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This is page 1
Printer: Opaque this

To KTH Students Fall 2010

Yes, you can! (Zlatan Ibrahimovic)

Almost always, the creative dedicated minority has made the world
better. (Martin Luther King, Jr.)

Do not worry about your problems with mathematics, I assure you
mine are far greater. (Einstein)

There is nothing so easy but that it becomes difficult when you do
it reluctantly. (Pythagoras)

Dear KTH Student:

The course you are now about to start gives you a chance to acquaint
yourself with a new mathematics education motivated by the revolutionary
changes of science and technology brought by the computer, IT, Internet
and Google.

The Success of Google: How?

Google is founded on a mathematical search algorithm using the singular
value decomposition SVD of a matrix. Is Google a success?
Did you get the message? If not, see The Anatomy of Search Engines

and Latent Semantic Indexing.

http://www.youtube.com/watch?v=yObIYDOv1Qc
http://www.youtube.com/watch?v=KUP_ISA030c&feature=related
http://www.youtube.com/watch?v=SFu5BlJClYI
http://www.youtube.com/watch?v=TWJoWUvixm0&feature=related
http://plato.stanford.edu/entries/pythagoras/
http://techcrunch.com/2009/06/06/the-early-google-papers-rajeev-motwanis-contributions-to-search/
http://en.wikipedia.org/wiki/Singular_value_decomposition
http://infolab.stanford.edu/~backrub/google.html
http://en.wikipedia.org/wiki/Latent_semantic_indexing
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FIGURE 1. Body and Soul.

New Mathematics Education: BodyandSoul

The new math education is called BodyandSoul with the following meaning:

• Soul: brains, thinking, analytical mathematics, programming,

• Body: number-crunching, computation by computer.

You are now in your second year of university engineering education and
have not so far met much of the revolution, right? But now it comes! I hope
you are ready! The starting point is:

• IT is based on math

• BodyandSoul is IT math.

The new math education gives you new skills and tools which open to a
new role as student:

• Constructive!

• Do yourself!

• Instruct the computer!

• Model the World!

• Analyze!

http://www.bodysoulmath.org/
http://knol.google.com/k/is-the-world-a-computation
http://knol.google.com/k/the-body-and-soul-project
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• Understand!!

• Design-Invent!! Develop your own Apple Apps.

Why Should I Care about My Math Education?

The mathematics education you have met so far at KTH follows a tradition
going back more than 100 years, in fact 300 years back to the Calculus and
Linear Algebra of Newton, Leibniz and Descartes forming the basis of the
scientific revolution. This is a mathematics without computer with simple
computational tools such as tables, slide rule and mechanical calculator.
The computer is now changing the use of mathematics in science, engi-

neering and society: Google founders Larry Page and Sergey Brin under-
stood that basic tools of mathematics such as SVD could be used to con-
struct a search engine...
Computational mathematics can thus be used to index and search in-

formation, but computational mathematics is also the tool for creating
new information in the form of pictures, movies, sound, science, technol-
ogy, medicin, entertainment, computer games, simulators,...,in short for
simulation of real and imagined worlds.
After 300 years a new scientific revolution is now changing life and work,

an information revolution based on computational mathematics, but the
educational system is slow to react because tradition dominates.
How then to react as a student? There are two possibilities:

• Follow the tradition without asking questions.

• Think for yourself, look around, listen and ask questions:

• Why/What Mathematics for Engineers?

If you go for the second option, BodyandSoul can give you a platform to
construct-simulate-understand-control-design as, for example:

• scientist,

• engineer,

• generalist with specialist competence in many fields,

• manager.

What Is the Role of Mathematics?

To get started we want to confront you a couple of questions: First about
mathematics in general:

http://www.apple.com/webapps/
http://knol.google.com/k/return-of-descartes
http://en.wikipedia.org/wiki/Scientific_revolution
http://en.wikipedia.org/wiki/History_of_Google
http://knol.google.com/k/simulation-technology
http://knol.google.com/k/why-teach-mathematics#view
http://knol.google.com/k/why-what-mathematics-for-engineers
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• What is the role of mathematics in science and engineering?

