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1 TheMystery of Flight

When you lean back for take-off in a jumbojet, maybe the feifgy question flashes
through your mind: How is it possible that the 400 squaremategs can carry 400

tons at a wingload of 1 ton per squaremeter in sustained fiigtite air? Or maybe

you are satisfied with some of the explanations offered iruoscience, like higher

velocity and lower pressure on the upper surface of the wengbse it is curved and air
there has a longer path to travel than below? Or maybe younaaemplane engineer
or pilot and know very well why an airplane can fly?

In either case, you should get a bit worried by reading thagtithority NASA on
its website [43] dismissses all popular science theoriebftpincluding your favorite
one, as being incorrect, but then refrains from presentimgtheory claimed to be
correct! NASA surprisingly ends with an empty out of readf truly understand
the details of the generation of lift, one has to have a goorking knowledge of the
Euler EquationsThe Plané&Pilot Magazine [44] has the same message and New York
Times [8] informs us:

e To those who fear flying, it is probably disconcerting thaygihists and aero-
nautical engineers still passionately debate the funddaiessue underlying
this endeavor: what keeps planes in the air?

2 Overview

In this arcticle we present a new mathematical and physiqalbeation of the gen-
eration oflift L anddrag D of a wing based on new discoveries of the dynamics of
turbulentairflow around a wing, obtained by computational solutiothefbasic math-
ematical model of fluid dynamics: thdavier-Stokes/Euler equation$Vhen flying

in the air, the downward gravitational force is balanced pward wing lift L, while
backward wing drad@ is balanced by forward thrust from engine, and wing-beat for
birds, or descent in gliding flight without forward thrust.

We show that a wing creates lift as a reaction force from esdiing air downwards,
referred to aslownwashwith less than 1/3 coming from the lower wing surface push-
ing air down and the major remaining part from the upper s#rfsucking air down,
with a resultindift/drag quotient% of size10 — 20.



The enigma of flight is why the air flow separates from the upyeg surface at the
trailing edge and not before, with the flow after separation being retiedownwards
according to the tilting of the wing aangle of attack We will reveal the secret to be
an effect of a fortunate combination of featureslightly viscous incompressible flow
including a cruciainstability mechanism at separati@analogous to that seen in the
swirling flow down a bathtub drain, generating both suctiaritee upper wing surface
and drag.

We show that this mechanism of lift and drag is operationakfugles of attack
smaller than a critical value of abolis — 20 degrees depending on the shape of the
wing, for which the flow separates from the upper wing surfaet before the trailing
edge with a sudden increase of drag and decrease of lifreefey asstall.

It is absolutely crucial tha% is large, of size 10 or bigger, since otherwise the
muscle power of a bird would not suffice, and the fuel consimnpof an airplane
would be prohibitive. Flying on a tilted barn door at 45 dexgrangle of attack with
L ~ 1, is not an option.

An outline of the article is as follows: We first recall classi theories for lift
and drag and then in pictures describe the new theory. Weosuthye new theory by
computational solutions of the Navier-Stokes equatiolss, showing that the classical
theories are incorrect. We then present basic aspects ofidieematics ofurbulent
solutions of the Navier-Stokes equatiamsierlying the new theory.

3 Newton, d’Alembert and Kutta-Zhukovsky

The problem of explainingvhyit is possible to fly in the air using wings has haunted
scientists since the birth of mathematical sciences. Theteny ishowa sufficiently
large ratio% can be created.

In thegliding flight of birds and airplanes with fixed wings at subsonic speéds,
typically between 10 and 20, which means that a good glidegtide up to 20 meters
upon loosing 1 meter in altitude, or that Charles Lindbergld@ross the Atlantic in
1927 at a speed of 50 m/s in his 2000%girit of St Louisat an effective engine thrust
of 150 kp (with & = 2000/150 ~ 13) from 100 horse powers.

By Newton’s 3rd law, lift must be accompanied by downwaskwiite wing redi-
recting air downwards. The enigma of flight is the mechani$m wing generating
substantial downwash at small drag, which is also the enighsailing against the
wind with both sail and keel acting like wings creating salnsial lift [30].

Classical mathematical mechanics could not give an ansnbetmystery of glid-
ing flight: Newton computed by elementary mechanics theolife tilted flat plate
redirecting a horisontal stream of fluid particles, but oidd a disappointingly small
value proportional to the square of the angle of attack. Tate the flight of birds
was inexplicable, and human flight certainly impossible.

D’Alembert followed up in 1752 by formulating his paradoxcaib zero lift/drag
of inviscid incompressible irrotational steady floeferred to apotential flow,which
seemed to describe the airflow around a wing since the viyoofisair is very small so
that it can be viewed as being inviscid (with zero viscosiiyathematically, potential
flow is given as the gradient offearmonic funtiorsatisfyingLaplace’s equation



At speeds less than say 300 km/h air flow is almost incompsessind since a
wing moves into still air the flow it could be be expected to tretational without
swirling rotating vortices. D’Alembert’s mathematicaltpatial flow thus seemed to
capture physics, but nevertheless had neither lift nor,dxgginst all physical expe-
rience. The wonderful mathematics of potential flow and taarim functions thus
showed to be without physical relevance: ThiBigllembert's paradoxvhich came to
discredit mathematical fluid mechanics from start [26, 48, 7

To explain flight d’Alembert’s paradox had to be resolved;, hhobody could fig-
ure out how and it was still an open problem when Orwille antbWwiWright in 1903
showed that heavier-than-air human flight in fact was pdegilpractice, even if math-
ematically it was impossible.

