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Abstract

We present a deterministic foundation of thermodynamics for slightly viscous
fluids or gases based on a 1st Law in the form of the Euler equations express-
ing conservation of mass, momentum and energy, and a 2nd Law formulated in
terms of kinetic energy, internal (heat) energy, work and shock/turbulent dissipa-
tion, without reference to entropy. The Euler equations are regularized in com-
putational solution by a least-squares stabilized finite element method referred
to as EG2. The 2nd Law expresses an irreversible transfer of kinetic energy to
heat energy in shock/turbulent dissipation arising because the Euler equations lack
pointwise solutions. The 2nd Law explains the occurence of irreversibility in for-
mally reversible systems as an effect of instability with blow-up of Euler residuals
combined with finite precision computation, without resort to statistical mechan-
ics or ad hoc viscous regularization. EG2 includes a duality-based posteriori error
control showing that mean-value outputs are computable to tolerances of interest
(while point values are not).

1 Thelst and 2nd Laws of Thermodynamics

Heat, a quantity which functions to animate, derives from an internal fire located
in the left ventricle. (Hippocrates, 460 B.C.)

Thermodynamics is fundamental in a wide range of phenomena from macroscopic
to microscopic scales. Thermodynamics essentially concerns the interplay between
heat energy and kinetic energy in a gas or fluid. Kinetic energy, or mechanical energy,
may generate heat energy by compression or turbulent dissipation. Heat energy may
generate Kinetic energy by expansion, but not through a reverse process of turbulent
dissipation. The industrial society of the 19th century was built on the use of steam
engines, and the initial motivation to understand thermodynamics came from a need
to increase the efficiency of steam engines for conversion of heat energy to useful
mechanical energy. Thermodynamics is closely connected to the dynamics of slightly
viscous and compressible gases, since substantial compression and expansion can occur
in a gas, but less in fluids (and solids).

The development of classical thermodynamics as a rational science based on log-
ical deduction from a set of axioms, was initiated in the 19th century by Carnot [4],
Clausius [3] and Lord Kelvin [21], who formulated the basic axioms in the form of
the 1st Law and the 2nd Law of thermodynamics. The 1st Law states (for an isolated



system) that the total energy, the sum of kinetic and heat energy, is conserved. The 1st
Law is naturally generalized to include also conservation of mass and Newton’s law
of conservation of momentum and then can be expressed as the Euler equations for a
gas/fluid with vanishing viscosity.

The 2nd Law has the form of an inequality dS > 0 for a quantity named entropy
denoted by S, with d.S denoting change thereof, supposedly expressing a basic feature
of real thermodynamic processes. The classical 2nd Law states that the entropy cannot
decrease; it may stay constant or it may increase, but it can never decrease (for an
isolated system).

The role of the 2nd Law is to give a scientific basis to the many observations of
irreversible processes, that is, processes which cannot be reversed in time, like running
a movie backwards. Time reversal of a process with strictly increasing entropy, would
correspond to a process with strictly decreasing entropy, which would violate the 2nd
Law and therefore could not occur. A perpetum mobile would represent a reversible
process and so the role of the 2nd Law is in particular to explain why it is imposssible
to construct a perpetum mobile, and why time is moving forward in the direction an
arrow of time, as expressed by Max Planck [27, 28, 29]: Were it not for the existence
of irreversible processes, the entire edifice of the 2nd Law would crumble.

While the 1st Law in the form of the Euler equations expressing conservation
of mass, momentum and total energy can be understood and motivated on rational
grounds, the nature of the 2nd Law is mysterious. It does not seem to be a consequence
of the 1st Law, since the Euler equations seem to be time reversible, and the role of the
2nd Law is to explain irreversibility. Thus questions are lining up:

o If the 2nd Law is a new independent law of Nature, how can it be justified?

e What is the physical significance of that quantity named entropy, which Nature
can only get more of and never can get rid of, like a steadily accumulating heap
of waste? What mechanism prevents Nature from recycling entropy?

e How can irreversiblity arise in a reversible system?
e How can viscous dissipation arise in a system with vanishing viscosity?
e Why is there no Maxwell demon [25]?

e Why can a gas by itself expand into a larger volume, but not by itself contract
back again, if the motion of the gas molecules is governed by the reversible
Newton’s laws of motion?

e Why is there an arrow of time?



