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1 The Mystery of Flight

When you lean back for take-off in a jumbojet, maybe the following question flashes
through your mind: How is it possible that the 400 squaremeter wings can carry 400
tons at a wingload of 1 ton per squaremeter in sustained flightin the air? Or maybe
you are satisfied with some of the explanations offered in popular science, like higher
velocity and lower pressure on the upper surface of the wing because it is curved and air
there has a longer path to travel than below? Or maybe you are an aeroplane engineer
or pilot and know very well why an airplane can fly?

In either case, you should get a bit worried by reading that the authority NASA on
its website [43] dismissses all popular science theories for lift, including your favorite
one, as being incorrect, but then refrains from presenting any theory claimed to be
correct! NASA surprisingly ends with an empty out of reach:To truly understand
the details of the generation of lift, one has to have a good working knowledge of the
Euler Equations. The Plane&Pilot Magazine [44] has the same message and New York
Times [8] informs us:

• To those who fear flying, it is probably disconcerting that physicists and aero-
nautical engineers still passionately debate the fundamental issue underlying
this endeavor: what keeps planes in the air?

2 Overview

In this arcticle we present a new mathematical and physical explanation of the gen-
eration oflift L anddragD of a wing based on new discoveries of the dynamics of
turbulentairflow around a wing, obtained by computational solution ofthe basic math-
ematical model of fluid dynamics: theNavier-Stokes/Euler equations. When flying
in the air, the downward gravitational force is balanced by upward wing liftL, while
backward wing dragD is balanced by forward thrust from engine, and wing-beat for
birds, or descent in gliding flight without forward thrust.

We show that a wing creates lift as a reaction force from redirecting air downwards,
referred to asdownwash, with less than 1/3 coming from the lower wing surface push-
ing air down and the major remaining part from the upper surface sucking air down,
with a resultinglift/drag quotient L

D of size10 − 20.

1



The enigma of flight is why the air flow separates from the upperwing surface at the
trailing edge, and not before, with the flow after separation being redirected downwards
according to the tilting of the wing orangle of attack. We will reveal the secret to be
an effect of a fortunate combination of features ofslightly viscous incompressible flow
including a crucialinstability mechanism at separationanalogous to that seen in the
swirling flow down a bathtub drain, generating both suction on the upper wing surface
and drag.

We show that this mechanism of lift and drag is operational for angles of attack
smaller than a critical value of about16 − 20 degrees depending on the shape of the
wing, for which the flow separates from the upper wing surfacewell before the trailing
edge with a sudden increase of drag and decrease of lift referred to asstall.

It is absolutely crucial thatLD is large, of size 10 or bigger, since otherwise the
muscle power of a bird would not suffice, and the fuel consumption of an airplane
would be prohibitive. Flying on a tilted barn door at 45 degrees angle of attack with
L
D ≈ 1, is not an option.

An outline of the article is as follows: We first recall classical theories for lift
and drag and then in pictures describe the new theory. We support the new theory by
computational solutions of the Navier-Stokes equations, also showing that the classical
theories are incorrect. We then present basic aspects of themathematics ofturbulent
solutions of the Navier-Stokes equationsunderlying the new theory.

3 Newton, d’Alembert and Kutta-Zhukovsky

The problem of explainingwhy it is possible to fly in the air using wings has haunted
scientists since the birth of mathematical sciences. The mystery ishowa sufficiently
large ratioL

D can be created.
In thegliding flightof birds and airplanes with fixed wings at subsonic speeds,L

D is
typically between 10 and 20, which means that a good glider can glide up to 20 meters
upon loosing 1 meter in altitude, or that Charles Lindberg could cross the Atlantic in
1927 at a speed of 50 m/s in his 2000 kgSpirit of St Louisat an effective engine thrust
of 150 kp (with L

D = 2000/150 ≈ 13) from 100 horse powers.
By Newton’s 3rd law, lift must be accompanied by downwash with the wing redi-

recting air downwards. The enigma of flight is the mechanism of a wing generating
substantial downwash at small drag, which is also the enigmaof sailing against the
wind with both sail and keel acting like wings creating substantial lift [30].

Classical mathematical mechanics could not give an answer to the mystery of glid-
ing flight: Newton computed by elementary mechanics the liftof a tilted flat plate
redirecting a horisontal stream of fluid particles, but obtained a disappointingly small
value proportional to the square of the angle of attack. To Newton the flight of birds
was inexplicable, and human flight certainly impossible.

D’Alembert followed up in 1752 by formulating his paradox about zero lift/drag
of inviscid incompressible irrotational steady flowreferred to aspotential flow,which
seemed to describe the airflow around a wing since the viscosity of air is very small so
that it can be viewed as being inviscid (with zero viscosity). Mathematically, potential
flow is given as the gradient of aharmonic funtionsatisfyingLaplace’s equation.
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At speeds less than say 300 km/h air flow is almost incompressible, and since a
wing moves into still air the flow it could be be expected to be irrotational without
swirling rotating vortices. D’Alembert’s mathematical potential flow thus seemed to
capture physics, but nevertheless had neither lift nor drag, against all physical expe-
rience. The wonderful mathematics of potential flow and harmonic functions thus
showed to be without physical relevance: This isD’Alembert’s paradoxwhich came to
discredit mathematical fluid mechanics from start [26, 48, 7].

To explain flight d’Alembert’s paradox had to be resolved, but nobody could fig-
ure out how and it was still an open problem when Orwille and Wilbur Wright in 1903
showed that heavier-than-air human flight in fact was possible in practice, even if math-
ematically it was impossible.

Mathematical fluid mechanics was then saved from complete collapse by the young
mathematicians Kutta and Zhukovsky, called the father of Russian aviation, who ex-
plained lift as a result of perturbing potential flow by a large-scale circulating flow or
circulation around the two-dimensional section of a wing, and by the young physicist
Prandtl, called the father of modern fluid dynamics, who explained drag as a result of
aviscous boundary layer[45, 46, 47, 9].