Mathematical fluid mechanics was then saved from compldigpse by the young
mathematicians Kutta and Zhukovsky, called the father afditun aviation, who ex-
plained lift as a result of perturbing potential flow by a kewgcale circulating flow or
circulation around the two-dimensional section of a wing, and by the gaquinysicist
Prandtl, called the father of modern fluid dynamics, who axy@d drag as a result of
aviscous boundary laydn5, 46, 47, 9].

This is the basis of state-of-the-art [16, 37, 14, 2, 19, 89, \Which essentially is a
simplistic theory for lift without drag at small angles ofaatk in inviscid flow and for
drag without lift in viscous flow. However, state-of-thé-does not supply a theory for
lift-and-drag covering the real case &d slightly viscous turbulerftow of air around
a 3d wing of a jumbojet at the critical phase of take-off agéaeangle of attack (12
degrees) and subsonic speed (270 km/hour), as evidencegl ifL£3, 4, 6, 8, 10, 34,
36, 41]. The simplistic theory allows an aeroplane engiteeoughly compute the
lift of a wing a crusing speed at a small angle of attack, butthe drag, and not lift-
and-drag at the critical phase of take-off [42, 13]. The latknathematics has to be
compensated by experiment and experience. The first tal@ tfe new Airbus 380
must have been a thrilling experience for the design enginee

4 From Old to New Theory of Flight

A couple of years ago we stumbled upon a resolution of d’Alertibparadox [25, 26],
when computing turbulent solutions of the basic matherabtimdel of fluid mechan-
ics, the Navier-Stokes equations. The resolution natutatl us to a new theory of
flight, which we will explain below. You will find that it is qte easy to grasp, because
it can be explained using different levels of mathematice afért out easy with the
basic principle in concept form and then indicate some ohtlaghematics with refer-
ences to more details. Supporting information is given en@oogle knols [32] and
[33].

Before proceeding to work we recall both folklore and st@ft¢he-art mathematics
explantions of flight as being either correct but trivial,rmmtrivial but incorrect, as
follows:

e Downwash generates lift: trivial without explanation ofsen for downwash
from suction on upper wing surface.



Low pressure on upper surface: trivial without explanatidry.

Low pressure on curved upper surface because of higherityglbg Bernouilli's
law), because of longer distance: incorrect.

Coanda effect: The flow sticks to the upper surface by visgosicorrect.

Kutta-Zhukovsky: Lift comes from circulation: incorrect.

Prandtl: Drag comes mainly from viscous boundary layeroiirect.

5 ThePrinciple of Flying

We will find that the secret of flight is revealed in Fig. 1: Teteft we see potential
flow around a portion of a long wing with zones of high (H) and &) pressure giving
no net lift, because the pressure is high on top of the wingeatrailing edge and low
below. This makes the flow leave the wing in the same direc®it approaches, thus
without downwash and lift.

Potential flow is a mathematical solution without lift/dowash of the Navier-
Stokes equations (with vanishing viscosity), which howase€undamenatlly differ-
ent from the flow observed in reality with lift/downwash. Bwotial flow is a fictional
mathematical solution without physical relevance, andré@son hides the secret of
both d’Alembert’s paradox and flight: Potential flow is veensitive to a specific form
of perturbation and thus is unstable and non-physical.

Potential flow is similar to an inverted pendulum in upright#ibrium or a pen
balancing on its tip, which is a mathematical solution of ¢ggiations of motion, but
an unstable non-physical solution which under a small pleation away from the fully
upright position will change into a different swinging manti Potential flow without
lifttdownwash changes under a specific form of perturbaitibm a different more sta-
ble physical flow with lift/downwash, with a turbulent flueting layer including the
perturbation attaching to the trailing edge, as we will seeamputational simulations
below with movies on [31].
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Figure 1: Correct explanation of lift by perturbation of eotial flow (left) at separa-
tion from physical low-pressure turbulent counter-ratgtiolls (middle) changing the
pressure and velocity at the trailing edge into a flow with daash and lift (right).

The specific form of perturbation is illustrated in the miglgicture of Fig.1 show-
ing a layer of counter-rotating rolls of swirling flow attacj to the trailing edge, with



each roll similar to the swirling flow in a bathtub drain. Tlagér of rolls is distributed
all along the trailing edge and is not related to the wing tiptx, which often is seen
at landing in moist air, since we assume the wing to be long. gérturbation switches
the pressure distribution of potential flow at the trailirdge since the pressure inside
the rolls is low, into the flow depicted to the right which hasiblift, downwash and
drag.

The specific perturbation thus hides the secret of flight aswa With both lift,
downwash and drag. By understanding mathematically ttgiroand nature of the
instability mechanism generating the counter-rotatitig ed the separation of potential
flow, which we do in more detail below, we will be able to revda mathematical
secret of flight. In short, the counterrotating rolls deypelohen the opposing flows
from above and below meet on top of the wing before separatiaifirst are retarded
and then accellerated and stretched in the flow directioshaan in detail in [25, 26,
24, 23]. We understand that inside the rolls of swirling fldve@ pressure must be low
to keep the roll together, and it is this low pressure thaitdlates the high pressure
on top to allow the flow to leave the wing in the direction of tipger surface tangent
with substantial downwash as illustrated in the figure.

We see that the fundamental instability mechanism chargefidw at the trail-
ing edge to give lift, but does not change the flow at the lggéitlge where the flow
gives positive lift. Real flow thus shares a very importamigarty with potential flow,
namely to not separate at the crest of the flow above the Igadige. If it did, down-
wash and lift would be lost: This is what happens when a wiagissat a too large
angle of attack.

Summing up we have that lift comes from the instability metsia at separation
consisting of counter-rotating low-pressure rolls of $wg flow, which also creates
drag by suction from the low pressure. Thus lift comes aloit @rag: No lift without
drag. Lift without drag is an illusion, although still a coromdream.