2 TheEnigma

Those who have talked of “chance” are the inheritors of antique superstition and
ignorance...whose minds have never been illuminated by a ray of scientific thought.
(T. H. Huxley)

These were the questions which confronted scientists in the late 19th century, after
the introduction of the concept of entropy by Clausius in 1865, and these showed to be
tough questions to answer. After much struggle, agony and debate, the agreement of
the physics community has become to view statistical mechanics based on an assump-
tion of molecular chaos as developed by Boltzmann [1], to offer a rationalization of the
classical 2nd Law in the form of a tendency of (isolated) physical processes to move
from improbable towards more probable states, or from ordered to less ordered states.
Boltzmann’s assumption of molecular chaos in a dilute gas of colliding molecules, is
that two molecules about to collide have independent velocities, which led to the H-
theorem for Boltzmann’s equations stating that a certain quantity denoted by H could
not decrease and thus could serve as an entropy defining an arrow of time. Increasing
disorder would thus represent increasing entropy, and the classical 2nd Law would re-
flect the eternal pessimistists idea that things always get more messy, and that there is
really no limit to this, except when everything is as messy as it can ever get. Of course,
experience could give (some) support this idea, but the trouble is that it prevents things
from ever becoming less messy or more structured, and thus may seem a bit too pes-
simistic. No doubt, it would seem to contradict the many observations of emergence of
ordered non-organic structures (like crystals or waves and cyclons) and organic struc-
tures (like DNA and human beings), seemingly out of disordered chaos, as evidenced
by the physics Nobel Laureate Robert Laughlin [22].

Most trained thermodynamicists would here say that emergence of order out of
chaos, in fact does not contradict the classical 2nd Law, because it concerns “non-
isolated systems”. But they would probably insist that the Universe as a whole (isolated
system) would steadily evolve towards a “heat-death” with maximal entropy/disorder
(and no life), thus fulfilling the pessimists expectation. The question from where the
initial order came from, would however be left open.

The standard presentation of thermodynamics based on the 1st and 2nd Laws,
thus involves a mixture of deterministic models (Boltzmann’s equations with the H-
theorem) based on statistical assumptions (molecular chaos) making the subject ad-
mittedly difficult to both learn, teach and apply, despite its strong importance. This is
primarily because the question why necessarily dS > 0 and never dS < 0, is not given
a convincing understandable answer. In fact, statistical mechanics allows dS < 0, al-
though it is claimed to be very unlikely. The basic objective of statistical mechanics as
the basis of classical thermodynamics, thus is to (i) give the entropy a physical mean-
ing, and (ii) to motivate its tendency to (usually) increase. Before statistical mechanics,
the 2nd Law was viewed as an experimental fact, which could not be rationalized the-
oretically. The classical view on the 2nd Law is thus either as a statistical law of large
numbers or as a an experimental fact, both without a rational deterministic mechanis-
tic theoretical foundation. The problem with thermodynamics in this form is that it is
understood by very few, if any:



e Every mathematician knows it is impossible to understand an elementary course in ther-
modynamics. (V. Arnold)

e ...no one knows what entropy is, so if you in a debate use this concept, you will always
have an advantage. (von Neumann to Shannon)

e As anyone who has taken a course in thermodynamics is well aware, the mathematics
used in proving Clausius’ theorem (the 2nd Law) is of a very special kind, having only the
most tenous relation to that known to mathematicians. (S. Brush [2])

o Where does irreversibility come from? It does not come form Newton’s laws. Obviously
there must be some law, some obscure but fundamental equation. perhaps in electricty,
maybe in neutrino physics, in which it does matter which way time goes. (Feynman [10])

e For three hundred years science has been dominated by a Newtonian paradigm presenting
the World either as a sterile mechanical clock or in a state of degeneration and increasing
disorder...It has always seemed paradoxical that a theory based on Newtonian mechanics
can lead to chaos just because the number of particles is large, and it is subjectivly de-
cided that their precise motion cannot be observed by humans... In the Newtonian world
of necessity, there is no arrow of time. Boltzmann found an arrow hidden in Nature’s
molecular game of roulette. (Paul Davies [5])

e The goal of deriving the law of entropy increase from statistical mechanics has so far
eluded the deepest thinkers. (Lieb [23])

e There are great physicists who have not understood it. (Einstein about Boltzmann’s sta-
tistical mechanics)

3 Computational Foundation

In this note we present a foundation of thermodynmaics, further elaborated in [14, 18],
where the basic assumption of statistical mechanics of molecular chaos, is replaced by
deterministic finite precision computation, more precisely by a least squares stabilized
finite element method for the Euler equations, referred to as Euler General Galerkin
or EG2. In the spirit of Dijkstra [6], we thus view EG2 as the physical model of
thermodynamics, that is the Euler equations together with a computational solution
procedure, and not just the Euler equations without constructive solution procedure as
in a classical non-computational approach.

