) · (ϕ(tn−1) − ϕ̄(tn−1))

+
n∑

n=1

∫ tn

tn−1

f(U)(ϕ− ϕ̄) dt.

We note that
∫ tn

tn−1

f(U)(ϕ− ϕ̄) dt = 0,

since f(U(t)) is constant on (tn−1, tn], and ϕ̄ is the mean value of ϕ, and
thus the error representation takes the final form

‖e(T )‖2 = −
N−1∑

n=2

(U(tn) − U(tn−1)) · (ϕ(tn−1) − ϕ̄(tn−1)).
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Using

‖ϕ(tn−1) − ϕ̄(tn−1)‖ ≤
∫ tn

tn−1

‖ϕ̇(t)‖ dt,

we obtain the following a posteriori error estimate for the backward Euler
method,

‖e(T )‖ ≤ Sc(T ) max
1≤n≤N

‖U(tn)) − U(tn−1))‖. (57.22)

Note the very simple form of this estimate involving the jumps ‖U(tn)) −
U(tn−1))‖ playing the role the residual. The a posteriori error estimate
(57.22) can be used as a basis for an algorithm for adaptive time step
control of the following form: for n = 1, 2, . . . , choose kn so that

‖U(tn)) − U(tn−1))‖ ≈ TOL

Sc(T )
.

57.7 Stiff Initial Value Problems

A stiff initial value problem u̇ = f(u) may be characterized by the fact that
the stability factors Sd(T ) and Sc(T ) are of moderate size even for large T ,
while the norm of the linearized operator f ′(u(t)) is large, that is the Lips-
chitz constant Lf is very large. Such initial value problems are common for
example in models of chemical reaction with reactions on a range of time
scales from slow to fast. Typical solutions include so-called transients where
the fast reactions make the solution change quickly over a short (initial)
time interval, after which the fast reactions are “burned out” and the slow
reactions make the solution change on a longer time scale.

The prototype of a stiff initial value problem has the form

u̇ = f(u) ≡ −Au for t > 0, u(t) = u0 = (u0
i ), (57.23)

where A is a constant symmetric positive semidefinite d × d matrix with
non-negative eigenvalues λi ranging from zero to large positive values. Ac-
cordingly, the norm of the matrix A is large and Lf is large. By diago-
nalization, we may reduce to the case when A is a diagonal matrix with
non-negative diagonal elements λi, in which case the solution u(t) = (ui(t))
is given by

ui(t) = exp(−λi t)u0
i for t > 0, (57.24)

with u0 = (u0
i ). This explicit solution formula shows that a component ui(t)

corresponding to a large positive eigenvalue λi decays very quickly to zero,
while a component with a small eigenvalue stays almost constant for a long
time and eventually decays to zero. The sign of the eigenvalues is evidently
crucial: if some λi was negative, then the corresponding solution component
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would explode exponentially more or less quickly depending on the size
of λi. In particular, (57.24) with the λi non-negative implies

‖u(t)‖ ≤ ‖u0‖ for t > 0, (57.25)

which indicates a form of stability with stability factor equal to 1 in the
sense that the norm of the solution does not increase in time.

The dual problem corresponding to (57.23) takes the form

−ϕ̇+Aϕ = 0 for T > t > 0, ϕ(T ) = ψ,

with ψ given data at time t = T . As a counterpart of (57.25), we conclude
that Sd(T ) ≤ 1. We can similarly show that Sc(T ) grows very slowly with
increasing T . We sum up: (57.23) represents a stiff problem; stability factors
are of moderate size even for large T while the norm of the (linearized)
operator A is large.

From numerical point of view, stiff problems may seem particularly
friendly since the stability factors grow very slowly with time, but there is
one hook that has attracted a lot of attention in the literature on numer-
ical methods for initial value problems, namely the failure of an explicit
method like the forward Euler method. We write this method for the equa-
tion u̇ = −Au in the form

Un = Un−1 − knAU
n−1

with Un an approximation of u(tn) and 0 = t0 < t1 < . . . an increasing
sequence of time levels, and kn = tn − tn−1. If A is diagonal with diagonal
elements λi ≥ 0, then

Un
i = (1 − knλi)Un−1

i

and if λi is large positive, then |1−knλi| may be much larger than 1 unless
the time step kn is sufficiently small (kn ≤ 2/|λi| for all i) and the the
numerical solution will then quickly explode to infinity, while the corre-
sponding exact solution quickly decays to zero. The explicit Euler method
will thus give completely wrong results unless sufficiently small time steps
are used. This may lead to very inefficient time-stepping since after the
transients have died out, the solution may vary only slowly and large time
steps would be desirable. We note that the time step limit kn ≤ 2/|λi| for
all i, is set by the largest eigenvalue maxλi, while the time long-time scale is
set by the smallest eigenvalue minλi, so that if the quotient maxλi/minλi

is large (which signifies a stiff problem), then explicit Euler would be inef-
ficient outside transients.

On the other hand, the dG(0), or implicit Euler method,

Un + knAU
n = Un−1
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with

Un
i = (1 + knλi)−1Un−1

i

will be stable and work very well without step size limitation because 1 +
knλi ≥ 1 for all λi ≤ 0.

For the cG(1)-method, we will have

Un
i =

1 − knλi

1 + knλi
Un−1

i

and stability prevails because
∣
∣
∣
∣
1 − knλi

1 + knλi

∣
∣
∣
∣ ≤ 1

for all λi ≥ 0.
We conclude that both dG(0) and cG(1) may be used for stiff problems,

but both these methods are implicit and require the solution of system of
equations at each time step. More precisely, dG(0) for a problem of the
form u̇ = f(u) takes the form

Un − knf(Un) = Un−1.

At each time step we have to solve an equation of the form v − knf(v) =
Un−1 with Un−1 given. To this end we may try a damped fixed point
iteration in the form

v(m) = v(m−1) − α(v(m−1) − knf(v(m−1)) − Un−1),

with α some suitable matrix (or constant in the simplest case). Choosing
α = I, and iterating once with v0 = 0 corresponds to the explicit Euler
method. Convergence of the fixed point iteration requires that

‖I + knαf
′(v)‖ < 1

for relevant values of v, which could force α to be small (e.g. in the stiff
case with f ′(v) having large negative eigenvalues) and result in slow con-
vergence. A first try could be to choose α to be a diagonal matrix with
αi = (f ′

ii)(v
m−1))−1 (corresponding to diagonal scaling) and hope that the

number of iterations would not be too large. In some cases more efficient
iterative solvers would have to be used.

57.8 On Explicit Time-Stepping for Stiff Problems

We just learned that explicit time-stepping for stiff problems require small
time steps outside transients and thus may be inefficient. We shall now indi-
cate a way to get around this limitation through a process of stabilization,
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where a large time step is accompanied by a couple of small time steps.
The resulting method has similarities with the control system of a modern
(unstable) jet fighter like the Swedish JAS Gripen, the flight of which is
controlled by quick small flaps of a pair of small extra wings ahead of the
main wings, or balancing a stick vertically on the finger tips if we want
a more domestic application.

We shall now explain the basic (simple) idea of the stabilization and
present some examples, as illustrations of fundamental aspects of adap-
tive IVP-solvers and stiff problems. Thus to start with, suppose we apply
explicit Euler to the scalar problem

u̇(t) + λu(t) = 0 for t > 0.

u(0) = u0,
(57.26)

with λ > 0 taking first a large time step K satisfying Kλ > 2 and then m
small time steps k satisfying kλ < 2, to get the method

Un = (1 − kλ)m(1 −Kλ)Un−1, (57.27)

altogether corresponding to a time step of size kn = K+mk. Here K gives
a large unstable time step with |1−Kλ| > 1 and k is a small time step with
|1 − kλ| < 1. Defining the polynomial function p(x) = (1 − θx)m(1 − x),
where θ = k

K , we can write the method (57.27) in the form

Un = p(Kλ)Un−1.

For stability we need

|p(Kλ)| ≤ 1, that is |1 − kλ|m(Kλ− 1) ≤ 1,

or

m ≥ log(Kλ− 1)
− log |1 − kλ| ≈ 2 log(Kλ), (57.28)

with c = kλ ≈ 1/2 for definiteness.
We conclude that m may be quite small even if Kλ is large, since the

logarithm grows so slowly, and then only a small fraction of the total time
would be spent on stabilizing time-stepping with the small time steps k.

To measure the efficiency gain we introduce

α =
1 +m

K + km
∈ (1/K, 1/k),

which is the number of time steps per unit interval with stabilized explicit
Euler method, and by (57.28) we have

α ≈ 1 + 2 log(Kλ)
K + log(Kλ)/λ

≈ 2λ
log(Kλ)
Kλ

� 2λ, (57.29)
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for Kλ� 1. On the other hand, the number of time steps per unit interval
for the usual explicit Euler is

α0 = 1/k = λ/2, (57.30)

choosing a maximum time step k = 2/λ.
The cost reduction factor using the stabilized explicit Euler method

would thus be

α

α0
≈ 4 log(Kλ)

Kλ

which can be quite significant for large values of Kλ.
We now present some examples using an adaptive cg(1) IVP-solver in

stabilized explicit form with just a few iterations in each time step, which
allows large time steps. In all problems we note the initial transient, where
the solution components change quickly, and the oscillating nature of the
time step sequence outside the transient with large time steps followed by
some small stabilizing time steps.

Example 57.1. We apply the indicated method to the scalar problem equa-
tion (57.26) with u0 = 1 and λ = 1000, and display the result in Figure 57.1.
The cost reduction factor with comparison to a standard explicit method
is large: α/α0 ≈ 1/310.
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Fig. 57.1. Solution and time step sequence for (57.26), α/α0 ≈ 1/310
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Example 57.2. We now consider the 2 × 2 diagonal system

u̇(t) +
(

100 0
0 1000

)

u(t) = 0 for t > 0,

u(0) = u0,

(57.31)

with u0 = (1, 1). There are now two eigenmodes with large eigenvalues that
have to be stabilized. The cost reduction is α/α0 ≈ 1/104.
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Fig. 57.2. Solution and time step sequence for (57.31), α/α0 ≈ 1/104

Example 57.3. The is the so-called HIRES problem (“High Irradiance
RESponse”) from plant physiology which consists of the following eight
equations:






u̇1 = −1.71u1 + 0.43u2 + 8.32u3 + 0.0007,
u̇2 = 1.71u1 − 8.75u2,
u̇3 = −10.03u3 + 0.43u4 + 0.035u5,
u̇4 = 8.32u2 + 1.71u3 − 1.12u4,
u̇5 = −1.745u5 + 0.43u6 + 0.43u7,
u̇6 = −280.0u6u8 + 0.69u4 + 1.71u5 − 0.43u6 + 0.69u7,
u̇7 = 280.0u6u8 − 1.81u7,
u̇8 = −280.0u6u8 + 1.81u7,

(57.32)

together with the initial condition u0 = (1.0, 0, 0, 0, 0, 0, 0, 0.0057). We
present the solution and the time step sequence in Figure 57.3. The cost is
now α ≈ 8 and the cost reduction factor is α/α0 ≈ 1/33.
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Fig. 57.3. Solution and time step sequence for (57.32), α/α0 ≈ 1/33

Example 57.4. The “Chemical Akzo-Nobel” problem consists of the fol-
lowing six equations:






u̇1 = −2r1 + r2 − r3 − r4,
u̇2 = −0.5r1 − r4 − 0.5r5 + F,
u̇3 = r1 − r2 + r3,
u̇4 = −r2 + r3 − 2r4,
u̇5 = r2 − r3 + r5,
u̇6 = −r5,

(57.33)

where F = 3.3 · (0.9/737 − u2) and the reaction rates are given by r1 =
18.7 · u4

1

√
u2, r2 = 0.58 · u3u4, r3 = 0.58/34.4 · u1u5, r4 = 0.09 · u1u

2
4

and r5 = 0.42 · u2
6

√
u2. We integrate over the interval [0, 180] with initial

condition u0 = (0.437, 0.00123, 0, 0, 0, 0.367). Allowing a maximum time
step of kmax = 1 (chosen arbitrarily), the cost is only α ≈ 2 and the cost
reduction factor is α/α0 ≈ 1/9. The actual gain in a specific situation is
determined by the quotient between the large time steps and the small
damping time steps, as well as the number of small damping steps that are
needed. In this case the number of small damping steps is small, but the
large time steps are not very large compared to the small damping steps.
The gain is thus determined both by the stiff nature of the problem and
the tolerance (or the size of the maximum allowed time step).

Example 57.5. We consider now Van der Pol’s equation:

ü+ µ(u2 − 1)u̇+ u = 0,
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which we write as
{
u̇1 = u2,
u̇2 = −µ(u2

1 − 1)u2 − u1.
(57.34)
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We take µ = 1000 and solve on the interval [0, 10] with initial condition
u0 = (2, 0). The time step sequence behaves as desired with only a small
portion of the time spent on taking small damping steps. The cost is now
α ≈ 140 and the cost reduction factor is α/α0 ≈ 1/75.

Chapter 57 Problems

57.1. Compute the stability factors Sd(T ) and Sc(T ) for the linear scalar IVP
u̇(t) = −λ(t)u(t) for t > 0, u(0) = u0, where λ(t) depends on time t and
(a) λ(t) ≥ 0, (b) λ(t) < 0.

57.2. Compute Sd(T ) and Sc(T ) for the linear 2×2 system u̇1 = u2, u̇2 = −u1

for t > 0, u(0) = u0.

57.3. Implement adaptive IVP-solvers based on dG(0) and cG(1) and apply the
solvers to different problems.

57.4. Show that the a posteriori error estimate for cG(1) may be written on the
form ‖e(T )‖ ≤ Sc(T )max0≤t≤T ‖k(t)(f(U(t)) − f̄(U(t)))‖ + Sd(T )‖e(0)‖, where
f̄(U(t)) is the mean-value of f(U(t)) over each time interval.

57.5. Show that choosing in the dual problem ϕ(T ) = ei gives control of error
component ei(T ).

57.6. Develop explicit versions of dG(0) and cG(1) based on fixed point iteration
at each time step. Show that with diagonal scaling such an explicit method may
work very well for some stiff problems.



58
Lorenz and the Essence of Chaos*

I am convinced that chaos, along with its many associated concepts –
strange attractors, basin boundaries, period-doubling bifurcations
and the like – can readily be understood and relished by readers
who have no special mathematical or other scientific background. . .
(E. Lorenz, in Foreword to The Essence of Chaos)

58.1 Introduction

On December 29, 1972, the meteorologist Edward Lorenz presented in a ses-
sion on the Global Atmospheric Research Program at the 139th meeting of
the American Association for the Advancement of Science in Washington
D.C., a talk with the title Predictability: Does the Flap of a Butterfly’s
Wings in Brazil Set off a Tornado in Texas? The talk by Lorenz with
its “Butterfly effect” rocketed to fame a decade later during the develop-
ment of “Chaos Theory” that became a fashion in mathematics and physics
during the 80s, with the pretention of explaining a variety of phenomena
from turbulent fluid flow to collapsing stock markets sharing qualities of
unpredictability. A decade earlier, “Catastrophe Theory” played a similar
role, while today very few remember this intriguing subject. Of course, un-
predictability or “chaos” is a phenomenon that has long been familiar to
mankind. The word “chaos” comes from early Greek cosmology and signi-
fies the complete lack of order of the Universe before the creation of Gaea
and Eros (Earth and Desire).
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Lorenz’ question is connected to the obvious difficulty of making reason-
ably reliable predictions of the daily weather over longer time than a week.
A weather forecast is made by numerically solving an IVP modeling the
evolution of the atmosphere, including variables such as temperature, wind
speed and pressure. There are many sources of errors in a weather forecast
made this way: errors in the initial value, modeling errors and numerical
errors, and it seems that these errors are magnified at a rate that limits the
predictions, depending on the scale from a few hours in very local models
to weeks in global circulation models.

Lorenz’ Butterfly analogy indicates that in certain dynamical systems,
very small causes may have large effects after some time. We have already
met such a problem in the form of a pendulum being released starting from
the unstable top position: depending on the initial perturbation the position
of the pendulum will be vastly different after some time (one side or the
other). In meteorology, this corresponds to a situation where the weather-
man can’t say if a certain low pressure will take this way or that way, and
thus can’t be sure if it will rain in Göteborg tomorrow or not. In his book,
Lorenz gives other examples of unstable systems such as a pinball machine,
where very small changes in the action of the player can change the outcome
of the game completely. Of course there are many other examples from
real life of “small” causes having large effects, from soccer games to the
assassination of Archduke Francis Ferdinand by the Serb nationalist Gavrilo
Princip in Sarajevo on June 28, 1914, initiating the First World War.

58.2 The Lorenz System

Lorenz formulated an IVP of the form u̇ = f(u) with f : R
3 → R

3 given
by

f(u) =
(

−10u1 + 10u2, 28u1 − u2 − u1u3,−
8
3
u3 + u1u2

)

,

which is the famous Lorenz system. Lorenz found that the solution of this
system is very sensitive to perturbations. The system has some vague con-
nection to a very simple model for fluid flow and has been given the role
of explaining properties of fluid motion, such as turbulence. This was not
Lorenz’ original idea, who just wanted to make a connection to the appar-
ent unpredictability and supposed sensitivity to perturbations of common
meteorological models. If the seemingly very harmless and innocent Lorenz
system could have unpredictable solutions, then there should be no surprise
that also the weather could be unpredictable.

More precisely, Lorenz found that two solutions of the Lorenz system
with very close initial data will stay close for some time but will eventually
move apart completely. The Lorenz system is therefore very difficult to solve
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accurately using a numerical method over times longer than say 30 units.
The numerical solution will stay close the the exact solution for some time,
but will eventually move apart significantly. Of course there are many IVP:s
sharing this property of instability. Even the simple pendulum has this
property if the pendulum reaches the top position with small velocity. It
is thus remarkable that the Lorenz system seemed to present some kind of
surprise to the scientific world. But it did, and it has become quite popular
to explain all sorts of phenomena, from turbulence to politics, by referring
to the “strange attractor” supposedly being displayed in plots of solutions
of the Lorenz system.

The Lorenz system in component form reads:





u̇1 = −10u1 + 10u2,

u̇2 = 28u1 − u2 − u1u3,

u̇3 = − 8
3u3 + u1u2,

u1(0) = u01, u2(0) = u02, u3(0) = u03,

(58.1)

and u0 is a given initial condition. The system (58.1) has three equilib-
rium points ū with f(ū) = 0: ū = (0, 0, 0) and ū = (±6

√
2,±6

√
2, 27).

The equilibrium point ū = (0, 0, 0) is unstable with the corresponding Ja-
cobian f ′(ū) having one positive (unstable) eigenvalue and two negative
(stable) eigenvalues. The equilibrium points (±6

√
2,±6

√
2, 27) are slightly

unstable with the corresponding Jacobians having one negative (stable)
eigenvalue and two eigenvalues with very small positive real part (slightly
unstable) and also an imaginary part. More precisely, the eigenvalues at the
two non-zero equilibrium points are λ1 ≈ −13.9 and λ2,3 ≈ .0939 ± 10.1i.

In Fig. 58.1, we present two views of a solution u(t) that starts at u(0) =
(1, 0, 0) computed to time 30 with an error tolerance of TOL = 0.5 using
an adaptive IVP-solver of the form presented in Chapter Adaptive IVP-
solvers. We can think of u(t) = (x(t), y(t), z(t)) as the position at time t
of a particle that moves according to the equation u̇ = f(u). In Fig. 58.1
we thus plot the trajectory or path followed by the particle as the particle
moves with increasing time. The plotted trajectory is typical: the particle
is kicked away from the unstable point (0, 0, 0) and moves towards one
of the non-zero equilibrium points. It then slowly orbits away from that
point and at some time decides to cross over towards the other non-zero
equilibrium point, again slowly orbiting away from that point and coming
back again, orbiting out, crossing over, and so on. This pattern of some
orbits around one non-zero equilibrium point followed by a transition to
the other non-zero equilibrium point is repeated with a seemingly random
number of revolutions around each equilibrium point.

As noted by Lorenz, a close inspection of the trajectory in Fig. 58.1
reveals quite a bit of structure in the behavior of the solution. From the
path of the trajectory, it seems that, roughly speaking, there are two flat
“lobes” in which the orbits around the non-zero equilibrium points are



850 58. Lorenz and the Essence of Chaos*

-20

-10

0

10

20

0

10

20

30

40

50

-20
-10

0
10

20
30

viewed from above viewed from below

-30
-20

-10
0

10
20

30

10

20

30

40

50

-30
-20

-10
0

10
20

30

xx

y

y

zz

(x0, y0, z0)
(x0, y0, z0)

Fig. 58.1. Two views of a numerical trajectory of the Lorenz system over the
time interval [0, 30] starting at (1, 0, 0) computed with absolute error tolerance 0.5

located. In each lobe, the spiraling segments of the trajectory seem to be
grouped in “bands” that are made up of parts of the trajectory that are
spiralling out from the equilibrium point and parts of the trajectory that
have just crossed over from the other lobe. Only the trajectories in the outer
band switch to the other equilibrium point. This causes a sharp separation
between trajectories located in the outer band and those located in the
next band inside as the trajectories approach the z-axis. We refer to this
as cutting through the action of a “razor” separating the trajectories in the
outer band. The trajectories in the outer band expand in width as they
approach the other equilibrium point, with trajectories near the outside of
the band ending up nearer to the fixed point. We refer to this as expansion
and flipping respectively. The position of initial approach of the trajectory
to an equilibrium point determines the number of orbits the trajectory
makes in that lobe before returning to the other equilibrium point. Finally,
we see that the orbits in one band come close to the next outer band
after one revolution, this repeats with every band of the trajectory, until
eventually they all end up in the outer band and leave towards the other
equilibrium point. We refer to this as interlacing. In short, we can describe
the dynamics of the Lorenz system as a never-ending process of cutting,
expansion, flipping, and interlacing.

58.3 The Accuracy of the Computations

The first task is to measure the reliability of the computed error bound
based on an a posteriori error estimate of the form presented in Chapter
Adaptive IVP-solvers. Since we do not have the exact solution, we perform
the following experiment: Using the initial data (0, 1, 0), we compute twice
using residual tolerances 10−5 and 10−9 and approximate the error in the
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less accurate computation by taking the difference between the values of
the less accurate and more accurate computations. In Fig. 58.2, we plot
the computed error bound and the approximate error. The error bound
predicts the size of the error quite well in spite of the sensitivity of the
solution to perturbations. Similar results are obtained for a variety of initial
data.

To give some idea of the behavior of the error control, we plot the step
sizes used in a computation with absolute error tolerance 0.75 in Fig. 58.3.
The step sizes vary roughly by a factor of 6 over the interval of compu-
tation. In Fig. 58.3, we also plot the product of the time step and the
residual for this computation. We note that these values are kept within
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10% of a constant value. With more computational work, the size of the
variations can be reduced, which produces a more smoothly-varying error
bound.

58.4 Computability of the Lorenz System

Encouraged by these results we decrease the tolerance or, equivalently, the
time step, and try to compute an accurate solution to the Lorenz sys-
tem on an even longer time interval. Using the cG(1) method as described
in Chapter Adaptive IVP-solvers, we compute solutions with smaller and
smaller time steps, k = 0.01, k = 0.001 and k = 0.0001, and expect to
produce more and more accurate solutions. We plot the U1-component
of the solution in Fig. 58.4 where we also indicate the points at which
the solutions are no longer accurate. We see that even with 300, 000 time
steps the solution is not accurate beyond t = 26. Decreasing the time
step with a factor 10 or 100 will take us only a little further, but the
computation will take 10 or 100 times longer. We conclude that it is
difficult to compute the solution to the Lorenz system over long time
intervals.

To examine in detail the computability of the Lorenz system we return
to the error estimate that we derived for the error e(t) of the cG(1) method:

‖e(t)‖ ≤ Sc(T ) max
0≤t≤T

‖k(t)R(t)‖. (58.2)
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Remember that the stability factor Sc(T ) for the Lorenz system is defined
in terms of the solution to the linearized dual problem as

Sc(T ) = max
ϕ0∈R3

∫ T

0
‖ϕ̇(t)‖ dt
‖ϕ0‖

.

Judging by the error estimate we should be able to reach as far as we want
if only the time step k(t) and the residual R(t) are small enough. However,
a little more careful analysis reveals an additional error contribution, which
is often ignored. Including also this term into our error estimate, we find:

‖e(t)‖ ≤ Sc(T ) max
0≤t≤T

‖k(t)R(t)‖ + S0(T ) max
0≤t≤T

ε/k(t), (58.3)

where ε is the machine precision of the computer, i.e. the smallest number
for which 1 + ε �= 1 (in computer arithmetic) and S0(T ) is a new stability
factor. For a standard computer (in 2002) with so-called double-precision
arithmetic, the machine precision is ε ≈ 10−16. The stability factor S0(T )
is defined in terms of the dual solution as

S0(T ) = max
ϕ0∈R3

∫ T

0
‖ϕ(t)‖ dt
‖ϕ0‖

.

The additional term in our refined error estimate (58.3) accounts for the
round-off error made at every time step in the computation; when the new
value U(tn) for the cG(1) solution is computed in every time step, it is
unavoidable that we make a round-off error of size ε. As we shall see, it
is the second term that sets the limit for the computability of the Lorenz
system; the second term in (58.3) can be large even though the first term
is small.

The difficulty of computing accurate solutions to the Lorenz system be-
comes obvious if we plot the size of the stability factors. In Fig. 58.5 we
plot the size of the stability factor S0(T ) associated with round-off errors
as function of the final time T . Notice the logarithmic scale in this figure.
A simple approximation of the growth of this stability factor is

S0(T ) ≈ 10T/3,

and so the round-off error grows as Er = 10T/3 · 10−16/k = 10T/3−16/k.
Notice how the error grows larger if we decrease the time step! This is
natural (although unusual), since with a smaller time step we will have
to take a larger number of time steps and thus make a larger number
of round-off errors. To make the influence from round-off errors small we
specify a large time step, say k = 0.1, for which the round-off error now
grows as 10T/3−15. At time T = 3 · 15 = 45 the accumulated round-off
error is then Er = 1, which means that we cannot expect to compute much
beyond time T = 45, since then the round-off error will dominate anyway.
Using the cG(1) method, we will not even reach T = 45, since we have to
use a time step much smaller than k = 0.1 (as seen in Fig. 58.4) to make
the first term in the error estimate small.
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58.5 The Lorenz Challenge

From the previous discussion it is now clear that the mysterious unpre-
dictability and “chaotic” behavior of the Lorenz system only means that
the stability factors grow quickly, making it difficult to compute accurate
solutions over long time intervals. The obvious challenge is now, using the
method of choice, to compute an accurate solution to the Lorenz system
over as long a time interval [0, T ] as possible.

We saw in the previous section that brute force is not the way to go. It is
not enough to use a very fast computer with very small and very many time
steps. Using the cG(1) method we cannot reach much further than T = 30,
no matter how small time steps we use since then the accumulated round-off
error will grow large. A solution to this problem would be if we could design
a method, similar to cG(1), which can be used with larger time steps than
what is possible with cG(1). As one can expect, there exist corresponding
methods cG(2), cG(3) and so on, which can be used with larger time steps.
It can be proved that for these cG(q) methods, the error grows as k2q, i.e.
we have so called a priori error estimates of the type

‖e(T )‖ ≤ C(T )k2q,

where C(T ) is a constant (unknown!) depending on the exact solution u(t).
We say that the cG(q) method is of order 2q. The standard cG(1) method
is thus a second order method. (This is in agreement with (58.2) since one
factor k(t) is hidden inside R(t).) With a higher order method, i.e. q > 1,
we can thus obtain a smaller error with the same time step, which makes
it possible to compute the solution with larger time steps. This in turn
implies that with a higher order method, we can keep the round-off er-
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ror smaller and thus reach further than what is possible with the cG(1)
method. In Fig. 58.6 we plot the U1-components of solutions to the Lorenz
system, computed with time step k = 0.1, with a sequence of higher or-
der methods. We see that with high enough order, the solutions agree to
a point just beyond T = 45 as we predicted; the first term in our error es-
timate (58.3) has been reduced by increasing the order of the method and
so the second term dominates. It is possible to reach beyond time T = 50,
perhaps to T = 100, but to do this we have to go from double-precision
arithmetic to quadruple-precision.
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Fig. 58.6. The U1-component of cG(q) solutions for q = 11, 12, 13, 14, 15 with
time step k = 0.1. Dashed lines indicate where the solution is no longer accurate

Chapter 58 Problems

58.1. Verify that the three equilibrium points given in the text satisfy f(u) = 0.
Linearize the system around these equilibrium points, i.e. compute the eigenvalues
(and eigenvectors) for the Jacobian of f at the three equilibrium points.

58.2. Compute a solution to the Lorenz system and plot the orbit (x(t), y(t), z(t))
for t ∈ [0, T ]. Do you agree with the description of the dynamics of the Lorenz
system as never-ending process of cutting, expansion, flipping, and interlacing?

58.3. Repeat the experiment outlined in Sect. 58.4, i.e. compute solutions to the
Lorenz system using the cG(1) method with a sequence of smaller and smaller
time steps and examine the accuracy of the solutions (by comparing them to each
other). Can you reach beyond T = 25?

58.4. Try the same experiment as in the previous problem but now with the
lower order methods explicit Euler and implicit Euler. How far do you reach now?



856 58. Lorenz and the Essence of Chaos*

58.5. Implement a simple version of the fourth-order cG(2) method given by

U(tn−1/2) = U(tn−1) +
∫ tn
tn−1

f(U(t), t) · (5 − 6(t− tn−1)/kn)/4 dt,

U(tn) = U(tn−1) +
∫ tn
tn−1

f(U(t), t) dt,

where U(t) is the quadratic polynomial on [tn−1, tn] determined by the three
values U(tn−1), U(tn−1/2) and U(tn). How much further can you reach with this
method?

58.6. Give a motivation for the additional term in the refined error estimate
(58.3), starting from the estimate containing errors caused by using the wrong
initial condition as presented in Chapter Adaptive IVP-solvers.

58.7. Take on the Lorenz Challenge, i.e. compute an accurate solution over [0, T ]
with T as large as possible. No rules, all is allowed!

But Aristarchus has brought out a book consisting of certain hy-
potheses, wherein it appears, as a consequence of the assumptions
made, that the universe is many times greater than the ‘universe’
just mentioned. His hypotheses are that the fixed stars and the sun
remain unmoved, that the earth revolves about the sun on the cir-
cumference of a circle, the sun lying in the middle of the orbit, and
that the sphere of fixed stars, situated about the same centre as the
sun, is so great that the circle in which he supposes the earth to
revolve bears such a proportion to the distance of the fixed stars
as the centre of the sphere bears to its surface. (Archimedes about
Aristharcus of Samos)
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The Solar System*

There is talk of a new astrologer who wants to prove that the earth
moves and goes around instead of the sky, the sun, the moon, just
as if somebody were moving in a carriage or ship might hold that he
was sitting still and at rest while the earth and the trees walked and
moved. But that is how things are nowadays: when a man wishes to
be clever he must needs invent something special, and the way he
does it must needs be the best! The fool wants to turn the whole art
of astronomy upside-down. However, as Holy Scripture tells us, so
did Joshua bid the sun to stand still and not the earth.
(Sixteenth century reformist M. Luther in his table book Tischreden,
in response to Copernicus’ pamphlet Commentariolus, 1514.)

59.1 Introduction

The problem of mathematical modeling of our Solar System including the
Sun, the 9 planets Venus, Mercury, Tellus (the Earth), Mars, Jupiter, Sat-
urn, Uranus, Neptune and Pluto together with a large number of moons and
asteroids and occasional comets, has been of prime concern for humanity
since the dawn of culture. The ultimate challenge concerns mathematical
modeling of the Universe consisting of billions of galaxies each one con-
sisting of billions of stars, one of them being our own Sun situated in the
outskirts of the Milky Way galaxy.

According to the geocentric view presented by Aristotle (384–322 BC) in
The Heavens and further developed by Ptolemy (87–150 AD) in The Great
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System dominating the scene over 1800 years, the Earth is the center of the
Universe with the Sun, the Moon, the other planets and the stars moving
around the Earth in a complex pattern of circles upon circles (so-called
epicycles). Copernicus (1473–1543) changed the view in De Revolutionibus
and placed the Sun in the center in a new heliocentric theory, but kept the
complex system of epicycles (now enlarged to a very complex system of
80 circles upon circles). Johannes Kepler (1572–1630) discovered, based on
the extensive accurate observations made by the Swedish/Danish scientist
Tycho Brahe (1546–1601), that the planets move in elliptic orbits with
the Sun in one of the foci following Kepler’s laws, which represented an
enormous simplification and scientific rationalization as compared to the
system of epicycles.

Fig. 59.1. The Earth with the Moon and some other planets in orbit. Jupiter
and the Galilean satellites, Io, Europa, Ganymede, and Callisto

In fact, already Aristarchus (310–230 BC) of Samos understood that the
Earth rotates around its axis and thus could explain the (apparent) motion
of the stars, but these views were rejected by Aristotle arguing as follows:
if the Earth is rotating, how is it that an object thrown upwards falls on
the same place? How come this rotation does not generate a very strong
wind? No one until Copernicus could question these arguments. Can you?

Newton (1642–1727) then cleaned up the theory by showing that the
motion of the planets could be explained from one single hypothesis: the
inverse square law of gravitation, see Chapter Newton’s nightmare below.
In particular, Newton derived Kepler’s laws for the two-body problem with
one (small) planet in an elliptic orbit around a (large) sun, see Chapter La-
grange and the Principle of Least Action. Leibniz criticized Newton for not
giving any explanation of the inverse square law, which Leibniz believed
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Fig. 59.2. Tycho Brahe: “I believe that the Sun and the Moon orbit around the
Earth but that the other planets orbit around the Sun”

Fig. 59.3. Johannes Kepler: “I believe that the planets are separated by invis-
ible regular polyhedra: tetrahedron, cube, octahedron, dodekahedron and ikosa-
hedron, and further that the planets including the Earth move in elliptical orbits
around the Sun”

could be derived from some basic fact, beyond one of “mutual love” which
was quite popular. A sort of explanation was given by Einstein (1879–1955)
in his theory of General Relativity with gravitation arising as a consequence
of space-time being “curved” by the presence of mass. Einstein revolution-
ized cosmology, the theory of the Universe, but relativistic effects only add
small corrections to Newton’s model for our Solar System based on the in-
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verse square law. Einstein gave no explanation why space-time gets curved
by mass, and still today there is no convincing theory of gravitation with
its mystical feature of “action at a distance” through some mechanism yet
to be discovered. In Chapter Laplacian Models below we give a deriva-
tion of the inverse square law using a mathematical argument presented by
Laplace.

Despite the lack of a physical explanation of the inverse square law, New-
ton’s theory gave an enormous boost to mathematical sciences and a cor-
responding kick to the egos of scientists: if the human mind was capable
of (so easily and definitely) understanding the secrets of the Solar System,
then there could be no limits to the possibilities of scientific progress. . .

59.2 Newton’s Equation

The basis of celestial mechanics is Newton’s second law,

F = m · a, (59.1)

expressing that a force F results in an acceleration of size a for a body of
mass m, together with the expression for the gravitational force given by
the inverse square law:

F = G
mma

r2
, (59.2)

where G ≈ 6.67 · 10−11Nm2/kg2 is the gravitational constant, ma is the
mass of the attracting body and r is the distance to the attracting body.

Together (59.1) and (59.2) give a set of differential equations for the evo-
lution of the Solar System. If we know the initial positions and velocities
for all bodies in the Solar System, we can solve the system of differen-
tial equations, using the same techniques as presented above in Chapter
Adaptive IVP-Solvers. We discuss this in detail below in Sect. 59.4. As
a preparation, we rewrite (59.1) and (59.2) in dimensionless form, which
will be convenient. The three fundamental units appearing in the equations
are those of space, time and mass, which are represented by the variables x
(or r), t and m. We now introduce new dimensionless variables, x′ = x/AU,
t′ = t/year and m′ = m/M , where 1 AU is the mean distance from the Sun
to Earth and M is the mass of the Sun. We can use the chain rule to obtain
the dimensionless acceleration, a′ = d

dt′
d

dt′x
′ = dt

dt′
d
dt

dt
dt′

d
dtx/AU = year2

AU a.
Combining (59.1) and (59.2) using our new dimensionless variables, we then
obtain

m′M
AU

year2
a′ = G

m′M ·m′
aM

r′2AU2 , (59.3)

or

a′ = G′m
′
a

r′2
, (59.4)
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where the new gravitational constant G′ is given by

G′ =
G · year2M

AU3 . (59.5)

We leave it as an exercise to show that with suitable definitions of the units
year and AU, the new dimensionless gravitational constant G′ is given by

G′ = 4π2. (59.6)

59.3 Einstein’s Equation

In general relativity the basic concept is not force, as in Newtonian theory,
but instead the curvature of space-time. Einstein explains the motion of
the planets in our Solar System in the following way: the planets move
through space-time along straight lines, geodesics, which appear as circular
(or elliptical) orbits only because space-time is curved by the large mass of
the Sun. We shall now try to give an idea of how this works.

The curvature of space-time is given by its metric. A metric defines the
distance between two nearby points in space-time. In Euclidean geometry
that we have studied extensively in this book, the distance between to
points x = (x1, x2, x3) and y = (y1, y2, y3) is given by the square root of
the scalar product dx · dx, where dx is the difference dx = x− y. With the
notation ds = |x− y| we thus have

ds =
√
dx · dx =

(
3∑

i=1

dx2
i

)1/2

, (59.7)

or

ds2 =
3∑

i=1

dx2
i . (59.8)

In the notation of general relativity, the Euclidean metric is then given by
the matrix (tensor)

g =




1 0 0
0 1 0
0 0 1



 , (59.9)

as
ds2 = dxT g dx. (59.10)

In space-time we include time t as a fourth coordinate and every event in
space-time is given by a vector (t, x1, x2, x3). In flat or Minkowski space-
time in the absence of masses, the curvature is zero and the metric is given
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by

g =







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





 , (59.11)

which gives
ds2 = −dt2 + dx2

1 + dx2
2 + dx2

3. (59.12)

In the presence of masses, we obtain a different metric which does not even
have to be diagonal.

From the metric g one can find the straight lines of space-time, which give
the orbits of the planets. The metric itself is determined by the distribution
of mass in space-time, and is given by the solution of Einstein’s equation,

Rij −
1
2
Rgij = 8πTij , (59.13)

where (Rij) is the so-called Ricci-tensor, R is the so-called scalar curvature
and (Tij) is the so-called stress-energy tensor. Now (Rij) and R depend
on derivatives of the metric g = (gij) so (59.13) is a partial differential
equation for the metric g.

The solution for the orbits of the planets obtained from Einstein’s equa-
tion are a little different than the solution obtained from (59.4) given by
Newton. Although the difference is small, it has been verified in obser-
vations of the orbit of the planet Mercury which is the planet closest to
the Sun. We will not include these “relativistic effects” in the next section
where we move on to the computation of the evolution of the Solar System.

59.4 The Solar System as a System of ODEs

To use the techniques developed in Chapter Adaptive IVP-Solvers to com-
pute the evolution of the Solar System, we need to rewrite the second-order
system of ODEs given by (59.4) in the standard form u̇ = f . We start by
introducing coordinates xi(t) = (xi

1(t), x
i
2(t), x

i
3(t)) for all bodies in the So-

lar System, including the nine planets, then Sun and the Moon. This gives
a total of n = 9 + 2 = 11 bodies and a total of 3n = 33 coordinates. To
rewrite the equations as the first-order system u̇ = f we need to include
also the velocities of all bodies, ẋi(t) = (ẋi

1(t), ẋi
2(t), ẋi

3(t)), giving a total
of N = 6n = 66 coordinates. We collect all these coordinates in the vector
u(t) of length N in the following order:

u(t) = (x1
1(t), x

1
2(t), x

1
3(t), . . . , x

n
1 (t), xn

2 (t), xn
3 (t),

ẋ1
1(t), ẋ

1
2(t), ẋ

1
3(t), . . . , ẋ

n
1 (t), ẋn

2 (t), ẋn
3 (t)),

(59.14)

so that the first half of the vector u(t) contains the positions of all bodies
and the second half contains the corresponding velocities.
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To obtain the differential equation for u(t), we take the time-derivative
and notice that the derivative of the first half of u(t) is equal to the second
half of u(t):

u̇i(t) = u3n+i(t), i = 1, . . . , 3n, (59.15)

i.e. for n = 11 we have u̇1(t) = ẋ1
1(t) = u34(t) and so on.

The derivative of the second half of u(t) will contain the second deriva-
tives of the positions, i.e. the accelerations, and these are given by (59.4).
Now (59.4) is written as a scalar equation and we have to rewrite it in
vector form. For every body in the Solar System, we need to compute the
contribution to the total force on the body by summing the contributions
from all other bodies. Assuming that we work in dimensionless variables
(but writing x instead of x′, mi instead of m′

i and so on for convenience)
we then need to compute the sum:

ẍi(t) =
∑

j �=i

G′mj

|xj − xi|2
xj − xi

|xj − xi| , (59.16)

where the unit vector xj−xi

|xj−xi| gives the direction of the force, see Fig. 59.4.

m1

m2

mi

mj

xj − xi

Fig. 59.4. The total force on body i is the sum of the contributions from all
other bodies
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Our final differential equation for the evolution of the Solar System in
the form u̇ = f is then given by

u̇(t) = f(u(t)) =



















u3n+1(t)
...

u6n(t)
∑

j �=1

G′mj

|xj − x1|2
xj

1 − x1
1

|xj − xi|
...

∑

j �=n

G′mj

|xj − xn|2
xj

3 − xn
3

|xj − xn|



















, (59.17)

Table 59.1. Initial data for the Solar System at 00.00 Universal Time (UT1,
approximately GMT) January 1, 2000 for dimensionless positions and veloc-
ities scaled with units 1 AU = 1.49597870 · 1011 m (one astronomical unit),
1 year = 365.24 days and M = 1.989 · 1030 kg (one solar mass)

Position Velocity Mass

M
er

cu
ry

x1(0) =
−0.147853935
−0.400627944
−0.198916163

ẋ1(0) =
7.733816715
−2.014137426
−1.877564183

1.0/6023600

V
en

u
s

x2(0) =
−0.725771746
−0.039677000
0.027897127

ẋ2(0) =
0.189682646
−6.762413869
−3.054194695

1.0/408523.5

E
a
rt

h

x3(0) =
−0.175679599
0.886201933
0.384435698

ẋ3(0) =
−6.292645274
−1.010423954
−0.438086386

1.0/328900.5

M
a
rs x4(0) =

1.383219717
−0.008134314
−0.041033184

ẋ4(0) =
0.275092348
5.042903370
2.305658434

1.0/3098710

J
u
p
it
er

x5(0) =
3.996313003
2.731004338
1.073280866

ẋ5(0) =
−1.664796930
2.146870503
0.960782651

1.0/1047.355

S
a
tu

rn x6(0) =
6.401404019
6.170259699
2.273032684

ẋ6(0) =
−1.565320566
1.286649577
0.598747577

1.0/3498.5

U
ra

n
u
s

x7(0) =
14.423408013
−12.510136707
−5.683124574

ẋ7(0) =
0.980209400
0.896663122
0.378850106

1.0/22869

N
ep

tu
n
e

x8(0) =
16.803677095
−22.983473914
−9.825609566

ẋ8(0) =
0.944045755
0.606863295
0.224889959

1.0/19314

P
lu

to

x9(0) =
−9.884656563
−27.981265594
−5.753969974

ẋ9(0) =
1.108139341
−0.414389073
−0.463196118

1.0/150000000

S
u
n x10(0) =

−0.007141917
−0.002638933
−0.000919462

ẋ10(0) =
0.001962209
−0.002469700
−0.001108260

1

M
o
o
n

x11(0) =
−0.177802714
0.884620944
0.384016593

ẋ11(0) =
−6.164023246
−1.164502534
−0.506131880

1.0/2.674 · 107
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where we have kept the notation x1 = (x1
1, x

1
2, x

1
3) rather than (u1, u2, u3)

and so on in the right-hand side for simplicity. The evolution of our Solar
System can now be computed by the standard techniques developed in
Chapter Adaptive IVP-Solvers, using the initial data supplied in Table 59.1.

59.5 Predictability and Computability

Two important questions that arise naturally when we study numerical
solutions of the evolution of our Solar System, such as the one in Fig. 59.5,
are the questions of predictability and computability.

The predictability of the Solar System is the question of the accuracy of
a computation given the accuracy in initial data. If initial data is known
with an accuracy of say five digits, and the numerical computation is exact,
how long does it take until the solution is no longer accurate even to one
digit?

The computability of the Solar System is the question of the accuracy in
a numerical solution given exact initial data, i.e. how far we can compute an
accurate solution with available resources such as method, computational
power and time.

Both the predictability and the computability are determined by the
growth rate of errors. Luckily, the error does not grow exponentially as we
saw for the Lorenz system. If we imagine that we displace Earth slightly
from its orbit and start a computation, the orbit and velocity of Earth will
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Fig. 59.5. A numerical computation of the evolution of the Solar System, in-
cluding Earth, the Sun and the Moon
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be slightly different, resulting in an error that grows linearly with time.
This means that the predictability of the Solar System is quite good, since
every extra digit of accuracy in initial data means that the limit of pre-
dictability is increased by a factor ten. If now the solution is computed
using a numerical method, such as the adaptive cG(1) method, this will
result in additional errors. We can think of the error caused by a numeri-
cal method as a small perturbation introduced with every new time step.
Adding the contributions from all time steps we find that the numerical
error grows quadratically, see Problem 59.2.

As it turns out however, the error does not grow quadratically but only
linearly for the cG(1) method as shown in Fig. 59.6. This pleasant surprise
is the result of an important property of the cG(1) method: it conserves
energy. As a result, the cG(1) method performs better on a long time
interval than the higher-order (more accurate) dG(2) method.

0 10 20 30 40 50
−0.5

0

0.5

0 10 20 30 40 50
−0.5

0

0.5
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−5

0

5
x 10

−4

t
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−5

0

5
x 10

−3

t

cG(1)

cG(2)

dG(1)

dG(2)

e(
t)

e(
t)

Fig. 59.6. The growth of the numerical error in simulations of the Solar System
using different numerical methods. The two methods on the left conserve energy,
which results in linear rather than quadratic error growth

59.6 Adaptive Time-Stepping

If we compute the evolution of the Solar System using the adaptive cG(1)
method, we find that the time steps need to be small enough to follow the
orbit of the Moon (or Mercury if we do not include the Moon). This is
inefficient since the time scales for the other bodies are much larger: the
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period of the Moon is one month and the period of Pluto is 250 years, and so
the time steps for Pluto should be roughly a factor 3,000 larger that the time
steps for the Moon. It has been shown recently that the standard methods
cG(q), including cG(1), and dG(q) can be extended to individual, multi-
adaptive, time-stepping for different components. In Figure 59.7 we show
a computation made with individual time steps for the different planets.
Notice how the error grows quadratically, indicating that the method does
not conserve energy. (It is possible to construct also multi-adaptive methods
which conserve energy.)
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Fig. 59.7. A computation of the evolution of the Solar System with individual,
multi-adaptive, time steps for the different planets

59.7 Limits of Computability and Predictability

Using the multiadaptive cG(2) it appears that the limit of computability
of the Solar System (with the Moon and the nine planets) using double
precision, is of the order 106 years. Concerning the predictability of the
same system it appears that for every digit beyond 5 in the precision of
data we gain a factor of ten in time, so that for example predicting the
position of the Moon 1000 years ahead would require about 8 correct digits
in e.g. the initial positions and velocities, masses and gravitational constant.
We conclude that it appears that normally the precision in data would set
the limit for accurate simulations of the evolution of the Solar System, if
we use a high order multiadaptive solver.
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Chapter 59 Problems

59.1. Prove that with suitable definitions of the units year and AU the gravita-
tional constant is G′ = 4π2. Hint: assume that Earth is in a circular orbit where
the centripetal force mv2/r is balanced by the gravitational force GmM/r2.

59.2. Motivate the quadratic growth of the numerical error for the Solar System.
Hint: Assume that an error of size ε is added to the velocity of a planet in every
time step.

59.3. (Hard! ) Prove that in general if an error in initial data grows as

|e(T )| ≤ S(T )|e(0)|,

for a specific initial value problem, then the error in a numerical solution of the
initial value problem grows as

|e(T )| � ε

∫ T

0

S(t) dt,

assuming that the additional error in every time step is kept below knε.

59.4. Prove that the cG(1) method conserves energy for a Hamiltonian system,
i.e. prove that for a system given by ẍ = F = −∇xP (x), the total energy

E(t) = K(ẋ(t)) + P (x(t)),

is conserved. Here P (x) is a given potential field, and K(ẋ) = ẋ2

2
is the kinetic

energy. Hint: Write as a first-order system for the vector [u, v] = [x, ẋ], take [v̇, u̇]
as the test function and use the chain rule.

59.5. Investigate numerically the predictability and computability of the Solar
System. Can you verify the linear error growth for the cG(1) method?



60
Optimization

1. All living beings are driven by passion to seek maximal Plea-
sure. 2. There is Pleasure of the Body and Pleasure of the Soul. In
the Pleasure of the Soul, the Body cannot take part, whereas the
Pleasure of the Body is equally shared by the Soul. (the 2 first of
the 14 basic principles of Anthropologica physica, by King Karl XII
of Sweden, 1717)

60.1 Introduction

In this chapter, we expand on some basic aspects of optimization touched
upon in the previous chapter in connection to minimization. Optimization
is very rich subject and we shall return to other aspects below. The issues we
discuss here are connected to the very basics of Calculus and are considered
as “deep” and understandable only by the very best math majors. You
may test your own reaction to the discussions presented, and if you get the
expected feeling of confusion, don’t worry, just proceed to the next chapter.
If on the other hand, against all odds, you get the feeling of grasping the
main ideas, then you may congratulate yourself for being more gifted for
mathematics than you thought!

In our modern world, optimization is a code word. To optimize is to use
available resources as efficiently as possible, or to find the best of available
alternatives. In our private lives, we may want our car to use as little fuel
as possible, to buy an item at lowest possible price, to use as little effort
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as possible to clean the house, or to get maximal enjoyment out of the
vacation trip.

In automatized production, the leading principle is always to optimize
and seek to use as little energy, material and human resources as possible to
produce a certain amount of goods. A basic idea in our capitalistic system
is that in the long run the most efficient mode of production will win the
market.

A basic problem of optimization is to find the maximum or minimum
value of a given function f : Ω → R defined on some set of numbers Ω.
Typically, Ω may be a domain in R

d with d = 1, 2, 3, . . ., that may be
bounded or unbounded, or Ω may be a finite set such as the set of natu-
ral numbers 1, 2 . . . , 100. More precisely, finding a minimum point x̄ in Ω
amounts to finding a point x̄ ∈ Ω such that

f(x) ≥ f(x̄) for all x ∈ Ω, (60.1)

and we then say that f(x̄) is the minimum value of f : Ω → R. Note that
there may be several minimum points, but of course there may be only one
minimum value. If in an Olympic 100 meter race, three runners share the
best time of 9.99 seconds, then all the three runners may share the gold
medal. However, there cannot be two runners with different final times who
both get a gold medal.

We now consider the problem of finding the minimum value and cor-
responding minimum point(s) of a given function f : Ω → R. We may
distinguish between the following two cases: (a) Ω is a domain of R

d with
infinitely many points, as when Ω is the unit disc {x ∈ R

d : ‖x‖ ≤ 1};
(b) Ω contains finitely many points, as for example Ω = {1, 2, 3, . . . , 10}.
The case (a) is “continuous” and (b) is “discrete”. The two cases are not
fully disjoint; there may be a gradual passage from “discrete” to “continu-
ous” as the number of elements in Ω increases. In the case Ω is discrete with
finitely many points, we may find the minimum value and corresponding
minimum point(s) of f : Ω → R by different algorithms for sorting. If Ω is
“continuous” with infinitely many points, sorting may be impossible and
different algorithms that use information from the derivative of f(x) in
variations of steepest descent are often used.

60.2 Sorting if Ω Is Finite

If Ω is a finite set of numbers, for example if Ω = {1, 2, . . . , 9, 10}, then we
just make a list of the corresponding 10 function values f(1), f(2), . . . , f(10)
and by sorting these values according to magnitude in increasing order, we
can find the minimum value f(x̄) and the corresponding argument x̄. Of
course, we don’t have to sort all the numbers according to magnitude to
find the smallest one. We just have to find the first element in the list sorted
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according to magnitude in increasing order. Repeating this process we can
sort all the numbers in the given list of numbers.

Example 60.1. For example, suppose that Ω = {1, 2, . . . , 9, 10} and f(1) =
143, f(2) = 538, f(3) = 67, f(4) = 964, f(5) = 287,
f(6) = 64, f(7) = 123, f(8) = 333, f(9) = 63, f(10) = 88. By direct
inspection, we see that the minimum point is x̄ = 9 and the minimum
value is f(x̄) = 63.

While sorting sounds simple, it turns out to be an interesting problem to
do sorting efficiently when there are a large number of values to be sorted.
So there are different algorithms for sorting and sorting algorithms hold
a prominent place in computer science. A simple algorithm for finding the
minimum m of N numbers f(1), · · · , f(N) goes as follows:

1. Set m = f(1) and x̄ = 1

2. For x = 2, · · · , N, if f(x) < m set m = f(x̄) and x̄ = x.

The minimum value is then m = f(x̄) and the minimum point is x = x̄.
The algorithm is based on successive comparison of pairs of numbers
(if f(x) < m then we update m and x̄ and set m = f(x̄) and x̄ = x). The
number of comparisons in the indicated algorithm is apparently N − 1.

Repeating the algorithm with f(x̄) eliminated, we can get a complete
sorting according to magnitude using (N − 1) + (N − 2) + · · · + 1 ≈ 1

2N
2

comparisons.

60.3 What if Ω Is Not Finite?

If Ω is an interval of real numbers, for example Ω = [0, 1], then Ω contains
infinitely many points and sorting the values f(x) with x ∈ Ω of a given
function f : Ω → R by pairwise comparison appears impossible in prac-
tice because we cannot perform infinitely many comparisons. Of course,
in practice we replace Ω by a finite set of numbers, for example by using
a single precision floating point representation of the points in Ω. So in
principle, we can then apply the above sorting strategy. But, the proce-
dure will be computationally intensive. With seven digits we would have
107 values f(x) to compare, which using the above algorithm requires on
the order of 107 comparisons to find the minimum. If the interval Ω is larger
and the desired precision higher, then the number of comparisons would
be correspondingly larger. The total computational cost would also involve
as a multiplicative factor the cost of evaluating the function value f(x) for
a given x, which itself could require many arithmetic operations. The total
cost in direct comparison thus may be prohibitively large.

We now seek efficient algorithms to handle the case that Ω is a domain
of R

d interval and the function f(x) is Lipschitz continuous with a Lipschitz
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constant L. In this case, the function values f(x) cannot change more than
the argument of x changes times L. If we want to find the minimum value up
to a certain tolerance TOL, then we need to do approximately (L/TOL)d

comparisons if the diameter of Ω is of order one. Depending on the choice
of the tolerance TOL and L this may be acceptable or not.

If the function f(x) is differentiable then we may restrict the search
further using information from the derivative, as we shall see below.

60.4 Existence of a Minimum Point

How can we be sure that there in fact is a minimum point? We discuss the
proof of the following basic theorem addressing this question below.

Theorem 60.1 If f : Ω → R is Lipschitz continuous, where Ω is a closed
and bounded subset of R

d, then there is a minimum point x̄ ∈ Ω such that
f(x̄) ≤ f(x) for all x ∈ Ω.

The assumption that Ω is closed and bounded is essential to guarantee
existence of the minimum, as the following examples show.

Example 60.2. The function f : (0, 1) → R with f(x) = x does not have
a minimum point in (0, 1). In this case Ω = (0, 1) is not closed.

Example 60.3. The function f : [1,∞) → R with f(x) = 1/x does not have
a minimum point in [1,∞). In this case Ω = [1,∞) is not bounded.

Note however that a function f : Ω → R may have a minimum even if Ω
is unbounded. In particular, if f(x) increases to infinity as ‖x‖ increases,
then we can effectively reduce the search for a minimum to a bounded set.

Example 60.4. The function f : [0,∞) given by f(x) = x2 − 2x attains
a minimum value f(1) = −1; since f(x) ≥ 0 for x ≥ 2, we may restrict the
search for a minimum to [0, 2].

60.5 The Derivative Is Zero
at an Interior Minimum Point

We assume that f : Ω → R is a given Lipschitz continuous differentiable
function, where Ω is a domain in R

d. We shall now prove that if x̄ is an
interior minimum point of f : Ω → R, that is x̄ is a minimum point and the
ball {x ∈ R

d : ‖x − x̄‖ < δ} is included in Ω for some positive number δ,
then f ′(x̄) = ∇f(x̄) = 0, where f ′ = ∇f is the gradient of f . This follows
by writing

f(x) = f(x̄) + f ′(x̄) · (x− x̄) + Ef (x, x̄)
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with |Ef (x, x̄)| ≤ Kf (x̄)‖x − x̄‖2. If now f ′(x̄) �= 0, we may choose
x = x̄− εf ′(x̄) ∈ Ω with ε > 0 and estimate to get

f(x) ≤ f(x̄) − ε‖f ′(x̄)‖2 + ε2Kf (x̄)‖f ′(x̄)‖2

= f(x̄) − ε‖f ′(x̄)‖2(1 − εKf(x̄)) < f(x̄).

For ε sufficiently small, we get a contradiction to the assumption that x̄ is
a minimum point. We have proved the following basic result, see Fig. 60.1
and Fig. 60.2.

Theorem 60.2 Suppose f : Ω → R has a minimum point at an interior
point x̄ in Ω, and suppose that f : Ω → R is differentiable at x̄. Then
f ′(x̄) = 0.

Using this result, we may search for interior minimum points among the
zeros of the derivative f ′(x) in Ω. To find these zeros we may use some
algorithm for computing roots, like Fixed Point Iteration or Newton or the
Bisection algorithm. There is thus a strong connection between algorithms
for finding interior minimum points of f : Ω → R and algorithms for
computing roots of f ′(x) = 0.

x

y

a bx̄

y = f(x)

y = f(x̄)

Fig. 60.1. f ′(x̄) = 0 at an interior minimum point x̄

−

x

y

a bx̄

y = f(x)
y = f(x̄)

y = f(x̄) + f ′(x̄)(x− x̄)

Fig. 60.2. f ′(x̄) < 0 implies that f(x) < f(x̄) for x close to x̄ with x̄ > x, that
is, x̄ cannot be a minimum point
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Note that if the minimum point x̄ of f : Ω → R is not interior to Ω,
i.e. x̄ lies on the boundary of Ω, then the derivative f ′(x̄) may be non-zero,
see Fig. 60.3.

x

y

a b

y = f(x)

y = f(a) + f ′(a)(x− a), f ′(a) > 0

Fig. 60.3. f ′(x̄) may be non-zero at a minimum x̄ on the boundary

Example 60.5. Suppose we want to minimize f : Ω → R with Ω = [0, 2]
and f(x) = x2 − 2x. Since Ω is closed and bounded and f(x) is Lipschitz
continuous, we know that there is a minimum point x̄ ∈ [0, 2]. If x̄ is interior
to [0, 2], that is if 0 < x̄ < 2, then f ′(x̄) = 2x̄− 2 = 0 and thus x̄ = 1. We
compare the value f(1) = −1 to the values f(0) = 0 and f(2) = 0 on the
boundary of [0, 2] and conclude that f(1) = −1 is the minimum value and
x̄ = 1 the corresponding minimum point.

Example 60.6. Suppose we want to minimize f : Q → R with
f(x) = f(x1, x2) = x2

1 + x2
2 − 2x1 − x2 on a closed square Q = [0, 2]× [0, 2],

see Fig. 60.4. We know that there is a minimum point in Q. We first
compute the interior points x̂ where f ′(x̂) = 0. Since f ′(x) = (2x1 − 2,
2x2 − 1), x̂ = (1, 0.5) with the function value f(1, 0.5) = −1.25. It remains
to study the variation of f(x) on the boundary of Q to see if we find a value
smaller than −1.25. We do this by considering each piece of the boundary
separately. On the part x2 = 0, we have f(x) = x2

1 − 2x1 with x1 ∈ [0, 2],
and we see arguing as in the previous example that the minimum value is
f(1, 0) = −1. On the part x2 = 2, we have f(x1, 2) = x2

1 − 2x1 + 3 with
minimum f(1, 2) = 2. On the part x1 = 0, we have f(0, x2) = x2

2 −x2 with
minimum f(0, 0.5) = −0.25, and on the part x1 = 2, we have f(2, x2) =
x2

2 − x2 with minimum f(2, 0.5) = −0.25. We conclude that the minimum
point is the interior point x̄ = (1, 0.5) and that the minimum value is
f(1, 0.5) = −1.25.

Example 60.7. You are asked to design a box (without top) of a given
volume using as little material as possible. Letting the sides of the box be
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2

 

x1x2

x3 = f(x1, x2) = x2
1 + x2

2 − 2x1 − x2

Fig. 60.4. Minmizing f(x) = x2
1 + x2

2 − 2x1 − x2 on Q = [0, 2] × [0, 2]

x x

y y

x̄x̄

y = f(x)

y = f(x)

Fig. 60.5. f ′(x̄) = 0 may correspond also to a maximum point or an inflection
point

x1, x2 and x3, the volume is x1x2x3 = V and the surface to be minimized
is x1x2 + 2x1x3 + 2x2x3. Eliminating x3 gives

f(x1, x2) = x1x2 + 2V
(

1
x1

+
1
x2

)

,

which is to be minimized over Ω = [0,∞) × [0,∞). Seeking points x̂ with
f ′(x̂) = (0, 0), we find x̂1 = x̂2 = (2V )1/3 with the corresponding height
x̂3 = 1

2 (2V )1/3, and the area

f(x̂) = (2V )2/3 + 2(2V )2/3.

Comparing with (x1, x2) with x1 or x2 very large or small give large values
to f(x1, x2) and thus the minimum point is x̂. The solution is a box with
square bottom and height half of the width.

We also remark that a minimum value may be attained at an interior
point where the given function is nondifferentiable. For example, the min-
imum value of the function f(x) = |x − 1| on [0, 2] is attained at x̄ = 1
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with minimum value f(x̄) = f(1) = 0. This type of interior minimum
points must be considered separately. Thus, to find all possible minimum
points we have to consider the points x̄ for which f ′(x̄) = 0, and in addi-
tion to these the end points of the domain of definition and interior points
where f(x) is not differentiable, see Fig. 60.5.

60.6 The Role of the Hessian

We know that if x̄ is an interior minimum point of a function f : Ω → R,
then f ′(x̄) = 0. But it is not true in general that if f ′(x̄) = 0, then x̄ is
a minimum point. A point x̄ with f ′(x̄) = 0 may e.g. be a maximum point,
or an inflection point, see Fig. 60.5. If the Hessian H of f : Ω → is positive
definite close to x̄ and f ′(x̄) = 0, then we have by Taylor’s theorem

f(x) = f(x̄) +
1
2
(x− x̄)	H(y) · (x− x̄) > f(x̄)

for x close to x̄ and some y between x and x̄, and thus x̄ is a local minimum
point.

We recall that an n× n matrix A is said to be positive definite if

v	Av > 0

for all non-zero v ∈ R
n. The Spectral Theorem implies that A is positive

definite if and only if the eigenvalues of A are positive.

Example 60.8. If A = (aij) is a symmetric 2× 2 matrix, then A is positive
definite if

a11a22 − a2
12 > 0 and a11 > 0.

This follows by completing squares in

v	Av = a11v
2
1 + a22v

2
2 + 2a12v1v2.

60.7 Minimization Algorithms: Steepest Descent

We discuss briefly how to find candidates for minimum points of a given
function f : Ω → R, where Ω is a domain in R

d. We assume that f : Ω → R

is Lipschitz continuous and differentiable on Ω.
In the steepest descent method, we construct a sequence {xi} in R

d that
hopefully converges to a (local) minimum point by means of the iteration

xi+1 = xi − αif
′(xi), (60.2)
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where αi is a positive parameter. Since αi > 0, if f ′(xi) > 0 then xi+1 < xi,
and if f ′(xi) < 0 then xi+1 > xi. This means that if f ′(xi) > 0, so
that f(x) is increasing at x = xi, then taking xi+1 < xi should result
in f(xi+1) < f(xi), and thus xi+1 should be closer to a minimum point
than xi. A similar argument applies in the case f ′(xi) < 0.

It is clear that the choice of the parameter αi is important. If αi is
too small, then the convergence will be slow, and if αi is too large, the
sequence xi may start to oscillate.

Note that we may view the gradient method (60.2) for minimization of
f(x) as Fixed Point Iteration for computing a root of f ′(x) = 0.

If steepest descent leads to the boundary Γ of Ω, then we may replace
the steepest descent iteration by the projected gradient method defined

xi+1 = xi − αiPf
′(xi),

where Pf ′(xi) is the projection of f ′(xi) onto the tangent plane to Γ
at xi ∈ Γ.

The general idea is thus to find roots of f ′(x) = 0 using steepest de-
scent for the minimization of f(x) or equivalently fixed point iteration
for f ′(x) = 0. Once the roots of f ′(x) = 0 have been determined, the mini-
mization is reduced to a search on the boundary of Ω and the interior zeros
of f ′(x).

60.8 Existence of a Minimum Value and Point

We return to proof of the fundamental result which says that if f : Ω → R

is Lipschitz continuous and Ω is a closed and bounded domain of R
d, then

there is a minimum point x̄ ∈ Ω with corresponding minimum value f(x̄).
We carry out the proof in for d = 1 so that Ω = [a, b] is a bounded closed
interval. The proof in the case d > 1 is similar.

We shall prove that a Lipschitz continuous function f : [a, b] → R on
a closed and bounded interval [a, b] has a minimum point by “constructing”
a minimum point using the Bisection algorithm. We shall see that the
“construction” is controversial at one step. Trying to resolve this issue
yields added insight into the nature of minimization algorithms.

Normally, the proof we present here is considered so “difficult” that it
is given only in “advanced” senior undergraduate or beginning graduate
courses. With our good preparation on the Bisection algorithm and the
nature of real numbers, we can plunge into the proof, and we will see that
it is “easy” up to the non-constructive aspects.

We first recall that the Lipschitz continuity of f(x) and the fact that [a, b]
is bounded implies that f : [a, b] → R is bounded from above and below.
In particular, there is some m ∈ R such that

f(x) ≥ m for all x ∈ [a, b]. (60.3)
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We say that m is a lower bound of f : [a, b] → R if (60.3) holds. Clearly,
there are many lower bounds since if m is a lower bound, any number
m < m is also a lower bound.

In the proof, we shall use the concept of greatest lower bound defined as
follows: we say that m is a greatest lower bound of f : [a, b] → R if

f(x) ≥ m for all x ∈ [a, b] (60.4)
for all M > m there is some x ∈ [a, b] such that f(x) < M. (60.5)

In words, m is a greatest lower bound of f : [a, b] → R if m is a lower
bound of f : [a, b] → R and any number bigger than m is not a lower
bound for f : [a, b] → R. The concept of greatest lower bound has played
an important role in the development of Calculus during the 20th century.

The proof now proceeds in two steps:

Step 1: Existence of a Greatest Lower Bound m of f : [a, b] → R

We shall prove the existence of a greatest lower boundm by using the Bisec-
tion method. Let m be a lower bound of f : [a, b] → R, whose existence was
established above. Set y0 = m and Y0 = f(b) and define ŷ1 = 1

2 (y0 + Y0) =
1
2 (m+f(b)). Note that y0 ≤ ŷ1 ≤ Y0. If f(x) ≥ ŷ1 for all x ∈ [a, b], then set
y1 = ŷ1 and Y1 = Y0. If not, then there is an x ∈ [a, b] such that f(x) < ŷ1,
and we set y1 = m and Y1 = ŷ1. We have now passed from the pair (y0, Y0),
or interval (y0, Y0), to the interval (y1, Y1). By construction, f(x) ≥ yi for
all x ∈ [a, b] and i = 0, 1 and there is some x ∈ [a, b] such that f(x) < Yi

unless Y0 or Y1 is already a greatest lower bound.
Repeating this process, we get two sequences {yi} and {Yi} such that

for i = 0, 1, 2, . . .,

yi < Yi, yi+1 ≥ yi Yi+1 ≤ Yi,

0 < Yi − yi = 2−i(Y0 −m),
f(x) ≥ yi for all x ∈ [a, b],

there is an x ∈ [a, b] such that f(x) < Yi,

or some Yi is a greatest lower bound. As in Chapter
√

2, we see that the
sequences {yi} and {Yi} are Cauchy sequences and both converge to one
real number, which we denote by m. The number m is the greatest lower
bound of f : [a, b] → R since m satisfies the following two conditions:

(f(x) ≥ m for all x ∈ [a, b],
for any M > m there is an x ∈ [a, b] such that f(x) < M.

We have now proved the existence of a greatest lower bound to the Lipschitz
continuous function f : [a, b] → R on the closed and bounded interval [a, b].
Note that this result also holds if (a, b) is a bounded open interval. We have
thus not yet used the fact that [a, b] is closed.

TS
e
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Step 1TS
e : Existence of a Minimum Point

We now construct a convergent sequence {xi} with xi ∈ [a, b] and

lim
i→∞

f(xi) = m.

Setting x̄ = limi→∞ xi, we have f(x̄) = m and thus x̄ is a minimum point
and we are done.

To construct {xi} we again use the Bisection algorithm as follows: set
x0 = a, and X0 = b, and define x̂1 = 1

2 (x0 + X0). If f(x) > m for all x
such that x̂1 < x ≤ X1, then we set x1 = x0 and X1 = x̂1. If not, we
set x1 = x̂1 and X1 = X0. Repeating the process, we obtain a convergent
sequence {xi} with limit x̄ and by construction we have f(x̄) = m. Note
that to guarantee that x ∈ [a, b], we need [a, b] to be closed. We note that
the minimum value (of course) is equal to the greatest lower bound.

We summarize in the following theorem:

Theorem 60.3 (Existence of minimum point) Suppose f : I → R is
Lipschitz continuous and I = [a, b] is a closed and bounded interval. Then
there is a point x̄ ∈ [a, b], where f : I → R assumes a minimum value m̄,
that is, f(x) ≥ m̄ for all x ∈ [a, b], and f(x̄) = m̄.

In the proof of this theorem we used the Bisection algorithm twice. Set-
ting y = f(x), we may say that we first used the Bisection algorithm in the
variable y to prove existence of a greatest lower bound m and then in the
variable x to prove existence of a minimum point x̄ satisfying f(x̄) = m.

60.9 Existence of Greatest Lower Bound

If we examine the proof of existence of a greatest lower bound to the Lips-
chitz continuous function f : I → R, we see that the crucial fact behind the
proof is that f : [a, b] → R is bounded below, that is there is a real number
m such that f(x) ≥ m for all x ∈ [a, b]. We can interpret this in terms of
a property of the range R(f) = {y : y = f(x) for some x ∈ D(f) = [a, b]},
namely

y ≥ m for all y ∈ R(f).

This says that the set R(f) is bounded below.
More generally, we say that a set A of real numbers is bounded from

below if there is a real number m such that y ≥ m for all y ∈ A. Using the
same argument as just used in the case A = R(f), we obtain the following
fundamental property of real numbers.

Theorem 60.4 (Existence of greatest lower bound) Suppose A is
a set of real numbers which is bounded from below, that is, there is a real
number m such that x ≥ m for x ∈ A. Then the set A has a greatest lower
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bound m ∈ R satisfying x ≥ m for all x ∈ A and for all M > m there is
an x ∈ A such that x < M .

60.10 Constructibility of a Minimum Value
and Point

We now discuss to what extent the above existence proof is constructive.
There are two issues: (i) construction of the greatest lower bound, which is
the same as the minimum value, and (ii) construction of a minimum point.

In the application of the Bisection algorithm in (i), we have to check if

f(x) ≥ ŷi for all x ∈ [a, b],

while in the application in (ii), we have to check if

f(x) > m for all x such that x̂1 < x ≤ X1.

Both checks appear to involve infinitely many values of x. In the worst
case this would require infinitely many comparisons. The number may be
reduced if f(x) is differentiable by using information concerning f ′(x). For
example, the sign of f ′(x) indicates if f(x) is increasing or decreasing which
may be used to reduce the amount of comparison.

Thus, depending on the nature of the given function f : I → R, the given
proof of existence of a minimum value and minimum point may be more
or less constructive in nature.

Is it possible to make the proof fully constructive? We expect this to
be possible if we accept to determine the minimum value up to a toler-
ance TOL > 0. Suppose then that the function f(x) is Lipschitz continuous
with Lipschitz constant L. We can then reduce all comparisons to a discrete
grid of points of mesh size 1

LTOL between neighboring points.
To sum up, if f : I → R is Lipschitz continuous and [a, b] is bounded,

then it is possible to determine the minimum value f : I → R up to a given
tolerance with a finite number of operations.

To determine an interior minimum point amounts to finding a root
of f ′(x) = 0 and thus the constructibility of a minimum point can be
reduced to the constructibility of a root of f ′(x) = 0. We discussed the
cost of computing roots in Chapters Fixed Point Iteration and Newton’s
method.

60.11 A Decreasing Bounded Sequence Converges!

Suppose {xi} is a bounded decreasing sequence, that is x1 ≥ x2 ≥ · · · ≥
xn ≥ xn+1 ≥ . . ., and xn ≥ m for all n for some number m. Then the
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set of all numbers xn is bounded below, and thus has a greatest lower
bound m̄. We shall prove that limn→∞ xn = m̄. By the definition of great-
est lower bound, for all ε > 0 there is an xN such that m̄ ≤ xN ≤ m̄ + ε.
Since xn ≤ xN for n ≥ N , and xn ≥ x̄, it follows that m̄ ≤ xn ≤ m̄+ ε for
all n ≥ N , which proves the desired result. We summarize in the follow-
ing theorem which is a cornerstone of the analysis of functions of a real
variables.

Theorem 60.5 Suppose {xi}∞i=1 is a decreasing sequence that is bounded
below or an increasing sequence that is bounded above. Then {xi}∞i=1 is
convergent.

Chapter 60 Problems

60.1. Find the maximum and minimum values of the function f(x1, x2) =
x2

1 + 2x2
2 − x1 on the unit disc x2

1 + x2
2 ≤ 1.

60.2. Find the point of the plane 3x1 + 4x2 − x3 = 26 which is closest to the
origin.

60.3. Find the shape of a box (with top included) which for given surface area
has maximal volume.

60.4. Seek minimum and maximum values of the following functions:

(a) f(x1, x2) = (1 + x2
1 + x2

2)
−1 for (x1, x2) ∈ R

2, (b) f(x1, x2) = x1x2 for
x2

1 + x2
2 ≤ 1, (c) f(x1, x2, x3) = x1 + x2 + x3 for x2

1 + x2
2 + x2

3 ≤ 1.

60.5. Show that the function x4
1 + x4

2 + x4
3 − 4x1x2x3 has a minimum point at

(x1, x2.x3) = (1, 1, 1).

60.6. Find the triangle of largest area that can be inscribed in a given circle.

60.7. Find the point on the curve x2 = x2
1 which is closest to the point (0, 1).

60.8. Determine the constants a0 and a1 which minimize for a given function
f : [0, 1] → R, the integral

∫ 1

0

(f(x) − a0 − a1x)
2 dx.

60.9. Find the maximum value of x1 + x2 + . . . + xn subject to the condition
x2

1 + x2
2 + . . .+ x2

n ≤ 1.