• What is the connection between mathematics and computer?

• What is the role of mathematics in the IT age?

What Did I Learn from Mathematics Education?

Next ask yourself about your experience from mathematics education:

• What is the role of mathematics in your education?

• What did I learn during 12 years of school math education?

• What did I learn during 1 year of KTH math education?

• Why is 2× 3 = 3× 2?

• What is
√
2 and how is it computed?

• What is meant by saying that f(t) is a function of t?

• What is the connection between integral and derivative?

• How is the exponential function exp(x) = ex defined?

• How can you find the value exp(x) for a given x, with and without a
computer or table of values?

• How is the trigonometric function sin(x) defined and how can it be
computed?

• How are Bessel functions defined and computed?

• Why are exp(x) and sin(x) called Elementary Functions EF?

• What is the role of differential equations in science and technology?

Short concise answers, please!

Tradition vs Motivation

The objective of the above questions is to make you aware of the fact that
engineering education is based on a tradition without the computer, which
still dominates basic courses in mathematics, mechanics and physics and
thereby sets the frame for the whole education. Tradition!
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FIGURE 2. Important to be motivated! But motivated by what?

Do you dare to ask yourself if the education you meet really prepares
you in a good way for a professional life in the IT-age? Is there really a
need for a new math education? Yes or No?
If you answer Yes, then you are motivated to learn something new in this

course, something useful which you can carry with you in your mind and
in your computer as you go on to cope with the World and make it better.
Then your are motivated to read the text, reflect about what you read,
start to ask questions, look around and develop skills and understanding.
If you answer No, then I ask you to motivate: Is this because you have

studied the question yourself or because someone has told you so? If it is not
your own conviction after careful study, but an idea taken from somebody,
for example a math teacher, ask that person to motivate the No, and check
if it is convincing.

New Paradigm: Computational Mathematics

Mathematics has two forms:

• symbolic: formulas on paper: analytical

• constructive: computer follows instructions of computer program: com-
putational
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New Paradigm in Nutshell

• space coordinate x

• time coordinate t

• state of a system: function u(t) (assuming only dependence on t)

• rate of change of state: time derivative u̇ = ∂u
∂t

• connection between u̇(t) and u(t): u̇(t) = f(u(t)) with f(u) given

• Differential Equation DE :

• u̇(t) = f(u(t)) for t > 0 with u(0) given initial value

• solve DE by time stepping:

• u((n+ 1)dt) = u(ndt) + f(u(ndt))dt, n = 0, 1, 2, 3, ..., dt time step

• present state plus update f(u(ndt)dt gives next state

• human gives f , computer does the job of time stepping.

Elementary Functions by Time Stepping

• u(t) = exp(t) solves u̇(t) = u(t) for t > 0, u(0) = 1

• time stepping exp(t+ dt) ≈ exp(t) + exp(t)dt = (1 + dt) exp(t)

• Elementary functions EF solve elementary DEs

• Values of EF computed by solving DE

• DE for sin(t)?

Read! Reflect! Question! Look Around! Express!

Read the text:

• Preface

• Part I: Icarus and Daedalus!

• Part II: Newton’s World of Mechanics

• Part IV: Leibniz’ World of Calculus.
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FIGURE 3. Read the Text!! Question the Text!!

Enter into

• Part III: World of Games.

Reflect on

• What is the essence?

• What is new?

• What is of interest to you?

Look around for connecting ideas:

• In your math books?

• In your physics books?

• On Internet?

Express

• Summary of most essential aspects!

• Questions?

Simplicity, Generality, Functionality

Computational mathematics combines

• simplicity of basic principles,

http://extensions.services.openoffice.org/en/project/Read_Text
http://changingminds.org/techniques/questioning/socratic_questions.htm
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FIGURE 4. Think! And Model the World.