Using EG2 as a model of thermodynamics changes the questions and answers and
opens new possibilities of progress together with new challenges to mathematical anal-
ysis and computation. The basic new feature is that EG2 solutions are computed and
thus are available to inspection. This means that the analysis of solutions shifts from a
priori to a posteriori; after the solution has been computed it can be inspected.

Inspecting computed EG2 solutions we find that they are turbulent and have shocks,
which is identified by pointwise large Euler residuals, reflecting that pointwise solu-
tions to the Euler equations are lacking. The enigma of thermodynamics is thus the
enigma of turbulence (since the basic nature of shocks is understood). Computational
thermodynamics thus essentially concerns computational turbulence. In this note and
[18] we present evidence that EG2 opens to a resolution of the enigma of turbulence
and thus of thermodynamics.



The fundamental question concerns wellposedness in the sense of Hadamard, that
is what aspects or outputs of turbulent/shock solutions are stable under perturbations in
the sense that small perturbations have small effects. We show that wellposedness of
EG2 solutions can be tested a posteriori by computationally solving a dual linearized
problem, through which the output sensitivity of non-zero Euler residuals can be es-
timated. We find that mean-value outputs such as drag and lift and total turbulent
dissipation are wellposed, while point-values of turbulent flow are not. We can thus a
posteriori in a case by case manner, assess the quality of EG2 solutions as solutions of
the Euler equations.

We formulate a 2nd Law for EG2 without the concept of entropy, in terms of the
basic physical quantities of kinetic energy K, heat energy E, rate of work 1 and
shock/turbulent dissipation D > 0. The new 2nd Law reads

K=W-D, E=-W+D, 1)

where the dot indicates time differentiation. Slightly viscous flow always develops
turbulence/shocks with D > 0, and the 2nd Law thus expresses an irreversible transfer
of kinetic energy into heat energy, while the total energy £ + K remains constant.

With the 2nd Law in the form (1), we avoid the (difficult) main task of statisti-
cal mechanics of specifying the physical significance of entropy and motivating its
tendency to increase by probabilistic considerations based on (tricky) combinatorics.
Thus using Ockham’s razor [26], we rationalize a scientific theory of major importance
making it both more understandable and more useful. The new 2nd Law is closer to
classical Newtonian mechanics than the 2nd Law of statistical mechanics, and thus can
be viewed to be more fundamental.

The new 2nd Law is a consequence of the 1st Law in the form of the Euler equa-
tions combined with EG2 finite precision computation effectively introducing viscosity
and viscous dissipation. These effects appear as a consequence of the non-existence of
pointwise solutions to the Euler equations reflecting instablities leading to the develop-
ment shocks and turbulence in which large scale Kinetic energy is transferred to small
scale kinetic energy in the form of heat energy. The viscous dissipation can be inter-
preted as a penalty on pointwise large Euler residuals arising in shocks/turbulence, with
the penalty being directly coupled to the violation following a principle of criminal law
exposed in [12]. EG2 thus explains the 2nd Law as a consequence of the non-existence
of pointwise solutions with small Euler residuals. This offers an understanding to the
emergence of irreversible solutions of the formally reversible Euler equations. If point-
wise solutions had existed, they would have been reversible without dissipation, but
they don’t exist, and the existing computational solutions have dissipation and thus are
irreversible.

4 Viscosity Solutions

An EG2 solution can be viewed as particular viscosity solution of the Euler equations,
which is a solution of regularized Euler equations augmented by additive terms mod-
eling viscosity effects with small viscosity coefficients. The effective viscosity in an
EG2 solution typically may be comparable to the mesh size.