60.10. A stationary point of a function f : R
n → R is a point x ∈ R

n such that
f ′(x) = 0. Determine if any of the stationary points of the following functions is
a maximum or minimum point: (a) f(x1, x2, x3) = x2

1 +x2
2 +x2

3−x1−x2 +x3 +1,
(b) f(x1, x2, x3) = x2

1 +x2
2 +2x2

3 +4x1 −x2 +x3 +5, (c) f(x1, x2, x3) = cos(x1)+
cos(x2) + cos(x3).





61
The Divergence, Rotation
and Laplacian

. . . Stokes was a very important formative influence on subsequent
generations of Cambridge men, including Maxwell. With Green, who
in turn had influenced him, Stokes followed the work of the French,
especially Lagrange, Laplace, Fourier, Poisson and Cauchy. This is
seen most clearly in his theoretical studies in optics and hydrodynam-
ics; but it should also be noted that Stokes, even as an undergrad-
uate, experimented incessantly. Yet his interests and investigations
extended beyond physics, for his knowledge of chemistry and botany
was extensive, and often his work in optics drew him into those fields.
(Parkinson)

Appointed professor of mathematics at the Ecole Polytechnique in
1809 Ampère held posts there until 1828. Ampère and Cauchy shared
the teaching of analysis and mechanics and there was a great contrast
between the two with Cauchy’s rigorous analysis teaching leading to
great mathematical progress but found extremely difficult by stu-
dents who greatly preferred Ampère’s more conventional approach
to analysis and mechanics. (O’Connor and Robertson)

61.1 Introduction

We saw previously that the gradient of a function of several variables is
a practically useful differential operator. In this chapter, we introduce some
other useful operators, including the divergence, rotation and the Laplacian,
together with the gradient play a fundamental role in mathematical mod-
eling in science and engineering. We first define the operators in R

2 and
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then in R
3, noting that the rotation takes somewhat different forms in R

2

and R
3.

Fig. 61.1. Napoleon to Laplace (1749–1827): “You have written this huge book
on the system of the world without once mentioning the Author of the Universe”.
Laplace to Napoleon: “Sire, I had no need of this hypothesis”

61.2 The Case of R
2

We recall that the gradient of a function u : R
2 → R, denoted grad u or ∇u,

is the vector-valued function formed by the first order partial derivatives
of u, i.e.

grad u = ∇u =
(
∂u

∂x1
,
∂u

∂x2

)

.

The divergence of a vector function u = (u1, u2) : R
2 → R

2, denoted
divu or ∇ · u, is the scalar function defined by

divu = ∇ · u =
∂u1

∂x1
+
∂u2

∂x2
.

Formally, we have

∇ · u =
(

∂

∂x1
,
∂

∂x2

)

· (u1, u2)

where we may think of ( ∂
∂x1

, ∂
∂x2

) “as a vector” and let the dot indicate
a “scalar product”. This idea applies to all the formulas below involving ∇
combined with the operators · and ×.
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The rotation of a vector function u : R
2 → R

2, denoted by rot u or ∇×u,
is the scalar function

rotu = ∇× u =
∂u2

∂x1
− ∂u1

∂x2
=
(

∂

∂x1
,
∂

∂x2

)

× (u1, u2).

If u : R
2 → R is a scalar function, then rotu = ∇ × u is defined as the

vector function

rotu = ∇× u =
(
∂u

∂x2
,− ∂u

∂x1

)

.

The different appearances of rotu = ∇× u, with u a scalar or u = (u1, u2)
a vector function will be explained when we pass to R

3 below. For now, it
may be helpful to recall the different appearances of a × b with a, b ∈ R

2

or a, b ∈ R
3.

The following identities follow directly from the definitions for any func-
tion u:

∇ · (∇× u) = div (rot u) = 0, (u : R
2 → R

2)

∇× (∇u) = rot (grad u) = 0, (u : R
2 → R).

(61.1)

Finally, the Laplacian ∆u of a function u : R
2 → R is defined by

∆u = ∇ · (∇u) = div (grad u) =
∂2u

∂x2
1

+
∂2u

∂x2
2

,

where ∂2u
∂x2

i
= ∂

∂xi
( ∂u

∂xi
).

61.3 The Laplacian in Polar Coordinates

In polar coordinates x = (x1, x2) = (r cos(θ), r sin(θ)) with r ≥ 0 and
0 ≤ θ < 2π, the Laplacian takes the form

∆u =
1
r

∂

∂r

(

r
∂u

∂r

)

+
1
r2
∂2u

∂θ2
. (61.2)

This follows by a routine computation using that the Jacobian of the map-
ping x = (r cos(θ), r sin(θ)), in the notation (54.9) is given by

d(x1, x2)
d(r, θ)

=
(

cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)

,

so that
d(r, θ)
d(x1, x2)

=
(

cos(θ) sin(θ)
− sin(θ)/r cos(θ)/r

)

,

and thus by the Chain rule

∂

∂x1
= cos(θ)

∂

∂r
− sin(θ)

r

∂

∂θ
and

∂

∂x2
= sin(θ)

∂

∂r
+

cos(θ)
r

∂

∂θ
.
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61.4 Some Basic Examples

The function u : R
2 → R

2 given by u(x) = 1
2 (x1, x2), satisfies

∇ · u(x) = 1.

The function v : R
2 → R

2 given by v(x) = 1
2 (−x2, x1), satisfies

∇× v(x) = 1.

The function w : R
2 → R given by w(x) = 1

4 (x2
1 + x2

2), satisfies

∆w = 1.

We plot these basic examples in Fig. 61.2

x
2

1 0. 5 0 0.5 1

1

0. 5

0

0.5

1

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1
x

�

2

1

0

1

2

2

1

0

1

2

0

0.5

1

1.5

2

x�
x�

x
�

Fig. 61.2. Basic examples satisfying ∇·u = 1, ∇×v = 1 and ∆w = 1, respectively

We see that u(x) “explodes”, v(x) “rotates” and w(x) is a “hump”.

61.5 The Laplacian
Under Rigid Coordinate Transformations

It follows from the form of the Laplacian in polar coordinates, that the
Laplacian is invariant under rotations and translations in R

2, i.e. so-called
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rigid transformations of the form

x̃1 = cos(α)x1 + sin(α)x2 + a1

x̃2 = − sin(α)x1 + cos(α)x2 + a2,

where (x1, x2) are the old coordinates and (x̃1, x̃2) the new ones. In other
words, the Laplacian takes exactly the same form in the two coordinate
systems:

∂2u

∂x2
1

+
∂2u

∂x2
2

=
∂2u

∂x̃2
1

+
∂2u

∂x̃2
2

.

This fact is reflected in the observation that the Laplace operator typically
occurs in isotropic models that have the same properties in all directions.

61.6 The Case of R
3

The gradient of a function u : R
3 → R, denoted grad u or ∇u, is the

vector-valued function formed by the set of first order partial derivatives
of u, i.e.

grad u = ∇u =
(
∂u

∂x1
,
∂u

∂x2
,
∂u

∂x3

)

.

For a vector function u : R
3 → R

3, the divergence div u is a scalar
function defined by

div u =
3∑

i=1

∂ui

∂xi
,

and rotu is the vector function

rot u = ∇× u =
(
∂u3

∂x2
− ∂u2

∂x3
,
∂u1

∂x3
− ∂u3

∂x1
,
∂u2

∂x1
− ∂u1

∂x2

)

.

We now explain the relation of the operator of rotation ∇× in R
3 to

the operator of rotation ∇× in R
2 introduced above. Consider first a func-

tion u : R
3 → R

3 of the form u = (u1, u2, 0) with u1 and u2 being indepen-
dent of x3 so that effectively ui : R

2 → R with ui = ui(x1, x2) for i = 1, 2.
We have

∇× u =
(

0, 0,
∂u2

∂x1
− ∂u1

∂x2

)

= (0, 0,∇× (u1, u2)).

Secondly, if u : R
3 → R

3 has the form u = (0, 0, u3) with u3 independent
of x3, so that effectively u3 : R

2 → R, then

∇× u =
(
∂u3

∂x2
,−∂u3

∂x1
, 0
)

= (∇× u3, 0).
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We conclude that ∇× u for u : R
2 → R and ∇× u for u : R

2 → R
2, may

be viewed as special cases of ∇× u for u : R
3 → R

3.
The Laplacian ∆u of a function u : R

2 → R is defined by

∆u = ∇ · (∇u) = div (grad u) =
3∑

i=1

∂2u

∂x2
i

.

By direct computation we verify the following identities:

∇ · (∇× u) = 0,
∇× (∇u) = 0,

∇× (∇× u) = −∆u+ ∇(∇ · u).
(61.3)

61.7 Basic Examples, Again

The function u : R
3 → R

3 given by u(x) = 1
3x, satisfies

∇ · u(x) = 1.

The function v : R
3 → R

3 given by v(x) = 1
2 (−x2, x1, 0), satisfies

∇× v(x) = (0, 0, 1).

The function w : R
3 → R given by w(x) = 1

6‖x‖2, satisfies

∆w = 1.

We plot these basic examples in Fig. 61.3
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Fig. 61.3. Basic examples in R
3 satisfying ∇ · u = 1, ∇× v = 1

We see again that u(x) “explodes”, v(x) “rotates” along the x3 axis while
the “hump” w(x) is difficult to visualize.
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61.8 The Laplacian in Spherical Coordinates

In spherical coordinates.

x = (x1, x2, x3) = (r sin(ϕ) cos(θ), r sin(ϕ) sin(θ), r cos(ϕ)),

where r ≥ 0, 0 ≤ θ < 2π and 0 ≤ ϕ < π, the Laplacian is given by

∆u =
1
r2

∂

∂r

(

r2
∂u

∂r

)

+
1

r2 sin(θ)
∂

∂θ

(

sin(θ)
∂u

∂θ

)

+
1

r2 sin2(θ)
∂2u

∂ϕ2
. (61.4)

The Laplacian is invariant under orthogonal coordinate transformations
in R

3.

Example 61.1. Consider the velocity field generated by rotation around
a vector ω ∈ R

3 with angular speed ‖ω‖, that is the vector field

v(x) = ω × x.

We compute

∇× v(x) = ∇× (ω2x3 − ω3x2, ω3x1 − ω1x3, ω1x2 − ω2x1)
= (2ω1, 2ω2, 2ω3) = 2ω.

We conclude that the rotation ∇× v(x) of a velocity field v(x) generated
by a rotation according to a given vector ω is equal to 2ω. This motivates
the name of the differential operator ∇× as the “rotation”.

Example 61.2. A basic formula of electromagnetics expressing
Ampère’s law states that the magnetic fieldH generated by a unit electrical
current flowing through the x3-axis in the positive direction, is given by

H(x) = H(x1, x2, x3) =
1
2π

(−x2, x1, 0)
x2

1 + x2
2

for x2
1 + x2

2 > 0. (61.5)
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Fig. 61.4. The magnetic field around a current through the x3-axis
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We compute

∇×H(x) =
1
2π

(

0, 0,
∂

∂x1

x1

x2
1 + x2

2

− ∂

∂x2

−x2

x2
1 + x2

2

)

= 0 for x2
1 + x2

2 > 0.

Thus ∇×H(x) = 0 for x2
1+x

2
2 > 0, which is just Amperes’s Law ∇×H = J ,

where J is the current density, noting that J(x) = for x2
1 +x2

2 > 0, i.e. out-
side the x3-axis. Amperes’s Law is one of Maxwell’s equations. Below we
shall show how to interpret the equation
∇×H(x) = J(x) for x2

1 + x2
2 = 0 and motivate the factor 1

2π in (61.5).

Chapter 61 Problems

61.1. Let F = (5x1 − 3x1x2 + x2
3, sin(x1) cos(x1) + x1, sin(x1) exp(x1x2)). With

x = (1, 2, 3), compute (a) ∇ · F , (b) ∇× F , (c) ∇(∇ · F ), (d) ∇× (∇× F ).

61.2. Interpret the expression (∇ × ∇)u in a reasonable way and show that
(∇×∇)u = 0 for any u. Compare with ∇× (∇× u).

61.3. Show that for appropriate function u and v

1. ∇(uv) = (∇u)v + u(∇v),
2. ∇ · (uv) = (∇u) · v + u(∇ · v),
3. ∇× (uv) = (∇u) × v + u(∇× v),

4. ∇ · (u× v) = v · (∇× u) − u · (∇× v),

5. ∇× (u× v) = (v · ∇)u− (∇ · u)v − (u · ∇)v + (∇ · v)u,
6. ∇(u · v) = (u · ∇)v + (v · ∇)u+ u× (∇× v) + v × (∇× u).

61.4. Compute ∇(r · F (r)) where r = ‖x‖.

61.5. Prove that the velocity field v(x) = ω×x, where ω ∈ R
3 is a given vector,

satisfies ∇ · v(x) = 0. Interpret the result in fluid mechanical terms.

61.6. Prove directly using the Chain rule that the Laplacian in R
2 and R

3 is
invariant under rigid coordinate transformations.

61.7. Prove (61.3), (61.2) and (61.4).

61.8. Show that if u : R
2 → R, then ∇× (∇× u) = rot (rot u) = −∆u.

61.9. Show that the function u : R
2 → R given by u(x) = c1 log(‖x‖) + c2

with c1 and c2 constants, is a solution of the Laplace equation ∆u(x) = 0 in R
2

for x �= 0.

61.10. Prove that the function u : R
3 → R given by u(x) = c1‖x‖−1+c2, with c1

and c2 constants, is a solution of Laplace’s equation ∆u(x) = 0 in R
3 for x �= 0.

61.11. Show that the divergence is invariant under rigid coordinate transforma-
tions. Does the rotation have the same property?

All the effects of Nature are only the mathematical consequences of
a small number of immutable laws. (Laplace)



62
Meteorology and Coriolis Forces*

Any teacher who stands up in front of a class and says that Coriolis
force determines which way the water flows from a sink or bathtub,
should not only read Fraser’s Bad Coriolis Web page
(www.ems.psu.edu/ fraser/Bad/BadCoriolis.html), but be required
to copy it on the blackboard 100 times.
(Jack Williams, USA TODAY)

62.1 Introduction

A common weather map shows the level curves of the air pressure p, the
so-called isobars. Intuition might suggest that the wind will blow from
high pressure to low pressure, i.e. in the opposite direction to the pressure
gradient ∇p and orthogonal to the isobars. However, this turns out to be
completely false. In fact, the wind circles around a center of low pressure in
a counter-clockwise direction on the North hemisphere and in a clockwise
direction on the Southern hemisphere, and in the opposite directions around
centers of high pressure. Thus the wind blows along the isobars, instead
of orthogonal to the isobars. This fact is well-known to sailors, making it
possible to easily and accurately predict the wind direction if the centers
of the low and high pressures are known. The reason is that the Earth is
rotating, which creates a force of acceleration called the Coriolis force. This
causes the wind to deviate to the right on the Northern hemisphere and to
the left on the Southern hemisphere (away from the equator). The effect is
that the wind circles around a center of low pressure in a counter-clockwise
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direction on the Northern hemisphere, as any weather map in a newspaper
indicates. The Coriolis force is felt on a turn-around when seeking to change
position in the radial direction, which causes an (unexpected) force in the
tangential direction.

62.2 A Basic Meteorological Model

We shall now derive a simple model for the motion of the atmosphere,
which predicts that the wind should revolve around centers of low and
high pressure. The model takes the form

∇p = ρ2ω × v, (62.1)

where p is the pressure, v is the wind velocity, ω ∈ R
3 is the angular

velocity of the Earth, and ρ is the density of the atmosphere. The quan-
tity 2ω × v is an approximation of the Coriolis acceleration and the equa-
tion ∇p = ρ2ω × v gives a balance of the pressure force ∇p and the Coriolis
force ρ2ω × v. Here ∇p represents the gradient in the plane of the surface
of the Earth and the model applies to “caps” on the Northern or Southern
away from the Equator, say above or below the 60 degree latitude, where
we can approximate the surface of the Earth by a flat disc, see Fig. 62.1,
that is, the “world” of the sailor and the wind is a big flat turn-around.

We see that (62.1) states that ∇p is orthogonal to the direction of
the wind. If we know p, we can determine the wind direction and speed
from (62.1).

ω ω

v

ω × v

Fig. 62.1. Northern Hemisphere Change w to ω
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62.3 Rotating Coordinate Systems
and Coriolis Acceleration

To derive the expression 2ω × v of the Coriolis force, we need to study
coordinate transformations from one fixed coordinate system to a rotat-
ing coordinate system. We thus let {e1, e2, e3} be a fixed orthonormal ref-
erence coordinate system for R

3, and we let {ē1, ē2, ē3} be another or-
thonormal coordinate system with the same origin, which rotates around
the fixed vector ω ∈ R

3 with the angular speed ‖ω‖. More precisely,
if x(t) = x1(t)e1 +x2(t)e2 +x3(t)e3 are the reference coordinates of a fixed
point in the rotating coordinate system, then according to Fig. 62.2 we
have

dx

dt
= ω × x, (62.2)

since dx
dt is perpendicular to both ω and x, and ‖ dx

dt ‖ = ‖ω‖‖x‖ sin(θ),
where θ ∈ [0, π] is the angle between ω and x. In particular we have for the
basis vectors of the moving coordinate system

dēi

dt
= ω × ēi, i = 1, 2, 3. (62.3)

ω

θ

x

dx

Fig. 62.2. A vector x rotating with angular velocity ω.Change w to ω and q
to θ

Consider now a moving point with coordinates x(t) in the fixed reference
system and coordinates x̄(t) in the rotating system, so that

x(t) = x1(t)e1 + x2(t)e2 + x3(t)e3,
x̄(t) = x̄1(t)ē1(t) + x̄2(t)ē2(t) + x̄3(t)ē3(t),

and of course x(t) = x̄(t). In particular, we may this way seek the coor-
dinates of the basis vectors ēi(t) in the fixed system {e1, e2, e3}. We now
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compute the velocity dx
dt by differentiating x(t) = x̄(t) with respect to t to

get

dx

dt
=

d

dt
x̄(t) =

dx̄1

dt
ē1 +

dx̄2

dt
ē2 +

dx̄3

dt
ē3 + x̄1

dē1
dt

+ x̄2
dē2
dt

+ x̄3
dē3
dt

=
dx̄1

dt
ē1 +

dx̄2

dt
ē2 +

dx̄3

dt
ē3 + x̄1(ω × ē1) + x̄2(ω × ē2) + x̄3(ω × ē3),

where we used (62.3). We can write this expression as

dx

dt
=
d̄x̄

dt
+ ω × x, (62.4)

if we agree to write

d̄x̄

dt
=
dx̄1

dt
ē1 +

dx̄2

dt
ē2 +

dx̄3

dt
ē3.

The velocity of x(t) = x̄(t) in the fixed reference system is dx
dt , while d̄x̄

dt

is the velocity vs the rotating system involving the derivatives d̄
dt x̄i(t). In

particular, if the point is fixed in the rotating system so that d̄x̄
dt = 0, then

we retrieve (62.2) and (62.3).
We now seek a corresponding formula for the accelerations. We differen-

tiate with respect to t once more, and using (62.4) with x replaced by d̄x̄
dt ,

we get

d2x

dt2
=

d

dt

(
d̄x̄

dt
+ ω × x

)

=
d

dt

(
d̄x̄

dt

)

+ ω × dx

dt

=
d̄

dt

(
d̄x̄

dt

)

+ ω × d̄x̄

dt
+ ω ×

(
d̄x̄

dt
+ ω × x

)

.

We can write this as

d2x

dt2
=
d̄2x̄

dt2
+ 2ω × d̄x̄

dt
+ ω ×

(
ω × x

)
. (62.5)

Here, ω ×
(
ω × x

)
represents the centripetal acceleration and 2ω × d̄x̄

dt the
Coriolis acceleration, and d2x

dt2 is the acceleration vs the reference system
and d̄2x̄

dt2 the acceleration vs the rotating system.
By Newton’s Law F = ma, acceleration is directly coupled to force, and

thus both the centripetal and the Coriolis acceleration show up as forces
in the fixed reference system. Both these forces in fact have a somewhat
mysterious character; we have through massive daily experience become
quite familiar with the centripetal acceleration, while the Coriolis force
still presents surprises to most of us.
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If the rotation speed ‖ω‖ is relatively small, then we can neglect the
centripetal acceleration and we get

d2x

dt2
≈ d̄2x̄

dt2
+ 2ω × d̄x̄

dt
, (62.6)

which leads to the model (62.1). Note that we use the rotating coordinate
system in our “world”, and thus d̄x̄

dt is the relevant velocity.

Chapter 62 Problems

62.1. Motivate (62.1) using (62.6).

62.2. Inspect the isobars of a weather map and compute wind direction from
(62.1) and compare with the wind direction of the map.

62.3. Study the effect of the Coriolis acceleration at the Equator.

62.4. Show that the centripetal acceleration of a body moving in a circle with

radius r with speed v is equal to v2

r
.

62.5. The Gulf Stream is the reason Scandinavia is not deep frozen like Alaska.
Explain why the Gulf Stream bends over from North America to North Europe.

62.6. Consider a car driving East-West along a certain latitude. At what speed
is the Coriolis force on the car of the same size as the centripetal force? Deter-
mine this speed as a function of the latitude and find out at which latitudes the
minimum and maximum is attained.

62.7. A bucket of water is spinning around its center with angular velocity ω.
What is the shape of the water surface?

62.8. A pendulum of length l swings back and forth once every period of
length t =

√
l/g, where g is the acceleration of gravity. Compute the Coriolis

force on the pendulum at latitude θ (i.e. at an angle θ from the equator). This
Coriolis force makes the plane in which the pendulum swings rotate, i.e. if the
pendulum swings north–south at one instant, it will later swing west–east. Find
the time T after which the pendulum swings in the initial direction once again
as function of the latitude. What is the period on you latitude?
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Curve Integrals

We can scarcely believe that Ampère really discovered the law of
action by means of the experiments which he describes. We are led to
suspect, what, indeed, he tells us himself, that he discovered the law
by some process which he has not shown us, and that when he had
afterwards built up a perfect demonstration he removed all traces of
the scaffolding by which he had raised it. (Maxwell about Ampères
Memoir on the Mathematical Theory of Electrodynamic Phenomena,
Uniquely Deduced from Experience)

63.1 Introduction

In this chapter we introduce the concept of an integral over a curve or curve
integral, and develop some applications including arc length, work and line
integrals. We start with plane curves parameterized by functions s : I → R

2,
where I = [a, b] is an interval of the real line R. We then generalize to curves
in R

n parameterized by functions s : I → R
n with n ≥ 2.

63.2 The Length of a Curve in R
2

Let Γ be a curve in R
2 given by the function s : I → R

2, where I = [a, b] is
an interval of R, that is, Γ = {s(t) ∈ R

2 : t ∈ I}, or Γ = s(I), see Fig. 63.1.
We now try to determine the length of Γ. We shall see that this leads to the
introduction of the notion of an integral over a curve or a curve integral.
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x1

x2

a bt
t

ti

Ii

ti−1
s(a)

s(b)

s(t)
s′(ti−1)

Γi

|Γi| = |s′(ti−1)|hn

Fig. 63.1. The total length of curve is the sum of the lengths of little pieces of
the curve

To define the length of a curve, we view the curve Γ as the being made
up of little pieces of Γ. If the little pieces are sufficiently small, we can
get away with approximating them by straight segments, and the length of
a straight piece of curve is easy to compute. To find the total length of Γ,
we will sum the lengths of all the little pieces forming Γ. We will find the
integral is useful for this purpose.

Let a = t0 < t1 < . . . < tn = b be a subdivison of I into inter-
vals Ii = (ti−1, ti]. Consider the following linear approximation of the map-
ping s(t) restricted to the subinterval Ii, see Fig. 63.1,

s̄(t) = s(ti−1) + (t− ti−1)s′(ti−1).

The mapping s̄ maps Ii onto the line segment Γi of length

‖s′(ti−1)‖(ti − ti−1),

and it is thus natural to use

Ln(Γ) =
n∑

i=1

‖s′(ti−1)‖(ti − ti−1)

as an approximation of the length of Γ. Assuming that ‖s′(t)‖ is Lipschitz
continuous on I and assuming that maxi(ti − ti−1) tends to zero as n tends
to infinity, we can use the usual arguments to show that {Ln(Γ)}∞n=1 is
a Cauchy sequence and thus converges to a limit, which we denote by L(Γ).
We define this limit to be the length of Γ:

L(Γ) =
∫

I

‖s′(t)‖ dt. (63.1)

This formula expresses the length of a curve Γ = s(I) as an integral over
the parameter domain I of Γ with the modulus ‖s′(t)‖ of the derivative
of the representing function s : I → R

2 as a weight. Formally, we have
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ds = ‖s′(t)‖dt, where ds represents the increase of the length of the curve
corresponding to an increase dt of the parameter t; the function ‖s′(t)‖
gives the local “change of scale” between the “element of curve length” ds;
and the “parameter element” dt, see Fig. 63.1. We are thus led to write

L(Γ) =
∫

Γ

ds =
∫

I

‖s′(t)‖ dt.

We will return to this notation in the next section.

Example 63.1. We compute the length of the circumference Γ of a circle
of radius 1 centered at the origin. The curve Γ is given by the function
s : [0, 2π) → R

2 with s(t) = (cos(t), sin(t)) and 0 ≤ t < 2π. We have
s′(t) = (− sin(t), cos(t)) and ‖s′(t)‖ = 1, and thus

L(Γ) =
∫ 2π

0

‖s′(t)‖ dt =
∫ 2π

0

dt = 2π.

We conclude that the the length of the circumference of a circle of ra-
dius 1 is equal to 2π (no big surprise). We check the result using a different
parametrization. The upper semi-circle Γ+ of Γ can be parameterized by
s : [−1, 1] → R

2 given by s(t) = (t,
√

1 − t2) with −1 ≤ t ≤ 1. We have

s′(t) =
(

1,− t√
1 − t2

)

, ‖s′(t)‖ =
1√

1 − t2
,

and thus

L(Γ) = 2L(Γ+)

=
∫ 1

−1

1√
1 − t2

dt = 2
[
arcsin(t)

]1
−1

= 2
(π

2
−
(
−π

2

))
= 2π.

63.3 Curve Integral

Let Γ = s(I) be a curve in R
2 given by the function s : I → R

2, where
I = [a, b] is an interval of R, and let u : Γ → R be a function defined on Γ.
We assume that the tangent s′ : I → R

2 and the function u : Γ → R are
both Lipschitz continuous, which guarantees that ‖s′(t)‖ and u(s(t)) are
both Lipschitz continuous on I. We define the integral of u over Γ by

∫

Γ

u ds ≡
∫

Γ

u(x) ds(x) ≡
∫ b

a

u(s(t))‖s′(t)‖ dt.

Formally, we have ds = ds(x) = ‖s′(t)‖ dt, where x = s(t).
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Example 63.2. If Γ is an interval [a, b] on the x1-axis given by s(t) = (t, 0),
a ≤ t ≤ b, then s′(t) = (1, 0), ‖s′(t)‖ = 1, and

∫

Γ

u ds =
∫ b

a

u(x1, 0) dx1 =
∫ b

a

u(t, 0) dt.

Example 63.3. Let Γ = s(I) be the semicircle given by
s(t) = (cos(t), sin(t)), 0 ≤ t ≤ π, and u(x) = u(x1, x2) = x2

1. Using
‖s′(t)‖ = 1, we get

∫

Γ

u ds =
∫ π

0

cos2(t) dt =
1
2

∫ π

0

(1 − cos(2t)) dt =
π

2
.

63.4 Reparameterization

An important observation is that the value of a curve integral is indepen-
dent of the parameterization of the curve. To see this, consider two different
parameterizations s : [a, b] → Γ and σ : [c, d] → Γ of a curve Γ in R

2. As-
sociate to each τ ∈ [c, d] the unique value t ∈ [a, b] such that s(t) = σ(τ),
which defines t = t(τ)) as a function of τ (assuming that the curve does
not cross itself), so that σ(τ) = s(t(τ)), see Fig. 63.2.

a bt
t

c d
τ

τ

Γs(t)
σ(τ )

Fig. 63.2. Reparametrization of a curve

We now use the formula for change of integration variables and the fact
that by the Chain rule

σ′(τ) =
dσ

dτ
=
ds

dt

dt

dτ
= s′(t)

dt

dτ
,

to see that, assuming dt
dτ ≥ 0,

∫ b

a

u(s(t))‖s′(t)‖ dt =
∫ d

c

u(s(t(τ)))‖s′(t(τ))‖ dt
dτ

dτ

=
∫ d

c

u(σ(τ))‖σ′(τ)‖ dτ.
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This shows that the curve integral
∫

Γ

u ds =
∫

Γ

u dσ

is independent of the parametrization s : [a, b] → Γ or σ : [c, d] → Γ of Γ.

Example 63.4. We reparameterize the semicircle Γ in the previous example
by s(t) = (t,

√
1 − t2) with −1 ≤ t ≤ 1 and get with u(x) = x2

1, integrating
by parts

∫

Γ

u ds =
∫ 1

−1

t
t√

1 − t2
dt =

[
−t

√
1 − t2

]1
−1

+
∫ 1

−1

√
1 − t2 dt

=
∫ 0

−π

√
1 − cos2(θ)(− sin(θ)) dθ =

∫ π

0

sin2(θ) dθ =
π

2
.

63.5 Work and Line Integrals

Let F : R
2 → R

2 be a vector function representing a variable force, or
a force field, defined in R

2, and let Γ be a curve in R
2 given by s : [a, b] → R

2

starting at A = s(a) and ending at B = s(b). Consider a particle acted upon
by the force F moving along Γ from A to B, see Fig. 63.3. The projection
Fs(s(t)) of the force F (s(t)) on the direction s′(t) of the tangent to s(t) is
equal to

Fs(s(t)) = F (s(t)) · s′(t) 1
‖s′(t)‖ . (63.2)

A

B
Γ

s(t)

s′(t)

F (s(t))

Fs(s(t))

Fig. 63.3. Force field F and curve Γ, and projection of F onto s′(t)

Using the idea that “the work is equal to the projection of the force in
the direction of the displacement × displacement”, the work performed by
the force F (s(t)) as the particle moves from s(ti−1) to s(ti) is

F (s(ti)) · s′(ti)
1

‖s′(ti)‖
‖s(ti) − s(ti−1)‖

≈ F (s(ti)) · s′(ti)
1

‖s′(ti)‖
‖s′(ti)‖(ti) − ti−1) = F (s(ti)) · s′(t)(ti − ti−1).
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As above a = t0 < t1 < . . . ti−1 < ti < . . . < tn = b is an increasing
sequence of discrete time levels, where we think of the time steps ti − ti−1

as tending to zero. We are now led to define the total work W (F,Γ) as the
particle moves from A = s(a) to B = s(b) along Γ, as

W (F,Γ) =
∫ b

a

F (s(t)) · s′(t) dt.

Setting ds = s′(t) dt, we also write

∫

Γ

F · ds =
∫ b

a

F (t) · s′(t) dt,

which we call a line integral. To sum up, we have

W (F,Γ) =
∫

Γ

F · ds =
∫ b

a

F (t) · s′(t) dt

=
∫ b

a

(F1(t)s′1(t) + F2(t)s′2(t)) dt.

(63.3)

Alternatively, we can write

W (F,Γ) =
∫

Γ

Fs ds =
∫ b

a

Fs‖s′(t)‖ dt =
∫

Γ

F · ds, (63.4)

with Fs being the projection of F onto s′(t) according to (63.2).

Example 63.5. Assume that F (x) = (x2,−x1) and let Γ be given by s(t) =
(cos(t), sin(t)), 0 ≤ t < 2π. We have

W (F,Γ) =
∫

Γ

F · ds =
∫ 2π

0

(sin(t),− cos(t)) · (− sin(t), cos(t)) dt

= −
∫ 2π

0

dt = −2π.

63.6 Work and Gradient Fields

There is an important special case. If F = ∇ϕ, that is the force field F is
the gradient field of a potential ϕ(x), then the Chain rule implies

W (F,Γ) =
∫

Γ

F · ds =
∫ b

a

∇ϕ(s(t)) · s′(t) dt

=
∫ b

a

d

dt
ϕ(s(t)) dt = ϕ(B) − ϕ(A).
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We conclude that if the force field F is the gradient field F = ∇ϕ of
a potential ϕ(x), then the work performed by F along a curve Γ from A to
B is equal to the difference ϕ(B) − ϕ(A) of the values of the potential ϕ
at the end point B and the starting point A. In other words, the work is
independent of the curve from A to B. In particular, if the curve is closed
so that B = s(b) = s(a) = A, then the work is zero.

Below we consider the problem of finding conditions guaranteeing that
a given force F (x) is the gradient of a potential so that F (x) = ∇ϕ(x) for
some scalar function ϕ(x).

Example 63.6. As a basic application, we consider the attractive grav-
itational force F (x) = ∇ϕ(x) with ϕ(x) = 1/‖x‖ being the Newtonian
potential, corresponding to a unit mass at the the origin, that is

F (x) = − 1
‖x‖2

x

‖x‖ ,

with normalization of the gravitational constant to one. We note that F (x)
is directed towards the origin and obeys the inverse square law: ‖F (x)‖ =
‖x‖−2. We have

W (F,Γ) =
1

‖B‖ − 1
‖A‖ ,

which corresponds to the work performed as a unit mass moves in the
gravitational field from a distance ‖A‖ to the distance ‖B‖ from the origin.
In particular, if ‖A‖ = ∞, then W (F,Γ) = 1/‖B‖. We conclude that the
work required to “lift” a particle of unit mass from a distance r of an
attracting gravitational field of unit strength at the origin to an infinite
distance is equal to 1/r.

63.7 Using the Arclength as a Parameter

Note that if u(x) = 1 for all x ∈ Γ, then
∫

Γ

ds =
∫

Γ

1 ds =
∫

Γ

u(x) ds(x) =
∫ b

a

‖s′(t)‖ dt

is the length of the curve Γ = s(I) with I = [a, b]. In particular,

σ(t̄) =
∫ t̄

a

‖s′(t)‖ dt

is the arclength of the part of the curve from s(a) to s(t̄). The Fundamental
Theorem of Calculus implies

σ′(t̄) = ‖s′(t̄)‖. (63.5)
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We may now choose the arclength σ = σ(t) as the parameter instead of t
since to each t, there is a unique arclength σ(t) and vice versa. This gives
a reparameterization of s(t) = s̄(σ) with

‖s̄′(σ)‖ = ‖ds
dt

‖| dt
dσ

| = ‖s′(t)‖ 1
|σ′(t)| =

‖s′(t)‖
‖s′(t)‖ = 1.

We conclude that if the arclength σ to used to parameterize the curve
s : I → R

2, then ‖s′(σ)‖ = 1 and, see Fig. 63.4,

L(Γ) =
∫

Γ

ds =
∫ L(Γ)

0

dσ.

s( )

s(0)

x1

x2

Fig. 63.4. A curve Γ parameterized by arclength σ

63.8 The Curvature of a Plane Curve

The curvature of a curve s : [a, b] → R
2 measures of how quickly the curve

bends as we move along the curve. It is defined by

κ =
dθ

dσ
,

where θ is the polar angle of the tangent vector s′ = (s′1, s′2) defined by
θ(t)) = tan−1

(
s′2/s

′
1

)
and σ is arclength. In the case of a straight line, the

polar angle θ(t) is constant and the curvature is zero, see Fig. 63.5.
The arc length σ(t) satisfies, recalling (63.5), dσ

dt = |s′|, and thus
dt
dσ = |s′|−1. The chain rule implies

κ(t) =
dθ

dt

dt

dσ
=

θ′(t)
‖s′(t)‖ .

Computing θ′(t), we find that

κ(t) =
s′1(t)s

′′
2(t) − s′′1 (t)s′2(t)

(
s′1(t)2 + s′2(t)2

)3/2
.
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(t)

s
/(t)

s(t)

(t)

s
/(t)

s(t)

x1

x2 x2

x1

Fig. 63.5. The polar angle θ of the tangent vector of a straight line is constant
as shown on the right. The tangent vector of a curve that bends, like the example
on the left, has a different polar angle at each point

In particular if the curve is parameterized by s(x1) = (x1, f(x1)), where
f : R → R has two continuous derivatives, then the curvature at the point
(x1, f(x1)), is given by

κ(x1) =
f ′′(x1)

(
1 + (f ′(x1))2

)3/2
.

We define the circle of curvature at a point P = s(t) on a curve
s : [a, b] → R

2, as the circle of radius |κ|−1(t) (assuming κ �= 0) that shares
the same tangent line as Γ at P and points to the left of T if κ > 0 and to
the right if κ < 0, see Fig. 63.6. The radius of curvature at P is |κ|−1(t).

| |-1

P

s'

s

Fig. 63.6. The circle of curvature of Γ at P

63.9 Extension to Curves in R
n

The definitions of integrals over curves and line integrals directly extend
to curves in R

n represented by s : [a, b] → R
n with n ≥ 2.
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Example 63.7. Consider the circular helix Γ in R
3 given by s(t) = (cos(t),

sin(t), t), 0 ≤ t ≤ 20π, and let u(x) = x2
3. We have since s′(t) = (− sin(t),

cos(t), 1) and thus ‖s′(t)‖ =
√

2,
∫

Γ

u ds =
∫ 20π

0

t2
√

2 dt =
√

2
3

(20π)3.

Chapter 63 Problems

63.1. (a) Compute the length of (a) the catenary (hanging chain curve) given by
s(t) = (t, cosh (t)) with −1 ≤ t ≤ 1, (b) the circular helix s(t) = (cos(t), sin(t), t)
with 0 ≤ t ≤ 4π, (c) the cycloid s(t) = (t − sin(t), 1 − cos(t)) with 0 ≤ t ≤ 2π,
(d) the semi-cubical parabola s(t) = (t3, t2) with 0 ≤ t ≤ 2, (e) the four-cusped
hypocycloid or astroid s(t) = (cos3(t), sin3(t)).

63.2. Let Γ be the circular helix s(t) = (cos(t), sin(t), t) with t ∈ [0, 2π). Com-
pute the value of the curve integral

∫
Γ
u ds for (a) u(x) = 1, (b) u(x) = x3,

(c) u(x) = x1x2x3.

63.3. Compute the curve integral
∫
Γ
x1x2 ds, where (a) Γ is the part of the unit

circle in the x1x2-plane from (1, 0, 0) to (0, 1, 0), (b) Γ is the part of the unit
square in the x1x2-plane from (1, 0, 0) to (0, 1, 0). (c) Γ is the shortest path from
(1, 0, 0) to (0, 1, 0).

63.4. (a) Compute the line integral
∫
Γ
x · ds where Γ is the unit circle in the

x1x2-plane. (b) Try other choices of closed curves Γ and evaluate the integral.

63.5. Compute the line integral
∫
Γ
F ·ds with Γ the unit circle in the x1x2 plane

and (a) F (x) = (x1,x2)

|x|2 , (b) F (x) = (−x2,x1)

|x|2 . Does the result depend on whether

you integrate around the unit circle clockwise or counter-clockwise?

63.6. A particle is moved counter-clockwise around the square 0 ≤ x1, x2 ≤ 1,
x3 = 0 under the action of the force field f(x) = ((x1 − x2)

2, 2x2 + x2
1, x1).

Compute the work done.

63.7. Let f(x) = (2x1+x2, 3x1−2x2). Compute
∫
Γ
f ·ds with Γ given by (a) the

straight line from (0, 0) to (1, 1), (b) the parabola x2 = x2
1 from (0, 0) to (1, 1),

(c) the curve x2 = sin(πx1/2) from (0, 0) to (1, 1), (d) the curve x2 = xn1 with
n > 0 from (0, 0) to (1, 1).

63.8. Compute the integral of u = x1 x2 over the boundary of the unit square
[0, 1] × [0, 1].

63.9. Find the circle of curvature of x2 = x2
1 at x1 = 0.

63.10. Find the curvature of the plane curve
(
R cos(θ), R sin(θ)

)
where R is

constant. Conclude that the curvature of a circle of radius R is R−1.
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63.11. Verify the two formulas for the curvature.

63.12. (a) Compute the curvature of the curve (x1, x
2
1). (b) Do the same for

(x1, x
3
1), and then discuss what happens at the inflection point.

63.13. Consider a hanging chain described by a function y(x) with −1 ≤ x ≤ 1
and y(−1) = y(1). Let for 0 ≤ x ≤ 1, T (x) be the modulus of the chain force
at x, and let s(x) be the length of the chain from 0 to x. Derive the vertical
equilibrium equation

y′(x) = cs(x) = c

∫ 1

0

√
1 + (y′(x))2 dx,

with c a constant. Show that this equation is satisfied with y′(x) = sinh(x
c
), and

conclude that y(x) = c cosh(x
c
).

63.14. Find the direction of the tangent at the point (1, 1, 1) of the curve cut
out on the surface x2

1 + x2
1x2 + x2

2x3 + x2
3 = 0. Hint: Use implicit differentiation.

63.15. Show that if a plane curve Γ is represented in polar coordinates (ρ(θ), θ)
with ρ(theta) a function of θ and a ≤ θ ≤ b, then ds2 = ρ2 dθ2 + dρ2 and thus

L(Γ) =

∫ b

a

(ρ2 + (ρ′)2)1/2 dθ.

Compute the the length of the cardioid ρ = (1 − cos(θ) with 0 ≤ θ ≤ 2π.

63.16. Compute the length of a string which is wound around a circular cylinder
with a uniform pitch.





64
Double Integrals

To understand this for sense it is not required that a man should be
a geometrician or a logician, but that he should be mad. [“This” is
that the volume generated by revolving the region under 1/x from 1
to infinity has finite volume.] (Hobbes 1588–1679)

He was 40 years old before he looked on geometry; which happened
accidentally. Being in a gentleman’s library, Euclid’s Elements lay
open, and “twas the 47 El. libri I” [Pythagoras’ Theorem]. He read
the proposition. “By God”, sayd he, “this is impossible:” So he reads
the demonstration of it, which referred him back to such a proposi-
tion; which proposition he read. That referred him back to another,
which he also read. Et sic deinceps, that at last he was demonstra-
tively convinced of that trueth. This made him in love with geometry.
(About Thomas Hobbes by John Aubrey 1626–1697)

64.1 Introduction

We have studied the integral
∫ 1

0

f(x) dx,

where f : [0, 1] → R is a Lipschitz continuous function of one variable. We
call this a one-dimensional integral. We generalize this idea to the double
integral

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2, (64.1)
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which has two integration variables x1 and x2 that run from 0 to 1. Here
f : Q → R is a Lipschitz continuous function defined on the unit square
Q = [0, 1] × [0, 1] = {x = (x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}, satisfying

|f(x) − f(y)| ≤ Lf‖x− y‖ for x, y ∈ Q. (64.2)

64.2 Double Integrals over the Unit Square

Recall that we define the one dimensional integral as

∫ 1

0

f(x) dx = lim
n→∞

N∑

i=1

f(xn
i )hn, (64.3)

where 0 = xn
0 < xn

1 < . . . < xn
N = 1 is a subdivision of the interval [0, 1]

with xn
i = ihn, i = 1, . . . , N and hn = 2−n and N = 2n.

To define the double integral, we let 0 = xn
1,0 < xn

1,1 < . . . < xn
1,N = 1

and 0 = xn
2,0 < xn

2,1 < . . . < xn
2,N = 1 be a subdivisions of the inter-

val [0, 1] with xn
1,i = ihn, i = 0, . . . , N , and xn

2,j = jhn, j = 0, . . . , N ,
where hn = 2−n and N = 2n. This corresponds to a subdivision of the
unit square Q = [0, 1]× [0, 1] into sub-squares Qn

i,j = In
i ×Jn

j of area hnhn,
where In

i = (xn
1,i−1, x

n
1,i] J

n
j = (xn

2,j−1, x
n
2,j ], where i, j = 1, . . . , N , see

Fig. 64.1.

hn

hn

Qnij

hn

Qnmij

hm

Fig. 64.1. Partition of the unit square Q into quadratic or rectangular
sub-domains Qnij or Qnmij

We shall prove that the limit limn→∞ Sn exists, where

Sn =
N∑

i=1

N∑

j=1

f(xn
1,i, x

n
2,j)hnhn (64.4)

is a Riemann sum over all the sub-squares Qn
i,j . We define

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 = lim
n→∞

N∑

i=1

N∑

j=1

f(xn
1,i, x

n
2,j)hnhn. (64.5)
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We begin by estimating the difference Sn−Sn+1 with the goal of proving
that {Sn} is a Cauchy sequence. Each sub-square Qn

i,j consists of the four
sub-squares Qn+1

2i,2j , Q
n+1
2i−1,2j Qn+1

2i,2j−1, and Qn+1
2i−1,2j−1, see Fig. 64.2. We

have

Sn − Sn+1 =
N∑

i=1

N∑

j=1

aijhnhn,

where, see Fig. 64.2,

aij = f(xn
1,i, x

n
2,j) −

1
4
(
f(xn+1

1,2i , x
n+1
2,2j ) + f(xn+1

1,2i−1, x
n+1
2,2j )

+ f(xn+1
1,2i , x

n+1
2,2j−1) + f(xn+1

1,2i−1, x
n+1
2,2j−1)

)
.

(xn+1
2i−1, x

n+1
2j−1) (xn+1

2i−1, x
n+1
2j )

(xn+1
2i−1, x

n+1
2j ) (xn+1

2i , x
n+1
2j )=(xni , x

n
j )

0

0.5

1

1.5

2

2.5

3

Fig. 64.2. On the left: Qnij and four sub-squares and quadrature point. On the
right: A function f(x1, x2) and its piecewise constant approximation on Qnij and
on the four sub-squares

The Lipschitz continuity condition (64.2) implies

|aij | ≤
1
4
Lf

(
hn+1 + hn+1 +

√
2hn+1

)
≤ Lfhn+1,
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and thus

|Sn − Sn+1| ≤
N∑

i=1

N∑

j=1

|aij |hnhn ≤ Lfhn+1

N∑

i=1

N∑

j=1

hnhn = Lfhn+1.

The usual arguments show that for m > n,

|Sn − Sm| ≤ 2Lfhn+1 = Lfhn,

which proves that {Sn} is a Cauchy sequence and thus converges to a real
number. We decide, following our dear friends Leibniz and Cauchy as usual,
to denote this real number by

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 = lim
n→∞

Sn = lim
n→∞

N∑

i=1

N∑

j=1

f(xn
1,i, x

n
2,j)hnhn.

We shall also use the notation
∫

Q

f(x) dx =
∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2.

We summarize as follows:

Theorem 64.1 If f : [0, 1] × [0, 1] → R is Lipschitz continuous, then the
limit

lim
n→∞

N∑

i=1

N∑

j=1

f(xn
1,i, x

n
2,j)hnhn,

exists, where hn = 2−n and N = 2n, xn
1,i = ihn, xn

2,j = jhn, and we define

∫

Q

f(x) dx =
∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 = lim
n→∞

N∑

i=1

N∑

j=1

f(xn
1,i, x

n
2,j)hnhn.

(64.6)

In general, the partitions in x1 and x2 can be independent, leading to
Riemann sums of the form

Snm =
N∑

i=1

M∑

j=1

f(xn
1,i, x

m
2,j)hnhm, (64.7)

where hn = 2−n and N = 2n, hm = 2−m and M = 2m. This corresponds
to a subdivision of Q into sub-squares Qnm

ij = In
i × Jm

j . The proof above
directly generalizes to prove that if n ≥ n and m ≥ m then

|Snm − Snm| ≤ Lf max(hn, hm).

This proves the following generalization of the previous theorem.
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Theorem 64.2 Suppose f : [0, 1] × [0, 1] → R is Lipschitz continuous.
Then the following limit exists

lim
n,m→∞

N∑

i=1

M∑

j=1

f(xn
1,i, x

m
2,j)hnhm,

where hn = 2−n, N = 2n, hm = 2−m, M = 2m, xn
1,i = ihn, xm

2,j = jhm,
and

∫

Q

f(x) dx =
∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 = lim
n,m→∞

N∑

i=1

M∑

j=1

f(xn
1,i, x

m
2,j)hnhm.

(64.8)

64.3 Double Integrals
via One-Dimensional Integration

To compute the Riemann sum Snm, we have to perform a summation over
all the sub-squares Qnm

ij covering Q. The summation may be performed in
different orders, row by row, column by column, or in some other order. We
thus obtain the following alternative expressions for the double integral of
f(x1, x2) over Q:

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 = lim
n,m→∞

N∑

i=1

M∑

j=1

f(xn
1,i, x

m
2,j)hnhm

= lim
n,m→∞

N∑

i=1




M∑

j=1

f(xn
1,i, x

m
2,j)hm



 hn

= lim
n,m→∞

M∑

j=1

(
N∑

i=1

f(xn
1,i, x

m
2,j)hn

)

hm,

where
∑N

i=1

∑M
j=1 indicates an arbitrary order of summation,

∑N
i=1

(∑M
j=1

)

summation column by column, and
∑M

j=1

(∑N
i=1

)
summation row by row

over the subdomains Qnm
ij of Q in the x1x2-plane, see Fig. 64.3

We can also perform the limits with respect to n and m independently,
and we then arrive at the formula
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Fig. 64.3. Different orders of summation

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 = lim
n,m→∞

N∑

i=1

M∑

j=1

f(xn
1,i, x

m
2,j)hnhm

= lim
n→∞

N∑

i=1



 lim
m→∞

M∑

j=1

f(xn
1,i, x

m
2,jhm



 hn

= lim
m→∞

M∑

j=1

(

lim
n→∞

N∑

i=1

f(xn
1,i, x

m
2,jhn

)

hm.

This corresponds to the following formula:
∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 =
∫ 1

0

(∫ 1

0

f(x1, x2) dx2

)

dx1

=
∫ 1

0

(∫ 1

0

f(x1, x2) dx1

)

dx2,

or
∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 =
∫ 1

0

g1(x1) dx1 =
∫ 1

0

g2(x2) dx2,

where

g1(x1) =
∫ 1

0

f(x1, x2) dx2 = lim
m→∞

M∑

j=1

f(x1, x
m
2,j)hm

and

g2(x2) =
∫ 1

0

f(x1, x2) dx1 = lim
n→∞

N∑

i=1

f(xn
1,i, x2)hn

define functions g1(x1) and g2(x2) of x1 and x2 respectively. In other words,
the double integral of f(x1, x2) over [0, 1]×[0, 1] equals the integral of g2(x2)
over [0, 1],

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 =
∫ 1

0

g2(x2)dx2 = lim
n→∞

M∑

j=1

g2(xm
2,j)hm,
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and equals the integral of g1(x1) over [0, 1],

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 =
∫ 1

0

g1(x1)dx1 = lim
n→∞

N∑

i=1

g1(xn
1,i)hn.

We conclude that a double integral can be computed by repeated, or iter-
ated, integration in one dimension. We may summarize this experience as
follows:

Theorem 64.3 If f : [0, 1] × [0, 1] → R is Lipschitz continuous, then

∫

Q

f(x) dx =
∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 =

=
∫ 1

0

(∫ 1

0

f(x1, x2) dx2

)

dx1 =
∫ 1

0

(∫ 1

0

f(x1, x2) dx1

)

dx2.

We can interpret the statement of this theorem as a change of order of
integration in the sense that integrating with respect to x1 and then with
respect to x2 gives the same result as integrating first with respect to x2

and then with respect to x1. The usual way to evaluate a double integral
is to use iterated one-dimensional integration in some order.

Example 64.1.

With Q = [0, 1]× [0, 1],

∫

Q

x1x
3
2 dx =

∫ 1

0

∫ 1

0

x1x
3
2 dx1dx2 =

∫ 1

0

x1

(∫ 1

0

x3
2 dx2

)

dx1

=
∫ 1

0

x1

[
x4

2

4

]1

0

dx1 =
1
4

∫ 1

0

x1dx1 =
1
4

[
x2

1

2

]1

0

=
1
8
.

∫

Q

x1x
3
2 dx =

∫ 1

0

∫ 1

0

x1x
3
2 dx1dx2 =

∫ 1

0

x3
2

(∫ 1

0

x1 dx1

)

dx2

=
∫ 1

0

x3
2

[
x2

1

2

]1

0

dx2 =
1
2

∫ 1

0

x3
2dx2 =

1
2

[
x4

2

4

]1

0

=
1
8
.

Alternatively, we may first integrate with respect to x1 and then with
respect to x2 to get,

∫

Q

x1x
3
2 dx =

∫ 1

0

∫ 1

0

x1x
3
2 dx1dx2 =

∫ 1

0

x3
2

(∫ 1

0

x1 dx1

)

dx2

=
∫ 1

0

x3
2

[
x2

1

2

]1

0

dx2 =
1
2

∫ 1

0

x3
2dx2 =

1
2

[
x4

2

4

]1

0

=
1
8
.
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64.4 Generalization to an Arbitrary Rectangle

The double integral defined on the unit square generalizes directly to inte-
grals over arbitrary rectangles Q = [a1, b1] × [a2, b2] with sides parallel to
the axis. If f : Q→ R is Lipschitz continuous, then

∫

Q

f(x) dx =
∫

Q

f(x1, x2) dx1dx2 =
∫ b1

a1

(∫ b2

a2

f(x1, x2

)
dx

)

dx1

=
∫ b2

a2

(∫ b1

a1

f(x1, x2) dx1

)

dx2.

64.5 Interpreting the Double Integral as a Volume

The sum
N∑

i=1

N∑

j=1

f(xn
1,i, x

n
2,j)hnhn (64.9)

represents the sum of the volumes

f(xn
1,i, x

n
2,j)hnhn (64.10)

of thin boxes with cross-section of area hnhn and height f(xn
1,i, x

n
2,j). Intu-

itively, this is an approximation of the volume under the graph of f(x1, x2)
with (x1, x2) varying overQ. It is thus natural to define the volume V (f,Q)
under the graph of f(x1, x2) over Q to be

V (f,Q) =
∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 (64.11)

Example 64.2. We compute the volume of a pyramid of height 1 with base
[0, 2]×[0, 2], see Fig. 64.4. One quarter of the volume is equal to the integral∫

Q
f(x) dx, where Q = [0, 1]× [0, 1], f(x) = x2 for x ∈ Q such that x2 ≤ x1

and f(x) = x1 for x ∈ Q such that x1 ≤ x2. We have

V (f,Q) =
∫

Q

f(x) dx =
∫ 1

0

(∫ x1

0

x2 dx2 +
∫ 1

x1

x1 dx2

)

dx1

=
∫ 1

0

(TS
f x

2
1

2
+ x1(1 − x1) dx1 =

[
x2

1

2
− x3

1

6

]1

0

=
1
2
− 1

6
=

1
3
.

We conclude that the volume of the pyramid is equal to 4
3 . This agrees

with the standard formula stating that the volume of a pyramid is equal
to 1

3Bh, where B is the area of the base and h is the height.

TS
f Please check parenthesis.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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1
2

x1

x2

Fig. 64.4. Volume of pyramid

64.6 Extension to General Domains

We next define the double integral of a function f(x) over a more general
domain Ω in the plane. We start by assuming that the boundary Γ of Ω is
described by two curves x2 = γ1(x1) and x2 = γ2(x1) for 0 ≤ x1 ≤ 1, as
shown in Fig. 64.5, so that Ω = {x ∈ [0, 1] × R : γ1(x1) ≤ x2 ≤ γ2(x1)}
We assume that the functions γi : [0, 1] → R are Lipschitz continuous with
Lipschitz constant Lγ . We further assume that f : Ω → R is Lipschitz
continuous with Lipschitz constant Lf .

n

x1

x2

Γ

Ω

x2 = γ1(x1)

x2 = γ2(x1)

Fig. 64.5. The domain Ω in the plane

We assume that Ω is contained in the unit square Q. We partition Q as
above into squares In

i × Jn
j of area hnhn, where In

i = (xn
1,i−1, x

n
1,i] J

n
j =

(xn
2,j−1, x

n
2,j ]. We denote by ωn the set of indices (i, j) such that the square

In
i ×Jn

j intersects Ω, and we let Ωn be the union of the squares In
i ×Jn

j with
indices (i, j) ∈ ωn. In other words, Ωn is an approximation of Ω consisting
of all the squares In

i × Jn
j in Q that intersect Ω. We consider the Riemann

sum

Sn =
∑

(i,j)∈ωn

f(xn
1,i, x

n
2,j)hnhn. (64.12)
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We shall prove that limn→∞ Sn exists and then naturally define
∫

Ω

f(x) dx = lim
n→∞

∑

(i,j)∈ωn

f(xn
1,i, x

n
2,j)hnhn. (64.13)

To this end, we estimate the difference Sn−Sn+1, which now has contribu-
tions from two sources; (i) from the variation of f(x) over each sub-square
In
i × Jn

j , and (ii) from the difference between Ωn and Ωn+1.
The first contribution can be shown to be bounded by Lfhn by arguing

just as for integration over a square. The second contribution is bounded
by 2A(1 + Lγ)hn, where A is a bound for |f(x)|, that is |f(x)| ≤ A for
x ∈ Ω. This follows from the observation that if a square In

i × Jn
j of Ωn, is

entirely outside or inside Ω, then so are all the four squares of Ωn+1 within
In
i ×Jn

j . The difference between Ωn and Ωn+1 arises from the squares In
i ×Jn

j

which are partly inside and partly outside Ω. The area of these squares is
bounded by 2Lγhn, where the factor 2 arises from the fact that there are
two curves γ1 and γ2, see Fig. 64.6. The difference in area between Ωn

and Ωn+1 is thus bounded by 2Lγhn.

Γ

Ω

Fig. 64.6. Approximation of integral over general domain

Together, this shows that

|Sn − Sn+1| ≤ (Lf + 2ALγ)hn, (64.14)

which as proves that limn→∞ Sn exists. We summarize as follows:

Theorem 64.4 Let Ω = {x ∈ [0, 1] × R : γ2(x1) ≤ x2 ≤ γ1(x1)}, where
γi : [0, 1] → R are Lipschitz continuous, and let f : Ω → R be Lipschitz
continuous. Then limn→∞ Sn exists, where Sn is the Riemann sum defined
by (64.12), and we define

∫

Ω

f(x) dx =
∫

Ω

f(x1, x2) dx1dx2 = lim
n→∞

Sn. (64.15)
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64.7 Iterated Integrals over General Domains

The integral of a function f(x) over a domain Ω = {x ∈ [0, 1]×R : γ2(x1) ≤
x2 ≤ γ1(x1)} may be computed by iterated integration in one dimension
as follows

∫

Ω

f(x) dx =
∫

Ω

f(x1, x2) dx1 dx2 =
∫ 1

0

(∫ γ1(x1)

γ2(x1)

f(x1, x2) dx2

)

dx1.

(64.16)
This is another way of expressing the fact that,

∫

Ω

f(x) dx = lim
n→∞

∑

(i,j)∈ωn

f(xn
1,i, x

n
2,j)hnhn

= lim
n→∞

N∑

i=1




∑

j:(i,j)∈ωn

f(xn
1,i, x

n
2,j)hn



hn

The role of x1 and x2 may be interchanged and the integral is inde-
pendent of the particular representation of Γ. To handle a more gen-
eral domain Ω, we split Ω into appropriate sub-domains Ωj and define∫
Ω f dx =

∑
j

∫
Ωj
f dx. Again the integral of f over Ω represents the vol-

ume of the domain under the graph of f over Ω.
Evaluation of an integral over a two-dimensional domain by repeated

integration was used by Euler in 1738, when he computed the gravitational
attraction of an elliptic lamina.

Example 64.3. We compute the double integral

I =
∫

Ω

(x2
1 + x2) dx,

over the domain Ω = {x ∈ R
2 : x2

1 ≤ x2 ≤ x1, 0 ≤ x1 ≤ 1}. We have

I =
∫ 1

0

(∫ x1

x2
1

(x2
1 + x2) dx2

)

dx1 =
∫ 1

0

[

x2
1x2 +

x2
2

2

]x1

x2
1

dx1

=
∫ 1

0

(

x3
1 +

x2
1

2
− x4

1 −
x4

1

2

)

dx1 =
1
4

+
1
6
− 1

5
− 1

10
=

7
60
.

Example 64.4. We compute the double integral

I =
∫

Ω

1
x2
dx
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over the domain Ω = {x ∈ R
2 : 1 ≤ x2 ≤ exp(x1), 0 ≤ x1 ≤ 1}. We have

I =
∫ 1

0

(∫ exp(x1)

1

1
x2

dx2

)

dx1 =
∫ 1

0

[log(x2)]
exp(x1)
1 dx1

=
∫ 1

0

x1dx1 =
1
2
.

64.8 The Area of a Two-Dimensional Domain

We define the area A(Ω) of a domain Ω in R
2 by

A(Ω) =
∫

Ω

dx, (64.17)

i.e. by integration of the constant function f(x) = 1 over Ω. If Ω =
{x ∈ [0, 1] × R : γ1(x1) ≤ x2 ≤ γ2(x1)}, then

A(Ω) =
∫ 1

0

(∫ γ1(x1)

γ2(x1)

dx2

)

dx1 =
∫ 1

0

(γ2(x1) − γ1(x1)) dx1,

which conforms with the previous formula of the area between the
curves γ1(x1) and γ1(x1) as the integral of the difference γ2(x1) − γ1(x1).

Example 64.5. The area of the triangle Ω with corners at (0, 0), (1, 0) and
(1, 1), can be computed as follows

A(Ω) =
∫

Ω

dx =
∫ 1

0

(∫ x1

0

dx2

)

dx1 =
∫ 1

0

1
2
dx1 =

1
2
.

64.9 The Integral as the Limit
of a General Riemann Sum

We defined the integral using uniform subdivisions in x1 and x2, resulting
in approximate subdivisions of a given domain Ω in R

2 into squares or
rectangles. We can however use more general subdivisions of Ω. Suppose
that f : Ω → R is a Lipschitz continuous function and that the boundary
of a domain Ω can be made up of pieces of Lipschitz curves x2 = γ(x1)
or x1 = γ(x2). For N = 1, 2, . . ., we divide Ω into a collection {Ωi}N

i=1

of pairwise disjoint sets Ωi such that the union of the Ωi is equal to Ω.
Let dΩi be the area of Ωi and let dN be the maximal diameter of Ωi for
i = 1, . . . , N , see Fig. 64.7. We assume that dN tends to zero as N tends
to infinity.
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x1

x2

Fig. 64.7. Subdivison of general domain

The arguments used above show that

∫

Ω

f(x) dx = lim
N→∞

N∑

i=1

f(xi)dΩi, (64.18)

where xi is a point in Ωi for i = 1, . . . , N . The first step in proving this
result is to use the estimate

|f(x) − f(y)| ≤ LfdN if x, y ∈ Ωi, (64.19)

which implies that the variation of f(x) with x ranging over Ωi is small if the
diameter of Ωi is small. The second step involves the Lipschitz continuity of
the boundary of Ω and the boundedness of f(x). By the way, a byproduct
of the proof of this result is the estimate

∣
∣
∣
∣
∣

∫

Ω

f(x) dx−
N∑

i=1

f(xi)dΩi

∣
∣
∣
∣
∣
≤ LfdNA(Ω), (64.20)

where A(Ω) is the area of Ω.

64.10 Change of Variables in a Double Integral

We next extend the idea of changing variables in a one-dimensional integral
to a two dimensional integral. More precisely, we want to make a change
of variables in an integral

∫

Ω

f(x) dx =
∫

Ω

f(x1, x2) dx1dx2, (64.21)

where Ω is a given domain in R
2 and the integration variable x runs over Ω.

We assume that g : Ω̃ → Ω is a one-to-one mapping of y ∈ Ω̃ onto x = g(y)
in Ω that represents the change of variables. We shall prove that (64.21)
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with respect to x can be rewritten as an integral with respect to y in the
form ∫

Ω

f(x) dx =
∫

Ω̃

f(g(y))G(y) dy, (64.22)

where G(y) is defined as

G(y) = | det g′(y)|.

That is G(y) is the absolute value of the determinant of the Jacobian g′(y)
of g(y). Formally, this gives dx = | det g′(y)| dy or | det g′(y)| = | det dx

dy |, and
| det g′(y)| is the local change of area measure as we go from y-coordinates
to x-coordinates. The change of variable formula can therefore be written

∫

Ω

f(x) dx =
∫

Ω̃

f(g(y))| det g′(y)| dy, (64.23)

To prove this let Ω̃i be a small subdomain of Ω̃ and let Ωi = g(Ω̃i) be the
image of Ω̃i under the mapping x = g(y). If g′(y) were constant over Ω̃i,
and so g(y) were linear on Ω̃i, then

dΩi = | det g′(yi)|dΩ̃i,

where yi is a point in Ω̃i, dΩi is the area of Ωi, and dΩ̃i is the area of Ω̃i.
If {Ω̃i}n

i=1 is a subdivision of Ω̃ into subdomains Ω̃i of maximal diameter dn,
we have

∫

Ω

f(x) dx ≈
∑

i

f(xi)dΩi

≈
∑

i

f(g(yi)| det g′(yi)|dΩ̃i ≈
∫

Ω̃

f(g(y))| det g′(y)| dy,

where xi = g(yi) and the approximations are bounded by dn times Lipschitz
constants of the functions f(x), f(g(y)) and | det g′(y)|. The change of
variables formula (64.23) follows by passing to the limit as n tends to
infinity and dn tends to 0.

We summarize:

Theorem 64.5 (Change of variables) Assume y → x = g(y) maps
a domain Ω̃ in R

2 onto a domain Ω in R
2, where the Jacobian of g is

Lipschitz continuous and let f : Ω → R be Lipschitz continuous. Then
∫

Ω

f(x) dx =
∫

Ω̃

f(g(y))| det g′(y)| dy, (64.24)

Example 64.6. Consider the mapping x = g(y) = (2y1 + y2, y1 − 2y2)
mapping the unit square Ω̃ = [0, 1]×[0, 1] onto the parallelogram Ω spanned
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by the vectors (2, 1) and (1,−2). We have det g′(y) = −5, and thus

∫

Ω

f(x) dx =
∫

Ω̃

f(2y1 + y2, y1 − 2y2) | − 5| dy

= 5
∫ 1

0

∫ 1

0

f(2y1 + y2, y1 − 2y2) dy.

If f(x) = x2 then

∫

Ω

f(x) dx = 5
∫ 1

0

∫ 1

0

(y1 − 2y2) dy = 5
(

1
2
− 1

)

= −5
2
.

Polar Coordinates

A particularly important change of variables is from rectangular coordi-
nates to polar coordinates,

(x1, x2) = (r cos(θ), r sin(θ))

where x = (x1, x2) ∈ R
2 and r ≥ 0, 0 ≤ θ < 2π, see Fig. 64.8.

x1

x2

r
RR

ω

ω

θ x = (r cos(θ), r sin(θ))

Fig. 64.8. Polar coordinates

The Jacobian of the mapping (r, θ) → (x1, x2) is given by

d(x1, x2)
d(r, θ)

=
(

cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)

,

and

det
d(x1, x2)
d(r, θ)

= r(cos2(θ) + sin2(θ)) = r.
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Example 64.7. If Ω = {x ∈ R
2 : |x| ≤ 1, x1 ≥ 0, x2 ≥ 0} is the part of

the unit circle in the positive quadrant, then the corresponding domain in
polar coordinates takes the from Ω̃ = {(r, θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ π

2 }, and

∫

Ω

f(x1, x2) dx1dx2 =
∫

Ω̃

f(r cos(θ, r sin(θ)) rdr dθ.

In particular with f(x) = 1, we have

A(Ω) =
∫

Ω

dx1dx2 =
∫

Ω̃

rdr dθ

=
∫ π

2

0

∫ 1

0

r dr dθ =
∫ π

2

0

1
2
dθ =

π

4
.

We have now computed the area of a quarter of a unit disc to be equal to
π
4 , so the area of a unit disc is π. A basic result of mathematics!

Example 64.8. Using polar coordinates, we have

∫

R2
e−x2

1−x2
2 dx =

∫ 2π

0

∫ ∞

0

e−r2
r dr dθ = 2π

[

−1
2
e−r2

]∞

0

= π.

Since
∫

R2
e−x2

1−x2
2 dx =

∫ ∞

−∞
e−x2

1 dx1

∫ ∞

−∞
e−x2

2 dx2,

we conclude that ∫ ∞

−∞
e−x2

dx =
√
π. (64.25)

Evidently, we did something magical: although we do not know a prim-
itive function to e−x2

we are able to obtain an analytic expression for∫∞
−∞ e−x2

dx.

Chapter 64 Problems

64.1. Compute with Ω = [0, 1] × [0, 1] the unit square the integrals
(a)

∫
Ω
(x1 + x2) dx (b)

∫
Ω
x1x2 dx (c)

∫
Ω

dx
x1+x2

(d)
∫
Ω

exp(−x1x2) dx

64.2. Compute with Ω = {(x1, x2) : 0 ≤ x1 ≤ x2 ≤ 1} the integrals (a)
∫
Ω
x1
x2
dx

(b)
∫
Ω

exp2x2 dx (c)
∫
Ω

expx
2
2 dx
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64.3. Change the order of integration in the following integrals

1.
∫ 1

1/2

∫ 1−x1
0

f(x1, x2) dx2dx1

2.
∫ 1

0

∫√1−x2
1

0 f(x1, x2) dx2dx1

3.
∫ 1

0

∫ 0

x2−1
f(x1, x2) dx1dx2

4.
∫ 1

0

∫ 1+x1
1−x1

f(x1, x2) dx2dx1

64.4. Evaluate the following integrals:

1.
∫
Ω
(x2

1 + 2x3
2) dx, with Ω a triangle with vertices (0, 0), (1, 0), (0, 1).

2.
∫
Ω
x2

1x2 dx, with Ω = {x ∈ R
2 : x2

1 + x2
2 ≤ 1, 0 ≤ x2}.TS

g

3.
∫
Ω
(x1+x2)dx, with Ω the tetrahedron with vertices (0, 0), (1, 0), (2, 1), (2, 2).

4.
∫
Ω
|1 − x1 − x2| dx, with Ω the unit square.

64.5. Find the volume under the graph of the following functions

1. f(x) = ex1 cos(x2), 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ π
2
.

2. f(x) = x2
1e

−x1−x2 , 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 2.

3. f(x) = x2
1x2, 0 ≤ x1 ≤ 1, x1 + 1 ≤ x2 ≤ x1 + 2.

4. f(x) =
√
x2

1 − x2
2, x

2
1 − x2

2 ≥ 0, 0 ≤ x1 ≤ 1.

64.6. A cylindrical hole of radius b is drilled symmetrically through a metal
sphere of radius a > b. Find the volume of metal removed.

64.7. Evaluate

∫

Ω

(

1 − x2
1

a2
1

− x2
2

a2
2

)3/2

dx

where Ω is the ellipse
{
x ∈ R

2 :
x2
1
a21

+
x2
2
a22

≤ 1
}
.

64.8. Evaluate
∫

Ω

x1 + x2

x2
1

ex1+x2 dx,

where Ω = {x ∈ R
2 : x2 ≤ x1 ≤ 2 − x2, 0 ≤ x2 ≤ 1}. Hint: Use the substitution

y1 = x1 + x2, y2 = x2
x1

.

64.9. Compute the area of one petal of the rose 0 ≤ r ≤ 3 sin(θ) (polar coordi-
nates).

64.10. Compute the area within the cardoid r = 1 + cos(θ).

TS
g I put the right brace to the left in this equation.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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64.11. Compute the following double integrals:

1.
∫
Ω
x1 exp(x1x2) dx, for Ω = {x : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 2},

2.
∫
Ω
x1x2 exp(x1 + x2) dx, for Ω = {x : 1 ≤ x1 ≤ 2 ≤ x2 ≤ 3},

3.
∫
Ω
x dx, for Ω = {x : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}.

64.12. Compute the following double integrals:

1.
∫
Ω

exp(−x1) dx, for Ω = {x : 0 ≤ x1 ≤ 1, |x2| ≤ x1},
2.

∫
Ω
x1x2‖x‖ dx, for Ω = {x : 0 ≤ x1 ≤ 1, 1 ≤ x2 ≤ 2},

3.
∫
Ω

x1
1+x2

dx, for Ω = {x : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1 − x1}.

64.13. Compute the following double integrals by changing variables:

1.
∫
Ω
‖x‖2 dx, for Ω = {x : x2

1 + x2
2 − 2x1 − 2x2 ≤ 0},

2.
∫
Ω
x1x2 dx, for Ω = {x : 3x2

1 + x2
2 − 2x1 ≤ 0},

3.
∫
Ω

exp(−‖x‖2) dx, for Ω = R
2.



65
Surface Integrals

King Karl XII of Sweden (1682–1717) had an extraordinary talent for
mathematics. He was by Swedenborg (the great Swedish Universal
Genius, 1688–1772) considered equal if not better than Leibniz him-
self. King Karl XII could easily multiply large numbers without pen
and paper, and proposed 64 as the right choice of basis of the natural
numbers. Over night he constructed symbols and gave names to all
the digits 0, 1, . . . , 62, 63. (from The History of Sweden, by Herman
Lindquist).

65.1 Introduction

Previously, in Chapter Curve integrals we defined the notion of an integral
computed over a curve or a curve integral. In this chapter, we use the same
ideas to define an integral over a surface or a surface integral. We start with
the surface integral representing surface area.

65.2 Surface Area

Let S be a surface in R
3 parameterized by the mapping s : Ω → R

3,
where Ω is a domain in R

2 with coordinates y = (y1, y2) ∈ R
2, so that

s = s(y) = (s1(y), s2(y), s3(y)). We define the area A(S) of the surface S
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as the following integral over the parameter domain Ω,

A(S) =
∫

Ω

‖s′,1 × s′,2‖ dy, (65.1)

where

s′,1 =






∂s1
∂y1
∂s2
∂y1
∂s3
∂y1




 , s′,2 =










∂s1
∂y2
∂s2
∂y2
∂s3
∂y2










,

are the columns of the Jacobian

s′ =










∂s1
∂y1

∂s1
∂y2

∂s2
∂y1

∂s2
∂y2

∂s3
∂y1

∂s3
∂y2










.

Note all the coefficients are functions of y ∈ Ω.
To motivate this definition, recall that the linearization of the mapping

s : Ω → R
3 at ȳ is given by

y → ŝ(y) = s(ȳ) + (y1 − ȳ1)s′,1(ȳ) + (y2 − ȳ2)s′,2(ȳ).

Consider a small square R(ȳ, h) = [ȳ1, ȳ1 + h] × [ȳ2, ȳ2 + h] in Ω of side
length h and area h2 with lower left-hand corner at the point ȳ ∈ Ω. Here,
we think of h as small. The linearization ŝ(y) maps the square R(ȳ, h) into
a small parallelogram P (s(ȳ), h) in the tangent plane of S through s(ȳ)
spanned by the two vectors s′,1(ȳ) and s′,2(ȳ), with one of the corners of the
parallelogram at s(ȳ). Recall now from Chapter Analytic Geometry in R

2

that the area of a parallelogram spanned by two vectors a and b in R
2 is

equal to ‖a× b‖. So, the area of P (s(ȳ), h) is equal to

‖s′,1(ȳ) × s′,2(ȳ)‖h2.

The change of scale of area is thus ‖s′,1(ȳ)× s′,1(ȳ)‖. A small piece (square)
of area h2 at ȳ ∈ Ω in the parameter domain, thus corresponds to a small
piece of the surface S at s(ȳ) of area approximately ‖s′,1(ȳ) × s′,2(ȳ)‖h2,
where the approximation improves as h gets smaller.

Summing over all little pieces and letting h tend to zero, we are led to
define the area A(S) of the surface S by (65.1), which we write as

A(S) =
∫

Ω

‖s′,1(y) × s′,2(y)‖ dy =
∫

Ω

‖s′,1 × s′,2‖ dy =
∫

S

ds.
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y1

y2

x1

x2

x3

s′1
s′2

s′(y)

Fig. 65.1. The surface area scale

We thus write ds = ‖s′,1 × s′,2‖ dy, which expresses the change of scale. Of
course, we assume that ‖s′,1×s′,2‖ is Lipschitz continuous to guarantee that
the integral exists.