• generality of application,

• work of the mind on principles, planning, organization, goal, meaning,

• work of the computer for routine computation

into

• general purpose tool,

• with large variety of special applications,

• automation of mathematical modeling.

Remember that understanding of physical phenomena comes from math-
ematical modeling and understanding of the mathematical model using
analytical mathematics (formulas).
Combining analytical and computational mathematics, you can fly:

• (simple) analytical math necessary for understanding

• analytical computation: tricky, difficult, special,

• digital computation: simple, effcient with computer as work horse,

• analytical computation: walk by foot from one village to another,

• computational math: helicopter anywhere.

For some perspective, take a look at

• Scientists and Science in Cartoons

http://www.atariarchives.org/deli/think.php
http://www.cospa.ntu.edu.tw/aappsbulletin/data/19-6/22StevenWeinberg.pdf
http://knol.google.com/k/scientists-and-science-in-cartoons
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FIGURE 5. The Cloud: What does it mean to you and your education?

• Did Einstein Not Understand Math?

• My Book of Knols

0.1 Formulate Your Goal: Find Motivation

I suggest that after reading this preface and browsing through Part I, you
identify and write down your own motivation to engage in this course and
what you expect to get out of it.
Why should you do this? Because it can be helpful to be motivated, and

if your are not motivated, to understand why not. After the course you can
then sum up and compare with your initial value.
It is about you and your education: If you like math, technology and

computers, BodyandSoul can help you to develop your interest. If you are
not a fan of traditional courses in mathematics (or mechanics and physics),
BodyandSoul offers you an alternative new approach which you may ap-
preciate better.

http://www.microsoft.com/presspass/presskits/cloud/videogallery.aspx
http://knol.google.com/k/did-einstein-not-understand-math
http://knol.google.com/k/my-book-of-knols
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FIGURE 6. KTH Vision?

Please send your formulated motivation and expectation (short concise)
by email to cgjoh@csc.kth.se. This can be very helpful for the further de-
velopment of the program, and also in your own development.

0.2 KTH Vision? Your Vision?

Compare with KTH in the service of people, for the society of tomorrow:

• Renewal and dynamics will be the key terms for the next few years.

• Knowledge is, and will always be, the most decisive of human beings
assets and consequently must be managed and renewed with great care.

Dynamical renewal for tomorrow is the leading principle of BodyandSoul.
The statement Knowledge must be renewed with great care, is less clear:
Does it express that KTH waits to renew until the new has become old?
As a student at KTH you are part of the KTH vision and thus you may
want to know what it is. So what is it? Anybody you can ask?

0.3 Discussion Forum

You are invited to take part in the BodyandSoul Discussion Forum, which
you find on my blog, or by a link from my home page.
Please express your reactions to BodyandSoul, positive and negative!

Your input is important to make it better! Your questions are welcome!

Stockholm October 24 2010

Claes Johnson

http://www.cs.umass.edu/faculty/robotics-computer-vision-and-graphics
http://www.kth.se/polopoly_fs/1.9709!devpl09.pdf
http://claesjohnson.blogspot.com/2010/10/bodyandsoul-discussion-forum.html
http://claesjohnson.blogspot.com
http://www.nada.kth.se/~cgjoh/
http://www.historyguide.org/europe/lecture6.html
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I admit that each and every thing remains in its state until there is
reason for change. (Leibniz)

Perhaps it is better to be irresponsible and right, than to be respon-
sible and wrong. (Winston Churchill)

You are not only responsible for what you say, but also for what you
do not say. (Martin Luther)

Great bodies of people are never responsible for what they do. (Vir-
ginia Woolf)