For incompressible flow the existence of viscosity solutions, with suitable solution
dependent viscosity coefficients, can be proved a priori using standard techniques of
analytical mathematics. Viscosity solutions are pointwise solutions of the regularized
equations. But already the most basic problem with constant viscosity, the incompress-
ible Navier-Stokes equations for a Newtonian fluid, presents technical difficulties, and
is one of the open Clay Millennium Problems.

For compressible flow the technical complications are even more severe, and it is
not clear which viscosities would be required for an analytical proof of the existence
of viscosity solutions [9] to the Euler equations. Furthermore, the question of well-
posedness is typically left out, as in the formulation of the Navier-Stokes Millennium
Problem, with the motivation that first the existence problem has to be settled. Al-
together, analytical mathematics seems to have little to offer a priori concerning the
existence and wellposedness of solutions of the compressible Euler equations. In con-
trast, EG2 computational solutions of the Euler equations seem to offer a wealth of
information a posteriori, in particular concerning wellposedness by duality.

An EG2 solution thus can be viewed as a specific viscosity solution with a spe-
cific regularization from the least squares stabilization, in particular of the momentum
equation, which is necessary because pointwise momentum balance is impossible to
achieve in the presence of shocks/turbulence. The EG2 viscosity can be viewed to be
the minimal viscosity required to handle the contradiction behind the non-existence of
pointwise solutions. For a shock EG2 could then be directly interpreted as a certain
physical mechanism preventing a shock wave from turning over, and for turbulence as
a form of automatic computational turbulence model.

EG2 thermodynamics can be viewed as form of deterministic chaos, where the
mechanism is open to inspection and can be used for prediction. On the other hand,
the mechanism of statistical mechanics is not open to inspection and can only be based
on ad hoc assumption, as noted by e.g. Einstein [8]. If Boltzmann’s assumption of
molecular chaos cannot be justified, and is not needed, why consider it at all, [24]?
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Figure 1: Joule’s 1845 experiment



5 Joul€'s 1845 Experiment

To illustrate basic aspects of thermodynamics, we recall Joule’s experiment from 1845
with a gas initially at rest with temperature 7' = 1 at a certain pressure in a certain
volume immersed into a container of water, see Fig. 1. At initial time a valve was
opened and the gas was allowed to expand into the double volume while the tempera-
ture change in the water was carefully measured by Joule. To the great surprise of both
Joule and the scientific community, no change of the temperature of the water could be
detected, in contradiction with the expectation that the gas would cool off under expan-
sion. Moreover, the expansion was impossible to reverse; the gas had no inclination
to contract back to the original volume. Simulating Joule’s experiment using EG2, we
discover the following as displayed in Fig. 2-7

Figure 2: Density at two time instants

Figure 3: Temperature at two time instants

Figure 4: Average density in left and right chamber
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Figure 5: Average temperature in left and right chamber

L

Figure 6: Average kinetic energy and temperature: short time

Figure 7: Average kinetic energy in both, left and right chamber(s): long time




In a first phase the temperature drops below 1 as the gas expands with increasing
velocity, and in a second phase shocks/turbulence appear and heat the gas towards
a final state with the gas at rest in the double volume and the temperature back to
T = 1. The total (heat) energy is, of course, conserved since the density is reduced by
a factor 2 after expansion to double volume. We can also understand that the rapidity
of the expansion process makes it difficult to detect any temperature drop in the water
in the inital phase. Altogether, using EG2 we can first simulate and then understand
Joule’s experiment, and we thus see no reason to be surprised. We shall see below as a
consequence of the 2nd Law that reversal of the process with the gas contracting back
to the original small volume, is impossible because the only way the gas can be put
into motion is by expansion, and thus contraction is impossible.

In statistical mechanics the dynamics of the process would be dismissed and only
the initial and final state would be subject to analysis. The final state would then be
viewed as being “less ordered” or “more probable” or having “higher entropy”, because
the gas would occupy a larger volume, and the reverse process with the gas contracting
back to the initial small volume, if not completely impossible, would be “improbable”.
But to say that a probable state is is more probable than an improbable state is more
mystifying than informative. Taking the true dynamics of the process into account in-
cluding in particular the second phase with heat generation from shocks or turbulence,
we can understand the observation of constant temperature and irreversibility in a de-
terministic fashion without using any mystics of entropy based on mystics of statistics.
In [13] we develop a variety of aspects of the arrow of time enforced by the new 2nd
Law.