Example 65.1. Consider the surface S of a sphere of radius one centered
at the origin. We describe this using spherical coordinates,

x = s(y1, y2) = (sin(y2) cos(y1), sin(y2) sin(y1), cos(y2))	,

where 0 ≤ y1 < 2π, 0 ≤ y2 < π, see Fig. 66.3. We have

s′,1 = (− sin(y2) sin(y1), sin(y2) cos(y1), 0)	,

s′,2 = (cos(y2) cos(y1), cos(y2) sin(y1),− sin(y2))	,
(65.2)

and thus by a direct computation ‖s′‖ = sin(y2). We compute

A(S) =
∫ 2π

0

∫ π

0

sin(y2) dy2 dy1 =
∫ 2π

0

2 dy1 = 4π,

and thus conclude that the surface area of a sphere of radius 1 is equal to
4π.

Example 65.2. We compute the area A(S) of the surface S given by
s(y1, y2) = (2y1y2, y2

1 , 2y
2
2) with 0 ≤ y1, y2 ≤ 1. We have

s′(y) = (2y2, 2y1, 0) × (2y1, 0, 4y2) = 4(2y1y2,−2y2
2,−y2

1)

so that ‖s′(y)‖ = 4(y2
1 + 2y2

2), and thus

A(S) =
∫ 1

0

∫ 1

0

4(y2
1 + 2y2

2) dy1dy2 = 4
(

1
3

+
2
3

)

= 4.
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65.3 The Surface Area of a the Graph
of a Function of Two Variables

In the case S is given as the graph of a function f : Ω → R, so that
s(y1, y2) = (y1, y2, f(y1, y2)), then

A(S) =
∫

S

ds =
∫

Ω

‖s′,1 × s′,2‖ dy =
∫

Ω

√
1 + f2

,1 + f2
,2 dy1dy2, (65.3)

where f,i denotes the partial derivative of f with respect to yi. This follows
from

s′,1 × s′,2 = (1, 0, f,1) × (0, 1, f,2) = (−f,1,−f,2,, 1).

Example 65.3. The surface S of a hemisphere of radius 1 and centered at
the origin is given by s(y1, y2) = (y1, y2,

√
1 − y2

1 − y2
2) with y ∈ Ω = {y ∈

R
2 : y2

1 + y2
2 ≤ 1}. We have

A(S) =
∫

Ω

√
1 + f2

,1 + f2
,2 dy1dy2 =

∫

Ω

1
√

1 − y2
1 − y2

2

dy

=
∫ 2π

0

∫ 1

0

1√
1 − r2

r dr dθ = 2π
[
−
√

1 − r2
]1

0
= 2π.

(65.4)

We retrieve the above result that the surface area of a sphere of radius 1
is equal to 4π.

65.4 Surfaces of Revolution

Surfaces of revolution occur in many practical applications. To generate
a surface of revolution, we let f : [a, b] → R be a given positive function
and consider the surface S represented by

s(x1, x2) = (x1, f(x1) cos(x2), f(x1) sin(x2)),

with a ≤ x1 ≤ b and 0 ≤ x2 < 2π, see Fig. 65.2. We use (x1, x2) as reference
coordinates instead of (y1, y2). We have

s′,1 × s′,2 =(1, f ′(x1) cos(x2), f ′(x1) sin(x2))×
(0,−f(x1) sin(θ), f(x1) cos(θ))

and thus by a direct computation

‖s′,1 × s′,2‖ = f(x1)
√

1 + (f ′(x1))2. (65.5)
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The area A(S) of S is given by:

A(S) =
∫ 2π

0

∫ b

a

f(x1)
√

1 + (f ′(x1))2 dx1dθ

= 2π
∫ b

a

f(x1)
√

1 + (f ′(x1))2 dx1. (65.6)

x1

x2

x3

b

√
x2

2 + x2
3 = r = f(x1)

Fig. 65.2. A surface of revolution

Example 65.4. Consider the surface S of a parabolic reflector obtained by
rotating the curve f(x1) =

√
x1 around the x1-axis between x1 = 0 and

x1 = 1. We have

A(S) = 2π
∫ 1

0

√
x1

√

1 +
1

4x1
dx1 = π

∫ 1

0

√
4x1 + 1 dx1 =

π

6
(53/2 − 1).

65.5 Independence of Parameterization

We shall prove that if t : Ω̃ → Ω is a one-to-one mapping of η ∈ Ω̃ ⊂ R
2

onto y = t(η) ∈ Ω, and r(η) = s(t(η)) maps Ω̃ onto S, then
∫

S

ds =
∫

Ω̃

‖r′,1 × r′,2‖ dη =
∫

Ω

‖s′,1 × s′,2‖ dy. (65.7)

This shows that the surface area of the surface S is independent of the
parametrization of S.

We need to show that with y = t(η), we have

‖r′,1(η) × r′,2(η)‖ = ‖s′,1(y) × s′,2(y)‖ | det t′(η)|, (65.8)

where | det t′| is the determinant of the Jacobian t′(η) of t(η). This follows
after a lengthy computation that starts with differentiating r(η) = s(t(η))
using the Chain rule.
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65.6 Surface Integrals

Let S = s(Ω) be a surface in R
3 parameterized by the mapping s : Ω → R

3,
where Ω is a domain in R

2, and let u : S → R be a real-valued function
defined on S. We assume that u, s and ‖s′,1×s′,2‖ are Lipschitz continuous.
We define the integral of u over S to be

∫

S

u ds =
∫

Ω

u(s(y))‖s′,1(y) × s′,2(y)‖ dy. (65.9)

Example 65.5. Let S = s(Ω) be the “dome” given by s(y1, y2) = (y1, y2, 1−
y2
1 − y2

2) and Ω = {y ∈ R
2 : y2

1 + y2
2 ≤ 1}, and u(x) = (5x2

1 + 5x2
2 + x3)1/2,

so that u(s(y)) = (5y2
1 + 5y2

2 + 1 − y2
1 − y2

2)
1/2 = (1 + 4y2

1 + 4y2
2)

1/2. We
compute

‖s′,1(y) × s′,2(y)‖ = ‖(1, 0,−2y1) × (0, 1,−2y2)‖ = (1 + 4y2
1 + 4y2

2)
1/2,

and get using polar coordinates:
∫

S

u ds =
∫

Ω

u(s(y))‖s′,1(y) × s′,2(y)‖ dy

=
∫

Ω

(1 + 4y2
1 + 4y2

2)
1/2(1 + 4y2

1 + 4y2
2)

1/2 dy

= 2π
∫ 1

0

(1 + 4r2)r dr =
3
2
.

x1

x2

x3

y1

y2

y = t(η)

x = s(y) = s(t(η)) = r(η)

η

η1

η2

Ω
Ω̃

Fig. 65.3. Reparametrization r(η) = s(t(η)) of a surface given by s(y)
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65.7 Moment of Inertia of a Thin Spherical Shell

The moment of inertia of a thin sphere S = {‖x‖ = 1} of (uniformly
distributed) total mass m about the x3-axis, is equal to

I =
m

4π

∫

S

(x2
1 + x2

2) ds. (65.10)

If the sphere rotates with angular speed ω around the x3 axis, then the
total kinetic energy is equal to

E =
1
2
m

4π

∫

S

ω2(x2
1 + x2

2) ds =
1
2
ω2I. (65.11)

Using spherical coordinates to compute gives

I =
2m
3
. (65.12)

Chapter 65 Problems

65.1. (a) Verify that ‖s′,1(y) × s′,2(y)‖ = sin(y2) in (65.2). (b) Verify (65.5).
(c) Prove (65.8).

65.2. Determine which famous building is defined by the MATLAB� code given
below, and compute the surface area of its roof.

r=0:.1:1;
v=0:pi/20:2*pi;
[R,V]=meshgrid(r,v);
surf(10*cos(V),10*sin(V),R.*(5+cos(V).ˆ 2-sin(V).ˆ 2))
hold on
surf(10*R.*cos(V),10*R.*sin(V),5+(R.*cos(V)).ˆ 2-(R.*sin(V)).ˆ 2)
hold off
axis(’equal’)

65.3. Another famous building. What does it take to repaint it?

w=0:pi/20:3*pi/4;
v=0:pi/20:2*pi;
[W,V]=meshgrid(w,v);
h=surf(sin(W).*cos(V),sin(W).*sin(V),cos(W));
set(h,’FaceColor’,[1 1 1])
axis(’equal’)
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65.4. Motivate (65.11), and prove (65.12).

65.5. (a) Consider the surface S = {x : x = y1a+ y2b + (1 − y1 − y2)c, y ∈ T},
where a, b, c ∈ R

3 and T = {y ∈ R
2 : y1 + y2 ≤ 1, yi ≥ 0, i = 1, 2}. Give

a geometric description of S and compute its area.
(b) Find a parametrization of the form x = My+b of the (flat) triangular surface
S with corners in (1, 0, 0), (0, 0, 3) and (0, 3,−9), with parameter domain T as in
(a), where b is a 3-vector and M a 3-by-2 matrix.
(b) Compute the area of S. Does the area depend on b? Interpret!
(c) Compute

∫
S
(x1 + 2x2) dS

65.6. Compute (a)
∫
S
dS (b)

∫
S
f(x) dS where S = {x : x = My, y ∈ Q}, Q

is the unit square in R
2 and M is the 3-by-2 matrix with columns (1, 0, 1)� and

(0, 1, 2)�, and f(x) = x3. Also, plot the surface S and interpret (a) as the area
of S. Compare the computation of (a) with the method for computing the area
of a parallelogram using the cross product in Linear algebra.

65.7. Compute (a)
∫
S
dS (b)

∫
S
x2 dS where S = {x : x = y1(1− y2)(1, 0, 0) +

(1 − y1)(1 − y2)(1, 2, 0) + (1 − y1)y2(0, 1, 1) + y1y2(0, 0, 3), 0 ≤ yi ≤ 1,
i = 1, 2}. Plot the surface and describe its geometry.

65.8. Compute (a)
∫
S
dS (b)

∫
S
x1x2 dS where S = {(y1, y2, y1y2) : 0 ≤ yi ≤ 1,

i = 1, 2}.

65.9. Consider for given r > 0 and h > 0 the surface

S = {x : x = (r cos(v), r sin(v), z), 0 ≤ v ≤ 2π, 0 ≤ z ≤ h}.

(a) Give a geometrical description of S, and give corresponding parameterizations
of the surfaces (b) S = {x ∈ R

3 : x2
2 + x2

3 = 4, |x1| ≤ 5} (c) S = {x ∈ R
3 :

x2
2 + 4x2

3 = 4, 0 ≤ x1 ≤ x2
2 + x2

3}.

65.10. Compute
∫
S
(x1+x2+x3) dS where S= {(x1, x2, x3) : x1 = y1 cos(y2), x2 =

y1 sin(y2), x3 = y1(cos(y2) + sin(y2))}.

65.11. Compute
∫
S
(x1, x2, x3) · nds if S is the boundary of Ω = {x : x1 + x2 +

x3 ≤ 1, xi ≥ 0, i = 1, 2, 3}.

65.12. Compute
∫
S

(x1,x2,x3)

‖x‖2 · n dS for the cylindrical shell S = {x ∈ R
3 :

x2
1 + x2

2 = 1,−a ≤ x3 ≤ a}, and the corresponding limit as a→ ∞.

65.13. Compute the moment of inertia of the cylindrical shell S = {x ∈ R
3 :

x2
1 + x2

2 = 1,−1 ≤ x3 ≤ 1} with respect to the x1-axis.

65.14. Compute
∫
S
(x1, 0, x3) · ndS where S = {(y1 + y2, y

2
1 − y2

2 , y1y2) :
0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1}, and n is the normal to S with n3 < 0.
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65.15. Compute the area of the torus (donut) in R
3 given by

s(y1, y2) =
(
(a+ b cos(y2)) cos(y1), (a+ b cos(y2)) sin(y1), b sin(y2)

)

with a > b constants and 0 ≤ y1, y2 < 2π.

65.16. Plot and compute the area of the surface S = {(r cos(v), r sin(v), v) :
1 ≤ r ≤ 2, 0 ≤ v ≤ 4π}. In what type of buildings can one find constructions like
this?

65.17. Describe/plot the surfaces (of rotation, if you wish) (a) x2
1 +x2

2 =x2
3, x3>0

(b) 5 + x2
1 + x2

2 = x2
3 ≤ 9, x3 > 0 and compute its area.





66
Multiple Integrals

We met weekly, (sometimes at Dr Goddard’s lodgings, sometimes at
the Mitre in Wood Street near-by) at a certain hour, under a certain
penalty, and a weekly contribution for the charge of experiments,
with certain rules agreed among us. There, to avoid being diverted
to other discourses and for some other reasons, we barred all discus-
sion of Divinity, of State Affairs, and of news (other than what con-
cerned our business of philosophy) confining ourselves to philosoph-
ical inquiries, and related topics; as medicine, anatomy, geometry,
astronomy, navigation, statics, mechanics, and natural experiments.
(Wallis about the formation of the Royal Society)

66.1 Introduction

We now consider triple integrals over domains in R
3 and more generally

multiple integrals over domains in R
n with n > 3.

66.2 Triple Integrals over the Unit Cube

A triple integral over the unit cube Q = {x ∈ R
3 : 0 ≤ xi ≤ 1, i = 1, 2, 3}

of a Lipschitz continuous function f : Q→ R takes the form

∫

Q

f(x) dx =
∫ 1

0

∫ 1

0

∫ 1

0

f(x1, x2, x3) dx1 dx2 dx3.
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This can be computed by iterated integration in any order, for example,
∫

Q

f(x) dx =
∫ 1

0

(∫ 1

0

(∫ 1

0

f(x1, x2, x3) dx3

)

dx2

)

dx1.

The definition of the integral and the verification of the iterated integration
formula is a direct generalization of the corresponding steps in the case of
a double integral over the unit square.

Example 66.1. We compute the integral of x2
1x2e

x1x2x3 over the unit cube
Q,

∫

Q

x2
1x2e

x1x2x3 dx =
∫ 1

0

∫ 1

0

(∫ 1

0

x2
1x2e

x1x2x3 dx3

)

dx1dx2

=
∫ 1

0

∫ 1

0

[
x1e

x1x2x3

]x3=1

x3=0
dx1dx2 =

∫ 1

0

∫ 1

0

x1(ex1x2 − 1) dx1dx2.

which leaves a double integral that we know how to handle.

66.3 Triple Integrals over General Domains in R
3

Let Ω = {x ∈ R
3 : γ2(x1, x2) ≤ x3 ≤ γ1(x1, x2), (x1, x2) ∈ ω}, where ω

is a domain in R
2 and γ1 : ω → R and γ2 : ω → R are given functions of

(x1, x2), see Fig. 66.1. Let f : Ω → R Lipschitz continuous. We define the
triple integral of f(x) over Ω by

∫

Ω

f(x) dx =
∫

ω

(∫ γ1(x1,x2)

γ2(x1,x2)

f(x1, x2, x3) dx3

)

dx1dx2

via iterated integration first with respect to x3 and then with respect to
(x1, x2) ∈ ω.

Expanding the double integral over ω into two one-dimensional integrals,
assuming ω = {(x1, x2, x3) : α2 ≤ x1 ≤ α1, β2(x1) ≤ x2 ≤ β1(x1)}, we
have

∫

Ω

f(x) dx =
∫ α1

α2

(∫ β1(x1)

β2(x1)

(∫ γ1(x1,x2)

γ2(x1,x2)

f(x) dx3

)

dx2

)

dx1

=
∫ α1

α2

(∫

ω(x1)

f(x1, x2, x3) dx2dx3

)

dx1,

where ω(x1) = {(x2, x3) : β2(x1) ≤ x2 ≤ β1(x1), γ2(x1, x2) ≤ x3 ≤
γ1(x1, x2)} is the cross-section of the domain Ω with a plane with fixed
x1-coordinate. This way of splitting a triple integral into an one-dimensional
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x1

x2

x3

ω

x3 = γ1(x1, x2)

x3 = γ2(x1, x2)

Fig. 66.1. Integration over a volume by first integrating in the x3-direction

integral of double integrals over domain cross-sections corresponds to cut-
ting a piece of bread or ham into slices.

We may define triple integrals similarly for more general domains by
dividing the domain suitably into pieces.

66.4 The Volume of a Three-Dimensional Domain

We define the volume V (Ω) of a domain Ω in R
3 as

V (Ω) =
∫

Ω

dx,

i.e. by integrating f(x) = 1 over x ∈ Ω. If Ω = {x ∈ [0, 1] × [0, 1] × R :
γ2(x1, x2) ≤ x3 ≤ γ1(x1, x2)}, then

V (Ω) =
∫ 1

0

∫ 1

0

(∫ γ1(x1,x2)

γ2(x1,x2)

dx3

)

dx1dx2

=
∫ 1

0

∫ 1

0

(γ1(x1) − γ2(x1)) dx1 dx2,

which conforms to the previous formula of the volume between the sur-
faces γ1(x1, x2) and γ2(x1, x2) as the integral of the difference γ1(x1, x2)−
γ2(x1, x2).

Example 66.2. The volume of the pyramid Ω with corners at (0, 0, 0),
(1, 0, 0), (0, 1, 0), and (0, 0, 1) described as {x ∈ R

3 : 0 ≤ x1 + x2 + x3 ≤
1, x1x2, x3 ≥ 0}, can be computed with ω = {(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤
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x2 ≤ 1 − x1} as follows

V (Ω) =
∫

ω

(∫ 1−x1−x2

0

dx3

)

dx1dx2 =
∫

Ω

dx

=
∫ 1

0

(∫ 1−x1

0

(∫ 1−x1−x2

0

dx3

)

dx2

)

dx1

=
∫ 1

0

(∫ 1−x1

0

(1 − x1 − x2) dx2

)

dx1 =
∫ 1

0

(1 − x1)2/2 dx1 =
1
6
,

which agrees with the earlier computation giving the volume of a pyramid
as 1

3Bh, where B is the area of the base and h the height, see Fig. 66.2.

x1

x2

x3

1

1

1

x2 = 1 − x1

x3 = 1 − x1 − x2

Fig. 66.2. Integration over a pyramid

66.5 Triple Integrals as Limits of Riemann Sums

We may also define integrals over domains in R
3 as limits of Riemann sums

∫

Ω

f(x) dx = lim
N→∞

N∑

i=1

f(xi)dΩi, (66.1)

where {Ωi}N
i=1 is a subdivision of the given domain Ω into pieces Ωi with

volume V (Ωi) ≤ dN and quadrature points xi ∈ Ωi, where dN tends to 0
as N tends to infinity. The error estimate (64.20) for double integrals gen-
eralizes directly to three dimensions.
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66.6 Change of Variables in a Triple Integral

We next prove an analog of the change of variable formula for two dimen-
sional integrals. We thus want to make a change of variables in an integral

∫

Ω

f(x) dx =
∫

Ω

f(x1, x2, x3) dx1dx2dx3, (66.2)

where Ω is a given domain in R
3 and the integration variable x runs over Ω.

If g : Ω̃ → Ω is a one-to-one mapping of y ∈ Ω̃ onto x = g(y) in Ω, we have
the following change of variables formula

∫

Ω

f(x) dx =
∫

Ω̃

f(g(y))| det g′(y)| dy, (66.3)

where | det g′(y)| is the modulus of the determinant of the Jacobian g′(y)
of g(y). Formally, we write dx = | det g′(y)|dy or | det g′(y)| = | det dx

dy |, and
| det g′(y)| is the local change of volume measure as we go from y-coordinates
to x-coordinates.

To prove this, let Ω̃i be a small subdomain of Ω̃ and let Ωi = g(Ω̃i) be the
image of Ω̃i under the mapping x = g(y). If g′(y) were constant and g(y)
were linear over Ω̃i, then

dΩi = |g′(yi)|dΩ̃i, (66.4)

where yi is a point in Ω̃i, dΩi is the area of Ωi, and dΩ̃i is the area of Ω̃i.
Thus,

∫

Ω

f(x) dx ≈
∑

i

f(xi)dΩi

≈
∑

i

f(g(yi)| det g′(yi)|dΩ̃i ≈
∫

Ω̃

f(g(y))| det g′(y)| dy,

where xi = g(yi) and {Ω̃i}N
i=1 is a subdivision of Ω̃ of maximal diameter dN .

Assuming now that f(x), f(g(y)) and | det g′(y)| are Lipschitz continuous,
the formula (66.3) follows by passing to the limit as dN tends to 0.

Spherical Coordinates

As a particular important change of variables, we consider spherical coor-
dinates,

(x1, x2, x3) = (r sin(ϕ) cos(θ), r sin(ϕ) sin(θ), r cos(ϕ)),

where x = (x1, x2, x3) ∈ R
3 and r ≥ 0, 0 ≤ θ < 2π, 0 ≤ ϕ < π, see

Fig. 66.3.
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x1

x2

x3

θ

ϕ

x = (r sin(ϕ) cos(θ), r sin(ϕ) sin(θ), r cos(ϕ))

Fig. 66.3. Spherical coordinates

The Jacobian of the mapping (r, θ, ϕ) → (x1, x2, x3) is equal to

d(x1, x2, x3)
d(r, θ, ϕ)

=




sin(ϕ) cos(θ) −r sin(ϕ) sin(θ) r cos(ϕ) cos(θ)
sin(ϕ) sin(θ) r sin(ϕ) cos(θ) r cos(ϕ) sin(θ)

cos(ϕ) 0 −r sin(ϕ)





and by a direct computation
∣
∣
∣
∣det

d(x1, x2, x3)
d(r, θ, ϕ)

∣
∣
∣
∣ = r2 sin(ϕ). (66.5)

The change of variables formula from Cartesian x-coordinates to spher-
ical coordinates takes the form

∫

Ω

f(x) dx

=
∫

Ω̃

f
(
r sin(ϕ) cos(θ), r sin(ϕ) sin(θ), r cos(ϕ)

)
r2 sin(ϕ) dr dθ dϕ,

where it is understood that Ω̃ is a subdomain of {(r, θ, ϕ) : 0 ≤ r, 0 ≤ θ ≤
2π, 0 ≤ ϕ ≤ π}, so that (r, θ, ϕ) → x is a one-to-one mapping of Ω̃ onto Ω.

Example 66.3. The unit ball B = {x ∈ R
3 : |x| ≤ 1, } is described in

spherical coordinates as B̃ = {(r, θ, ϕ) : 0 ≤ r ≤ 1, 0 ≤ θ < 2π, 0 ≤ ϕ < π}.
The volume V (B) of B is given by

B =
∫

B

dx =
∫

B̃

dr dθ dϕ =
∫ π

0

∫ 2π

0

∫ 1

0

r2 sin(ϕ) dr dθ dϕ

=
∫ π

0

sin(ϕ) dϕ
∫ 2π

0

dθ

∫ 1

0

r2 dr = 2 · 2π 1
3

=
4π
3
.
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Note the way the triple integral splits into a product of three one-dimen-
sional integrals because the limits of integration are fixed numbers in all
the coordinate directions and the function to be integrated is a product of
functions of the individual variables.

We have shown that the volume of the unit ball in R
3 to be equal to 4π

3 .
Another basic result of Calculus!

66.7 Solids of Revolution

To generate a solid of revolution, we let f : [a, b] → R be a given (posi-
tive) function and consider the body B in R

3 represented by s(x1, r, θ) =
(x1, r cos(θ), r sin(θ)) with a ≤ x1 ≤ b, 0 ≤ θ < 2π and 0 ≤ r ≤ f(x1), see
Fig. 66.4. We have

d(x1, x2, x3)
d(x1, r, θ)

=




1 0 0
0 cos(θ) sin(θ)
0 −r sin(θ) r cos(θ)





and thus by a direct computation
∣
∣
∣
∣det

d(x1, x2, x3)
d(x1, r, θ)

∣
∣
∣
∣ = r.

The coordinate system (x1, r, θ) is an example of so called cylindrical co-
ordinates suitable for data with rotational symmetry.

The volume V (B) of B is given by:

V (B) =
∫ 2π

0

∫ b

a

∫ f(x1)

0

r drdx1dθ = π

∫ b

a

f2(x1) dx1. (66.6)

Example 66.4. Consider the body B obtained by rotating the parabola
f(x1) =

√
x1 around the x1-axis between x1 = 0 and x1 = 1. We have

V (B) = π

∫ 1

0

x1 dx1 =
π

2
.

Example 66.5. The center of mass x̄ of a body B of revolution obtained
rotating a curve f(x1) around the x1-axis from x1 = a to x1 = b is given
by x̄2 = x̄3 = 0 (rotational symmetry) and

x̄1 =
π

V (B)

∫ b

a

x1f
2(x1) dx1.
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x1

x2

x3

b

√
x2

2 + x2
3 = r = f(x1)

Fig. 66.4. A solid of revolution

66.8 Moment of Inertia of a Ball

The moment of inertia about the x3-axis of the ball B = {‖x‖ = 1} of
(uniformly distributed) total mass m, is equal to

I =
m

V (B)

∫

B

(x2
1 + x2

2) dx. (66.7)

If the ball rotates with angular speed ω around the x3 axis, then the total
kinetic energy is equal to

E =
1
2

m

V (B)

∫

B

ω2(x2
1 + x2

2) dx =
1
2
ω2I. (66.8)

Using spherical coordinates gives

I =
2m
5
. (66.9)

Chapter 66 Problems

66.1. Motivate (66.8) and prove (66.9).

66.2. Verify (66.5).

66.3. Compute the following triple integrals:

1.
∫
Ω
‖x‖2 dx, for Ω = {x ∈ R

3 : 0 ≤ xi ≤ 1, i = 1, 2, 3},
2.

∫
Ω

exp(x1+x2+x3) dx, for Ω = {x ∈ R
3 : 0 ≤ xi ≤ 1, i = 1, 2, x3 ≤ x1+x2},

3.
∫
Ω

1/‖x‖2 dx, for Ω = {x ∈ R
3 : 1 ≤ ‖x‖ ≤ 2}.
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x1

x1

x2

x2

x3
x3

(1, 0, 0)(0, 1, 0)

(0, 1, 0)

(0, 0, 1)(0, 1, 1)
(1, 1, 1)

66.4. Compute with domains Ω as in Fig. 66.4
∫
Ω
(1 − x2) dx.

66.5. Compute for Ω = {(x1, x2, x3) : x2
1 + x2

2 ≤ 1, |x3| ≤ 1}

1.
∫
Ω

dx
‖x‖2

2. The moment of inertia of Ω with respect to the x3-axis.

3. The moment of inertia of Ω with respect to the x2-axis.

66.6. Compute the following multiple integrals:

1.
∫
Ω

exp(−‖x‖)
‖x‖ dx, for Ω = {x ∈ R

3 : ‖x‖ > 1},

2.
∫
Ω
x1 + x2 + x3 + x4 dx, for Ω = {x ∈ R

4 : 0 ≤ xi ≤ 1, i = 1, 2, 3, 4},
3.

∫
Ω
x1 + . . .+ xn dx, for Ω = {x ∈ R

n : 0 ≤ xi ≤ 1, i = 1, . . . , n}.

66.7. Compute the following multiple integrals:

1.
∫
Ω
x dx,

2.
∫
Ω
‖x‖ dx,

3.
∫
Ω
‖x‖2 dx,

where Ω = {x ∈ R
3 : ‖x‖ ≤ 1}.

66.8. Try to generalize the result in the previous exercise to R
n, denoting the

area of the unit sphere, {x ∈ R
n : ‖x‖ = 1}, by Sn.

66.9. Compute the integral
∫

R2 exp(−‖x‖2) dx and use the result to compute∫
Rn exp(−‖x‖2) dx.

66.10. Find the moment of inertia of a unit cube with respect to its diagonal.

66.11. Let Ey be the domain in R
n where the absolute value of f : R

n → R

is larger than y, i.e. Ey = {x ∈ R
n : |f(x)| > y}, and let g(y) be the volume

(size, measure) of this domain, i.e. g(y) =
∫
Ey
dx. Show, by changing the order

of integration, that ∫

Rn

|f(x)| dx =

∫ ∞

0

g(y) dy.





67
Gauss’ Theorem and Green’s Formula
in R

2

Mathematics at its best: it looks impressive (incomprehensible), but
is trivial for anyone who understands the notation. (R. Reagan)

67.1 Introduction

We now turn to two of the corner stones of calculus in several dimen-
sions, namely Gauss’ theorem and Green’s formula, beginning with two
dimensions. We shall see that these famous (and useful) results are direct
consequences of the fundamental formula,

∫

Ω

∂u

∂x2
dx =

∫

Γ

un2 ds, (67.1)

where Ω is a domain in R
2 with boundary Γ and n(x) = (n1(x), n2(x)) is

the outward unit normal to Γ at x ∈ Γ, that is n(x) is orthogonal to the
tangent to Γ at x and points out of Ω and ‖n(x)‖ = 1, see Fig. 67.2. We
shall see that this formula is an analog of the Fundamental Theorem

∫ b

a

du

dx
dx = u(b) − u(a), (67.2)

stating that the integral over an interval [a, b] of the derivative du
dx of a func-

tion u is equal to the difference between the end-point values u(b) and u(a).
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67.2 The Special Case of a Square

To see the connection between (67.1) and (67.2), we first assume that Ω
is the unit square [0, 1] × [0, 1]. In this case n2 = 1 on the top Γ1 of the
square and n2 = −1 on the bottom Γ3, and n2 = 0 on the vertical sides Γ2

and Γ4, see Fig. 67.2. Therefore,
∫

Γ

un2 ds =
∫ 1

0

u(x1, 1) dx1 −
∫ 1

0

u(x1, 0) dx1

if we parameterize Γ1 by s(x1) = (x1, 1) and Γ3 by s(x1) = (x1, 0). On the
other hand, integrating first with respect to x2 and then with respect to x1

and using (67.2), we have

∫

Ω

∂u

∂x2
dx =

∫ 1

0

(∫ 1

0

∂u

∂x2
(x1, x2) dx2

)

dx1 =
∫ 1

0

(
u(x1, 1) − u(x1, 0)) dx1

=
∫ 1

0

u(x1, 1) dx1 −
∫ 1

0

u(x1, 0) dx1 =
∫

Γ

un2 ds,

which proves (67.1) when Ω is a square. We see that (67.1) results from
using (67.2) with du

dx dx replaced by ∂u
∂x2

dx2, followed by an integration with
respect to x1. The net result is that the integral of ∂u

∂x2
dx2 over Ω is replaced

by a curve integral of un2 over the boundary Γ of Ω.

n

Ω

Γ
Γ1

Γ2

Γ3

Γ4
n = (1, 0)

n = (0, −1)

n = (−1, 0)

n = (0, −1)

Fig. 67.1. To the left: A domain Ω with boundary Γ and normal n. To the right:
A special case

67.3 The General Case

We now consider a domain Ω bounded by two curves Γ1 parameterized by
s1(x1) = (x1, γ1(x1)) and Γ2 parameterized by s2(x1) = (x1, γ2(x1)) with
a ≤ x1 ≤ b, and n = (n1, n2) is the outward normal to Γ, see Fig. 67.2.
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x1

x2

Ω

Γ

n

x2 = γ1(x1)

x2 = γ2(x1)

Fig. 67.2. A domain Ω with two curves defining the boundary Γ

The proof of (67.1) depends on the key observation that

∥
∥
∥
∥
ds1
dx1

∥
∥
∥
∥ =

√
1 + (γ′1)2, n2 =

1
√

1 + (γ′1)2
,

∥
∥
∥
∥
ds2
dx1

∥
∥
∥
∥ =

√
1 + (γ′2)2, n2 = − 1

√
1 + (γ′2)2

.

Formally, n2ds1 = dx1 and n2ds2 = −dx1, see Fig. 67.3.

n
n2

dx1

dx1 = n2 ds

ds‖n‖ = 1

Fig. 67.3. The key observation that dx1
ds

= n2
1

by similarity

Note that n2 is positive on the upper boundary curve s1 and negative
on the lower boundary curve s2. We thus have

∫

Γ1

un2 ds1 =
∫ b

a

u(x1, γ1(x1))n2

∥
∥
∥
∥
ds1
dx1

∥
∥
∥
∥ dx1 =

∫ b

a

u(x1, γ1(x1)) dx1,

∫

Γ2

un2 ds2 =
∫ b

a

u(x1, γ2(x1))n2

∥
∥
∥
∥
ds2
dx1

∥
∥
∥
∥ dx1 = −

∫ b

a

u(x1, γ1(x1)) dx1.
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Secondly, integrating first with respect to x2 and then with respect to x1

and using the Fundamental Theorem, we see that

∫

Ω

∂u

∂x2
dx =

∫

Ω

∂u

∂x2
dx2 dx1 =

∫ b

a

(∫ γ1(x1)

γ2(x1)

∂u

∂x2
dx2

)

dx1

=
∫ b

a

u(x1, γ1(x1)) dx1 −
∫ b

a

u(x1, γ2(x1)) dx1.

Since
∫

Γ

un2 ds =
∫

Γ1

un2 ds1 +
∫

Γ2

un2 ds2,

the desired formula (67.1) now follows. The proof generalizes to arbitrary
domains bounded by smooth curves with Lipschitz continuous tangents.
We summarize in the following basic theorem:

Theorem 67.1 If Ω is a domain in R
2 with boundary Γ with outward unit

normal (n1, n2) and u : Ω → R is differentiable, then
∫

Ω

∂u

∂xi
dx =

∫

Γ

uni ds, i = 1, 2. (67.3)

Applying (67.3) to the product vw of two functions v and w, we obtain
the following analog of integration by parts in two dimensions:

Theorem 67.2 (Integration by parts in 2d) If Ω is a domain in R
2

with boundary Γ with outward unit normal (n1, n2) and v, w : Ω → R, then
∫

Ω

∂v

∂xi
w dx =

∫

Γ

vw ni ds−
∫

Ω

v
∂w

∂xi
dx, i = 1, 2. (67.4)

Applying (67.3) to the components ui of a vector valued function u =
(u1, u2) and summing over i = 1, 2, we obtain the Divergence theorem, or
Gauss’ theorem ∫

Ω

∇ · u dx =
∫

Γ

u · n ds, (67.5)

where u · n = u1n1 + u2n2 and

∇ · u =
(

∂

∂x1
,
∂

∂x2

)

· (u1, u2) =
∂u1

∂x1
+
∂u2

∂x2
.

Applying (67.4) with w replaced by ∂w
∂xi

and summing over i = 1, 2, we
obtain Green’s formula:

∫

Ω

∇v · ∇w dx =
∫

Γ

v∂nw ds−
∫

Ω

v∆w dx, (67.6)
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where

∂nw = ∇w · n =
∂w

∂x1
n1 +

∂w

∂x2
n2, (67.7)

is the outward normal derivative of w on Γ. We often use Green’s formula
in the form

∫

Ω

v∆w dx−
∫

Ω

∆v w dx =
∫

Γ

v ∂nw ds−
∫

Γ

∂nv w ds, (67.8)

which results after applying (67.6) twice and using

∆w = div gradw = ∇ · ∇w

=
(

∂

∂x1
,
∂

∂x2

)

·
(
∂w

∂x1
,
∂w

∂x2

)

=
∂

∂x1

(
∂w

∂x1

)

+
∂

∂x2

(
∂w

∂x2

)

,

which can be written succinctly as ∆w = ∂2w
∂x2

1
+ ∂2w

∂x2
2
.

We also note the following analog of the Divergence theorem:
∫

Ω

∇× u dx =
∫

Γ

n× u ds, (67.9)

where u : Ω → R
2 and ∇× u = ∂u2

∂x1
− ∂u1

∂x2
, and n× u = u2n1 − u1n2. This

is just a restatement of
∫

Ω

(
∂u2

∂x1
− ∂u1

∂x2

)

dx =
∫

Γ

(
u2n1 − u1n2

)
ds (67.10)

and therefore follows from (67.3). We further note that τ = (−n2, n1) is
a unit tangent to Γ, since n = (n1, n2) is a unit normal and (−n2, n1) ·
(n1, n2) = 0, and τ = (−n2, n1) is directed in the counter-clockwise direc-
tion of Γ, see Fig. 67.4.

n

Ω

Γ

τ

Fig. 67.4. The unit tangent τ = (−n2, n1) to Γ expressed in terms of the normal
n = (n1, n2)
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We often write
∫

Γ

u2n1 − u1n2 ds =
∫

Γ

u · τ ds =
∫

Γ

u · ds,

interpreting ds in the last integral as the vector τds with the old use of ds
as the element of curve length. This is consistent with the notation

∫

Γ

u · ds =
∫ b

a

u(s(t)) · s′(t) dt,

where s : [a, b] → R
2 represents Γ, which was introduced in Chapter Curve

Integrals. Caution: we here use “ds” with two different interpretations: as
the element of curve length (a scalar), and as an element of the tangent
vector (a vector).

We summarize the basic results derived in this chapter as follows:

Theorem 67.3 If Ω is a domain in R
2 with boundary Γ with outward unit

normal (n1, n2), and u : Ω → R
2 and v, w : Ω → R, then

∫

Ω

∂v

∂xi
dx =

∫

Γ

v ni ds, i = 1, 2, (67.11)

∫

Ω

∂v

∂xi
w dx =

∫

Γ

vw ni ds−
∫

Ω

v
∂w

∂xi
dx, i = 1, 2, (67.12)

∫

Ω

∇ · u dx =
∫

Γ

u · n ds, (67.13)

∫

Ω

∇× u dx =
∫

Γ

n× u ds =
∫

Γ

u · ds, (67.14)

∫

Ω

∇v · ∇w dx =
∫

Γ

v∂nw ds−
∫

Ω

v∆w dx, (67.15)

∫

Ω

v∆w dx−
∫

Ω

∆v w dx =
∫

Γ

v ∂nw ds−
∫

Γ

∂nv w ds. (67.16)

Example 67.1. For u(x1, x2) = x1 and i = 1 in (67.11), we obtain
∫
Ω
dx =∫

Γ x1n1 ds =
∫
Γ x1 dx2. An interesting observation from this is that you may

compute the area
∫
Ω
dx, for example of a piece of land, simply by walking

its boundary and computing
∫
Γ x1 dx2. The planetometer is a mechanical

devise for computing the area of plane domains built on this principle,
which has been used extensively by Surveyors.

Example 67.2. If ∇×u = 0 in the domain Ω between two curves Γ1 and Γ2

that both start at the point a and end at the point b, then
∫
Γ1
u · ds =

∫
Γ2
u · ds, where ds is the vector tangential to the curves in the direction

from a to b of length equal to the element of curve length. This follows from
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the fact that
∫
Γ1∪Γ−

2
u ·ds =

∫
Γ
u ·ds = 0, by (67.14), where Γ−

2 denotes the
curve Γ2 with the direction of ds reversed. We conclude that curve integrals
of a field u = (u1, u2) with ∇ × u = 0, that is of an irrotational field, is
independent of the particular “path” of the curve from a to b. The integral
of u · ds only depends on the two end-points a and b of the integration.
Fields u = (u1, u2) of this type are called conservative. As we shall see
below, such fields are given by a potential, that is, they are the gradient
field of some scalar potential ϕ = ϕ(x) so u = ∇ϕ.

Furthermore,
∫

γ u ·ds = ϕ(b)−ϕ(a) for a curve γ from a to b. For example,
the field u = (x2, x1) has u1(x1, x2) = x2 and u2(x1, x2) = x1 and thus
∇u = ∂u2

∂x1
− ∂u1

∂x2
= 1− 1 = 0. We find easily that u = ∇ϕ for ϕ(x) = x1x2,

and the integral of u · ds from a point a = (a1, a2) to b = (b1, b2) is given
by b1b2 − a1a2.

Chapter 67 Problems

67.1. Derive (67.4), (67.5), (67.6) and (67.8) from (67.3).

67.2. (a) Explain why (67.1) is valid also for a domain like {(x1, x2) : x1 ≤
|x2|, x2

1 + x2
2 ≤ 1}. (b) Verify by direct computation of

∫
Ω

∂u
∂x2

dx and
∫
Γ
un2 ds

that (67.1) is valid for u = r1/4 sin(v/4) and Ω = {(r cos(v), r sin(v)) : 0 <
r < 1, 0 < v < 2π}, where r =

√
x2

1 + x2
2 and v = arccot(x1/x2) for x2 > 0,

v = arccot(x1/x2) + π for x2 < 0 are the usual polar coordinates. Recall that by
the chain rule you may express ∂u

∂x2
in terms of ∂u

∂r
and ∂u

∂v
if you like.

67.3. Assume u = (u1, u2) is divergence free in Ω with boundary Γ. What can
be said about (a)

∫
Γ
u · nds, (b) u(x) · n(x) for points x on Γ.

67.4. Assume
∫
Γ
u · n ds = 0, where Γ is the boundary of a domain Ω with

exterior unit normal n. What can be said about ∇ · u in Ω? (Before you give
a too definite answer you may want to consider for example the case u = (x2

1, x
2
2)

with Ω the unit disc.) Assume
∫
γ
u ·nds = 0 for all closed curves γ in Ω, and the

derivatives of ui are Lipschitz. What can then be said about u in Ω?

67.5. Consider a “deformation” of R
2 where the points x = (x1, x2) are displaced

to new positions x+u(x), u = (u1, u2), ui = ui(x). We call u(x) the displacement
field and the Jacobian u′(x) of u(x) the deformation tensor (matrix). Consider for
simplicity the case ui(x) = aixi, i = 1, 2, and assume the displacement is “area
preserving”, corresponding to “incompressibility” of the deformed material. Show
that for small deformations, one has div u ≈ 0. Hint: Consider x → x + u(x) as
a change of variables and use an established fact about the Jacobian of area
preserving maps.

67.6. Consider the vector field u(x) = x/‖x‖2. Let Ω be the disc {x ∈ R
2 :

‖x−a‖ ≤ 1}, and Γ its boundary with exterior unit normal n. Compute
∫
Γ
u ·nds
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for a = (2, 0) and a = 0. Do the results conform with the Divergence theorem?
Make an “arrow plot” of u in the (x1, x2)-plane. Can you see a connection the
eruption of a volcano? Does the Divergence theorem apply in the case a = (0, 0)?

67.7. Show that if ∇ · u = 0 and Γ and Γ̄ are curves with normals n and n̄ as in
Fig. 67.7, then

∫
Γ
u · nds =

∫
Γ̄
u · n̄ ds.

n
Gamma

barGamma

barn

67.8. For u =
(

2x1x2
1+x2

2
,− log(1 + x2

2)
)

and Γ the curve (a) {(x1, x2) : x2
1+x2

2 = 1,

xi ≥ 0, i = 1, 2} (b) {(x1, x2) : x1 = 2 − (x2 − 1)2, x1 ≥ 1}, compute
∫
Γ
u · nds.

Hint: Close the curves and use the Divergence theorem.

67.9. Show that the field u = ex1x2(1 + x1x2, x
2
1) is irrotational, and find a po-

tential ϕ such that u = ∇ϕ.

67.10. Evaluate the integrals in (67.16) for w a solution to the differential
equation −∆w = f in Ω = R

2 and v = − 1
2π

log(x − x̄), assuming w and ∂nw
vanish for ‖x‖ large. Show that this gives a formula for w(x̄) in terms of f and v.
Hint: Take Ω = {x ∈ R

2 : ‖x− x̄‖ > ε} and let ε tend to zero.

67.11. Letw be the solution to−∆w = f in the upper half planex2 > 0,− ∂w
∂x2

= g
for x2 = 0, and assume w and ∇w vanish for ‖x‖ large. Show that for x̄ = (x̄1, 0)
on Γ = {(x1, x2) : x2 = 0}, one has 1

2
w(x̄) =

∫
{x:x2>0} vf dx +

∫
{x:x2=0} vg ds,

where v = − 1
2π

log(x − x̄). Hint: Take Ω = {x ∈ R
2 : x2 > 0, ‖x − x̄‖ > ε}

in (67.16), and let ε tend to zero.

67.12. Show that for harmonic functions v and w, that is with ∆v = 0 and
∆w = 0, one has

∫
Γ
∂nvw ds =

∫
Γ
v∂nw ds for a closed curve Γ.

67.13. Find the area of the domain enclosed by the curve

Γ = {(r cos(v), r sin(v)) : r = 2 + sin(v), 0 ≤ v < 2π}.
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Hint: Integrals of the form
∫

sin4(v) dv and
∫

cos4(v) dv may be computed using
integration by parts, as follows:

I =

∫

cos4(v) dv =

∫

(1 − sin2(v)) cos(v) · cos(v) dv = {int. by parts}

=

(

sin(v) − 1

3
sin3(v)

)

· cos(v) −
∫ (

sin(v) − 1

3
sin3(v)

)

(− sin(v)) dv

=

(

sin(v) − 1

3
sin3(v)

)

· cos(v) +

∫

sin2(v) dv − 1

3

∫

(1 − cos2(v))2 dv

=

(

sin(v) − 1

3
sin3(v)

)

cos(v) +

∫

sin2(v) dv − 1

3

∫

(1 − 2 cos2(v)) dv − 1

3
I,

from which I can be computed.





68
Gauss’ Theorem and Green’s Formula
in R

3

Of those who with me have written something about these matters,
either I alone am mad, or I alone am not mad. No third option can
be maintained, unless (as perchance it may seem to some) we are all
mad. (Hobbes to Wallis)

If he is mad, he is not likely to be convinced by reason; on the other
hand, if we be mad, we are in no position to attempt it.
(Wallis to Hobbes)

We now extend the results of the previous chapter to three dimensions.
The basic result is the following analog of (67.1): If Ω is a domain in R

3

with boundary Γ, then
∫

Ω

∂u

∂x3
dx =

∫

Γ

un3 ds, (68.1)

where (n1, n2, n3) is the outward normal to Γ. To prove this, we assume
that Γ is composed of the two surfaces Γ1 given by s1(x1, x2) =
(x1, x2, γ1(x1, x2)) and Γ2 given by s2(x1, x2) = (x1, x2, γ2(x1, x2)), where
(x1, x2) ∈ ω and the parameter domain ω is a domain in R

2, and we as-
sume that Ω = {x ∈ R

3 : (x1, x2) ∈ ω, γ2(x1, x2) < x3 < γ1(x1, x2)}, see
Fig. 68.1. We have s′i,1 × s′i,2 = (1, 0, γi,1) × (0, 1, γi,2) for i = 1, 2, where
γi,j = ∂γi

∂xj
, and thus on Γ1

‖s′1,1 × s′1,2‖ =
√

1 + (γ′1,1)2 + (γ′1,2)2, n3 =
1

√
1 + (γ′1,1)2 + (γ′1,2)2
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and on Γ2

‖s′2,1 × s′2,2‖ =
√

1 + (γ′2,1)2 + (γ′2,2)2, n3 = − 1
√

1 + (γ′2,1)2 + (γ′2,2)2
.

x3

x3=gamma2(x1,x2)

x3=gamma1(x1,x2)

omega
x1

x2

Fig. 68.1. A domain Ω bounded by two graphs Γ1 and Γ2

Integrating first with respect to x3 and using the Fundamental Theorem
we get

∫

Ω

∂u

∂x3
dx =

∫

Ω

∂u

∂x3
dx3dx1dx2

=
∫

ω

u(x1, x2, γ1(x1, x2)) dx1dx2 −
∫

ω

u(x1, x2, γ2(x1, x2)) dx1dx2

=
∫

ω

un3‖s′1,1 × s′1,2‖dx1dx2 +
∫

ω

un3‖s′2,1 × s′2,2‖dx1dx2

=
∫

Γ1

un3 ds+
∫

Γ2

un3 ds =
∫

Γ

un3 ds,

which proves (68.1). Note that n3 = 0 on the “vertical” parts of Γ! This
result generalizes to

∫

Ω

∂u

∂xi
dx =

∫

Γ

uni ds, i = 1, 2, 3, (68.2)

for a general domain Ω in R
3 with boundary Γ with outward unit normal

(n1, n2, n3).
Applying (68.2) to the product vw of two functions v and w, we obtain

the analog of integration by parts in three dimensions,

∫

Ω

∂v

∂xi
w dx =

∫

Γ

vw ni ds−
∫

Ω

v
∂w

∂xi
dx, i = 1, 2, 3. (68.3)



68. Gauss’ Theorem and Green’s Formula in R
3 959

Applying (68.3) to the components ui of a vector valued function
u = (u1, u2, u3) with w = 1 and summing over i, we obtain the Diver-
gence theorem, or Gauss’ theorem in three dimensions

∫

Ω

∇ · u dx =
∫

Γ

u · n ds, (68.4)

where ∇ · u = ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

) · (u1, u2, u3) = ∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

=
∑3

i=1
∂ui

∂xi
,

and u · n = u1n1 + u2n2 + u3n3 is the component of u in the direction of
the normal n. If u represents a flux of some quantity, like heat flux or water
flux, then u(x) · n(x) at a point x ∈ Γ represents the flux through Γ (out
of Ω), or normal flux, and thus

∫

Γ

u · n ds

represents the total flux through Γ.
We also directly obtain the following analog of Gauss’ theorem for a func-

tion u : Ω → R
3: ∫

Ω

∇× u dx =
∫

Γ

n× u ds, (68.5)

which is now a vector equation!!
Another consequence of (68.3) is Green’s formula:

∫

Ω

∇v · ∇w dx =
∫

Γ

v∂nw ds−
∫

Ω

v∆w dx, (68.6)

where ∂nv = ∇v · n = ∂v
∂x1

n1 + ∂v
∂x2

n2 + ∂v
∂x3

n3 is the outward normal

derivative of v on Γ, and now ∆w = ∂2w
∂x2

1
+ ∂2w

∂x2
2

+ ∂2w
∂x2

3
. We often use

Green’s formula in the form
∫

Ω

v∆w dx−
∫

Ω

∆v w dx =
∫

Γ

v ∂nw ds−
∫

Γ

∂nv w ds, (68.7)

which results after applying (68.6) twice.
We summarize the basic results derived in this chapter as follows:

Theorem 68.1 If Ω is a domain in R
3 with boundary Γ with outward unit

normal n = (n1, n2, n3), and u : Ω → R
3 and v, w : Ω → R, then

∫

Ω

∂v

∂xi
dx =

∫

Γ

v ni ds, i = 1, 2. (68.8)

∫

Ω

∂v

∂xi
w dx =

∫

Γ

vw ni ds−
∫

Ω

v
∂w

∂xi
dx, i = 1, 2. (68.9)

∫

Ω

∇ · u dx =
∫

Γ

u · n ds (68.10)
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∫

Ω

∇× u dx =
∫

Γ

n× u ds, (68.11)

∫

Ω

∇v · ∇w dx =
∫

Γ

v∂nw ds−
∫

Ω

v∆w dx, (68.12)

∫

Ω

v∆w dx−
∫

Ω

∆v w dx =
∫

Γ

v ∂nw ds−
∫

Γ

∂nv w ds. (68.13)

Example 68.1. We compute the total flow of the vector field u(x) = (x1 +
x5

2, x2 + x3x1, x3 + x1x2) out of the boundary S of the unit ball B = {x ∈
R

3 : ‖x‖ = 1}, that is the integral,
∫

S

u · n ds =
∫

S

((x1 + x5
2)x1 + (x2 + x3x1)x2 + (x3 + x1x2)x3) ds, (68.14)

where we used that the outward unit normal n to S at x ∈ S is given
by n(x) = x. Since div u(x) = 3 for x ∈ R

3, we have by Gauss’s theorem
∫

S

u · n ds =
∫

B

3 dx = 3V (B) = 4π,

which gives a quick way of computing the quite difficult integral (68.14).

68.1 George Green (1793–1841)

George Green, a millers son and self-taught mathematician (he left school
at age 9 after two years of study), published 1827 on his own “An Essay
on the Application of Mathematical Analysis to the Theories of Electric-
ity and Magnetism” introducing in particular so-called Green’s functions
forming the basis of the modern theory of partial differential equations. His
importance in mathematics was only recognized after his death in the work
by in particular Maxwell on electromagnetics.

Chapter 68 Problems

68.1. Write out and verify (68.5) from (68.2).

68.2. (a) Prove Green’s formula (68.6) using (68.3). (b) Prove (68.13).

68.3. Compute the integral
∫
Γ

x
‖x‖3 · nds, where Γ = {x ∈ R

3 : x2
1 + x2

2 +

(x3 − ja)2 = a2} for a > 0 and j = 0, 1, 2, respectively, where n is the exterior
unit normal to Γ. Interpret the results.

68.4. Compute the integral
∫
Γ

1
x2
1+x2

2

(−x2,x1)

x2
1+x2

2
× ds, where Γ = {x ∈ R

3 : x2
1 +

x2
2 + x3 = 1}.
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68.5. Let Γ be the unit sphere in R
3 with exterior unit normal n and compute

the following integrals:

1.
∫
Γ
x · nds,

2.
∫
Γ
x× nds,

3.
∫
Γ

1
‖x‖2

x
‖x‖ · nds,

4.
∫
Γ

1
‖x‖2

x
‖x‖ × nds.

68.6. Verify that for a radial field F (x) = ‖x‖α x
‖x‖ one has div F = (α+ 2)‖x‖.

68.7. What is the smallest possible value of the integral
∫
Γ
F · nds, where

F (x) = (x1x
2
2 − 4x1x2, 4x2x

2
3 + 8x2x3 + 5x2, x

2
1x3 − 2x1x3) and Γ is a closed

surface in R
3, and n its exterior unit normal? Hint: Enclose all the “sinks” of F ,

that is, consider the domain where div F ≤ 0.

68.8. Compute the surface integral
∫
Γ
F · nds, where

F (x) = (x2
2, x1x2(cos(x1))2 + x1x3

2 + exp(cos(x1x2
3)), x1x3(sin(x1))2 − 3x1x2

2x3),

and Γ is the part of the sphere ‖x‖ = 2 with positive x3-coordinate, and n
its normal with also positive x3-component. Hint: The function F is chosen
seemingly difficult only to confuse you.

68.9. Let {x1, x2, . . . , xN} be a set of points in R
n, and let

F (x) =
N∑

j=1

1

4π‖x− xj‖2

x− xj
‖x− xj‖

.

Compute the surface integral
∫
Γ
F ·n ds for any closed surface Γ containing k ≤ N

of the points {x1, x2, . . . , xN}, with n the exterior unit normal as usual.

68.10. Show, as you did in Chapter Newton’s Nightmare, that the gravitation
from a sphere is the same as if all the mass of the sphere was concentrated to its
center, but now using Gauss’ theorem to make things easier. Use as starting point
that the divergence of the gravitational field is (proportional to) the density, i.e.

∇ · F = ρ/c

for some constant c, and assume spherical symmetry, i.e. the direction of the
gravitational field is in the radial direction from the center of the sphere.

68.11. Show that if −∆u = f in Ω, then for any function v that is zero on Γ,
the boundary of Ω, one has

∫

Ω

∇u · ∇v =

∫

Ω

fv.

Also prove that if ∂nu = g on Γ, then for all functions v,
∫

Ω

∇u · ∇v =

∫

Ω

fv +

∫

Γ

gv ds.
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Stokes’ Theorem

I too feel that I have been thinking too much of late, but in a dif-
ferent way, my head running on divergent series, the discontinuity of
arbitrary constants, . . . I often thought that you would do me good
by keeping me from being too engrossed by those things. (Stokes
asking Mary Susanna Robinson to marry him 1857)

69.1 Introduction

Stokes’ theorem states that if u : R
3 → R

3 is differentiable, then
∫

S

(∇× u) · n ds =
∫

Γ

u · ds , (69.1)

where S is a surface in R
3 bounded by a closed curve Γ, n is a unit nor-

mal to S, and Γ is oriented in a clockwise direction following the positive
direction of the normal n, see Fig. 69.1. The integral

∫

Γ

u · ds

is called the circulation of u around Γ. The integral
∫

S

(∇× u) · n ds
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Fig. 69.1. A Stokes surface S with boundary curve Γ

Fig. 69.2. Stokes at age 22: “After taking my degree I continued to reside in
College and took private pupils. I thought I would try my hand at original re-
search . . . ”
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is the total flow of the rotation ∇×u across the surface S. Stokes’ theorem
states that the total flow of ∇× u across S is equal to the circulation of u
around the boundary Γ of S.

Stokes (1819–1903), an Irish mathematician/physicist and professor in
Cambridge 1849, gave basic contributions to the theory of viscous fluid flow
modeled by the Navier-Stokes equations, see Fig. 69.2.

69.2 The Special Case of a Surface in a Plane

We start by considering the special case of a plane surface S̄ in the plane
{x ∈ R

3 : x3 = 0} with normal n̄ = (0, 0, 1) and with boundary Γ, see
Fig. 69.3. In this case, Stokes’ theorem takes the form

∫

S̄

(∇× u) · n̄ ds =
∫

S̄

(
∂u2

∂x1
− ∂u1

∂x2

)

dx1 dx2

=
∫

Γ

u · ds =
∫

Γ

(u2n1 − u1n2) ds. (69.2)

By identifying the plane {x3 = 0} with R
2, this is (67.10) and is a direct

consequence of (67.3). This result is often referred to as Green’s formula
in two dimensions. We have thus proved Stokes’ theorem in the case of
a plane surface S in the plane {x3 = 0}.

Fig. 69.3. Two special cases: A plane surface S̄ with normal n̄ and boundary
curve Γ, and a curved surface S with normal n and a plane boundary curve Γ

Note that the unit tangent direction is given by τ = (−ñ2, ñ1), where ñ =
(ñ1, ñ2) is the outward normal direction to Γ in the plane {x : x3 = 0} with
a counter clockwise orientation when viewed from the top of the normal
n̄ = (0, 0, 1) of S̄. The orientation is consistent with the specification that τ
should be oriented clockwise when following the direction of the normal
to S̄.



966 69. Stokes’ Theorem

Example 69.1. Let S = {x ∈ R
3 : ‖x‖ ≤ 1, x3 = 0} be the unit

disc in the plane {x3 = 0} bounded by the curve Γ parameterized by
s(t) = (cos(t), sin(t), 0), 0 ≤ t ≤ 2π. Choose n = (0, 0, 1) and let u(x) =
(−x2, x1, 0) so that ∇× u(x) = (0, 0, 2). We compute

∫

S

(∇× u) ds = 2π,
∫

Γ

u · ds =
∫ 2π

0

(cos2(t) + sin2(t))dt = 2π,

in accordance with Stokes’ theorem.

Example 69.2. Ampere’s law states the ∇×H = J , whereH is the magnetic
field and J the electric current. Stokes’ theorem states that the circulation
of H around a closed curve Γ bounding a surface S is equal to the total
current through the surface S. Stokes’ theorem is thus one of the corner-
stones of electromagnetic field theory.

69.3 Generalization to an Arbitrary Plane Surface

We shall now verify that both the left and right hand side of Stokes’ equality
∫

S

(∇× u) · n ds =
∫

Γ

u · ds ,

are invariant under orthogonal coordinate transformations. We thus obtain
a proof of Stokes’ theorem for a given plane surface S through the origin,
by choosing coordinates so that S lies in the plane {x3 = 0}, and using the
proof of the previous section. The case of a surface S not passing through
the origin is reduced to the previous case by a simple translation of the
origin of the coordinate system.

To prove the invariance, let x = Qx̄ be an orthogonal coordinate trans-
formation with Q an orthogonal 3 × 3 matrix from a set of coordinates x̄
to x. The dependent vector variable u also transforms as u = Qū, where u
are the components in x-coordinates and ū the coordinates of the same
quantity in x̄-coordinates. We have a similar relation between the elements
of integration ds = s′(t)dt and ds̄ = s̄′(t)dt in the different coordinates
since s′(t) = Qs̄′(t), that is ds = Qds̄. Therefore,

∫

Γ

u · ds =
∫

Γ

Qū ·Qds̄ =
∫

Γ

Q	Qū · ds̄ =
∫

Γ

ū · ds̄,

and the invariance of the right hand side of (69.1) follows.
To prove the invariance of the left hand side of (69.1), we use the Chain

rule to obtain the following relation between the gradient ∇ with respect
to x and the gradient ∇̄ with respect to x̄,

∇ = Q∇̄.
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A direct computation shows that

(∇× u) · n = (Q∇̄ ×Qū) ·Qn̄ = (∇̄ × ū) · n̄, (69.3)

which proves the invariance since dx̄ = dx. Note that (69.3) is analogous
to the the relation

(Qa×Qb) ·Qc = (a× b) · c

for a, b, c ∈ R
3. This expresses the invariance of the volume spanned by

three vectors a, b and c under orthogonal coordinate transformations.

69.4 Generalization to a Surface Bounded
by a Plane Curve

Suppose that S is a surface bounded by a curve Γ contained in the plane
{x3 = 0}, see Fig. 69.3. We do not assume that S is contained in {x3 = 0}.
Let S̄ be the surface in the plane {x3 = 0} with the boundary Γ and let Ω
be the volume bounded by the surface S and the plane surface S̄. Since
∇ · (∇× u) = 0, the Divergence theorem implies

0 =
∫

Ω

∇ · (∇× u) dx =
∫

S

∇× u · n ds+
∫

S̄

∇× u · n ds, (69.4)

where n is the outward unit normal to the boundary ∂Ω of Ω. If n is
a normal to S and n̄ = −n is a normal to S̄, then (69.4) implies

∫

S

∇× u · n ds =
∫

S̄

∇× u · n̄ ds.

Applying Stokes’ theorem to S̄, we obtain
∫

S

∇× u · n ds =
∫

S̄

∇× u · n̄ ds =
∫

Γ

u · ds,

which proves Stokes’ theorem for the surface S bounded by the plane
curve Γ.

A proof of Stokes’ theorem for the case of a general curve is outlined in
Problem 69.1. We now summarize:

Theorem 69.1 (Stokes’ theorem). If S is a surface in R
3 with unit

normal n, and Γ is the boundary of S oriented clockwise following the
direction of n, then

∫

S

(∇× u) · n ds =
∫

Γ

u · ds.
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We state the following important direct consequence of Stokes’ theorem:

Theorem 69.2 If u : Ω → R
3 with Ω a domain in R

3 is a differentiable
vector field such that

∫

Γ

u · ds = 0

for all closed curves Γ in Ω, then ∇× u = 0 in Ω.

Chapter 69 Problems

69.1. Prove Stokes theorem for a curve Γ given by s(t) = (x1(t), x2(t), f(x1(t),
x2(t))), t ∈ [a, b], where f : R

2 → R, bounding a surface Ω = {x ∈ R
3 :

x3 − f(x1, x2) = 0} in R
3. Hint: The projection of Γ on the x1x2-plane is the

curve Γ̃ represented by s̃(t) = (x1(t), x2(t), 0) which bounds the domain Ω̃ in the
x1x2-plane. Show that, writing ui = ui(x1, x2, f(x1, x2)),

∫

Γ

u · ds =

∫ b

a

(

u1x
′
1 + u2x

′
2 + u3

(
∂f

∂x1
x′

1 +
∂f

∂x2
x′

2

))

dt

=

∫ b

a

((

u1 + u3
∂f

∂x1

)

x′
1 +

(

u2 + u3
∂f

∂x2

)

x′
2

)

dt

=

∫

Γ̃

(

u1 + u3
∂f

∂x1
, u2 + u3

∂f

∂x2

)

· ds = I.

Then use the Stokes theorem for a plane curve established above, to show that

I =

∫

Ω̃

(
∂

∂x1

(

u2 + u3
∂f

∂x2

)

− ∂

∂x2

(

u1 + u3
∂f

∂x1

))

dx,

and prove by performing the differentiations and direct computation that

I =

∫

Ω

(∇× u) · nds,

where nds = (− ∂f
∂x1

,− ∂f
∂x2

, 1) dx.

69.2. Give a proof of the equality
∫
Ω
∇×u dx =

∫
Γ
n×u ds, where Ω is a subset

of R
3 with boundary Γ with outward unit normal n, by applying the divergence

theorem to u× a with a an arbitrary constant vector.

69.3. Study the relation between Green’s formula (67.9), in the form (67.10), and
the divergence theorem applied to the two-dimensional domain S with bound-
ary Γ:

∫

S

(
∂v1
∂x1

+
∂v2
∂x2

)

dx1 dx2 =

∫

Γ

(v1n1 + v1n2) ds ,

with the identification (u1, u2) = (−v2, v1) corresponding to counter clockwise
rotation of the vector (v1, v2) by π/2. Explain how the clockwise direction in
Stokes’ theorem becomes a counter clockwise direction in (67.9).
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69.4. Compute the integral

∫

Γ

(x2
1x2,−x3

1)
/
‖x‖4 · ds,

where Γ is the curve in thex1x2-plane from (1, 0) to (0, 1) defined by (x1(t), x2(t))=
(cos(t)15, sin(t)17), 0 ≤ t ≤ π/2.

69.5. Compute the integral

∫

Γ

1

x2
1 + x2

2

(−x2, x1, x3)

‖x‖ · ds,

where Γ is a curve traversing the unit circle in the x1x2-plane five times counter-
clockwise, then two times clockwise, and then again four times counterclockwise,
as viewed from the positive x3-axis.

69.6. Use Stokes’ theorem to prove that
∫

Γ

v ds =

∫

S

n×∇v ds,

where S is a surface in R
3 bounded by the closed curve Γ. Hint: Use Stokes’

theorem with u = va and a is a arbitrary vector in R
3.

69.7. Verify by direct computation Stokes’ theorem for (a) S the hemisphere
{x ∈ R

3 : ‖x‖ = 1, x3 ≥ 0} and u = (x2, 2x3, 3x1), (b) S = {x ∈ R
3 : x3 =

1 − x2
1 − x2

2, x3 ≥ 0}.

69.8. (a) Let Ω be a domain in R
2 with boundary Γ. Show that the area A(Ω)

is given by the formula

A(Ω) =
1

2

∫

Γ

u · ds,

where u(x) = (−x2, x1) and Γ is oriented counter-clockwise. Use this result to
show that the area bounded by the ellipse x = (a cos(t), b sin(t)), 0 ≤ t ≤ 2π,
with half-axes a and b, is equal to πab. (b) Try to design a mechanical instrument
for measuring the area of a domain in R

2 (planimeter).





70
Potential Fields

He is a rather tall, lanky-looking man, with moustache and beard
about to turn grey with a somewhat harsh voice and rather deaf. He
was unwashed, with his cup of coffee and cigar. One of his failings
is forgetting time, he pulls his watch out, finds it past three, and
runs out without even finishing the sentence. (Thomas Hirst about
Dirichlet 1850)

70.1 Introduction

We know from Chapter Curve integrals that potential force fields play an
important role in mechanics. Let u : Ω → R

3 be a given vector function,
where Ω is a domain in R

3. How can we check if u(x) is a potential field,
that is, if there is a scalar function or scalar potential, ϕ such that

u(x) = ∇ϕ(x) for x ∈ Ω? (70.1)

We recall that if u = ∇ϕ is a potential field and Γ is a curve parameterized
by s : [0, 1] → R

3 from a = s(0) to b = s(1), then the work of u along Γ is
given by

∫

Γ

u · ds =
∫ 1

0

∇ϕ(s(t)) · s′(t) dt =
∫ 1

0

dϕ(s(t))
dt

dt = ϕ(b) − ϕ(a).

In particular, the work is the same along all curves from a to b, and if the
curve is closed with ϕ(1) = ϕ(0) then the work performed when moving
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around the curve is zero. A field with the property that the work along
a closed curve is zero is referred to as a conservative field. A potential field
is thus a conservative field.

A basic example of a gradient field is the gravitational field of a mass m
at the origin,

u(x) = −m x

‖x‖3
= ∇

(
m

‖x‖

)

,

normalizing units so the gravitational constant is one. The electrical field
of a charge m at the origin has the same form. In that case, the potential
ϕ(x) = m/‖x‖ represents potential energy (gravitational or electrical), and
curve integrals

∫
Γ
u · ds = ϕ(b) − ϕ(a) represents the work performed by

a unit mass or charge when moved from a to b along Γ.

70.2 An Irrotational Field Is a Potential Field

We saw earlier that a potential field u = ∇ϕ is irrotational, that is ∇×u =
∇ × (∇ϕ) = 0. This follows from a direct computation using ∂2ϕ

∂xi∂xj
=

∂2ϕ
∂xj∂xi

. In other words, ∇× u = 0 in Ω is a necessary condition for u to be
a potential field in Ω.

We shall now prove that, the condition ∇ × u = 0 in Ω is a sufficient
condition for u to be a potential field in Ω, under the assumption that Ω is
convex. We recall that Ω is convex if for any two points x and x̄ in Ω, the
entire line segment x̄ + t(x − x̄), 0 ≤ t ≤ 1 between x̄ and x, is also in Ω,
see Fig. 70.1. Convexity implies in particular that Ω has “no holes”. We
thus conclude that u is a potential field in a convex domain Ω if and only u
is irrotational in Ω. In other words, u = ∇ϕ in Ω for some potential ϕ if
and only if ∇× u = 0 in Ω.

Fig. 70.1. One convex and two non-convex domains

We carry out the proof by constructing a potential ϕ such that ∇ϕ = u for
a given irrotational field u(x) in the convex domain Ω. For the construction,
we choose a fixed point x̄ in Ω. For each point x, we let Γx be a curve in Ω
connecting x̄ to x and we define

ϕ(x) =
∫

Γx

u · ds. (70.2)
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x

x̄

Ω

Γx

Fig. 70.2. A curve Γx in Ω joining x̄ and x

We first prove that ϕ(x) is independent of the choice of curve Γx from x̄
to x. Assume that Γx and Γ̃x are two curves from x̄ to x. Together they
form a closed curve Γ bounding a surface S so Stokes theorem implies

∫

Γ

u · ds = ±
∫

S

(∇× u) · n ds = 0,

since ∇× u = 0 on S. Now
∫

Γ

u · ds =
∫

Γx

u · ds−
∫

Γ̃x

u · ds

if we orient Γ in the same direction as Γx and thus in the opposite direction
as Γ̃x. We conclude that

∫

Γ̃x

u · ds =
∫

Γx

u · ds,

and the independence of the choice of curve connecting x̄ with x follows.
Next, we prove that the function ϕ(x) defined by (70.2) satisfies ∇ϕ(x) =

u(x) for x ∈ Ω. We do this by choosing a curve Γx to connect to x along the
x1-axis, the x2-axis, or the x3-axis. Letting Γx connect along the x1-axis
according to Fig. 70.3, for x̂ close to x we have

ϕ(x) − ϕ(x̂) =
∫ x1

x̂1

u1(t, x2, x3) dt ,

and the Fundamental Theorem implies

∂ϕ

∂x1
(x) = u1(x).

Similarly, we obtain ∂ϕ
∂xi

(x) = ui(x) for i = 2, 3. We summarize:

Theorem 70.1 If u : Ω → R
d, with Ω being a convex domain in R

d for
d = 2, 3, satisfies ∇ × u(x) = 0 for all x ∈ Ω, then there is a function
ϕ : Ω → R such that u(x) = ∇ϕ(x) for x ∈ Ω.
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x

x̄

x̂

Ω Γx

Fig. 70.3. A curve Γx in Ω connecting to x along the x1-axis

70.3 A Counter-Example for a Non-Convex Ω

Consider the function u : Ω → R
2, defined by u(x) = (−x2, x1)/‖x‖2 with

Ω = {x ∈ R
2 : x �= 0}. This function satisfies

∇× u(x) =
∂u2

∂x1
− ∂u1

∂x2
=

−2x1x2

‖x‖4
− −2x1x2

‖x‖4
= 0 for x ∈ Ω.

Nevertheless, u(x) cannot be written in the form u(x) = ∇ϕ(x) for x ∈ Ω.
This follows by noting that if, for example, Γ is the closed circle given by
s(t) = r(cos(t), sin(t)), 0 ≤ t < 2π, then

∫

Γ

u · ds =
∫ 2π

0

1
r2
r2 dt = 2π,

while if u(x) = ∇ϕ(x),
∫
Γ
u · ds = 0 since Γ is closed. The reason is that in

this case Ω is not convex. The point x = 0 does not belong to Ω and thus Ω
has a “hole”. We cannot extend Ω to include x = 0 since the function u(x)
is singular at x = 0 and in particular not Lipschitz continuous at x = 0.

Chapter 70 Problems

70.1. If possible, find a potential ϕ for (a) u(x) = (x1, x2, x3) (b) u(x) =
(x3, x1, x2) (c) u(x) = (x2

2 − x3, 2x1x2, 3x
2
3 − x1).

70.2. We recall from above that ∇× u = 0 if and only if u = ∇ϕ for some ϕ.

We now ask the question if ∇ · u = 0 if and only if u = ∇× ψ for some (vector)
potential ψ. Recall that we already know that the “if-part” of this is true, namely
that ∇ · u = 0 if u = ∇× ψ for some ψ for some ψ.

It turns out that also the “only if-part” is true, that is, if ∇ · u = 0 we may
construct a (vector) potential ψ such that u = ∇ × |psi. Verify this, using the
construction ψ(x) =

∫ 1

0
u(tx)×tx dt, and assuming ∇·u in all of R

3 for simplicity.

70.3. Extend the above counterexample to the function u : R
3 → R

3 given by
u(x) = (−x2, x1, 0)/‖x‖2 representing the magnetic field around a current along
the x3-axis.



71
Center of Mass and Archimedes’
Principle*

The simplest schoolboy is now familiar with facts for which Archi-
medes would have sacrificed his life. (Ernest Renan)

71.1 Introduction

We now turn to a study of the stability of floating bodies, including the
question of how to design a big ship or a sailing boat so that it does not
tip over. An example of an unfortunate design is given by the warship
Vasa, which tipped over on its maiden voyage on August 10, 1628 in the
harbor of Stockholm and sank along with 50 of the crew of 150 people. In
the resulting trial, it was decided that the ship was “well built, but badly
proportioned” and no-one was held guilty for the disaster. The ship can
now be studied at the Vasa museum in Stockholm.

Evidently, the stability properties of Vasa came as a surprise. Vasa had
a new design with two gundecks with heavy artillery instead of one and
the planned ballast of stone was not sufficient as a counterbalance. The old
rules of ship design apparently did not apply to the new design and Calculus
and scientific computing at that time was too primitive for trustworthy
predictions.

Let’s see what we can do today with a little bit of Calculus. We start
with the concept of center of mass, pass on to Archimedes principle and
the question of stability of floating bodies.
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Fig. 71.1. Vasa goes unstable on August 10, 1628

71.2 Center of Mass

Consider a body B occupying the volume V in R
3. Suppose the density of

the body at x is given by ρ(x). The total mass m(B) of the body is

m(B) =
∫

V

ρ(x) dx.

The center of mass x̄ = (x̄1, x̄2, x̄3) ∈ R
3 of the body B is defined by

x̄i

∫

V

ρ(x) dx =
∫

V

xiρ(x) dx , i = 1, 2, 3,

that is

x̄i =

∫
V xiρ(x) dx∫
V
ρ(x) dx

, i = 1, 2, 3.

In vector form, this is

x̄ =

∫
V xρ(x) dx∫
V ρ(x) dx

.

We now explain the relevance of the concept of center of mass using the
concept of torque. Assume the body B is acted upon by a vertical gravity
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force field −e3 of unit strength with the coordinate direction e3 oriented
vertically upward. The torque about a point x̄ of a force F acting at x is
equal to

(x− x̄) × F = −F × (x− x̄),

see Fig. 71.2. In other words, the torque is a vector that is perpendicular to
the plane generated by the direction of the force F and the lever arm x− x̄,
with modulus equal to the modulus of F times the distance of the point x̄
from the line of action of F .

x1

x2

x3

T

T

F

F

x

x̄

x− x̄

Fig. 71.2. The torque T = (x− x̄) × F about the point x̄ of F acting at x

The torque of the gravity field (assuming the acceleration of gravity g= 1)
acting on an element of mass ρ(x) dx at position x about a given point x̄
is equal to

ρ(x) dx e3 × (x− x̄).