This is the basis of state-of-the-art [16, 37, 14, 2, 19, 49, 50], which essentially is a
simplistic theory for lift without drag at small angles of attack in inviscid flow and for
drag without lift in viscous flow. However, state-of-the-art does not supply a theory for
lift-and-drag covering the real case of3d slightly viscous turbulentflow of air around
a 3d wing of a jumbojet at the critical phase of take-off at large angle of attack (12
degrees) and subsonic speed (270 km/hour), as evidenced in e.g. [1, 3, 4, 6, 8, 10, 34,
36, 41]. The simplistic theory allows an aeroplane engineerto roughly compute the
lift of a wing a crusing speed at a small angle of attack, but not the drag, and not lift-
and-drag at the critical phase of take-off [42, 13]. The lackof mathematics has to be
compensated by experiment and experience. The first take offof the new Airbus 380
must have been a thrilling experience for the design engineers.

4 From Old to New Theory of Flight

A couple of years ago we stumbled upon a resolution of d’Alembert’s paradox [25, 26],
when computing turbulent solutions of the basic mathematical model of fluid mechan-
ics, the Navier-Stokes equations. The resolution naturally led us to a new theory of
flight, which we will explain below. You will find that it is quite easy to grasp, because
it can be explained using different levels of mathematics. We start out easy with the
basic principle in concept form and then indicate some of themathematics with refer-
ences to more details. Supporting information is given in the Google knols [32] and
[33].

Before proceeding to work we recall both folklore and state-of-the-art mathematics
explantions of flight as being either correct but trivial, ornontrivial but incorrect, as
follows:

• Downwash generates lift: trivial without explanation of reason for downwash
from suction on upper wing surface.
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• Low pressure on upper surface: trivial without explanationwhy.

• Low pressure on curved upper surface because of higher velocity (by Bernouilli’s
law), because of longer distance: incorrect.

• Coanda effect: The flow sticks to the upper surface by viscosity: incorrect.

• Kutta-Zhukovsky: Lift comes from circulation: incorrect.

• Prandtl: Drag comes mainly from viscous boundary layer: incorrect.

5 The Principle of Flying

We will find that the secret of flight is revealed in Fig. 1: To the left we see potential
flow around a portion of a long wing with zones of high (H) and low (L) pressure giving
no net lift, because the pressure is high on top of the wing at the trailing edge and low
below. This makes the flow leave the wing in the same directionas it approaches, thus
without downwash and lift.

Potential flow is a mathematical solution without lift/downwash of the Navier-
Stokes equations (with vanishing viscosity), which however is fundamenatlly differ-
ent from the flow observed in reality with lift/downwash. Potential flow is a fictional
mathematical solution without physical relevance, and thereason hides the secret of
both d’Alembert’s paradox and flight: Potential flow is very sensitive to a specific form
of perturbation and thus is unstable and non-physical.

Potential flow is similar to an inverted pendulum in upright equilibrium or a pen
balancing on its tip, which is a mathematical solution of theequations of motion, but
an unstable non-physical solution which under a small perturbation away from the fully
upright position will change into a different swinging motion. Potential flow without
lift/downwash changes under a specific form of perturbationinto a different more sta-
ble physical flow with lift/downwash, with a turbulent fluctuating layer including the
perturbation attaching to the trailing edge, as we will see in computational simulations
below with movies on [31].

Figure 1: Correct explanation of lift by perturbation of potential flow (left) at separa-
tion from physical low-pressure turbulent counter-rotating rolls (middle) changing the
pressure and velocity at the trailing edge into a flow with downwash and lift (right).

The specific form of perturbation is illustrated in the middle picture of Fig.1 show-
ing a layer of counter-rotating rolls of swirling flow attaching to the trailing edge, with
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each roll similar to the swirling flow in a bathtub drain. The layer of rolls is distributed
all along the trailing edge and is not related to the wing tip vortex, which often is seen
at landing in moist air, since we assume the wing to be long. The perturbation switches
the pressure distribution of potential flow at the trailing edge since the pressure inside
the rolls is low, into the flow depicted to the right which has both lift, downwash and
drag.

The specific perturbation thus hides the secret of flight as a flow with both lift,
downwash and drag. By understanding mathematically the origin and nature of the
instability mechanism generating the counter-rotating rolls at the separation of potential
flow, which we do in more detail below, we will be able to revealthe mathematical
secret of flight. In short, the counterrotating rolls develop when the opposing flows
from above and below meet on top of the wing before separationand first are retarded
and then accellerated and stretched in the flow direction, asshown in detail in [25, 26,
24, 23]. We understand that inside the rolls of swirling flow the pressure must be low
to keep the roll together, and it is this low pressure that annihilates the high pressure
on top to allow the flow to leave the wing in the direction of theupper surface tangent
with substantial downwash as illustrated in the figure.

We see that the fundamental instability mechanism changes the flow at the trail-
ing edge to give lift, but does not change the flow at the leading edge where the flow
gives positive lift. Real flow thus shares a very important property with potential flow,
namely to not separate at the crest of the flow above the leading edge. If it did, down-
wash and lift would be lost: This is what happens when a wing stalls at a too large
angle of attack.

Summing up we have that lift comes from the instability mechanism at separation
consisting of counter-rotating low-pressure rolls of swirling flow, which also creates
drag by suction from the low pressure. Thus lift comes along with drag: No lift without
drag. Lift without drag is an illusion, although still a common dream.