6 Comparison with Kutta-Zhukovsky

We compare with the classical explanation presented byakzittukovsky illustrated
in Fig.2, which you find in most books claiming to explain fligiwe see again po-
tential flow, now around a section of the wing, but combinethwi different perturba-
tion consisting of large scale circulating flow around thagvi This perturbation also
changes the pressure distribution to give lift/downwashlastrated in the picture to
the right. However, as we will see below, the circulating flEmeund the wing does not
arise in reality: Kutta-Zhukovsky’s circulating flow is mly fictional and generates
lift’/downwash by a non-physical mechanism which does notiom reality.

Nevertheless, with no alternative in sight, Kutta-Zhukows trick to generate
lift’/downwash is generally viewed as a mathematically ssgdated way of explain-
ing flight, beyond comprehension for most people. We shadl firat the true reason
it cannot be understood, is that it does not make sense, ysibgglause there is no
physical mechanism to generate the large scale circulatimmd the wing, nor the as-
sociated so-callestarting vortexbehind the wing supposedly balancing the circulation
indicated in the right picture of Fig.2.



We observe that Kutta-Zhulovsky flow is two-dimensionahcsi both potential
flow and circulation is constant in the wing direction andgtuan be depicted in a
plane figure, while the true flow is fully three-dimensionalhwthe specific perturba-
tion bringing in a variation in the wing direction. Kutta-dkovsky flow is like potential
flow a non-physical two-dimensional stationary flow, while real flow around a wing
is a three-dimensional partially fluctuating turbulent flow

=

Figure 2: Incorrect Kutta-Zhukovsky explanation of lift imerturbation of potential
flow (left) by unphysical circulation around the section dillie) resulting in flow with
downwash/lift and starting vortex (right).

7 Effectsof Small Viscosity

We conclude that flying is possible because of a fortunatebawation of the following
properties of real slightly viscous incompressible flow:

e non-separation at the crest of a wing because the flow is #iraikar to potential
flow,

o the instability mechanism of potential flow at separatioarayes the pressure
distribution at the trailing edge to give lift, and drag.

Slightly viscous flow has smadkin frictionalong the boundary, which makes it similar
to potential flow with zero skin friction satisfyingsip boundary condition at a solid
boundary modeling that fluid particles can slide along thendary without friction.
Small skin friction can thus be modeled by zero skin fricttequiring the normal ve-
locity to vanish at the boundray, but imposing no restrictim the tangential velocity.
For a more viscous fluid like syrup with larger skin frictiomstead ano-slipbound-

ary condition is used requiring that both normal and tangéfibw velocities vanish
on the boundary modeling that fluid particles close to thenamy have small speed
and connect to the interior flow by lzoundary layerwhere the flow speed changes
from zero to the free stream speed. The effect of a no-slimtary condition causing
a boundary layer, is that the flow separates at the crest @sthdf lift as compared to
slightly viscous flow. This is because in a viscous boundaygt the pressure gradient
normal to the boundary vanishes and thus cannot contribukeetnormal acceleration
required to keep fluid particles following the curvaturelo boundary after the crest,
as shown in detail in [27]. It is thus theip boundary condition modeling a turbulent
boundary layeiin slightly viscous flow, which forces the flow to suck to thepep sur-
face and create downwash. Gliding flight in viscous flow issthot possible, which



explains why small insects do not practice gliding flightdnese to them air appears to
be viscous.

8 Wellposednessvs Clay Millennium Problem

In order to judge the physical relevance of a mathematidatiso, stability must be
assessed. Onlyellposedsolutions which are suitably stable in the sense that small
perturbations have small effects when properly measuead physical significance as
observable pheonomena, as made clear by in particular ttreematician J. Hadamard
in 1902 [15]. However, the completely crucial and fundarakqtiestion whether so-
lutions of the Navier-Stokes equations are wellposed, babeen studied because of
lack mathematical techniques for quantitative analysigvédenced in the formulation
of the Clay Millennium Prize Problem on the Navier-Stokesat@pns excluding well-
posedness [28, 24]. G. Birkhoff was heavily criticized foising this question in [7],
and refrained from further studies. The first step towardslitgion of d’Alembert’s
paradox and the mathematical secret of flight is thus to gusetiestion if potential
flow is wellposed, and then to realize that it is not. It took 3®&ars to take these steps.

9 Computed Lift and Drag

We now a take a closer look at solutions of the Navier-Stokpgtons, computed
by the General Galerkin finite element method G2 [25]. Thetetisns should tell
us the truth because the Navier-Stokes equations expresm#ic laws of physics of
conservation of mass and momentum (Newton’s 2nd law), wbésinot be doubted.
We focus on the case of slightly viscous incompressible flbrelevance for airplanes
at subsonic speeds and larger birds. The fact that the fliadsimall viscosity is of
crucial importance both for physics and computation: Fite flow is then turbulent
with a turbulent boundary layer allowing the flow to suck te tipper surface of the
wing and cause downwash and lift. Second, a turbulent baytalger can be modeled
by a slip or small friction boundary condition which makegatssible to simulate the
flow without computationally resolving thin boundary lagewhich is impossible with
any forseeable computer [42].

We have indicated that the basic mechanism for the genarafitift of a wing
consists of counter-rotating rolls of low-presssteeamwise vorticityswirling flow)
generated by instability at separation, which reduce tigé Ipressure on top of the
wing before the trailing edge of potential flow and thus alldewnwash, but which
also generate drag. At closer examination of the quanitatistributions of lift and
drag forces around the wing, we discover large lift at theeevge of small drag resulting
from leading edge suction, which answers the opening duresfiof how a wing can
generate a lift/drag ratio larger than 10.