The total torque T of the gravity field −e3 on the body B about x̄ is thus
equal to

T = e3 ×
∫

V

ρ(x)(x − x̄) dx = 0,

by the definition of the center of mass x̄. The torque about x̄ thus vanishes
which means that body will balance if supported at x̄, see Fig. 71.3.

More precisely,

T = e3 ×
(∫

V

ρ(x)xdx − x̄

∫

V

ρ(x) dx
)

= 0 (71.1)
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if and only if

x̄i =

∫
V
xiρ(x) dx∫

V
ρ(x) dx

,

for i = 1, 2. This means that the body will balance if supported at a point
x = (x1, x2, x3) with x1 = x̄1 and x2 = x̄2, while x3 may be chosen
arbitrarily, see Fig. 71.3. Thus, if the body is supported at its center of
mass x̄ then it will balance independently of its orientation. If the body
is supported at a point x different from the center of mass x̄, then it will
balance only if x̄− x is parallel to the direction of the gravity field.

Fig. 71.3. A body supported at its center of mass, in two stable positions, and
a body supported at a boundary point, balanced but unstable

Example 71.1. We compute the center of mass x̄ of a thin triangular plate of
uniform thickness occupying the region Ω = {x ∈ R

2 : 0 ≤ x1, x2, x1 +x2 ≤
1} in the plane. We get

x̄i =

∫
Ω xi dx∫
Ω
dx

=
1/6
1/2

=
1
3
.

Example 71.2. We compute the center of mass of the half-ball Ω = {x ∈
R

3 : ‖x‖ ≤ 1, x3 ≥ 0}. By symmetry x̄1 = x̄2 = 0. For x̄3 we get using
spherical coordinates

∫

Ω

x3 dx =
∫ 2π

0

∫ π/2

0

∫ 1

0

r cos(ϕ) r2 sin(ϕ) drdϕdθ

=
∫ 2π

0

∫ π/2

0

1
2

sin(2ϕ)
[1
4
r4
]1

0
dϕdθ

=
1
4

∫ 2π

0

[1
4

cos(2ϕ)
]π/2

0
dθ =

1
4

∫ 2π

0

dθ = π/4,

that is, x̄3 =
∫
Ω x3 dx/

∫
Ω dx = π/4

2π/3 = 3
4 .
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71.3 Archimedes’ Principle

Archimedes principle states that (i) the buoyancy force acting on a body B
totally immersed in a liquid is equal to the weight of the displaced liquid
and (ii) acts along a vertical line through the center of mass of the dis-
placed fluid, which we refer to as the center of bouyancy cb. We shall now
prove this fact using vector Calculus. The force from the fluid acting on an
element ds = ds(x) of the surface S of the body B at position x is equal
to −p(x)n(x) ds, where p(x) is the pressure of the liquid and n(x) is the
outward (from B) unit normal to S at x. The total pressure force on B is
thus

F = −
∫

S

p(x)n(x) ds(x) = −
∫

S

pn ds.

Since
∫

V

∂p

∂xi
dx =

∫

S

pni ds, i = 1, 2, 3,

where V is the volume occupied by B, we have

F = −
∫

V

∇p(x) dx

The pressure p(x) in a fluid at rest, called the hydro-static pressure, is given
by

p(x) = ρz(x) + p0,

where z(x) is the depth, ρ is the constant density of the fluid and p0 is the
pressure on the surface of the fluid, see Fig. 71.4.

z

p

p0

Fig. 71.4. Hydrostatic pressure p(x) = ρz(x) + p0

The pressure force at a point x is equal in all directions and its modu-
lus p(x) equal is to the weight ρz(x) of the column of fluid above the point x
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plus the surface pressure p0 from the atmosphere. We conclude that

∇p(x) = −ρe3,

where we assume that the coordinate direction e3 is vertical and pointed
upwards. Therefore,

F =
∫

V

ρ dx e3 ≡We3,

where W =
∫

V ρ dx is the total weight of the displaced fluid. This proves
the first part of Archimedes principle.

Next, the total torque T from the fluid pressure forces on S about
a point x̄ is given by

T =
∫

S

(x− x̄) × (−p(x)n(x)) ds(x) =
∫

S

n(x) × p(x)(x − x̄) ds.

Recalling that
∫

S

n× F ds =
∫

V

∇× F dx,

we find that

T =
∫

V

∇× (p(x)(x − x̄)) dx.

But,

∇× (p(x)(x − x̄)) = ∇p× (x− x̄) + p∇× (x− x̄).

Since ∇× (x− x̄) = 0, it follows that

T =
∫

V

∇p× (x− x̄) dx = −
∫

V

ρ(x− x̄) dx× e3

and the torque T vanishes if x̄ satisfies

x̄i

∫

V

ρ dx =
∫

V

xiρ dx for i = 1, 2.

We conclude that the buoyancy force is vertical upward and is acting along
a vertical line through the center of mass of the displaced fluid. We have
now proved:

Theorem 71.1 (Archimedes’ principle) The buoyancy force acting on
a body immersed in a liquid is equal to the weight of the displaced liquid
and acts along a vertical line through the center of mass of the displaced
fluid.

We can directly extend Archimedes’ principle to a partially immersed
body assuming the pressure on the surface of the fluid to be is zero.
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71.4 Stability of Floating Bodies

The stability of a floating body B is of central importance in all forms of
boating, from canoes to big ships. The question of stability can be reduced
to a question of the relative position of (i) the center of mass cm of the
body B and (ii) the center of buoyancy cb of B according to the following
discussion. Consider the body in rest position with the gravity force acting
vertically downward from the center of gravity, and the buoyancy force act-
ing vertically upward from the center of buoyancy. We assume the body is
in equilibrium with the gravity force and the buoyancy force balancing and
acting along the vertical line through the centers of gravity and buoyancy,
see Fig. 71.5.

cb

cbcb

cm
cmcm

Fig. 71.5. Floating bodies with centers of gravity and buoyancy

Assume that the body is tilted a small angle so that the centers of gravity
and buoyancy are displaced horizontally, see Fig. 71.5. Let T be the result-
ing torque from the pair of gravity and buoyancy forces. The sign of T will
govern the stability! If T acts in the same direction as the tilting, then the
tendency of tilting will be enforced and the body will depart from its equi-
librium position and eventually tilt over, see Fig. 71.5. This happens if the
center of gravity is displaced horizontally in the direction of tilting more
quickly than the center of buoyancy. Conversely, if the center of gravity is
displaced more slowly, then the resulting torque T will be negative and act
as a restoring force seeking to bring back the body to the rest position, see
Fig. 71.5. We now consider two examples with simple geometry.

Example 71.3. Consider a space capsule with hemispherical base and coni-
cal top floating in the Pacific and waiting to be recovered. Will the capsule
float upright or not? Assuming the capsule is floating upright with a part
of the hemispherical base immersed into the water, see Fig. 71.6.

The resultant of the buoyancy forces is directed upward and acts through the
center C of the hemisphere, see Fig. 71.6. If the capsule is tilted a little,
the resultant of the buoyancy forces is still directed upwards through C
and the torque from the gravity force will be de-stabilizing if the center of
mass cm of the capsule is positioned above C, and stabilizing if cm is below
C, for cm on the symmetry axis of the capsule, see Fig. 71.6.



982 71. Center of Mass and Archimedes’ Principle*

C
cm

cb

Fig. 71.6. Space capsule floating upright

Example 71.4. Consider a rectangular box with square horizontal cross
section of width 2w and height 2h and density ρ̄ which is floating in a fluid
of density ρ, see Fig. 71.7. Suppose that ρ̄ is small compared to ρ so that
it penetrates into the fluid only slightly. To test the stability of the box,
suppose the box is rotated a small angle θ around the mid-point C at the
bottom. The de-stabilizing torque about C resulting from the gravity force
through the center of gravity is equal to gρ̄(2w)22hh sin(θ), see Fig. 71.7.
The stabilizing torque from the change of buoyancy forces caused by the
rotation is equal to

2
2
3
www sin θ

1
2
ρgw,

because the area of the triangle CAB is equal to ww sin θ 1
2 , and the center

of gravity of CAB is at horizontal distance 2 2
3w from C. The position is

stable if

2
2
3
w4 sin θ

1
2
ρg > gρ̄8w2h2 sin(θ),

that is, if

w2ρ > 12h2ρ̄.

A
BM2w

2h

Fig. 71.7. Floating box
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Chapter 71 Problems

71.1. The density of ice is 0.917 times the density of water (at −4◦C). How large
a part of an iceberg is visible above the water surface?

71.2. How does a log float? Why does it not want to float in an upright position?

71.3. Understand why catamaran ships have good stability properties.

71.4. Find the stable floating position of a “log” with a quadratic cross-section
and density ρ̄ = 1

2
ρ. Find the stable positions as a function of the ratio ρ̄/ρ

(we know from above that for ρ̄/ρ sufficiently small it will float as the box in
Fig. 71.7). May there be more than one stable position (disregarding symmetric
ones). Discuss! May the conclusion depend on the shape of the cross-section?

71.5. How does a (perfect) ice cube float? How does a barrel (cylinder) float,
given hight/diameter ratio and density?

71.6. Study the design of sailing boats from the stability point of view. Study in
particular modern designs with good form stability (wide and flat bottom), and
classical designs with a narrow deep hull. Connect to the discussion above.

71.7. Extend Archimedes principle to a body immersed into a system of two
layers of different fluids on top of each other.





72
Newton’s Nightmare*

God does not care about mathematical difficulties. He integrates
empirically. (Einstein)

Newton’s theory of gravitation states that the gravitational force
field F (x) generated by a point mass m at the origin is the potential field

F (x) = −m x

‖x‖3
= ∇

(
m

‖x‖

)

, (72.1)

corresponding to the potential ϕ(x) = m/‖x‖, in units where the gravita-
tional constant is one. This means the gravitational force from the mass m
at the origin on a unit point mass at position x is equal to F (x). Taking
norms gives

‖F (x)‖ =
m

‖x‖2
,

which is known as Newton’s Inverse Square Law . More generally, the grav-
itational force field of a mass m a position y is given by

F (x) = −m x− y

‖x− y‖3
, (72.2)

with F (x) being the force on a unit point mass a position x and the corre-
sponding potential ϕ(x) = m/‖x− y‖.

Over a long period, Newton tried to show one consequence of his new
theory of gravitation: the gravitational force between two solid balls is the
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Fig. 72.1. Isaac Newton 1689: “I have not been able to discover the cause of those
properties of gravity from phenomena, and I frame no hypotheses; for whatever
is not deduced from the phenomena is to be called a hypothesis, and hypotheses,
whether metaphysical or physical, whether of occult qualities or mechanical, have
no place in experimental philosophy”

same as if the total mass of each ball was concentrated at the center of
mass of each ball. This result has important practical implications. For
example, it would allow the modeling of the solar system as 9 small point
masses representing the planets orbiting around one fixed big point mass
representing the Sun, that is as a 9-body system. Without the simplifying
basic result, we would have to take into account the gravitational attraction
between the parts of each of the bodies and we would end up with a very
complicated model. The practicality of Newton’s gravitational theory could
easily be questioned by anyone having some interest in that direction, like
the Church. Lacking this basic result, Newton delayed the publication of
his monumental Principia Mathematica many years. Newton states that he
purposely made Principia difficult to read “to avoid being bated by little
smatterers of mathematics”. Newton did not like critics.

It fact, even a 9-body system of point masses may be far beyond com-
prehension or mathematical analysis. Luckily, the solar system is a very
special 9-body system in which the motion of each planet can be viewed to
good approximation as a 1-body system, i.e. as each planet orbiting undis-
turbed around one heavy Sun. Such 1-body systems have a full analytical
solution available, as we saw in the Chapter Lagrange and the Principle of
Least Action.

The basic result that Newton finally succeeded in proving can be phrased
as follows: Consider a thin spherical shell S of radius r and uniform thick-
ness centered at the origin and assume the total mass of the shell is m.
Let F (x) be the gravitational force field generated by the spherical shell
so that F (x) is the gravitational force of the shell on a unit point mass at
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position x outside the sphere. Newton proved that

F (x) = −m x

‖x‖3
for ‖x‖ > r,

which says that the gravitational field generated by the sphere on a point
outside the sphere is the same as the field generated by a point mass m at
the center of the sphere.

The gravitational field F (x) of the shell/sphere is the sum of the gravi-
tational fields of all the little pieces ds(y) of the surface of mass dm(y) at
position y making up the sphere S, that is

F (x) =
∫

S

f(y)ds(y),

where

f(y)ds(y) = −dm(y)
x− y

‖x− y‖3

is the gravitational field of the piece of surface ds(y) of mass dm(y) at
position y. We note that

dm(y) =
mds(y)
4πr2

,

since the area of the sphere is 4πr2 and the total mass is m, and thus

f(y) = − m

4πr2
x− y

‖x− y‖3
. (72.3)

Newton thus wanted to verify that
∫

S

f(y) ds(y) = −m x

‖x‖3
for ‖x‖ > r, (72.4)

where f(y) is given by (72.3). Once this basic result for a sphere is estab-
lished, the corresponding result for a solid ball follows by simply viewing
the ball as the union of a collection of thin spheres of varying radii. The
desired final result for two solid balls follows similarly.

We now prove (72.4) giving the gravitational field of a thin spherical
shell S of radius r and total mass m centered at the origin. We assume that
x = (R, 0, 0) with R > r. By symmetry, this covers the general situation.
We note that the components F2(x) and F3(x) of the gravitational force
vanish because the gravitational force is directed from (R, 0, 0) towards the
origin, and we have simply to verify that

F1(x) = − m

4πr2

∫

S

R− y1
‖x− y‖3

ds(y) = − m

R2
.
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To compute the surface integral, we use spherical coordinates

y = (r cos(ϕ), r sin(ϕ) cos(θ), r sin(ϕ) sin(θ))

with 0 ≤ ϕ ≤ π and 0 ≤ θ ≤ 2π, see Fig. 72.2, and recall from the Chapter
Surface integrals that

ds(y) = r2 sin(ϕ)dϕdθ.

rθ

ϕ x1

x2

x3

(R, 0, 0)

(r cos(ϕ), r sin(ϕ) cos(θ), r sin(ϕ) sin(θ))

Fig. 72.2. Newtons nightmare

We have according to Fig. 72.2,

F1(x) = − m

4πr2

∫

S

R − y1
‖x− y‖3

ds(y)

= −m

4π

∫ π

0

∫ 2π

0

(R− r cos(ϕ)) sin(ϕ)
((R − r cos(ϕ))2 + (r sin(ϕ))2)3/2

dθdϕ

= −m
2

∫ π

0

(R− r cos(ϕ)) sin(ϕ)
((R − r cos(ϕ))2 + (r sin(ϕ))2)3/2

dϕ

where we performed the integration with respect to θ using the fact that
the integrand is independent of θ. We thus need to verify that

I =
∫ π

0

(R− r cos(ϕ)) sin(ϕ) dϕ
((R− r cos(ϕ))2 + (r sin(ϕ))2)3/2

=
2
R2

. (72.5)

To this end, we change variables to set t = cos(ϕ) and we use dt =
− sin(ϕ)dϕ to get

I =
∫ 1

−1

(R − rt) dt
(R2 + r2 − 2Rrt)3/2

=
1
R2

∫ 1

−1

(1 − at) dt
(1 + a2 − 2at)3/2

,
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where a = r
R < 1. By a routine computation, we find that a < 1 implies

∫ 1

−1

(1 − at) dt
(1 + a2 − 2at)3/2

=
∫ 1

−1

(1+a2

2 − at) dt
(1 + a2 − 2at)3/2

−
∫ 1

−1

(1+a2

2 − 1) dt
(1 + a2 − 2at)3/2

=
1
2a

[
− (1 + a2 − 2at)1/2

]1
−1

− a2 − 1
2a

[
(1 + a2 − 2at)−1/2

]1
−1

=
1
2a

(
1 + a− (1 − a)

)
− a2 − 1

2a

(
1

1 − a
− 1

1 + a

)

= 1 + 1 = 2,

and the desired result follows:

F1(x) = − m

R2
if x = (0, 0, R), R > r.

Below, we give a much shorter proof of this result using some tools of
Calculus to be developed in the next chapters.

Chapter 72 Problems

72.1. Prove that the gravitational field from a thin sphere is equal to zero inside
the sphere.

72.2. Compute the gravitational field F (x) for x ∈ R
3 of a solid ball of total

mass m and radius r centered at the origin

72.3. Compute the gravitational field of a “black hole” with mass density
exp(−r)

r
, r = ‖x‖.

72.4. Determine the gravitational field generated by a thin straight uniform rod.

72.5. Determine the gravitational field generated by a thin circular flat (a) ring
(b) disc.

72.6. (a) Consider a particle cloud of uniform density in the form of a ball.
Assume the particles attract each other according to Newton’s Law of gravitation.
Compute the evolution of the cloud for t > 0 assuming the particles are at rest
at t = 0. (b) Do the same with a cloud in the form of the volume between two
concentric spheres. (c) Extend to clouds of variable density.





73
Laplacian Models

. . . on aura donc ∆u = 0; cette équation remarquable nous sera de
la plus grande utilité . . . (Laplace)

If one has to stick to this damned quantum jumping, then I re-
gret ever having been involved in this thing. I don’t like it (quan-
tum mechanics), and I’m sorry I ever had anything to do with it.
(Schrödinger)

73.1 Introduction

In this chapter, we present some basic models involving the Laplacian, in-
cluding models for heat conduction, elasticity, electromagnetics, fluid me-
chanics, and gravitation. In deriving these models, we make use of the
basics of Calculus in several dimensions including Gauss’ and Stokes’ theo-
rems, and we get a quick and easy introduction to some of mysteries of the
mechanics and physics of “continuous media”. We also make connections
to linear algebra when discretizing the Laplacian using the 5-point scheme
and variants of “Svensson’s formula”.

73.2 Heat Conduction

We first model heat conduction in a heat-conducting material occupying
the volume Ω in R

3 with boundary Γ, over a time interval I = [0, T ]. We
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let u(x, t) denote the temperature and q(x, t) the heat flux at the point x at
time t. The heat flux is a vector q = (q1, q2, q3), where qi is the heat flux,
or rate of heat flowing in the direction xi. We let f(x, t) denote the rate of
heat (per unit of volume) supplied at (x, t) by a heat source.

We derive the model using a basic conservation law expressing conser-
vation of heat in the following form: for any fixed domain V in Ω with
boundary S, the rate of the total heat introduced in V by the external
source is equal to the rate of the total heat accumulated in V plus the
total heat flux through S. This is based on the conviction that the heat
introduced in V by the external source can choose between two options
only: (i) flow out of V or (ii) be accumulated in V . With S denoting the
boundary of V and n denoting the outward unit normal to S, see Fig. 73.1,
the conservation law can be expressed as

V

n

Fig. 73.1. An arbitrary subset V of a heat conducting body Ω

∫

V

f dx =
∂

∂t

∫

V

λu dx+
∫

S

q · n ds, (73.1)

where λ(x, t) is the heat capacity coefficient giving the amount heat per
unit of volume needed to raise the temperature one unit, and all functions
are evaluated at a specific time t ∈ I. By the Divergence theorem,

∫

S

q · n ds =
∫

V

∇ · q dx,

and combined with (73.1), this implies that
∫

V

(
∂

∂t
(λu) + ∇ · q

)

dx =
∫

V

f dx,

where the time derivative could be moved under the integral sign because V
does not depend on time t. Since V is arbitrary, assuming the integrands
are Lipschitz continuous, it follows that

∂

∂t
(λu)(x, t) + ∇ · q(x, t) = f(x, t) for all x ∈ Ω, 0 < t ≤ T, (73.2)
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which is a differential equation describing conservation of heat involving
two unknowns: the temperature u(x, t) and the heat flux q(x, t). We thus
have one equation and two unknowns and we need yet another equation.

The second equation is a constitutive equation that couples the heat flux q
to the temperature gradient ∇u. Fourier’s law states that heat flows from
warm to cold regions with the heat flux proportional to the temperature
gradient:

q(x, t) = −a(x, t)∇u(x, t) for x ∈ Ω, 0 < t ≤ T (73.3)

where the factor of proportionality a(x, t) is the coefficient of heat conduc-
tivity. Note the minus sign indicating that the heat flows from warm to
cold regions, and that the heat conductivity a(x, t) is positive. Combining
(73.2) and (73.3), we obtain the basic differential equation describing heat
conduction:

∂

∂t
(λu) −∇ · (a∇u) = f in Ω × (0, T ], (73.4)

where a(x, t) and λ(x, t) are given positive coefficients depending on (x, t)
and f(x, t) is a given heat source, and the unknown u(x, t) represents the
temperature.

To define the solution uniquely, the differential equation is complemented
by initial and boundary conditions. The complete model with Dirichlet
boundary conditions reads






∂
∂t (λu) −∇ · (a∇u) = f in Ω × (0, T ],
u = ub on Γ × (0, T ],
u(x, 0) = u0(x) for x ∈ Ω,

(73.5)

where u0 is the initial temperature and ub is the boundary temperature.
The Dirichlet boundary condition corresponds to immersing the body Ω
in a large reservoir with a specified temperature ub and assuming that
the boundary acts as a perfect thermal conductor so that the temperature
of the body on the boundary is equal to the specified outside reservoir
temperature ub. Note that the given boundary temperature ub = ub(x, t)
may vary with (x, t).

Other commonly encountered boundary conditions are Neumann and
Robin boundary conditions. A Neumann boundary condition corresponds
to prescribing the heat flux q · n across (out of) the boundary:

q · n = −a∇u · n = −a∂u
∂n

= −a∂nu = g on Γ,

with g given. A homogeneous Neumann boundary condition with g = 0 cor-
responds to a perfectly insulating boundary with the heat flux across the
boundary being zero. A homogenous Robin boundary condition is interme-
diate with the boundary neither being perfectly conducting nor perfectly
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insulated, with the heat flux through the boundary being proportional to
the difference of the temperature u inside and a given temperature ub out-
side Ω:

−a∂nu = κ(u− ub)

with κ a positive coefficient representing the heat conductivity of the
boundary.

Partitioning the boundary Γ into disjoint pieces Γ1, Γ2 and Γ3 with
different types of boundary conditions, the general initial boundary value
problem IBVP for the heat equation has the form,






∂
∂t (λu) −∇ · (a∇u) = f in Ω × (0, T ],
u = ub on Γ1 × (0, T ],
−a∂nu = g on Γ2 × (0, T ],
a∂nu+ κ(u− ub) = 0 on Γ3 × (0, T ],
u(x, 0) = u0(x) for x ∈ Ω,

(73.6)

where ub represents a given “exterior” boundary temperature, and g rep-
resents a given outward normal heat flux on the boundary.

We note that in a stationary situation with ∂
∂t (λu) = 0 and with the heat

source f = 0, the equation (73.2) expressing conservation of heat, takes the
form

∇ · q = 0. (73.7)

If heat is neither produced nor accumulated, then conservation of heat is
expressed by the equation ∇·q = 0, that is, the heat flux q is divergence-free.
Below we shall meet several other examples of divergence-free fields.

73.3 The Heat Equation

We refer to the special case of (73.6) with λ = a = 1 as the heat equation.
In the case with homogeneous Dirichlet boundary conditions, we get the
model






∂u
∂t − ∆u = f in Ω × (0, T ],
u = 0 on Γ × (0, T ],
u(x, 0) = u0(x) for x ∈ Ω,

where u0 is the initial temperature, and ∆u = ∇ · (∇u) is the Laplacian.
The heat equation serves as a basic prototype of a parabolic problem.
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73.4 Stationary Heat Conduction: Poisson’s
Equation

The stationary analog of (73.6) reads





−∇ · (a∇u) = f in Ω,
u = ub on Γ1,

−a∂nu = g on Γ2,

a∂nu+ κ(u− ub) = 0 on Γ3.

(73.8)

Choosing a = 1 leads to the Poisson equation:





−∆u = f in Ω,
u = u1 on Γ1,

−a∂nu = g2 on Γ2,

a∂nu+ κ(u− ub) = g3 on Γ3.

(73.9)

In the case of homogeneous Dirichlet boundary conditions on the whole of
the boundary, the Poisson equation reads

{
−∆u = f in Ω,
u = 0 on Γ.

(73.10)

Poisson’s equation serves as a basic model of an elliptic problem and has
numerous applications in physics and mechanics. We present the basic ap-
plications below. Poisson’s equation −∆u = f with f = 0 is referred to as
Laplace’s equation: ∆u = 0.

Fig. 73.2. Poisson (1781–1840): “Life is good for only two things: to study
mathematics and to teach it”
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We now give a couple of analytic solutions to the heat equation in simple
situations:

Example 73.1. The stationary temperature u in a heat conduction unit
cube Q with heat production and conduction coefficient equal to one, zero
boundary temperature for x1 = 0, 1, and zero heat flux for x2, x3 = 0, 1, is
given by

u(x) =
1
2
(x1(1 − x1)TS

a .

We see that the temperature is maximal for x1 = 0.5 and drops off quadrat-
ically towards the Dirichlet boundary, see Fig. 73.3 for a plot in the corre-
sponding case in two dimension in the unit square.
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u(x1,x2) = sin( π x1) sin(2 π x2)

x2

u(x1,x2)=x1(1-x1)/2

Fig. 73.3. The functions 1
2
(x1(1 − x1)) and sin(πx1) sin(2πx2)

Example 73.2. Consider the homogenous heat equation in the unit square
Q with f = 0 and homogenous Dirichlet boundary conditions: the function

u(x, t) = e−(n2+m2)t sin(nx1) sin(mx2)

with m,n = 1, 2, 3, . . . is a solution of the homogenous heat equation ∂u
∂t −

∆u = 0 with initial value u0(x1, x2) = sin(nx1) sin(mx2), see Fig. 73.3. We
see that the temperature u(x, t) decays exponentially in time very quickly
if n and/or m is only moderately large. This corresponds to the fact that
a temperature oscillating in space, is quickly levelled out.

TS
a Is there an opening parenthesis missing here? Please check.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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Example 73.3. The stationary temperature u(x) between the two planes
{x3 = 0} and {x3 = 1} bounding a heat conducting layer with heat con-
ductivity coefficient equal to one, zero heat source, and the temperature
u = 1 on {x3 = 1} and u = 0 on {x3 = 0}, is given by u(x) = x3 displaying
a linear variation of the temperature between the plates. No surprise of
course.

73.5 Convection-Diffusion-Reaction

The heat equation models the physical phenomenon of diffusion, and we
now extend this model to include the phenomena of convection and reaction.
We obtain a scalar convection-diffusion-reaction equation, which is another
basic model in science. We consider a typical case where u represents the
concentration of a certain chemical species subject to convection in a given
velocity field β(x, t), diffusion with diffusion coefficient ε(x, t) and reaction
with reaction rate α(x, t). For example, u may represent the concentration
of a contaminant in a volume of water moving with the velocity β(x, t).

The model results from a principle of conservation of mass together with
a constitutive equation generalizing Fourier’s law expressing the flow rate q
of the chemical species in terms of ∇u and βu. Conservation of mass is
expressed by

u̇+ ∇ · q + αu = f,

where f represents a source term, and the constitutive law takes the form

q = βu− ε∇u.

which says that the total flow rate q is the sum of a convective rate βu and
a diffusive rate −ε∇u. The model thus takes the form:

u̇+ ∇ · (βu) + αu−∇ · (ε∇u) = f in Ω × (0, T ], (73.11)

together with initial and boundary conditions, where Ω is domain in space
and [0, T ] a given time interval. We shall meet this model and generaliza-
tions thereof in several different contexts below.

73.6 Elastic Membrane

Consider a horizontal elastic net covering the unit square Q = {x ∈ R
2 :

0 ≤ xi ≤ 1, i = 1, 2} formed by elastic strings tied together at nodes
aij ∈ R

2 in a uniform quadrilateral mesh with mesh size h = 1/N , so that
aij = (ih, jh), i, j = 0, 1, . . . , N , where N is the number of cells in each



998 73. Laplacian Models

coordinate direction. Assume that the net is stretched so that the tension
in each string is equal to h, corresponding to the tension being equal to one
per unit of length. Note the normalization introduced says that the tension
in each string decreases as the number of strings increases. We refer to the
situation in which all the nodes lie in the plane of the square and there is
no external load on the net as the unloaded reference configuration of the
net.

Suppose the net is subject to a set of downward vertical loads of size fijh
2

at the nodes aij . The net will deform under the loads and the nodes will be
displaced from the initial unloaded reference configuration. Let the vertical
displacement of node aij be denoted by ui,j . If the displacements are small,
then (recalling the Chapter String theory) the vertical upward force from
the net on node aij is equal to

(ui,j − ui−1,j) + (ui,j − ui+1,j) + (ui,j − ui,j−1) + (ui,j − ui,j+1),

with contributions from the four pieces of string meeting at aij . This is
because the vertical slope of the line between for example node (i, j) and
(i− 1, j) is equal to (ui,j − ui−1,j)/h and the tension is h. We thus obtain
the following vertical equilibrium equation for each node aij :

−ui−1,j − 2ui,j + ui+1,j

h2
− ui,j−1 − 2ui,j + ui,j+1

h2
= fij .

Passing to the limit as h tends to zero, and recalling that Taylor’s theorem
implies

lim
h→0

v(x− h) − 2v(x) + v(x+ h)
h2

= v′′(x) =
d2v

dx2
(x)

if v : R → R is twice differentiable, we are led to the equation

−∆u(x) = f(x).

This equation expresses the equilibrium of a horizontal membrane made
by an elastic fabric and carrying a vertical load of intensity (force per
unit area) f(x), where u(x) is the vertical displacement of the membrane
at x and we assume that the membrane in its unloaded plane reference
configuration is prestressed to uniform tension in all directions.

We can generalize to a horizontal membrane covering a general domain Ω
in R

2. Assuming the membrane is fixed at the boundary Γ of Ω, so that the
vertical displacement u(x) is zero at Γ, we thus obtain Poisson’s equation

−∆u = f in Ω, u = 0 on Γ (73.12)

as a model for the vertical deflection of a horizontal elastic membrane
spanned over the boundary Γ of a domain Ω in R

2, subject to a vertical
load of intensity f(x). This is a basic model of elasticity theory.
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u

f

Fig. 73.4. An elastic membrane under a load f(x) and supported at Γ

Example 73.4. If Ω = {x ∈ R
2 : ‖x‖ < 1} is the unit disc, and the load f

is radially symmetric, then the deflection u will also be radially symmetric.
Recalling the form of the Laplacian in polar coordinates from the Chapter
The divergence, rotation and Laplacian, we can write (73.12) in the form

−∆u = −1
r

∂

∂r

(

r
∂u

∂r

)

= f(r) for 0 < r < 1, u(1) = 0,
∂u

∂r
(0) = 0.

Note the boundary condition ∂u
∂r (0) = 0, which has no counterpart in x-

coordinates, says that u(x) is differentiable at x = 0. If ∂u
∂r (0) �= 0, then

u(x) has a a conical “to” at x = 0 and thus is not differentiable at x = 0.
If f(r) = 1, then the solution is given by

u(r) =
1
4
(1 − r2) for 0 ≤ r ≤ 1.

73.7 Solving the Poisson Equation

Suppose we would like to numerically solve the Poisson equation

−∆u = f in Q, u = ub on Γ

where Q is the unit square with boundary Γ and f(x) a given function
on Q. Recalling the derivation of the model −∆u = f from the previous
section, we are led to computing approximations Ui,j of u(ih, jh) for i, j =
0, 1, . . . , N , where h = 1/N , from the system of equations

− Ui−1,j − 2Ui,j + Ui+1,j

h2
− Ui,j−1 − 2Ui,j + Ui,j+1

h2
= f(ih, jh),

i, j = 1, . . . , N − 1,

that is

4Ui,j − Ui−1,j − Ui+1,j − Ui,j−1 − Ui,j+1 = h2f(ih, jh),
i, j = 1, . . . , N − 1, (73.13)

where Ui,j = ub(ih, jh) if i or j is equal to 0 or N . We see that this
is an m × m system of equations with m = (N − 1) × (N − 1) in the
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unknowns Ui,j where i, j = 1, . . . , N−1. This is the famous 5-point scheme
for the Poisson’s equation, where the unknown Ui,j is coupled to its four
neighbors Ui−1,j , Ui+1,j , Ui,j−1, Ui,j+1.

If f = 0, then the 5-point scheme takes the form (“Svensson’s formula”)

Ui,j =
1
4
(Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1),

stating that each value Ui,j is the mean value of the neighboring values
(reflecting a basic feature of the Swedish national character).

Note that (73.13) is a linear system of equations for the values of U that
requires some work to solve. For example, we may try to solve (73.13) by
fixed point iteration as follows with k = 0, 1, . . .

Uk+1
i,j = Uk

i,j

− α
(
4Uk

i,j − Uk
i−1,j − Uk

i+1,j − Uk
i,j−1 − Uk

i,j+1 − h2f(ih, jh)
)
, (73.14)

for i, j = 1, . . . , N − 1, with Uk+1
i,j = ub(ih, jh) if i or j is equal to 0 or N .

Here, Uk
i,j is an approximation of Ui,j after k steps starting with an initial

approximation U0
ij and α is a positive constant. It turns out that if α is

sufficiently small, then the iteration converges, see Problem 73.9, although
the convergence gets slower as the step size h decreases.

Example 73.5. Assuming x2 independence, we are led to the model

−u′′(x) = f(x) for 0 < x < 1, u(0) = u0, u(1) = u1,

where u′(x) = du
dx . The corresponding discrete model takes the form

−(Ui−1 − 2Ui + Ui+1) = h2f(ih),

i = 1, . . . , N − 1, U0 = u0, UN = u1, (73.15)

with Ui representing an approximation of u(ih). Assuming for simplicity
u0 = u1 = 0, the discrete model can be written in the form

AU = b,

with U = (U1, . . . , UN−1), b = (b1, . . . , bN−1) with bi = h2f(ih),
A = (aij) an (N − 1) × (N − 1) matrix with aii = 2, ai,i−1 = ai−1,i = −1
and aij = 0 if |i− j| > 1. The fixed point iteration described above can be
written

Uk+1 = Uk − α(AUk − b),
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and the criterion of convergence is ‖I − αA‖ < 1, which we prove in Prob-
lem 73.9 to be valid if α > 0 is sufficiently small. Here, ‖I − αA‖ is the
Euclidean norm of the matrix I − αA and the Spectral theorem implies

‖I − αA‖ = max
i

|1 − αλi|,

where the λi are the eigenvalues of the symmetric matrix A.

73.8 The Wave Equation: Vibrating Elastic
Membrane

We now model the dynamic motion of the elastic membrane considered
above in the static. We complement the given exterior force f(x, t), which
now may be dependent on time, by a dynamic force, which according to
Newton’s law, takes the form mü, with m representing mass per unit area
and ü representing the acceleration of vertical displacement u. This to leads
to the wave equation, modeling a vibrating membrane subject to an exterior
load,






ü− ∆u = f in Ω × (0, T ],
u = 0 on Γ × (0, T ],
u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) for x ∈ Ω,

(73.16)

where Ω denotes a domain in R
d with boundary Γ, u0 is a given initial

displacement, u̇0 is a given initial displacement velocity, and we assume
homogeneous Dirichlet boundary conditions for simplicity. Other boundary
conditions, notably periodic boundary conditions, are also relevant for this
model.

73.9 Fluid Mechanics

Fluid flow opens a rich field for mathematical modelling. We think of a fluid
as a collection of many small “fluid particles” and we seek to describe the
fluid flow resulting from the motion of all these fluid particles. We work
under the assumption that the particles are so small and there are so many,
that we can treat the fluid as a continuum. Usually, we use an Eulerian
mode of description in which we describe the flow in terms of the velocity
u(x, t) ∈ R

3 of the fluid particles at position x ∈ R
3 at time t, or simply

the velocity of the fluid at (x, t). This corresponds to attaching an observer
to each fixed point x for the purpose of observing the velocity u(x, t) of the
fluid particles that happen to be at position x at time t. The observer thus
sits at position x and watches the fluid particles swirl by.
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Alternatively, in a Lagrangian mode of description, an observer is at-
tached to each fluid particle with the purpose of observing the change of
velocity of the fluid particle with time. In this case, the observer follows
the particle. The different modes of description are both useful and may
also be used together, see the chapters on convection-diffusion in [10].

The Equation of Mass Conservation

We consider the flow of a fluid within a certain volume Ω ∈ R
3 using an

Eulerian description with u(x, t) representing the velocity of the fluid at x
at time t. The velocity u is a vector u = (u1, u2, u3).

Let ρ(x, t) denote the density of a fluid at (x, t) measuring the mass
of the fluid particles per unit of volume. Let V be a fixed volume with
boundary S. The total mass of the fluid in V at time t is given by

∫

V

ρ(x, t) dx.

The mass of fluid at time t passing out through the boundary S per unit
of time is given by

∫

S

ρ(x, t)u(x, t) · n(x) ds(x) =
∫

V

∇ · (ρu)(x, t) dx,

where we used the Divergence theorem. The rate of change of mass in V
plus the rate of mass flow through the boundary must be zero if we assume
that no fluid is added or removed, which leads to the following expression
of mass conservation,

∂

∂t

∫

V

ρ(x, t) dx+
∫

V

∇ · (ρu)(x, t) dx = 0.

If ρ varies smoothly, then ∂
∂t may be moved under the integral sign and

since V was arbitrarily, we are led to the differential equation expressing
mass conservation,

∂ρ

∂t
+ ∇ · (ρu) = 0, (73.17)

Of course this is a basic equation of mathematical modelling. Performing
the differentiation with respect to x, we can express mass conservation in
the form

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0. (73.18)

Particle Paths and Streamlines

Let the velocity of a fluid be given by the function u(x, t). Consider the
IVP

d

dt
x(t) = u(x(t), t) for t > 0, x(0) = x0.
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The solution x(t) represents the curve, or path or trajectory, followed by
a fluid particle that starts at position x0 at time t = 0 and moves with
velocity u(x(t), t) for t > 0. If the velocity u(x, t) = u(x) is independent of
time t, then particle paths are also referred to as streamlines.

Incompressible Flow

If the fluid velocity u(x, t) satisfies

∇ · u(x, t) =
(
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3

)

(x, t) = 0 for x ∈ Ω t > 0,

then the flow is said to be incompressible in Ω for t > 0.
If the flow is incompressible, the equation (73.18) of mass conservation

takes the form
∂ρ

∂t
+ u · ∇ρ = 0. (73.19)

Since dx
dt = u for a x(t) particle path, the Chain rule implies

∂

∂t
ρ(x(t), t) =

∂ρ

∂t
+ u · ∇ρ = 0.

This says that the density is constant along particle paths, or in other words
the volume occupied by a certain set of fluid particles is constant. So, the
fluid cannot be compressed. It is common to assume that the density of an
incompressible fluid is constant.

Water is very nearly incompressible; it is very difficult to change the total
volume of a bucket of water. Air is compressible; the air tank of a diver
contains a huge volume of air at normal pressure compressed and stored in
a small volume at high pressure. But to get the air into the tank consumes
energy.

Incompressible Potential Flow

In so-called stationary flow, the velocity u(x, t) is independent of time and
thus the fluid velocity u(x) is a function of x ∈ Ω. Note that in a stationary
flow the fluid particles at x are moving if u(x) �= 0, but the velocity of the
fluid particles at x does not change with time.

The velocity field u(x) of rotation-free fluid flow satisfies ∇ × u = 0,
which implies u = ∇ϕ for a scalar velocity potential ϕ under appropriate
convexity assumptions. If the fluid is incompressible, then ∇ · u = 0, and
we obtain the Laplace equation ∆ϕ = 0 for the potential of a rotation-free
incompressible flow. At a solid boundary, through which the fluid cannot
penetrate, the normal velocity of the fluid is zero, which translates into
a homogeneous Neumann boundary condition ∂nϕ = 0 for the potential ϕ.
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We now give some basic examples of incompressible potential flow. For
simplicity, we consider situations in which the velocity u(x) is independent
of the x3-coordinate.

Example 73.6. The potential

ϕ(x1, x2) = x2
1 − x2

2

satisfies ∆ϕ = 0 and the corresponding flow velocity u = ∇ϕ is given by

u(x) = (2x1,−2x2).

This represents stationary flow in a corner, see Fig. 73.5. A streamline x(t)
satisfies dx

dt = (2x1,−2x2), which is a separable equation with solutions
satisfying

x1(t)x2(t) = c,

where c is a constant, see Fig. 73.5. We check by computing d
dtx1x2 =

ẋ1x2 + x1ẋ2 = 2x1x2 − 2x12x2 = 0.

Example 73.7. The potential

ϕ(x) = log(‖x‖)

satisfies ∆ϕ(x) = 0 for x �= 0, and the corresponding flow velocity u = ∇ϕ
is given by u(x) = x

‖x‖2 , see Fig. 73.5.

Example 73.8. We consider incompressible potential flow around an infinite
circular cylinder along the x3-axis with cross-section Ω = {x = (x1, x2) ∈
R

2 : ‖x‖ < 1} from left to right, see Fig. 73.5. The potential ϕ is given in
polar coordinates x = r(cos(θ), sin(θ)) by

ϕ(x) = ϕ(r, θ) =
(

r +
1
r

)

cos(θ),

corresponding to a flow from right to left sweeping around Ω and approach-
ing u(x) = (1, 0) for ‖x1‖ large and x2 bounded. We note that ∆ϕ = 0 for
r �= 0, and that ∂ϕ

∂r = 1− 1/r2 = 0 for r = 1 and thus the flow is tangential
to the boundary of Ω.

Note that fluid flow is rarely rotation-free in the whole region occupied
by the fluid. In particular, if the fluid is viscous then rotation is generated
at solid boundaries.
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Fig. 73.5. Examples of incompressible potential flow

Incompressible Flow With Rotation

We now consider basic examples of incompressible flow in two dimensions
with non-zero rotation. We assume u(x) = (u1(x), u2(x)) satisfies ∇·u = 0,
where x = (x1, x2). Defining v = (−u2, u1) this equation reads ∇× v = 0
and under appropriate convexity assumptions, there is a potential ϕ with
v = ∇ϕ. Thus,

u = (v2,−v1) = (
∂ϕ

∂x2
,− ∂ϕ

∂x1
) = ∇× ϕ.

With the rotation ∇ × u = f given, we are led to the Poisson equation
for ϕ,

f = ∇× u = ∇× (∇× ϕ) = −∆ϕ.

Example 73.9. Given f = 4 we find the corresponding solution ϕ(x) =
−‖x‖2 with u(x1, x2) = (−2x2, 2x1), see Fig. 73.6. Choosing ϕ(x) =
log(‖x‖) corresponds to f(x) = 0 for x �= 0, and the corresponding ve-
locity u(x1, x2) = ‖x‖−2(x2,−x1), see Fig. 73.6.
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Fig. 73.6. Incompressible flow with rotation
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The Euler and Navier-Stokes Equations

The Euler equations for an incompressible inviscid fluid with constant den-
sity equal to one, take the form

∂u

∂t
+ (u · ∇)u+ ∇p = f, ∇ · u = 0, (73.20)

where u(x, t) is the velocity and p(x, t) the pressure of the fluid at the
point x at time t, and f is an applied volume force like a gravitational
force. In an inviscid fluid, the viscosity is zero and the only interior force
acting between the fluid particles is the pressure force that is equal in
all directions and acts normal to any surface. The equation ∇ · u = 0
expresses the incompressibility of the flow. The first equation expresses
Newton’s law stating that the acceleration d

dtu(x(t), t), where x(t) is the
trajectory followed by a fluid particle satisfying dx

dt = u(x(t), t), is equal to
the force −∇p + f , consisting of the pressure force −∇p and the applied
force f . We see this by computing with the the Chain rule and the equation
dx
dt = u(x(t), t) to get

d

dt
ui(x(t), t) =

∂ui

∂t
+
dx

dt
· ∇ui =

∂ui

∂t
+ (u · ∇)ui,

which leads to the vector form (73.20). The Navier-Stokes equations are
modifications of the Euler equations with an additional viscous force term
−ν∆u, where ν is the viscosity coefficient. In a fluid with non-zero viscosity,
there are also tangential (shear) forces acting on a surface.

Fig. 73.7. Flow of air and pressure around a toy train
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73.10 Maxwell’s Equations

The interaction between electric and magnetic fields are described by Max-
well’s equations:






∂B

∂t
+ ∇× E = 0,

−∂D
∂t

+ ∇×H = J,

∇ · B = 0, ∇ ·D = ρ,

B = µH, D = εE, J = σE,

(73.21)

where E is the electric field, H is the magnetic field, D is the electric dis-
placement, B is the magnetic flux , J is the electric current, ρ is the charge,
µ is the magnetic permeability, ε is the dielectric constant of electric per-
mittivity, and σ is the electric conductivity. The first equation is referred
to as Faraday’s law, the second is Ampère’s law, ∇ · D = ρ is Coulomb’s
law, Gauss law ∇ ·B = 0 expresses the absence of “magnetic charge”, and
J = σE is Ohm’s law. Maxwell, see Fig. 73.8, included the term ∂D/∂t
for purely mathematical reasons and then used Calculus to predict the
existence of electromagnetic waves before these had been observed experi-
mentally.

Fig. 73.8. Maxwell (1831–1879), inventor of the mathematical theory of elec-
tromagnetism: “We can scarcely avoid the conclusion that light consists in the
transverse undulations of the same medium which is the cause of electric and
magnetic phenomena”

Typical boundary conditions include various combinations of E · n (per-
fect insulator), E × n (perfect conductor), H · n and H × n.

Maxwell’s equations describe the whole world of electromagnetic phe-
nomena with an astounding economy of notation and accuracy of mod-
elling. Our modern information society builds on electromagnetic waves.
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We shall now pick out a couple of Laplace equation models from Maxwell’s
equations by considering some basic particular cases.

Electrostatics

A basic problem in electrostatics is to describe the stationary electric
field E(x) in a volume Ω in R

3 containing charges of density ρ(x) and
enclosed by a perfectly conducting surface Γ. Faraday’s law states that

∇× E = 0 in Ω,

since we assume that ∂B
∂t = 0. Recalling Chapter Potential fields, it follows

that the electric field E is the gradient of a scalar electric potential ϕ, i.e.
E = ∇ϕ. Coulomb’s law says

∇ · E = ρ in Ω,

so we are led to the Poisson equation for the potential ϕ,

∆ϕ = ∇ · ∇ϕ = ρ in Ω.

The boundary condition E×n = 0 on the boundary Γ of Ω with n denoting
the outward unit normal, says that the tangential component of E vanishes
on the boundary. This models a perfectly conducting boundary in which
differences in the electric field are leveled out. This means that E = ∇ϕ
is normal to the boundary, so the boundary is a level surface of ϕ and the
potential ϕ is constant on the boundary. Since ϕ is undetermined up to
a constant, we may assume that ϕ = 0 on the boundary and we arrive at
Poisson’s equation −∆ϕ = f with f = −ρ in Ω with homogenous Dirichlet
boundary conditions ϕ = 0 on Γ.

The potential ϕ(x) of a point charge at the origin is given by

ϕ(x) =
c

‖x‖

with the corresponding electric field

E(x) = − cx

‖x‖3

and c a suitable constant. We shall return to this solution below.

Example 73.10. Let Ω = {x ∈ R
2 : ‖x‖ < 1, x1 < 0 or x2 > 0} be a circular

disc with a piece cut out and a reentrant corner of angle ω = 3π
2 , see

Fig. 73.9. By a direct computation we can verify that the function

ϕ(x) = rα sin(αθ)
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expressed in polar coordinates x = r(cos(θ), sin(θ)), where α = π
ω = 2

3 ,
satisfies the Laplace equation ∆ϕ = 0 in Ω and the boundary condition
ϕ = 0 in the straight parts of the boundary meeting at the origin. Letting
ϕ represent an electric potential, the corresponding electric field E(x) =
∇ϕ(x) satisfies

∂E

∂r
= αrα−1 sin(αθ)

and thus since α < 1, is singular (infinite) at the corner where r = 0. This
means that the electric field is very strong close to the corner, and the
sharper the corner (α smaller) the stronger is the field. This may support
the observation that an electric lightening is more likely to hit the pointed
tower of church than a smooth hill, or the design of an electronic scanner
where electrons pop out of the pin of a sharp needle.
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Fig. 73.9. A potential with singular electric field

Example 73.11. The potential ϕ of the electric field between two concentric
spheres S1 = {x ∈ R

3 : ‖x‖ < r1} and S2 = {x ∈ R
3 : ‖x‖ < r2} with r2 >

r1, is given by

ϕ(x) =
1

‖x‖

if we assume that ϕ = 1/ri on Si, i = 1, 2.
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Example 73.12. The function

ϕ(x1, x2) = arctan
(
x2

x1

)

defined for x1 > 0 satisfies ∆ϕ(x) = 0 for x1 > 0, and is constant =
arctan(c) on rays x2 = cx1 through the origin of slope c. The corresponding
electric field E(x) = ∇ϕ(x) given by

E(x) =
(−x2, x1)

‖x‖2
.

We see that E(x) is singular at x = 0.

Magnetostatics

The basic problem in magnetostatics arises by combining Gauss’ law
∇ ·H = 0, assuming µ constant and guaranteeing that H = ∇×ϕ for some
vector potential ψ satisfying ∇ · ψ = 0, with Faraday’s law ∇×H = J to
give

∇× (∇× ψ) = −∆ψ = J,

where we use the facts that ∇ × (∇ × ψ) = −∆ψ + ∇(∇ · ψ) and that
∇ · ϕ = 0.

The magnetic field around a unit current J in the x3-direction is given
by

H(x) =
1
2π

(−x2, x1, 0)
‖x‖2

,

which can be verified by direct computation showing that ∇ · H(x) = 0
and ∇ × H(x) = 0 for (x1, x2) �= 0. The presence of the factor 1

2π makes∫
ΓH · ds = 1 for any counter-clockwise oriented circle in the x1x2-plane,

from which by Stokes theorem follows that ∇×H = J , see the next section
on Gravitation and delta functions.

Time-Dependent Magnetics

In low frequency applications, the term ∂D
∂t so cleverly introduced by

Maxwell, plays a minor role and can be discarded. Let’s see where this
leads. Since ∇ · B = 0, we can write B as B = ∇× ψ, where ψ is a mag-
netic vector potential. Inserting this into Faraday’s law gives

∇×
(
∂ψ

∂t
+ E

)

= 0,
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from which it follows that

∂ψ

∂t
+ E = ∇ϕ,

for some scalar potential ϕ. Multiplying by σ and using the laws of Ohm
and Ampère, we obtain a vector equation for the magnetic potential ψ:

σ
∂ψ

∂t
+ ∇×

(
µ−1∇× ψ

)
= σ∇ϕ.

This system reduces to a scalar equation in two variables if we assume that
B = (B1, B2, 0) is independent of x3. It then follows that ψ has the form
ψ = (0, 0, u) for some scalar function u that depends only on x1 and x2, so
that B1 = ∂u/∂x2 and B2 = −∂u/∂x1. We end up with a scalar equation
for the scalar magnetic potential u in the form

σ
∂u

∂t
−∇ ·

(
µ−1∇u

)
= f, (73.22)

for some function f(x1, x2). Choosing σ = µ = 1 leads to the heat equation,





∂
∂tu(x, t) − ∆u(x, t) = f(x, t) for x ∈ Ω, 0 < t ≤ T,

u(x, t) = 0 for x ∈ Γ, 0 < t ≤ T,

u(x, 0) = u0(x) for x ∈ Ω,
(73.23)

where Ω ⊂ R
2 with boundary Γ, and we posed homogeneous Dirichlet

boundary conditions. In the stationary case, we again obtain Poisson’s
equation with Dirichlet boundary conditions.

73.11 Gravitation

In his famous treatise Mécanique Céleste in five volumes published during
1799–1825, Laplace extended Newton’s theory of gravitation and in partic-
ular developed a theory for describing gravitational fields based on using
gravitational potentials that satisfy Laplace’s equation, or more generally
Poisson’s equation.

We consider a gravitational field in R
3 with gravitational force F (x) at

position x, generated by a distribution of mass of density ρ(x). We recall
that the work of a unit mass, moving along a curve Γ is given by

∫

Γ

F · ds,

If the curve Γ is closed, then the total work performed by the gravitational
forces should be zero. Stokes’ theorem implies that a gravitational field F
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should satisfy ∇× F = 0. Using the basic result of the Chapter Potential
fields, we conclude that F is the gradient of a scalar potential ϕ, i.e.

F (x) = ∇ϕ(x). (73.24)

Laplace proposed the following relation between the gravitational field F
and the mass distribution ρ,

−∇ · F (x) = ρ(x), (73.25)

assuming the gravitational constant is normalized to one. This is analogous
to Coulomb’s law ∇·E = ρ in electrostatics and also to the energy balance
equation ∇ · q = f for stationary heat conduction, where q is the heat
flux and f a heat source. In particular, (73.25) states that ∇ · F (x) = 0
at points x where there is no mass so that ρ(x) = 0. Combining (73.24)
and (73.25), we obtain Poisson’s equation −∆ϕ = ρ for the gravitational
potential ϕ.

Since the origin and property of gravitation of “acting at a distance” is
still lacking a convincing physical explication, the equation −∇·F (x)=ρ(x)
including ∇ · F = 0 in empty space, should be viewed as a basic postulate
on the nature of a gravitational field. Of course it seems very difficult to
motivate that ∇·F should be something different from zero in empty space,
but a real a “proof” that ∇ · F must be zero in empty space seems to be
missing.

Newton considered gravitational fields generated by point masses. Math-
ematically, a unit point mass at a point z ∈ R

3 is represented by the so-
called delta function δz at z, defined by the property that for any smooth
function v, ∫

R3
δz v dx = v(z), (73.26)

where the integration is to be interpreted in a generalized sense. We could
think of a δz as a limit of positive functions ϕh(x) such that ϕh(x) = 0 if
‖x− z‖ > h and

∫

R3
ϕh(x) dx = 1,

as h tends to zero. For example we may choose

ϕh(x) =
3

4πh3
if ‖x− z‖ < h

and ϕh(x) = 0 elsewhere. If v(x) is Lipschitz continuous at z, then

limh→0

∫

R3
ϕh(x)v(x) dx = v(z),
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which gives (73.26) its meaning. The function ϕh(x) represents a very tall
and narrow “hump” around z with volume one.

We expect that the gravitational potential Φ(x) corresponding to a unit
point mass at the origin, to satisfy

−∆Φ = δ0 in R
3, (73.27)

assuming the gravitational constant to be equal to one. To give a precise
meaning to this equation involving the somewhat mysterious delta func-
tion δ0 at 0, we first formally multiply by a smooth test function v vanishing
outside a bounded set to get

−
∫

R3
∆Φ(x)v(x) dx = v(0). (73.28)

Next, we integrate the left-hand side by parts formally using Green’s for-
mula to move the Laplacian from E to v, noting that the boundary terms
disappear since v vanishes outside a bounded set. We may thus reformulate
(73.27) as seeking a potential E(x) satisfying

−
∫

R3
Φ(x)∆v(x) dx = v(0), (73.29)

for all smooth functions v(x) vanishing outside a bounded set. We may
view this as the concrete interpretation of (73.27), which is perfectly well
defined since now the Laplacian acts on the smooth function v(x) and the
potential Φ is assumed to be integrable. We also require the potential Φ(x)
to decay to zero as ‖x‖ tends to infinity, which corresponds to a “zero
Dirichlet boundary condition at infinity”.

In the Chapter The divergence, rotation and Laplacian, we showed that
the function 1/‖x‖ satisfies Laplace’s equation ∆u(x) = 0 for 0 �= x ∈ R

3,
while it is singular at x = 0. We shall prove that the following scaled version
of this function satisfies (73.29):

Φ(x) =
1
4π

1
‖x‖ . (73.30)

We refer to this function as the fundamental solution of −∆ in R
3. We

conclude in particular that the gravitational field in R
3 created by a unit

point mass at the origin is given by

F (x) = ∇Φ(x) = − 1
4π

x

‖x‖3
,

which is precisely Newton’s inverse square law of gravitation. Laplace thus
gives a motivation why the exponent should be two, which Newton did
not (and therefore was criticized by Leibniz). Of course, it still remains to
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motivate (73.25). In the context of heat conduction, the fundamental so-
lution E(x) represents the stationary temperature in a homogeneous body
with heat conductivity equal to one filling the whole of R

3, subject to
a concentrated heat source of strength one at the origin and with the tem-
perature tending to zero as ‖x‖ tends to infinity.

We now prove that the function Φ(x) defined by (73.30) satisfies (73.29).
We first note that since ∆v is smooth and vanishes outside a bounded set
and Φ(x) is integrable over bounded domains,

∫

R3
Φ∆v dx = lim

a→0+

∫

Da

Φ∆v dx, (73.31)

where Da = {x ∈ R
3 : a < ‖x‖ < a−1}, with a small positive, is a bounded

region obtained from R
3 by removing a little sphere of radius a with bound-

ary surface Sa and also points further away from the origin than a−1, see
Fig. 73.10. We now use Green’s formula on Da with w = Φ. Since v is
zero for ‖x‖ large, the integrals over the outside boundary vanish when a
is sufficiently small. Using the fact that ∆Φ = 0 in Da, Φ = 1/(4πa) on Sa

and ∂Φ/∂n = 1/(4πa2) on Sa with the normal pointing in the direction of
the origin, we obtain

−
∫

Da

Φ∆v dx =
∫

Sa

1
4πa2

v ds−
∫

Sa

1
4πa

∂v

∂n
ds = I1(a) + I2(a),

with the obvious definitions of I1(a) and I2(a). Now, lima→0 I1(a) = v(0)
because v(x) is continuous at x = 0 and the surface area of Sa is equal
to 4πa2, while lima→0 I2(a) = 0. The desired equality (73.29) now follows
recalling (73.31).

The corresponding fundamental solution of −∆ in R
2 is given by

Φ(x) =
1
2π

log
(

1
‖x‖

)

. (73.32)

In this case the fundamental solution is not zero at infinity.

Da

Sa

a

a−1

Fig. 73.10. A cross-section of the domain Da
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Replacing 0 by an arbitrary point z ∈ R
3, (73.29) becomes

−
∫

R3
Φ(z − x)∆v(x) dx = v(z), (73.33)

which leads to a solution formula for Poisson’s equation in R
3. For example,

if u satisfies the Poisson equation −∆u = f in R
3 and |u(x)| = O(‖x‖−1)

as ‖x‖ → ∞, then u may be represented in terms of the fundamental
solution Φ and the right-hand side f as follows:

u(z) =
∫

R3
Φ(z − x)f(x) dx =

1
4π

∫

R3

f(x)
‖z − x‖ dx. (73.34)

We see that u(z) is a mean value of f centered around z weighted so that
the influence of the values of f(x) is inversely proportional to the distance
from z.

Similarly, the potential u resulting from a distribution of mass of den-
sity ρ(x) on a (bounded) surface Γ in R

3 is given by

u(z) =
1
4π

∫

Γ

ρ(x)
‖z − x‖ ds(x). (73.35)

Formally, we obtain this formula by simply adding the potentials from
all the different pieces of mass on Γ. One can show that the potential u
defined by (73.35) is continuous in R

3 if ρ is bounded on Γ, and of course u
satisfies Laplace’s equation away from Γ. Suppose now that we would like
to determine the distribution of mass ρ on Γ so that the corresponding
potential u defined by (73.35) is equal to a given potential u0 on Γ, that
is we seek in particular a function u solving the boundary value problem
∆u = 0 in Ω and u = u0 on Γ, where Ω is the volume enclosed by Γ. This
leads to the following integral equation: given u0 on Γ find the function ρ
on Γ such that

1
4π

∫

Γ

ρ(y)
‖x− y‖ ds(y) = u0(x) for x ∈ Γ. (73.36)

This is a Fredholm integral equation of the first kind, named after the
Swedish mathematician Ivar Fredholm (1866–1927). In the beginning of
the 20th century, Fredholm and Hilbert were competing to prove the exis-
tence of solutions of the basic boundary value problems of mechanics and
physics using integral equation methods. The integral equation (73.36) is
an alternative way of formulating the boundary value problem of finding u
such that ∆u = 0 in Ω, and u = u0 on Γ. Integral equations may also be
solved using Galerkin methods.

73.12 The Eigenvalue Problem for the Laplacian

The eigenvalue problem for the Laplace operator with Dirichlet boundary
conditions on a domain Ω in R

d with boundary Γ takes the form: Find
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nonzero eigen-functions ϕ(x) with corresponding eigenvalues λ such that

{
−∆ϕ = λϕ in Ω,
ϕ = 0 on Γ.

(73.37)

In the one-dimensional case with Ω = (0, π), the eigenfunctions are (modulo
normalization) ϕn(x) = sin(nx) with corresponding eigenvalues λn = n2,
n = 1, 2, . . .. For a two-dimensional square Ω = (0, π) × (0, π), the eigen-
functions are ϕnm(x1, x2) = sin(nx1) sin(mx2), n,m = 1, 2, . . . , with eigen-
values λnm = n2 +m2.

It follows by multiplication of (73.37) by ϕ and integration by parts,
that all eigenvalues λ are positive. More precisely, there is an increasing se-
quence of eigenvalues tending to infinity, and eigenfunctions corresponding
to different eigenvalues are orthogonal with respect to the scalar product
(v, w) =

∫
Ω
vw dx.

If ϕ(x) is an eigenfunction with corresponding eigenvalue λ, then the (real
part of the) function u(x, t) = exp(it

√
λ)ϕ(x) solves the homogeneous wave

equation

ü− ∆u = 0 in Ω × R

corresponding to a vibrating elastic membrane (drum head) if d = 2 (string
if d = 1). The smallest eigenvalue corresponds to the basic tone of the drum
head.

In Fig. 73.11, we show contour plots for the first four eigenfunctions,
corresponding to λ1 ≈ 38.6, λ2 ≈ 83.2, λ3 ≈ 111., and λ4 ≈ 122., in
a case where Ω corresponds to the lid of a guitar with Dirichlet boundary
conditions on the outer boundary, described as an ellipse, and Neumann
boundary conditions at the hole in the lid,

Often the smaller eigenvalues are the most important in considerations of
design. This is the case for example in designing suspension bridges, which
must be built so that the lower eigenvalues of vibrations in the bridge are
not close to possible wind-induced frequencies. This was not well under-
stood in the early days of suspension bridges which caused the famous
collapse of the Tacoma bridge in 1940.

The smallest eigenvalue is equal to the minimum value of the Rayleigh
quotient

(∇ψ,∇ψ)
(ψ, ψ)

,

when varying over functions ψ satisfying the boundary conditions. More,
generally, the eigenvalues corresponds to stationary values of the Rayleigh
quotient.

TS
b Can this dot be deleted?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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(a) (b)

(d) (c)

Fig. 73.11. Contour plots of the first four eigenfunctions of the guitar lid corre-
sponding to (a) λ1 ≈ 38.6, (b) λ2 ≈ 83.2, (c) λ3 ≈ 111.TS

b , and (d) λ4 ≈ 122.TS
b .

These were computed with Femlab with a fixed mesh size of diameter .02

73.13 Quantum Mechanics

The two most revolutionary achievements of physics during the 20th cen-
tury was the development of of the Theory of General Relativity for Gravita-
tion on astronomic scales by Einstein, and Quantum Mechanics for atomic
scales by Schrödinger (1887–1961, Nobel Prize in Physics 1933), see
Fig. 73.12. Einstein never fully accepted Quantum Mechanics, and the
Grand Unified Theory connecting Gravitation and Quantum Mechanics is
still missing, with String Theory being a recent attempt to fill the gap.

The basic equation of Quantum Mechanics is the Schrödinger equation,
which for a system of N electrons (with the Born-Oppenheimer approxi-
mation) takes the following normalized form:

i
∂ϕ

∂t
= Hϕ =



−1
2

∑

j

∆j + V (r1, . . . , rN )



ϕ, (73.38)

where ϕ = ϕ(r1, . . . , rN , t) is a wave function depending on the set of space
coordinates (r1, . . . , rN ) with each rj varying over R

3, together with time t,
∆j denotes the Laplacian with respect to the coordinate rj ∈ R

3, and
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Fig. 73.12. Schrödinger (1887–1961) at age 13: “I was a good student in all
subjects, loved mathematics and physics, but also the strict logic of the ancient
grammars, hated only memorizing incidental dates and facts. Of the German
poets, I loved especially the dramatists, but hated the pedantic dissection of this
works”

V (r1, . . . , rN ) denotes a potential depending on (r1, . . . , rN ) representing re-
pulsive Coulomb forces between the electrons and attractive Coulomb forces
between the electrons and the (fixed) nuclei of the system,
H = − 1

2

∑
j ∆j + V is the Hamiltonian representing a sum of kinetic and

potential energies, and i denotes the imaginary unit. The wave function
is complex-valued and the square of its modulus represents an electron
probability density.

The Schrödinger equation appears to give a very good description of phe-
nomena on atomistic scales, but unfortunately it is not easy to deal with
because of the large number of spatial dimensions involved: For a system
with 100 electrons, which is still very small, the number of space dimensions
is equal to 300, and standard techniques for either analytical or numerical
solution fall very short. So, although the Schrödinger equation admittedly
is a very beautiful equation which gives a surprisingly concise description
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of atomistic physics, it is certainly impossible to solve exactly analytically,
and approximate solution becomes a key issue. The 1998 Nobel Prize in
Chemistry was awarded Robert Kohn for his method for approximate so-
lution of the Schrödinger equation based on using a single electron den-
sity function with the space dependence restricted to R

3, independent of
the number of electrons, and corresponding approximate potentials. Such
simplified Schrödinger equations, referred to as Kohn-Sham equations, are
today used extensively in computational chemistry.

The Hydrogen Atom

The Hydrogen atom consisting of one electron and one neutron is the only
case in which analytical solution of the Schrödinger equation is feasible:
In this case the Schrödinger equation takes the following (normalized)
form assuming the neutron is positioned at the origin: Find the wave func-
tion ϕ(x, t) with x ∈ R

3, such that for t > 0

i
∂ϕ

∂t
=

(

−1
2
∆ + V

)

ϕ in R
3, (73.39)

where ∆ is the usual Laplacian with respect to x, V (x) = − 1
|x| is the

Coulomb potential of the proton, with the normalization that
∫

R3
|ϕ(x, t)|2 dx = 1 for t > 0.

For a domain Ω ∈ R
3, the integral

∫

Ω

|ϕ(x, t)|2 dx

represents the probability to find the electron in the domain Ω at time t.
Formally, − 1

2∆ corresponds to the kinetic energy p2

2m with p the momentum
and m the mass, replacing p by −i∇ and setting m = 1.

In the time-harmonic case with a time-dependence of the form exp(−iωt)
with frequency ω, this leads to the eigenvalue problem: Find ϕ(x) �= 0 and
ω ∈ R such that

Hϕ = ωϕ, (73.40)

with H = − 1
2∆ +V the Hamiltonian and the eigenvalue ω representing an

energy level. The eigenvalues are real and the (real) eigenfunction corre-
sponding to the smallest eigenvalue (smallest energy) is referred to as the
ground state and the eigenfunctions corresponding to larger eigenvalues as
bound states.

Assuming spherical symmetry (73.40) takes the following form in spher-
ical coordinates with r the radius: Find ϕ(r) such that

−1
2
d2ϕ

dr2
− 1
r

dϕ

dr
− 1
r
ϕ = ωϕ for r > 0,
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with the side condition that ϕ(0) is finite and ϕ(x) is square integrable
over R

3. The ground state is given by the eigenfunction ϕ(r) = exp(−r)
corresponding to the eigenvalue ω = − 1

2 .

Chapter 73 Problems

73.1. Interpret the fixed point iteration for Poisson’s equation as an explicit
time stepping scheme for the heat equation du

dt
− ∆u = f with time step αh2

with the starting value given by the initial approximation U0. Explain why the
convergence is slow if h is small.

73.2. Consider a horizontal elastic membrane spanned over a circular ring with
constant tension H in all directions in unloaded configuration. Discuss under
what conditions the membrane can carry a non-zero volume of water and try to
compute the volume.

73.3. Prove that (73.32) is a fundamental solution of −∆ in R
2.

73.4. Because the presented mathematical models of heat flow and gravitation,
namely Poisson’s equation, are the same, it opens the possibility of thinking of
a gravitational potential as “temperature” and a gravitational field as “heat flux”.
Can you “understand” something about gravitation using this analogy?

73.5. Present the integral equation corresponding to (73.36) in the case d = 2.

73.6. What equation is obtained if ∂D/∂t is not neglected in the setting of
time-dependent magnetics, but the x3 independence is kept?

73.7. Derive the heat equation describing the heat conduction in a thin piece
of wire of length one whose ends are kept at a fixed temperature (i.e., derive the
heat equation in one dimension):






u̇− u′′ = f in (0, 1) × (0, T ],

u(0, t) = u(1, t) = 0 for t ∈ (0, T ],

u(x, 0) = u0(x) for x ∈ (0, 1).

(73.41)

73.8. Let F (x) be the gravitational field generated by a homogeneous ball of mass
m occupying the volume {x ∈ R

3 : ‖x‖ ≤ r}, satisfying ∇F (x) = ρ for ‖x‖ < r
and ∇F (x) = 0 for ‖x‖ > r, where ρ is the density of the sphere. Argue that by
symmetry F (x) = f(‖x‖) −x

‖x‖ for ‖x‖ > r for some function f : (0,∞) → R. Use
the Divergence theorem to see that if R > r then

∫

SR

F (x) · ndS = 4πR2f(R) =

∫

BR

∇F (x) dx = m,

where SR is the boundary of the ball BR = {x ∈ R
3 : ‖x‖ ≤ R}. Conclude that

f(R) = m
4πR2 , and thus that F (x) = m

4π
−x
‖x‖3 for ‖x‖ > r. This gives an alternative

way of handling of Newton’s nightmare. Note the change of normalization with
the factor 1/4π appearing here.
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73.9. To analyze the convergence of the fixed point iteration for the system of
equations (73.15), we need to show that ‖I − αA‖ < 1, where A = (aij) is the
(N − 1) × (N − 1) matrix with aii = 2, ai,i−1 = ai−1,i = −1 and aij = 0 if
|i − j| > 1. Since A is symmetric, we have recalling the Chapter The Spectral
Theorem:

‖I − αA‖ = max
i

|1 − αλi|,

where λi, i = 1, . . . , N − 1, are the eigenvalues of A. To see this, diagonalize.
Prove that for all nonzero V ∈ R

N−1

AV · V =

N−1∑

i,j=1

aijViVj > 0,

and conclude that λi > 0 for all i (Hint: complete squares!). Show similarly that
for all V ∈ R

N−1

(I − αA)V · V ≥ 0

if α ≤ 1
4

(Hint: same as before!). Conclude that Fixed point iteration converges
if 0 < α ≤ 1

4
. Can you prove convergence if α < 1

2
? What about convergence

if α < 0? Hint: Use that if A is a symmetric m × m matrix with eigenvalues
λ1 ≤ λ2 ≤ . . . ≤ λm, then λ1 = minV ∈Rm(AV · V )/(V · V ) and
λm = maxV ∈Rm(AV · V )/(V · V ), where V �= 0.

73.10. Extend the above analysis to the 5-point scheme for the Laplacian and
show that fixed point iteration converges if 0 < α < 1

8
(or better α < 1

4
).

73.11. Gather some friends and arrange them in a square regular grid, and ask
them to keep updating their own value according to a Svensson’s formula as the
mean value of their neighbors (starting with zero), and assigning certain given
values to the people at the boundary. Collect the values obtained after conver-
gence. You have solved Laplace equation on a square with Dirichlet boundary
values numerically. What value of α in fixed point iteration did you effectively
use?

73.12. Prove Bernoulli’s theorem stating that in stationary Euler flow satisfying
(u · ∇)u+ ∇p = 0 the quantity 1

2
‖u|2 + p is constant along streamlines.

73.13. Explain the Magnus effect causing a top-spin tennis ball curve downwards
(see also Chapter Analytic functions).

73.14. Prove that the hydrogen atom is stable in the sense that the Rayleigh
quotient

RQ(ψ) =
1
2

∫
Ω
|∇ψ|2 dx−

∫
Ω
ψ2/r dx

∫
Ω
ψ2 dx

,

satisfies
min
ψ∈V

RQ(ψ) ≥ −2,
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showing that the electron does not fall into the proton. Hint: estimate
∫
Ω
ψ ψ
r

using Cauchy’s inequality and the following Poincaré inequality for functions
ψ ∈ V : ∫

Ω

ψ2

r2
dx ≤ 4

∫

Ω

|∇ψ|2 dx. (73.42)

This shows that the potential energy cannot outpower the kinetic energy in the
Rayleigh quotient. To prove the last inequality, use the representation

∫

Ω

ψ2

r2
dx = −

∫

Ω

2ψ∇ψ · ∇ ln(|x|) dx.

resulting from Green’s formula, together with Cauchy’s inequality.

73.15. (a) Show that the eigenvalue problem for the hydrogen atom for eigen-
functions with radial dependence only, may be formulated as the following one-
dimensional problem

−1

2
ϕrr −

1

r
ϕr −

1

r
ϕ = λϕ, r > 0, ϕ(0) finite,

∫

R

ϕ2r2 dr <∞, (73.43)

where ϕr =
dϕ

dr
. (b) Show that ψ(r) = exp(−r) is an eigenfunction corresponding

to the eigenvalue λ = − 1
2
. (b) Is this the smallest eigenvalue? (c) Determine λ2

and the corresponding eigenfunction by using a change of variables of the form
ϕ(r) = v(r) exp(− r

2
). (d) Solve (73.43) numerically.

The idea of the continuum seems simple to us. We have somehow lost
sight of the difficulties it implies . . .We are told such a number as
the square root of 2 worried Pythagoras and his school almost to ex-
haustion. Being used to such queer numbers from early childhood, we
must be careful not to form a low idea of the mathematical intuition
of these ancient sages; their worry was highly credible. (Schrödinger)



74
Chemical Reactions*

We already know the laws that govern the behavior of matter un-
der all but the most extreme situations. In particular, we know the
basic laws that underlie all of chemistry and biology. Yet we have
certainly not reduced these objects to the status of solved problems;
we have, as yet, had little success in predicting human behavior from
mathematical equations. So even if we do find a complete set of basic
laws, there will still be in the years ahead the intellectual challeng-
ing task of developing better approximation methods, so that we can
make useful predictions of the probable outcomes in complicated and
realistic situations. (S. Hawking in A Brief History of Time)

It is especially difficult to find exact solutions of the equations, as
the equations (Einstein’s equations) are non-linear. (Einstein)

Inasmuch as a propagating flame may be considered as a wave of
chemical reactions sweeping across a flowing gas, it offers an excellent
proving ground for the analytical skills of a fluid dynamicist, a heat
and mass transfer specialist and a physical chemist, all put together
into a well-rounded applied mathematician. (M. Kanury)

74.1 Constant Temperature

We consider N different chemical species A1, . . . , AN , which participate
in J reactions with stoichiometric (positive) integer coefficients νn,j for
species n appearing as reactant in reaction j and λn,j for species n appear-
ing as product in reaction j (with the coefficients being zero if the species
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is not a reactant or product). This is commonly expressed as

N∑

n=1

νn,jAn →
N∑

n=1

λn,jAn for j = 1, . . . , J. (74.1)

We say that the order of reaction j is equal to
∑N

n=1 νn,j. We denote the
molar concentration (expressed in moles per unit volume) of species An

by cn. The reaction rate rj of reaction j is supposed to be given by

rj = kj(T )
N∏

m=1

cνm,j
m ,

where the reaction coefficient or Arrhenius factor kj(T ) is given by

kj(T ) = BjT
αj exp

(

− Ej

RT

)

,

with Ej > 0 representing the activation energy, BjT
αj representing the

frequency factor, Bj and αj are positive constants, the absolute tempera-
ture T is assumed to be the same for all species, and R is the gas constant.
The basic idea behind the product formula

∏N
m=1 c

νm,j
m is that the reaction

rate is proportional to the molar concentrations of the reactants with each
reactant Am counted νm,j times. The Arrhenius factor is small if T is below
some threshold value corresponding to the quotient Ej

RT being moderately
large.