6 Comparison with Kutta-Zhukovsky

We compare with the classical explanation presented by Kutta-Zhukovsky illustrated
in Fig.2, which you find in most books claiming to explain flight: We see again po-
tential flow, now around a section of the wing, but combined with a different perturba-
tion consisting of large scale circulating flow around the wing. This perturbation also
changes the pressure distribution to give lift/downwash asillustrated in the picture to
the right. However, as we will see below, the circulating flowaround the wing does not
arise in reality: Kutta-Zhukovsky’s circulating flow is purely fictional and generates
lift/downwash by a non-physical mechanism which does not occur in reality.

Nevertheless, with no alternative in sight, Kutta-Zhukovsky’s trick to generate
lift/downwash is generally viewed as a mathematically sophisticated way of explain-
ing flight, beyond comprehension for most people. We shall find that the true reason
it cannot be understood, is that it does not make sense, simply because there is no
physical mechanism to generate the large scale circulationaround the wing, nor the as-
sociated so-calledstarting vortexbehind the wing supposedly balancing the circulation
indicated in the right picture of Fig.2.
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We observe that Kutta-Zhulovsky flow is two-dimensional, since both potential
flow and circulation is constant in the wing direction and thus can be depicted in a
plane figure, while the true flow is fully three-dimensional with the specific perturba-
tion bringing in a variation in the wing direction. Kutta-Zhukovskyflow is like potential
flow a non-physical two-dimensional stationary flow, while the real flow around a wing
is a three-dimensional partially fluctuating turbulent flow.

Figure 2: Incorrect Kutta-Zhukovsky explanation of lift byperturbation of potential
flow (left) by unphysical circulation around the section (middle) resulting in flow with
downwash/lift and starting vortex (right).

7 Effects of Small Viscosity

We conclude that flying is possible because of a fortunate combination of the following
properties of real slightly viscous incompressible flow:

• non-separation at the crest of a wing because the flow is theresimilar to potential
flow,

• the instability mechanism of potential flow at separation changes the pressure
distribution at the trailing edge to give lift, and drag.

Slightly viscous flow has smallskin frictionalong the boundary, which makes it similar
to potential flow with zero skin friction satisfying aslip boundary condition at a solid
boundary modeling that fluid particles can slide along the boundary without friction.
Small skin friction can thus be modeled by zero skin frictionrequiring the normal ve-
locity to vanish at the boundray, but imposing no restriction on the tangential velocity.

For a more viscous fluid like syrup with larger skin friction,instead ano-slipbound-
ary condition is used requiring that both normal and tangential flow velocities vanish
on the boundary modeling that fluid particles close to the boundary have small speed
and connect to the interior flow by aboundary layerwhere the flow speed changes
from zero to the free stream speed. The effect of a no-slip boundary condition causing
a boundary layer, is that the flow separates at the crest with loss of lift as compared to
slightly viscous flow. This is because in a viscous boundary layer the pressure gradient
normal to the boundary vanishes and thus cannot contribute to the normal acceleration
required to keep fluid particles following the curvature of the boundary after the crest,
as shown in detail in [27]. It is thus theslip boundary condition modeling a turbulent
boundary layerin slightly viscous flow, which forces the flow to suck to the upper sur-
face and create downwash. Gliding flight in viscous flow is thus not possible, which
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explains why small insects do not practice gliding flight because to them air appears to
be viscous.

8 Wellposedness vs Clay Millennium Problem

In order to judge the physical relevance of a mathematical solution, stability must be
assessed. Onlywellposedsolutions which are suitably stable in the sense that small
perturbations have small effects when properly measured, have physical significance as
observable pheonomena, as made clear by in particular the mathematician J. Hadamard
in 1902 [15]. However, the completely crucial and fundamental question whether so-
lutions of the Navier-Stokes equations are wellposed, has not been studied because of
lack mathematical techniques for quantitative analysis, as evidenced in the formulation
of the Clay Millennium Prize Problem on the Navier-Stokes equations excluding well-
posedness [28, 24]. G. Birkhoff was heavily criticized for posing this question in [7],
and refrained from further studies. The first step towards resolution of d’Alembert’s
paradox and the mathematical secret of flight is thus to pose the question if potential
flow is wellposed, and then to realize that it is not. It took 256 years to take these steps.

9 Computed Lift and Drag

We now a take a closer look at solutions of the Navier-Stokes equations, computed
by the General Galerkin finite element method G2 [25]. These solutions should tell
us the truth because the Navier-Stokes equations express the basic laws of physics of
conservation of mass and momentum (Newton’s 2nd law), whichcannot be doubted.
We focus on the case of slightly viscous incompressible flow of relevance for airplanes
at subsonic speeds and larger birds. The fact that the fluid has small viscosity is of
crucial importance both for physics and computation: First, the flow is then turbulent
with a turbulent boundary layer allowing the flow to suck to the upper surface of the
wing and cause downwash and lift. Second, a turbulent boundary layer can be modeled
by a slip or small friction boundary condition which makes itpossible to simulate the
flow without computationally resolving thin boundary layers, which is impossible with
any forseeable computer [42].

We have indicated that the basic mechanism for the generation of lift of a wing
consists of counter-rotating rolls of low-pressurestreamwise vorticity(swirling flow)
generated by instability at separation, which reduce the high pressure on top of the
wing before the trailing edge of potential flow and thus allowdownwash, but which
also generate drag. At closer examination of the quantitative distributions of lift and
drag forces around the wing, we discover large lift at the expense of small drag resulting
from leading edge suction, which answers the opening question of of how a wing can
generate a lift/drag ratio larger than 10.

The secret of flight is in concise form uncovered in Fig. 3 showing G2 computed
lift and and drag coefficients of a Naca 0012 3d wing as functions of the angle of attack
α, as well as the circulation around the wing. We see that the lift and drag increase
roughly linearly up to 16 degrees, with a lift/drag ratio of about 13 forα > 3 degrees,

7



and that lift peaks at stall atα = 20 after a quick increase of drag. and flow separation
at the leading edge.