The secret of flight is in concise form uncovered in Fig. 3 simgws2 computed
lift and and drag coefficients of a Naca 0012 3d wing as funstimf the angle of attack
«, as well as the circulation around the wing. We see that tharid drag increase
roughly linearly up to 16 degrees, with a lift/drag ratio doait 13 fora. > 3 degrees,



and that lift peaks at stall at = 20 after a quick increase of drag. and flow separation
at the leading edge.

We see that the circulation remains small foless than 10 degrees without con-
nection to lift, and conclude that the theory of lift of by KatZhukovsky is fictional
without physical correspondence: There is lift but no dation. Lift does not origi-
nate from circulation. The incorrect explanation by Kuftaukovsky is illustrated in
Fig. 2 which is found in books on flight aerodynamics.

Inspecting Figs. 4-6 showing velocity, pressure and vitytend Fig. 7 showing
lift and drag distributions over the upper and lower surfaoéthe wing (allowing
also pitching moment to be computed), we can now, with expee from the above
preparatory analysis, identify the basic mechanisms f®gmeration of lift and drag
in incompressible slightly viscous flow around a wing ateliént angles of attack:
We find two regimes before stall at= 20 with different, more or less linear growth in
« of both lift and drag, a main phase< a < 16 with the slope of the lift (coefficient)
curve equal t®.09 and of the drag curve equal €008 with L/D = 14, and a final
phasel6 < a < 20 with increased slope of both lift and drag. The main phasebean
divided into an initial phase < « < 4 — 6 and an intermediate phase- 6 < a < 16,
with somewhat smaller slope of drag in the initial phase. \blg present details of this
general picture.

10 Phasel: 0<a<4-6

At zero angle of attack with zero lift there is high pressureéha leading edge and
equal low pressures on the upper and lower crests of the veioguse the flow is essen-
tially potential and thus satisfies Bernouilli's law of hitgw pressure where velocity
is low/high. The drag is about 0.01 and results from rollsoe¥-pressure streamwise
vorticity attaching to the trailing edge. As increases the low pressure below gets
depleted as the incoming flow becomes parallel to the lowdasel at the trailing edge
for « = 6, while the low pressure above intenisfies and moves towaeld$eading
edge. The streamwise vortices at the trailing edge esfigrsiay constant in strength
but gradually shift attachement towards the upper surfade high pressure at the
leading edge moves somewhat down, but contributes littlétidrag increases only
slowly because of negative drag at the leading edge.

11 Phase2: 4 -6 <a <16

The low pressure on top of the leading edge intensifies taeseaormal gradient pre-
venting separation, and thus creates lift by suction pgaiimtop of the leading edge.
The slip boundary condition prevents separation and dowhiwgcreated with the help
of the low-pressure wake of streamwise vorticity at reaasafion. The high pressure
at the leading edge moves further down and the pressure lietogases slowly, con-

tributing to the main lift coming from suction above. The meag from the upper

surface is close to zero because of the negative drag atddenteedge, known as
leading edge suctigrwhile the drag from the lower surface increases (lineaxligh



35

L L L L L L \
0 10 20 30 40 50 60 70

Figure 3: G2 lift coefficient and circulation as functionstbé angle of attack (top),
drag coefficient (middle) and lift/drag ratio (bottom) asftions of the angle of attack.



the angle of the incoming flow, with somewhat increased Hiltsshall drag slope.
This explains why the line to a flying kite can be almost vaitieven in strong wind,
and that a thick wing can have less drag than a thin.

12 Phase3: 16 <a <20

This is the phase creating maximal lift just before stall meth the wing partly acts as a
bluff body with a turbulent low-pressure wake attachindnatriear upper surface, which
contributes extra drag and lift, doubling the slope of tfficlirve to give maximal lift
~ 2.5 ata = 20 with rapid loss of lift after stall.

=

(1)

Figure 4: G2 computation of velocity magnitude (upper)sgtege (middle), and non-
transversal vorticity (lower), for angles of attack 2, 4d&h (from left to right). Notice
in particular the rolls of streamwise vorticity at sepaoati
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Figure 5: G2 computation of velocity magnitude (upper),sgtee (middle), and
topview of non-transversal vorticity (lower), for angldsattack 10, 14, and £8from
left to right). Notice in particular the rolls of streamwigerticity at separation.

11



Figure 6: G2 computation of velocity magnitude (upper) sgtee (middle), and non-
transversal vorticity (lower), for angles of attack 20, 88d 24 (from left to right).
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Figure 7: G2 computation of normalized local lift force (@ppand drag force (lower)
contributions acting along the lower and upper parts of timgyfor angles of attack O,
2,4 ,10 and 18 each curve translated 0.2 to the right and 1.0 up, with the foece
level indicated for each curve.
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13 Lift and Drag Distribution Curves

The distributions of lift and drag forces over the wing reéisg from projecting the
pressure acting perpendicular to the wing surface onteastalirections, are plotted
in Fig.7. The total lift and drag results from integrating$le distributions around the
wing. In potential flow computations (with circulation acding to Kutta-Zhukovsky),
only the pressure distribution ej-distribution is considered to carry releveant infor-
mation, because a potential solution by construction hesdimg. In the perspective
of Kutta-Zhukovsky, it is thus remarkable that the projectg-curves carry correct
information for both lift and drag.

The lift generation in Phase 1 and 3 can rather easily beienéd, while both the
lift and drag in Phase 2 results from a (fortunate) intridaterplay of stability and
instability of potential flow: The main lift comes from uppgurface suction arising
from a turbulent boundary layer with small skin friction cbimed with rear separation
instability generating low-pressure streamwise vostjoithile the drag is kept small
by negative drag from the leading edge.