The net production rate (moles per volume per unit time) of species An

in reaction j is given by αn,jrj , where

αn,j = λn,j − νn,j ,

and the total net production rate sn of species n is given by

sn =
J∑

j=1

αn,jrj .

We now assume that the temperature T is constant and is given, and we
seek the vector of concentration c(t) = (c1(t), . . . , cN(t)) as a function of
time t describing the dynamics of the set of reactions for t > 0, assuming
that c(0) = c0, where c0 = (c01, . . . , c

0
N) is a given vector of initial concentra-

tions. Using the balance equation ċn = sn for each species n = 1, 2, . . . , N ,
we obtain the following initial value problem for a system of ordinary dif-
ferential equations: Find c(t) = (c1(t), . . . , cN(t)) such that

{
ċn(t) =

∑J
j=1 αn,jkj(T )

∏N
m=1 cm(t)νm,j for t > 0, n = 1, . . . , N,

c(0) = c0.

(74.2)
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This is an initial value problem of the form u̇(t) = f(u(t)) for t > 0,
u(0) = u0, where u(t) = c(t) and f : R

N → R
N is a given function.

An Equilibrium for a given temperature T corresponding to ċn(t) = 0 for
t > 0, n = 1, . . . , N , is characterized by the algebraic system of equations

J∑

j=1

αn,jkj(T )
N∏

m=1

cνm,j
m = 0 n = 1, . . . , N, (74.3)

corresponding to the equation f(u) = 0.

Example 74.1. The reaction

2NO + Cl2 → 2NOCl,

can be put in the form (74.1) with A1 = NO, A2 = Cl2, A3 = NOCl,
N = 3, J = 1, ν1,1 = 2, ν2,1 = 1, ν3,1 = 0, λ1,1 = 0, λ2,1 = 0, λ3,1 = 2,
α1,1 = −2, α2,1 = −1, and α3,1 = 2.

Example 74.2. The two reactions

2NO + Cl2 →k1 2NOCl,

2NOCl →k2 2NO + Cl2,

can be put in the form (74.1) with A1 = NO, A2 = Cl2, A3 = NOCl,
N = 3, J = 2, ν1,1 = 2, ν2,1 = 1, ν3,1 = 0, λ1,1 = 0, λ2,1 = 0, λ3,1 = 2,
α1,1 = −2, α2,1 = −1, α3,1 = 2, ν1,2 = 0, ν2,2 = 0, ν3,2 = 2, λ1,2 = 2,
λ2,2 = 1, λ3,2 = 0, α1,2 = 2, α2,2 = 1, and α3,2 = −2. Equilibrium is
characterized by

k1c
2
1c2 = k2c

2
3, or

c21c2
c23

=
k2

k1
.

Example 74.3. An ideal first order tank reactor is modeled by the equation

qc0 − V kc = qc,

where c0 is the reactant concentration at inflow, c is the concentration in
the reactor, q is the inflow (= outflow) rate, V is the volume of the reactor
and k is a reaction coefficient. The equation expresses that the (rate of)
reactant inflow minus the reactant consumed in the reaction is equal to the
reactant outflow. Introducing τ = V

q , which is the time the reactant stays
in the reactor, we get

c =
c0

1 + τk
.

The efficiency of the reactor is given by

η =
c0 − c

c0
=

τk

1 + τk
=

1
1 + 1

τk

.

We see in particular that the efficiency decreases as τ decreases.
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Example 74.4. An ideal first order tube reactor occupying the interval (0, 1),
which may be viewed as a set of ideal first order tank reactors coupled in
series, is modeled by

qc(x) −A∆xkc(x) = qc(x+ ∆x) for 0 < x < 1,

where q is the (constant) flow rate, A the cross section of the tube, and ∆x
is a small increment in x. Dividing by ∆x and letting ∆x tend to zero leads
to the initial value problem of finding the concentration c(x) for 0 ≤ x ≤ 1
such that

dc

dx
= −τkc for 0 < x ≤ 1, c(0) = c0,

where τ = A
q . The solution is given by c(x) = c0e−τkx, and the efficiency

η = c0−c(1)
c0 = 1 − e−τk. Using the fact that x

1+x < 1 − e−x for x > 0,
it follows that the ideal tube reactor is more efficient than the ideal tank
reactor.

74.2 Variable Temperature

Suppose now that the temperature T (t) is variable with time t, and is un-
known along with the concentrations c1(t), . . . , cN(t). The heat of reaction
of reaction j is given by

(

−
N∑

m=1

αm,jhm

)

rj ,

where hm is the molar enthalpy of species Am. The heat of reaction is pos-
itive for an exothermic reaction and negative for an endothermic reaction.

The problem is now to find c(t) = (c1(t), . . . , cN (t)) and T (t) for t > 0
such that





ċn =
∑J

j=1 αn,jkj(T )
∏N

m=1 c
νm,j
m , t > 0, n = 1, . . . , N,

CpṪ =
∑J

j=1(−
∑N

m=1 αm,jhm)kj(T )
∏N

m=1 c
νm,j

j ,

c(0) = c0, T (0) = T 0, (74.4)

where c0 = (c01, . . . , c0N ) and T 0 are given initial concentrations and tem-
perature, and Cp is the specific heat of the mixture of species.

74.3 Space Dependence

Adding spacial dependence in a domain Ω in R
3, we are led to the following

model: Find c(x, t) = (c1(x, t), . . . , cN (x, t)) and T (x, t) for x ∈ Ω, t > 0,
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such that





ċn + ∇ · (cnβ) −∇ · (εn∇cn)

=
∑J

j=1 αn,jkj(T )
∏N

m=1 c
νm,j
m for x ∈ Ω, t > 0, n = 1, . . . , N,

CpṪ + ∇ · (CpTβ) −∇ · (ε0∇T )

=
∑J

j=1(−
∑N

m=1 αm,jhm)kj(T )
∏N

m=1 c
νm,j
m for x ∈ Ω, t > 0,

c(x, 0) = c0, T (x, 0) = T 0 for x ∈ Ω, (74.5)

where β(x, t) is a given convection velocity, and the εn are given diffu-
sion coefficients. The system is complemented by boundary conditions of
Dirichlet, Neumann or Robin type for each equation.

Example 74.5. A stationary one species constant temperature first order
reaction with constant diffusion and zero convection is modeled in dimen-
sionless form by the equation

∆u = ϕ2u in Ω,

together with Dirichlet, Neumann or Robin boundary conditions,
where ϕ is the Thiele modulus, and Ω is a domain in R

d, d = 1, 2, 3.
A quantity of interest as a function of Ω, the reaction coefficient ϕ2 and
the boundary conditions, is the total production

∫
Ω u(x) dx.

Example 74.6. A simple model for flame propagation in a channel takes
the form






u̇1 − ∆u1 + β1
∂u1

∂x1
= u2f(u1) x ∈ Ω, t > 0,

u̇2 − ∆u2 + β1
∂u2

∂x1
= −u2f(u1) x ∈ Ω, t > 0, x ∈ Ω,

(74.6)

together with appropriate boundary conditions, where Ω = R × (0, 1), u1

represents temperature, u2 represents a reactant concentration, β1 is the
velocity of the reactant in the x1 direction, and u2f(u1) represents a re-
action rate with f : R

+ → R
+ given. With a proper choice of β1 we may

seek a stationary solution with u̇ = 0 corresponding to a propagating flame
front.

Example 74.7. A basic model for combustion in a domain Ω in R
3 takes

the form: Find the concentration c and temperature T such that:
{
ċ− ε1∆c = −B1e

− E
RT c, x ∈ Ω, t > 0,

Ṫ − ε0∆T = B0e
− E

RT c x ∈ Ω, t > 0,
(74.7)

together with, say, homogeneous Neumann boundary conditions, and with
B0 and B1 positive constants. Depending on the activation energy E and
initial conditions, the process may be fast or slow locally in space and time.
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Axiom 1: All bodies are either in motion or at rest.
Axiom 2: Each single body can move at varying speeds.
Lemma 1: Bodies are distinguished from one another in respect of
motion and rest, quickness and slowness, and not in respect of sub-
stance.
Lemma 2: All bodies agree in certain respects.
Lemma 3: A body in motion or at rest must have been determined to
motion or rest by another body, which likewise has been determined
to motion or rest by another body, and that body by another, and
so ad infinitum.
. . .
Lemma 6: If certain bodies composing an individual thing are made
to change the existing direction of their motion, but in such a way
that they can continue their motion and keep the same mutual re-
lation as before, the individual thing will likewise preserve the same
mutual relation as before, the individual thing will likewise preserve
its own nature without change of form.
(Spinoza 1632–1677, Ethica II)
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Calculus Tool Bag II

Timeo hominem unius libri. (St. Thomas of Aquino)

75.1 Introduction

We here collect the basic tools of Calculus of functions f : R
n → R

m, that is
Calculus of vector-valued functions of several real variables. The Euclidean
norm of a vector x = (x1, . . . , xn) ∈ R

n is denoted by ‖x‖ =
∑n

i=1 x
2
i .

75.2 Lipschitz Continuity

A function f : A → R
m with a subset of R

n is Lipschitz continuous on A
if there is a constant L such that

‖f(x) − f(y)‖ ≤ L‖x− y‖ for all x, y ∈ A.

75.3 Differentiability

A function f : A → R
m is differentiable at x̄ ∈ A, where A is an open

subset of R
n, if there is a m × n matrix f ′(x̄), called the Jacobian of the

function f(x) at x̄, and a constant Kf (x̄), such that for all x ∈ A close
to x̄,

f(x) = f(x̄) + f ′(x̄)(x − x̄) + Ef (x, x̄),
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where Ef (x, x̄) is an m-vector satisfying ‖Ef (x, x̄)‖ ≤ Kf (x̄)‖x− x̄‖2. We
say that f : A → R

m is uniformly differentiable on A if the constant
Kf(x̄) = Kf can be chosen independently of x̄ ∈ A. We write f ′ = ∇f
if m = 1 and call ∇f the gradient of f .

75.4 The Chain Rule

If g : R
n → R

m is differentiable at x̄ ∈ R
n, and f : R

m → R
p is differen-

tiable at g(x̄) ∈ R
m and further g : R

n → R
m is Lipschitz continuous, then

the composite function f ◦ g : R
n → R

p is differentiable at x̄ ∈ R
n with

Jacobian

(f ◦ g)′(x̄) = f ′(g(x̄))g′(x̄).

75.5 Mean Value Theorem for f : R
n → R

If f : R
n → R is differentiable on R

n with a Lipschitz continuous gradient
∇f , then for given x and x̄ in R

n, there is y = x+ t̄(x− x̄) with t̄ ∈ [0, 1],
such that

f(x) − f(x̄) = ∇f(y) · (x− x̄).

75.6 A Minimum Point Is a Stationary Point

If x̄ ∈ R
n is a local minimum point of a differentiable function f : R

n → R,
that is, f(x̄) ≤ f(x) for all x close to x̄, then ∇f(x̄) = 0.

75.7 Taylor’s Theorem

If f : R
n → R is twice differentiable with Lipschitz continuous Hessian

H = (hij) with elements hij = ∂2f
∂xi∂xj

, then, for given x and x̄ ∈ R
n, there

is y = x+ t̄(x − x̄) with t̄ ∈ [0, 1], such that

f(x) = f(x̄) + ∇f(x̄) · (x− x̄) +
1
2

n∑

i,j=1

∂2f

∂xi∂xj
(y)(xi − x̄i)(xj − x̄j)

= f(x̄) + ∇f(x̄) · (x− x̄) +
1
2
(x− x̄)	H(y)(x− x̄).
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75.8 Contraction Mapping Theorem

If g : R
n → R

n is Lipschitz continuous with Lipschitz constant L < 1,
then the equation x = g(x) has a unique solution x̄ = limi→∞ x(i), where
{x(i)}∞i=1 is a sequence in R

n generated by Fixed Point Iteration: x(i) =
g(x(i−1)), starting with any initial value x(0).

75.9 Inverse Function Theorem

Let f : R
n → R

n and assume the coefficients of f ′(x) are Lipschitz contin-
uous close to x̄ and f ′(x̄) is non-singular. Then for y sufficiently close to
ȳ = f(x̄), the equation f(x) = y has a unique solution x. This defines x as
a function x = f−1(y) of y.

75.10 Implicit Function Theorem

If f : R
n×R

m → R
n with f(x, y) ∈ R

n and x ∈ R
n and y ∈ R

m, f(x̄, ȳ) = 0,
and the Jacobian f ′

x(x, y) with respect to x is Lipschitz continuous for x
close to x̄ and y close to ȳ, and f ′

x(x̄, ȳ) is non-singular, then for y close to ȳ,
the equation f(x, y) = 0 has a unique solution x = g(y), which defines x
as a function g(y) of y.

75.11 Newton’s Method

If x̄ is a root of f : R
n → R

n such that f(x) is uniformly differentiable
with a Lipschitz continuous derivative close to x̄ and f ′(x̄) is non-singular,
then Newton’s method x(i+1) = x(i)−f ′(x(i))−1f(x(i)) for solving f(x) = 0
converges quadratically if started sufficiently close to x̄.

75.12 Differential Operators

Gradient of a function u : R
d → R:

grad u = ∇u =
(
∂u

∂x1
,
∂u

∂x2
, . . . ,

∂u

∂xd

)

.

Divergence of a vector function u : R
d → R

d:

div u = ∇ · u =
d∑

i=1

∂ui

∂xi
.
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Rotation of a vector function u : R
3 → R

3:

rot u = ∇× u =
(
∂u3

∂x2
− ∂u2

∂x3
,
∂u1

∂x3
− ∂u3

∂x1
,
∂u2

∂x1
− ∂u1

∂x2

)

.

Laplacian of a function u : R
d → R:

∆u = ∇ · (∇u) = div (grad u) =
d∑

i=1

∂2u

∂x2
i

.

Identities:

∇ · (∇× u) = 0,
∇× (∇u) = 0,

∇× (∇× u) = −∆u+ ∇(∇ · u).

Laplacian in R
2 in polar coordinates x = (x1, x2) = (r cos(θ), r sin(θ)):

∆u =
1
r

∂

∂r

(

r
∂u

∂r

)

+
1
r2
∂2u

∂θ2
.

Laplacian in spherical coordinates
x = (r sin(ϕ) cos(θ), r sin(ϕ) sin(θ), r cos(ϕ)):

∆u =
1
r2

∂

∂r

(

r2
∂u

∂r

)

+
1

r2 sin(θ)
∂

∂θ

(

sin(θ)
∂u

∂θ

)

+
1

r2 sin2(θ)
∂2u

∂ϕ2
.

The Laplacian is invariant under orthogonal coordinate transformations
in R

d.

75.13 Curve Integrals

If Γ = s([a, b]) is a curve in R
n given by the function s : [a, b] → R

n, and
u : Γ → R, then

∫

Γ

u ds =
∫

Γ

u(x) ds(x) ≡
∫ b

a

u(s(t))‖s′(t)‖ dt,
∫

Γ

u · ds =
∫ b

a

u(s(t)) · s′(t) dt,
∫

Γ

ds =
∫ b

a

‖s′(t)‖ dt = length of Γ.

If u = ∇ϕ, then
∫

Γ

u · ds = ϕ(s(b)) − ϕ(s(a)).
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75.14 Multiple Integrals

Integral over the unit square: If f : Q = [0, 1]× [0, 1] → R is Lipschitz
continuous, then
∫

Q

f(x) dx =
∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 = lim
n→∞

N∑

i=1

N∑

j=1

f(xn
1,i, x

n
2,j)hnhn,

where hn = 2−n, xn
j,i = ihn, N = 2n, and

∫

Q

f(x) dx =
∫ 1

0

(∫ 1

0

f(x1, x2) dx2

)

dx1 =
∫ 1

0

(∫ 1

0

f(x1, x2) dx1

)

dx2.

Change of variables: If y → x = g(y) maps a domain Ω̃ in R
d onto

a domain Ω in R
d, where the Jacobian of g is Lipschitz continuous and

f : Ω → R be Lipschitz continuous, then
∫

Ω

f(x) dx =
∫

Ω̃

f(g(y))| det g′(y)| dy,

Polar coordinates:
∫

Ω

f(x1, x2) dx1dx2 =
∫

Ω̃

f(r cos(θ, r sin(θ))TS
a rdr dθ,

where (r, θ) → x is a one-to-one mapping of Ω̃ onto Ω given by x =
(r cos(θ, sin(θ))TS

a .
Spherical coordinates:

∫

Ω

f(x) dx

=
∫

Ω̃

f
(
r sin(ϕ) cos(θ), r sin(ϕ) sin(θ), r cos(ϕ)

)
r2 sin(ϕ) dr dθ dϕ,

where (r, θ, ϕ) → x is a one-to-one mapping of Ω̃ onto Ω given by x =
(r sin(ϕ) cos(θ), r sin(ϕ) sin(θ), r cos(ϕ)).

75.15 Surface Integrals

If S = s(Ω) is a surface in R
3 parameterized by the mapping s : Ω → R

3,
where Ω is a domain in R

2, and u : S → R is a real-valued function defined
on S, then

∫

S

u ds =
∫

Ω

u(s(y))‖s′,1(y) × s′,2(y)‖ dy,

where s′,i = (∂s1
∂yi

, ∂s2
∂yi

, ∂s3
∂yi

).

TS
a Please check parentheses.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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75.16 Green’s and Gauss’ Formulas

If Ω is a domain in R
3 with boundary Γ with outward unit normal n =

(n1, n2, n3), and u : Ω → R
3 and v, w : Ω → R, then

∫

Ω

∂v

∂xi
dx =

∫

Γ

v ni ds, i = 1, 2, 3.

∫

Ω

∂v

∂xi
w dx =

∫

Γ

vw ni ds−
∫

Ω

v
∂w

∂xi
dx, i = 1, 2, 3.

∫

Ω

∇ · u dx =
∫

Γ

u · n ds, (Gauss’ Divergence theorem)

∫

Ω

∇× u dx =
∫

Γ

n× u ds,

∫

Ω

∇v · ∇w dx =
∫

Γ

v∂nw ds−
∫

Ω

v∆w dx,

∫

Ω

v∆w dx−
∫

Ω

∆v w dx =
∫

Γ

v ∂nw ds−
∫

Γ

∂nv w ds.

75.17 Stokes’ Theorem

If S is a surface in R
3 bounded by a closed curve Γ, n is a unit normal

to S, Γ is oriented in a clockwise direction following the positive direction
of the normal n, and u : R

3 → R
3 is differentiable, then

∫

S

(∇× u) · n ds =
∫

Γ

u · ds.



76
Piecewise Linear Polynomials
in R

2 and R
3

. . . usually he sat in a comfortable attitude, looking down, slightly
stooped, with hands folded above his lap. He spoke quite freely, very
clearly, simply and plainly: but when he wanted to emphasize a new
viewpoint . . . then he lifted his head, turned to one of those sitting
next to him, and gazed at him with his beautiful, penetrating blue
eyes during the emphatic speech. . . . If he proceeded from an expla-
nation of principles to the development of mathematical formulas,
then he got up, and in a stately very upright posture he wrote on
a blackboard beside him in his peculiarly beautiful handwriting: he
always succeeded through economy and deliberate arrangement in
making do with a rather small space. For numerical examples, on
whose careful completion he placed special value, he brought along
the requisite data on little slips of paper. (Dedekind about Gauss)

76.1 Introduction

In this chapter, we prepare for the application of FEM to partial differen-
tial equations by discussing approximation of functions by piecewise linear
functions in in R

2 and R
3. We consider three main topics: (i) the con-

struction of a mesh, or triangulation, for a domain in R
2 or R

3, (ii) the
construction piecewise linear functions on a triangulation, and (iii) estima-
tion of interpolation errors.
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Fig. 76.1. The mesh on the left was used in a computation of the flow of air
around two airfoils. The mesh on the right was used to discretize a piece of metal
punched with a fancy character. In both cases, the meshes are adapted to allow
accurate computation, taking into account both the behavior of the solution and
the shape of the domain

76.2 Triangulation of a Domain in R
2

We start by considering a two-dimensional domain Ω with a polygonal
boundary Γ. A triangulation Th = {K} is a sub-division of Ω into a non-
overlapping set of triangles, or elements, K constructed so that no vertex
of one triangle lies on the edge of another triangle, see Fig. 76.2. We use
Nh = {N} to denote the set of nodes N or corners of the triangles, usually
numbered N1, N2, . . . , NM , where M is the total number of nodes. A trian-
gulation is specified by a list of the coordinates of the nodes, together with
a list containing the numbers of the nodes of each triangle. We may also list
the set of triangle sides or edges Sh = {S}, with each edge S specified by
the node numbers of its two end-points, and a list of the nodes and edges
on the boundary Γ.

We measure the size of a triangle K ∈ Th, by the length hK of its largest
side, which is called the diameter of the triangle. The mesh function h(x)
associated to a triangulation Th is the piecewise constant function defined so
h(x) = hK for x ∈ K for each K ∈ Th. We measure the degree of isotropy
of an element K ∈ Th by its smallest angle τK . If τK ≈ π/3 then K is
almost isosceles, while if τK is small then K is thin, see Fig. 76.3. We use
the smallest angle among the triangles in Th, i.e.

τ = min
K∈Th

τK

as a measure of the degree of anistropy of the triangulation Th. We shall
see below that certain interpolation errors related to approximation with
piecewise linear functions on a given triangulation get larger as τ tends to
zero, corresponding to allowing the triangles to very thin.
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KK

K K

N

S

hK

Fig. 76.2. A triangulation of a domain Ω

K
K

τK ≈ π/3

τK << π/3

Fig. 76.3. Measuring the isotropy of a triangle

The basic problem of mesh generation is to generate a triangulation of
a given domain with mesh size given by a prescribed mesh function h(x).
This problem arises in each step of an adaptive algorithm, where a new
mesh function is computed from an approximate solution on a given mesh,
and a new mesh is constructed with mesh size given by the new mesh
function. The process is then repeated until a stopping criterion is satisfied.
The new mesh may be constructed from scratch or by modification of the
previous mesh including local refinement or coarsening.

In the advancing front strategy a mesh with given mesh size is con-
structed beginning at some point (often on the boundary) by successively
adding one triangle after another, each with a mesh size determined by
the mesh function. The curve dividing the domain into a part already tri-
angulated and the remaining part is called the front. The front sweeps
through the domain during the triangulation process. An alternative is to
use a h-refinement strategy, where a mesh with a specified local mesh size
is constructed by successively dividing elements of an initial coarse triangu-
lation with the elements referred to as parents, into smaller elements, called
the children. We illustrate the refinement and advancing front strategies in
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Fig. 76.4. It is often useful to combine the two strategies using the advanc-
ing front strategy to construct an initial mesh that represents the geometry
of the domain with adequate accuracy, and use adaptive h-refinement.

There are various strategies for performing the division in an h-refinement
aimed at limiting the degree of anisotropy of the elements. After the refine-
ments are completed, the resulting mesh is fixed up by the addition of edges
aimed at avoiding nodes that are located in the middle of element sides.
This causes a mild “spreading” of the adapted region. We illustrate one
technique for h-refinement in Fig. 76.5. In general, refining a mesh tends
to introduce elements with small angles, as can be seen in Fig. 76.5 and
it is an interesting problem to construct algorithms for mesh refinement
that avoid this tendency in situations where the degree of anisotropy has

Fig. 76.4. The mesh on the left is being constructed by successive h refinement
starting from the coarse parent mesh drawn with thick lines. The mesh on the
right is being constructed by an advancing front strategy. In both cases, high
resolution is required near the upper right-hand corner

Fig. 76.5. On the left, two elements in the mesh have been marked for refinement.
The refinement uses the Rivara algorithm in which an element is divided into two
pieces by inserting a side connecting the node opposite the longest side to the
midpoint of the longest side. Additional sides are added to avoid having a node
of one element on the side of another element. The refinement is shown in the
mesh on the right along with the boundary of all the elements that had to be
refined in addition to those originally marked for refinement



76.3 Mesh Generation in R
3 1039

to be limited. On the other hand, in certain circumstances, it is important
to use “stretched” meshes that have regions of thin elements aligned to-
gether to give a high degree of refinement in one direction. In these cases,
we also introduce mesh functions that give the local stretching, or degree of
anisotropy, and the orientation of the elements. We discuss the construction
and use of such meshes in the advanced companion volume.

76.3 Mesh Generation in R
3

Mesh generation in three dimensions is analogous to that in two dimensions
with the triangles being replaced by tetrahedra. In practice, the geometric
constraints involved become more complicated and the number of elements
also increases drastically. We show some examples in Fig. 76.6 and Fig. 76.7,
and further examples in Fig. 76.14 and Fig. 76.13.

Fig. 76.6. Initial and refined mesh of cylinder

Fig. 76.7. The surface mesh on the body, and parts of a tetrahedral mesh around
a Saab 2000
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76.4 Piecewise Linear Functions

Let Th = {K} be a triangulation of a two-dimensional domain Ω with piece-
wise polynomial boundary Γ, let Nh = {N} denote the nodes of Th and
introduce the corresponding the finite dimensional vector space Vh consist-
ing of the continuous piecewise linear functions on Th. In other words,

Vh =
{
v : v is continuous on Ω, v|K ∈ P(K) for K ∈ Th

}
,

where P(K) denotes the set of linear functions on K, i.e., the set of func-
tions v(x) = v(x1, x2) of the form v(x) = c0 + c1x1 + c2x2 for some con-
stants ci. We can describe a function v(x) in Vh by the nodal values v(N)
with N ∈ Nh because of two facts. The first is that a linear function is
uniquely determined by its values at three points, as long as they don’t lie
on a straight line. To prove this claim, letK ∈ Th have vertices ai = (ai

1, a
i
2),

i = 1, 2, 3, see Fig. 76.8. We want to show that v ∈ P(K) is determined
uniquely by {v(a1), v(a2), v(a3)} = {v1, v2, v3}. A linear function v can be
written v(x1, x2) = c0 + c1x1 + c2x2 for some constants c0, c1, c2. Substi-
tuting the nodal values of v into this expression yields a linear system of
equations: 





1 a1
1 a1

2

1 a2
1 a2

2

1 a3
1 a3

1













c0

c1

c2





 =







v1

v2

v3





 .

The determinant of the coefficient matrix is equal to the determinant of the
following matrix resulting from subtracting the first row from the second
and third row:







1 a1
1 a1

2

0 a2
1 − a1

1 a2
2 − a1

2

0 a3
1 − a1

1 a2
2 − a1

2





 ,

which is equal to the twice the area of the triangle K (up to the sign).
The determinant of the coefficient matrix is thus non-zero, and we conclude
that the system of equations (76.4) has a unique solution. We conclude that
at linear function is uniquely specified by its values at three non-colinear
points.

The second fact is that if a function is linear in each of two neighboring
triangles and its nodal values on the two common nodes of the triangles
are equal, then the function is continuous across the common edge. To
see this, let K1 and K2 be adjoining triangles with common boundary
∂K1 = ∂K2; see the figure on the left in Fig. 76.9. Parameterizing v along
this boundary, we see that v is a linear function of one variable there. Such
functions are determined uniquely by the value at two points, and therefore
since the values of v on K1 and K2 at the common nodes agree, the values
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K

(a1
1, a

1
2)

(a2
1, a

2
2)

(a3
1, a

3
2)

Fig. 76.8. On the left, we show that the three nodal values on a triangle deter-
mine a linear function. On the right, we show the notation used to describe the
nodes of a typical triangle

of v on the common boundary between K1 and K2 agree, and v is indeed
continuous across the boundary.

K1

K2
Ni

Nj

v(Ni)

v(Nj)

∂K1 = ∂K2

K1K2

Fig. 76.9. On the left, we show that a function that is piecewise linear on triangles
reduces to a linear function of one variable on triangle edges. On the right, we
plot a function that is piecewise linear on triangles whose values at the common
nodes on two neighboring triangles do not agree

To construct a set of basis functions for Vh, we begin by describing a set
of element basis functions for triangles. Once again, assuming that a tri-
angle K has nodes at {a1, a2, a3}, the element nodal basis is the set of
functions λi ∈ P(K), i = 1, 2, 3, such that

λi(aj) =

{
1, i = j,

0, i �= j.

We show these functions in Fig. 76.10.
We construct the global basis functions for Vh by piecing together the

element basis functions on neighboring elements using the continuity re-
quirement, i.e. by matching element basis functions on neighboring trian-
gles that have the same nodal values on the common edge. The resulting
set of basis functions {ϕj}M

j=1, where N1, N2, . . . , NM is an enumeration of
the nodes N ∈ Nh, is called the set of tent functions. The tent functions
can also be defined by specifying that ϕj ∈ Vh satisfy

ϕj(Ni) =

{
1, i = j,

0, i �= j,
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1

a1

a2

a3λ1

λ2

λ3

Ni

ϕi

Fig. 76.10. On the left, we show the three element nodal basis functions for
the linear functions on K. On the right, we show a typical global basis “tent”
function

for i, j = 1, . . . ,M . We illustrate a typical tent function in Fig. 76.10. We
see in particular that the support of ϕi is the set of triangles that share the
common node Ni.

The tent functions are a nodal basis for Vh because if v ∈ Vh then

v(x) =
M∑

i=1

v(Ni)ϕi(x).

76.5 Max-Norm Error Estimates

In this section we prove the basic pointwise maximum norm error estimate
for linear interpolation on a triangle, which states that the interpolation
error depends on the second order partial derivatives of the function being
interpolated, i.e. on the “curvature” of the function, the mesh size and the
shape of the triangle. Analogous results hold for other norms. The results
also extend directly to more than two space dimensions.

Let K be a triangle with vertices ai, i = 1, 2, 3. Given a continuous
function v defined on K, let the linear interpolant πKv ∈ P(K) be defined
by

πKv(ai) = v(ai), i = 1, 2, 3.

We illustrate this in Fig. 76.11.

Theorem 76.1 If v has continuous second derivatives, then

‖v − πKv‖L∞(K) ≤
1
2
h2

K‖D2v‖L∞(K), (76.1)

‖∇(v − πKv)‖L∞(K) ≤
3

sin(τK)
hK‖D2v‖L∞(K), (76.2)
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K

v

πhv

a1

a2

a3

Fig. 76.11. The nodal interpolant πKv of v. (change from πh to πK)

where hK is the largest side of K, τK is the smallest angle of K, and

D2v =




2∑

i,j=1

(
∂2v

∂xi∂xj

)2




1/2

.

If ∇v is continuous, then

‖v − πKv‖L∞(K) ≤ hK‖Dv‖L∞(K), (76.3)

Note that the gradient estimate depends on the reciprocal of the sine of
the smallest angle of K, and therefore this error bound deteriorates as the
the triangle gets thinner.

The proof follows the same general outline as the proofs of corresponding
results in the Chapter Piecewise linear approximation. Let λi, i = 1, 2, 3,
be the element basis functions for P(K) defined by λi(aj) = 1 if i = j, and
λi(aj) = 0 otherwise. A function w ∈ P(K) has the representation

w(x) =
3∑

i=1

w(ai)λi(x) for x ∈ K,

and thus

πKv(x) =
3∑

i=1

v(ai)λi(x) for x ∈ K, (76.4)

since πKv(ai) = v(ai). We shall derive representation formulas for the
interpolation errors v− πKv and ∇(v − πKv), using a Taylor expansion at
x ∈ K:

v(y) = v(x) + ∇v(x) · (y − x) +R(x, y),

where

R(x, y) =
1
2

2∑

i,j=1

∂2v

∂xi∂xj
(ξ)(yi − xi)(yj − xj),
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is the remainder term of order 2 and ξ is a point on the line segment
between x and y. In particular choosing y = ai = (ai

1, a
i
2), we have

v(ai) = v(x) + ∇v(x) · (ai − x) +Ri(x), (76.5)

where Ri(x) = R(x, ai). Inserting (76.5) into (76.4) gives for x ∈ K

πKv(x) = v(x)
3∑

i=1

λi(x)+∇v(x)·
3∑

i=1

(ai−x)λi(x)+
3∑

i=1

Ri(x)λi(x). (76.6)

We shall use the following identities that hold for j, k = 1, 2, and x ∈ K,

3∑

i=1

λi(x) = 1,
3∑

i=1

(ai
j − xj)λi(x) = 0, (76.7)

3∑

i=1

∂

∂xk
λi(x) = 0,

3∑

i=1

(ai
j − xj)

∂λi

∂xk
= δjk, (76.8)

where δjk = 1 if j = k and δjk = 0 otherwise. The first of the identities
in (76.7) follows by choosing v(x) = 1 in (76.6), and the second follows
by choosing v(x) = d1x1 + d2x2 with di ∈ R. Finally, (76.8) follows by
differentiating (76.7).

Using (76.7), we obtain the following representation of the interpolation
error,

v(x) − πKv(x) = −
3∑

i=1

Ri(x)λi(x).

Since |ai − x| ≤ hK , we can estimate the remainder term Ri(x) as

|Ri(x)| ≤
1
2
h2

K‖D2v‖L∞(K), i = 1, 2, 3.

where we used Cauchy’s inequality twice to estimate an expression of the
form

∑
ij xicijxj =

∑
i xi

∑
j cijxj .

Now, using the fact that 0 ≤ λi(x) ≤ 1 if x ∈ K, for i = 1, 2, 3, we obtain

|v(x) − πKv(x)| ≤ max
i

|Ri(x)|
3∑

i=1

λi(x) ≤
1
2
h2

K‖D2v‖L∞(K) for x ∈ K,

which proves (76.1).
To prove (76.2), we differentiate (76.4) with respect to xk, k = 1, 2 to get

∇(πKv)(x) =
3∑

i=1

v(ai)∇λi(x),
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which together with (76.5) and (76.8) gives the following error representa-
tion:

∇(v − πKv)(x) = −
3∑

i=1

Ri(x)∇λi(x) for x ∈ K.

We now note that
max
x∈K

|∇λi(x)| ≤
2

hK sin(τK)
,

which follows by an easy estimate of the shortest height (distance from
a vertex to the opposite side) of K. We now obtain (76.2) and (76.3) finally
follows using tha Mean Value theorem. The proof is now complete.

Let now Th = {K} be a triangulation of a domain Ω with mesh func-
tion h(x), and let πh denote nodal interpolation into the corresponding
space of continuous piecewise linear functions Vh on Th. The interpolation
error estimates of Theorem 76.1 then take the form

‖v − πhv‖L∞(Ω) ≤
1
2
‖h2D2v‖L∞(Ω), (76.9)

‖v − πhv‖L∞(Ω) ≤ ‖hDv‖L∞(Ω), (76.10)

‖∇(v − πhv)‖L∞(Ω) ≤
3

sin(τ)
‖hD2v‖L∞(Ω), (76.11)

where τ is the smallest of the τK . Below we shall use analogs of these
estimates with the L∞(Ω) replaced by L2(Ω).

76.6 Sobolev and his Spaces

Sergei Sobolev (1908–1989) played a leading role in the mathematical world
of the former Soviet Union and made important contributions to the theory

Fig. 76.12. Sergei Lvovich Sobolev (1908–1989), creator of Functional Analysis
and inventor of Sobolev spaces: “I wonder if my space of functions H1(Ω) is large
enough to contain the solution?”
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and practice of partial differential equations, in particular on questions of
existence, uniqueness, stability and regularity of solutions by developing
tools of Functional Analysis. He also worked on numerical methods and
gave important results on interpolation and quadrature of functions of sev-
eral variables by developing techniques of Sobolev spaces. A basic Sobolev
space is the space of real-valued functions defined on a domain Ω in R

d,
which are square integrable together with their first partial derivatives,
denoted by H1(Ω).

76.7 Quadrature in R
2

To compute the stiffness matrix and load vector a FEM, we have to compute
integrals of the form

∫
K
g(x) dx, where K is a triangle or tetrahedron and g

a given function. Sometimes we may evaluate these integrals exactly, but
usually this is either impossible or inefficient. Instead we usually evaluate
the integrals approximately using quadrature formulas. We briefly present
some quadrature formulas for integrals over triangles.

In general, we would like to use quadrature formulas that do not affect the
accuracy of the underlying finite element method, which of course requires
an estimate of the error due to quadrature. A quadrature formula for an
integral over an element K has the form

∫

K

g(x) dx ≈
q∑

i=1

g(yi)ωi, (76.12)

for a specified choice of nodes {yi} in K and weights {ωi}. We now list some
possibilities using the notation ai

K to denote the vertices of a triangle K,
aij

K to denote the midpoint of the side connecting ai
K to aj

K , and a123
K to

denote the center of mass of K, and denote by |K| the area of K:
∫

K

g dx ≈ g
(
a123

K

)
|K|, (76.13)

∫

K

g(x) dx ≈
3∑

j=1

g(aj
K)

|K|
3
, (76.14)

∫

K

g dx ≈
∑

1≤i<j≤3

g
(
aij

K

) |K|
3
, (76.15)

∫

K

g dx ≈
3∑

j=1

g
(
ai

K

) |K|
20

+
∑

1≤i<j≤3

g
(
aij

K

)2|K|
15

+ g
(
a123

K

)9|K|
20

. (76.16)

We refer to (76.13) as the center of gravity quadrature, to (76.14) as the
vertex quadrature, and to (76.15) as the midpoint quadrature. Recall that
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the accuracy of a quadrature formula is related to the precision of the
formula. A quadrature formula has precision r if the formula gives the
exact value of the integral if the integrand is a polynomial of degree at
most r− 1, but there is some polynomial of degree r such that the formula
is not exact. The quadrature error for a quadrature rule of precision r is
proportional to hr, where h is the mesh size. More precisely, the error of
a quadrature rule of the form (76.12) satisfies

∣
∣
∣
∣
∣

∫

K

g dx−
q∑

i=1

g(yi)ωi

∣
∣
∣
∣
∣
≤ Chr

K

∑

|α|=r

∫

K

|Dαg| dx,

where C is a constant. Vertex and center of gravity quadrature have preci-
sion 2, midpoint quadrature has precision 3, while (76.16) has precision 4.

In finite element methods based on continuous piecewise linear functions,
we often use nodal or vertex quadrature, often also referred to as lumped
mass quadrature, because the mass matrix computed this way becomes
diagonal.

Example 76.1. In Fig. 76.13 and Fig. 76.14 we give two examples, one from
fluid mechanics. and the other from electromagnetics.

Fig. 76.13. Magnetic field around coil and mesh
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Fig. 76.14. Flow in diesel engine cylinder inlet and mesh

Chapter 76 Problems

76.1. For a given triangle K, determine the relation between the smallest an-
gle τK , the triangle diameter hK and the diameter ρK of the largest inscribed
circle.

76.2. Draw the refined mesh that results from sub-dividing the smallest two
triangles in the mesh on the right in Fig. 76.5.

76.3. Let K be a tetrahedron with vertices {ai, i = 1, . . . , 4}. Show that a linear
polynomial v(x) = c0 + c1x1 + c2x2 + c3x3 on K is uniquely determined by the
nodal values {v(ai), i = 1, . . . , 4}. Show that the corresponding finite element
space Vh consists of continuous functions.

76.4. Prove that the quadrature formulas (76.13), (76.14), (76.15) and (76.16)
have the indicated precision.

76.5. Prove that using nodal quadrature to compute a mass matrix for piecewise
linears, gives a diagonal mass matrix where a diagonal term is the sum of the
terms in the corresponding row in the exactly computed mass matrix. Motivate
the term “lumped”.



77
FEM for Boundary Value Problems
in R

2 and R
3

. . . were very confused, skipping suddenly from one idea to another,
from one formula to the next, with no attempt to give a connection
between them. His presentations were obscure clouds, illuminated
from time to time by flashes of pure genius. . . . of the thirty who
enrolled with me, I was the only one to see it through.
(Menabrea about Cauchy 1832)

77.1 Introduction

In this chapter, we extend the cG(1) FEM for reaction-diffusion-convection
problems in one space dimension to corresponding boundary value problems
in R

2 and R
3 of the form: Find u : Ω → R such that

−∇ · (a∇u) + ∇ · (ub) + cu = f in Ω, (77.1)

together with boundary conditions of Dirichlet, Neumann or Robin type,
where a(x) > 0, b(x) and c(x) are given variable coefficients, f(x) is a given
right hand side, and Ω is a bounded open domain in R

2 or R
3. Note that

the coefficient b is a vector (typically corresponding to a given convection
velocity), and that the equation (77.1) can alternatively be written

−∇ · (a∇u) + b · ∇u+ ĉu = f in Ω, (77.2)

with ĉ = c + ∇ · b. In general, problems of this form cannot be solved
analytically and we have to rely on a numerical method such as FEM for
computing the solution u(x) for given data.
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We consider below the extension to corresponding time dependent prob-
lems of the form

u̇−∇ · (a∇u) + ∇ · (ub) + cu = f, (77.3)

together with initial and boundary value problems, including extensions to
systems of such equations, using the material in the Chapters The General
Initial Value Problem and Adaptive IVP-Solvers.

The most fundamental example of the form (77.1) is Poisson’s equation
with homogeneous Dirichlet boundary conditions corresponding to setting
a = 1, b = 0 and c = 0:

{
−∆u(x) = f(x) for x ∈ Ω,
u(x) = 0 for x ∈ Γ,

(77.4)

where Ω is a bounded domain in R
2 with polygonal boundary Γ. We recall

that ∇ · (∇u) = ∆u. We shall now present the cG(1) method for (77.4)
generalizing cG(1) for the two-point boundary value problem (53.9), and
then extend to the general problem (77.1).

77.2 Richard Courant: Inventor of FEM

Richard Courant (1888–1972) was a student of Hilbert and published to-
gether with him the monumental work Methoden der Mathematischen Phy-
sik. In the mid 1930s he fled to New York away from the Nazis and cre-
ated the Courant Institute of Mathematical Sciences, since 1964 occupying
a 13 storey building close to Washington Square in Greenwich Village on

Fig. 77.1. Richard Courant (1888–1972), pioneer of finite elements: “In fact, al-
ready when writing my 1910 PhD thesis on using the Dirichlet minimum principle
to prove the existence of solutions to Poisson’s equation on a domain Ω, I had in
mind of seeking approximate solutions in a subspace of the Sobolev space H1(Ω)
consisting of piecewise linear functions on a triangulation of Ω . . .”
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Manhattan. Courant presented in a famous paper from 1943 the basics
of finite element approximation of differential equations, as an expansion
of a foot-note in the 1924 Methoden. This foot-note must be one of the
most productive remarks in the history of science generating hundreds of
thousands of scientific articles and a flood of software from the mid 1960s
and on.

77.3 Variational Formulation

We let Th = {K} be a triangulation of Ω with mesh function h(x) and
internal nodes N1, . . . NM , and we let Vh be the corresponding finite el-
ement space of continuous piecewise linear functions that vanish on the
boundary Γ. We first give (77.4) the following preliminary variational for-
mulation:

−
∫

Ω

∆u v dx =
∫

Ω

f v dx (77.5)

for all suitable test functions v, which results from multiplying (77.4)
by v(x) and integrating over Ω. We now want to rewrite the left-hand side
to move a derivative from ∆u onto v. Assuming that the test function v is
zero on Γ, Green’s formula implies

−
∫

Ω

∆u v dx = −
∫

Γ

∂nuv ds+
∫

Ω

∇u · ∇v dx =
∫

Ω

∇u · ∇v dx,

where ∂n = ∂
∂n denotes the outward unit normal derivative on Γ. We find

that a solution u(x) of (77.4) satisfies
∫

Ω

∇u · ∇v dx =
∫

Ω

f v dx, (77.6)

for all test functions v with v = 0 on Γ.

77.4 The cG(1) FEM

We are thus led to the following formulation of the cG(1) FEM for (77.4):
Find U ∈ Vh such that

∫

Ω

∇U · ∇v dx =
∫

Ω

f v dx for all v ∈ Vh, (77.7)

where Vh is the space of continuous piecewise linear functions on a trian-
gulation Th of Ω that vanish on the boundary Γ. Using the notation

(w, v) =
∫

Ω

wv dx, (∇w,∇v) =
∫

Ω

∇w · ∇v dx,



1052 77. FEM for Boundary Value Problems in R
2 and R

3

we can write cG(1) in the form: Find U ∈ Vh such that

(∇U,∇v) = (f, v) for all v ∈ Vh. (77.8)

We see that that the trial space and test spaces are equal (= Vh) and include
the homogenous Dirichlet boundary condition. The Galerkin orthogonality
is expressed by

(∇u −∇U,∇v) = 0 for all v ∈ Vh, (77.9)

which results upon subtracting (77.8) from (77.6) with v ∈ Vh.
We recall that the nodal basis functions {ϕi}M

i=1 associated with the
internal nodes N1, . . . NM of Th is a basis for Vh. Expressing U in terms of
this basis,

U(x) =
M∑

j=1

U(Nj)ϕj(x), (77.10)

substituting into (77.8), and choosing v = ϕi for i = 1, . . . ,M , gives

M∑

j=1

(∇ϕj ,∇ϕi)U(Nj) = (f, ϕi), i = 1, . . . ,M.

This is equivalent to the linear system of equations

Aξ = b, (77.11)

where ξ = (ξj) is the vector of internal nodal values ξj = U(Nj), A = (aij)
is the stiffness matrix with elements aij = (∇ϕj ,∇ϕi) and b = (bi) with
bi = (f, ϕi) is the load vector.

The stiffness matrix A is obviously symmetric and it is also positive-
definite since for any v =

∑M
i=1 ηiϕi in Vh,

M∑

i,j=1

ηiaijηj =
M∑

i,j=1

ηi(∇ϕi,∇ϕj)ηj

=



∇
M∑

i=1

ηiϕi,∇
M∑

j

ηjϕj



 = (∇v,∇v) > 0,

unless ηi = 0 for all i. This means in particular that (77.11) has a unique
solution vector U and thus the cG(1) finite element problem (77.8) has
a unique solution U ∈ Vh.

A triangle with associated linear approximation, i.e. the basic finite el-
ement of cG(1), is also called the Courant element, as a recognition of its
inventor.
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Uniform Triangulation of a Square

We compute the stiffness matrix A and load vector b in (77.11) explicitly
on the uniform triangulation of the square Ω = [0, 1] × [0, 1] pictured in
Fig. 77.2. We choose an integerm ≥ 1 and set h = 1/(m+1), then construct
the triangles as shown. The diameter of the triangles in Th is

√
2h and there

are M = m2 internal nodes. We number the nodes starting from the lower
left and moving right, then working up across the rows.

(0,0) (h,0) (2h,0) ((m-1)h,0) (mh,0) ((m+1)h,0)

(0,h)

(0,2h)

(0,(m+1)h)

(0,mh)

N1 N2 Nm-1

N2m
Nm+1 Nm+2

Nm

N2m+1

Nm2

N3m

N(m-1)m

(1,1)

Fig. 77.2. The standard triangulation of the unit square

In Fig. 77.4, we show the support of the basis function corresponding
to the node Ni along with parts of the basis functions for the neighboring
nodes. As in one dimension, the basis functions are “almost” orthogonal in
the sense that only basis functions ϕi and ϕj sharing a common triangle
in their supports yield a non-zero value in (∇ϕi,∇ϕj). We show the nodes
neighboring Ni in Fig. 77.3. The support of any two neighboring basis

i-m i-m+1

i+1i-1

i+mi+m-1

i

i

Fig. 77.3. The indices of the nodes neighboring Ni and an “exploded” view of ϕi
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i

Fig. 77.4. The support of the basis function ϕi together with parts of the neigh-
boring basis functions

functions overlap on just two triangles, while a basis function “overlaps
itself” on six triangles.

We first compute

aii = (∇ϕi,∇ϕi) =
∫

Ω

|∇ϕi|2 dx =
∫

support of ϕi

|∇ϕi|2 dx,

for i = 1, . . . ,m2. As noted, we only have to consider the integral over the
domain pictured in Fig. 77.3, which is written as a sum of integrals over
the six triangles making up the domain. Examining ϕi on these triangles,
see Fig. 77.3, we see that there are only two different integrals to be com-
puted since ϕi looks the same, except for orientation, on two of the six
triangles and similarly the same on the other four triangles. We shade the
corresponding triangles in Fig. 77.4. The orientation affects the direction
of ∇ϕi of course, but does not affect |∇ϕi|2.

We compute (∇ϕi,∇ϕi) on the triangle shown in Fig. 77.5. In this case,
ϕi is one at the node located at the right angle in the triangle and zero at
the other two nodes. We change coordinates to compute (∇ϕi,∇ϕi) on the
reference triangle shown in Fig. 77.5. Again, changing to these coordinates
does not affect the value of (∇ϕi,∇ϕi) since ∇ϕi is constant on the triangle.

Ni
h

i=0

i=0

i=1

h

(0,0) (h,0)

(0,h)

x1

x2

x2=h-x1

Fig. 77.5. First case showing ϕi on the left together with the variables used in
the reference triangle
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On the triangle, ϕi can be written ϕi = ax1 + bx2 + c for some constants
a, b, c. Since ϕi(0, 0) = 1, we get c = 1. Similarly, we compute a and b to find
that ϕi = 1−x1/h−x2/h on this triangle. Therefore, ∇ϕi =

(
−h−1,−h−1

)

and the integral is

∫

�

|∇ϕi|2 dx =
∫ h

0

∫ h−x1

0

2
h2
dx2 dx1 = 1.

In the second case, ϕi is one at a node located at an acute angle of the
triangle and is zero at the other nodes. We illustrate this in Fig. 77.6. We
use the coordinate system shown in Fig. 77.6 to write ϕi = 1−x1/h. When
we integrate over the triangle, we get 1/2.
Summing the contributions from all the triangles gives

aii = (∇ϕi,∇ϕi) = 1 + 1 +
1
2

+
1
2

+
1
2

+
1
2

= 4.

Next, we compute (∇ϕi,∇ϕj) for indices corresponding to neighboring
nodes. For a general node Ni, there are two cases of inner products (see
Fig. 77.3 and Fig. 77.4):

ai i−1 = (∇ϕi,∇ϕi−1) = (∇ϕi,∇ϕi+1) = (∇ϕi,∇ϕi−m) = (∇ϕi,∇ϕi+m),

and
ai i−m+1 = (∇ϕi,∇ϕi−m+1) = (∇ϕi,∇ϕi+m−1).

The orientation of the triangles in each of the two cases are different, but
the inner product of the gradients of the respective basis functions is not
affected by the orientation. Note that the the equations corresponding to
nodes next to the boundary are special, because the nodal values on the
boundary are zero, see Fig. 77.2. For example, the equation corresponding
to N1 only involves N1, N2 and Nm+1.

For the first case, we next compute (∇ϕi,∇ϕi+1). Plotting the intersec-
tion of the respective supports shown in Fig. 77.7, we conclude that there
are equal contributions from each of the two triangles in the intersection.
We choose one of the triangles and construct a reference triangle as above.

Ni

i=0

i=1

h
(0,0) (h,0)

(h,h)

x1

x2=x1

i=0

i=1

Fig. 77.6. Second case showing ϕi and the reference triangle
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i+1

i

Fig. 77.7. The overlap of ϕi and ϕi+1

Choosing suitable variables, we find that

∇ϕi · ∇ϕi+1 =
(

− 1
h
,− 1

h

)

·
(

1
h
, 0
)

= − 1
h2
,

and integrating over the triangle gives −1/2. Similarly, we see that

(∇ϕi,∇ϕi−m+1) = (∇ϕi,∇ϕi+m−1) = 0.

We can now determine the stiffness matrixA using the information above.
We start by considering the first row. The first entry is (∇ϕ1,∇ϕ1) = 4
since N1 has no neighbors to the left or below. The next entry is
(∇ϕ1,∇ϕ2) = −1. The next entry after that is zero, because the supports
of ϕ1 and ϕ3 do not overlap. This is true in fact of all the entries up to
and including ϕm. However, (∇ϕ1,∇ϕm+1) = −1, since these neighboring
basis functions do share two supporting triangles. Finally, all the rest of
the entries in that row are zero because the supports of the corresponding
basis functions do not overlap. We continue in this fashion working row by
row. The result is pictured in Fig. 77.8. We see that A has a block struc-
ture consisting of banded m×m sub-matrices, most of which consist only
of zeros. Note the pattern of entries around corners of the diagonal block
matrices; it is a common mistake to program these values incorrectly.

The storage of a sparse matrix and the solution of a sparse system are
both affected by the structure or sparsity pattern of the matrix. The sparsity
pattern is affected in turn by the enumeration scheme used to mark the
nodes.

There are several algorithms for reordering the coefficients of a sparse
matrix to form a matrix with a smaller bandwidth. Reordering the coeffi-
cients is equivalent to computing a new basis for the vector space.

The load vector b is computed in the same fashion, separating each in-
tegral ∫

Ω

fϕi dx =
∫

support of ϕi

f(x)ϕi(x) dx
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Fig. 77.8. The stiffness matrix

into integrals over the triangles making up the support of ϕi. To compute
the elements (f, ϕi) of the load vector, we often use one of the quadrature
formulas presented in Chapter 76.

77.5 Basic Data Structures

To compute the finite element approximation U , we have to compute the
coefficients of the stiffness matrix A and load vector b and solve the linear
system of equations (77.11). We just computed A and b for a uniform
triangulation of the unit square, and we now discuss the case of a general
triangulation of a general domain.

We have to compute the non-zero elements aij = (∇ϕj ,∇ϕi) of the
stiffness matrix A. We know that aij = 0 unless both Ni and Nj are
nodes of the same triangle K, because only then the supports of basis
functions ϕi and ϕj overlap. The common support corresponding to a non-
zero element aij is equal to the support of ϕi if j = i, and is equal to the
two triangles with the common edge connecting Nj and Ni if i �= j. In each
case aij is the sum of contributions

aK
ij =

∫

K

∇ϕj · ∇ϕi dx (77.12)
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over the triangles K in the common support. The process of adding up the
contributions aK

ij from the relevant triangles K to get the element aij , is
called assembling the stiffness matrix A. Arranging for a given triangle K
the numbers aK

ij , where Ni and Nj are nodes of K, into a 3 × 3 matrix,
we obtain the element stiffness matrix for the triangle K. We refer to the
assembled matrix A as the global stiffness matrix. Notice that we use ele-
ment with two different meanings: as an element aij of the stiffness matrix
A, and as a finite element or triangle of the triangulation.

To compute the element stiffness matrix aK
ij for a given triangle K, we

need the physical coordinates of the nodes of K. To perform the assembly
where we loop over all elements and add the corresponding contributions
to the global stiffness matrix, we need the node numbers of each triangle.
Similar information is needed to compute the load vector. The required in-
formation is arranged in a data structure, or data base, containing (i) a list
of the coordinates of the nodes numbered in some way, and (ii) a list of the
node numbers of each triangle. A list of the numbers of the nodes on the
boundary is also needed to handle the boundary conditions This informa-
tion is typically the output of the mesh generator generating a triangulation
of the domain.

77.6 Solving the Discrete System

Once we have assembled the stiffness matrix A and computed the load
vector b, we have to solve the linear system AU = b to obtain the finite
element approximation U(x). We now discuss this topic briefly based on
the material presented in Chapter 44. The stiffness matrix resulting from
discretizing the Laplacian is symmetric and positive-definite and therefore
invertible. These properties also mean that there is a wide choice in the
methods used to solve the linear system AU = b, which take advantage of
the fact that A is sparse.

In the case of the standard uniform discretization of a square, we saw
thatA is a banded matrix with five non-zero diagonals and bandwidthm+1,
where m is the number of nodes on a side. The dimension of A is m2

and the asymptotic operations count for using Gaussian elimination is
O
(
m4

)
= O

(
h−4

)
. Note that even though A has mostly zero diagonals

inside the band, fill-in occurs as the elimination is performed, so we may
as well treat A as if it has non-zero diagonals throughout the band. Clever
rearrangement of A to reduce the amount of fill-in leads to a solution al-
gorithm with an operations count on the order of O(m3) = O(h−3). In
contrast, if we treat A as a full matrix, we get an asymptotic operations
count of O

(
h−6

)
, which is considerably larger for a large number of ele-

ments.
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In general, we get a sparse stiffness matrix, though there may not be
a band structure. If we want to use a Gaussian elimination method effi-
ciently in general, then it is necessary to first reorder the system to bring
the matrix into banded form.

We can also apply both the Jacobi and Gauss-Seidel methods to solve
the linear system arising from discretizing the Poisson equation. In the
case of the uniform standard discretization of a square for example, the
operations count is O

(
M

)
per iteration for both methods if we make use of

the sparsity of A. Therefore a single step of either method is much cheaper
than a direct solve. The question is: How many iterations do we need to
compute in order to obtain an accurate solution?

Typically the spectral radius of the iteration matrix of the Jacobi or
Gauss-Seidel method is equal to 1 − Ch2 with C some moderate posi-
tive constant, which means that the convergence rate quickly gets slow
as h decreases: to reduce the error a certain factor, we need of the order
of O(h−2) iterations, and since each iteration takes O(h−2) operations, the
total number of operations is O(h−4), which is the same order as using
a banded Gaussian elimination solver.

There has been a lot of activity in developing iterative methods that
converge more quickly than Jacobi and Gauss-Seidel. In recent years, very
efficient multi-grid methods have been developed and are now becoming
a standard tool. A multi-grid method is based on a sequence of Gauss-
Seidel or Jacobi steps performed on a hierarchy of successively coarser
meshes and are optimal in the sense that the solution work is proportional
to the total number of unknowns (that is h−2 in the model problem).

77.7 An Equivalent Minimization Problem

The variational problem (77.8) is equivalent to the following quadratic min-
imization problem: find U ∈ Vh such that

F (u) ≤ F (v) for all v ∈ Vh, (77.13)

where

F (v) =
1
2

∫

Ω

|∇v|2 dx−
∫

Ω

fv dx =
1
2
(∇v,∇v) − (f, v).

The quantity F (v) may be interpreted as the total energy of the func-
tion v(x) composed of the internal energy 1

2 (∇v,∇v) and the load poten-
tial −(f, v). Thus, the solution U minimizes the total energy F (v) with v
varying over Vh.

To see the equivalence of (77.8) and (77.13), we assume first that U ∈ Vh

satisfies (77.8). Let then v ∈ Vh and write v = U + (v − U) = U + w with
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w = v − U ∈ Vh. Using (∇U,∇w) = (∇w,∇U), we get

F (v) = F (U + w) =
1
2
(∇U,∇U) + (∇U,∇w) +

1
2
(∇w,∇w) − (f, U) − (f, w)

= F (U) +
1
2
(∇w,∇w) ≥ F (U),

with equality only if w = 0. We conclude that U satisfies (77.13).
Conversely, if U is the solution of (77.13), then we have for all v ∈ Vh

gv(ε) = F (U + εv) ≥ g(0) = F (U) for all ε ∈ R,

and thus ε = 0 is an interior minimum point of gv(ε) with v fixed, and thus
g′v(0) = 0. Computing we get

0 = g′v(0) = (∇U,∇v) − (f, v)

and thus U satisfies (77.8). We sum up in the following theorem:

Theorem 77.1 The problems (77.8) and (77.13) are equivalent in the
sense that they have the same unique solution.

77.8 An Energy Norm a Priori Error Estimate

In this section, we derive a priori and a posteriori estimates of the error
u− U in the energy norm ‖∇(u− U‖ with

‖∇v‖ =
(∫

Ω

|∇v|2 dx
)1/2

, (77.14)

where u is the exact solution and U a finite element solution of Poisson’s
equation with homogeneous Dirichlet boundary conditions. The energy
norm, which is the L2 norm of the gradient of a function in this problem,
arises naturally in the error analysis of the finite element method because
it is closely tied to the variational problem. The gradient of the solution,
representing heat flow, electric field, flow velocity, or stress for example, can
be a variable of physical interest as much as the solution itself, representing
temperature, potential or displacement for example, and in this case, the
energy norm is the relevant error measure.

We first prove that the Galerkin finite element approximation is the best
approximation of the true solution in Vh with respect to the energy norm.

Theorem 77.2 Assume that u satisfies the Poisson equation (77.4) and U
is the Galerkin finite element approximation satisfying (77.8). Then

‖∇(u− U)‖ ≤ ‖∇(u− v)‖ for all v ∈ Vh. (77.15)
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The proof goes as follows: Using the Galerkin orthogonality (77.9) with v
replaced by U − v ∈ Vh, we can write

‖∇e‖2 = (∇e,∇(u− U)) = (∇e,∇(u − U)) + (∇e,∇(U − v)).

Adding the terms involving U on the right, whereby U drops out, and using
Cauchy’s inequality, we get

‖∇e‖2 = (∇e,∇(u− v)) ≤ ‖∇e‖ ‖∇(u− v)‖,

which proves the theorem after dividing by ‖∇e‖.
Choosing v = πhu and using an L2(Ω) analog of the interpolation esti-

mate (76.11), we get the following quantitative a priori error estimate (with
‖v‖ = ‖v‖L2(Ω)):

Corollary 77.3 There exists a constant Ci depending only on the minimal
angle τ in Th, such that

‖∇(u− U)‖ ≤ Ci‖hD2u‖. (77.16)

77.9 An Energy Norm a Posteriori Error Estimate

We now prove an a posteriori error estimate following the strategy used for
the two-point boundary value problem in Chapter 53. A new feature occur-
ring in higher dimensions is the appearance of integrals over the internal
edges S in Sh. We start by writing an equation for the error e = u − U
using (77.6) and (77.8) to get

‖∇e‖2 = (∇(u − U),∇e) = (∇u,∇e) − (∇U,∇e)
= (f, e) − (∇U,∇e) = (f, e− πhe) − (∇U,∇(e− πhe)),

where πhe ∈ Vh is an interpolant of e. We now break up the integrals over Ω
into sums of integrals over the triangles K in Th and integrate by parts over
each triangle in the last term to get

‖∇e‖2 =
∑

K

∫

K

(f +∆U)(e− π̃he) dx−
∑

K

∫

∂K

∂U

∂nK
(e−πhe) ds, (77.17)

where ∂U/∂nK denotes the derivative of U in the outward normal direc-
tion nK of the boundary ∂K of K. In the boundary integral sum in (77.17),
each internal edge S ∈ Sh occurs twice as a part of each of the bound-
aries ∂K of the two triangles K that have S as a common side. Of course
the outward normals nK from each of the two triangles K sharing S point
in opposite directions. For each side S, we choose one of these normal di-
rections and denote by ∂Sv the derivative of a function v in that direction
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on S. We note that if v ∈ Vh, then in general ∂Sv is different on the two
triangles sharing S; see Fig. 76.9, which indicates the “kink” over S in the
graph of v. We can express the sum of the boundary integrals in (77.17) as
a sum of integrals over edges of the form

∫

S

[∂SU ](e− πhe) ds,

where [∂SU ] is the difference, or jump, in the derivative ∂SU computed from
the two triangles sharing S. The jump appears because the outward normal
directions of the two triangles sharing S are opposite. We further note that
e − π̃he is continuous across S, but in general does not vanish on S even
if πh is the nodal interpolant. This is different than the one-dimensional
case, where the corresponding sum over nodes does indeed vanish because
e− πhe vanishes at the nodes. We may thus rewrite (77.17) as follows with
the second sum replaced by a sum over internal edges S:

‖∇e‖2 =
∑

K

∫

K

(f + ∆U)(e− πhe) dx+
∑

S∈Sh

∫

S

[∂SU ](e− πhe) ds.

Next, we return to a sum over element edges ∂K by just distributing each
jump equally to the two triangles sharing it, to obtain an error represen-
tation of the energy norm of the error in terms of the residual error:

‖∇e‖2 =
∑

K

∫

K

(f + ∆U)(e− πhe) dx

+
∑

K

1
2

∫

∂K

h−1
K [∂SU ](e− πhe)hK ds,

where we have prepared to estimate the second sum by inserting a fac-
tor hK and compensating. In crude terms, the residual error results from
substituting U into the differential equation −∆u − f = 0, but in reality
straightforward substitution is not possible because U is not twice differ-
entiable in Ω. The integral on the right over K is the remainder from sub-
stituting U into the differential equation inside each triangle K, while the
integral over ∂K arises because ∂SU in general is different when computed
from the two triangles sharing S.

We estimate the first term in the error representation by inserting a fac-
tor h, compensating and using the estimate ‖h−1(e − πhe)‖ ≤ Ci‖∇e‖
analogous to (76.11), to obtain

∣
∣
∣
∣
∣

∑

K

∫

K

h(f + ∆U)h−1(e− πhe) dx

∣
∣
∣
∣
∣

≤ ‖hR1(U)‖‖h−1(e− πhe)‖ ≤ Ci‖hR1(U)‖‖∇e‖,
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where R1(U) is the function defined on Ω by setting R1(U) = |f + ∆U |
on each triangle K ∈ Th. We estimate the contribution from the jumps
on the edges similarly. Formally, the estimate results from replacing hK ds
by dx corresponding to replacing the integrals over element boundaries ∂K
by integrals over elements K. Dividing by ‖∇e‖, we obtain the following
a posteriori error estimate:

Theorem 77.4 There is an interpolation constant Ci only depending on
the minimal angle τ such that the error of the Galerkin finite element ap-
proximation U of the solution u of the Poisson equation satisfies

‖∇u−∇U‖ ≤ Ci‖hR(U)‖, (77.18)

where R(U) = R1(U) +R2(U) with

R1(U) = |f + ∆U | on K ∈ Th,

R2(U) =
1
2

max
S⊂∂K

h−1
K

∣
∣[∂SU ]

∣
∣ on K ∈ Th.

Note that R1(U) is the contribution to the total residual from the interior
of the elements K. In the present case of piecewise linear approximation,
R1(U) = |f |. Further, R2(U) is the contribution to the residual from the
jump of the normal derivative of U across edges. In the one dimensional
problem considered in Chapter 53, this contribution does not appear be-
cause the interpolation error may be chosen to be zero at the node points.

77.10 Adaptive Error Control

The basic goal of adaptive error control is to find a triangulation Th with
a least number of nodes such that the corresponding finite element approx-
imation U satisfies

‖∇u−∇U‖ ≤ TOL. (77.19)

Using the a posteriori error estimate we are thus led to find a triangula-
tion Th with a least number of nodes such that the corresponding finite
element approximation U satisfies

Ci‖hR(U)‖ ≤ TOL. (77.20)

This is a nonlinear constrained minimization problem with U depending
on Th. If (77.18) is a reasonably sharp estimate of the error, then a solution
of this optimization problem will meet our original goal.

We cannot expect to be able to solve this minimization problem analyt-
ically. Instead, a solution has to be sought by an iterative process in which
we start with a coarse initial mesh and then successively modify the mesh
by seeking to satisfy the stopping criterion (77.20) with a minimal number
of elements. More precisely, we follow the following adaptive algorithm:
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1. Choose an initial triangulation T (0)
h .

2. Given the jth triangulation Th(j) with mesh function h(j), compute
the corresponding finite element approximation U (j).

3. Compute the corresponding residuals R1(U (j)) and R2(U (j)) and
check whether or not (77.20) holds. If it does, stop.

4. Find a new triangulation Th(j+1) with mesh function h(j+1) and with
a minimal number of nodes such that Ci‖h(j+1)R(U (j))‖ ≤ TOL,
and then proceed to #2.

The success of this iteration hinges on the mesh modification strategy
used to perform step #4. A natural strategy for error control based on
the L2 norm uses the principle of equidistribution of the error in which we
try to equalize the contribution from each element to the integral defining
the L2 norm. The rationale is that refining an element with large contri-
bution to the error norm gives a large pay-off in terms of error reduction
per new degree of freedom.

In other words, the approximation computed on the optimal mesh Th in
terms of computational work satisfies

‖∇e‖2
L2(K) ≈

TOL2

M
for all K ∈ Th,

where M is the number of elements in Th. Based on (77.18), we would
therefore like to compute the triangulation at step #4 so that

C2
i

(∥
∥h(j+1)R

(
U (j+1)

)∥
∥2

L2(K)
≈ TOL2

M (j+1)
for all K ∈ Th(j+1) , (77.21)

where M (j+1) is the number of elements in Th(j+1) . However, (77.21) is
a nonlinear equation, since we don’t know M (j+1) and U (j+1) until we
have chosen the triangulation. Hence, we replace (77.21) by

C2
i

(∥
∥h(j+1)R

(
U (j)

)∥
∥2

L2(K)
≈ TOL2

M (j)
for all K ∈ Th

(j+1), (77.22)

and use this formula to compute the new mesh size h(j+1).
There are several questions we may ask about the process described

here: How much efficiency is lost by replacing (77.19) by (77.20)? Does the
iterative process #1–#4 converge? Is the approximation (77.22) justified?
We address such issues in the advanced companion volumes.
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77.11 An Example

We want to compute the the solution

u(x) =
a

π
exp

(
−a(x2

1 + x2
2)
)
, a = 400,

of Poisson’s equation −∆u = f on the square (−.5, .5)× (−.5, .5) with f(x)
being the following “approximate delta function”:

f(x) =
4
π
a2

(
1 − ax2

1 − ax2
2

)
exp

(
−a(x2

1 + x2
2)
)
,

We plot f in Fig. 77.9 (note the vertical scale), together with the initial
mesh with 224 elements. The adaptive algorithm took 5 steps to achieve
an estimated .5% relative error. We plot the final mesh together with the
associated finite element approximation in Fig. 77.10. The algorithm pro-
duced meshes with 224, 256, 336, 564, 992, and 3000 elements respectively.

f(x)

0

5.105

1.106

1.5.106

2.106

x
2

-0.5-0.250.00.250.5x
1

-0.5 -0.25 0.0 0.25 0.5

Fig. 77.9. The approximate delta forcing function f and the initial mesh used
for the finite element approximation

Fig. 77.10. The finite element approximation with a relative error of .5% and the
final mesh used to compute the approximation. The approximation has a maxi-
mum height of roughly 5
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77.12 Non-Homogeneous Dirichlet Boundary
Conditions

We now consider Poisson’s equation with non-homogeneous Dirichlet
boundary conditions: {

−∆u = f in Ω,
u = g on Γ,

(77.23)

where g is the given boundary data.
We compute a finite element approximation on a triangulation Th, where

we now also include the nodes on the boundary, denoting the internal nodes
by Nh as above and the set of nodes on the boundary by Nb. We compute
an approximation U of the form

U =
∑

Nj∈Nb

ξjϕj +
∑

Nj∈Nh

ξjϕj , (77.24)

where ϕj denotes the basis function corresponding to node Nj in an enu-
meration {Nj} of all the nodes, and, because of the boundary conditions,
ξj = g(Nj) for Nj ∈ Nb. Thus the boundary values of U are given by g
on Γ and only the coefficients of U corresponding to the interior nodes
remain to be found. To this end, we substitute (77.24) into the variational
formulation of (77.23) with the test functions being all the basis functions
for the internal nodes, and we then get the following a square system of
linear equations for the unknown coefficients of U :

∑

Nj∈Nh

ξj(∇ϕj ,∇ϕi) = (f, ϕi) −
∑

Nj∈Nb

g(Nj)(∇ϕj ,∇ϕi), Ni ∈ Nh.

where the terms with known boundary values of U are shifted to the right
hand side as data.

77.13 An L-shaped Membrane

We present an example that shows the performance of the adaptive al-
gorithm on a problem with a boundary singularity with the derivatives of
the exact solution being infinite at a corner of the boundary. We consider
the Laplace equation in an L-shaped domain that has a non-convex corner
at the origin satisfying homogeneous Dirichlet boundary conditions at the
sides meeting at the origin and non-homogeneous conditions on the other
sides, see Fig. 77.11. We choose the boundary conditions so that the exact
solution is u(r, θ) = r2/3 sin(2θ/3) in polar coordinates (r, θ) centered at
the origin, which has a typical singularity of a corner problem:

∂u

∂r
(r, θ) =

2
3
r−1/3 sin(2θ/3),
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which tends to infinity as r tends to zero (unless θ = 0 or θ = 3π
2 ).

We use the knowledge of the exact solution to evaluate the performance
of the adaptive algorithm.

We compute using an adaptive FEM-solver with energy norm control
based on (77.18) to achieve an error tolerance of TOL = .005 using h re-
finement mesh modification. In Fig. 77.11, we show the initial mesh Th(0)

with 112 nodes and 182 elements. In Fig. 77.12, we show the level curves
of the solution and the final mesh with 295 nodes and 538 elements that
achieves the desired error bound. The interpolation constant was set to
Ci = 1/8. The quotient between the estimated and true error on the final
mesh was 1.5.

Since the exact solution is known in this example, we can also use the
a priori error estimate to determine a mesh that gives the desired accuracy.
We do this by combining the a priori error estimate (77.16) and the principle
of equidistribution of error to determine h(r) so that Ci‖hD2u‖ = TOL
while keeping h as large as possible (and keeping the number of elements
at a minimum). Since D2u(r) ≈ r−4/3, as long as h ≤ r, that is up to the
elements touching the corner, we determine that

(
hr−4/3

)2
h2 ≈ TOL2

M
or h2 = TOLM−1/2r4/3,

(0,0)

u=0

Fig. 77.11. The L-shaped domain and the initial mesh

Fig. 77.12. Level curves of the solution and final adapted mesh on the L-shaped
domain



1068 77. FEM for Boundary Value Problems in R
2 and R

3

where M is the number of elements and h2 measures the element area.
To compute M from this relation, we note that M ≈

∫
Ω h

−2 dx, since the
number of elements per unit area is O(h−2), which gives

M ≈M1/2TOL−1

∫

Ω

r−4/3 dx.

Since the integral is convergent (prove this), it follows that M ∝ TOL−2,
which implies that h(r) ∝ r1/3 TOL. Note that the total number of un-
knowns, up to a constant, is the same as that required for a smooth so-
lution without a singularity, namely TOL−2. This depends on the very
local nature of the singularity in the present case. In general, of course
solutions with singularities may require a much larger number of elements
than smooth solutions do.

77.14 Robin and Neumann Boundary Conditions

Next, we consider Poisson’s equation with homogeneous Dirichlet condi-
tions on part Γ1 of the boundary and non-homogeneous Robin conditions
on the remaining part of the boundary Γ2:






−∆u = f in Ω,
u = 0 on Γ1,

∂nu+ κu = g on Γ2,

(77.25)

where κ ≥ 0 is a given coefficient, and f and g are given data. Setting
κ = 0 gives the Neumann condition ∂nu + κu = g. To find a variational
formulation, we multiply the Poisson equation by a test function v satisfying
the homogenous Dirichlet boundary condition, integrate over Ω, and use
Green’s formula to move derivatives from u to v:

(f, v) = −
∫

Ω

∆u v dx =
∫

Ω

∇u · ∇v dx−
∫

Γ

∂nuv ds

=
∫

Ω

∇u · ∇v dx+
∫

Γ2

κuv ds−
∫

Γ2

gv ds,

where we use the boundary conditions to rewrite the boundary integral. We
are thus led to the following cG(1) FEM based on a space Vh of continuous
piecewise linear functions vanishing on Γ1: find U ∈ Vh such that

(∇U,∇v) +
∫

Γ2

κUv ds = (f, v) +
∫

Γ2

gv ds for all v ∈ Vh. (77.26)

We recall that boundary conditions like the Dirichlet condition that are
enforced explicitly in the choice of the space Vh are called essential boundary
conditions. Boundary conditions like the Robin condition that are implicitly
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contained in the weak formulation are called natural boundary conditions.
(To remember that we must assume essential conditions: there are two “ss”
in assume and essential.)

Note that the stiffness matrix and load vector related to (77.26) con-
tain contributions from both integrals over Ω and Γ2 related to the basis
functions corresponding to the nodes on the boundary Γ2.