Crisis without Responsibles

Nobody claims that todays mathematics education is functional. A steady
flow of increasingly alarming reports tell that student achievements steadily
decrease under the instruction by mathematics teachers with steadily de-
creasing competence. The decline seems to be bounded below only by zero,
and the hope that the process can be reversed is vanishing. Google gives
70.000 hits on “crisis in mathematics education”: 1, 2, 3, 4, 5, 6,...
But nobody is responsible for the resultless education: On each level

the responsibility is shifted to the previous level. The reason that uni-
versity mathematics fails is that highschool mathematics does not de-
liver the required prerequisites, and the reason highschool mathematics
is a hopeless project, are missing skills from basic school mathematics,
and so on to missed opportunities in the cradle (new research shows that

http://www.boston.com/bostonglobe/editorial_opinion/oped/articles/2009/05/21/the_crisis_in_math_science/
http://www.informaworld.com/smpp/content~db=all~content=a746858301
http://www.education.com/reference/article/crisis-math-education/
http://www.education.com/magazine/article/obama_math_science_tech_ed/
http://academic.sun.ac.za/mathed/AMESA/NGO.htm
http://www.cbsnews.com/stories/2006/02/14/national/main1318395.shtml
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chicks can count to three...). In particular, mathematics professors at the
top of the pyramid at the universities are not responsible for the dysfunc-
tional mathematics teaching and training of mathematics teachers. And of
course politicians cannot be held responsible because they have to rely on
the high priests of the mathematics education church.

Stalemate at High Cost

Nobody is responsible, and nobody is allowed to take on the responsibility
because that would upset the established order. It is a complete stalemate
where no move is possible. But the stalemate is costly because lots of human
and financial resources are lost. Mathematics eduaction is a big operation
involving many students, many teachers and many hours. The total cost
of a public school student per year may be 20.000 US dollars/year, out of
which say 20 precent is spent on mathematics, thus 4000 dollars/year.
In Sweden this would amount to about 4 billion dollars/year or about 4

percent of the total state budget.

The Reason for the Crisis

To come out of the mathematics education crisis, it is necessary to under-
stand the true reason for the crisis. Why did mathematics education work
in the 1950s (more or less) but does not today (for sure). Yes, you are right,
it is the computer!
The computer is changing our lives and the computer is changing math-

ematics in particular, because the computer is based on mathematics, on
computational mathematics.
Traditional mathematics education teaches elementary arithmetics of in-

teger and rational numbers used in solution of simple (linear and quadratic)
algebraic equations and elementary analytic geometry.
But computers use computational mathematics or computer mathemat-

ics, which is not part of traditional mathematics education. There is thus
a mismatch today between the use of mathematics in science, technology
and society, and mathematics education, and this mismatch is the root of
the crisis. No education can thrive under such conditions.

Bridging the Gap and Resolving the Crisis

It is thus necessary to reform mathematics education to make it conform
with the use of mathematics in the booming computer age. The questions

http://www.telegraph.co.uk/science/science-news/5083799/Newborn-chicks-can-count-at-least-up-to-three-study-suggests.html
http://en.wikipedia.org/wiki/Stalemate
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and answers are new, because computational mathematical technology of-
fers new capabilities. The computational technology is new, but the basic
mathematics of Calculus and analytical geometry is much the same. Al-
together we experience today a realization of the vision of Descartes and
Leibniz of automation of mathematical modeling in the form of a Digital
Calculus.
Computational mathematics allows mathematics education to expand

the scope from simple algebraic equations to general differential equations,
which can transform mathematics education from a meaningless excercise
meaningful only to a few selected, into a meaningful activity meaningful to
many.

From Tricks to Principles

The basic idea of information technology is to free the human spirit to
creative work by letting the computer do tedious routine computation,
such as searching for which the computer is both able and willing.
Instead of memorizing and practicing algorithms for long division of nat-

ural numbers in an endless number of meaningless exercises, students are
encouraged to themselves write computer code for the algorithm of long
division and then let the computer do the tedious routine work. Similarly,
students may code the differential equations modeling the World and then
let the computer solve the equations as a tool to discover the World.
A physical process is then seen as an analog computational chain process

converting input to output according to certain physical laws, which is
simulated by computation transforming digital input to output according
to computer codes expressing the laws. This is the basic principle carrying
the BodyandSoul program presented in this book.