14 Comparing Computation with Experiment

Comparing G2 computations with about 150 000 mesh points @iperiments [20,
40], we find good agreement with the main difference that thesbof the lift co-

efficient in phase 3 is lacking in experiments. This is prdpam effect of smaller
Reynolds numbers in experiments, with a separation buldstaifg on the leading
edge reducing lift at high angles of attack. The oil-film prets in [20] show surface
vorticity generating streamwise vorticity in accordandth24, 27, 23].

A jumbojet can only be tested in a wind tunnel as a smalleestaldel, and upscal-
ing test results is cumbersome because boundary layerstdgale. This means that
computations can be closer to reality than wind tunnel @rparts. Of particular im-
portance is the maximal lift coefficient, which cannot bediceed by Kutta-Zhukovsky
nor in model experiments, which for Boeing 737 is reportedd@®.73 in landing, cor-
responding to the maximal lift of 2.5 in computation for a dowing and not a full
aircraft. In take-off the maximal lift is reported to be 1 w8h 1.5 in computation at a
somewhat smaller angle of attack.

We compute turbulent solutions of the Navier-Stokes equatusing a stabilized
finite element method witla posteriori error controlof lift and drag, referred to as
General Galerkinor G2, available in executable open source from [17]. The stabi-
lization in G2 acts as an automatic turbulence model, and differs a model foab
initio computational simulation of the turbulent flow around a wivith the only input
being the geometry of the wing. The computations performea single worksta-
tion show good agreement with experiments. We are now paifigrcomputations on
super-computers allowing more precise comparisons araizder studies.
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15 Navier-Stokeswith Force Boundary Conditions

For the reader interested in the mathematics we now presedvier-Stokes equa-
tions along with a stability analysis exhibiting the basistability mechanism at sepa-
ration which is crucial for the generation of lift, at the exjge of some drag.

The Navier-Stokes equations for an incompressible fluichitfdensity withsmall
viscosityr > 0 andsmall skin friction3 > 0 filling a volume$ in R? surrounding a
solid body with boundary" over a time interval = [0, T, read as follows: Find the
velocityu = (u1, ue, ug) and pressurg depending otfz, t) € QU T x I, such that

U+ (u-Vu+Vp—V-oc = f inQxI,
V-u = 0 inQx 1,
U, = ¢ onI' x I, (1)
os = Pus onl x I,
u(,0) = u° in Q,

whereu,, is the fluid velocity normal td’, u is the tangential velocityy = 2ve(u) is
the viscous (shear) stress with:) the usual velocity straing, is the tangential stress,
f is a given volume forcey is a given inflow/outflow velocity withy = 0 on a non-
penetrable boundary, and is a given initial condition. We notice the skin friction
boundary condition coupling the tangential stresso the tangential velocity, with
the friction coefficients with 5 = 0 for slip, andg >> 1 for no-slip. We note that is
related to the standaskin friction coeffieient; = % with 7 the tangential stress per
unit area, by the relatiof = %Cf. In particular, tends to zero withe; (if U stays
bounded).

Prandtl insisted on using a no-slip velocity boundary ctodiwith v, = 0 on
I', because his resolution of d’Alembert’s paradox hinged isorgminating potential
flow by this condition. On the oher hand, with the new resolutdof d’Alembert’s
paradox, relying instead on instability of potential flowe are free to choose instead a
friction force boundary condition, if data is available. Wa@xperiments show [47, 11]
that the skin friction coefficient decreases with incregdteynolds numbeRe as
cs ~ Re™ %2, so thatc; ~ 0.0005 for Re = 10'° andc¢; ~ 0.007 for Re = 10°.
Accordingly we model a turbulent boundary layer by a frintioundary condition
with a friction parametes ~ 0.03U Re~%2. For very large Reynolds numbers, we can
effectively uses = 0 in G2 computation corresponding to slip boundary condgtion

As developed in more detail in [27], we make a distinctiomiitn laminar (bound-
ary layer) separation modeled by no-slip and turbulent ey layer) separation
modeled by slip/small friction. Note that laminar sepamatcannot be modeled by
slip, since a laminar boundary layer needs to be resolved natslip to get correct
(early) separation. On the other hand, as will be seen béfoturbulent (but not in
laminar) flow the interior turbulence dominates the skintfon turbulence indicating
that the effect of a turbulent boundary layer can be modeledlip/small friction,
which can be justified by an posteriori sensitivity analygshown in [27].

We thus assume that the boundary layer is turbulent and iel@ody slip/small
friction, which effectively includes the case of laminapaeation followed by reattach-
ment into a turbulent boundary layer.
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16 Potential Flow

Potential flow(u, p) with velocity u = V¢, whereyp is harmonic inQ? and satisfies
a homogeneous Neumann condition Ibrand suitable conditions at infinity, can be
seen as a solution of the Navier-Stokes equations for §ligigcous flow with slip
boundary condition, subject to

e perturbation of the volume forcé = 0 in the form ofc = V - (2ve(u)),
e perturbation of zero friction in the form of, = 2ve(u)s,

with both perturbations being small becawsis small and a potential flow velocity

is smooth. Potential flow can thus be seen as a solution of #lveeNStokes equations
with small force perturbations tending to zero with the wiity. We can thus express
d’Alembert’s paradox as the zero lift/drag of a Navier-&skolution in the form of a

potential solution, and resolve the paradox by realizireg fotential flow is unstable

and thus cannot be observed as a physical flow.

Potential flow is like an inverted pendulum, which cannot beesved in reality be-
cause it is unstable and under infinitesimal perturbationsstinto a swinging motion.
A stationary inverted pendulum is a fictious mathematictéitsmn without physical
correspondence because it is unstable. You can only obpbéemomena which in
some sense are stable, and an inverted pendelum or poftawtia not stable in any
sense.