To illustrate, we compute the solution of Laplace’s equation with a com-
bination of Dirichlet, Neumann and Robin boundary conditions on the
domain shown in Fig. 77.13 using an adaptive FEM-solver. We show the
boundary conditions in the illustration. The problem models e.g. station-
ary heat flow around a hot water pipe in the ground. We show the mesh
used to compute the approximation so that the error in the L2 norm is
smaller than .0013 together with a contour plot of the approximation in
Fig. 77.14. We notice that the level curves are parallel to a boundary with
a homogeneous Dirichlet condition, and orthogonal to a boundary with
a homogeneous Neumann condition.

u=0

u
n =0u

n =0

u
n =-u

- u=0

u=1

Fig. 77.13. A problem with Robin boundary conditions

Fig. 77.14. The adaptive mesh and contour lines of the approximate solution of
the problem shown in Fig. 77.13 computed with error tolerance .0013
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77.15 Stationary Convection-Diffusion-Reaction

We now consider the extension to a convection-diffusion-reaction problem
of the form

−∇ · (a∇u) + ∇ · (ub) + cu = f in Ω,
a∂nu+ κu = g on Γ.

(77.27)

with Robin boundary conditions, where f and g are given data, and a > 0,
b, c and κ ≥ 0 are given coefficients, and Ω is a given domain in R

2 with
boundary Γ. The term cu models absorption if c ≥ 0 and production c < 0.

Let Vh be the space of continuous piecewise linear functions on a trian-
gulation of Ω with no restriction on the nodal values on the boundary. The
cG(1) FEM for (77.27) takes the form: Find U ∈ Vh such that

∫

Ω

a∇U · ∇v dx+
∫

Ω

∇ · (Ub)v dx+
∫

Ω

cUv dx+
∫

Γ

κUv ds

=
∫

Ω

fv dx+
∫

Γ

gv ds, (77.28)

for all v ∈ Vh. Note that the extension to include the terms ∇ · (Ub)
and cu is very natural and that the corresponding terms in the variational
formulation are obtained by multiplying by the test function v without any
partial integration. For the term −∇ · (a∇u) we note that multiplication
by v(x) and integration over Ω gives using the Divergence theorem

−
∫

Ω

∇ · (a∇u)v dx =
∫

Ω

a∇U · ∇v dx−
∫

Γ

a∂nu v ds

and the variational formulation results from replacing −a∂nu ds by ku− g
using the Robin boundary condition.

The matrix equation corresponding to (77.28) has a banded and sparse
stiffness matrix, but the symmetry is lost if b �= 0, as is evident from the
presence of the non-symmetric term

∫
Ω
∇ · (ub)v dx. The non-symmetry of

the convection term eliminates the best approximation property of FEM,
but FEM still may give good results. If c < 0 then solutions may be non-
unique corresponding to non-zero solutions (eigen-functions) of the homo-
geneous problem −∇ · (a∇u) + ∇ · (ub) + cu = 0.

The Convection-Dominated Case: Streamline Diffusion

If |b| > a
h , where h(x) is the mesh size, which we refer to as a convection-

dominated case, and the exact solution is non-smooth with rapid variation,
then the FEM-solution may exhibit spurious oscillations. In such cases the
cG(1)-method (77.28) will have to be modified by changing the test func-
tions from v to v + δ∇ · (vb) in all terms but the diffusion and boundary
terms, where δ = h

2|b| acts as a parameter. The presence of the modification
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δ∇ · (vb) introduces the positive quadratic term
∫
Ω
δ(∇ · (Ub))2 dx upon

choosing v = U , which gives enhanced stability and (almost) eliminates
spurious oscillations. The fact that the modification is not made in the dif-
fusion term does not destroy accuracy, because in the convection dominated
case the diffusion coefficient is small. The modified method is referred to
as the streamline diffusion method or weighted least squares-stabilization.

77.16 Time-Dependent
Convection-Diffusion-Reaction

We now consider the time-dependent analog of (77.27), that is the problem

u̇−∇ · (a∇u) + ∇ · (ub) + cu = f in Ω × (0, T ],

a∂nu+ κu = g on Γ × (0, T ], (77.29)

u(·) = u0 in Ω,

where [0, T ] is a given time interval, and u0 a given initial value. For
the time discretization we may use e.g. dG(0) or cG(1) on a subdivision
0 = t0 < t1 < · · · < tN = T into time intervals In = (tn−1, tn] with time
steps kn = tn − tn−1. Using dG(0) we seek Un ∈ Vh for n = 1, . . . , N , such
that for n = 1, . . . , N ,

∫

Ω

Unv dx+
∫

Ω×In

a∇Un · ∇v dx dt

+
∫

Ω×In

∇ · (Unb)v dx dt+
∫

Ω×In

cUnv dx dt+
∫

Γ×In

κUnv ds dt (77.30)

=
∫

Ω

Un−1v dx+
∫

Ω×In

fv dx dt +
∫

Γ×In

gv ds dt,

for all v ∈ Vh, where U0 = u0. The corresponding discrete system for Un

takes the form

Mξn + knAnξ
n = Mξn−1 + knb

n

where the vector ξn contains the nodal values of Un ∈ Vh, M is the mass
matrix related to Vh, An is the relevant stiffness matrix connected to the
convection-diffusion-reaction terms, and bn the relevant load vector.

In a convection-dominated case, the test functions v are again modified
to v + δ∇ · (vb) in all terms with integration over Ω× In, but the diffusion
term.
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77.17 The Wave Equation

We now consider the extension to the wave equation with homogeneous
Dirichlet boundary conditions:

ü− ∆u = f in Ω × (0, T ],
u = 0 on Γ × (0, T ],

u = u0, u̇ = u̇0 in Ω,

(77.31)

where u0 and u̇0 are given initial conditions. As above we let Vh be the
set of piecewise linears functions on a triangulation of Ω satisfying the
homogeneous Dirichlet boundary conditions, and we let 0 = t0 < t1 <
· · · < tN = T be a subdivision of [0, T ] into time intervals In = (tn−1, tn]
with time steps kn = tn− tn−1. We apply cG(1) in space and cG(1) in time
and seek a discrete solution U in the space of functions Wh spanned by the
functions

v(x, t) =
N∑

n=0

M∑

j=1

ηn
j ϕj(x)ψn(t),

where {ϕj(x)}M
j=1 is a basis for Vh, and {ψn(t)}N

n=0 is a basis for the space of
continuous piecewise linear functions on the subdivision 0 = t0 < t1 < · · · <
tN = T . The corresponding discrete system takes the following explicit
form if mass lumping is used in space as well as time and the time step is
constant kn = k:

ξn+1 = 2ξn − ξn−1 + k2Aξn for n = 1, . . . , N − 1,

with appropriate starting values ξ0 and ξ1 computed from the initial con-
ditions, and A the relevant stiffness matrix related to the Laplacian.

77.18 Examples

We present some examples of systems of nonlinear reaction-diffusion-con-
vection equations (77.27) arising in physics, chemistry and biology of the
form

u̇i −∇ · (ai∇ui) + ∇ · (uibi) + ciui = fi(u1, . . . , ud) in Ω × I, i = 1, . . . , d,
(77.32)

where the ai > 0, bi and ci are given coefficients, and the fi : R
d → R.

These systems may be solved numerically by a direct extension of the cG(1)
method in space and time presented above. We will return in detail to this
issue below. In all the examples, a is a positive constant.
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Example 77.1. The bistable equation for ferro-magnetism

u̇− a∆u = u− u3. (77.33)

Example 77.2. Superconductivity of fluids

u̇1 − a∆u1 = (1 − |u|2)u1,

u̇2 − a∆u2 = (1 − |u|2)u2.
(77.34)

Example 77.3. Flame propagation

u̇1 − a∆u1 = −u1e
−α1/u2 ,

u̇2 − a∆u2 = α2u1e
−α1/u2 ,

(77.35)

where α1, α2 > 0 are constants.

Example 77.4. Interaction of two species

u̇1 − a∆u1 = u1M(u1, u2),
u̇2 − a∆u2 = u2N(u1, u2),

(77.36)

where M(u1, u2) and N(u1, u2) are given functions describing various situ-
ations such as (i) predator-prey (Mu2 < 0, Nu1 > 0) (ii) competing species
(Mu2 < 0, Nu1 < 0) and (iii) symbiosis (Mu2 > 0, Nu1 > 0).

Example 77.5. Morphogenesis of patterns (zebra)

u̇1 − a∆u1 = −u1u
2
2 + α1(1 − u1),

u̇2 − a∆u2 = u1u
2
2 − (α1 + α2)u2.

(77.37)

Example 77.6. Belousov-Zhabotinski reaction in chemical kinetics

u̇1 − a∆u1 = α1(u2 − u1u2 + u1 − α2u
2
2),

u̇2 − a∆u2 = α−1
1 (α3u3 − u2 − u1u2).

u̇3 − a∆u3 = α4(u1 − u3),

(77.38)

where α ≈ 102, α2 ≈ 10−2, α3 ≈ 1, α4 ≈ 10−1.

Chapter 77 Problems

77.1. Compute the coefficients of the mass matrix M on the standard triangu-
lation of the square of mesh size h. Hint: it is possible to use quadrature based
on the midpoints of the sides of the triangle because this is exact for quadratic
functions. The diagonal terms are h2/2 and the off-diagonal terms are all equal
to h2/12. The sum of the elements in a row is equal to h2.
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77.2. Compute the stiffness matrix for cG(1) for the problem −∆u = 1 in
Ω = (0, 1) × (0, 1) with u = 0 on the side with x2 = 0 and ∂nu + u = 1 on the
other three sides of Ω using the standard triangulation. Note the contribution to
the stiffness matrix from the nodes on the boundary.

77.3. Describe the sparsity pattern of the stiffness matrices A for the Poisson
equation with homogeneous Dirichlet data on the unit square corresponding to
the continuous piecewise linear finite element method on the standard triangula-
tion using the three numbering schemes pictured in Fig. 77.15.

1

m2

1

m2

2

3

4

(a) (b) (c)

1 m

2m

5

m

Fig. 77.15. Three node numbering schemes for the standard triangulation of the
unit square

77.4. Compute the load vector for f(x) = x1 + x2
2 on the standard triangulation

of the unit square using exact integration and the lumped mass (trapezoidal rule)
quadrature.

77.5. Write a code to solve Aξ = b using both the Jacobi and Gauss-Seidel
iteration methods, making use of the sparsity of A in storage and operations.
Compare the convergence rate of the two methods using the result from a direct
solver as a reference value.

77.6. Write a code to solve the system Aξ = b with A a band matrix.

77.7. Compute the stiffness matrix for the Poisson equation with homogeneous
Dirichlet boundary conditions for (a) the union jack triangulation of a square
shown in Fig. 77.16 and (b) the triangulation of triangular domain shown in
Fig. 77.16.

77.8. Compute the discrete equations for the finite element approximation for
−∆u = 1 on Ω = (0, 1) × (0, 1) with boundary conditions u = 0 for x1 = 0,
u = x1 for x2 = 0, u = 1 for x1 = 1 and u = x1 for x2 = 1 using the standard
triangulation (Fig. 77.2).

77.9. (a) Show that the element stiffness matrix (77.12) for the linear polynomi-
als on a triangle K with vertices at (0, 0), (h, 0), and (0, h) numbered 1, 2 and 3,
is given by




1 −1/2 −1/2

−1/2 1/2 0
−1/2 0 1/2



 .
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(0,0) (h,0) (2h,0) ((m-1)h,0) (mh,0) ((m+1)h,0)

(0,h)

(0,2h)

(0,(m+1)h)

(0,mh)

N2 Nm-1

N2m
Nm+1

N(m-1)m

(1,1)

N1

Fig. 77.16. The “union jack” triangulation of the unit square and a uniform
triangulation of a right triangle

(b) Use this result to verify the formula computed for the stiffness matrix A for
the continuous piecewise linear finite element method for the Poisson equation
with homogeneous boundary conditions on the unit square using the standard
triangulation. (c) Compute the element stiffness matrix for a triangle K with
nodes {ai}.

77.10. Compute the asymptotic operations count for the direct solution of the
system Aξ = b using the three A computed in Problem 77.3.

77.11. Apply the finite element method with piecewise linear approximation to
the Poisson equation in three dimensions with a variety of boundary conditions.
Compute the stiffness matrix and load vector in some simple cases.

77.12. Derive a priori error bound in the energy norm for cG(1) FEM for
Poisson’s equation with Robin boundary conditions. Generalize to problems of
the form −∇ · (a∇u) + cu = f , where a(x) > 0 and c ≥ 0.

77.13. Derive a posteriori error bound in the energy norm for cG(1) FEM for
Poisson’s equation with Robin boundary conditions. Generalize to problems of
the form −∇ · (a∇u) + cu = f , where a(x) > 0 and c ≥ 0.

77.14. Implement adaptive energy norm error control for cG(1) for Poisson’s
equation based on an a posteriori error estimate.

77.15. Find an exact solution of the L-shaped membrane problem with the
Dirichlet condition replaced by a Neumann condition on one of the sides meeting
at 3π

2
corner. What is the nature of the singularity?

77.16. Let ω(x) be a positive weight function defined on the domain Ω ⊂ R
2.

Assume that the mesh function h(x) minimizes the integral
∫
Ω
h2(x)ω(x)dx under

the constraint
∫
Ω
h−2(x) dx = N , where N is a given positive integer. Prove that

h4(x)ω(x) must be constant. Interpret the result as equidistribution in the context
of error control. Hint: argue that h4(x)ω(x) is the gain adding one more node.





78
Inverse Problems

I never guess. It is a capital mistake to theorize before one has data.
Insensibly one begins to twist facts to suit theories, instead of theories
to suit facts.

When you have eliminated the impossible, whatever remains, how-
ever improbable, must be the truth.
(Sherlock Holmes in the The Sign of Four, 1888)

78.1 Introduction

We have above in our study of Poisson’s equation studied “forward” prob-
lems of the form: Given the function f : Ω → R, find a function u : Ω → R

such that {
−∆u = f in Ω,
∂nu+ κu = 0 on Γ,

(78.1)

where κ ≥ 0 is a given constant. A corresponding “inverse” problem would
be to assume knowledge of u(x) and seek the corresponding function f(x)
so that (78.1) is satisfied! If we know u(x) in the entire region Ω, this is
a problem of differentiation: we just compute ∆u(x) from u(x). We then
have −∆u = f ! We have studied this problem in Chapter The derivative,
and we recall that this problem is a bit delicate and that we have to balance
the step length h in a difference approximation of ∆ to the precision in the
given data u(x).
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Suppose now that we know u(x) only on the boundary Γ. Can we then
determine f(x) in Ω? This type of problem connects to a wealth of impor-
tant applications of the following form: Suppose we can measure something
on the boundary of an object. Can we then say something about what is
inside the object? For example, suppose the object is a human body, and
that we can measure something on the boundary (or outside) the body.
Can we than get some information on what is inside the body? Or, sup-
pose we can accumulate data on the surface of the Earth, can we then say
something about what is in the interior of the Earth, such as the presence
of layers of oil. These are all examples of inverse problems.

The nature of an inverse problem is to be “ill-posed” in the sense that
solutions may be non-unique and/or that small changes in the data may
cause large changes in the solution. To single out a unique solution which
is not too sensitive to little errors in data, we may have to “regularize” the
inverse problem e.g. by smoothing of the data and/or restricting the size
of (derivatives of) the solution. Differentiation is such an ill-posed prob-
lem where we may need to “smooth” or regularize a given function before
attempting to compute its derivative.

A typical forward problem is “well-posed” in the sense that small changes
in data cause small changes in the solution. A basic example of a well-posed
problem is integration corresponding to solving a differential equation. The
corresponding inverse problem is differentiation which is ill-posed as we
just noted. Solving a differential equation does not always correspond to
a well-posed problem: in Chapter Lorenz and the Essence of Chaos we
met a simple differential equation with solutions being highly sensitive to
changes in data.

Example 78.1. An electrocardiogram ECG produces a curve reflecting the
electrical activity of the heart from measurements of electric potentials on
the chest, and the curve gives a specialist information on abnormal activi-
ties of the heart such as abnormal heart rhythm (arrhythmias). Similarly,
an electroencephalogram EEG gives information on the electrical activity of
the brain from measurements of electric potentials on the scalp. These tech-
niques are however too imprecise for many diagnoses, and more recently
techniques of electrocardiographic imaging have been developed, which build
on solving inverse problems for Poisson-like equations. The geometry of
the individual patient is then obtained from computer tomography, and
a picture of the electrical activity inside the body is obtained from mea-
surements of electric potentials on the boundary (e.g. the chest or scalp)
by solving an inverse problem for a Poisson-like equation (using the finite
element method). Electrocardiographic imaging may give more accurate in-
formation on e.g. abnormal cardiac or brain activity than ECG and EEG,
and is now a part of practice in advanced neurological and radiological de-
partments. Further development of in particular the computational process
(adaptivity, geometric modeling) is needed to increase the accuracy.
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Example 78.2. Another inverse problem of importance to mankind occurs
in inverse seismic prospecting: Explosions on the surface of the Earth are
set off and the reflections of the induced waves in the mantle of the Earth
are recorded on the surface, and from this information one tries to deter-
mine subsurface structures such as layers of oil-bearing rock. To solve this
reconstruction problem one uses computational methods based on solving
the wave equation involving a wave speed coefficient characteristic of dif-
ferent materials, and through optimization one tries to find the local wave
speed coefficient which gives best least squares fit to measured data on the
surface of the Earth, and which then gives information on the unknown
subsurface layering.

78.2 An Inverse Problem
for One-Dimensional Convection

We start considering the simplest boundary value problem:

u′(x) = f(x), for x ∈ (0, 1], u(0) = 0, (78.2)

modeling convection with u : [0, 1] → R representing a concentration and
f : [0, 1] → R a source. We seek to determine or reconstruct the function
f : [0, 1] → R from the boundary value observation u(1) of the correspond-
ing solution u(x) of (78.2). It is clear that we cannot hope to determine f(x)
for all x ∈ (0, 1) from this observation alone. This is because there are many
functions f(x) such that the corresponding function u(x) satisfies (78.2) and
u(1) = 0.
To see this it is sufficient to choose a non-zero function u(x) on [0, 1] satisfy-
ing u(0) = u(1) = 0 and define f(x) = u′(x). Evidently, the reconstruction
is undetermined up to such functions.

The indeterminancy of the reconstruction f(x) reflects the ill-posed na-
ture of the inverse problem; even if the measurements of the boundary
value u(1) is very precise, the corresponding source f(x) is not well de-
fined. We thus need some extra condition to single out a (hopefully) unique
source f(x). We may do this in many ways and depending on the extra con-
dition imposed, we may get different reconstructions f(x). We now indicate
one possibility, where we reconstruct under the extra condition that f(x) is
as small as possible in a least squares sense, which is a common technique
of regularization. We then reformulate the inverse problem as the following
least squares optimization problem: Find the function f : [0, 1] → R which
minimizes the total “cost”

J(f) = (u(1) − ū(1))2 + µ

∫ 1

0

f(x)2 dx,
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where u(x) solves (78.2), ū(1) is the observed boundary value at x = 1,
and µ > 0 is a constant. We may view this as a control problem where
the objective is to find the control f : [0, 1] → R which minimizes the total
cost J(f), where the µ-term measures the cost of the control f and the first
term the cost of a boundary value misfit u(1) − ū(1).

We can phrase this problem as finding the function u(x) with u(0) = 0
which minimizes

(u(1) − ū(1))2 + µ

∫ 1

0

(u′)2 dx.

Recalling Chapter FEM for two-point boundary value problems, we under-
stand that the solution u(x) satisfies u′′(x) = 0 in (0, 1), u(0) = 0 and
u(1)− ū(1)+µu′(1) = 0. We conclude that u(x) = 1

1+µ ū(1)x, and thus the
reconstructed source f(x) = u′(x) takes on a constant value and is given
by

f(x) =
1

1 + µ
ū(1) for x ∈ [0, 1].

Evidently, we are led to choose the regularization parameter µ small; the
smaller µ is the more accurately we will fit the boundary value observa-
tion ū(1). Since the reconstructed function f(x) is constant, we have ef-
fectively only one constant to determine and we may expect to be able to
determine this single value from the single observation ū(1).

We can also rephrase the optimization problem as follows introducing the
integral operator B defined on functions on [0, 1] by Bf(x) =

∫ x

0 f(y) dy
for x ∈ [0, 1]: Find the function f : [0, 1] → R which minimizes

J(f) = (Bf(1) − ū(1))2 + µ

∫ 1

0

f(x)2 dx.

The optimality condition obtained by setting d
dεJ(f + εg) = 0 for ε = 0,

where g : [0, 1] → R is an arbitrary function, takes the form:

(Bf(1) − ū(1))Bg(1) + µ

∫ 1

0

f(x)g(x) dx = 0 (78.3)

for all functions g : [0, 1] → R. We shall now rewrite this condition by in-
troducing the adjoint operator B	 defined on functions w(x) as follows:
for a given w = w(x) we let B	w be the function on [0, 1] satisfying
(B	w)′(x) = 0 for x ∈ (0, 1) and B	w(1) = w(1), that is, B	w is the
constant function on [0, 1] taking the value w(1) for all x. We can then
rewrite (78.3) in the form

∫ 1

0

B	(Bf(x) − ū(1))(x)g(x) dx + µ

∫ 1

0

f(x)g(x) dx = 0 (78.4)
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for all functions g : [0, 1] → R, because by partial integration

∫ 1

0

B	(Bf(x) − ū(1))(x) (Bg(x))′
︸ ︷︷ ︸

=g(x)

dx = (Bf(1) − ū(1))Bg(1),

where as indicated (Bg(x))′ = g(x) and B	w(1) = w(1). We conclude that

∫ 1

0

(B	Bf + µf)g dx =
∫ 1

0

B	ū(1)g dx

for all functions g : [0, 1] → R, and therefore

B	Bf + µf = B	ū(1) on (0, 1), (78.5)

or with I the identity operator:

(B	B + µI)f = B	ū(1). (78.6)

We conclude that f(x) is constant on [0, 1] and takes the value

f(x) =
1

1 + µ
ū(1) for x ∈ [0, 1],

which is the same result as already derived. We note the form (78.6) of
the optimality condition (78.6) with the operator B	B + µI appearing.
We shall meet the same equation below with different solution operators B
and adjoints B	.

78.3 An Inverse Problem
for One-Dimensional Diffusion

We continue with the boundary value problem

−u′′ = f in (0, 1), u′(0) = 0, u′(1) + u(1) = 0, (78.7)

where we seek to determine the source f(x) in (0, 1) by observing the
boundary values u(0) and u(1) of the corresponding solution u(x) of (78.7).
Again it is clear that we cannot hope to determine f(x) for all x ∈ (0, 1)
from these two observations alone, because there are many functions f(x)
such that the corresponding function u(x) satisfies (78.7) and u(0)=u(1)=0.
To see this it is sufficient to choose a non-zero function u(x) on [0, 1] sat-
isfying u(0) = u′(0) = u(1) = u′(1) = 0 and set f(x) = −u′′(x).

As above we seek to reconstruct f(x) under the extra condition that f(x)
is as small as possible and we therefore reformulate the inverse problem as



1082 78. Inverse Problems

the following least squares optimization problem: Find f(x) in (0, 1) such
that

J(f) = (u(0) − ū(0))2 + (u(1) − ū(1))2 + µ

∫ 1

0

f2(x) dx

is as small as possible, where µ > 0 is a positive constant acting as a regu-
larization, ū(0) and ū(1) are the boundary observations, and of course u(x)
solves (78.7). We thus seek f(x) so that in a least squares sense we fit the
boundary observations as well as the smallness of f(x) as well as possible.

To state the optimality equations, we introduce the solution operator B
corresponding to (78.7), that is, for a given function f : [0, 1] → R we let
Bf(x) be the function on [0, 1] satisfying

∫ 1

0

(Bf)′v′ dx+Bf(1)v(1) =
∫ 1

0

fv dx, (78.8)

for all functions v(x) on [0, 1]. This follows from Chapter FEM for two-point
boundary value problems. Setting d

dεJ(f + εg) = 0 for ε = 0, we obtain the
optimality condition in the form

(Bf(0) − ū(0), Bg(0)) + (Bf(1) − ū(1), Bg(1)) + µ

∫ 1

0

f(x)g(x) dx = 0

(78.9)

for all functions g(x) on [0, 1]. Next we introduce the adjoint operator B	

defined as follows: given the values w(0) and w(1), we let B	w be the
function on [0, 1] which satisfies

∫ 1

0

(B	w)′v′ dx+B	w(1)v(1) = w(0)v(0) + w(1)v(1) (78.10)

for all v(x). We see that (B	w)′′ = 0 and −(B	w)′(0) = w(0), B	w(1) +
(B	w)′(1) = w(1). In other words, B	w is a linear function determined by
the two boundary conditions. In particular, if w(0) = 0, then B	w = w(1)
is a constant. Now, setting v = Bg in (78.10), we get

w(0)Bg(0) + w(1)Bg(1) =
∫ 1

0

(B	w)′(Bg)′ dx+B	w(1)Bg(1)

=
∫ 1

0

B	wg dx,

where we used (78.8) with f replaced by g and v replaced by B	w, and thus
we can write the optimality condition (78.9) in the same form as above:

(B	B + µI)f = B	ū. (78.11)
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From this equation we can uniquely solve for the function f(x), which will
be a linear function defined by two constants, because f = 1

µB
	(Bf − ū).

For example if ū(0) = 0 and ū(1) = 1, then we get choosing µ small,
f(x) ≈ 10ū(1)x− 8ū(1) with corresponding solution u(x) ≈ −3x3 + 4x2.

We now comment on the nature of the optimality equation (78.11). The
operator B maps a space of sources, say F , into a space of observations,
say O, and the adjoint operator B	 maps O into F . We may think of the
dimension of F as large, and that of O as smaller. For the discussion we
may assume that the dimension of F is n and the dimension of O is m
and thus B corresponds to an m × n matrix and B	 to an n ×m matrix
with m << n. This will be the setting with computational approximations
of the solution operators B and B	. In particular, the columns of B must
be severely linearly independent since there are many more columns than
rows, and thus the n × n matrix B	B must be singular with many non-
zero n-vectors f satisfying B	Bf = 0. On the other hand, the matrix
B	B + µI with µ > 0 is nonsingular, because if (B	B + µI)f = 0, then
scalar multiplication by the n-vector f	, we obtain ‖Bf‖2 + µ‖f‖2 = 0
and thus f = 0. The non-zero solutions f to B	Bf = 0 are eigenvectors
corresponding to a zero eigenvalue, and by changing to the regularized
operator B	B + µI we shift the spectrum to the interval [µ,∞) on the
positive real axis.

78.4 An Inverse Problem for Poisson’s Equation

We now pass to an inverse problem for Poisson’s equation (78.1) assum-
ing Ω, Γ and κ to be known: Given u(x) = Û(x) for x ∈ Γ, find f(x)
for x ∈ Ω.

We approach this problem directly in discrete form as the following least
squares problem: Find F ∈ Vh which minimizes

J(F ) = ‖U − Û‖2
Γ + µ‖F‖2

Ω (78.12)

over Vh, where U ∈ Vh satisfies

(∇U,∇v)Ω + (κU, v)Γ = (F, v)Ω for all v ∈ Vh, (78.13)

and Vh is the space of continuous piecewise linear functions on a given
triangulation of Ω of mesh size h(x). As above µ ≥ 0 acts as a regularization
parameter which helps to cope with the ill-posed nature of the problem.
Further, ‖ · ‖Ω and (·, ·)Ω denote the L2(Ω) norm and scalar product, and
similarly, ‖ · ‖Γ and (·, ·)Γ denote the L2(Γ) norm and scalar product.

We reformulate (78.12) by introducing the solution operatorBh : Vh→Wh

defined by BhF = UF on Γ, where UF ∈ Vh solves (78.13), and Wh is the
restriction of the space Vh to the boundary Γ, that is a set of piecewise
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linear functions on Γ. By definition, UF ∈ Vh satisfies:

(∇UF ,∇v)Ω + (κUF , v)Γ = (F, v)Ω for all v ∈ Vh. (78.14)

We can now formulate the minimization problem (78.12) as follows: Find
F ∈ Vh which minimizes

J(F ) = ‖BhF − Û‖2
Γ + µ‖F‖2

Ω, (78.15)

over Vh. This is a quadratic minimization problem with unique solution
F ∈ Vh characterized by a least squares equation of the form

(BhF,BhG)Γ + (µF,G)Ω = (Û , BhG)Γ for all G ∈ Vh, (78.16)

which expresses that d
dεJ(F + εG) = 0 for ε = 0 for all G ∈ Vh.

We can express (78.16) as

(B	
h BhF,G)Ω + (µF,G)Ω = (B	

h Û , G)Ω for all G ∈ Vh,

that is
(B	

h Bh + µI)F = B	
h Û , (78.17)

where B	
h : Wh → Vh is the transpose of Bh defined as follows: Given

w ∈ Wh, we let B	
h w ∈ Vh satisfy

(∇v,∇B	
h w)Ω + (κv, B	

h w)Γ = (v, w)Γ for all v ∈ Vh. (78.18)

In other words, B	
h w is an approximation of the solution z of the Poisson-

problem: {
−∆z = 0 in Ω,
∂nz + κz = w on Γ.

(78.19)

Choosing v = BhG in (78.18), we get using also (78.13) with v = B	
h w

(BhG,w)Γ = (∇BhG,∇B	
h w)Ω + (κBhG, B

	
h w)Γ = (G,B	

h w)Ω

and thus as expected from a transpose

(BhG,w)Γ = (G,B	
h w)Ω,

that is, moving Bh from G onto w brings in the transpose B	
h .

Solving (78.17) gives an approximation F (x) of the function f(x) we are
looking for. We may solve (78.17) by direct matrix inversion if the number
of nodes is small, and by some iterative method such as the gradient or the
conjugate gradient method for larger problems.

The gradient method takes the form:

Fn+1 = Fn − α((B	
h Bh + µI)Fn −B	

h Û)

= Fn − α(B	
h (BhF

n − Û) + µFn).

In each step we have to compute first BhF and then B	
h (BhF − Û) corre-

sponding to solving two Poisson problems.
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Example 78.3. In our first application realized using Matlab we interpret
(78.17) as a matrix equation explicitly formed by computing the inverses
of the stiffness matrices for the problem (78.14) and the adjoint (78.18),
and we then solve this matrix equation to get the nodal values of F (x).
One may handle a couple of hundreds of nodes this way. For simplicity,
we have considered the case Ω = {(x1, x2) : 0 < x1, x2 < 1} with κ = 1
and f = 0.5 + (x − y) (x + y − 1), observed the boundary values of the
resulting solution u, and then solved for a reconstruction of the given data
f using µ = 0.0001. The result is shown in Fig. 78.1 with reconstruction
error ∼ 0.032 in f and ∼ 0.000176 in the corresponding state (boundary
values).

Example 78.4. We next take κ = 50 and show the resulting state u in
Fig. 78.2. The reconstruction using µ = 0.0001 is now rather poor, at
least in terms of f with a reconstruction error of order ∼ 0.4, while the
corresponding state error is of order ∼ 0.02. Taking µ = 0.00001 brings the
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Fig. 78.1. Original data f (left), resulting state u (middle), and the reconstruc-
tion of f (right) with µ = 0.0001 and reconstruction error ∼ 0.032
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Fig. 78.2. Original data f (left), resulting state u (middle), and the reconstruc-
tion of f (right) with µ = 0.0001, now with reconstruction error ∼ 0.43
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original data observation reconstruction
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Fig. 78.3. Original data f (left), resulting state u (middle), and the recon-
struction of f (right) after 10 steps of the conjugate gradient method with
µ = 0.000001, with a state error ∼ 0.0003 in (the boundary values of) u and
a reconstruction error ∼ 0.07 in f

state error down to ∼ 0.003, while a reconstruction of f with error ∼ 0.04
requires taking µ = 0.0000005.

78.5 An Inverse Problem for Laplace’s Equation

Let Ω be a domain in R
2 with boundary Γ composed of three parts Γ0, Γ1

and Γ2. For a given function f defined on Γ2, let uf be the solution to the
boundary value problem

{
−∆uf = 0 in Ω,

uf = 0 on Γ0 ∪ Γ1, uf = f on Γ2,
(78.20)

and define Bf = ∂uf

∂n on Γ1, where n is the unit outward normal to Γ1. We
may think of uf as a stationary temperature defined in Ω satisfying given
boundary conditions on Γ (= 0 on Γ0 ∪ Γ1 and = f on Γ2) and with Bf
representing the heat flux on Γ1. Suppose now we can measure the heat
flux on Γ1 and that we want to determine the temperature f on Γ2. We
thus have a situation where we have access to the temperature (= 0) along
Γ0∪Γ1 and may measure also the heat flux, say q̄, along Γ1, and we want to
determine the temperature f on the inaccessible part of the boundary Γ2.
This problem arises in EKG with u being a potential and Γ1 representing
the surface of the chest and Γ2 that of the heart, and the inverse problem
being to reconstruct the potential on the heart from measurements on the
chest.

We formulate the reconstruction problem as a least squares optimization
problem of the form: Find f on Γ2 which minimizes

J(f) = ‖Bf − q̄‖2
Γ1

+ µ‖f‖2
Γ2
,
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where we use the notation of the previous section, and µ > 0. The opti-
mality equation as usual takes the form

(B	B + µI) = B	q̄,

where B	g = ∂ug

∂n on Γ2 and ug solves the problem
{
−∆ug = 0 in Ω,

ug = g on Γ1, ug = 0 on Γ0 ∪ Γ2.
(78.21)

This because by integrations by parts

(g,Bf)Γ1 = (∇ug, ∇uf )Ω = (B	g, f)Γ2

Example 78.5. We consider again the domain Ω = {(x1, x2) : 0 < x1,
x2 < 1} now with Γ1 = {(0, x2) : 0 < x2 < 1}, Γ2 = {(1, x2) : 0 <
x2 < 1} and Γ0 = Γ\Γ1 with an observed flow q̄ along Γ1 corresponding to
f = 6 x2

2 (1−x2) along Γ2. The figure shows the original (Dirichlet) bound-
ary values to the left, the resulting state u and the associated observed
flux q along Γ1 in the middle, and the control/reconstruction f after a few
conjugate gradient iterations to the right, with µ = 0.001. The error in
the (piecewise constant) reconstruction of the boundary values along Γ2 is
∼ 0.2 and the resulting error in flux through Γ1 is ∼ 0.006.

original data observation reconstruction

x1x1x1 x2x2x2

0

0 0

0

0 0

0

0 0

1

1 1

1

1 1

1

1 1

0.5

0.5 0.5

0.5

0.5 0.5

0.5

0.5 0.5

−0.5−0.5−0.5

Fig. 78.4. Original Dirichlet boundary values (left), the corresponding state u
with observed flow q along Γ1 (middle), and the reconstruction of the boundary
values along Γ2 (to the right) using µ = 0.001 and a few (5) conjugate gradient
steps

78.6 The Backward Heat Equation

Another basic inverse problem is the Backward heat equation: Given the
temperature at final time t = T , find the temperature at initial time t = 0.
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We consider this problem in the following setting: let f(x) be an ini-
tial temperature and let u(x, t) be the corresponding solution of the heat
equation: 





u̇− ∆u = 0 in Ω × (0, T ],
∂nu+ κu = 0 on Γ × (0, T ],
u(x, 0) = f(x) for x ∈ Ω,

where the domain Ω ∈ R
d and the coefficient κ ≥ 0 are given. We consider

the following inverse problem: Given the final temperature u(x, T ), find
the initial temperature u(x, 0) = f(x). This corresponds to solving the
heat equation “backwards”.

We consider the following discrete analog of (78.6) with discretization in
space: Let Vh be the usual space of continuous piecewise linear functions on
a triangulation of Ω with mesh size h(x), and let F ∈ Vh and let U(t) ∈ Vh

be the solution of the discrete heat equation
{

(U̇ , v)Ω + (∇U(t),∇v)Ω = 0 for t ∈ (0, T ], v ∈ Vh,

(U(0), v)Ω = (F, v)Ω for v ∈ Vh.
(78.22)

The discrete inverse problem, corresponding to a discrete “backwards” heat
equation, reads: Given the final temperature U(T ) = Û ∈ Vh, find the
initial temperature U(0) = F ∈ Vh.

To formulate this problem as a regularized least squares problem, we
introduce the solution operator Bh : Vh → Vh defined as follows: BhF =
U(T ) ∈ Vh, where U solves with U(0) = F ∈ Vh. The operator Bh thus
takes an initial temperature F to a corresponding final temperature BhF .
The regularized least squares problem is now the same as that above, that
is, we seek F ∈ Vh which minimizes

J(F ) = ‖BhF − Û‖2
Ω + µ‖F‖2

Ω, (78.23)

over Vh. The unique solution F ∈ Vh to this quadratic minimization prob-
lem is characterized by a least squares equation of the form

(BhF,BhG)Ω + (µF,G)Ω = (Û , BhG)Ω for all G ∈ Vh, (78.24)

which we can express as

(B	
h BhF,G)Ω + (µF,G)Ω = (B	

h Û , G)Ω for all G ∈ Vh,

that is
(B	

h Bh + µI)F = B	
h Û , (78.25)

where B	
h : Vh → Vh is defined as follows: B	

h G = Z(0) ∈ Vh, where
Z(t) ∈ Vh solves the discrete heat equation

{
−(v, Ż)Ω + (∇v,∇Z)Ω = 0 for t ∈ (0, T ], v ∈ Vh,

(v, Z(T ))Ω = (G, v)Ω for v ∈ Vh.
(78.26)
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Note computing B	
h corresponds to solving a heat equation: note the minus

sign in the term −(v, Ż) and that we solve starting with t = T and ending
with t = 0. Changing variables introducing a new time variable s = T − t
brings this problem into the form of the usual heat equation. Note that
(78.26) is a discrete analog of the problem:






−ż − ∆z = 0 in Ω × (0, T ],
∂nz + κz = 0 on Γ × [0, T ),
z(x, T ) = g(x) for x ∈ Ω,

with G ∈ Vh an approximation of g(x) and Z(t) ∈ Vh an approximation of
z(·, t) for t ∈ [0, T ].

To solve the least squares equation by the gradient or conjugate gradient
method, we have to compute BhF

n and B	
h G for given vectors Fn and G

in Vh, by using some time stepping method such as the dG(0) or cG(1)
method.

Example 78.6. We consider the given problem with domain Ω as in the
previous examples, κ = 1000 corresponding to boundary conditions u ≈ 0,
final time T = 0.1 and observed state at time T corresponding to initial
values u0 = 16 x1 (1−x1)x2 (1−x2) and u0 = 2 min(x1, 1−x1, x2, 1−x2),
respectively. We then seek to reconstruct these initial data from the obser-
vations of the resulting solutions at time T = 0.1 with µ = 0.001 and a few
conjugate gradient iteration using the cG(1) (initiated by two dG(0) steps
to filter out high frequency noise) with timesteps k = 0.0025. The results
are shown in Fig. 78.5 and 78.6, respectively. The reconstruction error in
the first case is ∼ 0.057 and in the second case ∼ 0.19. One would think
that by decreasing µ it would be possible to better reconstruct the crisp
details in the initial data u0 in the second example. However, the observa-
tion we use here is a computed one modelling the fact that observations are
imperfect or not considered in full detail in most cases, so that in this case
the reconstruction does not get much better by decreasing µ. However, if
we decrease T to say 0.02 we can reconstruct also the more detailed struc-
ture of u0 also in the second example with µ = 0.00001 and a resulting
reconstruction error ∼ 0.068:
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original data observation reconstruction
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Fig. 78.5. Original initial data u0 = 16x1 (1−x1) x2 (1−x2) (left), corresponding
observed state/solution at time T = 0.1 (middle), and reconstruction of u0 (right)
obtained with µ = 0.001
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Fig. 78.6. Original initial data u0 = 2max(x1, 1 − x1, x2, 1 − x2) (left), corre-
sponding observed state/solution at time T = 0.1 (middle), and reconstruction
of u0 (right) obtained with µ = 0.001
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Fig. 78.7. Original initial data u0 = 2max(x1, 1 − x1, x2, 1 − x2) (left), corre-
sponding observed state/solution at time T = 0.02 (middle), and reconstruction
of u0 (right) obtained with µ = 0.00001



79
Optimal Control

We’re making the right decisions to bring the solution to an end.
(George W. Bush)

79.1 Introduction

In this chapter we continue with aspects of optimization connected to op-
timal control in the following setting: Consider an IVP of the form: Find
the state v : [0, T ] → R

n satisfying the state equation

v̇(t) + f(v(t), q(t)) = 0 0 < t ≤ T, v(0) = u0, (79.1)

where f : R
n × R

m → R
n is a given function, u0 a given initial value,

and q : [0, T ] → R
m is a control. We seek to determine an optimal control

p : [0, T ] → R
m such that J(p) ≤ J(q) for all q : [0, T ] → R

m, where

J(q) ≡ 1
2
‖v − û‖2 +

α

2
‖q‖2, (79.2)

where v solves (79.1), û : [0, T ] → R
n is a given function, and

‖w‖2 =
∫ T

0

|w(t)|2 dt

with | · | denoting the Euclidean norm, and α is a positive constant. We
thus seek to choose the control q so that the corresponding state v is as
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close as possible to a given state û in the ‖ · ‖-norm and we also add a cost
of the control measured by the factor α > 0.

We reformulate this problem as the following saddle point problem:

min
v,q

max
µ

L(v, q, µ) (79.3)

with the Lagrangian L defined by

L(v, q, µ) =
1
2
‖v − û‖2 +

α

2
‖q‖2 + (v̇ + f(v, q), µ) (79.4)

with (·, ·) the scalar product corresponding to the norm ‖ · ‖, and (v, q, µ)
varying freely (with v(0) = u0 and µ(T ) = 0).

The condition for stationarity of L(v, q, µ) at (u, p, λ) is L′(u, p, λ) = 0,
where L′ is the Jacobian of L : R

n ×R
m ×R

n → R, or in component form:

(u̇+ f(u, p), µ) = 0 ∀µ, (79.5)

(u− û, v) + (v̇ + f ′
v(u, p)v, λ) = 0 ∀v, (79.6)

(f ′
q(u, p)q, λ) + α(p, q) = 0 ∀q, (79.7)

where f ′
v(v, q) and f ′

q(v, q) denote the Jacobians of f(v, q) with respect to v
and q at (v, q), respectively, and we assume that v(0) = 0 and µ(T ) = 0.
We can restate these equations in (u, p, λ) pointwise in time as follows:

u̇+ f(u, p) = 0 on [0, T ], u(0) = u0, (79.8)

−λ̇+ f ′
v(u, p)

	λ = û− u on [0, T ], λ(T ) = 0. (79.9)

f ′
q(u, p)

	λ+ αp = 0 on [0, T ], (79.10)

where � denotes transpose. Here (79.8) is the state equation, (79.9) is the
costate equation, and (79.10) is the feed back control coupling the optimal
control p to the costate λ.

To solve the stationarity equations we may consider the following gradi-
ent method in the control p:

pn+1 = pn − κ(αpn + f ′
q(u

n, pn)	λn) (79.11)

where un and λn solve the state and costate equations u̇n + f(un, pn) = 0
and −λ̇n +f ′

v(u
n, pn)	λn = û−un, respectively, and κ > 0 is a step length.

Example 79.1. If f(v, p) = Av−Bq with A a n×n and B a n×m matrix,
then the stationarity equations take the form:

u̇+Au = Bp on [0, T ], u(0) = u0, (79.12)

−λ̇+A	λ = û− u on [0, T ], λ(T ) = 0. (79.13)

αp = B	λ on [0, T ]. (79.14)
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79.2 The Connection Between dJ
dp and ∂L

∂p

We shall now prove that

J ′(p) =
dJ

dp
(p) =

∂L

∂p
(u, p, λ), (79.15)

where the state u = u(p) satisfies the state equation (79.8) with control p,
and the costate λ satisfies the costate equation (79.9). We can thus express
the gradient J ′(p) = dJ

dp (p) of the cost function J(p) in terms of the corre-
sponding state u = u(p) and costate λ, while direct computation of J ′(p)
requires computation of the derivative u′(p) of the state u(p) with respect
to the control p: By the Chain rule we have

J ′(p)q =
∂

∂ε
J(p+ εq)|ε=0 = (u(p) − û, u′(p)q) + α(p, q),

where we thus want to eliminate u′(p). To do so we differentiate the state
equation in the form (assuming for simplicity that u0 = 0),

0 = (u,−µ̇) + (f(u, p), µ) ∀µwith µ(T ) = 0,

with respect to p, to get ∀µ with µ(T ) = 0,

0 =
d

dε

(
(u(p+ εq),−µ̇) + (f(u(p+ εq), p+ εq, µ))

)
|ε=0,

that is,

0 = (u′(p)q,−µ̇) + (f ′
u(u(p), p)u′(p)q + f ′

p(u(p), p)q, µ)

or

(u′(p)q,−µ̇) + (u′(p)q, f ′
u(u(p), p)	µ) = −(q, f ′

p(u(p), p)	µ).

Choosing now µ = λ and using that by the costate equation,

(u′(p)q,−λ̇) + (u′(p)q, f ′
u(u(p), p)	λ) = −(u(p) − û, u′(p)q),

we can now express J ′(p) in the form

J ′(p)q = (q, f ′
p(u(p), p)	λ) + α(p, q),

or

J ′(p) = f ′
p(u(p), p)	λ+ αp =

∂L

∂p
(u, p, λ)

as we set out to demonstrate.
Through the introduction of the costate λ we are thus able to express

the gradient of the cost J(p) with respect to the control p, and we may
then apply a gradient method to search for the minimum of J(p).
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Example 79.2. We consider the problem of balancing an inverted pen-
dulum on a fingertip, when the mass is subject to perturbations of hor-
izontal force and initial condition. Assuming small displacements around
thevertical position, the state equation takes the form u̇2(t)−u1(t)=f(t) and
u̇1(t) − u2(t) = p(t) for 0 < t ≤ T , u1(0) = u0

1, u2(0) = u0
2, where f(t) is the

perturbation and p(t) the control. The optimal control problem of keeping
the pendulum in upright position with u1 and u2 close to zero, takes the
form: Find p : [0, T ] → R which minimizes the cost

J(p) =
1
2

∫ T

0

(a1u
2
1(t) + a2u

2
2(t)) dt+

α

2

∫ T

0

p2(t) dt,

where (u1, u2) solves the state equation with control p, and a1, a2 and α are
positive constants. In Fig. 79.1 we show the result of applying the gradient
method (79.11) for this problem with f(t) = sin(2t) + sin(10t), u0

1 = 0.3,
u0

2 = 0, T = 2, a1 = 100, a2 = 1, α = 0.0001 and κ = 0.005. We note
that the weighting with a1 >> a2 gears the control towards keeping the
position u1(t) close to zero, rather than the velocity u2(t).
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Fig. 79.1. Source, control, state and costate for the inverse pendulum problem



80
Differential Equations Tool Bag

It seems to me that there are at least four different viewpoints – or
extremes of viewpoint – that one may reasonably hold:

1. All thinking is computation; in particular, feelings of conscious
awareness are evoked merely by the carrying out of appropriate
computations. (Hard AI)

2. Awareness is a feature of the brain’s physiological action; and
whereas any physical action can be simulated computation-
ally, computational simulation cannot by itself evoke awareness.
(Soft AI)

3. Appropriate physical action of the brain evokes awareness, but
this physical action cannot even be properly simulated compu-
tationally. (Penrose’s view)

4. Awareness cannot be explained by physical, computational, or
any other scientific terms.

(R. Penrose in Shadows of the Mind)

80.1 Introduction

We here collect basic facts about solving differential equations analytically
and numerically.
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80.2 The Equation u′(x) = λ(x)u(x)

The solution to the scalar initial value problem

u′(x) = λ(x)u(x) for x > a, u(a) = ua,

where λ(x) is a given function of x, and ua a given initial value, is

u(x) = exp(Λ(x))ua = eΛ(x)ua,

where Λ(x) is a primitive function of λ(x) such that Λ(a) = 0. In particular,
if λ is a constant, then u(x) = exp(λx)ua.

80.3 The Equation u′(x) = λ(x)u(x) + f(x)

The solution the scalar initial value problem

u′(x) = λ(x)u(x) + f(x) for x > a, u(a) = ua,

where λ(x) and f(x) are given functions of x, and ua a given initial value,
can be expressed using Duhamel’s principle in the form

u(x) = eΛ(x)ua + eΛ(x)

∫ x

a

e−Λ(y)f(y) dy.

where Λ(x) is a primitive function of λ(x) such that Λ(a) = 0.

80.4 The Differential Equation
∑n

k=0 akD
ku(x) = 0

A solution to the constant coefficient differential equation

p(D)u(x) =
n∑

k=0

akD
ku(x) = 0, for x ∈ I,

where I is an interval of real numbers, has the form

u(x) = α1 exp(λ1) + . . .+ αn exp(λn),

where the αi are arbitrary constants and the λi are the roots of the poly-
nomial equation p(λ) = 0 with p(λ) =

∑n
k=0 akλ

k, assuming there are n
distinct roots. If p(λ) = 0 has a multiple root λi of multiplicity r, then the
solution is the sum of terms of the form form q(x) exp(λix), where q(x) is
a polynomial of degree at most r − 1. For example, if p(D) = (D − 1)2,
then a solution of p(D)u = 0 has the form u(x) = (a0 + a1x) exp(x).
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80.5 The Damped Linear Oscillator

A solution u(t) to

ü+ µu̇+ ku = 0, for t > 0,

where µ and k are constants, has the form

u(t) = ae−
1
2 (µ+

√
µ2−4k)t + be−

1
2 (µ−

√
µ2−4k)t,

if µ2 − 4k > 0, and

u(t) = ae−
1
2µt cos

(
t

2

√
4k − µ2

)

+ be−
1
2µt sin

(
t

2

√
4k − µ2

)

,

if µ2 − 4k < 0, and

u(t) = (a+ bt)e−
1
2µt,

if µ2 − 4k = 0, where a and b are arbitrary constants.

80.6 The Matrix Exponential

The solution to the initial value problem linear system

u′(x) = Au(x) for 0 < x ≤ T, u(0) = u0,

where A is a constant d× d matrix, u0 ∈ R
d, T > 0, is given by

u(x) = exp(xA)u0 = exAu0.

If A is diagonalizable so that A = SDS−1, where S is nonsingular and D
is diagonal with diagonal elements di (the eigenvalues of A), then

exp(xA) = S exp(xD)S−1.

where exp(xD) be the diagonal matrix with diagonal elements equal to
exp(xdi).

The solution to the initial value problem

u′(x) = Au(x) + f(x) for 0 < x ≤ 1, u(0) = u0,

where f(x) is a given function, is given by Duhamel’s principle:

u(x) = exp(xA)u0 +
∫ x

0

exp((x − y)A)f(y) dy.
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80.7 Fundamental Solutions of the Laplacian

The function Φ(x) = 1
4π

1
‖x‖ for x ∈ R

3 satisfies the differential equation
−∆Φ = δ0 in R

3, where δ0 represents a point mass at the origin. The
function Φ(x) = 1

2π log( 1
‖x‖ ) for x ∈ R

2 satisfies the differential equation
−∆Φ = δ0 in R

2, where δ0 represents a point mass at the origin.

80.8 The Wave Equation in 1d

The general solution to the one-dimensional wave equation

ü− u′′ = 0 for x, t ∈ R,

is given by u(x, t) = v(x − t) + w(x + t) where v, w : R → R are arbitrary
functions.

80.9 Numerical Methods for IVPs

The dG(O), the discontinuous Galerkin method with piecewise constants,
for the initial value problem u̇(t) = f(u(t), t) for t > 0, u(0) = u0, with
f : R

d+1 → R
d, takes the form

Un = Un−1 +
∫ tn

tn−1

f(Un, t) dt, n = 1, 2, . . . ,

where U(t) is piecewise constant on a partition 0 = t0 < t1 < · · · < tn <
tn+1 < · · · , with U(t) = Un for t ∈ (tn−1, tn] and U(0) = u0. With right-
end point quadrature we obtain the implicit backward-Euler method:

Un = Un−1 + knf(Un, tn) dt, n = 1, 2, . . . ,

where kn = tn − tn−1. The explicit forward Euler method reads:

Un = Un−1 + knf(Un−1, tn−1) dt, n = 1, 2, . . . ,

The cG(1), the continuous Galerkin method with continuous piecewise lin-
ear functions, takes the form

U(tn) = U(tn−1) +
∫ tn

tn−1

f(U(t), t) dt, n = 1, 2, . . . ,

where U(t) is continuous piecewise linear with nodal values U(tn) ∈ R
d

and U(0) = u0.
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80.10 cg(1) for Convection-Diffusion-Reaction

The cG(1) finite element method for the scalar convection-diffusion-
reaction problem

−∇ · (a∇u) + ∇ · (ub) + cu = f in Ω,

a
∂u

∂n
+ κu = g on Γ,

with Robin boundary conditions, where f and g are given data, and a > 0,
b, c and κ ≥ 0 are given coefficients, and Ω is a given domain in R

2 with
boundary Γ, takes the form: Find U ∈ Vh such that

∫

Ω

a∇U · ∇v dx+
∫

Ω

∇ · (ub)v dx+
∫

Ω

cuv dx

+
∫

Γ

κuv ds =
∫

Ω

fv dx+
∫

Γ

gv ds,

where Vh is a space of continuous piecewise linear functions on a triangu-
lation of Ω with no restriction on the nodal values on the boundary.

80.11 Svensson’s Formula for Laplace’s Equation

Ui,j =
1
4
(Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1), for i, j ∈ Z,

where Ui,j approximates u(ih, jh) with h > 0 and u : R
2 → R solves

∆u = 0.

80.12 Optimal Control

The stationary equations for the saddle point problemminv,q maxµ L(v, q, µ),
with

L(v, q, µ) =
1
2
‖v − û‖2 +

α

2
‖q‖2 + (v̇ + f(v, q), µ)

with (v, w) =
∫ T

0
v · w dt and (v, q, µ) varying freely (with v(0) = u0 and

µ(T ) = 0), take the form:

u̇+ f(u, p) = 0 on [0, T ], u(0) = u0, (80.1)

−λ̇+ f ′
v(u, p)

	λ = û− u on [0, T ], λ(T ) = 0. (80.2)

f ′
q(u, p)

	λ+ αp = 0 on [0, T ], (80.3)

where � denotes transpose. Here (80.1) is the state equation, (80.2) is the
costate equation, and (80.3) is the feed back control coupling the optimal
control p to the costate λ.





81
Applications Tool Bag

81.1 Introduction

In this section we collect the basic models of engineering and science ex-
pressed as differential equations. For specification of boundary and initial
values we refer to the text.

81.2 Malthus’ Population Model

u̇ = λu− µu,

where u(t) is the population at time t, λ ≥ 0 the birth rate and µ ≥ 0 the
death rate.

81.3 The Logistics Equation

u̇ = u(1 − u)

81.4 Mass-Spring-Dashpot System

mü+ µu̇+ ku = f, (force balance),
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where u(t) is the displacement, m is the mass, µ the viscosity, and k the
spring constant.

81.5 LCR-Circuit

Lü+Ru̇+
u

C
= f, (balance of potentials),

where u(t) is a primitive function of the current, L is the inductance, R the
resistance, C the capacitance, and f a potential.

81.6 Laplace’s Equation for Gravitation

−∆u = ρ,

where u : R
3 → R is the gravitational potential and ρ(x) the mass density.

81.7 The Heat Equation

u̇−∇ · q = f, q = k∇u (heat balance and Fourier’s law)

where u(x, t) is a temperature, q(x, t) a heat flux, k(x, t) > 0 a conduction
coefficient and f(x, t) a heat source. If k = 1, then we get the heat equation:
u̇− ∆u = f .

81.8 The Wave Equation

ü− ∆u = f.

81.9 Convection-Diffusion-Reaction

u̇+ ∇ · (βu) + αu−∇ · (ε∇u) = f.

where u(x, t) a concentration, β(x, t) is a convection velocity, α(x, t) a re-
action coefficient, ε(x, t) a diffusion coefficient, and f(x, t) a production
rate.
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81.10 Maxwell’s Equations






∂B

∂t
+ ∇× E = 0, (Faraday’s law)

−∂D
∂t

+ ∇×H = J, (Ampère’s law)

∇ · B = 0, ∇ ·D = ρ, (Gauss’ and Coulomb’s laws)
B = µH, D = εE, J = σE, (constitutive laws and Ohm’s law)

where E is the electric field, H is the magnetic field , D is the electric
displacement, B is the em magnetic flux, J is the electric current, ρ is the
charge, µ is the magnetic permeability , ε is the dielectric constant, and σ
is the electric conductivity.

81.11 The Incompressible Navier-Stokes Equations

∂u

∂t
+ (u · ∇)u+ ∇p− ν∆u = f, ∇ · u = 0,

where u(x, t) is the fluid velocity, p(x, t) the pressure, f(x, t) a given force
and ν > 0 a constant viscosity.

81.12 Schrödinger’s Equation

i
∂ϕ

∂t
=



−1
2

∑

j

∆j + V (r1, . . . , rN )



ϕ(r1, . . . , rN ), rj ∈ R
3.

i
∂ϕ

∂t
=
(

−1
2
∆ +

1
|x|

)

ϕ(x), x ∈ R
3, (Hydrogen atom).





82
Analytic Functions

A mathematician of the first rank, Laplace quickly revealed himself
as only a mediocre administrator, from his first work we saw we had
been deceived. Laplace saw no question from its true point of view,
he sought subtleties everywhere, had only doubtful ideas, and finally
carried the spirit of the infinitely small into administration.
(Napoleon)

We arrive at truth, not by reason only, but also by the heart. (Pascal)

In this chapter we give a short account of analytic functions, that is,
differentiable functions f : C → C, taking complex arguments and having
complex values. We use heavily the material developed above on Calcu-
lus in R

d, d = 1, 2, including, the definition of derivative of a function
f : R

d → R
d, and Green’s formulas in R

2.

82.1 The Definition of an Analytic Function

We recall that we can write each complex number z ∈ C in the form
z = x+ iy, with x, y ∈ R and i the imaginary unit, and we can identify C

with R
2 by identifying x+ iy ∈ C with (x, y) ∈ R

2. In particular, i = (0, 1),
and |z| = (x2 + y2)1/2.

Let f : Ω → C be a complex-valued function of a complex variable
z = x + iy ∈ Ω, where x, y ∈ R and Ω is an open domain of the complex
plane. Decomposing into real and imaginary parts, we can write

f(z) = f(x+ iy) = u(x, y) + iv(x, y),
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where u : R
2 → R and v : R

2 → R are the real and imaginary parts
of f(z), that is, u(x, y) = Re f(z) and v(x, y) = Im f(z), where we thus
view u(x, y) and v(x, y) as functions of (x, y) ∈ R

2 with values in R.
We say that f : Ω → C is differentiable at z0 ∈ Ω with derivative

f ′(z0) ∈ C, if for z close to z0, we have

|f(z) − f(z0) − f ′(z0)(z − z0)| ≤ Kf(z0)|z − z0|2, (82.1)

where Kf(z0) is a non-negative real constant depending on f and z0. This
is a direct extension of the corresponding definition of the derivative of
a function f : R → R to a function f : C → C, and the usual rules for
differentiation of sums, products and quotients directly extend.

We recall that differentiability of a function f : R → R at a point x0

means that f(x) is well approximated (up to a quadratic term) by the linear
function c0 + c1(x − x0) = f(x0) + f ′(x0)(x − x0) for x close to x0, where
c0 = f(x0) and c1 = f ′(x0) are real constants. Similarly, differentiability of
a function f : C → C at a point z0 means that f(z) for z close to z0 is well
approximated by the linear function c0 + c1(z − z0) = f(z0) + f ′(z0)(z −
z0), involving a translation and multiplication by a complex constant. We
conclude that differentiability of a function f : C → C at a point z0 means
that f(z) in a neighborhood of z0 acts like a combination of a translation,
rotation and change of modulus, see Fig. 82.1.

We say that f : Ω → C is analytic in the open domain Ω of the complex
plane if f(z) is differentiable at all z0 ∈ Ω with derivative f ′(z0). The deriva-
tive f ′ of an analytic function f : Ω → C is again a function f ′ : Ω → C.
We shall shortly prove the surprising fact that if f : Ω → C is analytic,
then also f ′ : Ω → C is analytic with derivative f ′′ : Ω → C, which is also
analytic, and so on. An analytic function f : Ω → C thus has derivatives of
all orders f (n) : Ω → C, n = 1, 2, . . . , which are all analytic. We recall that
a differentiable function f : R → R need not have a differentiable derivative,
and therefore does not have this very special property in general.

We can view a function f : C → C alternatively as a function f : R
2 → R

2

if we identify C and R
2 as indicated. The Jacobian f ′(x, y) of a function

f : R
2 → R

2 is a 2×2-matrix consisting of 4 real numbers, while the deriva-
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Fig. 82.1. Linear approximation of a function f(z) near z = z0, with z0 = i and
w = f(z) = z2 approximated by f(z0) + f ′(z0)(z − z0) = i2 + 2i(z − i)
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tive f ′(z) ∈ C of a function f : C → C is supposed to be a complex number
being represented by 2 real numbers. We conclude that differentiability of
a complex-valued function f : C → C, is a more stringent requirement
than differentiability of the corresponding function f : R

2 → R
2, which

only requires the partial derivatives of the real and imaginary parts u(x, y)
and v(x, y) of f(z) to exist. In fact, we shall see that the partial derivatives
of the real and imaginary parts of an analytic function must be coupled in
a specific way, which is expressed through the Cauchy-Riemann equations
stated below.

82.2 The Derivative as a Limit
of Difference Quotients

Note that (82.1) implies that if z �= z0, then

|f(z) − f(z0)
z − z0

− f ′(z0)| ≤ Kf (z0)|z − z0|,

which we can write in the form

lim
z→z0

f(z) − f(z0)
z − z0

= f ′(z0), (82.2)

by which we mean, of course, that

|f(z) − f(z0)
z − z0

− f ′(z0)|

is as small as we please if we only choose |z − z0| small enough (respecting
that z �= z0). In view of (82.2) we write as usual df

dz = f ′.

82.3 Linear Functions Are Analytic

We consider the function f : C → C given by f(z) = az+ b, where a and b
are given complex numbers. We have for all z and z0 ∈ C that

f(z) − f(z0) − a(z − z0) = 0,

and thus f(z) is analytic in C with derivative f ′(z) = a.

82.4 The Function f(z) = z2 Is Analytic

If f(z) = z2, then

f(z) − f(z0) − 2z0(z − z0) = z2 − z2
0 − 2z0z + 2z2

0 = (z − z0)2,

and thus f ′(z0) = 2z0 for z0 ∈ C.
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82.5 The Function f(z) = zn Is Analytic for
n = 1, 2, . . .

Consider the function f : C → C, where f(z) = zn and n = 1, 2, . . . , is
a natural number, which may be viewed as an extension of the function
f : R → R with f(x) = xn. By a direct extension of the proof in the case
f(x) = xn, we find that

f ′(z) = nzn−1. (82.3)

We conclude that zn is differentiable in the whole of C, with derivative
nzn−1. We just gave the proof in the case n = 1, 2.

82.6 Rules of Differentiation

As we said, the usual rules for differentiation of sums, products and quo-
tients valid for functions f : R → R extend to functions f : C → C. In
particular we have if f(z0) �= 0 and g(z) = 1

f(z) , that

g′(z0) = − f ′(z0)
f2(z0)

. (82.4)

Further, the composition of two analytic functions is also analytic and the
Chain rule for differentiation holds: if g(z) is differentiable at z0 and f(z)
is differentiable at g(z0), then the composite function h(z) = f(g(z)) is
differentiable at z0 with derivative h′(z0) = f ′(g(z0))g′(z0). The proof is
a direct extension of the corresponding proof for real-valued functions of
a real variable.

82.7 The Function f(z) = z−n

Applying the rule (82.4), we see that f(z) = z−n with n = 1, 2, . . . , is
differentiable for z �= 0 and

f ′(z) = −nz−n−1, for z �= 0. (82.5)

We can summarize by stating that if f(z) = zn with n = ±1,±2, . . . , then
f ′(z) = nzn−1, where we assume that z �= 0 if n < 0.

82.8 The Cauchy-Riemann Equations

We shall now derive the so-called Cauchy-Riemann equations connecting
the partial derivatives of the real part u(x, y) and the imaginary part v(x, y)
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of a complex-valued function f(z) = u(x, y)+ iv(x, y) of a complex variable
z = x + iy at a point z0 = x0 + iy0 with x0, y0 ∈ R, such that (82.1) is
satisfied. Writing f ′(z0) = a+ ib, with a, b ∈ R, we can express (82.1) as

|u(x, y) + iv(x, y) − u(x0, y0) − iv(x0, y0) − (a+ ib)(x− x0 + i(y − y0))|
≤ Kf (z0)|z − z0|2.

Separating into real and imaginary parts, we conclude (recalling (22.7))
that

|u(x, y) − u(x0, y0) − a(x− x0) + b(y − y0)| ≤ Kf(z0)|z − z0|2,
|v(x, y) − v(x0, y0) − a(y − y0) − b(x− x0)| ≤ Kf (z0)|z − z0|2.

(82.6)

Recalling the definition of the partial derivatives of u(x, y) and v(x, y)
at (x0, y0) from Chapter Vector-valued functions of several variables, we
conclude that

a =
∂u

∂x
(x0, y0), b = −∂u

∂y
(x0, y0),

a =
∂v

∂y
(x0, y0), b =

∂v

∂x
(x0, y0),

and we thus find that

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0),

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0). (82.7)

These are the Cauchy-Riemann equations for u(x, y) and v(x, y) at the
point (x0, y0).

We conclude that if f(z) = u(x, y) + iv(x, y) is analytic in the open
domain Ω of the complex plane, then the real and imaginary parts u(x, y)
and v(x, y) satisfy the Cauchy-Riemann equations in Ω, that is,

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
, in Ω. (82.8)

Note that we can write the Cauchy-Riemann equations in the form ∇v =
−∇× u, recalling that ∇× u = (∂u

∂y ,−
∂u
∂x ).

Example 82.1. The analytic function f(z) = z2 = (x+iy)2 = x2−y2+2ixy
with u(x, y) = x2 − y2 and v(x, y) = 2xy satisfies ∂u

∂x = 2x = ∂v
∂y and

∂u
∂y = −2y = − ∂v

∂x .

We have seen that the Cauchy-Riemann equations (82.8) follow from the
analyticity of the complex valued function f = u + iv. In other words,
the Cauchy-Riemann equations represents a necessary condition for the
analyticity of f = u + iv. The Cauchy-Riemann equations also represent
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a sufficient condition: given a pair of functions u(x, y) and v(x, y) satisfying
the Cauchy-Riemann equations, the function f = u+ iv is analytic. To see
this, we note that if u(x, y) and v(x, y) are differentiable functions satisfying
(82.8), then (82.6), and thus also (82.1) holds. That is, f = u+iv is analytic.

Example 82.2. We consider the functions u(x, y) = x+ 2xy and v(x, y) =
y − x2 + y2 and find that ∂u

∂x = 1 + 2y = ∂v
∂y and ∂u

∂y = 2x = − ∂v
∂x , that

is, u and v satisfy the Cauchy-Riemann equations and we thus conclude
that the function f(z) = u(x, y)+ iv(x, y) must be analytic. In fact, f(z) =
u+ iv = x+ 2xy + i(y − x2 + y2) = x+ iy − i(x+ iy)2 = z − iz2, and the
analyticity is obvious.

We may summarize as follows:

Theorem 82.1 The function f(z) = u(x, y) + iv(x, y) is analytic if and
only if the Cauchy-Riemann equations (82.8) are satisfied.

82.9 The Cauchy-Riemann Equations
and the Derivative

Using the limit definition (82.2) of the derivative f ′(z0), we can write,
varying first only x:

f ′(z0) = lim
x→x0

f(z) − f(z0)
x− x0

=
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0), (82.9)

where z = x+ iy0, and then only y:

f ′(z0) = lim
y→y0

f(z) − f(z0)
i(y − y0)

=
1
i

∂u

∂y
(x0, y0) +

∂v

∂y
(x0, y0),

where z = x0 + iy, from which the Cauchy-Riemann equations follow by
equating the real and imaginary parts of f ′(z0) using that 1

i = −i.

Example 82.3. In the last example we found that u(x, y) = x + 2xy and
v(x, y) = y − x2 + y2 satisfy the Cauchy-Riemann equation. According to
(82.9), the derivative of the corresponding analytic function f = u + iv is
given by f ′ = ∂u

∂x +i ∂v
∂x = 1+2y+i(−2x) which agrees with our observation

that f(z) = z − iz2 with f ′(z) = 1 − 2iz = 1 − 2i(x+ iy) = 1 + 2y − 2ix.

Example 82.4. By direct verification using the Cauchy-Riemann equations
one finds that f(z) = ez = ex(cos(y) + i sin(y)) is analytic in C, and
d
dze

z = ez. It follows that also sin(z) = 1
2i(e

iz − e−iz) and cos(z) = 1
2 (eiz +

e−iz) are analytic in C, and d
dz sin(z) = cos(z) and d

dz cos(z) = − sin(z).
See Problem 82.1.
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82.10 The Cauchy-Riemann Equations
in Polar Coordinates

The Cauchy-Riemann equations take the following form in polar coordi-
nates z = reiθ:

∂u

∂r
=

1
r

∂v

∂θ
,

∂v

∂r
= −1

r

∂u

∂θ
. (82.10)

Example 82.5. The function Log(z) = log(|z|) + iArg z is analytic in
{z ∈ C : z �= 0, 0 ≤ arg z < 2π}. This follows from the Cauchy-Riemann
equations in polar coordinates. We recall that log(z) = log(|z|) + i arg z
is multi-valued since arg z is multivalued. The function log(z) with arg z
restricted to 0 ≤ arg z < 2π, however, is single-valued analytic.

82.11 The Real and Imaginary Parts
of an Analytic Function

We shall now prove that the Cauchy-Riemann equations (82.8) imply that
both u(x, y) and v(x, y) are harmonic in Ω, that is,

∆u = 0 and ∆v = 0 in Ω.

In fact, this follows directly by differentiating (82.8) with respect to x and y,
if we assume that u(x, y) and v(x, y) are twice differentiable, since

∂2u

∂x2
=

∂2v

∂x∂y
=

∂2v

∂y∂x
= −∂

2u

∂y2
in Ω (82.11)

and thus ∆u = 0 in Ω, and similarly ∆v = 0 in Ω.
Now, one can show that solutions of the Cauchy-Riemann equations in-

deed must be twice differentiable, and thus the real and imaginary parts of
an analytic function are harmonic. We sum up in the following theorem:

Theorem 82.2 If f : Ω → C is analytic, where Ω is an open domain of the
complex plane C, then the real part u(x, y) = Re f(z) and the imaginary
part v(x, y) = Im f(z) are harmonic in Ω.

82.12 Conjugate Harmonic Functions

Suppose u(x, y) is harmonic in a simply connected domain Ω in R
2. We

shall now prove that there exists a harmonic function v(x, y), uniquely
determined up to a constant, such that f(z) = u(x, y)+ iv(x, y) is analytic
in Ω. We say that the function v(x, y) is conjugate to u(x, y). To prove
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this, we simply solve the Cauchy-Riemann equations ∇v = −∇× u with u
given using the basic result of the Chapter Potential fields, noting that
∇× (−∇ × u) = ∆u = 0, that is, −∇ × u is irrotational, and thus is the
gradient of some function v. See also Problem 82.10.

Example 82.6. For the harmonic function u(x1, x2) = x1x2, the conjugate
v(x1, x2) satisfies ∂v

∂x2
= ∂u

∂x1
= x2, that is, v = 1

2x
2
2 + C(x1) for some

function C, and from ∂v
∂x1

= − ∂u
∂x2

= −x1, that is C′(x1) = −x1, we
conclude that C(x1) = − 1

2x
2
1 +D, for some arbitrary constant D. We note

that also v is harmonic, and conclude that u and its conjugate v are the real
and imaginary parts of the analytic function f(z) = x1x2 + i(1

2x
2
1− 1

2x
2
2) =

− 1
2z

2.

82.13 The Derivative of an Analytic Function Is
Analytic

Assume that f(z) is analytic in the open domain Ω of the complex plane.
This means that the derivative f ′(z) exists as a complex-valued function
for z ∈ Ω, and one may ask if f ′(z) itself has a derivative in Ω, that is,
if f ′(z) is analytic in Ω. The plain answer is YES, which we prove below.
Thus, if f(z) is analytic in Ω, then also f ′(z) is analytic in Ω, and thus also
the derivative of f ′(z), that is the second derivative f ′′(z) is analytic, and
so on. We conclude that an analytic function has derivatives of all orders.
This is a remarkable property of an analytic function.

To answer the question posed, it is sufficient to notice that if u(x, y) and
v(x, y) satisfy the Cauchy-Riemann equations, then so do all derivatives of
u(x, y) and v(x, y), in particular ∂u

∂x and ∂v
∂x , and thus f ′ = ∂u

∂x + i ∂v
∂x is

analytic in Ω. We state this important result as a theorem:

Theorem 82.3 If f : Ω → C is analytic, where Ω is an open domain of
the complex plane C, then all the derivatives f (n)(z), n = 1, 2, . . . , of f(z)
are analytic in Ω.

We recall that if f : R → R is a real-valued function of a real variable,
then the analogous statement may be wrong: even if f ′(x) exists, it is not
clear that f ′′(x) exists.

82.14 Curves in the Complex Plane

Let Ω be an open domain in the complex plane C, and let γ : I → Ω,
where I = [a, b] is an interval of R, be a Lipschitz continuous function. We
say that Γ = Range of γ = {γ(t) : t ∈ I}, is a curve in C parameterized
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by γ(t). For example γ(t) = exp(it) where 0 ≤ t < 2π is a parametrization
of the unit circle.

a b
t

t
Re z

Im z

z = γ(t)

Fig. 82.2. A curve z = γ(t)

We say that Γ is a differentiable curve if the corresponding parametriza-
tion γ : I → C is differentiable on I in the sense that the related function
γ : I → R

2 is differentiable. In other words, decomposing γ(t) = x(t)+iy(t)
into real and imaginary parts x : I → R and y : I → R, we have that γ(t)
is differentiable on I if x(t) and y(t) are differentiable on I. We also say
that γ : I → C is Lipschitz continuous on I if the corresponding function
γ : I → R

2 is Lipschitz continuous. There are thus no surprises in this
context.

A curve Γ with parametrization γ : [a, b] → C is said to be closed and
simple if γ(s) �= γ(t) for s < t, unless s = a and t = b.

We say that a domain Ω in C which is bounded by a simple closed curve,
is simply connected. A simply connected domain does not have any “holes”.

Re z

Im z

z = γ(t)

Fig. 82.3. A simply connected domain with boundary curve z = γ(t), to the left,
and a multiply connected domain with one hole to the right with the boundary
consisting of two simple closed curves
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82.15 Conformal Mappings

Let f : Ω → C be analytic where Ω is an open domain in C. We shall
now prove that the mapping z → w = f(z) is conformal in Ω in the sense
that angles are preserved under the mapping w = f(z). This is a direct
consequence of the Chain rule and the analyticity of f(z), as we now show.
Let then γ : I → C, where I = [−δ, δ] with δ > 0, be a curve through z0 ∈ Ω
with γ(0) = z0. Consider the curve κ(t) = f(γ(t)) which is the image of γ(t)
under the transformation w = f(z). By the Chain rule we have

dκ

dt
=
df

dz

dγ

dt
,

and we thus see, recalling that the argument of the product of two complex
numbers is the sum of the arguments of the numbers, that

arg
dκ

dt
(0) = Arg f ′(z0) + Arg

dγ

dt
(0),

where we assume that f ′(z0) �= 0. Since f(z) is analytic at z0, we have
that f ′(z0) is independent of the curve γ, and thus the tangent direc-
tion dκ

dt (0) differs from that of dγ
dt (0) by the constant value Arg f ′(z0),

independent of γ. We conclude that the angle between two curves passing
through z0 is the same as the angle between the corresponding transformed
curves passing through f(z0). This means that the mapping w = f(z) is
conformal at z0: angles are preserved locally.