6 TheEuler Equations

We consider the Euler equations for an inviscid perfect gas enclosed in a volume €2 in
R3 with boundary T" over a time interval I = (0, 1] expressing conservation of mass
density p, momentum m = (my, ma,m3) and internal energy e: Find @ = (p, m,e)
depending on (x,t) € Q = Q x I such that

Ry(@)=p+V-(pu) = 0 inQ,
Rli) 24 V- (mutp) = f inQ,
R.(t)=¢é+ V- (eu) +pV - u g inQ, (2
u-n = 0 onI'xIT
a(-,0) = a® inQ,

where v = % is the velocity, p = (v — 1)e with v > 1 a gas constant, f is a given
volume force, g a heat source/sink and @.° a given initial state. We here express energy
conservation in terms of the internal energy e = pT", with T the temperature, and not as
conservation of the total energy e = e + k with k = % the kinetic energy, in the form
¢+ V - (eu) = 0. Because of the appearance of shocks/turbulence, the Euler equations
lack pointwise solutions, except possible for short time, and regularization is therefore
necessary. For a mono-atomic gas v = 5/3 and (2) then is a parameter-free model, the
ideal form of mathematical model according to Einstein...



7 Energy Estimatesfor Viscosity Solutions

For the discussion we consider the following regularized version of (2) assuming for
simplicity that f = 0and g = 0: Find @,,,, = @ = (p, m, e) such that

R = 0 inQ,
R, (4) = —=V-@Vu)+V(upV-u) inQ,
Ri) = vVul? ingQ, )
u = 0 onl' x I,
a-,0) = 4% inQ,

where v > 0 is a shear viscocity y >> v > 0 if V-« > 0 in expansion (with
w=0if V-u <0 incompression), is a small bulk viscosity, and we use the notation
|[Vul? = 3, [Vu,|?. We shall see that the bulk viscosity is a safety feature putting a
limit to the work pV - u in expansion appearing in the energy balance.

We note that only the momentum equation is subject to viscous regulariztion. Fur-
ther, we note that the shear viscosity term in the momentum equation multiplied by the
velocity « (and formally integrated by parts) appears as a positive right hand side in
the equation for the internal energy, reflecting that the dissipation from shear viscos-
ity is transformed into internal heat energy. In contrast, the dissipation from the bulk
viscosity represents another form of internal energy not accounted for as heat energy;,
acting only as a safety feature in the sense that its contribution to the energy balance in
general will be small, while that from the shear viscosity in general will be substantial
reflecting shock/turbulent dissipation.

Below we will consider instead regularization by EG2 with the advantage that the
EG2 solution is computed and thus is available to inspection, while @, ,, is not. We shall
see that EG2 regularization can be interpreted as a (mesh-dependent) combination of
bulk and shear viscosity and thus (3) can be viewed as an analytical model of EG2 open
to simple form of analysis in the form of energy estimates.

As indicated, the existence of a pointwise solution @ = 4,,, to the regularized
equations (3) is an open problem of analytical mathematics, although with suitable
additional regularization it could be possible to settle [9]. Fortunately, we can leave this
problem aside, since EG2 solutions will be shown to exist a posteriori by computation.
We thus formally assume that (3) admits a pointwise solution, and derive basic energy
estimates which will be paralleled below for EG2. We thus use the regularized problem
(3) to illustrate basic features of EG2, including the 2nd Law.

We shall prove now that a regularized solution « is an approximate solution of the
Euler equations in the sense that R,(4) = 0 and R.(4) > 0 pointwise, R, () is
weakly small in the sense that

X Vv
Ry (@)||-1 < =+ << 1, 4
[ B (@)]| 1 Vi Vi 4)
where || - || _1 denotes the Lo (1; H~1(€2))-norm, and the following 2nd Law holds:
K<W-D, E=-W+D, (5)

10



where

K= | kdx, E:/edz, W= [ pV-ude, D= [ v|Vul®dz.
Q Q Q Q
Choosing v << p we can assure that || R, (t.,,.)||—1 i small. We can view the 2nd
Law as a compensation for the fact that the momentum equation is only satisfied in a
weak sense, and the equation for internal energy with inequality.