Potential flow has the following crucial property which pasill be inherited by
real turbulent flow, and which explains why a flow over a windjsat to small skin
friction can avoid separating at the crest and thus gendmat@wash, unlike viscous
flow with no-slip, which separates at the crest without doasiw We will conclude
that gliding flight is possible only in slightly viscous inogressible flow. For sim-
plicity we consider two-dimensional potential flow arouncldindrical body such as a
long wing (or cylinder).

Theorem. Let ¢ be harmonic in the doma in the plane and satisfy a homogeneous
Neumann condition on the smooth boundBrgf Q2. Then the streamlines of the cor-
responding velocityy = V¢ can only separate frofi at a point of stagnation with
u=Ve=0.

Proof. Let ) be a harmonic conjugate {owith the pair((, 1)) satisfying the Cauchy-
Riemann equations (locally) ift. Then the level lines of> are the streamlines qf
and vice versa. This means that as longvas # 0, the boundary curvé will be a
streamline ofx and thus fluid particles cannot separate fidin bounded time.

17 Exponential I nstability

Subtracting the NS equations with= 0 for two solutions(u, p, o) and(a, p, &) with
corresponding (slightly) different data, we obtain thddaiing linearized equation for
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the differenc€v, ¢, 7) = (u — 4, p — p,o — &) with :

v+ (u-Vo+(v-VYi+Veg-V-1 = f—f inQ x I,
Vv = 0 inQx 1,
vemn = g—4g onl' x I, (2)
7 = 0 onI' x I,
v(-,0) = u®—a’ in Q,

Formally, withu anda given, this is a linear convection-reaction-diffusioniplesm for
(v, q, 7) with the reaction term given by thex 3 matrix Vu being the main term of
concern for stability. By the incompressiblity, the tradeNou is zero, which shows
that in generaNMu has eigenvalues with real value of both signs, of the siZé/af
(with | - | som matrix norm), thus with at least one exponentially usistaigenvalue.

Accordingly, we expect local exponential perturbationvgitoof sizeexp(|Vult)
of a solution(u, p, o), in particular we expect a potential solution to be illpas€His
is seen in G2 solutions with slip initiated as potential flevhich subject to residual
perturbations of mesh siZe in log(1/k) time develop into turbulent solutions. We
give computational evidence that these turbulent solstase wellposed, which we ra-
tionalize by cancellation effects in the linearized praob)evhich has rapidly oscillating
coefficients when linearized at a turbulent solution.

Formally applying the curl operatdv x to the momentum equation of (1), with
v = 3 = 0 for simplicity, we obtain thevorticity equation

W+ w-Vw—(w-Viu=Vxf inQ, (3)

which is a convection-reaction equation in the vorticity= V x u with coefficients
depending onu, of the same form as the linearized equation (2), with sinplap-
erties of exponential perturbation growtkp(|Vu|t) referred to avortex stretching
Kelvin’s theorem formally follows from this equation assimgp the initial vorticity is
zero andVv x f = 0 (andg = 0), but exponential perturbation growth makes this con-
clusion physically incorrect: We will see below that largerticity can develop from
irrotational potential flow even with slip boundary condits.

18 Energy Estimatewith Turbulent Dissipation

The standareénergy estimatéor (1) is obtained by multiplying the momentum equa-
tion
U+ (u-Vu+Vp—-V.0—f=0,

with « and integrating in space and time, to get in the gase0 andg = 0,

/t/ R, (u,p) - wdzdt = D, (u;t) + Ba(u;t) 4)
o Ja

where
Ry(u,p) =1+ (u-V)u+ Vp
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is theEuler residualfor a given solution(u, p) with v > 0,

D, (u;t) z/ot/ﬂl/|e(u(t,x))|2dxdt

is theinternal turbulent viscous dissipatipand

t
Bg(u;t):/O /Fﬁ|us(f,x)|2dxdt_

is theboundary turbulent viscous dissipatidnom which follows by standard manip-
ulations of the left hand side of (4),

K, (u;t) + D, (u;t) + Bg(u;t) = K(u°), t>0, (5)

where )
K, (u;t) = —/ lu(t, z)|>dz.
2 Ja

This estimate shows a balance of #ieetic energyK (u;t) and theturbulent viscous
dissipationD, (u;t) + Bs(u;t), with any loss in kinetic energy appearing as viscous
dissipation, and vice versa. In particular,

D, (u;t) + Bg(u;t) < K(u?),

and thus the viscous dissipation is bounded (i 0 andg = 0).
Turbulent solution®f (1) are characterized tgubstantial internal turbulent dissi-
pation that is (fort bounded away from zero),
D(t) = liII(l) D(uy;t) >> 0, (6)
which isKolmogorov’s conjecturgl8]. On the other hand, trekin friction dissipation
decreases with decreasing friction

lim Bg(u;t) =0, (7)

since3 ~ 192 tends to zero with the viscosity and the tangential velocity, ap-
proaches the (bounded) free-stream velocity. We thus fiideaee that the interior
turbulent dissipation dominates the skin friction dissigm, which supports the use
of slip as a model of a turbulent boundray layer, but whichasin accordance with
Prandtl’s (unproven) conjecture that substantial drag tarisulent dissipation origi-
nates from the boundary layer.

Kolmogorov’s conjecture (6) is consistent with

%, 1Ry (. )0 ~ % ®)

where|| - ||o denotes thd.o(Q)-norm with@ = 2 x I. On the other hand, it follows
by standard arguments from (5) that

||RV(U,P)||—1 < \/;a (9)

Vullo ~
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where|| - ||_; is the norm inLy(1; H=1(2)). Kolmogorov thus conjectures that the
Euler residualR, (u, p) for smallv is strongly (inL-) large, while being small weakly
(in H—1).