We see that the circulation remains small forα less than 10 degrees without con-
nection to lift, and conclude that the theory of lift of by Kutta-Zhukovsky is fictional
without physical correspondence: There is lift but no circulation. Lift does not origi-
nate from circulation. The incorrect explanation by Kutta-Zhukovsky is illustrated in
Fig. 2 which is found in books on flight aerodynamics.

Inspecting Figs. 4-6 showing velocity, pressure and vorticity and Fig. 7 showing
lift and drag distributions over the upper and lower surfaces of the wing (allowing
also pitching moment to be computed), we can now, with experience from the above
preparatory analysis, identify the basic mechanisms for the generation of lift and drag
in incompressible slightly viscous flow around a wing at different angles of attackα:
We find two regimes before stall atα = 20 with different, more or less linear growth in
α of both lift and drag, a main phase0 ≤ α < 16 with the slope of the lift (coefficient)
curve equal to0.09 and of the drag curve equal to0.008 with L/D ≈ 14, and a final
phase16 ≤ α < 20 with increased slope of both lift and drag. The main phase canbe
divided into an initial phase0 ≤ α < 4−6 and an intermediate phase4−6 ≤ α < 16,
with somewhat smaller slope of drag in the initial phase. We now present details of this
general picture.

10 Phase 1: 0 ≤ α ≤ 4 − 6

At zero angle of attack with zero lift there is high pressure at the leading edge and
equal low pressures on the upper and lower crests of the wing because the flow is essen-
tially potential and thus satisfies Bernouilli’s law of high/low pressure where velocity
is low/high. The drag is about 0.01 and results from rolls of low-pressure streamwise
vorticity attaching to the trailing edge. Asα increases the low pressure below gets
depleted as the incoming flow becomes parallel to the lower surface at the trailing edge
for α = 6, while the low pressure above intenisfies and moves towards the leading
edge. The streamwise vortices at the trailing edge essentially stay constant in strength
but gradually shift attachement towards the upper surface.The high pressure at the
leading edge moves somewhat down, but contributes little tolift. Drag increases only
slowly because of negative drag at the leading edge.

11 Phase 2: 4 − 6 ≤ α ≤ 16

The low pressure on top of the leading edge intensifies to create a normal gradient pre-
venting separation, and thus creates lift by suction peaking on top of the leading edge.
The slip boundary condition prevents separation and downwash is created with the help
of the low-pressure wake of streamwise vorticity at rear separation. The high pressure
at the leading edge moves further down and the pressure belowincreases slowly, con-
tributing to the main lift coming from suction above. The netdrag from the upper
surface is close to zero because of the negative drag at the leading edge, known as
leading edge suction, while the drag from the lower surface increases (linearly)with
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Figure 3: G2 lift coefficient and circulation as functions ofthe angle of attack (top),
drag coefficient (middle) and lift/drag ratio (bottom) as functions of the angle of attack.
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the angle of the incoming flow, with somewhat increased but still small drag slope.
This explains why the line to a flying kite can be almost vertical even in strong wind,
and that a thick wing can have less drag than a thin.

12 Phase 3: 16 ≤ α ≤ 20

This is the phase creating maximal lift just before stall in which the wing partly acts as a
bluff body with a turbulent low-pressure wake attaching at the rear upper surface, which
contributes extra drag and lift, doubling the slope of the lift curve to give maximal lift
≈ 2.5 atα = 20 with rapid loss of lift after stall.

Figure 4: G2 computation of velocity magnitude (upper), pressure (middle), and non-
transversal vorticity (lower), for angles of attack 2, 4, and 8◦ (from left to right). Notice
in particular the rolls of streamwise vorticity at separation.
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Figure 5: G2 computation of velocity magnitude (upper), pressure (middle), and
topview of non-transversal vorticity (lower), for angles of attack 10, 14, and 18◦ (from
left to right). Notice in particular the rolls of streamwisevorticity at separation.
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Figure 6: G2 computation of velocity magnitude (upper), pressure (middle), and non-
transversal vorticity (lower), for angles of attack 20, 22,and 24◦ (from left to right).
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Figure 7: G2 computation of normalized local lift force (upper) and drag force (lower)
contributions acting along the lower and upper parts of the wing, for angles of attack 0,
2 ,4 ,10 and 18◦, each curve translated 0.2 to the right and 1.0 up, with the zero force
level indicated for each curve.
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13 Lift and Drag Distribution Curves

The distributions of lift and drag forces over the wing resulting from projecting the
pressure acting perpendicular to the wing surface onto relevant directions, are plotted
in Fig.7. The total lift and drag results from integrating these distributions around the
wing. In potential flow computations (with circulation according to Kutta-Zhukovsky),
only the pressure distribution orcp-distribution is considered to carry releveant infor-
mation, because a potential solution by construction has zero drag. In the perspective
of Kutta-Zhukovsky, it is thus remarkable that the projected cp-curves carry correct
information for both lift and drag.

The lift generation in Phase 1 and 3 can rather easily be envisioned, while both the
lift and drag in Phase 2 results from a (fortunate) intricateinterplay of stability and
instability of potential flow: The main lift comes from uppersurface suction arising
from a turbulent boundary layer with small skin friction combined with rear separation
instability generating low-pressure streamwise vorticity, while the drag is kept small
by negative drag from the leading edge.

14 Comparing Computation with Experiment

Comparing G2 computations with about 150 000 mesh points with experiments [20,
40], we find good agreement with the main difference that the boost of the lift co-
efficient in phase 3 is lacking in experiments. This is probably an effect of smaller
Reynolds numbers in experiments, with a separation bubble forming on the leading
edge reducing lift at high angles of attack. The oil-film pictures in [20] show surface
vorticity generating streamwise vorticity in accordance with [24, 27, 23].