The 2nd Law (5) states an irreversible transfer of kinetic energy to heat energy in
the presence of shocks/turbulence with D > 0, which is the generic case. On the other
hand, the sign of W is variable and thus the corresponding energy transfer may go in
either direction.

The basic technical step is to mul2tiply the momentum equation by u, and use the

|l

mass balance equation in the form 5-(p + V - (pu)) = 0, to get

E+V-(ku)+pV-u—V(upV-u) -u—V-©Vu)-u=0. (6)

By integration in space it follows that K < W — D, and similarly it follows that
E = —W + D from the equation for ¢, which proves the 2nd Law. Adding next (6) to
the equation for the internal energy e and integrating in space, gives

f(—i—E"—i—/ up(V - u)?dx =0,
Q
and thus after integration in time
K1)+ E(1)+ / pp(V - u)? dzdt = K(0) + E(0). ©)

Q

We now need to show that E(1) > 0 (or more generally that F(¢) > 0 for t € I), and
to this end we rewrite the equation for the internal energy as follows:

Dye + eV -u = v|Vul|?,

where D,e = é + u - Ve is the material derivative of e following the fluid particles
with velocity w. Assuming that e(x,0) > 0 for z € €, it follows that e(x, 1) > 0 for
x € Q, and thus E(1) > 0. Assuming K (0) + E(0) = 1 the energy estimate (7) thus
shows that

/ pp(V - u)? dadt < 1, (8)
Q

and also that E(¢t) < 1 for ¢t € I. Next, integrating (6) in space and time gives,
assuming for simplicity that K (0) = 0,

1 1
K(1)+/ v(Au)?dedt = / pV~uda:dt7/ pp(V -u)?dedt < —/ pdxdt < —,
Q Q Q rJe K
where we used that [, pdzdt = (y — 1) [, edzdt < [} E(t)dt < 1. It follows that
1
/ v|Vul|?dedt < —. 9)
Q H

11



By standard estimation (assuming that p is bounded), it follows from (8) and (9) that

v
\/ﬁ Y
with C a constant of moderate size, which completes the proof. As indicated, || R, (@) -1

is estimated by computation, as shown below. The role of the analysis is thus to ratio-
nalize computational experience, not to replace it.

1R (@) -1 < C(VE+

8 Compression and Expansion

The 2nd Law (5) states that there is a transfer of kinetic energy to heat energy if W < 0,
that is under compression with V - v < 0, and a transfer from heat to kinetic energy
if W > 0, that is under expansion with V - « > 0. Returning to Joule’s experiment,
we see by the 2nd Law that contraction back to the original volume from the final rest
state in the double volume, is impossible, because the only way the gas can be set into
motion is by expansion. To see this no reference to entropy is needed.

9 A 2nd Law witout Entropy

We note that the 2nd Law (5) is expressed in terms of the physical quantities of ki-
netic energy K, heat energy E, work W, and dissipation D and does not involve any
concept of entropy. This relieves us from the task of finding a physical significance of
entropy and justification of a classical 2nd Law stating that entropy cannot decrease.
We thus circumvent the main difficulty of classical thermodynamics based on statis-
tical mechanics, while we reach the same goal as statistical mechanics of explaining
irreversibility in formally reversible Newtonian mechanics.

We thus resolve Loschmidt’s paradox [24] asking how irreversibility can occur in
a formally reversible system, which Boltzmann attempted to solve. But Loschmidt
pointed out that Boltzmann’s equations are not formally reversible, because of the as-
sumption of molecular chaos that velocities are independent before collision, and thus
Boltzmann effectively assumes what is to be proved. Boltzmann and Loschmidt’s met
in heated debates without conclusion, but after Boltzmann’s tragic death followed by
the experimental verification of the molecular nature of gases, Loschmidt’s paradox
evaporated as if it had been resolved, while it had not. Postulating molecular chaos still
amounts to assume what is to be proved.

10 Comparison with Classical Thermodynamics
Classical thermodynamics is based on the relation
Tds = dT' + pdv, (10)

where ds represents change of entropy s per unit mass, dv change of volume and d7'
denotes the change of temperature 7" per unit mass, combined with a 2nd Law in the

12



form ds > 0. On the other hand, the new 2nd Law takes the symbolic form
dT' + pdv > 0, (11)

effectively expressing that T'ds > 0, which is the same as ds > 0 since T > 0. In
symbolic form the new 2nd Law thus expresses the same as the classical 2nd Law,
without referring to entropy.