Note that since

lim
z→z0

∣
∣
∣
∣
f(z) − f(z0)

z − z0

∣
∣
∣
∣ = |f ′(z0)|,

the mapping w = f(z) changes the length scale locally by the factor
|f ′(z0)| �= 0. Thus although the mapping w = f(z) is locally conformal,
the image of a large figure may be considerably distorted because of the
change of scale.

We now present some basic analytic functions w = f(z) and the corre-
sponding conformal mappings of f : C → C.

Re z

Im z

Re w

Im w

γ1(t)

γ2(t)

κ1(t)

κ2(t)

Fig. 82.4. An analytic mapping conforms angles
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Re z

Im z

Re w

Im w

Fig. 82.5. A conformal mapping with large deformations

82.16 Translation-rotation-expansion/contraction

The linear transformation:

w = f(z) = az + b

where a, b ∈ C, corresponds to a rotation with Arg a and an expan-
sion/contraction with |a|, and a translation with b, see Fig. 82.6

1

i

Re z

Im z

Re w

Im w

Fig. 82.6. The mapping w = az + b with a = 1
2
i and b = 1 + i

82.17 Inversion

The mapping

w = f(z) =
1
z
,

is referred to as inversion. We now prove that an inversion maps every
straight line or circle in the complex plane into a circle or straight line.
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Indeed, a circle or straight line in R
2 can be written

A(x2 + y2) +Bx+ Cy +D = 0

with A,B,C,D real, and A = 0 corresponding to a straight line. In terms
of z = x+ iy and z̄ = x− iy, the equation takes the form

Azz̄ +B
z + z̄

2
+ C

z − z̄

2i
+D = 0,

and substitution of z = 1
w gives (after multiplication with ww̄)

A+B
w̄ + w

2
+ C

w̄ − w̄

2i
+Dww̄ = 0,

which represents a circle or straight line.

Re z

Im z

Re w

Im w

Fig. 82.7. The mapping w = 1/z

82.18 Möbius Transformations

A mapping of the form

w = f(z) =
az + b

cz + d
,

where a, b, c, d ∈ C, is said to be a Möbius transformation. We have

f ′(z) =
ad− bc

(cz + d)2
,

and we are thus led to assume that ad − bc �= 0 to guarantee conformity.
Evidently, the inversion w = 1

z is a special case of a Möbius transformation.
One can prove that a Möbius transformation maps every straight line or
circle in the complex plane into a circle or straight line, see Problem 82.6.
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−2 0 2
−3

−2

−1

0

1

2

3

−2 0 2
−3

−2

−1

0

1

2

3

z

Re z Rew

Im
z

Im
w

w = 1/z

Fig. 82.8. Further illustration of the map f(z) = 1/z. Note that the unit circle
is mapped onto itself, while a circle through the origin is mapped onto a straight
line. Note also that the straight line y = ax with a �= 0 passing through the origin
is mapped onto its conjugate line y = −ax, while other lines are mapped onto
circles

Example 82.7. (Disc onto disc) The function

w = f(z) = eiα z − z0
1 − z̄0z

where α ∈ R and z0 ∈ C with |z0| < 1, maps the closed unit disc {|z| ≤ 1}
onto the closed unit disc {|w| ≤ 1} in a one-to-one fashion with f(z0) = 0.
For the verification it suffices to verify that the circle {|z| = 1} is mapped
onto the circle {|w| = 1}.

Example 82.8. (Half-plane onto unit disc) The function

w = f(z) = eiα z − z0
z − z̄0

where α ∈ R and Im z0 > 0, maps the upper half-plane {Im z > 0} onto
the open unit disc {|w| < 1} with f(z0) = 0.

82.19 w = z1/2, w = ez, w = log(z) and w = sin(z)

We describe in a couple of examples basic aspects of the mapping properties
of some elementary functions.

Example 82.9. The function

w = f(z) = z1/2 =
√
|z|e i

2Arg z,

maps the wedge {0 ≤ arg z < θ} where 0 ≤ θ < 2π onto the wedge
{0 ≤ arg w < θ

2}.
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−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

Re z Rew

Im
z

Im
w

z w = z1/2

Fig. 82.9. Illustration of the map f(z) = z1/2

Example 82.10. The function w = ez maps the strip {z = x + iy :
x ∈ R, 0 ≤ y < 2π} onto the complex plane C minus the origin. The line
{x + iy : x ∈ R} with y fixed is mapped onto the halfline {(r, θ) : r > 0}
with θ = y using polar coordinates.

Example 82.11. The function w = Log(z) maps C minus the origin onto
the strip {w ∈ C : 0 ≤ Im(w) < 2π}.

Example 82.12. The function

w = f(z) = sin(z) =
1
2i

(ei(x+iy) − e−i(x+iy))

= sin(x) cosh(y) + i cos(x) sinh(y) = u(x, y) + iv(x, y),

maps the strip {z = x + iy : −π
2 < x < π

2 , y ∈ R} onto {w = u +
iv : v �= 0 if |u| > 1}, which is the whole plane minus the two half-lines
{u + iv : |u| > 1, v = 0}. The level curves of u and v are hyperbolas and
ellipses, respectively. See Fig. 82.10.

−2 0 2
−3

−2

−1

0

1

2

3

−2 0 2
−3

−2

−1

0

1

2

3

Re z Rew

Im
z

Im
w

z w = sin(z)

Fig. 82.10. Illustration of the map f(z) = sin(z)
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82.20 Complex Integrals: First Shot

We make a direct extension of the integral of a differentiable function F :
R → R to the integral of an analytic function F : C → C, paralleling closely
the presentation in Chapter The Integral.

Let F (z) be analytic in the domain Ω of the complex plane, with Lipschitz
continuous derivative f(z) = F ′(z). Let Γ be a differentiable curve in Ω
parameterized by γ : [a, b] → C, connecting the point za = γ(a) with the
point zb = γ(b), and let za = z0, z1, . . . , zn = zb be a sequence of points
on Γ connecting za and zb, see Fig. 82.11. We assume that zk �= zk−1

for k = 1, . . . , n.

Re z

Im z

Re w

Im w

Γ zk
zk−1

F (zk)
F (zk−1)

Fig. 82.11. A curve Γ with sample points zk and corresponding function values
F (zk)

We can write

F (zb) − F (za) =
n∑

k=1

(F (zk) − F (zk−1)) =
n∑

k=1

F (zk) − F (zk−1)
zk − zk−1

(zk − zk−1).

(82.12)

Letting maxk=1,...,n |zk − zk−1| tend to zero, we are led to write

F (zb) − F (za) =
∫

Γ

f(z) dz, (82.13)

where we replace F (zk)−F (zk−1)
zk−zk−1

by the derivative F ′(zk−1) = f(zk−1) and
zk − zk−1 by dz.

We note that the integral
∫
Γ
f(z) dz, being equal to F (zb)−F (za), is thus

independent of the choice of the curve Γ connecting za and zb. As a special
case we note that if Γ is closed, corresponding to choosing zb = za, then

∫

Γ

f(z) dz = 0. (82.14)

Recalling that f(z) is analytic if F (z) is analytic, we have found a reason to
believe in Cauchy’s theorem stating that the integral of an analytic function
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f : Ω → C around a simple closed curve in Ω enclosing a region contained
in Ω, is zero. This is a corner-stone of the theory of analytic functions.
Below we give a proof of Cauchy’s theorem using a Green’s formula.

82.21 Complex Integrals: General Case

Let Ω be an open domain in the complex plane and let Γ be a differentiable
curve in C parameterized by γ = (x, y) : [a, b] → C. Let f = u+ iv : Γ → C

be Lipschitz continuous and define
∫

Γ

f(z) dz =
∫ b

a

(
u(x(t), y(t)) + iv(x(t), y(t))

)
(ẋ(t) + iẏ(t)) dt, (82.15)

where thus formally dz = dx+ idy = ẋdt+ iẏdt = (ẋ+ iẏ) dt. The integral
is defined if u(x, y) and v(x, y) are Lipschitz continuous in (x, y) and ẋ(t)
and ẏ(t) are Lipschitz continuous in t. As in the Chapter Curve Integrals,
we see that the integral is independent of the parametrization.

We can express the integral as a limit of Riemann sums in the usual way:
∫

Γ

f(z) dz = lim
n→∞

n∑

k=1

f(zk−1)(zk − zk−1), (82.16)

where za = z0, z1, . . . , zn = zb is a sequence of points along Γ with
maxk=1,...,n |zk − zk−1| tending to zero as n tends to infinity.

Below we use also ζ as a complex variable and thus write in particular
∫

Γ

f(z) dz =
∫

Γ

f(ζ) dζ.

Example 82.13. Let Γ be a circle around the origin of radius one oriented
counter-clockwise and parameterized by γ(t) = eit = cos(t) + i sin(t) =
(cos(t), sin(t)) with 0 ≤ t < 2π. Let f(z) = zn with n an integer. We have
for n �= −1, since dz = (− sin(t) + i cos(t)) dt = ieit dt,

∫

Γ

f(z) dz =
∫

Γ

zn dz =
∫ 2π

0

eint(− sin(t) + i cos(t)) dt

= i

∫ 2π

0

einteit dt = i

∫ 2π

0

ei(n+1)t dt

=
i

n+ 1
[sin((n+ 1)t) − i cos((n+ 1)t)]2π

0 = 0.

This conforms with Cauchy’s theorem for n = 0, 1, 2, . . ., since then f(z) is
analytic in C. For n = −1 with f(z) = 1

z , we get
∫

Γ

1
z
dz =

∫

Γ

dz

z
=

∫ 2π

0

ieit

eit
dt = 2πi. (82.17)
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Note the counter-clockwise orientation of Γ. The function f(z) = 1
z is not

analytic in the domain enclosed by Γ, since 1
z is not differentiable for z = 0,

and thus the integral
∫
Γ

dz
z may be non-zero. We shall see below that the

derivative of log(z) is equal to 1
z , but log(z) is not uniquely defined for

z �= 0, and thus
∫
Γ

dz
z may be non-zero.

The functions f(z) = zn with n = −2,−3, . . . are all derivatives of
analytic functions and thus

∫
Γ f(z) dz = 0 if Γ is a closed curve which does

not pass through 0.

82.22 Basic Properties of the Complex Integral

The complex integral has properties analogous to those of the usual real
integral such as linearity, additivity over subintervals and integration by
parts. For example, we have if |f(z)| ≤M for z ∈ Γ:

∣
∣
∣
∣

∫

Γ

f(z) dz
∣
∣
∣
∣ ≤M

∫

Γ

ds = ML(Γ), (82.18)

where L(Γ) is the length of Γ:

L(Γ) =
∫ b

a

(ẋ2(t) + ẏ2(t))1/2 dt.

This follows by taking absolute values in (82.16) and then passing to the
limit:

∣
∣
∣
∣

∫

Γ

f(z) dz
∣
∣
∣
∣ ≤

∫

Γ

|f(z)| |dz| =
∫

Γ

|f(z)| ds ≤ML(Γ),

where formally |dz| = ds, and thus the estimate may be viewed as a gen-
eralized triangle inequality.

82.23 Taylor’s Formula: First Shot

If f : Ω → C is analytic and Γ is a straight line in Ω connecting z0 and z,
then we can write

f(z) = f(z0) +
∫

Γ

f ′(ζ) dζ = f(z0) +
∫

Γ

f ′(ζ)
d

dζ
(ζ − z0) dζ,

and thus by partial integration (the usual rules hold)

f(z) = f(z0) + f ′(z0)(z − z0) −
∫

Γ

f ′′(ζ)(ζ − z0) dζ.
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Continuing, writing (ζ − z0) = 1
2

d
dζ (ζ − z0)2, we get

f(z) = f(z0) + f ′(z0)(z − z0) +
f ′′(z0)

2
(z − z0)2 +

∫

Γ

f (3)(ζ)
(ζ − z0)2

2
dζ.

We conclude that for z in a neighborhood of z0, we have

f(z) = f(z0) + f ′(z0)(z − z0) +
f ′′(z0)

2
(z − z0)2 + Ef (z, z0), (82.19)

where

|Ef (z, z0)| ≤ K

∫

Γ

|ζ − z0|2
2

|dζ| =
K

6
|z − z0|3,

and we assume that |f (3)(ζ)| ≤ K for ζ ∈ Γ. More generally, we have the
following Taylor’s formula:

Theorem 82.4 If f : Ω → C is analytic in Ω with |f (n+1)(z)| ≤ K for
z ∈ Ω, then we have for z, z0 ∈ Ω (with the straight line connecting z and z0
contained in Ω):

f(z) = f(z0)+f ′(z0)(z−z0)+ . . .+
f (n)(z0)
n!

(z−z0)n +Rn(z, z0), (82.20)

where |Rn(z, z0)| ≤ K
(n+1)! |z − z0|n+1.

82.24 Cauchy’s Theorem

We shall now prove that if f(z) is analytic in Ω and Γ is a simple closed
curve in Ω enclosing a domain ΩΓ contained in Ω, then

∫

Γ

f(z) dz = 0.

To see this we write
∫

Γ

f(z) dz =
∫ b

a

(u (x(t), v(t)) + iv (x(t), y(t))) (ẋ(t) + iẏ(t)) dt,

where γ(t) = (x(t), y(t)) with a ≤ t ≤ b a parametrization of Γ. Taking the
real part, we get

Re
(∫

C

f(z) dz
)

=
∫ b

a

(u(x(t), y(t))ẋ(t) − v(x(t), y(t))ẏ(t) dt

=
∫ b

a

(u(x, y),−v(x, y)) · (ẋ, ẏ)) dt.
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By the Cauchy-Riemann equations, we have

∇× (u,−v) =
∂u

∂y
+
∂v

∂x
= 0 in ΩΓ,

which proves, recalling Stokes’ theorem (57.13), that

∫ b

a

(u(x, y),−v(x, y)) · (ẋ, ẏ) dt =
∫

Γ

(u(x, y),−v(x, y)) · ds

=
∫

ΩΓ

∇× (u,−v)dxdy = 0.

We conclude that Re(
∫
Γ f(z) dz) = 0, and similarly we see that

Im(
∫
Γ
f(z) dz) = 0 and we have thus proved Cauchy’s theorem:

Theorem 82.5 (Cauchy’s theorem) If f(z) is analytic in Ω and Γ is
a simple closed curve in Ω enclosing a domain contained in Ω, then

∫

Γ

f(z) dz = 0.

Note that Γ is not allowed to enclose “holes” of Ω where f(z) is not
analytic. For example, we saw above that

∫
Γ

1
z dz = 2πi �= 0, where Γ

is a circle around the origin. This is because Γ encloses the point z = 0
where 1

z is not analytic.

82.25 Cauchy’s Representation Formula

We prove that if f(z) is analytic in an open domain Ω, and Γ is a sim-
ple closed curve in Ω oriented counter-clockwise and bounding the open
domain ΩΓ contained in Ω, then for z0 ∈ ΩΓ,

f(z0) =
1

2πi

∫

Γ

f(z)
z − z0

dz, (82.21)

which is Cauchy’s representation formula. Note the counter-clockwise ori-
entation. Further, note that z0 is not allowed to lie on the curve Γ; we
assume that z0 lies inside Γ. Cauchy’s formula (82.21) shows that the val-
ues of f(z) on Γ alone, determine the values of f(z) in all of ΩΓ. This shows
that an analytic function is not allowed to bring surprises: if we know f(z)
on Γ, then we know f(z) in the whole domain ΩΓ bounded by Γ. The proof
follows from realizing that the function

g(z) =
f(z) − f(z0)

z − z0
for z �= z0, g(z0) = f ′(z0),
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is analytic in Ω, because g(z) is clearly differentiable if z �= z0 and using
a Taylor expansion of f(z), it follows that g(z) is differentiable also at
z = z0 with derivative g′(z0) = f ′′(z0)

2 . Indeed, recalling (82.19) we have

g(z) − g(z0) =
f(z) − f(z0) − f ′(z0)(z − z0)

(z − z0)
=
f ′′(z0)

2
(z − z0) + Ef (z, z0)

with |Ef (z, z0)| ≤ K
6 |z − z0|2 and K a bound for |f (3)(z)|, which proves

the desired result. We conclude that
∫

Γ

f(z) − f(z0)
z − z0

dz = 0,

and using that
∫

Γ

f(z0)
z − z0

dz = f(z0)
∫

Γ

1
z − z0

dz = 2πi f(z0),

we obtain the desired result (82.21). We summarize:

Theorem 82.6 (Cauchy’s representation formula) If f(z) is ana-
lytic in an open domain Ω, and Γ is a simple closed curve in Ω oriented
counter-clockwise and enclosing the open domain ΩΓ contained in Ω, then
for z0 ∈ ΩΓ,

f(z0) =
1

2πi

∫

Γ

f(z)
z − z0

dz. (82.22)

Differentiating with respect to z0 we obtain the following generalized
representation formula:

Theorem 82.7 (Cauchy’s generalized representation formula)
If f(z) is analytic in an open domain Ω, and Γ is a simple closed curve
in Ω oriented counter-clockwise and enclosing an open domain ΩΓ in Ω,
then for z0 ∈ ΩΓ and n = 0, 1, 2, . . . ,

f (n)(z0) =
n!
2πi

∫

Γ

f(z)
(z − z0)n+1

dz. (82.23)

We note that if z0 lies outside the region bounded by Γ, then

1
2πi

∫

Γ

f(z)
z − z0

dz = 0,

simply because
∫
Γ

1
z−z0

dz = 0 in this case as a consequence of the fact
that 1

z−z0
is analytic in a domain containing Γ. Choosing z0 ∈ Γ leads

to a divergent integral because of the singularity of the factor 1
z−z0

, and
to define a proper value of the integral in this case leads to the so called
Cauchy principal value, which we discuss below.
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82.26 Taylor’s Formula: Second Shot

By using Cauchy’s formula we now give another version of Taylor’s formula
for a function f(z) which is analytic in a neighborhood Ω of a point z0 ∈ C.
We start writing Cauchy’s formula in the form

f(z) =
1

2πi

∫

Γ

f(ζ)
ζ − z

dζ, (82.24)

where for definiteness we choose Γ to be a counter-clockwise oriented circle
around z0 of radius r contained in Ω. Using the identity

1
1 − q

= 1 + q + q2 + . . .+ qn +
qn+1

1 − q
,

where q ∈ C satisfies |q| < 1, setting q = z−z0
ζ−z0

with z ∈ Ω and ζ ∈ Γ, we
can write

1
ζ − z

=
1

ζ − z0

[

1 +
z − z0
ζ − z0

+ . . .+
(
z − z0
ζ − z0

)n]

+
1

ζ − z

(
z − z0
ζ − z0

)n+1

,

where we used that

1
ζ − z

=
1

ζ − z0 − (z − z0)
=

1
ζ − z0

1
1 − q

.

Insertion into (82.24) now gives

f(z) =
1

2πi

∫

Γ

f(ζ)
ζ − z0

dζ +
z − z0
2πi

∫

Γ

f(ζ)
(ζ − z0)2

dζ + . . .

+
(z − z0)n

2πi

∫

Γ

f(ζ)
(ζ − z0)n+1

dζ +Rn(z),

where

Rn(z) =
(z − z0)n+1

2πi

∫

Γ

f(ζ)
(ζ − z0)n+1(ζ − z)

dζ. (82.25)

Using Cauchy’s representation formulas we thus obtain the following Taylor
formula:

Theorem 82.8 If f(z) is analytic in a neigborhood Ω of a z0 ∈ C, then

f(z) = f(z0) + f ′(z0)(z − z0) + . . .+
f (n)(z0)
n!

(z − z0)n +Rn(z), (82.26)

where the remainder Rn(z) is given by (82.25) with Γ a circle around z0.
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If limn→∞Rn(z) = 0 for z in a neighborhood Ω of z0, then we obtain
the following power series representation of f(z) for z ∈ Ω:

f(z) =
∞∑

n=0

f (n)(z0)
n!

(z − z0)n. (82.27)

We conclude by proving that indeed limn→∞Rn(z) = 0 for z in a neighbor-
hood of z0. We then assume that the disc Dr(z0) = {z ∈ C : |z − z0| ≤ r}
is contained in the domain Ω of analyticity of f(z) and we assume that
|f(z)| ≤ M for z ∈ Dr(z0). Assuming that |z − z0| < r

2 , we obtain by
inserting absolute values in (82.25) using that |ζ − z| ≥ r

2 and L(Γ) = 2πr:

|Rn(z)| ≤
(
|z − z0|

r

)n+1

2M,

which proves that limn→∞Rn(z) = 0 for |z − z0| ≤ r
2 . We can extend the

argument to z satisfying |z − z0| < r, and we summarize as follows:

Theorem 82.9 (Taylor’s formula) If f : Ω → C is analytic and
Dr(z0) = {z ∈ C : |z − z0| ≤ r} is contained in Ω and f is bounded
on Dr(z0), then f(z) can be represented as the convergent power series
(82.27) for |z − z0| < r.

Power series representations of analytic functions of the form (82.27) play
an important role and we devote the next section to this topic starting with
the case z0 = 0.

82.27 Power Series Representation
of Analytic Functions

Consider a series of the form
∞∑

m=0

amz
m (82.28)

where the coefficients am ∈ C and we assume z ∈ C. The concepts of
convergence and absolute convergence for (82.28) are direct analogs of the
corresponding concepts for series with am and z being real, see Chapter
Series. In particular we say that

∑∞
m=0 amz

m is absolutely convergent if∑∞
m=0 |amz

m| is convergent, and note that an absolutely convergent series
is convergent.

Each term of the series (82.28) is analytic in C and each partial sum

n∑

m=0

amz
m
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is thus analytic in C. Suppose now that the series (82.28) is convergent for
a particular z = ẑ with |ẑ| = r. Since the terms bm of a convergent series∑∞

m=0 bm must tend to zero, there is a constant C such that

|anẑ
n| = |an|rn ≤ C n = 0, 1, 2, . . .

Suppose now that |z| < r. We then have

∞∑

n=0

|anz
n| =

∑

n

|anr
n|
∣
∣
∣
z

r

∣
∣
∣
n

≤ C

∞∑

n=0

∣
∣
∣
z

r

∣
∣
∣
n

<∞,

because | zr | < 1. This proves that
∑∞

n=0 anz
n is absolutely convergent for

|z| < r and is thus convergent for |z| < r.
We say that the radius of convergence of

∑∞
n=0 anz

n is equal to r,
if

∑∞
n=0 anz

n is convergent for |z| < r but not convergent for some z

with |z| ≥ r.
One can (easily) show that inside its radius of convergence r a series∑∞
n=0 anz

n is differentiable with

( ∞∑

n=0

anz
n

)′

=
∞∑

n=1

nanz
n−1,

where the termwise differentiated series
∑∞

n=1 nanz
n−1 is also convergent

for |z| < r.
More generally, we consider power series of the form

∞∑

m=0

am(z − z0)m, (82.29)

where we made a shift of variable from z to z − z0 with z0 ∈ C given.
The notion of convergence and radius of convergence extend in the obvious
way. Of course, (82.29) connects to the Taylor series of f(z) at z0 with
am = f(m)(z0)

m! .

Example 82.14. The series

∞∑

n=0

zn

n!

is convergent for any fixed z ∈ C, since n! = 1 ·2 ·3 · · ·n grows much quicker
than rn for any r > 0. We can thus differentiate termwise and we get

( ∞∑

n=0

zn

n!

)′

=
∞∑

n=1

zn−1

(n− 1)!
=

∞∑

n=0

zn

n!
,
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which shows that
∑∞

n=0
zn

n! satisfies the differential equation u′(z) = u(z)
with the “initial” condition u(0) = 1. It follows that

exp(z) =
∞∑

n=0

zn

n!
. (82.30)

Alternatively, this follows by noting that this is the Taylor series represen-
tation of f(z) = exp(z) around z0 = 0, noting that f (n)(z) = exp(z) for
n = 1, 2, . . . , .

Using that cos(z) = 1
2 (exp(iz) + exp(−iz)) and sin(z) = 1

2i (exp(iz) −
exp(−iz)), we obtain the following Taylor series representations valid for
z ∈ C:

cos(z) =
∞∑

n=0

(−1)n z2n

(2n)!
, sin(z) =

∞∑

n=0

(−1)n z2n+1

(2n+ 1)!
.

Example 82.15. Another basic example is given by

log(1 + z) =
∑

n=1

(−1)n−1

n
zn for |z| < 1,

which is readily obtained differentiating log(1 + z).

82.28 Laurent Series

Consider a series of the form
∞∑

m=1

bmz
−m, (82.31)

obtained by replacing z by 1
z in a power series

∑∞
m=1 bmz

m with radius
of convergence r. The series (82.31) will thus converge for |z| > r. More
generally we may consider a Laurent series of the form

f(z) =
∞∑

m=0

amz
m +

∞∑

m=1

bmz
−m, (82.32)

which we assume to be convergent in an annulus {r1 < |z| < r2}. The
function f(z) defined by (82.32) is analytic in the annulus {r1 < |z| < r2}.
Conversely, if f(z) is analytic in the annulus {r1 < |z| < r2}, then f(z)
admits the Laurent series expansion (82.32) with the coefficients am and bm
being given by

am =
1

2πi

∫

Γ

f(ζ)
ζm+1

dζ, bm =
1

2πi

∫

Γ

f(ζ)ζm−1 dζ, (82.33)
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where Γ is a simple closed counter-clockwise oriented curve in the annu-
lus encircling the origin. The formula for the coefficients is obtained by
multiplying by a proper power of z and integrating around Γ.

We may generalize to shifts of the origin to a given point z0 replacing z
by z − z0.

Example 82.16. We have

1
1 − z

=
∞∑

m=0

zm for |z| < 1,

1
1 − z

=
−1

z(1 − z−1)
=

∞∑

m=1

z−m for |z| > 1.

82.29 Residue Calculus: Simple Poles

Let f(z) be analytic in a simply connected open domain Ω, except at an
isolated point z0 ∈ Ω, and let Γ be a simple closed curve in Ω oriented
counter-clockwise with z0 contained in the open domain ΩΓ bounded by Γ.
We say that the simple closed curve Γ surrounds z0 counter clockwise. In
general the integral

∫

Γ

f(z) dz

will then not be zero, but the integral will have the same value for any such
simple closed curve Γ surrounding z0 clockwise. To see this we consider two
such curves Γ1 and Γ2 and introduce the two coinciding curves Γ±

3 with op-
posite orientation joining Γ1 and Γ2 according to Fig. 82.12, and by joining
the curves Γ1, Γ+

3 , −Γ2 (Γ2 backwards) and Γ−
3 we obtain a single closed

curve enclosing a domain where f(z) is analytic (that is, not containing z0
in its interior) over which the integral of f(z) vanishes because of Cauchy’s
theorem. Thus, noting that the integrals over Γ+

3 and Γ−
3 cancel, we have

0 =
∫

Γ1

f(z) dz +
∫

−Γ2

f(z) dz =
∫

Γ1

f(z) dz −
∫

Γ2

f(z) dz

where we used that the orientation of −Γ2 and Γ2 are reversed. It follows
that the integral over Γ1 is equal to the integral over Γ2.

Suppose now that f(z) has the form

f(z) =
g(z)
z − z0

,

where g(z) is analytic in Ω and z0 ∈ Ω. We then say that f(z) has a simple
pole at z = z0. We have by Cauchy’s representation formula with Γ a simple



1130 82. Analytic Functions

z0

Γ1

−Γ2

Γ3
−Γ3

Fig. 82.12. Two simple curves Γ1 and −Γ2 (Γ2 backwards), surrounding z0,
adjoined by curves Γ±

3 to form one simply connected curve not surrounding z0

closed curve surrounding z0 counter-clockwise,

∫

Γ

f(z) dz =
∫

Γ

g(z)
z − z0

dz = 2πig(z0).

The value g(z0) is called the residue of f(z) at z0, which we denote by
Res f(z0), and thus

Res f(z0) = g(z0) = lim
z→z0

(z − z0)f(z).

Example 82.17. Let f(z) = z
z−1 and let Γ be the circle γ(t) = (cos(t) − 1,

sin(t)) with 0 ≤ t ≤ 2π, surrounding (1, 0) counter-clockwise. By the
Residue Theorem, we have since obviously Res f(1) = 1

∫

Γ

z

z − 1
dz = 2πi.

Example 82.18. To evaluate
∫
Γ f(z) dz, where f(z) = 1

ez−1 and Γ is a circle
centered at the origin and oriented counter-clockwise, we note that

f(z) =
z

ez − 1
1
z

=
g(z)
z

with

1
g(z)

=
ez − 1
z

= h(z).

Since limz→0 h(z) = 1, we have Res f(0) = g(0) = 1, and thus
∫
Γ
f(z) dz =

2πi.
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82.30 Residue Calculus: Poles of Any Order

Suppose now f(z) has a (multiple) pole of order n = 2, 3, . . . , at z0, that
is, f(z) is of the form

f(z) =
g(z)

(z − z0)n
,

with g(z) analytic in a neighborhood of z0. By Cauchy’s generalized rep-
resentation formula we have if Γ is a simple closed curve surrounding z0
counter-clockwise:

∫

Γ

f(z) dz =
∫

Γ

g(z)
(z − z0)n

dz =
2πi

(n− 1)!
g(n−1)(z0).

We now extend the definition of the residue Res f(z0) to a pole of order
n = 1, 2, . . . , by setting

Res f(z0) =
g(n−1)(z0)
(n− 1)!

,

and thus we have again
∫

Γ

f(z) dz = 2πiRes f(z0).

Example 82.19. The function

f(z) =
1

(z − 1)2(z − 3)

has a pole of order 2 at z = 1 and order 1 at z = 3. We compute Res f(3) =
1
4 , and further Res f(1) = − 1

4 since d
dz

1
z−3 = − 1

(z−3)2 = − 1
4 if z = 1.

82.31 The Residue Theorem

We now prove the following basic result of residue calculus:

Theorem 82.10 (The Residue Theorem) Let f(z) be analytic in a sim-
ply connected open domain Ω, except at finitely many isolated points z1,
z2, . . . , zn in Ω where f(z) has simple or multiple poles, and let Γ be a sim-
ple closed curve in Ω surrounding all the zm counter-clockwise. Then

∫

Γ

f(z) dz =
n∑

m=1

2πiRes f(zm).
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The result follows by surrounding each of the zm with a little circle = Γm

inside Γ oriented counter-clockwise. By Cauchy’s theorem we then have

∫

Γ

f(z) dz +
n∑

m=1

∫

−Γm

f(z) dz = 0,

arguing as in the Section on Residue Calculus: simple poles, from which
follows that

∫

Γ

f(z) dz =
n∑

m=1

∫

Γm

f(z) dz = 2πi
n∑

m=1

Res f(zm),

which proves the desired result.

Example 82.20. We compute

I =
∫

Γ

4 − 3z
z2 − z

dz =
∫

Γ

4 − 3z
z(z − 1)

dz

where Γ is a simple closed curve surrounding counter-clockwise the two
simple poles z = 1 and z = 0 of 4−3z

z2−z and get I = 2πi(−4 + 1) = −6πi.

Re z

Im z

Γ

Γi

zi

Fig. 82.13. A curve Γ and curves Γi, surrounding poles of f(z)

82.32 Computation of
∫ 2π

0 R(sin(t), cos(t)) dt

Consider an integral of the form

∫ 2π

0

R(sin(t), cos(t)) dt
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p(x)
q(x)

dx 1133

where R(x, y) is a rational function of x, y ∈ R. By the substitution

z = eit, dz = ieitdt = iz dt

cos(t) =
eit + e−it

2
=

1
2

(

z +
1
z

)

i sin(t) =
eit − e−it

2
=

1
2

(

z − 1
z

)

,

the integral is converted into
∫

|z|=1

R

(
z2 − 1
2iz

,
z2 + 1

2z

)
dz

iz
,

which can be evaluated using residue calculus, provided the integrand has
no poles on |z| = 1.

Example 82.21. We compute

I =
∫ 2π

0

dt

a+ cos(t)
,

where a > 1 is a constant. Using the transformation just indicated we get

I = −2i
∫

|z|=1

dz

z2 + 2az + 1
= −2i

∫

|z|=1

dz

(z − α)(z − β)
,

where α = −a+
√
a2 − 1 and β = −a−

√
a2 − 1. Since |α| < 1 and |β| > 1,

the residue at α is 1
α−β and thus I = 2π√

a2−1
.

82.33 Computation of
∫∞
−∞

p(x)
q(x) dx

Integrals of the form ∫ ∞

−∞
f(x) dx (82.34)

can be evaluated using residue calculus under the assumption that the
extended function f(z) with z ∈ C has no poles on the real axis and that
|f(z)| ≤ M |z|−2 for |z| large. We start out showing how to use residue
calculus to compute the integral

I =
∫ ∞

−∞

1
1 + x2

dx,

(thus without using that arctan(x) is a primitive function of 1
1+x2 ). We

write

I = lim
R→∞

∫ R

−R

1
1 + x2

dx = lim
R→∞

∫

ΓR

f(z) dz,
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where f(z) = 1
1+z2 and ΓR is the boundary of the semi-disc |z| ≤ R with

Re z = x ≥ 0. This follows from the fact that

lim
R→∞

∫

Γ+
R

f(z) dz = 0,

where Γ+
R is the upper part of the semi-circle with Re z = x > 0. By the

Residue theorem we have
∫

ΓR

f(z) dz = 2πi
1
2i

= π

since the residue of f(z) = 1
(z−i)(z+i) inside ΓR is equal to 1

z+i with z = i.
We conclude that

∫ ∞

−∞
f(x) dx = π,

which of course conforms with the result obtained using that d
dx arctan(x) =

1
1+x2 .

The same technique can be used if f(x) = p(x)
q(x) is a rational function

with the degree of q(x) two units (or more) higher than that of the nu-
merator p(x). The same technique can be used to evaluate the Fourier
transform (cf below) of p(x)

q(x) :

1
2π

∫ ∞

−∞

p(x)eiξx

q(x)
dx.

82.34 Applications to Potential Theory in R
2

There is a strong coupling between analytic functions and potential the-
ory in R

2, because if f(z) = u(x, y) + iv(x, y) is analytic in Ω, then the
real and imaginary parts u(x, y) and v(x, y) are harmonic in Ω, that is,
∆u = ∆v = 0 in Ω. Conversely, as we saw above, if u(x, y) is harmonic in
a simply connected domain Ω in R

2, then there exists a harmonic con-
jugate function v(x, y) uniquely determined up to a constant such that
f(z) = u(x, y) + iv(x, y) is analytic in Ω, see Problem 82.10. The Cauchy-
Riemann equations state that ∇u = ∇× v:

∇u =
(
∂u

∂x
,
∂u

∂y

)

= ∇× v =
(
∂v

∂y
,−∂v

∂x

)

.

from which follows that ∇u and ∇v are orthogonal:

∇u · ∇v =
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
=
∂v

∂y

∂v

∂x
− ∂v

∂x

∂v

∂y
= 0.
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We conclude that the level curves of u(x, y) and its conjugate v(x, y) are
orthogonal. We note that level curves of u(x, y) and v(x, y) in the z = (x, y)-
plane correspond to the level lines u = constant and v = constant of the
analytic function w = u+ iv in the w = (u, v)-plane.

In fact, much of the interest in analytic functions comes from the con-
nection to potential theory in R

2. Today, computational methods capable
of solving also problems in R

3, have changed this picture and analytic func-
tions now play a less important role in areas of applications such as fluid
and solid mechanics.

Applications to fluid mechanics typically concern incompressible irrota-
tional flow in 2d with u(x, y) representing a velocity potential and v(x, y)
an associated so called stream function. The velocity U of the flow is then
given by U = ∇u = ∇× v

U = ∇u =
(
∂u

∂x
,
∂u

∂y

)

= ∇× v =
(
∂v

∂y
,−∂v

∂x

)

.

We have ∇ · U = ∆u = 0 and ∇ × U = −∆v = 0 and thus U is in-
compressible and irrotational. The level curves of u(x, y) with normal ∇u
correspond to equi-potential curves, and the level curves of v with normal
∇v = −∇ × u will correspond to the streamlines followed by a fluid par-
ticle moving with the velocity U . We conclude that each analytic function
f(z) = u(x, y) + iv(x, y) may be associated to a particular stationary in-
compressible and irrotational fluid flow, and the level curves of u and v form
a mutually orthogonal set of curves with the level curves of v describing
the streamlines of the flow.

In applications to electromagnetics, u(x, y) represents an electric poten-
tial with ∇u an electric field, and the level curves of v(x, y) represent the
curves traced by electrically charged particles in the electric field.

In applications to heat flow u(x, y) may represent temperature and the
level curves for u thus become isolines for temperature and ∇u is propor-
tional to the heat flow.

Example 82.22. (Flow in a corner) The function w = u + iv = z2

describes a certain flow in the quarter-plane {z = x + iy : x, y ≥ 0}, with
corresponding potential u(x, y) = x2 − y2 and stream-function v(x, y) =
2xy, see Fig. 82.14.

The equi-potential lines u(x, y) = constant and streamlines v(x, y) =
constant in the (x, y)-plane are the images of the lines u = constant and
v = constant under the mapping z = w1/2 from the halfplane {w = u+ iv :
v ≥ 0} onto the quarter-plane {z = x+ iy : x, y ≥ 0}.

Example 82.23. (The spinning tennis ball) We consider two types of
rotation-free incompressible flow around the unit disc {(x1, x2) : x2

1 + x2
2 <

1} in two dimensions. The first flow is given by the function f(z) = z + 1
z ,
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Fig. 82.14. Level curves of Im(w) = 2xy (solid) and Re(w) = x2 − y2 (dotted)
for w = z2

which in polar coordinates with z = reiθ takes the form

f(z) = u(r, θ) + iv(r, θ) =
(

r +
1
r

)

cos(θ) + i

(

r − 1
r

)

sin(θ). (82.35)

This represents a symmetric flow with the velocity ≈ (1, 0) (far) away from
the disc, and the level curves of v(r, θ) give the streamlines of the flow
around the disc, see Fig. 82.15.
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Fig. 82.15. Level curves of Im(w) for w = z + 1/z

The second flow is a flow circulating around the disc given by

g(r, θ) = − iK
2π

log(z) =
K

2π
θ + i

(

−K

2π
log(r)

)

(82.36)
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Consider now the flow given by f(z) + g(z) with stream-function
(r − 1

r ) sin(θ) − K
2π log(r). We may consider this to be the flow around

a spinning tennis ball in a horisontal stream of air, see Fig. 82.16.
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Fig. 82.16. Level curves of Im(w) for w = z + 1/z − i log(z)

We now recall Bernouilli’s law stating that for steady inviscid irrotational
flow, the quantity

p+
|U |2
2

is constant because ∇(p+ |U|2
2 ) = 0, which follows by direct computation,

see Problem 82.13. We conclude that high velocity implies low pressure.
Now inspecting Fig. 82.16 we see that the velocity is high below the ball
(dense level curves of the stream function), and thus the pressure is low
below the ball and thus there will be a resulting force downward, which is
referred to as lift. This is the reason a top-spin in tennis is so efficient in
bringing down the ball inside the lines. The more top spin the more curved
path of the ball! Björn Borg was one of the first to really exploit this law
of mechanics. One can show that the lift is proportional to the circulation
given by

∫

Γ

u · ds,

where Γ is the unit circle oriented counter-clockwise. The circulation of
the flow given by (82.35) is equal to zero because of symmetry, while the
circulation of the flow given by (82.36) is equal toK. The lift of the spinning
tennis ball gives a hint to the mechanism behind flying. In fact, the design
of an airplane wing with non-symmetric cross section and a sharp trailing
edge creates a circulation around the wing which causes a lift, see Fig. 82.17.
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Fig. 82.17. Potential flow around an airfoil

The lifting clockwise circulation around the wing may be considered com-
pensated for by a counter-clockwise vortex in the turbulent layer behind the
wing, here localized to the line of discontinuity behind the wing, because
the total rotation of the flow must be zero.

Example 82.24. (Flow through an aperture) The function

z = sin(w) =
1
2i

(
ei(u+iv) − e−i(u+iv)

)

= sin(u) cosh(v) + i(cos(u) sinh(v)),

maps the strip {w = u + iv : −π
2 < u < π

2 , v ∈ R} onto
{z = x + iy : y �= 0 if |x| > 1}, that is, the whole plane minus the two
half-lines {x + iy : |x| > 1, y = 0}. The corresponding inverse function
w = f(z) = arcsin(z) = sin−1(z) may be viewed as the potential for flow
through an aperture, see Fig. 82.19.

The streamlines are hyperbolas and the equipotential lines are ellipses.

Example 82.25. (Discontinuous electric potential) Consider the func-
tion f(z) = u(x, y)+iv(x, y) = i log(z) = i log(|z|)−Arg z in the right half-
plane {z ∈ C : Re z ≥ 0}. We have u(x, y) = arctan( y

x ) and v(x, y) = log(r)
with r = (x2 +y2)1/2 and we plot the equi-potential and level curves of the
curves in Fig. 82.18.

Note that the potential u(x, y) approaches the value π
2 for x tending to zero

if y > 0 and the value −π
2 for x tending to zero if y < 0, corresponding to

discontinuous boundary values for x = 0.
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Fig. 82.18. Level curves of Im(w) (solid) and Re(w) (dotted) for w = ilog(z)
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Fig. 82.19. Level curves of Im(w) (solid) and Re(w) (dotted) for w = arcsin(z)

Chapter 82 Problems

82.1. (a) Prove that f(z) = ez is analytic and that f ′(z) = ez. (b) Prove that
sin(z) and cos(z) are analytic with derivatives cos(z) and − sin(z), respectively.

82.2. It is possible to view an analytic function f : C → C as a function
F : R

2 → R
2 if we set f(z) = u(x, y) + iv(x, y), z = x + iy and F (x, y) =

(u(x, y), v(x, y)). Explain the connection between the Jacobian F ′ of F (x, y) and
the derivative f ′, and motivate the Cauchy-Riemann equations this way.

82.3. What happens if we try to choose z0 ∈ Γ in Cauchy’s representation
formula?

82.4. Prove Liouville’s theorem stating that if f(z) is analytic in the whole
complex plane and bounded, then f(z) is constant. Hint: Use the representation
formula for f ′(z) with Γ a circle with large radius.
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82.5. Prove Morera’s theorem stating that if f : Ω → C satisfies
∫

: Γf(z) dz = 0
for all sinmple closed curves in Ω, then f(z) is analytic in Ω. Hint:
Define F (z) =

∫
Γz
f(ζ) dζ, where Γz is a courve joining a fixed point z0 with

the variable point z ∈ Ω. Show independence of the specific choice of Γz and then
that F ′(z) = f(z).

82.6. Prove that a Möbius transformation maps every straight line or circle in
the complex plane into a circle or straight line. Hint: write w = az+b

cz+d
in the form

w = − ad−bc
c

1
cz+d

+ a
c
.

82.7. Compute (a)
∫ 2π

0
dθ

5−3 sin(θ)
, (b)

∫∞
−∞

x
1+x4 dx.

82.8. Prove that
∫∞
−∞

sin θ
θ

= 2π.

82.9. Prove (82.10).

82.10. Prove that if u(x, y) is harmonic in a simply connected domain Ω, then
there exists a function v such that u+ iv satisfies the Cauchy-Riemann equations
in Ω. Hint use the central result of Chapter Potential fields.

82.11. Construct your own examples of 2d irrotational potential flow, electro-
statics, and heat flow, by combining elementary functions such as zα, ez, log(z),
sin(z), sinh(z) and Möbius transformations.

82.12. Give a different proof of Cauchy’s representation theorem using that g(z)
z−z0

is a analytic in the domain Ωε = {z ∈ Ω : |z − z0| > ε}, so that
∫
Γε

g(z)
z−z0 dz = 0,

where Γε is the boundary of Ωε. Then let ε tend to zero.

82.13. Show that if the fluid velocity u = (u1, u2) defined in a domain Ω in
R

2 satisfies ∇ · u = ∇ × u = 0 and solves the stationary momentum equation

(u · ∇)u+∇p−∆u = 0 in Ω, then ∇(p+ |u|2
2

) = 0 in Ω. This proves Bernouilli’s

Law stating that p + |u|2
2

is constant so that high velocity corresponds to low
pressure.

82.14. Determine the images the circle |z| = 1 and the unit disc |z| < 1 under

the mapping w = i(1−z)
1+z

. Use the result to determine the elektrostatic potential
ϕ(x, y), (z = x+ iy) in the unit disc |z| < 1 with boundary values

ϕ(x, y) =

{
P, om |z| = 1, x > 0, y > 0,
0, om |z| = 1, x < 0, eller y < 0.

82.15. Let T be a triangle with corners at 0, 1 and 1 + i. Determine the image
of T under the mapping w = z

1−z .

82.16. Determine a harmonic function ϕ(x, y) in the domain between the hy-
oerbolas x2 − y2 = 1 and x2 − y2 = 4 with boundary values ϕ(x, y) = 2xy
on x2 − y2 = 1 and ϕ(x, y) = 4xy on x2 − y2 = 4.



83
Fourier Series

Yesterday was my 21st birthday, at that age Newton and Pascal had al-
ready acquired many claims to immortality. (Fourier 1787, age 21TS

b )

83.1 Introduction

We give in the following two chapters a short account of Fourier analysis
starting with Fourier series in this chapter and continuing in the next chap-
ter to Fourier transforms. The basic idea is to represent (or approximate)
given functions as linear combinations of trigonometric functions. We have
met the same general idea in the Chapter Piecewise linear approximation,
where we studied approximation of given functions as a linear combination
of piecewise polynomials. Fourier representations have particular properties
which are useful in for example signal/image processing with important ap-
plications to e.g. computer tomography. In recent years variants of Fourier
techniques referred to as Wavelets have been developed with applications
to for example compression of images. We touch this topic at the end of
the Chapter Fourier transforms.

Fourier (1768TS
b–1830), see Fig. 83.1 used trigonometric series in his

famous Théorie analytique de la chaleur (1822) to study properties of
solutions of the heat equation. The idea of expressing a general func-
tion as a Fourier series (or as a power series) has influenced the devel-
opment of mathematical analysis profoundly with the driving force being
the formidable success of these techniques for certain classes of problems,
for example linear constant coefficient differential equations. However, as
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Fig. 83.1. Fourier, Inventor of Fourier series: “Mathematics compares the most
diverse of phenomena and discovers the secret analogies between them”

any highly specialized tool or organism, these techniques have not been able
to adapt to the needs of a changing world with computational methods for
nonlinear differential equations taking over as work-horse in applications.
Nevertheless, Fourier analysis still plays a fundamental role for the basic
understanding of many phenomena.

We start with Fourier series in complex form and then pass to the real
form as a special case. Fourier series concern functions f : R → C which
are periodic with a certain period a > 0, that is f(x+ a) = f(x) for x ∈ R.
We often normalize to a = 2π and thus consider 2π-periodic functions
f : R → C satisfying f(x + 2π) = f(x) for x ∈ R. Usually we restrict
attention to real-valued functions f : R → R. Fourier transforms concern
non-periodic functions f : R → C.

We shall see that representing a given 2π-periodic function f(x) as
a Fourier series corresponds to expressing f(x) as a linear combination
of a certain set a trigonometric functions {em(x)}:

f(x) =
∑

m

cmem(x) (83.1)

with certain coefficients cm ∈ C. We thus view the functions em(x) as basis
functions and express a general function f(x) as a certain linear combi-
nation of basis functions. For example f(x) = 0.5 sin(2x) − 0.8 sin(7x) is
a linear combination of the two basis functions sin(2x) and sin(7x) with
coefficients 0.5 and 0.8, see Fig. 83.2.

TS
b Please check age. He was only 19 in 1787.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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Fig. 83.2. The functions sin(2x) and sin(7x), and the linear combination
0.5 sin(2x) + 0.8 sin(7x) of the two

The trigonometric basis functions em(x) used in Fourier series are of the
form

sin(mx), cos(mx), m = 0, 1, 2, . . . , (real Fourier series) (83.2)

or

eimx = cos(mx) + i sin(mx), m= 0,±1,±2, . . . , (complex Fourier series) .
(83.3)

Each basis function or “harmonic” sin(mx), cos(mx) or eimx, is periodic
with period 2π

|m| and (angular) frequency or wave number |m|. The larger |m|
is the higher is the frequency and the quicker do the basis functions sin(mx),
cos(mx) and eimx “oscillate”. The series (83.1) expresses f(x) as a linear
combination of basis functions of increasing frequencies. Since the basis
functions are all periodic with period 2π, so is their linear combination f(x).

The basis functions (83.2) and (83.3) are orthogonal with respect to the
L2(−π, π) scalar product

(v, w) =
∫ π

−π

v(x)w(x) dx (83.4)

with w(x) the complex conjugate of w(x), with corresponding norm ‖v‖ =
(v, v)1/2. The orthogonality makes the coefficients cm directly computable
upon taking the L2(−π, π) scalar product of (83.1) with em to give

cm =
(f, em)

(em, em)
.
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83.2 Warm Up I: Orthonormal Basis in C
n

To prepare we consider an analogous situation in C
n: We recall that C

n is
the set of ordered n-tuples x = (x1, . . . , xn) with xk ∈ C for k = 1, . . . , n.
The scalar product (x, y) of two vectors x and y in C

n is defined by x · y =
(x, y) =

∑n
j=1 xjyj , with corresponding norm |x| = (x, x)1/2

Let now {g1, . . . , gn} be a set of n vectors in C
n, that is each gk =

(gk1, . . . , gkn) is a vector in C
n with components gkj ∈ C. We recall that

the set {g1, . . . , gn} is an orthonormal basis in C
n if the gk are mutually

orthogonal and have norm equal to one, that is

(gk, gm) = 0 if k �= m, and |gm| = 1 for m = 1, . . . , n.

If {g1, . . . , gn} is an orthonormal basis, then we can express a given vector
u ∈ C

n as a linear combination of basis vectors in the form

u =
n∑

k=1

cmgm, where cm = (u, gm) for m = 1, . . . , n,

where the fact that cm = (u, gm) follows by taking the scalar product and
using the orthonormality.

83.3 Warm Up II: Series

We recall from Chapter Series that a series
∑∞

m=1 αm with coefficients
αm ∈ C, is said to be convergent if the sequence {sn}∞n=1 of partial sums
sn =

∑n
m=1 αm converges as n tends to infinity. The series is said to be

absolutely convergent if
∑∞

m=1 |αm| is convergent, which is the same as
requiring the sequence of partial sums ŝn =

∑n
m=1 |αm| to be bounded

above, that is ŝn ≤ K for n = 1, 2, . . . , where K is a positive constant. For
a series with non-negative terms, the concepts of convergence and absolute
convergence coincide. A typical example of a positive (absolutely) conver-
gent series is given by

∑∞
m=1m

−2. To see that sn =
∑n

m=1m
−2 is bounded

above, we use the fact that

sn ≤ 1 +
n∑

m=2

∫ m

m−1

x−2 dx ≤ 1 +
∫ n

1

x−2 dx ≤ 1 + [−x−1]n1 ≤ 2.

The same argument shows that
∑∞

m=1m
−α is convergent if α > 1.

We also recall that an alternating series of the form
∑∞

m=1(−1)mam,
with {am} a decreasing positive sequence tending to zero, is convergent.



83.4 Complex Fourier Series 1145

83.4 Complex Fourier Series

A series of the form
∞∑

m=−∞
cme

imx =
∞∑

1

c−me
−imx + c0 +

∞∑

1

cme
imx, (83.5)

where x ∈ R, is said to be a Fourier series with Fourier coefficients cm ∈ C,
m = 0,±1,±2, . . .. The corresponding truncated Fourier series

n∑

m=−n

cme
imx =

n∑

m=1

c−me
−imx + c0 +

n∑

m=1

cme
imx, (83.6)

where n = 1, 2, . . . , may be viewed as a finite linear combination of the set
of basis functions

{1, e±ix, e±i2x, . . . , e±inx}

with coefficients cm.
The orthogonality of the basis functions {eimx} is expressed by:

∫ π

−π

eimxe−ikxdx =

{
0 if k �= m,

2π if k = m,
(83.7)

which follows by direct integration.
We shall typically consider cases with the Fourier coefficients cm satisfy-

ing for some positive constant K,

|cm| ≤ Km−2, m = ±1,±2, . . . . (83.8)

In this case the series (83.5) converges absolutely for all x, since

∞∑

−∞
|cmeimx| =

∞∑

−∞
|cm| ≤ |c0| + 2K

∞∑

m=1

m−2 <∞,

and thus defines a function f : R → C represented by a converging Fourier
series:

f(x) =
∞∑

m=−∞
cme

imx. (83.9)

The series (83.9) gives a spectral decomposition of f(x) into harmonics eimx

with different amplitudes cm. The series (83.9) thus gives a description of
the function f(x) in terms of amplitudes of different harmonics included
in f(x). In musical terms we may think of f(x) as a “chord” built by a num-
ber of “tones” cmeimx of different frequenciesm and amplitudes cm. A spec-
tral decomposition of a “chord” f(x) would display the “tones” building
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the “chord”, try The Sound of Functions in the Mathematics Laboratory
for a direct experience.

We note that the basis functions {eimx} have global support, that is, each
basis function eimx is nonzero for all x ∈ R. The basis functions {eimx}
thus combines the following properties: orthogonality and global support.
We contrast this to the ‘hat functions’ which are the basis functions for
continuous piecewise linear approximation: the hat functions have local
support but are not (quite) orthogonal. The best combination would be
orthogonality together with local support. So-called wavelets introduced in
recent years combine these properties.

Suppose now that f(x) is defined by a converging Fourier series (83.9).
Multiplying by e−imx with m = 0,±1,±2, . . . and integrating over the
interval [−π, π], and using the orthogonality properties (83.7), we find that

cm = cm(f) =
1
2π

∫ π

−π

f(x)e−imx dx, (83.10)

where we indicated the dependence of the Fourier coefficient cm = cm(f)
on the function f(x). We thus have the Fourier series representation

f(x) =
∞∑

m=−∞
cm(f)eimx, (83.11)

expressing f(x) as a linear combination of different harmonics eimx with dif-
ferent frequencies, where the Fourier coefficients cm(f) are given by (83.10).

Conversely, if f : R → C is a given 2π-periodic (Lipschitz continuous)
function and we define cm(f) by (83.10), then we may ask if f(x) can be
represented by its Fourier series (83.11) for all x. We shall prove below that
this is true if f(x) is 2π-periodic and differentiable. This is the basic result of
Fourier analysis stating that an arbitrary 2π-periodic differentiable function
can be given a spectral decomposition in the form of a Fourier series. This
result includes the “completeness” aspect of the basis functions {eimx}, that
is, the fact that any differentiable function can be represented as a Fourier
series.

83.5 Fourier Series as an Orthonormal Basis
Expansion

Normalizing the basis functions eimx we obtain the orthonormal basis func-
tions em(x) = 1√

2π
eimx satisfying

(em, ek) = 0 if k �= m, (em, em) = 1. (83.12)
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A Fourier series representation takes the following form in the normalized
basis:

f(x) =
∞∑

m=−∞
c̃m(f)

1√
2π
eimx, c̃m(f) =

1√
2π

∫ π

−π

f(x)e−imx dx.

Of course, it would be natural to work with the normalized basis functions
{ 1√

2π
eimx} and the corresponding renormalized Fourier coefficients c̃m(f)

thus distributing the 2π-factor into two
√

2π-factors, but we follow the most
common notation and include the 2π-factor in the Fourier coefficient cm(f)
coupled to the basis function eimx, which also simplifies notation somewhat.

83.6 Truncated Fourier Series
and Best L2-Approximation

The truncated Fourier series

Snf(x) =
n∑

m=−n

cm(f)eimx

of a given function f(x) is a best approximation of f(x) in the sense that

‖f − Snf‖ ≤ ‖f − gn‖

for any function gn(x) =
∑n

m=−n dme
imx with dm ∈ C, m = 0,±1, . . . ,±n.

This is because, by the definition of the Fourier coefficients,

(f − Snf, em) = 0 for m = 0,±1, . . . ,±n,

and thus Snf(x) is the best approximation in the L2(−π, π) norm of f(x)
in the linear space spanned by the functions {1, e±ix, e±i2x, . . . , e±inx},
compare Chapter Piecewise Linear Approximation.

83.7 Real Fourier Series

Using that eimx = cos(mx) + i sin(mx) and cos(−mx) = cos(mx) and
sin(−mx) = − sin(mx), we can write (83.9) in the form

∞∑

m=−∞
cme

imx = c0 +
∞∑

m=1

am cos(mx) +
∞∑

m=1

bm sin(mx),

where

am = cm + c−m, bm = i(cm − c−m), m = 1, 2, . . . .
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If f(x) is real, that is f : R → R, then c̄m = c−m and thus am = cm + c̄m =
2Re(cm) ∈ R and bm = i(cm − c̄m) = −2Im(cm) ∈ R, and

cm =
am

2
− i

bm
2
, c−m =

am

2
+ i

bm
2
, m = 0, 1, 2, . . . . (83.13)

The Fourier series of a real-valued 2π-periodic function f : R → R can
thus be written alternatively as a Sine and Cosine series of the form

f(x) =
a0

2
+

∞∑

m=1

am cos(mx) +
∞∑

m=1

bm sin(mx),

where am, bm ∈ R, are given by

am = am(f) =
1
π

∫ π

−π

f(x) cos(mx) dx for m = 0, 1, 2, . . . ,

bm = bm(f) =
1
π

∫ π

−π

f(x) sin(mx) dx for m = 1, 2, . . . .

We note that if f(x) is even, that is f(x) = f(−x), then bm = 0 for
m = 1, 2, . . ., and thus f(x) has a Cosine series representation:

f(x) =
a0(f)

2
+

∞∑

m=1

am(f) cos(mx). (83.14)

Correspondingly, if f(x) is odd, that is f(x) = −f(−x), then am = 0 for
m = 0, 1, . . ., and thus f(x) has a Sine series representation:

f(x) =
∞∑

m=1

bm(f) sin(mx). (83.15)

In the applications below we usually consider Cosine and Sine series for
real-valued functions f : R → R. The complex Fourier series is useful in
the analysis of convergence of Fourier series.

We now present a couple of examples with Fourier coefficients having
different rates of convergence to zero (as m−2, m−3 and m−1).

Example 83.1. Let f : R → R be a 2π-periodic function given by f(x) = |x|
for −π ≤ x ≤ π. The function f(x) is real-valued and even, and thus has
a Cosine series of the form (83.14). We compute using integration by parts
if m > 0:

a0(f) =
1
π

∫ π

−π

f(x) dx =
2
π

∫ π

0

xdx = π,

am(f) =
1
π

∫ π

−π

f(x) cos(mx) dx =
2
π

∫ π

0

x cos(mx) dx

=
2
π

[
x sin(mx)

m

]π

0

− 2
π

∫ π

0

sin(mx)
m

dx =
2
π

(−1)m − 1
m2

.
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Since (−1)m − 1 = −2 if m is odd and (−1)m − 1 = 0 if m is even, the
Fourier series representation of f(x) = |x| takes the form

|x| =
π

2
− 4
π

∞∑

k=1

cos((2k − 1)x)
(2k − 1)2

.

We plot the corresponding truncated series with summation over
k = 1, . . . , n for different values of n in Fig. 83.3:
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3

3.5

xx

yy

Sum of first six Fourier terms of f(x) = |x|Sum of first two Fourier terms of f(x) = |x|

Fig. 83.3. The sum of the first two and first six terms of the fourier series of |x|
(dotted)

Example 83.2. Let f : R → R be an odd 2π-periodic function given by
f(x) = x(π − x) for 0 ≤ x ≤ π. We compute its Sine series coefficients:

bm(f) =
1
π

∫ π

−π

f(x) sin(mx) dx =
2
π

∫ π

0

x(π − x) sin(mx) dx

= − 2
π

[
x(π − x) cos(mx)

m

]π

0

+
2
π

∫ π

0

(π − 2x) cos(mx)
m

dx

=
2
πm

[
(π − 2x) sin(mx)

m

]π

0

+
2

πm2

∫ π

0

2 sin(mx) dx

=
4

πm3
(1 − (−1)m).

Example 83.3. Define a 2π-periodic function f(x) by setting

f(x) =

{
1 for |x| < a,

0 for a < |x| ≤ π,

where 0 < a < π, see Fig. 83.4.
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Fig. 83.4. The sum of the first 3 and first 19 terms of the fourier series of
a piecewise constant function (dotted)

This is a piecewise Lipschitz continuous 2π-periodic even function, and we
can compute its Fourier coefficients. We have bm(f) = 0 and, for m > 0,
2cm(f)

= am(f) =
1
π

∫ π

−π

f(x) cos(mx) dx =
2
π

∫ a

0

cos(mx) dx =
2 sin(ma)
πm

,

(83.16)
while a0(f) = 2a

π . We thus expect that

f(x) =
a

π
+

2
π

∞∑

m=1

sin(ma)
m

cos(mx).

We shall return to this equality below, with particular focus on the values
x = ±a where f(x) has jump discontinuities.

83.8 Basic Properties of Fourier Coefficients

We now present some basic properties of the Fourier coefficients

cm(f) =
1
2π

∫ π

−π

f(x)e−imx dx m = 0,±1,±2, . . . ,

of a given 2π-periodic Lipschitz continuous function f : R → C.

Linearity

Fourier coefficients satisfy the following obvious linearity properties:

cm(f + g) = cm(f) + cm(g), cm(αf) = αcm(f),

where f and g are two functions with Fourier coefficients cm(f) and cm(g),
and α ∈ C.
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Fourier Coefficients of the Derivative Df = f ′

We now couple the Fourier coefficients of the derivative Df = df
dx of

a 2π-periodic function f : R → C to the Fourier coefficients of f . The
trick is to integrate by parts: Using the periodicity of f(x), we find that

cm(Df) =
1
2π

∫ π

−π

Df(x)e−imx dx = im
1
2π

∫ π

−π

f(x)e−imx dx = im cm(f),

and we have thus proved:

Theorem 83.1 If f : R → C is 2π-periodic and differentiable with deriva-
tive Df , then for m = 0,±1,±2, . . .

cm(Df) = im cm(f). (83.17)

This is one of the fundamental results of Fourier analysis, and translates
the operation of differentiation D = d

dx with respect to x to multiplication
of Fourier coefficients with im wherem is the frequency. This opens the way
of translating differential equations in the variable x to algebraic equations
in the frequency m, which may be very useful and illuminating in certain
applications.

We can directly generalize to

Theorem 83.2 If f : R → C is 2π-periodic and k times differentiable with
derivative Dkf , then for m = 0,±1,±2, . . .

cm(Dkf) = (im)kcm(f). (83.18)

Example 83.4. Consider the differential equation Du(x) + u(x) = f(x),
where f(x) a given 2π-periodic function and we seek a 2π-periodic solution
u(x). This equation models, for example, a resistor and capacitor in series,
with u(x) a primitive function of the current, f(x) an applied voltage,
and x representing time, see the Chapter Electrical circuits. Alternatively,
Du(x) + u(x) = f(x) models an inductor and resistance in series with
u(x) now the current, and again f(x) an applied voltage. For the Fourier
coefficients we have using Theorem 83.1

im cm(u) + cm(u) = cm(f),

and thus

cm(u) =
cm(f)
1 + im

=
(1 − im)cm(f)

1 +m2
.

This shows that the indicated circuits act as so-called low-pass filters, with
the property of damping high-frequency components: we view f(x) as the
input and u(x) as the output and note that the Fourier coefficients of u(x)
decay quicker than those of f(x).
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Example 83.5. Consider the differential equation −D2u(x) + u(x) = f(x)
with f(x) a given 2π-periodic function and we seek a 2π-periodic solu-
tion u(x). Since cm(D2u) = (im)2cm(u), we obtain the following algebraic
equation for the Fourier coefficients:

(m2 + 1)cm(u) = cm(f) for m �= 0.

We can thus express the solution u(x) of −D2u(x) = u(x) = f(x) as
a Fourier series

u(x) =
∞∑

−∞

cm(f)
m2 + 1

eimx,

if the data f(x) is given as a Fourier series: f(x) =
∑∞

−∞ cm(f)eimx. Again,
we see that the differential equation acts as a low-pass filter with damping
of high-frequency components of the data f(x).

Example 83.6. More generally, consider the following differential equation
p(D)u(x) = f(x), where p(D) =

∑q
k=0 akD

k is a differential equation with
constant coefficients ak ∈ C, the data f(x) is 2π-periodic and we seek a 2π-
periodic solution u(x). Arguing as above, we get the following equation for
the Fourier coefficients:

p(im)cm(u) =
q∑

k=0

ak(im)kcm(u) = cm(f),

that is, assuming p(im) �= 0 (or cm(f) = 0 if p(im) = 0),

cm(u) =
cm(f)
p(im)

,

which gives the Fourier series for the solution, if the Fourier series for the
data f(x) is given.

The Fourier coefficients cm(f) tend to zero as |m| → ∞
As a direct consequence of the preceding result, we conclude that the
Fourier coefficients cm(f) of a 2π-periodic differentiable function f(x) with
integrable derivative Df , tend to zero as |m| tends to infinity: Since
|im cm(f)| = |cm(Df)|, we have

|cm(f)| =
1
|m| |cm(Df)| ≤ 1

2π|m|

∫ π

−π

|Df | dx→ 0 as |m| → ∞.

Similarly, if f(x) is 2π-periodic with integrable derivative Dkf of order
k > 1, then for m = ±1,±2, . . . ,

|cm(f)| ≤ 1
2π|mk|

∫ π

−π

|Dkf | dx.
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We conclude that the larger k is, the more rapid is the convergence of cm(f)
to zero.

We can also go in the direction of less regularity and ask if we can show
that the Fourier coefficients cm(f) tend to zero as |m| → ∞ under the
weaker assumption that f is Lipschitz continuous only. To this end we first
note that for any −π < a < b < π, we have

∫ b

a

e−imxdx =
1

−im [e−imx]ba → 0 as m→ ∞. (83.19)

This may be seen as a consequence of the rapid oscillations of e−imx

with |m| large, which causes a lot of cancellations in any integral of the
form (83.19) with the effect that the integrals decreases to zero as m in-
creases to infinity, see the following figure.
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Fig. 83.5. An illustration of the fact that
∫ b
a

cos(mx)dx and
∫ b
a

sin(mx)dx is
small for m large

The estimate (83.19) shows that if f(x) is piecewise constant on [−π, π],
that is a linear combination sum of functions equal to one on a certain
interval and zero elsewhere, then cm(f) → 0 as |m| → ∞.

Finally, a given Lipschitz continuous function f : [−π, π] → C can be
approximated by a piecewise constant function f̃(x), so that

∫ π

−π

|f(x) − f̃(x)|

is as small as we please, which leads to the famous

Theorem 83.3 (Riemann-Lebesgue lemma) If f : [−π, π] is Lipschitz
continuous, then cm(f) → 0 as |m| → ∞.

The assumption can be relaxed to piecewise Lipschitz continuity.
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Convolution

Given two 2π-periodic functions f(x) and g(x), we define a new 2π-periodic
function f ∗ g by

(f ∗ g)(x) =
∫ π

−π

f(x− y)g(y) dy x ∈ R.

We say that f ∗ g is the convolution of f and g. Changing variables, setting
y = x− t, we find that

(f ∗ g)(x) =
∫ π

−π

f(t)g(x− t) dt =
∫ π

−π

f(y)g(x− y) dy x ∈ R,

and thus the integrand can take the form f(x− y)g(y) or f(y)g(x− y).
We shall now prove that

cm(f ∗ g) = 2π cm(f)cm(g). (83.20)

By direct computation, changing order of integration and using the change
of variable t = x− y, we have

cm(f ∗ g) =
1
2π

∫ π

−π

(f ∗ g)(x)e−imx dx

=
1
2π

∫ π

−π

∫ π

−π

f(x− y)g(y) dy e−imx dx

=
∫ π

−π

g(y)e−imy

(
1
2π

∫ π

−π

f(x− y) e−im(x−y) dx

)

dy

=
∫ π

−π

g(y)e−imy

(
1
2π

∫ π

−π

f(t) e−imt dt

)

dy

= cm(f)
∫ π

−π

g(y)e−imy dy = 2πcm(f)cm(g).

Example 83.7. Let g : R → R be a 2π-periodic function defined by

g(x) =
1
2a

for − a ≤ x ≤ a,

where 0 < a < π. For a small, we may view g(x) as an approximate delta
function. The convolution

(f ∗ g)(x) =
∫ π

−π

f(x− y)g(y) dy =
1
2a

∫ a

−a

f(x− y) dy

is an average of f(x) over the interval [x− a, x+ a]. Recalling (83.16), and
using (83.20), we get

cm(f ∗ g) = cm(f)
sin(ma)
ma

.
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We conclude that cm(f ∗ g) is close to cm(f) if ma is small, and cm(f ∗ g)
is much smaller than cm(f) if ma is large. The Fourier coefficients of the
average f ∗g thus decay quicker than those of f , and thus f ∗g is a smoothed
version of f : taking the average increases smoothness reflected by quickly
decreasing Fourier coefficients.

83.9 The Inversion Formula

We shall now prove that if f : R → C is 2π-periodic and differentiable,
then for all x ∈ R

lim
n→∞

n∑

−n

cm(f)eimx = f(x).

In other words, the function f(x) can be represented as a convergent Fourier
series:

f(x) =
∞∑

m=−∞
cm(f)eimx for x ∈ R.

We have
n∑

−n

cme
imx =

n∑

−n

1
2π

∫ π

−π

f(y)e−imy dy eimx

=
∫ π

−π

f(y)
1
2π

n∑

−n

eim(x−y) dy =
∫ π

−π

f(y)Dn(x− y) dy,

(83.21)

where, setting θ = x− y,

Dn(θ) =
1
2π

n∑

−n

eimθ =
1
2π
e−inθ

2n∑

m=0

eimθ

=
1
2π
e−inθ 1 − ei(2n+1)θ

1 − eiθ
=

1
2π

e−i θ
2

e−i θ
2

e−inθ − ei(n+1)θ

1 − eiθ

=
1
2π

sin(nθ + θ
2 )

sin( θ
2 )

is the so-called Dirichlet kernel. We here used that
∑2n

m=0 e
imθ is a finite

geometric series with factor eiθ. Using the convolution notation we can
write (83.21) in the compact form

n∑

−n

cme
imx = f ∗Dn(x).
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In order for f ∗ Dn(x) to approximate f(x), we expect Dn to somehow
behave like the identity. We look at a plot of Dn(θ):
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−2
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10

θ

Dn(θ) for n = 5 (dotted) and n = 25 (solid)

Fig. 83.6. A plot of Dn(θ)

We see thatDn(θ) oscillates and has a peak at θ = 0. IntegratingDn(θ) =
1
2π

∑n
−n e

imθ term by term over [−π, π] noting that all integrated terms
vanish but one, we see that the total area (with sign) under the graph
of Dn is equal to one, that is

∫ π

−π

Dn(θ) dθ = 1, (83.22)

which expresses one aspect of the idea that Dn behaves like the identity.
The other aspect of the approximate identity nature of Dn is the increasing
focussing of the peak of Dn at 0 as n increases.

Using (83.22), we can write

f(x) − f ∗Dn(x) =
1
2π

∫ π

−π

(f(x) − f(y))Dn(x− y) dy

=
1
2π

∫ π

−π

g(x, y) sin
((

n+
1
2

)

(x− y)
)

dy

where

g(x, y) =
f(x) − f(y)
sin(x−y

2 )
.

Now if f(x) is twice differentiable, then g(x, y) is differentiable with respect
to y for all y ∈ R with derivative Dg(x, y) (see the corresponding argument
in the proof of Cauchy’s formula). Integrating by parts we thus have

f(x)−Dn ∗ f(x) = − 1
2π

1
n+ 1

2

∫ π

−π

Dg(x, y) cos
((

n+
1
2

)

(x− y)
)

dy → 0
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as n → ∞. In case f(x) is differentiable with piecewise Lipschitz continu-
ous derivative, then Dg(x, y) is Lipschitz continuous in y, and by Riemann-
Lebesgue’ lemma, we find the same conclusion. We summarize in the fol-
lowing basic theorem:

Theorem 83.4 If f : R → C is 2π-periodic with piecewise Lipschitz con-
tinuous derivative, then f(x) may be represented by a convergent Fourier
series:

f(x) =
∞∑

m=−∞
cm(f)eimx for x ∈ R,

where the coefficients cm are given by (83.10).

The assumption on f(x) can be relaxed: it suffices to assume that f(x) is
piecewise differentiable with piecewise Lipschitz continuous derivative. At
a point x of discontinuity, the Fourier series converges to the mean value
of the left hand limit f−(x) = limy→x,y<x f(y) and the right hand limit
f+(x) = limy→x,y>x f(y):

∞∑

m=−∞
cm(f)eimx =

f−(x) + f+(x)
2

. (83.23)

Example 83.8. We have

∞∑

m=1

sin(ma)
πm

cos(mx) =






1 if |x| < a,
1
2 if |x| = a,

0 if |x| > a.

83.10 Parseval’s and Plancherel’s Formulas

Suppose f : R → C is 2π-periodic with a convergent Fourier series repre-
sentation:

f(x) =
∞∑

m=−∞
cm(f)eimx, (83.24)

where

cm(f) =
1
2π

∫ π

−π

f(x)e−imx dx.
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Using the orthogonality (83.7) of the functions {eimx}, we find that
∫ π

−π

|f(x)|2 dx =
∫ π

−π

f(x)f(x) dx

=
∫ π

−π

( ∞∑

m=−∞
cm(f)eimx

)( ∞∑

k=−∞
ck(f)e−ikx

)

dx

∞∑

m,k=−∞
cm(f)ck(f)

∫ π

−π

eimxe−ikx dx

= 2π
∞∑

m=−∞
|cm(f)|2.

We have now proved the celebrated:

Theorem 83.5 (Parseval’s formula) If f(x) has a convergent Fourier
series representation, then

∫ π

−π

|f(x)|2 dx = 2π
∞∑

m=−∞
|cm(f)|2.

We can in an obvious way generalize to obtain:

Theorem 83.6 (Plancherel’s formula) If f(x) and g(x) have conver-
gent Fourier series representations, then

∫ π

−π

f(x)g(x) dx = 2π
∞∑

m=−∞
cm(f)cm(g).

83.11 Space Versus Frequency Analysis

We are now ready to lean back and reflect a bit about the nature of Fourier
series. Suppose that f(x) is a given 2π-periodic function. If we want to
describe the nature of the function f(x), that is the variation of f(x)
with x, we can try to give some kind of list of f(x) values for different
values of x. We may call this a physical description where we think of x as
a space or time variable. Now using Fourier series we can instead express
the function f(x) as a Fourier series, determined by the Fourier coeffi-
cients {cm(f)}. Describing f(x) through its Fourier coefficients, may be
viewed as a frequency-description. In the physical description, we describe
the function f in terms of its function values f(x) for different values of x.
In the frequency description, we describe f in terms of the Fourier coeffi-
cients cm(f) as a sum f(x) =

∑
m cm(f)eimx.

To describe a given function f(x) we may thus look at the variation
of f(x) with x, or the variation of cm(f) with m.
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We have noted that the decay of cm(f) with m couples to the regularity
of f(x): if f(x) is highly regular with many derivatives, then the Fourier
coefficients cm(f) decay quickly with increasing m, and vice versa. If the
Fourier coefficients decay quickly, then only a few terms in the Fourier
series suffices to represent the function to high accuracy.