A jumbojet can only be tested in a wind tunnel as a smaller scale model, and upscal-
ing test results is cumbersome because boundary layers do not scale. This means that
computations can be closer to reality than wind tunnel experiments. Of particular im-
portance is the maximal lift coefficient, which cannot be predicted by Kutta-Zhukovsky
nor in model experiments, which for Boeing 737 is reported tobe 2.73 in landing, cor-
responding to the maximal lift of 2.5 in computation for a long wing and not a full
aircraft. In take-off the maximal lift is reported to be 1.75with 1.5 in computation at a
somewhat smaller angle of attack.

We compute turbulent solutions of the Navier-Stokes equations using a stabilized
finite element method witha posteriori error controlof lift and drag, referred to as
General Galerkinor G2, available in executable open source from [17]. The stabi-
lization in G2 acts as an automatic turbulence model, and thus offers a model forab
initio computational simulation of the turbulent flow around a wingwith the only input
being the geometry of the wing. The computations performed on a single worksta-
tion show good agreement with experiments. We are now performing computations on
super-computers allowing more precise comparisons and paramater studies.
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15 Navier-Stokes with Force Boundary Conditions

For the reader interested in the mathematics we now present the Navier-Stokes equa-
tions along with a stability analysis exhibiting the basic instability mechanism at sepa-
ration which is crucial for the generation of lift, at the expense of some drag.

The Navier-Stokes equations for an incompressible fluid of unit density withsmall
viscosityν > 0 andsmall skin frictionβ ≥ 0 filling a volumeΩ in R

3 surrounding a
solid body with boundaryΓ over a time intervalI = [0, T ], read as follows: Find the
velocityu = (u1, u2, u3) and pressurep depending on(x, t) ∈ Ω ∪ Γ × I, such that

u̇+ (u · ∇)u+ ∇p−∇ · σ = f in Ω × I,
∇ · u = 0 in Ω × I,
un = g onΓ × I,
σs = βus onΓ × I,

u(·, 0) = u0 in Ω,

(1)

whereun is the fluid velocity normal toΓ, us is the tangential velocity,σ = 2νǫ(u) is
the viscous (shear) stress withǫ(u) the usual velocity strain,σs is the tangential stress,
f is a given volume force,g is a given inflow/outflow velocity withg = 0 on a non-
penetrable boundary, andu0 is a given initial condition. We notice the skin friction
boundary condition coupling the tangential stressσs to the tangential velocityus with
the friction coefficientβ with β = 0 for slip, andβ >> 1 for no-slip. We note thatβ is
related to the standardskin friction coeffieientcf = 2τ

U2 with τ the tangential stress per
unit area, by the relationβ = U

2 cf . In particular,β tends to zero withcf (if U stays
bounded).

Prandtl insisted on using a no-slip velocity boundary condition with us = 0 on
Γ, because his resolution of d’Alembert’s paradox hinged on discriminating potential
flow by this condition. On the oher hand, with the new resolution of d’Alembert’s
paradox, relying instead on instability of potential flow, we are free to choose instead a
friction force boundary condition, if data is available. Now, experiments show [47, 11]
that the skin friction coefficient decreases with increasing Reynolds numberRe as
cf ∼ Re−0.2, so thatcf ≈ 0.0005 for Re = 1010 andcf ≈ 0.007 for Re = 105.
Accordingly we model a turbulent boundary layer by a friction boundary condition
with a friction parameterβ ≈ 0.03URe−0.2. For very large Reynolds numbers, we can
effectively useβ = 0 in G2 computation corresponding to slip boundary conditions.

As developed in more detail in [27], we make a distinction between laminar (bound-
ary layer) separation modeled by no-slip and turbulent (boundary layer) separation
modeled by slip/small friction. Note that laminar separation cannot be modeled by
slip, since a laminar boundary layer needs to be resolved with no-slip to get correct
(early) separation. On the other hand, as will be seen below,in turbulent (but not in
laminar) flow the interior turbulence dominates the skin friction turbulence indicating
that the effect of a turbulent boundary layer can be modeled by slip/small friction,
which can be justified by an posteriori sensitivity analysisas shown in [27].

We thus assume that the boundary layer is turbulent and is modeled by slip/small
friction, which effectively includes the case of laminar separation followed by reattach-
ment into a turbulent boundary layer.
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16 Potential Flow

Potential flow(u, p) with velocity u = ∇ϕ, whereϕ is harmonic inΩ and satisfies
a homogeneous Neumann condition onΓ and suitable conditions at infinity, can be
seen as a solution of the Navier-Stokes equations for slightly viscous flow with slip
boundary condition, subject to

• perturbation of the volume forcef = 0 in the form ofσ = ∇ · (2νǫ(u)),

• perturbation of zero friction in the form ofσs = 2νǫ(u)s,

with both perturbations being small becauseν is small and a potential flow velocityu
is smooth. Potential flow can thus be seen as a solution of the Navier-Stokes equations
with small force perturbations tending to zero with the viscosity. We can thus express
d’Alembert’s paradox as the zero lift/drag of a Navier-Stokes solution in the form of a
potential solution, and resolve the paradox by realizing that potential flow is unstable
and thus cannot be observed as a physical flow.

Potential flow is like an inverted pendulum, which cannot be observed in reality be-
cause it is unstable and under infinitesimal perturbations turns into a swinging motion.
A stationary inverted pendulum is a fictious mathematical solution without physical
correspondence because it is unstable. You can only observephenomena which in
some sense are stable, and an inverted pendelum or potentialflow is not stable in any
sense.

Potential flow has the following crucial property which partly will be inherited by
real turbulent flow, and which explains why a flow over a wing subject to small skin
friction can avoid separating at the crest and thus generatedownwash, unlike viscous
flow with no-slip, which separates at the crest without downwash. We will conclude
that gliding flight is possible only in slightly viscous incompressible flow. For sim-
plicity we consider two-dimensional potential flow around acylindrical body such as a
long wing (or cylinder).