Altogether, we understand that the resolution of d’Alentbgraradox of explain-
ing substantial drag from vanishing viscosity, consisteeafizing that the internal tur-
bulent dissipatiorD can be positive under vanishing viscosity, while the skictifvn
dissipationB will vanish. In contradiction to Prandtl, we conclude theagdoes not
result from boundary layer effects, but from internal tueu dissipation, originating
from instability at separation.

19 G2 Computational Solution

We show in [25, 24, 26] that the Navier-Stokes equations b loe solved by G2

producing turbulent solutions characterized by substhfitrbulent dissipation from

the least squares stabilization acting as an automatialenbe model, reflecting that
the Euler residual cannot be made pointwise small in turiulegions. G2 has a
posteriori error control based on duality and shows outpigueness in mean-values
such as lift and drag [25, 21, 22]

We find that G2 with slip is capable of modeling slightly visisoturbulent flow
with Re > 10° of relevance in many applications in aero/hydro dynamiosiuiding
flying, sailing, boating and car racing, with hundred thawsaof mesh points in sim-
ple geometry and millions in complex geometry, while acaogdo state-of-the-art
quadrillions is required [42]. This is because a frictiamee/slip boundary condition
can model a turbulent boundary layer, and interior turbcgetioes not have to be re-
solved to physical scales to capture mean-value outpujs [25

The idea of circumventing boundary layer resolution byxig no-slip boundary
conditions introduced in [21, 25], was used in [39, 5] in tbetfi of weak satisfaction
of no-slip, which however misses the main point of using adéarondition instead of
a velocity condition in a model of a turbulent boundary layer

A G2 solution(U, P) on a mesh with local mesh siz€x,t) according to [25],
satisfies the following energy estimate (wjth= 0, g = 0 andg = 0):

K(U(t)) + Dp(U;t) = K (u), (10)
where .
Du(U:t) = / / B\ R (U, P)[? dadt, (11)
0 Q

is an analog oD, (u;t) with h ~ v, whereRy, (U, P) is the Euler residual ofU, P).
We see that the G2 turbulent viscosiy, (U; t) arises from penalization of a non-zero
Euler residualR;, (U, P) with the penalty directly connecting to the violation (aato
ing the theory of criminology). A turbulent solution is clhaterized by substantial
dissipationD;, (U; t) with || R, (U, P)||o ~ h~'/?, and

|Rn(U, P)||-1 < VA (12)

in accordance with (8) and (9).
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20 Wellposedness of M ean-Value Outputs

Let M(v) = fQ v dxdt be amean-value outputf a velocityv defined by a smooth
weight-functiony(x, t), and let(u, p) and (U, P) be two G2-solutions on two meshes
with maximal mesh sizé. Let (p, 8) be the solution to thdual linearized problem

—p—(u-V)p+VU T o+V0 = inQ x I,
Vo = 0 inQx 1,
p-n = g onI' x I, (13)
o, T) = 0 in Q,

whereT denotes transpose. Multiplying the first equationby U and integrating by
parts, we obtain the following output error representafitij:

M(w) = M) = [ (Rulu,p) = Ru(U. P)) - o ddt (14)
Q

where for simplicity the dissipative terms are here omitfeaim which follows the a

posteriori error estimate:

[M(u) = M(U)| < S([|Bn(u, p)l|-1 + [[Ba(U, P)[|-1), (15)
where the stability factor
S =8u,UM)=SuU)=|o|mwg)- (16)

In [25] we present a variety of evidence, obtained by contjrial solution of the
dual problem, that for global mean-value outputs such ag anal lift, S << 1/v/h,
while | R,||-1 ~ v/, allowing computation of of drag/lift with a posteriori err
control of the output within a tolerance of a few percent. hor$, mean-value outputs
such as lift and drag are wellposed and thus physically nmeguni

We explain in [25] the crucial fact that << 1/\/5, heuristically as an effect of
cancellationof rapidly oscillating reaction coefficients of turbuleotstions combined
with smooth data in the dual problem for mean-value outpiriissmooth potential
flow there is no cancellation, which explains why zero liflg cannot be observed in
physical flows.

As an example, we show in Fig.8 turbulent G2 flow around a c#hn siibstan-
tial drag in qualitative accordance with wind-tunnel expemts. We see a pattern of
streamwise vorticity forming in the rear wake. We also se#ase vorticity forming
on the hood transversal to the main flow direction. We sedairfg@atures in the flow
of air around a wing.

21 Scenario for Separation without Stagnation

We now present a scenario for transition of potential flove itutrbulent flow, based
on identifying perturbations of strong growth in the lineked equations (2) and (3) at
separation generating rolls of low pressure streamwistcityrchanging the pressure
distribution to give both lift and drag of a wing.
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Figure 8: Velocity of turbulent G2 flow with slip around a caitlwcourtesy of geome-
try Volvo Cars and computations by Murtazo Nasarov.