Constructive Mathematics, God and
√
2

Mathematical modeling has two basic dual aspects: one symbolic-analytical
and the other constructive-numerical, which reflect a duality between the
infinite and the finite, or the continuous and the discrete. The two aspects
have been closely intertwined throughout the development of modern sci-
ence from the development of calculus in the work of Euler, Lagrange,
Laplace and Gauss into the work of von Neumann in our time. For exam-
ple, Laplace’s monumental Mécanique Céleste in five volumes presents a
symbolic calculus for a mathematical model of gravitation taking the form
of Laplace’s equation, together with massive numerical computations giv-
ing concrete information concerning the motion of the planets in our solar
system.
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However, beginning with the search for rigor in the foundations of cal-
culus in the 19th century, a split between the symbolic and constructive
aspects gradually developed represented by the formalist/logicist school by
Hilbert/Russell and the intuitionist school by Brouwer. A constructivist
would argue that the real number

√
2 as the positive solution of the equa-

tion x2 = 2 exists, because any given finite number of digits of its decimal
expansion can be computed in a finite number of arithmetical operations,
e.g. by Newton’s method. A formalist/logicist could argue that

√
2 exists

because non-existence would contradict the axiom of existence of a least
upper bound of a set of real numbers bounded above. A constructivist
does not believe that existence can come from contradiction, only from
construction.
The formalist/logiscist proof of the existence of the real number

√
2 is

similar to a proof of the existence of God from a contradiction of non-
existence with Allmightyness, because Allmightyness must include exis-
tence (certainly Allmightyness cannot lack anything, in particular not ex-
istence). The constructvist would instead point to something marvellous
like a new-born child, as a concrete proof of existence of something God-
like.
A constructivist would say that finite decimal approximations of

√
2 of

arbitrary finite precision can be computed and thus do exist, but that an
infinite decimal expansion of infinite precision does not exist, at least not
in the same sense. A formalist/logicist does not make this distinction.
This argument extends in BodyandSoul from the simple algebraic equa-

tion x2 = 2 to general differential equations, for which approxinate so-
lutions of finite precision can be (and are) computed and thus exist by
construction, while the question of existence of an infinitely precise exact
solution in any generality neither can nor has to be answered.

Split and Fusion

The split accelerated with the invention of the electronic computer in the
1940s, after which the constructive aspects were pursued in the new fields
of numerical analysis and computing sciences, primarily developed outside
departments of mathematics. The unfortunate result today is that symbolic
mathematics and constructive-numerical mathematics by and large are sep-
arate disciplines and are rarely taught together. Typically, a student first
meets calculus restricted to its symbolic form and then much later, in a
different context, is confronted with the computational side. This state of
affairs lacks a sound scientific motivation and causes severe difficulties in
courses in physics, mechanics and applied sciences which build on mathe-
matical modeling.
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New possibilities are opened by creating from the start a synthesis of con-
structive and symbolic mathematics representing a synthesis of Bodyand-
Soul: with computational techniques available the students may become
familiar with nonlinear systems of differential equations already in early
calculus, with a wealth of applications. Another consequence is that the
basics of calculus, including concepts like real number, Cauchy sequence,
convergence, fixed point iteration, contraction mapping, is lifted out of the
wardrobe of mathematical obscurities into the real world with direct prac-
tical importance. In one shot one can make mathematics education both
deeper and broader and lift it out of its present deep crisis. This is the
purpose of the BodyandSoul program.

Proofs

Students often find matematical proofs difficult to appreciate, in particular
non-constructive proofs, while step-by-step constructions, like the assembly
of IKEA furniture according to a list of instructions, is understood by most
people, even professors.
In BodyandSoul elementary functions, like the logarithm, exponential

and trigonometric functions, are constructed by the students as solutions
of elementary differential equations. Students are then encouraged to ver-
ify (prove) basic properties of elementary functions such as exp(a + b) =
exp(a) exp(b), as consequences of the defining differential equations (with
support by direct observation from computation).