Theorem. Letϕ be harmonic in the domainΩ in the plane and satisfy a homogeneous
Neumann condition on the smooth boundaryΓ of Ω. Then the streamlines of the cor-
responding velocityu = ∇ϕ can only separate fromΓ at a point of stagnation with
u = ∇ϕ = 0.
Proof. Letψ be a harmonic conjugate toϕ with the pair(ϕ, ψ) satisfying the Cauchy-
Riemann equations (locally) inΩ. Then the level lines ofψ are the streamlines ofϕ
and vice versa. This means that as long as∇ϕ 6= 0, the boundary curveΓ will be a
streamline ofu and thus fluid particles cannot separate fromΓ in bounded time.

17 Exponential Instability

Subtracting the NS equations withβ = 0 for two solutions(u, p, σ) and(ū, p̄, σ̄) with
corresponding (slightly) different data, we obtain the following linearized equation for
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the difference(v, q, τ) ≡ (u− ū, p− p̄, σ − σ̄) with :

v̇ + (u · ∇)v + (v · ∇)ū + ∇q −∇ · τ = f − f̄ in Ω × I,
∇ · v = 0 in Ω × I,
v · n = g − ḡ onΓ × I,
τs = 0 onΓ × I,

v(·, 0) = u0 − ū0 in Ω,

(2)

Formally, withu andū given, this is a linear convection-reaction-diffusion problem for
(v, q, τ) with the reaction term given by the3 × 3 matrix∇ū being the main term of
concern for stability. By the incompressiblity, the trace of ∇ū is zero, which shows
that in general∇ū has eigenvalues with real value of both signs, of the size of|∇ū|
(with | · | som matrix norm), thus with at least one exponentially unstable eigenvalue.

Accordingly, we expect local exponential perturbation growth of sizeexp(|∇u|t)
of a solution(u, p, σ), in particular we expect a potential solution to be illposed. This
is seen in G2 solutions with slip initiated as potential flow,which subject to residual
perturbations of mesh sizeh, in log(1/h) time develop into turbulent solutions. We
give computational evidence that these turbulent solutions are wellposed, which we ra-
tionalize by cancellation effects in the linearized problem, which has rapidly oscillating
coefficients when linearized at a turbulent solution.

Formally applying the curl operator∇× to the momentum equation of (1), with
ν = β = 0 for simplicity, we obtain thevorticity equation

ω̇ + (u · ∇)ω − (ω · ∇)u = ∇× f in Ω, (3)

which is a convection-reaction equation in the vorticityω = ∇ × u with coefficients
depending onu, of the same form as the linearized equation (2), with similar prop-
erties of exponential perturbation growthexp(|∇u|t) referred to asvortex stretching.
Kelvin’s theorem formally follows from this equation assuming the initial vorticity is
zero and∇× f = 0 (andg = 0), but exponential perturbation growth makes this con-
clusion physically incorrect: We will see below that large vorticity can develop from
irrotational potential flow even with slip boundary conditions.

18 Energy Estimate with Turbulent Dissipation

The standardenergy estimatefor (1) is obtained by multiplying the momentum equa-
tion

u̇+ (u · ∇)u+ ∇p−∇ · σ − f = 0,

with u and integrating in space and time, to get in the casef = 0 andg = 0,

∫ t

0

∫
Ω

Rν(u, p) · u dxdt = Dν(u; t) +Bβ(u; t) (4)

where
Rν(u, p) = u̇+ (u · ∇)u + ∇p
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is theEuler residualfor a given solution(u, p) with ν > 0,

Dν(u; t) =

∫ t

0

∫
Ω

ν|ǫ(u(t̄, x))|2dxdt̄

is theinternal turbulent viscous dissipation, and

Bβ(u; t) =

∫ t

0

∫
Γ

β|us(t̄, x)|2dxdt̄

is theboundary turbulent viscous dissipation, from which follows by standard manip-
ulations of the left hand side of (4),

Kν(u; t) +Dν(u; t) +Bβ(u; t) = K(u0), t > 0, (5)

where

Kν(u; t) =
1

2

∫
Ω

|u(t, x)|2dx.

This estimate shows a balance of thekinetic energyK(u; t) and theturbulent viscous
dissipationDν(u; t) + Bβ(u; t), with any loss in kinetic energy appearing as viscous
dissipation, and vice versa. In particular,

Dν(u; t) +Bβ(u; t) ≤ K(u0),

and thus the viscous dissipation is bounded (iff = 0 andg = 0).
Turbulent solutionsof (1) are characterized bysubstantial internal turbulent dissi-

pation, that is (fort bounded away from zero),

D(t) ≡ lim
ν→0

D(uν ; t) >> 0, (6)

which isKolmogorov’s conjecture[18]. On the other hand, theskin friction dissipation
decreases with decreasing friction

lim
ν→0

Bβ(u; t) = 0, (7)

sinceβ ∼ ν0.2 tends to zero with the viscosityν and the tangential velocityus ap-
proaches the (bounded) free-stream velocity. We thus find evidence that the interior
turbulent dissipation dominates the skin friction dissipation, which supports the use
of slip as a model of a turbulent boundray layer, but which is not in accordance with
Prandtl’s (unproven) conjecture that substantial drag andturbulent dissipation origi-
nates from the boundary layer.

Kolmogorov’s conjecture (6) is consistent with

‖∇u‖0 ∼ 1√
ν
, ‖Rν(u, p)‖0 ∼ 1√

ν
, (8)

where‖ · ‖0 denotes theL2(Q)-norm withQ = Ω × I. On the other hand, it follows
by standard arguments from (5) that

‖Rν(u, p)‖−1 ≤
√
ν, (9)
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where‖ · ‖−1 is the norm inL2(I;H
−1(Ω)). Kolmogorov thus conjectures that the

Euler residualRν(u, p) for smallν is strongly (inL2) large, while being small weakly
(in H−1).