As a model of potential flow at rear separation, we considerptential flow
u(z) = (x1, —x2,0) in the half-plane{z; > 0}. Assumingz; andz, are small, we
approximate thes-equation of (2) by

Uy — v = fo,

where fo = fa(z3) is an oscillating mesh residual perturbation dependingp(n-
cluding also a pressure-gradient), for examfiérs) = hsin(xs/d), with § > 0. It
is natural to assume that the amplitudefptiecreases with. We conclude, assuming
v2(0,z) = 0, that

va(t,x3) = texp(t) fa(xs),

and for the discussion, we assumg = 0. Next we approximate the;-vorticity
equation forz, small andey > z; > 0 with z; small, by

0
Ll)l—l—Ilﬂ —wy =0,
8351
with the “inflow boundary condition”

w1(Z1, w2, 73) = S—Z = texp(t)g—ﬁ)'
The equation fot; thus exhibits exponential growth, which is combined witp@x
nential growth of the “inflow condition”. We can see thesetdeas in Fig. 9 show-
ing how opposing flows on the back generate a pattern of @ingtsurface vortices
which act as initial conditions for vortex stretching intwetfluid generating rolls of
low-pressure streamwise vorticity, in the case of a wingdting to the trailing edge.
Altogether we expeatxp(t) perturbation growth of residual perturbations of size

h, resulting in a global change of the flow after tiffie~ log(1/k), which can be
traced in the computations.
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We thus understand that the formation of streamwise strasitse result of a force
perturbation oscillating in thes direction, which in the retardation of the flow in the
xo-direction creates exponentially increasing vorticityhiex; -direction, which acts as
inflow to thew; -vorticity equation with exponential growth by vortex stieing. Thus,
we find exponential growth at rear separation in both thedateon in thexs-direction
and the accelleration in the, direction. This scenario is illustrated in principle and
computation in Fig.9. Note that since the perturbation isveated with the base flow,
the absolute size of the growth is related to the length oé tihe perturbation stays in
a zone of exponential growth. Since the combined expornegroavth is independent
of ¢, it follows that large-scale perturbations with large aitojle have largest growth,
which is also seen in computations withthe distance between streamwise rolls as
seen in Fig.3 which does not seem to decrease with decreasing

Notice that at forward attachment of the flow the retardatioas not come from
opposing flows, and the zone of exponential growthvgis short, resulting in much
smaller perturbation growth than at rear separation.

We can view the occurence of the rear surface vorticities mgehanism of sep-
aration with non-zero tangential speed, by diminishingribemal pressure gradient
of potential flow, which allows separation only at stagnatidhe surface vorticities
thus allow separation without stagnation but the price rsegation of a system of low-
pressure tubes of streamwise vorticity creating drag inran fof “separation trauma”
or “cost of divorce”.

The scenario for separation can summarized as followsccitglimstability in retar-
dation as opposing flows meet in the rear of the cylinder, geas a zig-zag pattern of
surface vorticity shown in Fig.9, allowing separation intunter-rotating low-pressure
rolls, attaching to the trailing edge in the case of a wingstaswvn in Fig. 1.

Figure 9: Turbulent separation by surface vorticity forgnicounter-rotating low-
pressure rolls in flow around a circular cylinder, illusingt separation at the trailing
edge of a wing[23].

22 Stability of the Streamwise Vorticity Perturbed Flow

The rolls of streamwise vorticity swirling flow appearingsaparation because of the
instability of potential flow represent a more stable flowtgat. An indication of sta-
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bility is given by an analysis of the stability of the rotagifiow fieldu = (0, x5, —22)
with linearized problem of the form

Vg +v3=0, vU3—v2=0 a7

which does not have any exponentially unstable solutiomg Swirling flow at sepa-
ration is similar to the vortex seen at the drain of a bathtub.

23 Sailing

Both the sail and keel of a sailing boat under tacking agalrestvind, act like wings
generating lift and drag, but the action, geometrical shapkangle of attack of the
sail and the keel are different. The effective angle of &ttsfca sail is typically 15-20
degrees and that of a keel 5-10 degrees, for reasons whicbwegine.

The boat is pulled forward by the sail, assuming for simpfithat the beam is
parallel to the direction of the boat at a minimal tacking landpy the component
Lsin(15) of the lift L, as above assumed to be perpendicular to the effective wind
direction, but also by the following contributions from teag assumed to be parallel
to the effective wind direction: The negative drag on thelegrd side at the leading
edge close to the mast gives a positive pull which largelymemsates for the positive
drag from the rear leeward side, while there is less positiag from the windward
side of the sail as compared to a wing profile, because of tffiergiice in shape.
The result is a forward pubk sin(15)L = 0.2L combined with a side (heeling) force
~ L cos(15) ~ L, which tilts the boat and needs to be balanced by lift fronthieckeel
in the opposite direction. Assuming the lift/drag ratio fbe keel is 13, the forward
pull is then reduced te: (0.2 — 1/13)L =~ 0.1L, which can be used to overcome the
drag from the hull minus the keel.

The shape of a sail is different from that of a wing which gigsesaller drag from
the windward side and thus improved forward pull, while tleelkhas the shape of a
symmetrical wing and acts like a wing. A sail with aba— 20 degrees gives maximal
pull forward at maximal heeling/lift with contribution asfrom the rear part of the
sall, like for a wing just before stall, while the drag is staathan for a wing at 15-20
degrees aoa (for which the lift/drag ratio is 4-3), with thetivation given above. The
lift/drag curve for a sail is thus different from that of wingjth lift/drag ratio at aoa
15-20 much larger for a sail. On the other hand, a keel withsa@8 degrees has a
lift/drag ratio about 13. A sail at aoa 15-20 thus gives maalipull at strong heeling
force and small drag, which together with a keel at aoa 5-10 strong lift and small
drag, makes an efficient combination. This explains why modesigns combine a
deep narrow keel acting efficiently for small aoa, with a olerasail acting efficiently
at a larger aoa.

Using a symmetrical wing as a sail would be inefficient, sitieelift/drag ratio is
poor at maximal lift at aoa 15-20. On the other hand, usinglasa wing can only be
efficient at a large angle of attack, and thus is not suitadfleruising. This material is
developed in more detail in [30].
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