Integrating the classical 2nd Law (10) for a perfect gas with p = (v — 1)pT and

dv = d(%) = —92, we get
ar p 1 ar dp
ds = — —d(=) = — 1 — s
and we conclude that with e = pT,
_ e
s =log(Tp' ™) = log(5) = log(e) —7log(p) (12)

up to a constant. Thus, the entropy s = s(p, e) for a perfect gas is a function of the
physical quantities p and e = pT', thus a state function, suggesting that s might have
a physical significance, because p and e have. We thus may decide to introduce a
quantity s defined this way, but the basic questions remains: (i) What is the physical
significance of s? (ii) Why is ds > 0? What is the entropy non-perfect gas in which
case s may not be a state function?

To further exhibit the connection between the classical and new forms of the 2nd
Law, we observe that by the chain rule,

1 1
pDys = gDue—'yDup = ?(Due+7pTV~u) = ?(Due+ev~u+(’yfl)pTV~u)

since by mass conservation D, p = —pV -u. It follows that the entropy S = ps satisfies

. 1 1
SJrV-(Su):pDus:?(é+V-(eu)+pV~u):?Re(ﬁ). (13)
A solution @ of the regularized Euler equations (3) thus satisfies
S+ V- (Su) = %|Vu|2 >0 inQ, (14)

where S = plog(ep~). In particular, in the case of the Joule experiment with T'
the same in the initial and final states, we have s = ~1log(V') showing an increase of
entropy in the final state with larger volume.

We sum up by noting that the classical and new form of the second law effectively
express the same inequality ds > 0 or T'ds > 0. The new 2nd law is expressed in
terms of the fundamental concepts of of kinetic energy, heat energy and work without
resort to any form of entropy and statistical mechanics with all its complications. Of
course, the new 2nd Law readily extends to the case of a general gas.

13



11 EG2

EG2 in cG(1)cG(1)-form for the Euler equations (2), reads: Find & = (p, m,¢€) € V},
such that for all (p, u,€) € W),

((Rp(4), p)) + ((hu-Vp,u-Vp)) =0,
(R (@),w)) + ((hu - Vm,u - Va)) + (vs.Vu, Va)) = 0, (15)
((Re(@),€)) + ((hu - Ve, u-Ve)) =0,

where V;, is a trial space of continuous piecewise linear functions on a space-time
mesh of size h satisfying the initial condition %(0) = 4° with u € V;, defined by
nodal interpolation of =, and Wj, is a corresponding test space of function which
are continuous piecewise linear in space and piecewise constant in time, all functions
satisfying the boundary condition « - n = 0 at the nodes on I". Further, ((, -)) denotes
relevant Lo (Q) scalar products, and vs. = h?| R, ()| is a residual dependent shock-
capturing viscosity, see [18]. We here use the conservation equation for the total energy
e rather than for the internal energy e.

EG2 combines a weak satisfaction of the Euler equations with a weighted least
squares control of the residual R(a) = (R,(a), Rm (%), Re(2)) and thus represents
a midway between the Scylla of weak solution and Carybdis of least squares strong
solution.

12 The2nd Law for EG2

Subtracting the mass equation with p a nodal interpolant of % from the momentum
equation with ¢ = w and using the heat energy equation with € = 1, we obtain the
following 2nd Law for EG2 (up to a v/h-correction controled by the shockcapturing
viscosity [20]):

K=W —Dy,, E=-W+Dy, (16)

where
Dy, = ((hpu - Vu,u - Vu)). @17

For solutions with turbulence/shocks, Dy, > 0 expressing an irreversible transfer of
kinetic energy into heat energy, just as above for regularized solutions. We note that
in EG2 only the momentum equation is subject to viscous regularization, since Dy,
expresses a penalty on v - Vu appearing in the momentum residual.