Altogether, we understand that the resolution of d’Alembert’s paradox of explain-
ing substantial drag from vanishing viscosity, consists ofrealizing that the internal tur-
bulent dissipationD can be positive under vanishing viscosity, while the skin friction
dissipationB will vanish. In contradiction to Prandtl, we conclude that drag does not
result from boundary layer effects, but from internal turbulent dissipation, originating
from instability at separation.

19 G2 Computational Solution

We show in [25, 24, 26] that the Navier-Stokes equations (1) can be solved by G2
producing turbulent solutions characterized by substantial turbulent dissipation from
the least squares stabilization acting as an automatic turbulence model, reflecting that
the Euler residual cannot be made pointwise small in turbulent regions. G2 has a
posteriori error control based on duality and shows output uniqueness in mean-values
such as lift and drag [25, 21, 22]

We find that G2 with slip is capable of modeling slightly viscous turbulent flow
with Re > 106 of relevance in many applications in aero/hydro dynamics, including
flying, sailing, boating and car racing, with hundred thousands of mesh points in sim-
ple geometry and millions in complex geometry, while according to state-of-the-art
quadrillions is required [42]. This is because a friction-force/slip boundary condition
can model a turbulent boundary layer, and interior turbulence does not have to be re-
solved to physical scales to capture mean-value outputs [25].

The idea of circumventing boundary layer resolution by relaxing no-slip boundary
conditions introduced in [21, 25], was used in [39, 5] in the form of weak satisfaction
of no-slip, which however misses the main point of using a force condition instead of
a velocity condition in a model of a turbulent boundary layer.

A G2 solution(U,P ) on a mesh with local mesh sizeh(x, t) according to [25],
satisfies the following energy estimate (withf = 0, g = 0 andβ = 0):

K(U(t)) +Dh(U ; t) = K(u0), (10)

where

Dh(U ; t) =

∫ t

0

∫
Ω

h|Rh(U,P )|2 dxdt, (11)

is an analog ofDν(u; t) with h ∼ ν, whereRh(U,P ) is the Euler residual of(U,P ).
We see that the G2 turbulent viscosityDh(U ; t) arises from penalization of a non-zero
Euler residualRh(U,P ) with the penalty directly connecting to the violation (accord-
ing the theory of criminology). A turbulent solution is characterized by substantial
dissipationDh(U ; t) with ‖Rh(U,P )‖0 ∼ h−1/2, and

‖Rh(U,P )‖−1 ≤
√
h (12)

in accordance with (8) and (9).
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20 Wellposedness of Mean-Value Outputs

LetM(v) =
∫

Q vψ dxdt be amean-value outputof a velocityv defined by a smooth
weight-functionψ(x, t), and let(u, p) and(U,P ) be two G2-solutions on two meshes
with maximal mesh sizeh. Let (ϕ, θ) be the solution to thedual linearized problem

−ϕ̇− (u · ∇)ϕ+ ∇U⊤ϕ+ ∇θ = ψ in Ω × I,
∇ · ϕ = 0 in Ω × I,
ϕ · n = g onΓ × I,

ϕ(·, T ) = 0 in Ω,

(13)

where⊤ denotes transpose. Multiplying the first equation byu−U and integrating by
parts, we obtain the following output error representation[25]:

M(u) −M(U) =

∫
Q

(Rh(u, p) −Rh(U,P )) · ϕdxdt (14)

where for simplicity the dissipative terms are here omitted, from which follows the a
posteriori error estimate:

|M(u) −M(U)| ≤ S(‖Rh(u, p)‖−1 + ‖Rh(U,P )‖−1), (15)

where the stability factor

S = S(u, U,M) = S(u, U) = ‖ϕ‖H1(Q). (16)

In [25] we present a variety of evidence, obtained by computational solution of the
dual problem, that for global mean-value outputs such as drag and lift,S << 1/

√
h,

while ‖Rh‖−1 ∼
√
h, allowing computation of of drag/lift with a posteriori error

control of the output within a tolerance of a few percent. In short, mean-value outputs
such as lift and drag are wellposed and thus physically meaningful.

We explain in [25] the crucial fact thatS << 1/
√
h, heuristically as an effect of

cancellationof rapidly oscillating reaction coefficients of turbulent solutions combined
with smooth data in the dual problem for mean-value outputs.In smooth potential
flow there is no cancellation, which explains why zero lift/drag cannot be observed in
physical flows.

As an example, we show in Fig.8 turbulent G2 flow around a car with substan-
tial drag in qualitative accordance with wind-tunnel experiments. We see a pattern of
streamwise vorticity forming in the rear wake. We also see surface vorticity forming
on the hood transversal to the main flow direction. We see similar features in the flow
of air around a wing.

21 Scenario for Separation without Stagnation

We now present a scenario for transition of potential flow into turbulent flow, based
on identifying perturbations of strong growth in the linearized equations (2) and (3) at
separation generating rolls of low pressure streamwise vorticity changing the pressure
distribution to give both lift and drag of a wing.
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Figure 8: Velocity of turbulent G2 flow with slip around a car with courtesy of geome-
try Volvo Cars and computations by Murtazo Nasarov.

As a model of potential flow at rear separation, we consider the potential flow
u(x) = (x1,−x2, 0) in the half-plane{x1 > 0}. Assumingx1 andx2 are small, we
approximate thev2-equation of (2) by

v̇2 − v2 = f2,

wheref2 = f2(x3) is an oscillating mesh residual perturbation depending onx3 (in-
cluding also a pressure-gradient), for examplef2(x3) = h sin(x3/δ), with δ > 0. It
is natural to assume that the amplitude off2 decreases withδ. We conclude, assuming
v2(0, x) = 0, that

v2(t, x3) = t exp(t)f2(x3),

and for the discussion, we assumev3 = 0. Next we approximate theω1-vorticity
equation forx2 small andx1 ≥ x̄1 > 0 with x̄1 small, by

ω̇1 + x1
∂ω1

∂x1
− ω1 = 0,

with the “inflow boundary condition”

ω1(x̄1, x2, x3) =
∂v2
∂x3

= t exp(t)
∂f2
∂x3

.