83.12 Different Periods

Suppose f : R → C is periodic with period 2π
ω with ω > 0. We considered

above the case ω = 1, and we now generalize to ω > 0. For example: the
functions sin(ωx), sin(2ωx), sin(3ωx). . . , are periodic with period 2π

ω .
Defining g(x) = f( x

ω ), we have that g(x) is 2π-periodic since g(x+2π) =
f(x+2π

ω ) = f( x
ω + 2π

ω ) = f( x
ω ) = g(x), and a Fourier series representation

of g(x):

g(x) =
∞∑

m=−∞
cm(g)eimx, cm(g) =

1
2π

∫ π

−π

g(y)e−imy dy

translates into the following Fourier series representation of f( x
ω ):

f
(x

ω

)
=

∞∑

m=−∞
cm(g)eimx, cm(g) =

1
2π

∫ π

−π

f
( y

ω

)
e−imy dy

which takes the following form changing variables from x
ω to x and y

ω to y:

f(x) =
∞∑

m=−∞
cm(f)eimωx, cm(f) =

ω

2π

∫ π
ω

− π
ω

f(y)e−imωy dy. (83.25)

83.13 Weierstrass Functions

Consider a series of the form

∞∑

m=1

a−m sin(bmx), (83.26)

where a > 1, b > a. This type of series was presented by Weierstrass as
an example of a Lipschitz continuous function that is not differentiable at
any point, see Fig. 83.7, where we plot the corresponding truncated series∑n

m=1 a
−m sin(bmx) with n = 10. We see that as n increases the series

oscillates increasingly wildly, and gives an irregular “chaotic” impression.
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Fig. 83.7. Plots of a truncated Weierstrass function

Since a > 1 the series (83.26) is absolutely convergent, and defines a func-
tion f(x) =

∑∞
m=1 a

−m sin(bmx), but the series

∞∑

m=1

a−mbm cos(bmx)

obtained by termwise differentiation, does not converge since b
a > 1, which

indicates that f(x) is nowhere differentiable. The Weierstrass function, or
the corresponding truncated series, is an example of a function with a se-
quence of “microscales” 2π

bm , m = 1, 2, . . . corresponding to the different
basis functions sin(bmx). The function f(x) thus has the same oscillating
nature on all scales and thus has a “fractal” nature. It is believed that phe-
nomena like turbulence also have a fractal nature, which may be useful in
attempts to model microscales which are not possible to model numerically.

Choosing b = 2 (or b any natural number > 1), gives a series of the form∑∞
m=1 a

−m sin(2mx), which is an example of a lacunary Fourier series, with
just very few Fourier coefficients being non-zero. A Weierstrass function
with b a natural number is thus a lacunary Fourier series.

83.14 Solving the Heat Equation
Using Fourier Series

We consider the 1d homogeneous heat equation:

u̇(x, t) − u′′(x, t) = 0 for 0 < x < π, t > 0,
u(0, t) = u(π, t) = 0 for t > 0,

u(x, 0) = u0(x) for 0 < x < π,

(83.27)
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where u0 is a given initial value. We observe that for m = 1, 2, . . ., the
function v(x, t) = vm(x, t) = e−m2t sin(mx) satisfies

v̇(x, t) − v′′(x, t) = 0 for 0 < x < π, v(0, t) = v(π, t) = 0 for t > 0,

and thus any finite linear combination

u(x, t) =
J∑

m=1

bme
−m2t sin(mx)

with coefficients bm ∈ R, satisfies (83.27) with corresponding initial data
u0 =

∑J
m=1 bm sin(mx). Each term e−m2t sin(mx) has the form of a prod-

uct of a function of x only, namely sin(mx) with frequencym, and a function
of t only, namely e−m2t. We see that the factor e−m2t decays with increas-
ing t and the rate of decay increases quickly with increasing frequency m.
We illustrate this in Fig. 83.8.
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−0.5
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xx

v1(x, t) at time t = .1 (dotted) andt = .5 (solid) v3(x, t) at time t = .1 (dotted) and t = .5 (solid)

Fig. 83.8. The solutions vj(x, t) of the heat equation corresponding to frequencies
j = 1 and j = 3

More generally, if the initial datau0 has a convergent Sine series (withu0(x)
extended as an odd function to [−π, π])

u0(x) =
∞∑

m=1

bm(u0) sin(mx), (83.28)

with Fourier coefficients

bm(u0) =
2
π

∫ π

0

u0(x) sin(mx) dx, (83.29)

then the function defined by

u(x, t) =
∞∑

m=1

bm(u0)e−m2t sin(mx), (83.30)

solves the initial value problem (83.27).
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83.15 Computing Fourier Coefficients
with Quadrature

To compute the Fourier coefficients

cm(f) =
1
2π

∫ 2π

0

f(x)e−imx dx,m = 0,±1,±2, . . .

of a given 2π-periodic function f : R → C, we will in general have to use
quadrature. Using the quadrature points xn = 2πn

N , n = 0, . . . , N − 1, with
weights ωn = 2π

N , corresponding to a left end-point quadrature formula
with N uniformly distributed points, we would approximate cm(f) by

cm(f) =
1
2π

∫ 2π

0

f(x)e−imx dx ≈ 1
2π

N−1∑

n=0

f(xn)e−imxn ωn ≡ f̂(m),

We cannot expect this quadrature formula to be accurate for m > N
since then the variation of eimx would not be captured by the quadra-
ture points 2πn

N . We note that f̂(m) is periodic with period N : that is
f̂(m) = f̂(m+N), and it is thus natural to consider f̂(m) for m = 0, . . . ,
N−1, or equivalently with |m| ≤ (N−1)/2. We call (N −1)/2 the Nyquist
cut-off frequency which corresponds to at least 2 quadrature points on each
period for frequencies m with |m| ≤ (N − 1)/2. According to the inversion
formula, we could hope, assuming that the Fourier coefficients cm(f) are
small enough for m larger than cut-off, that

f(xn) ≈
N−1∑

m=0

f̂(m)eimxn for n = 0, . . . , N − 1, (83.31)

which thus would represent an approximate discrete Fourier decomposition
for the selected values xn based on computing the Fourier coefficients cm(f)
by quadrature for m = 0, . . . , N −1. This leads us directly into the discrete
Fourier transform, which we now discuss.

83.16 The Discrete Fourier Transform

Suppose {fn}N−1
n=0 is a set of N given complex numbers. We define a corre-

sponding sequence {f̂m}N−1
m=0 by

f̂m =
1
N

N−1∑

n=0

fne
−2πimn/N , for m = 0, . . . , N − 1.

We say that the sequence {f̂m}N−1
m=0 is the discrete Fourier transform of

the sequence {fn}N−1
n=0 . In the setting of the previous section we have

fn = f(2πn
N ) and f̂m ≈ cm(f).



Chapter 83 Problems 1163

We find from the definitions

N−1∑

m=0

f̂(m)e2πimn/N =
N−1∑

m=0

1
N

N−1∑

k=0

fke
−2πimk/Ne2πimn/N

=
N−1∑

k=0

fk
1
N

N−1∑

m=0

e2πim(n−k)/N

and using that

1
N

N−1∑

m=0

e2πim(n−k)/N =

{
1 if k = n,

0 else,

we obtain the following inversion formula, to be compared with (83.31),

fn =
N−1∑

m=0

f̂(m)e2πimn/N , for n = 0, . . . , N − 1. (83.32)

To compute the discrete Fourier transform of {fn}N−1
n=0 , we would need

on the order of N2 operations (multiplications or additions). If N = 2k

for some natural number k, it is possible to organize the computation of
the discrete Fourier transform so that required operations would be of the
order N up to a logarithm. The corresponding transform referred to as the
Fast Fourier Transform FFT developed by Cooley and Tukey in the 1960s,
is one of the highlights of applied mathematics of modern time.

Chapter 83 Problems

83.1. Complete the details of the proof of (83.17) and (83.18).

83.2. Prove (83.23).

83.3. Show that the Sine series coefficients for the odd function f(x) = x3−π2x

for −π ≤ x ≤ π, are given by bm(f) = 12 (−1)m

m3 .

83.4. Show that the Cosine series coefficients for the even function f(x) =

x4 − 2π2x2 for −π ≤ x ≤ π, are given by a0 = 14π4

15
, am(f) = 48 (−1)m+1

m4 ,
m = 1, 2, . . . .

83.5. Prove that
∑∞
m=1

1
m4 = π4

90
.

83.6. Define a 2-periodic function f(x) by f(x) = (x + 1)2 for −1 < x < 1.
Expand f(x) in a complex Fourier seriea. Find a 2-periodic solution to the dif-
ferential equation 2y′′ − y′ − y = f .
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83.7. Expand the function cosx as a π-periodic Fourier sine series on the inter-

val (0, π
2
). Use the result to compute

∑∞
n=1

n2

(4n2−1)2
.

83.8. Determine the discrete Fourier transform f̂m of

fn =

{
1, 0 ≤ n ≤ k − 1,
0, k ≤ n ≤ N − 1.

}

,

and use a Parseval formula to compute

N−1∑

µ=1

1 − cos 2πµk
N

1 − cos 2πµ
N

.

83.9. Determine the discrete Fourier transform of fn = sin nπ
N

, n = 0, . . . , N − 1.



84
Fourier Transforms

As the natural ideas of equality developed it was possible to conceive
the sublime hope of establishing among us a free government exempt
from kings and priests, and to free from this double yoke the long-
usurped soil of Europe. I readily became enamoured of this cause,
in my opinion the greatest and most beautiful which any nation has
ever undertaken. (Fourier 1793, joining a Revolutionary Committee
of the French Revolution)

Fourier series concern function f : R → C which are periodic. We now
consider functions f : R → C which are non-periodic and the analogous
concept is then the Fourier transform, which we will study in this chapter.
For a given (piecewise Lipschitz continuous) function f : R → C such
that f(x) is integrable over R, that is,

∫

R

|f(x)| dx <∞, (84.1)

we define for ξ ∈ R

f̂(ξ) =
1
2π

∫ ∞

−∞
f(x)e−iξx dx, (84.2)

noting that the integral is absolutely convergent and thus well defined under
the assumption (84.1). We say that the function f̂ : R → C defined by (84.2)
is the Fourier transform of f(x).

We shall now develop a calculus for the Fourier transform which is anal-
ogous to that developed for Fourier series in the previous chapter. In par-
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ticular we shall prove the inversion formula:

f(x) =
∫ ∞

−∞
f̂(ξ)eiξx dξ for x ∈ R,

under the assumption that f(x) is differentiable on R. As we go along the
analogy between Fourier series and Fourier transforms will be uncovered.

We compute the Fourier transform of some basic functions.

Example 84.1. If f(x) = e−|x| for x ∈ R, then

f̂(ξ) =
1
2π

∫ ∞

−∞
e−|x|−iξx dx

=
1
2π

∫ 0

−∞
ex−iξx dx+

1
2π

∫ ∞

0

e−x−iξx dx

=
1
2π

1
1 − iξ

+
1
2π

1
1 + iξ

=
1
π

1
1 + ξ2

.

Example 84.2. If f(x) = e−
ax2
2 for x ∈ R, where a > 0 is a constant then

f̂(ξ) =
1
2π

∫ ∞

−∞
e−

ax2
2 e−iξx dx =

1
2π
e−

ξ2
2a

∫ ∞

−∞
e
− 1

2 (
√

ax+i ξ√
a
)2
dx.

To evaluate the integral, we shall use Cauchy’s theorem for analytic func-
tions as follows: We note that the function g(z) = e

− 1
2 (

√
az+i ξ√

a
)2 is analytic

in z, and we may thus shift the line of integration to obtain

f̂(ξ) =
1
2π
e−

ξ2
2a

∫ ∞

−∞
e−

1
2 (

√
ax)2 dx,

and recalling (64.25) we thus have

f̂(ξ) =
1
2π
e−

ξ2
2a

∫ ∞

−∞
e−

ax2
2 dx =

1√
2πa

e−
ξ2
2a

We note that as a tends to zero, the function f(x) tends to 1 for all x, and
f̂(ξ) tends to δ(0), the delta function at 0, see Fig. 84.1

Example 84.3. Defining f(x) by

f(x) = 1 for − a ≤ x ≤ a

where a > 0, we obtain (see Fig. 84.2)

f̂(ξ) =
1
2π

∫ a

−a

e−iξx dx =
1
π

sin(ξa)
ξ

.
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84.1 Basic Properties of the Fourier Transform

We now present some basic properties of the Fourier transform

f̂(ξ) =
1
2π

∫ ∞

−∞
f(x)e−iξx dx, ξ ∈ R,

of given functions f : R → R which are integrable over R.

Linearity

The Fourier transform satisfies the following obvious linearity properties:

̂(f + g)(ξ) = f̂(ξ) + ĝ(ξ), (̂αf)(ξ) = αf̂(ξ).
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where f and g are two functions with Fourier transforms f̂ and ĝ, and
α ∈ C.

84.1.1 Scaling

Let g : R → R be integrable and define f(x) = g(ax), where a > 0 is
a constant. Then, changing variables setting y = ax, we have

f̂(ξ) =
1
2π

∫ ∞

−∞
g(ax)e−i ξ

a ax dx =
1
2π

∫ ∞

−∞
g(y)e−i ξ

a y 1
a
dy =

1
a
ĝ

(
ξ

a

)

.

We conclude that if f(x) = g(ax), then f̂(ξ) = 1
a ĝ(

ξ
a ).

The Fourier Transform of the Derivative Df = df
dx

We now couple the Fourier transform of the derivative Df = df
dx of a func-

tion f to the Fourier transform of f . The trick is to integrate by parts:

D̂f(ξ) =
1
2π

∫ ∞

−∞
Df(x)e−iξx dx = iξ

1
2π

∫ ∞

−∞
f(x)e−iξx dx = iξf̂(ξ).

We summarize in the following theorem:

Theorem 84.1 If f : R → C is integrable with integrable derivative Df ,
then for ξ ∈ R,

D̂f(ξ) = iξf̂(ξ) (84.3)

This is one of the fundamental results of Fourier analysis, and translates
the operation of differentiation D = d

dx with respect to x to multiplication
of Fourier transforms with iξ where ξ is the frequency. More generally we
have

ˆDkfξ = (iξ)kf̂(ξ). (84.4)

This opens the way of translating differential equations in the variable x
to algebraic equations in the frequency ξ, which may be very useful and
illuminating in certain applications.

Example 84.4. Consider the differential equation−D2u(x)+u(x) = f(x) on
R with f(x) a given integrable function and seeking an integrable solution
u(x). Since D̂2u(ξ) = (iξ)2û(ξ), we obtain the algebraic equation

(ξ2 + 1)û(ξ) = f̂(ξ) for ξ �= 0

and we can thus express the solution u(x) as a Fourier integral

u(x) =
∫

R

f̂(ξ)
ξ2 + 1

eiξx dξ,

in terms of the Fourier transform f̂(ξ) of the data f(x).
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84.2 The Fourier Transform f̂(ξ) Tends to 0 as
|ξ| → ∞

As a direct consequence of the preceding result, we conclude that the
Fourier transform f̂(ξ) of a differentiable function f(x) with integrable
derivative Df(x), tends to zero as |ξ| tends to infinity. This is simply be-
cause

|f̂(ξ)| =
1
|ξ|D̂f(ξ) ≤ 1

2π|ξ|

∫ ∞

−∞
|Df | dx→ 0 as |ξ| → ∞.

This result can be extended to the case of f(x) being integrable, as in the
corresponding case of Fourier series.

84.3 Convolution

Given two functions f : R → R and g : R → R, we define a new function
f ∗ g : R → R by

(f ∗ g)(x) =
∫ ∞

−∞
f(x− y)g(y) dy.

We say that f ∗ g is the convolution of f and g. We shall prove that

f̂ ∗ g = 2πf̂ ĝ

By direct computation, changing order of integration and using the change
of variable t = x− y, we have

f̂ ∗ g(ξ) =
1

2π

∫ ∞

−∞
(f ∗ g)(x)e−iξx dx =

1

2π

∫ ∞

−∞

∫ ∞

−∞
f(x− y)g(y)dy e−iξx dx

=

∫ ∞

−∞
g(y)e−iξy

(
1

2π

∫ ∞

−∞
f(x− y) e−iξ(x−y) dx

)

dy

=

∫ ∞

−∞
g(y)e−iξy

(
1

2π

∫ ∞

−∞
f(t) e−iξt dt

)

dy

= f̂(ξ)

∫ ∞

−∞
g(y)e−iξy dy = 2πf̂(ξ)ĝ(ξ).

We summarize:

Theorem 84.2 We have f̂ ∗ g(ξ) = 2πf̂(ξ)ĝ(ξ) for ξ ∈ R.

84.4 The Inversion Formula

We shall now prove that if f(x) is differentiable, then for all x ∈ R,

lim
n→∞

fn(x) = f(x),
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where

fn(x) =
∫ n

−n

f̂(ξ)eiξx dξ

and thus for all x ∈ R, the function f(x) can be represented as a convergent
Fourier integral:

f(x) =
∫ ∞

−∞
f̂(ξ)eiξx dξ.

We have

fn(x) =
∫ n

−n

f̂(ξ)eiξx dξ =
1
2π

∫ ∞

−∞
f(y)

∫ n

−n

eiξ(x−y) dξdy

=
∫ ∞

−∞
f(y)Dn(x − y) dy,

(84.5)

where, setting θ = x− y,

Dn(θ) =
1
2π

∫ n

−n

eiξθ dξ =
1
π

sin(nθ)
θ

is the Dirichlet kernel for the Fourier transform. Using the convolution
notation we can write (84.5) in the compact form

fn(x) = f ∗Dn(x).

With experience from the Dirichlet kernel for Fourier series, we expect Dn

to be an approximate identity. Looking at a plot of Dn(θ) in Fig. 84.3, we
see that Dn(θ) oscillates with a peak at θ = 0, which gets sharper with
increasing n. One can prove that, see Problem 84.5,

∫ ∞

−∞
Dn(θ) dθ = 1 (84.6)
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Fig. 84.3. The function Dn(θ)
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and we can thus write

f(x) − fn(x) =
∫ ∞

−∞
(f(x) − f(y))Dn(x − y) dy

=
1
π

∫ ∞

−∞
g(y) sin((n(x− y)) dy

where

g(y) =
f(x) − f(y)

x− y
.

Now if f(x) is differentiable with integrable derivative, it follows with an
argument similar to that used in the case of Fourier series (integrating by
parts), that

f(x) − fn(x) → 0

as n→ ∞, which proves the following basic theorem.

Theorem 84.3 If f(x) is differentiable, then f(x) is given by a convergent
Fourier integral:

f(x) =
∫ ∞

−∞
f̂(ξ)eiξx dξ for x ∈ R.

84.5 Parseval’s Formula

Parseval’s formula takes the following form for the Fourier transform (for
a proof see Problem 84.3):

Theorem 84.4 If f(x) has a convergent Fourier series representation,
then

∫ ∞

−∞
|f(x)|2 dx = 2π

∫ ∞

−∞
|f̂(ξ)|2 dξ.

84.6 Solving the Heat Equation Using the Fourier
Transform

We consider the 1d homogeneous heat equation on R

u̇(x, t) − u′′(x, t) = 0 for x ∈ R, t > 0,
u(x, 0) = u0(x) for x ∈ R,

(84.7)
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where the initial value u0(x) is integrable over R and we seek a solu-
tion u(x, t) which is integrable over R for all t > 0. Taking Fourier trans-
forms with respect to x, we are led to the following initial value problem
for each ξ ∈ R

d

dt
û(ξ, t) + ξ2û(ξ, t) = 0 for t > 0, û(ξ, 0) = û0(ξ)

with solution

û(ξ, t) = e−tξ2
û0(ξ).

We thus obtain the following solution formula

u(x, t) =
1√
4πt

∫ ∞

−∞
e−

(x−y)2

4t u0(y) dy.

Here we used that û is the product of the Fourier transforms e−tξ2
of

√
π/te−

x2
4t and û0 of u0, the inverse transform of which thus is the convo-

lution of 1
4πte

− x2
4t and u0.

84.7 Fourier Series and Fourier Transforms

Suppose f : R → C is periodic with period 2π
ω with ω > 0 and has the

Fourier series representation

f(x) =
∞∑

m=−∞
cm(f)eimωx, cm(f) =

ω

2π

∫ π
ω

− π
ω

f(y)e−imωy dy,

which we write in the form

f(x) =
∞∑

m=−∞

1
2π

(∫ π
ω

− π
ω

f(y)e−imωy dy

)

eimωxω. (84.8)

We now compare with a Fourier transform representation of a non-periodic
function f : R → C according to the previous section:

f(x) =
∫ ∞

−∞

1
2π

(∫ ∞

−∞
f(y)e−iξy dy

)

eiξx dξ. (84.9)

We formally obtain (84.9) from (84.8) by replacing mω by ξ and ω by dξ
viewing the sum over m as a Riemann sum and letting ω tend to 0.

Note the normalization used in the definition of the Fourier transform f̂(ξ)
with the factor 1

2π , and the factor ω
2π in the definition of the Fourier coef-

ficients cm(f) of a function f with period 2π
ω .
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84.8 The sampling theorem

Let f : R → C be a given function with Fourier transform f̂(ξ), and suppose
that f̂(ξ) = 0 for |ξ| ≥ π. By Fourier’s inversion formula, we have

f(x) =
∫ π

−π

f̂(ξ)eixξ dξ.

We now expand f̂(ξ) in a Fourier series:

f̂(ξ) =
∞∑

m=−∞
cm(f̂)eimξ

with Fourier coefficients

cm(f̂) =
1
2π

∫ π

−π

f̂(η)e−imη dη.

Using that f̂(η) = 0 for |η| ≥ π, we can write

cm(f̂) =
1
2π

∫ ∞

−∞
f̂(η)e−imη dη =

1
2π
f(−m)

where we used Fourier’s inversion formula. We thus obtain the representa-
tion formula:

f(x) =
∫ π

−π

1
2π

∞∑

m=−∞
f(−m)eimξeixξ dξ

=
1
2π

∞∑

m=−∞
f(−m)

∫ π

−π

eimξeixξ dξ

=
∞∑

m=−∞
f(−m)

sin(x +m)
π(x +m)

=
∞∑

m=−∞
f(m)

sin(x−m)
π(x −m)

which gives a representation of f(x) for any value of x in terms of the
values {f(m)} with m integer. We have now prove the famous:

Theorem 84.5 (Sampling theorem)If f : R → C has a Fourier trans-
form f̂(ξ) such that f̂(ξ) = 0 for |ξ| ≥ π, then

f(x) =
∞∑

m=−∞
f(m)

sin(x−m)
π(x−m)

We conclude that sampling the values f(m) of the function f(x) for the
integer values m = 0,±1,±2, . . . , gives information of all the values of f(x)
for any x ∈ R, under the assumption that f̂(ξ) = 0 for |ξ| ≥ π.
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Example 84.5. The Sampling theorem takes the following form for a func-
tion f(x) such that f̂(ξ) = 0 for |ξ| ≥ aπ, where a > 0 is a constant:

f(x) =
∞∑

m=−∞
f
(m

a

) sin(ax−m)
π(ax−m)

.

This follows by applying the Sampling theorem to g(x) = f(x
a ), recalling

that ĝ(ξ) = af̂(aξ) and noting that ĝ(ξ) = 0 if |ξ| ≥ π since f̂(ξ) = 0 for
|ξ| ≥ aπ. We see that the larger the factor a gets, the closer the sampling
points m

a will be distributed. Of course this couples to the Nyquist cut-off
frequency.

84.9 The Laplace Transform

We give a brief account of the Laplace transform, which is closely related
to the Fourier transform. The Laplace transform is useful in solving certain
constant-coefficient linear initial value problems analytically with classical
applications in e.g. control theory.

For a given function f : [0,∞) → R, we define the Laplace transform
Lf : [0,∞) by

Lf(s) =
∫ ∞

0

e−stf(t) dt for s ∈ [0,∞).

We denote here the independent variable by t indicating typical applica-
tions with t representing time.

Example 84.6. If f(t) = e−at, then Lf(s) = 1
s+a .

Example 84.7. If f(t) = tn

n! then Lf(s) = 1
sn+1 . This follows by repeated

integration by parts.

Example 84.8. If f(t)=sin(mt) then Lf(s)= m
m2+s2 . If f(t)=cos(mt) then

Lf(s) = s
m2+s2 .

We note the following connection between the Laplace transform of
Df = f ′ and f :

Lf ′(s) = sLf(s) − f(0) (84.10)

which follows by integration by parts.

Laplace Transforms and Constant-Coefficient Linear Initial
Value Problems

The typical application goes as follows: Consider the initial value problem
u′(t) + u(t) = f(t) for t > 0 with u(0) = 0. Taking Laplace transforms of
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both sides we get

sLu(s) + Lu(s) = Lf(s), or Lu(s) =
Lf(s)
s+ 1

For example, if f(t) = 1, then Lf(s) = 1
s and thus Lu(s) = 1

s(s+1) =
1
s − 1

s+1 and we conclude that u(s) = 1 − e−t. Having a catalogue of
Laplace transforms we may expect to be able to solve constant-coefficient
linear initial value problems.

84.10 Wavelets and the Haar Basis

We give a short introduction to wavelets in the simplest setting of 1d piece-
wise constant approximation using the Haar basis, which combines the fea-
tures of orthogonality and local support. We thus consider functions defined
on the unit interval [0, 1] and we let 0 = x0 < x1 < . . . < xN = 1 be a uni-
form subdivision with xj = jhn, hn = 2−n and N = 2n for some natural
number n. A natural orthogonal basis for the space Vn of piecewise constant
functions on the subdivision 0 = x0 < x1 < . . . < xN = 1 consists of the set
of functions {ϕn,k}N

k=0, where ϕn,k(x) = 1 for x ∈ In,k = (khn, (k + 1)hn)
and ϕn,k(x) = 0 else, that is, each basis function ϕn,k(x) is equal to 1 on
the subinterval In,k and vanishes elsewhere. We can express these functions
through scaling and translation of one single function in the form

ϕn,k = ϕ(2nx− k) for , k = 0, . . . , N − 1,

where ϕ(x) = 1 for x ∈ (0, 1), and ϕ(x) = 0 else. We note that Vn−1 is
a subspace of Vn since the space Vn is built on a finer subdivision than Vn−1.

We shall now present a different orthogonal basis for Vn which displays
the “difference” between Vn and Vn−1, and which carries useful information
on the various scales in Vn. More precisely, we shall express each u ∈ Vn in
the form u = v+w with v ∈ Vn−1 and w ∈ Wn−1, where Wn−1 is spanned
by the functions ψn−1,k = ψ(2n−1x − k) for k = 1, . . . , 2n−1, expressed
through scaling and translation of the single function ψ(x) given by

ψ(x) =

{
1 for 0 < x < 1

2 ,

−1 for 1
2 < x < 1,

and ψ(x) = 0 else. We note that (v, w) =
∫ 1

0 v(x)w(x) dx = 0 if v ∈ Vn−1

and w ∈ Wn−1. Further, the two functions ϕn−1,k and ψn−1,k obviously
span the two-dimensional space of functions on the interval In,k which are
piecewise constant on the two subintervals khn < x < khn + hn+1 and
khn + hn+1 < x < khn + hn of In,k. We thus have the following orthogonal
decomposition

Vn = Vn−1 ⊕Wn−1,
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stating that each function u ∈ Vn can be expressed in the form u = v + w
with v ∈ Vn−1, w ∈Wn−1 and (v, w) = 0, see Fig. 84.4.
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Fig. 84.4. Illustration of the orthogonal decomposition Vn = Vn−1 ⊕Wn−1

We can thus express Vn as an orthogonal sum:

Vn = V0 ⊕W0 ⊕W1 ⊕ . . .⊕Wn−1

where each space ⊕Wj measures variations on the scale 2−j. The corre-
sponding basis functions comprise the so-called Haar basis for Vn:

{ϕ0 =ϕ, ψ1,1 =ψ, ψ2,1, ψ2,2, ψ3,1, ψ3,2, ψ3,3, ψ3,4, . . . , ψn−1,1, . . . , ψn−1,2n−1}

combining orthogonality and local support.

Chapter 84 Problems

84.1. Solve using Fourier series the differential equation −D2u(x) = f(x) with
f(x) a given 2π-periodic function with zero mean value and we seek a 2π-periodic
solution u(x) with zero mean value.

84.2. Model the following electrical circuits: (i) resistor 1 and inductor in series
over applied voltage (ii) resistor 1 and capacitor in series over applied voltage
(iii) resistor 2 coupled in series with resistor 1 and inductor in parallel over
applied voltage. Output voltage drop over resistor 1. Solve using Fourier series.
Show that (i) and (ii) correspond to low-pass filters and (iii) to high-pass filter.

84.3. Prove Parseval’s formula for the Fourier transform. Hint: Set ĝ(ξ) = f̂(ξ),
which is the same as setting g(−x) = f(x), and integrate over ξ:

∫ ∞

−∞
f(x)f(x) dx = f ∗ g(0) =

∫ ∞

−∞
f̂ ∗ g(ξ) dξ = 2π

∫ ∞

−∞
|f̂(ξ)|2 dξ,

and use Theorem 84.2.
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84.4. Prove that for a ∈ R, we have (i) ĝ(ξ) = e−iaξf̂(ξ) if g(x) = f(x − a),

(ii) ĝ(ξ) = f̂(ξ − a) if g(x) = eiaxf(x).

84.5. Prove (84.6).

84.6. Compute the Fourier transform of the functions a) x
(x2+a2)2

, b) 1
(x2+a2)2

,

c) x
(x2+1)(x2+2x+5)

, d) e−a|x| sin xt (a > 0, b > 0).

84.7. The function f(x) has the Fourier transform 1−iξ
1+iξ

sin ξ
ξ

. Compute
∫∞
−∞ |f(x)|2dx.

84.8. Compute
∫ ∞
−∞

sin x
x(x2+1)

dx using the Fourier transform.

84.9. A function f(x) has the Fourier transform 1
|ξ|3+1

. Compute
∫∞
−∞ |f ∗ f ′|2 dx.

84.10. Compute the Fourier transform of the function f(x) =
∫ 2

0

√
ξ

1+ξ
eiξxdξ.

Then compute a)
∫ ∞
−∞ f(x) cos xdx, b)

∫∞
−∞ |f(x)|2dx.

84.11. Determine the solution f(t), t > 0, to the initial value problem

f ′′(t) − f ′(t) + f(t) + 6

∫ t

0

f(τ )dτ = 2et for t > 0,

with initial values f(0) = 1, f ′(0) = 0.





85
Analytic Functions Tool Bag

85.1 Differentiability and analyticity

A function f : Ω → C is differentiable at z0 ∈ Ω with derivative f ′(z0) ∈ C,
if for z close to z0, we have

|f(z) − f(z0) − f ′(z0)(z − z0)| ≤ Kf(z0)|z − z0|2,

where Kf(z0) is a non-negative real constant depending on f and z0.
A function f : Ω → C is analytic in the open domain Ω of the com-

plex plane if f(z) is differentiable at all z0 ∈ Ω with derivative f ′(z0).
If f : Ω → C is analytic, then also f ′ : Ω → C is analytic with deriva-
tive f ′′ : Ω → C, which is also analytic, and so on. An analytic function
f : Ω → C thus has derivatives of all orders f (n) : Ω → C, n = 1, 2, . . . ,
which are all analytic.

The usual rules for differentiation of sums, products and quotients valid
for functions f : R → R extend to functions f : C → C.

The function f(z) = zn is analytic in C for n = 1, 2, . . .
The function f(z) = z−n is analytic for z �= 0 if n = 1, 2, . . . .

85.2 The Cauchy-Riemann Equations

If f(z) = u(x, y)+ iv(x, y) is analytic in the open domain Ω of the complex
plane, then the real and imaginary parts u(x, y) and v(x, y) satisfy the
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Cauchy-Riemann equations in Ω:

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

or in polar coordinates z = reiθ :

∂u

∂r
=

1
r

∂v

∂θ
,

∂v

∂r
= −1

r

∂u

∂θ
.

85.3 The Real and Imaginary Parts
of an Analytic Function

If f : Ω → C is analytic, where Ω is an open domain of the complex
plane C, then the real part u(x, y) = Re f(z) and the imaginary part
v(x, y) = Im f(z) are harmonic in Ω.

85.4 Conjugate Harmonic Functions

If u(x, y) is harmonic in a simply connected domain Ω in R
2, then there

exists a harmonic function v(x, y), uniquely determined up to a constant,
such that f(z) = u(x, y) + iv(x, y) is analytic in Ω. The function v(x, y) is
conjugate to u(x, y).

85.5 Curves in the Complex Plane

A set Γ = Range of γ = {γ(t) : t ∈ I} in an open domain Ω in the complex
plane C parameterized by a Lipschitz continuous mapping γ : I → Ω,
where I = [a, b] is an interval of R, is said to be a curve. The unit circle
is a curve parameterized by the function γ(t) = exp(it) with 0 ≤ t < 2π.
Γ is a differentiable curve if the corresponding parametrization γ : I → C

is differentiable on I, that is, decomposing γ(t) = x(t)+ iy(t) into real and
imaginary parts,that is, if x : I → R if x(t) and y(t) are differentiable on I.

A curve Γ with parametrization γ : [a, b] → C is said to closed and simple
if γ(a) = γ(b) and γ(s) = γ(t) only if a = b. A domain Ω in C which is
bounded by a simple closed curve, is simply connected. A simply connected
domain does not have any “holes”.
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85.6 An Analytic Function Defines
a Conformal Mapping

An analytic function f : Ω → C, where Ω is an open domain in C, is
conformal in Ω in the sense that angles are preserved under the mapping
w = f(z).

85.7 Complex Integrals

We define
∫

Γ

f(z) dz =
∫ b

a

(
u(x(t), y(t)) + iv(x(t), y(t))

)
(ẋ(t) + iẏ(t)) dt,

where Ω is an open domain in the complex plane, Γ is a differentiable curve
in C parameterized by γ = (x, y) : [a, b] → C, and f = u + iv : Γ → C

is Lipschitz continuous. Formally we have dz = dx + idy = ẋdt + iẏdt =
(ẋ+ iẏ) dt.

85.8 Cauchy’s Theorem

If f(z) is analytic in Ω and Γ is a simple closed curve in Ω enclosing
a domain contained in Ω, then

∫

Γ

f(z) dz = 0.

85.9 Cauchy’s Representation Formula

If f(z) is analytic in an open domain Ω, and Γ is a simple closed curve in Ω
oriented counter-clockwise and enclosing the open domain ΩΓ contained
in Ω, then for z0 ∈ ΩΓ,

f(z0) =
1

2πi

∫

Γ

f(z)
z − z0

dz,

and for n = 1, 2, . . . ,

f (n)(z0) =
n!
2πi

∫

Γ

f(z)
(z − z0)n+1

dz.
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85.10 Taylor’s Formula

If f(z) is analytic in a neighborhood Ω of a z0 ∈ C, then

f(z) = f(z0) + f ′(z0)(z − z0) + . . .+
f (n)(z0)
n!

(z − z0)n +Rn(z),

where

Rn(z) =
(z − z0)n+1

2πi

∫

Γ

f(ζ)
(ζ − z0)n+1(ζ − z)

dζ.

85.11 The Residue Theorem

If f(z) is analytic in a simply connected open domain Ω, except at finitely
many isolated points z1, z1, . . . , zn in Ω, where f(z) has simple or multiple
poles, and Γ is a simple closed curve in Ω surrounding all the zm counter-
clockwise, then

∫

Γ

f(z) dz =
n∑

m=1

2πiRes f(zm).



86
Fourier Analysis Tool Bag

86.1 Properties of Fourier Coefficients

The Fourier coefficients cm(f) of a given 2π-periodic Lipschitz function
f : R → C are defined by

cm(f) =
1
2π

∫ π

−π

f(x)e−imx dx m = 0,±1,±2, . . . ,

and satisfy

cm(f + g) = cm(f) + cm(g), cm(αf) = αcm(f), for α ∈ C,

cm(Dkf) = (im)kcm(f) for k = 0, 1, 2, . . . ,

If f : [−π, π] is Lipschitz continuous, then cm(f) → 0 as |m| → ∞
(Riemann-Lebesgue’ Lemma).

86.2 Convolution

Defining for 2π-periodic functions f(x) and g(x), the convolution f ∗ g by

(f ∗ g)(x) =
∫ π

−π

f(x− y)g(y) dy x ∈ R,

we have

cm(f ∗ g) = 2π cm(f)cm(g).
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86.3 Fourier Series Representation

If f : R → C is 2π-periodic with piecewise Lipschitz continuous derivative,
then f(x) may be represented by a convergent Fourier series:

f(x) =
∞∑

m=−∞
cm(f)eimx for x ∈ R.

86.4 Parseval’s Formula

If f(x) has a convergent Fourier series representation, then
∫ π

−π

|f(x)|2 dx = 2π
∞∑

m=−∞
|cm(f)|2.

86.5 Discrete Fourier Transforms

If {fn}N−1
n=0 is a sequence of N given complex numbers, then we may define

a corresponding sequence {f̂m}N−1
m=0 by

f̂m =
1
N

N−1∑

n=0

fne
−2πimn/N , for m = 0, . . . , N − 1,

and we say that the sequence {f̂m}N−1
m=0 is the discrete Fourier transform

of the sequence {fn}N−1
n=0 . We have the following inversion formula:

fn =
N−1∑

m=0

f̂(m)e2πimn/N , for n = 0, . . . , N − 1.

86.6 Fourier Transforms

For f : R → C piecewise Lipschitz continuous and integrable over R, we
define the Fourier transform of f(x) for ξ ∈ R by

f̂(ξ) =
1
2π

∫ ∞

−∞
f(x)e−iξx dx.

We have the inversion formula:

f(x) =
∫ ∞

−∞
f̂(ξ)eiξx dξ for x ∈ R,



86.7 Properties of Fourier Transforms 1185

under the assumption that f(x) is differentiable on R with integrable
derivative. If f(x) = e−|x| for x ∈ R, then

f̂(ξ) =
1
π

1
1 + ξ2

.

If f(x) = e−
ax2
2 for x ∈ R, where a > 0 is a constant, then

f̂(ξ) =
1

2
√
a
e−

ξ2

2a .

If f(x) = 1 for − a ≤ x ≤ a and f(x) = 0 else, where a > 0, then

f̂(ξ) =
sin(ξa)
ξ

.

86.7 Properties of Fourier Transforms

If f and g are two functions with Fourier transforms f̂ and ĝ, and α ∈ C,
then

̂(f + g)(ξ) = f̂(ξ) + ĝ(ξ), (̂αf)(ξ) = αf̂(ξ).

If g : R → R is integrable and f(x) = g(ax), then f̂(ξ) = 1
a ĝ(

ξ
a ).

If f : R → C is integrable with integrable derivative, then

D̂f(ξ) = iξf̂(ξ).

Defining for two integrable functions f : R → R and g : R → R, the
convolution f ∗ g by

(f ∗ g)(x) =
∫ ∞

−∞
f(x− y)g(y) dy,

we have

f̂ ∗ g(ξ) = 2πf̂(ξ)ĝ(ξ) for ξ ∈ R.

Parseval’s formula:
∫ ∞

−∞
|f(x)|2 dx = 2π

∫ ∞

−∞
|f̂(ξ)|2 dξ.

86.8 The Sampling Theorem

If f : R → C has a Fourier transform f̂(ξ) such that f̂(ξ) = 0 for |ξ| ≥ aπ,
where a > 0 is a constant, then

f(x) =
∞∑

m=−∞
f
(m

a

) sin(ax−m)
π(ax−m)

.





87
Incompressible Navier-Stokes: Quick
and Easy

My attention was drawn to various mechanical phenomena, for the
explanation of which I discovered that a knowledge of mathematics
was essential. (Reynolds)

By this research it is shown that there is one, and only one, con-
ceivable purely mechanical system capable of accounting for all the
physical evidence, as we know it in the Universe. (Reynolds)

87.1 Introduction

The Navier-Stokes equations is the basic model for fluid flow and describe
a variety of phenomena in hydro and aero-dynamics, processing indus-
try, biology, oceanography, geophysics, meteorology and astrophysics. Fluid
flow in all these applications usually contains features of both turbulent and
laminar flow, with turbulent flow being irregular with rapid fluctuations in
space and time and laminar flow being more organized. The basic question
of Computational Fluid Dynamics CFD is how to efficiently and reliably
solve the Navier-Stokes equations numerically for both laminar and turbu-
lent flow.

The Navier-Stokes equations is a system of nonlinear differential equa-
tions coupling the phenomena of convection and diffusion. Traditionally,
the study of the Navier-Stokes equations is separated into incompress-
ible and compressible flow, using different dependent variables: primitive
variables (velocity, pressure, temperature) for incompressible flow and con-
servation variables (density, momentum, energy) for compressible flow.
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We focus in this chapter on the incompressible Navier-Stokes equations in
the case of constant density, viscosity and temperature, with the velocity
and pressure as variables. We present the cG(1)dG(0) finite element method
with cG(1) in space and dG(0) in time, and follow up with the correspond-
ing cG(1)dG(1) and cG(1)cG(1) methods. In Fig. 87.2 and Fig. 87.3 below
we show results from computations of two time-dependent bench-marks:
flow around a bluff body and flow in a channel with a back-ward facing
step.

87.2 The Incompressible Navier-Stokes Equations

The Navier-Stokes equations for an incompressible Newtonian fluid with
constant kinematic viscosity ν > 0, unit density and constant temperature
enclosed in a volume Ω in R

3 with boundary Γ, take the form: find the
velocity/pressure (u, p) such that

∂u
∂t + (u · ∇)u− ν∆u + ∇p = f in Ω × I,

∇ · u = 0 in Ω × I,
u = w on Γ × I,

u(·, 0) = u0 in Ω,

(87.1)

where u = (u1, u2, u3) is the velocity and p the pressure of the fluid and f ,
w, u0, I = (0, T ), is a given driving force, boundary data, initial data and
time interval, respectively. Recall that

∂v

∂t
+ (u · ∇)v =

∂v

∂t
+

3∑

i=1

ui
∂v

∂xi
(87.2)

is the particle derivative of a quantity v(x, t) measuring the rate of change
of v(x(t), t) with respect to time, that is the rate of change of v along
a trajectory x(t) of a fluid particle with velocity u(x, t), satisfying dx

dt =
u(x(t), t). In particular, ∂u

∂t + (u · ∇)u is the acceleration (rate of change
of velocity) of a fluid particle. The expression ν∆u − ∇p represents the
total force on a fluid particle resulting from of viscous shear force and an
isotropic pressure. The first equation of (87.1), which is a vector equation

∂ui

∂t
+ (u · ∇)ui − ν∆ui +

∂p

∂xi
= fi, i = 1, 2, 3,

is the momentum equation expressing Newton’s second law stating that
the acceleration is proportional to the force, and the second equation ex-
presses the incompressibility condition. We consider here the case of Dirich-
let boundary conditions with the velocity u being prescribed on the bound-
ary Γ. Below we consider Neumann and Robin boundary conditions. Below
we will often write for short (u · ∇)u = u · ∇u.
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The linear Stokes equations are obtained omitting the nonlinear term
u · ∇u, which is possible if the velocity u is small, corresponding to creeping
flow.

The Reynolds number Re is defined by Re = uL
ν , where u represents

a velocity and and L a length scale characteristic of the flow. The size of
the Reynolds number is decisive. If Re ∼ 1, then the flow is very viscous,
a situation met in e.g. polymer flow or forming processes. In most applica-
tions in areo/hydro-dynamics, Re is much larger than 1, often very large
up to 106 or even larger. In these cases with small viscosity, the flow may
be very complex or turbulent.

There is a stationary analog of (87.1) assuming the solution to be inde-
pendent of time along with the driving force and boundary data. A station-
ary solution normally arises as a limit of a time-dependent solution as time
tends to infinity, and this is often reflected in the computation of a sta-
tionary solution through some kind of time-stepping until convergence. For
larger Reynolds numbers, stable stationary solutions in general do not not
exist.

87.3 The Basic Energy Estimate for Navier-Stokes

We now derive a basic stability estimate of energy type for the velocity u
of a (u, p) of Navier-Stokes equation (87.1) assuming for simplicity that
f = 0 and w = 0. Scalar multiplication of the momentum equation by u
and integration with respect to x gives

1
2
d

dt

∫

Ω

|u|2 dx + ν

3∑

i=1

∫

Ω

|∇ui|2 dx = 0,

because by partial integration (with boundary terms vanishing),
∫

Ω

∇p · u dx = −
∫

Ω

p∇ · u dx = 0

and
∫

Ω

(u · ∇)u · u dx = −
∫

Ω

(u · ∇)u · u dx−
∫

Ω

∇ · u|u|2 dx

so that
∫

Ω

(u · ∇)u · u dx = 0.

Integrating next with respect to time, we thus obtain the following basic
stability estimate for any time T > 0:

‖u(·, T )‖2 + 2ν
3∑

i=1

∫ T

0

‖∇ui‖2 dt = ‖u0‖2, (87.3)
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where ‖ · ‖ denotes the L2(Ω)-norm. This estimate gives a bound on the
velocity with the second term on the left representing the dissipation from
the viscosity of the fluid. We see that the growth of this term over time
corresponds to a decrease of the velocity (momentum) of the flow.

The case of large Reynold’s number corresponding to small ν, with a nor-
malization of velocity and typical length scale to unit size, is of particular
interest with typically turbulent flows occuring. In laminar flow with small
viscosity the dissipation is small because velocity gradients are not large,
while in turbulent flow the dissipation is significant because the velocity
gradients are large corresponding to a decay of velocities in the case of no
driving forces.

Fig. 87.1. Jacques-Louis Lions (1928–2001), founder of the French School of
Numerical Analysis: “. . . optimal control problems for distributed parameter sys-
tems modeled by partial differential equations obviously connect to fundamental
aspects of Body & Soul. . . ”

87.4 Lions and his School

Jacques-Louis Lions (1929–2001), see Fig. 87.1, carried the strong French
mathematical tradition coupled to physics and mechanics through the sec-
ond half of the 20th century with important contributions to the theory
and practice of partial differential equations using tools from Functional
Analysis in the spirit of Sobolev. He created the French School of Numer-
ical Analysis, which boomed with the development of the finite element
method starting in the 1960s. Among many other things, Lions proved ex-
istence and uniqueness of solutions to the Navier-Stokes equations with
a regularizing viscosity modification as indicated below.
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87.5 Turbulence: Lipschitz with Exponent 1/3?

The mathematical modeling and simulation of turbulent flow represents
one of the open problems of classical mechanics and physics, where today
computational methods open new possibilities in the form of Large Eddy
Simulation LES with subgrid modeling. Turbulent flow has features (vor-
tices) on a range of scale from largest macroscopic of diameter of order one
to smallest of order ν3/4, with ν the viscosity, assuming normalization to
characteristic macroscopic velocity and length scale of order one, so that
the macroscopic Reynolds number Re equals 1/ν. I typical applications Re
may be of size 108 in which case the smallest length scale may be roughly
of order 10−6 requiring of the order of 1018 degrees of freedom in a Direct
Numerical Simulation DNS with resolution of all scales. This is way beyond
the capacity of any computer within sight, with the present limit being set
for DNS with a smallest scale of size 10−3 corresponding to Reynolds num-
ber roughly of order 104. To simulate flows with larger Reynolds number
we may seek a subgrid model with the objective of modeling the effect on re-
solvables scales of unresolved scales. This may be possible using features of
scale similarity of turbulent flow reflecting a certain repetition of flow fea-
tures in a cascade from coarser to finer scales down to the smallest vortices
where significant dissipation occurs. In Fig. 87.4 we show a jet undergoing
transition from laminar to turbulent flow on a 128× 32 × 32 mesh.

Let us give an argument indicating a feature of scale similarity first
presented by the Russian mathematician Kolmogorov 1941: Let then h be
the smallest scale, that is the diameter of the smallest vorticity, and let ū be
the corresponding velocity of the smallest vorticity. We may then argue that
we should have ūh ∼ ν, since the break up of larger vortices into to smaller
should continue until the local Reynolds number becomes small enough (of
size 50–100). Further, turbulent dissipation on the smallest scale of order
one would mean that ν( ū

h )2 ∼ 1. From these two relations, we conclude
that h ∼ ν3/4 as anticipated and also that ū ∼ ν1/4. We conclude that

|u(x) − u(y)| ∼ |x− y|1/3

for y = x + h, and by scale similarity we may expect this relation to hold
for general x and y, that is, that the turbulent velocity should be Lipschitz
(Hölder) continuous with exponent 1/3.

Does the above derivation have any to do with reality? Yes, both physical
experiments and DNS indicate that turbulent flow indeed has features of
scale similarity with Lipschitz (Hölder) continuity with exponent 1/3. This
gives hope that subgrid modeling may be feasible for turbulent flow and
thus that computational simulation of turbulent flow would be possible,
and more and more so as the computational power increases.

Summing up, it thus appears that computational simulation of turbulent
flow may be possible, and this would in a way settle most questions from



1192 87. Incompressible Navier-Stokes: Quick and Easy

a practical point of view: we would be able to simulate and predict turbulent
flow. However, we would still lack a mathematical model of turbulence more
tractable than simply the Navier-Stokes equations in DNS. So, as human
beings we may not be able to “understand turbulence” in the same way as
we can understand e.g. the fundamental solution of the Laplacian ( 1

4π|x|),
but we would be able to computationally simulate turbulent flow. Maybe
this is the most we can ask for?

87.6 Existence and Uniqueness of Solutions

The question of existence and uniqueness of solutions to the Navier-Stokes
equations is one of the unsolved problems of mathematics. If we change
the viscosity from a Newtonian constant viscosity ν to a non-Newtonian
solution dependent viscosity ν̂ = ν+Ch2|∇u|, where h is a parameter cor-
responding to a smallest scale, then, existence and uniqueness is possible
to prove using standard methods as shown by Lions. Since with h small
the modification will be small, except where ∇u is very large, the mod-
ification may be viewed as a regularization eliminating certain extreme
situations with very large velocity gradients, where at any rate the Newto-
nian property of constant viscosity may be questioned. This directly couples
to subgrid modeling of turbulent flow, where ν̂ corresponds to a so called
turbulent viscosity, with the constant C to be modeled computationally.

87.7 Numerical Methods

Trying to solve the incompressible Navier-Stokes equations numerically, we
meet the following difficulties:

� instabilities from discretization of convection terms,

� pressure instabilities in equal order interpolation of velocity and pres-
sure.

The simplest cure to convection instability is to increase the viscosity ν
in the computation so that ν ≥ uh, where u is the local fluid velocity and h
is the local mesh size. The simplest stabilization of the pressure p, is to
modify the incompressibility equation ∇ · u = 0 to −∇ · (δ∇p) +∇ · u = 0,
with δ ≈ h2 with h(x) the local mesh size.

In Galerkin methods the stabilization can be achieved in higher-order
consistent form by adding least-squares control of residuals. We present
this approach below in the context of the cG(1)dG(0) method with cG(1)
in space and dG(0) in time. We also present corresponding cG(1)cG(1) and
cG(1)dG(1) methods.
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87.8 The Stabilized cG(1)dG(0) Method

We now present the cG(1)dG(0) method for (87.1) starting with the case
of homogeneous Dirichlet boundary conditions. Let 0 = t0 < t1 < . . . <
tN = T be a sequence of discrete time levels with associated time steps
kn = tn − tn−1. Let Wh be the usual finite element space of continuous
piecewise linear functions on a triangulation Th = {K} of Ω with mesh
function h(x). Let W 0

h be the space of functions in Wh vanishing on Γ. We
shall seek an approximate velocity U(x, t) such that U(x, t) is continuous
and piecewise linear in x for each t, and U(x, t) is piecewise constant in t
for each x. Similarly, we shall seek an approximate pressure P (x, t) which is
continuous piecewise linear in x and piecewise constant in t. More precisely,
we shall seek Un ∈ V 0

h with V 0
h = W 0

h × W 0
h × W 0

h and Pn ∈ Wh for
n = 1, . . . , N , and we shall set

U(x, t) = Un(x) x ∈ Ω, t ∈ (tn−1, tn],
P (x, t) = Pn(x) x ∈ Ω, t ∈ (tn−1, tn].

(87.4)

Further we write for velocities v = (vi) and w = (wi)

(v, w) =
∫

Ω

v · w dx, (∇v,∇w) =
∫

Ω

3∑

i

∇vi · ∇wi dx,

and similarly for scalar functions p and q defined on Ω:

(p, q) =
∫

Ω

pq dx.

We now formulate the cG(1)dG(0) method without stabilization as fol-
lows: For n = 1, . . . , N , find (Un, Pn) ∈ V 0

h ×Wh such that
(
Un − Un−1

kn
, v

)

+ (Un · ∇Un + ∇Pn, v) + (ν∇Un,∇v) = (fn, v)

∀v ∈ V 0
h ,

(∇ · Un, q) = 0 ∀q ∈Wh,

(87.5)

where U0 = u0, and we set fn(x) = f(x, tn). We see that the discrete equa-
tions result from multiplication of the momentum equation with v ∈ V 0

h and
the incompressibility equation by q ∈ Wh, followed by integration over Ω
including integration by parts in the term (−ν∆U, v).

We can write the cG(1)dG(0) method without stabilization alternatively
as follows: For n = 1, . . . , N , find (Un, Pn) ∈ V 0

h ×Wh such that
(
Un − Un−1

kn
, v

)

+ (Un · ∇Un + ∇Pn, v) + (∇ · Un, q)

+ (ν∇Un,∇v) = (fn, v) ∀(v, q) ∈ V 0
h ×Wh,

(87.6)
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where we simply added the equations in 87.5.
The cG(1)dG(0) method with stabilization takes the form: For

n = 1, . . . , N , find (Un, Pn) ∈ V 0
h ×Wh such that

(
Un − Un−1

kn
, v

)

+ (Un · ∇Un + ∇Pn, v + δ(Un · ∇v + ∇q)) + (∇ · Un, q)

+ (ν∇Un,∇v) = (fn, v + δ(Un · ∇v + ∇q)) ∀(v, q) ∈ V 0
h ×Wh, (87.7)

where δ is a stabilization parameter defined as follows: δ(x) = h2(x) in the
case of diffusion-dominated flow with ν ≥ Uh, and

δ =
(

1
k

+
U

h

)−1

(87.8)

in the case of convection dominated flow with ν < Uh. Note that if k ≈ h
U ,

which is a natural choice of time step in the convection-dominated case,
then δ ≈ 1

2
h
U . Note further that the stabilized form (87.7) of the cG(1)dG(0)

method is obtained by replacing v by v + δ(Un · ∇v + ∇q) in the terms
(Un · ∇Un + ∇Pn, v) and (fn, v). In principle, we should make the re-
placement throughout, but in the present case of the cG(1)dG(0), only the
indicated terms get involved because of the low order of the approxima-
tions. The perturbation in the stabilized method is of size δ, and thus the
stabilized method has the same order as the original method (first order
in h if k ∼ h).

Letting v vary in (87.7) while choosing q = 0, we get the following equa-
tion (the discrete momentum equation):

(
Un − Un−1

kn
, v

)

+ (Un · ∇Un + ∇Pn, v + δUn · ∇v)

+ (ν∇Un,∇v) = (fn, v + δUn · ∇v) ∀v ∈ V 0
h ,

(87.9)

and letting q vary while setting v = 0, we get the following discrete pressure
equation:

(δ∇Pn,∇q) = −(δUn · ∇Un,∇q) − (∇ · Un, q) + (δfn,∇q) ∀q ∈Wh.

(87.10)

We normally seek to solve the system (87.7) iteratively alternatively solv-
ing the velocity equation (87.9) for Un with Pn given, and the pressure
equation (87.10) for Pn with Un given.

87.9 The cG(1)cG(1) Method

We present the following cG(1)cG(1) variant of the cG(1)dG(0) method
with cG(1) in time instead of dG(0): For n = 1, . . . , N , find



87.10 The cG(1)dG(1) Method 1195

(Un, Pn) ∈ V 0
h ×Wh such that

(
Un − Un−1

kn
, v

)

+ (Ûn · ∇Ûn + ∇Pn, v + δ(Ûn · ∇v + ∇q)) + (∇ · Ûn, q)

+ (ν∇Ûn,∇v) = (fn, v + δ(Ûn · ∇v + ∇q)) ∀(v, q) ∈ V 0
h ×Wh, (87.11)

where Ûn = 1
2 (Un + Un−1). Evidently, we obtained the cG(1) version

by changing from Un to Ûn in all terms but the first in the cG(1)dG(0)
method.

87.10 The cG(1)dG(1) Method

We shall now formulate the cG(1)dG(1) method obtained by replacing
dG(0) by dG(1) in the cG(1)dG(0) method. In this method the discrete
velocity U(x, t) is piecewise linear linear in time on each time interval In,
with possibly discontinuities at the discrete time levels tn. More precisely,
we make the Ansatz:

Un(x, t) =
tn − t

kn
Un−1

+ (x) +
t− tn−1

kn
Un
−(x), for tn−1 < t < tn,

(87.12)
where Un−1

+ and Un
− belong to V 0

h . We note that

Un
±(x) = lim

s→0+
U(x, tn ± s)

is the limit of U(x, t) as t approaches tn from below (−), or above (+). The
cG(1)dG(1) method takes the form: For n = 1, . . . , N , find Un of the form
(87.12) and Pn ∈Wh, such that for all v(x, t) = w1(x, t)+(t−tn−1)w2(x, t)
with w1, w2 ∈ V 0

h and q ∈Wh,

(Un−1
+ −Un−1

− , v) +
∫ tn

tn−1

((U̇n + Un · ∇Un

+ ∇Pn, v + δ(U̇n + Un · ∇v + ∇q)) + (∇ · Un, q)) dt

+
∫ tn

tn−1

(ν∇Un,∇v) dt =
∫ tn

tn−1

(fn, v + δ(U̇ + Un · ∇v + ∇q)).

(87.13)

We may similarly let P be piecewise linear discontinuous in time.

87.11 Neumann Boundary Conditions

To properly model Neumann boundary conditions, we first need to recall
that the components σij of the total stress tensor σ = (σij) acting on a fluid
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element, are given by

σij = σ̄ij − pδij , i, j = 1, 2, 3,

where the stress deviatoric σ̄ = (σ̄ij) is coupled to the strain tensor
ε(u) = (εij(u)) with components

εij(u) = (∂ui/∂xj + ∂uj/∂xi)/2, i, j = 1, 2, 3,

through the constitutive relation of a Newtonian fluid:

σ̄ij = 2νεij(u), i, j = 1, 2, 3,

where ν is the constant viscosity, and δij = 1 if i = j and δij = 0 if i �= j.
We observe that the trace of the stress deviatoric is zero, that is,

3∑

i=1

σ̄ii = 2ν
3∑

i=1

εii(u) = 2ν∇ · u = 0,

and thus the total stress σ is decomposed into a stress deviatoric σ̄ with
zero trace and an isotropic pressure p. Further, a direct computation shows
that

ν∆u−∇p = ∇ · σ, (87.14)

where ∇ · σ is a vector with components (∇ · σ)i given by

(∇ · σ)i =
3∑

j=1

∂σij

∂xj
.

Multiplying 87.14 by v = (vi) with v = 0 on Γ and integrating by parts,
we find that

ν(∇u,∇v) + (∇p, v) = 2ν(ε(u), ε(v)) + (∇p, v),

where

(ε(u), ε(v)) =
3∑

i,j=1

∫

Ω

εij(u)εij(v) dx.

We are thus led to replace the term (ν∇u,∇v) by the term (2νε(u), ε(v))
in variational formulations of the Navier-Stokes equations. In the case of
Dirichlet boundary conditions for the velocity the two expressions are equal,
since the test velocity v vanishes on Γ, but in the case of Neumann type
boundary conditions the replacement opens the possibility of enforcing in
variational form a Neumann boundary condition of the form

3∑

j=1

σijnj =
3∑

j=1

σ̄ijnj − pni =
3∑

j=1

2νεij(u)nj − pni = gi on Γ2, i = 1, 2, 3,

(87.15)
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which expresses that the total force on the boundary part Γ2 is equal to the
given force g = (gi). For example, if g = 0, then this condition expresses
that the total force is zero on Γ2, which we may use as an outflow boundary
condition simulating that the fluid freely flows out into a large reservoir.
More precisely, the presence of the terms

−(p,∇ · v) + (2νε(u), ε(v))

in a variational formulation with v varying freely on Γ2, will enforce a ho-
mogeneous Neumann boundary condition 87.15 upon integration by parts.

We now consider a typical situation with the boundary Γ decomposed
into two parts Γ1 an Γ2 with the velocity being equal to a given velocity w
on Γ1 and imposing the homogeneous Neumann condition 87.15 on Γ2. For
simplicity, we assume that w is independent of time, the extension to time
dependence of w being evident. Typically, w will be zero on a part of Γ1

and will be directed into Ω on the remaining part corresponding to a given
inflow.

We let Vh be the space of continuous piecewise linear velocities v on
a triangulation Th = {K} of Ω with mesh function h(x), satisfying the
boundary condition v = w on Γ1, and let V 0

h be the corresponding test
space of functions with v = 0 on Γ1. Let Wh be the space of continuous
piecewise linear pressures p on Th = {K}, and W 0

h the corresponding test
space of pressures q such that q = 0 on Γ2.

The stabilized cG(1)dG(0) method can be formulated as follows: For
n = 1, . . . , N seek Un ∈ Vh and Pn ∈Wh such that

(
Un − Un−1

kn
, v

)

+ (Un · ∇Un, v + δUn · ∇v) − (Pn,∇ · v)

+ (2νε(Un), ε(v)) = (fn, v + δUn · ∇v) ∀v ∈ V 0
h ,

(87.16)

(δ∇Pn,∇q) = −(δUn · ∇Un,∇q) − (∇ · Un, q) + (δfn,∇q) ∀q ∈W 0
h ,

(87.17)

where we choose Pn on Γ2 according to 87.15 with g = 0 and u replaced
by U . Again we seek to solve the system iteratively alternatively solving
the velocity equation (87.16) for Un with Pn given, and the pressure equa-
tion (87.17) for Pn with Un given.

87.12 Computational Examples

We now present some computational examples of 3d time dependent flows,
using the stabilized cG(1)cG(1) method on a mesh with meshsize h = 1/32.

In Fig. 87.2 we present the solution of a bluff body problem: a flow in
a channel with 1x1 square cross section and length 4, with a square obstacle
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Fig. 87.2. Bluff body flow computations for t = 2, 4, 6, 8, 10, 12

with side length 0.25 centered at (0.5, 0.5, 0.5). We have used zero Dirichlet
boundary condition for the velocity on the side walls and Neumann outflow
boundary conditions on the outflow boundary. On the inflow a parabolic
velocity is prescribed.

In Fig. 87.3 we present the solution of a step down problem in a similar
channel with a step down of height and length 0.5.
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Fig. 87.3. Step down flow computations for t = 1, 2, 3, 4, 5, 6

Finally in Figure Fig. 87.4 we present computations of transition to tur-
bulence in a circular jet flow with streamwise velocity 1 in the jet and zero
outside the jet, where we apply a small random perturbation. Here we have
used periodic boundary conditions in all directions.



1200 87. Incompressible Navier-Stokes: Quick and Easy

Fig. 87.4. Streamwise velocity isosurfaces for |u1| = 0.02 in a jet in transition
from laminar to turbulent flow, for t = 5, 7, 10, 15

Chapter 87 Problems

87.1. Prove for that a solution (u, p) of (87.1) with f = 0 and w = 0 satisfies
the following energy estimate for t > 0:

∫

Ω

|u(x, t)|2 + 2ν

∫ t

0

∫

Ω

|∇u(x, s)|2dxds =

∫

Ω

|u0(x)|2dx.

Hint: Multiply the momentum equation by u and use that if ∇ · u = 0, then
∫

Ω

(u · ∇)u · u dx = 0,

which follows by integration by parts.
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87.2. Prove a basic stability estimate for (87.7) by choosing (v, q) = (U,P ).

Thus the methods of Lagrange and Hamilton are undoubtedly useful
in helping us to carry out the primary task of dynamics - namely,
to find out how systems move. But it would be wrong to think that
this is the sole purpose of these general methods or even their main
purpose. They do much more. In fact, they teach us what dynamics
really is : It is the study of certain types of differential equations.
(Synge and Griffiths, Principles of Mechanics, 1959)

I sing the body electric,
The armies of those I love engirth me and I engirth them,
They will not let me off till I go with them, respond to them,
And discorrupt them, and charge them full
with the charge of the soul.
Was it doubted that those who corrupt
their own bodies conceal themselves?
And if those who defile the living are as bad as
they who defile the dead?
And if the body does not do fully as much as the soul?
And if the body were not the soul, what is the soul?
(Walt Whitman).
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Cramer’s formula, 624
crash model, 718
current, 725
curvature, 900
curve, 784
curve integral, 893

dashpot, 710
de Moivres formula, 514
deca-section algorithm, 193
decimal expansions

non-periodic, 76
periodic, 76

delta function, 1008
derivative, 357

of xn, 362
chain rule, 378
computation of, 367
definition, 360
inverse function, 385
linear combination rule, 376
one-sided, 381
quotient rule, 379

Descartes, 101
determinant, 617
diagonal matrix, 647
diagonally dominant, 678
diameter of a triangle, 1032
dielectric constant, 1003, 1099
difference quotient, 366
differentiability

uniform, 370
differentiable, 369, 788, 1025
differentiation under the integral

sign, 806
dinner Soup model, 25
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directional derivative, 797
divergence, 879, 880
Divergence theorem, 946, 955
domain, 104
double integral, 905

Einstein, 411
Einstein’s law of motion, 411
elastic membrane, 994
elastic string, 731
electric circuit, 725
electric conductivity, 1003, 1099
electric current, 1003, 1099
electric displacement, 1003, 1099
electric field, 1003, 1004, 1099
electric permittivity, 1003
electrical circuit, 725
electrostatics, 1004
element, 1032

basis function, 1037
stiffness matrix, 1054

elementary functions, 517
elementary row operations, 648
elliptic, 991
energy, 1055
energy norm, 1056
Engdahl, 375
ENIAC, 4
equidistribution of error, 483, 768,

1063
error representation formula, 741,

767, 1040, 1058
essential boundary condition, 763,

1064
Euclid, 87
Euclidean norm, 275
Euclidean plane, 99, 267
Euler equations, 1002
Eulerian description, 997
existence of minimum point, 868

Faraday’s law, 1003
fill-in, 657
five-point formula, 996
fixed point, 245
floating point arithmetic, 180
flow in a corner, 1131
force field, 897
formalist school, 224

forward Euler, 578
Fourier, 407
Fourier’s law, 408, 989
Fredholm, 1011
Fredholm integral equation, 1011
front, 1033
function, 103

ax, 497
polynomial, 119

function y = xr, 241
functions

combinations of, 141
rational, 143
several variables, 163

fundamental solution, 1009
Fundamental Theorem of Calculus,

428, 440
fundamental theorem of linear alge-

bra, 632

Galileo, 402
Gauss, 101
Gauss transformation, 649
Gauss’ theorem, 943, 946, 953, 955
Gauss-Seidel method, 666
geometrically orthogonal, 280
global basis function, 1037
global stiffness matrix, 1054
GPS, 11, 94
GPS navigator, 269
gradient, 791, 880, 883
gradient field, 898
Gram-Schmidt procedure, 629
gravitational field, 1007
greatest lower bound, 874
Green’s formula, 943, 946, 953, 955
Gulf Stream, 891
Gustafsson, Lars, 195

hanging chain, 510
hat function, 743
heat

capacity coefficient, 988
conduction, 987
conductivity, 989
flux, 988
source, 988

heat equation, 990
Hilbert, 1011
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Hooke, 405
Hooke’s law, 405

identity matrix, 305
ill-conditioned matrix, 660
implicit differentiation, 386
Implicit Function theorem, 804, 811,

813
income tax, 354
incompressible, 999
independent variable, 105
induction, 728

mutual, 728
inductor, 725
infinite decimal expansion, 195, 582
initial value problem

general, 571
scalar autonomous, 555
second order, 577
separable scalar, 563

integer, 47
computer representation of, 59
division with remainder, 57

integral
additivity over subintervals,

450
change of variables, 455
linearity, 452
monotonicity, 453

integral equation, 1011
integration by parts, 457, 946
interior minimum point, 869
intermediate value theorem, 216
intuitionist, 227
invariance

orthogonal transformation, 340
inverse

of matrix, 336
Inverse Function theorem, 804
inverse matrix, 625
inversion, 1112
irrotational, 968
irrotational flow, 1131
isobars, 887
isotropic, 883
isotropy, 1032
iterated integration, 934
iterated one-dimensional integra-

tion, 911

iteration matrix, 664
iterative method, 657

Jacobi method, 666
Jacobian, 788, 1025
Jacquard, 4

Kirchhoff’s laws, 727
Kronecker, 230

Lagrange, 693
Lagrangian description, 998
Laplace, 1007
Laplacian, 879, 881, 884

polar coordinates, 881, 1028
spherical coordinates, 885

Laurent series, 1124
LCR-circuit, 725
least squares method, 634
Leibniz, 104, 428
Leibniz’ teen-age dream, 41
level curve, 658, 809
level surface, 812
liars paradox, 226
limit, 177

computation of, 177
line, 323
line integral, 893, 898
linear combination, 277, 599
linear convergence, 661
linear function, 611
linear independence, 297, 601, 682
linear mapping, 299
linear oscillator, 712

damped, 713
linear transformation, 338, 612
linearization, 791
linearly independent, 337
Lipschitz continuity, 149, 205

boundedness, 159
composition of functions, 161
generalization, 243
linear combinations, 157
linear function, 150
monomials, 156
product of functions, 160
quotient of functions, 160

Lipschitz continuous, 786, 1025
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Lipschitz continuous function
converging sequence, 175

load vector, 759, 1048, 1052
logarithm, 469
logicists, 224
logistic equation, 558
long division, 77
Lorenz, 843
Lorenz system, 844
lower triangular matrix, 648
lumped mass quadrature, 1043

Möbius transformation, 1112
magnetic field, 885, 1003, 1099
magnetic flux, 1003, 1099
magnetic permeability, 1003, 1099
magnetostatics, 1006
Malthus, 410
marginal cost, 354
mass conservation, 998
mass-spring system, 695
mass-spring-dashpot systems, 709
matrix, 300, 333, 612

factorization, 649
ill-conditioned, 660
multiplication, 613, 683

matrix addition, 303
matrix multiplication, 303
Maxwell, 1003
Maxwell’s equations, 1003
Mean Value theorem, 793
medical tomography, 12
mesh, 743

isotropy, 1032
mesh function, 483, 743, 1032
mesh modification criterion, 768
minimization method, 658
minimization problem, 658, 1055
minimum point, 866
minimum value, 866
model

crash, 718
infection, 568
marriage crisis, 722
national economy, 569
population, 722
spread of infection, 722
stock market, 722
symbiosis, 722

transition to turbulence, 722
moment of inertia, 929, 940
muddy yard model, 28
multi-grid method, 1055
multiplication by scalar, 599

N-body system, 705
natural boundary condition, 763,

1065
natural logarithm, 469
natural number, 47
Navier-Stokes equations, 1002
navigator, 269
Newton, 981
Newton’s Inverse Square Law, 981
Newton’s Law of gravitation, 1009
Newton’s Law of motion, 402
Newton’s method, 391, 805
nightmare, 981
nodal basis function, 743
non-Euclidean geometry, 101
non-periodic decimal expansion, 196
norm, 275

energy, 1056
norm of a symmetric matrix, 616,

644
numerical quadrature, 476

Ohm’s law, 1003
optimal mesh, 1060
optimization, 865
ordered n-tuples, 596, 682
ordered pair, 271
orthogonal, 315
orthogonal complement, 628
orthogonal decomposition, 282, 628
orthogonal matrix, 338, 630
orthogonal projection, 746
orthogonalization, 629

parallel
lines, 294

parallelogram law, 273
parametrization, 785
parents, 1033
partial derivative, 388
partial derivatives of second order,

798
partial fractions, 523
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partial pivoting, 653
particle paths, 999
partition, 743
Peano axiom system, 229
pendulum

double, 699
fixed support, 696
moving support, 697

periodic decimal expansion, 196
permutation, 617
pivoting, 652
plane, 324
Poincaré inequality, 1018
point mass, 1008
Poisson’s equation, 991, 1046, 1062

minimization problem, 1055
variational formulation, 1047

Poisson’s equation on a square, 1049
polar coordinates, 919
polar representation, 276
polynomial, 119

coefficients, 119
positive series, 545
positive-definite, 760
potential, 898
potential field, 967
potential flow, 999, 1131
potential theory, 1130
power series, 1123
precision, 1043
prime number, 58
principle of equidistribution, 1060
principle of least action, 693
projection, 281, 302, 316

onto a subspace, 626
point onto a line, 294
point onto a plane, 328

Pythagoras, 87
Pythagoras’ theorem, 87

QR-decomposition, 631
quadrature, 429

adaptive, 482
endpoint rule, 480
lumped mass, 1043
midpoint rule, 480
trapezoidal rule, 480

quadrature error, 478
quarternions, 346

radius of curvature, 901
range, 104
rate of change, 353
rate of convergence, 661
rational number, 71
Rayleigh quotient, 1012
Reagan, 943
real number, 197

absolute value, 200
addition, 197
Cauchy sequence, 203, 582
comparison, 201
division, 200
multiplication, 200

reference triangle, 1050
refinement strategy, 1060
residual error, 668, 767, 1058
residue calculus, 1126
Residue Theorem, 1127
resistor, 725
Riemann sum, 916, 936
rigid transformations, 883
Robin boundary conditions, 763
rocket propulsion, 408
rotation, 285, 879, 881

scalar product, 315, 597
search direction, 658
separable scalar initial value prob-

lem, 563
sequence, 165

limit of, 165
series, 544
Slide Rule, 4
socket wrench, 167
solid of revolution, 939
sorting, 866
space capsule, 977
sparse matrix, 657, 760
sparsity pattern of a matrix, 1052
spectral radius, 664
spectral theorem for symmetric ma-

trices, 639
spherical coordinates, 885, 937
spinning tennis ball, 1132
splitting a matrix, 663
square domain, 1049
squareroot of two, 185



Index 1211

stability
of motion, 701

stability factor, 825
stability of floating body, 977
standard basis, 600
steepest ascent, 795
steepest descent, 795, 872
steepest descent method, 658
step length, 658
stiffness matrix, 759, 1048, 1052
Stoke’s theorem, 959, 964
Stokes, 961
stopping criterion, 398, 768
straight line, 292
streamlines, 999, 1131
string theory, 731
strong boundary condition, 763
subtractive cancellation, 670
support, 1038
surface, 786
surface area, 923
surface integral, 923, 928, 1029
surface of revolution, 926
surveyor, 269
Svensson’s formula, 996, 1095
symmetric matrix, 760
system of linear equations, 295, 330

tangent plane, 791
Taylor’s formula, 1118, 1122
Taylor’s theorem, 461, 800
temperature, 988
tent functions, 1037
test of linear independence, 622
total energy, 1055
transpose, 615
transpose of a matrix, 305

triangular domain, 1070
triangulation, 1032

boundary nodes, 1062
internal nodes, 1032, 1062

trigonometric functions, 502
triple integral, 933
triple product, 321
Turing, 222
two-body, 700
two-point boundary value problem,

755

union jack triangulation, 1070
upper triangular matrix, 648

variable, 104
variation of constants, 530
Vasa, 971
vector, 271
vector addition, 272
vector product, 287, 317
vector space R

n, 596
Verhulst, 558
voltage, 725
Volterra-Lotka’s predator-prey

model, 566
volume, 935

parallelepiped, 320
volume under graph, 912

wave equation, 1012
weather prediction, 13
weight, 765
weighted L2 norm, 765
weighted Cauchy’s inequality, 765
Winnie-the-Pooh, 165

zero pivoting, 652