13 The Stabilization in EG2

The stabilization in EG2 is expressed by the dissipative term Dj, which can be viewed
as a weighted least squares control of the term pu - Vu in the momentum residual. The
rationale is that least squares control of a part of a residual which is large, effectively
may give control of the entire residual, and thus EG2 gives a least squares control
of the momentum residual. But the EG2 stabilization does not correspond to an ad
hoc viscosity, as in classical regularization, but to a form of penalty arsing because
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Euler residuals of turbulent/shock solutions are not pointwise small. In particular the
dissipative mecahnism of EG2 does not correspond to a simple shear viscosity, but
rather to a form of “streamline viscosity” preventing fluid particles from colliding while
allowing strong shear.

14 Output Uniqueness and Stability

Defining a mean-value output in the form of a space-time integral ((4,v)) defined by
a smooth weight function ¢, we obtain by duality-based error estimation as in [17] an
a posteriori error estimate of the form

|((@,9)) = (@, )] < SIR@)] -1 + (1R(@)[| 1) < S([RR@)]o + ([hR(@)[0),

where ¢ and « are two EG2 solutions on meshes of meshsize h, S = S(4,w) is a sta-
blity factor defined as the H*(Q)-norm of a solution to a linearized dual problem with
coedd with the data 1> and || - || is the Ly (Q)-norm. An output ((4, ) is wellposed if
S||hR(@)|lo < TOL with S = S(,4)) and TOL a small tolerance TOL of interest.

In the case shocks/turbulence || R(@) | o will be large ~ h=1/2, while ||hR(@) || o may
be small ~ h'/2, and an output thus is wellposed if S << h~'/2. In [18] we present
computed stability factors for different weights ¢, with global support corresponding to
global mean-value outputs and local support to pointwise outputs. We find that global
mean-values of turbulent flow are wellposed, but local not.

15 Reactive Flow

We now generalize the Euler equations (18) to a mixture of N gas species, undergoing
M chemical reactions: We seek the species densities p1, ..., pn, the mixture momentum
m = pu With u = (u1, ug, uz) the mixture velocity and p = >, p; the mixture density,
and the mixture internal energy e satisfying

pl—l—V(pzu) = S, in Q, i=1,...,N,
m+V-(mu)+Vp = f inQ,
e+ V-(eu)+pV-u = 3 s in Q, (18)
u-n = 0 onl' x I,
a(-,0) = a° inQ,

where s; is the net reaction rate of species i from all the reactions, and we assume the
following constitutive relations

N
e=> piri+pl

i=1

with 7" the mixture temperature and r; the heat of formation of species 4, together with
a mixture pressure p given as the sum of the partial pressures from the different species:

p:C’TZ%.
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where W; is the molecular weight of species ¢ and C' a positive constant. Evidently,
we assume here that the species velocities are all equal to the mixture velocity and that
all species take on the mixture temperature. We assume that the reaction rate s; of
species i is given by an Arrhenius law. The new 2nd Law takes the follwoing form in
the present case:

K=W -D, (19)

E: —W—FD—’-ZSZ'H, (20)

where D > 0 is the turbulent dissipation, and The 2nd Law shows irreversibility of
turbulent mixing and heating, while the chemical reactions as such, are reversible.

16 Dual Linearized Problem

The Euler equations in the variables & = (p, u, e) take the following form, using that
p=(v-1e

Vou = 0 inQ,
bt i £V (pun) 4 (Ve — f G
e+V-(eu)+(y—1eV-u = g inQ, (21)
u-n = 0 on'xIT
a(-,0) = a° inQ.

The corresponding dual linearized problem in the variables ¢ = (pq, ¢, eq) With ¢ =
(01, p2, 3), takes the form

—pa—u-Vpa—u-@ =3 uu-Vo; = =i,
—pp —pu-Vo —pVpg—eVeqg— (v —1)V(eeq) — pd>_,uiVy; = —py,
—ég—u-Veg+(vy—1)V-ueqg—(y=1)V-o = —t,

(22)

in Q, with data 1/3 = (¥,,1,1.) depending on the output. Eliminating ¢ from the
first equation using the second we obtain the following dual linear convection-reaction
initial value problem linearized at @: Find ¢ such that in @

derZ U - V(p]u]Jr Sy -Veg+ Iy - Vieea) = 9p+u-1,
G+ u- w+z u1Vgpz+Vpd+ eved+ Wplweed) = 9, (23)
éatu-Veg—(y—1)V- ued+( —1)V-p = 1,

with ¢(-,0) = 0 in Q. Note that since u - n = 0, no boundary conditions on ¢ are
needed.
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