The equation forω1 thus exhibits exponential growth, which is combined with expo-
nential growth of the “inflow condition”. We can see these features in Fig. 9 show-
ing how opposing flows on the back generate a pattern of co-rotating surface vortices
which act as initial conditions for vortex stretching into the fluid generating rolls of
low-pressure streamwise vorticity, in the case of a wing attaching to the trailing edge.

Altogether we expectexp(t) perturbation growth of residual perturbations of size
h, resulting in a global change of the flow after timeT ∼ log(1/h), which can be
traced in the computations.
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We thus understand that the formation of streamwise streaksas the result of a force
perturbation oscillating in thex3 direction, which in the retardation of the flow in the
x2-direction creates exponentially increasing vorticity inthex1-direction, which acts as
inflow to theω1-vorticity equation with exponential growth by vortex stretching. Thus,
we find exponential growth at rear separation in both the retardation in thex2-direction
and the accelleration in thex1 direction. This scenario is illustrated in principle and
computation in Fig.9. Note that since the perturbation is convected with the base flow,
the absolute size of the growth is related to the length of time the perturbation stays in
a zone of exponential growth. Since the combined exponential growth is independent
of δ, it follows that large-scale perturbations with large amplitude have largest growth,
which is also seen in computations withδ the distance between streamwise rolls as
seen in Fig.3 which does not seem to decrease with decreasingh.

Notice that at forward attachment of the flow the retardationdoes not come from
opposing flows, and the zone of exponential growth ofω2 is short, resulting in much
smaller perturbation growth than at rear separation.

We can view the occurence of the rear surface vorticities as amechanism of sep-
aration with non-zero tangential speed, by diminishing thenormal pressure gradient
of potential flow, which allows separation only at stagnation. The surface vorticities
thus allow separation without stagnation but the price is generation of a system of low-
pressure tubes of streamwise vorticity creating drag in a form of “separation trauma”
or “cost of divorce”.

The scenario for separation can summarized as follows: Velocity instability in retar-
dation as opposing flows meet in the rear of the cylinder, generates a zig-zag pattern of
surface vorticity shown in Fig.9, allowing separation intocounter-rotating low-pressure
rolls, attaching to the trailing edge in the case of a wing, asshown in Fig. 1.

Figure 9: Turbulent separation by surface vorticity forming counter-rotating low-
pressure rolls in flow around a circular cylinder, illustrating separation at the trailing
edge of a wing[23].

22 Stability of the Streamwise Vorticity Perturbed Flow

The rolls of streamwise vorticity swirling flow appearing atseparation because of the
instability of potential flow represent a more stable flow pattern. An indication of sta-
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bility is given by an analysis of the stability of the rotating flow fieldu = (0, x3,−x2)
with linearized problem of the form

v̇2 + v3 = 0, v̇3 − v2 = 0 (17)

which does not have any exponentially unstable solutions. The swirling flow at sepa-
ration is similar to the vortex seen at the drain of a bathtub.

23 Sailing

Both the sail and keel of a sailing boat under tacking againstthe wind, act like wings
generating lift and drag, but the action, geometrical shapeand angle of attack of the
sail and the keel are different. The effective angle of attack of a sail is typically 15-20
degrees and that of a keel 5-10 degrees, for reasons which we now give.

The boat is pulled forward by the sail, assuming for simplicity that the beam is
parallel to the direction of the boat at a minimal tacking angle, by the component
L sin(15) of the lift L, as above assumed to be perpendicular to the effective wind
direction, but also by the following contributions from thedrag assumed to be parallel
to the effective wind direction: The negative drag on the leeeward side at the leading
edge close to the mast gives a positive pull which largely compensates for the positive
drag from the rear leeward side, while there is less positivedrag from the windward
side of the sail as compared to a wing profile, because of the difference in shape.
The result is a forward pull≈ sin(15)L ≈ 0.2L combined with a side (heeling) force
≈ L cos(15) ≈ L, which tilts the boat and needs to be balanced by lift from thethe keel
in the opposite direction. Assuming the lift/drag ratio forthe keel is 13, the forward
pull is then reduced to≈ (0.2 − 1/13)L ≈ 0.1L, which can be used to overcome the
drag from the hull minus the keel.

The shape of a sail is different from that of a wing which givessmaller drag from
the windward side and thus improved forward pull, while the keel has the shape of a
symmetrical wing and acts like a wing. A sail with aoa15− 20 degrees gives maximal
pull forward at maximal heeling/lift with contribution also from the rear part of the
sail, like for a wing just before stall, while the drag is smaller than for a wing at 15-20
degrees aoa (for which the lift/drag ratio is 4-3), with the motivation given above. The
lift/drag curve for a sail is thus different from that of wingwith lift/drag ratio at aoa
15-20 much larger for a sail. On the other hand, a keel with aoa5-10 degrees has a
lift/drag ratio about 13. A sail at aoa 15-20 thus gives maximal pull at strong heeling
force and small drag, which together with a keel at aoa 5-10 with strong lift and small
drag, makes an efficient combination. This explains why modern designs combine a
deep narrow keel acting efficiently for small aoa, with a broader sail acting efficiently
at a larger aoa.

Using a symmetrical wing as a sail would be inefficient, sincethe lift/drag ratio is
poor at maximal lift at aoa 15-20. On the other hand, using a sail as a wing can only be
efficient at a large angle of attack, and thus is not suitable for cruising. This material is
developed in more detail in [30].
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