Why Spend Time on Computer Games?

BodyandSoul students are encouraged to construct computer games based
on mathematical models of real and imagined phenomena. The purpose is
both to activate the student and to bring out the essential input-output
aspect of mathematical modeling. The player of a computer game reacts
to the output of the model, and gives feedback input to the model. To
construct a game it is necessary to understand the input requirements of
the model, and also what outputs or quantities of interest are relevant. Thus
constructing computer games can be both entertaining and illuminating.

Summary of Main Features of BodyandSoul

• The program is based on a synthesis of mathematics, computation
and application.
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• The program is based on new literature, giving a new unified presen-
tation from the start based on constructive mathematical methods
including a computational methodology for differential equations.

• The program contains, as an integrated part, software at different
levels of complexity.

• The student acquires solid skills of implementing computational
methods and developing software using Python.

• The student develops skills of mathematical modeling and program-
ming by constructing computer games.

• The synthesis of mathematics and computation opens mathematics
education to applications, and gives a basis for the effective use of
modern mathematical methods in mechanics, physics, chemistry and
applied subjects.

• The synthesis building on constructive mathematics gives a synergetic
effect allowing the study of complex systems already in the basic ed-
ucation, including the basic models of mechanical systems, heat con-
duction, wave propagation, elasticity, fluid flow, electro-magnetism,
reaction-diffusion, molecular dynamics, as well as corresponding
multi-physics problems.

• The program increases the motivation of the student by applying
mathematical methods to interesting and important concrete prob-
lems already from the start. Emphasis may be put on problem solving,
project work and presentation.

• The program gives theoretical and computational tools and builds
confidence.

• The program contains the essential material from basic courses in
analysis and linear algebra.

• The program includes much material often left out in traditional pro-
grams such as constructive proofs of all the basic theorems in analysis
and linear algebra and advanced topics such as nonlinear systems of
algebraic/differential equations.

• Emphasis is put on giving the student a solid understanding of ba-
sic mathematical concepts such as Lipschitz continuity, differentiabil-
ity, integration, constructive method for solving algebraic/differential
equations, together with an ability to utilize these tools in advanced
applications.

• The program may be run at different levels of ambition concerning
both mathematical analysis and computation, while keeping a com-
mon basic core.
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FIGURE 7. Obama’s math surge.

PS: Obama and Math

NYT reports in White House Begins Campaign to Promote Math Education
(November 23 2009):

• To improve science and mathematics education for American chil-
dren, the White House is recruiting Elmo and Big Bird, video game
programmers and thousands of scientists.

• President Obama renewed a commitment that would move the United
States from the middle to the top of the pack in science and math
over the next decade.

Obama cannot understand the reason of the mathematics (education) crisis,
because Obama is a lawyer, and nor can Elmo, but the idea to recruit video
game programmers is not stupid...and we have adopted it.as you will see...

http://www.nytimes.com/2009/11/24/science/24educ.html
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FIGURE 8. Abbas Ibn Firnas taking off from the Mosque tower in Cordoba in
year 852. Are you ready for take-off?

.

http://uh.edu/engines/epi1910.htm
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FIGURE 9. Icarus taking off. And you?
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1
Start

Education is an admirable thing, but is is well to remember
from time to time that nothing that is worth knowing can be
taught. (Oscar Wilde)

By denying scientific principles, one may maintain any paradox.
(Galileo)

1.1 An Important Decision

Congratulations: You have decided to follow a Bachelors/Masters/PhDpro-
gram in mathematics, computer science, science, engineering, economics or
some other field using mathematics. This is a very important decision which
will form your coming professional life as a scientist, engineer, innovator,
teacher, writer, scholar, businessman, manager, administrator...
The role of education is to give you a platform and mental tool-bag al-

lowing you to access and analyze new information and solve problems, in
short to make the World better by better understanding the World, by
using mathematics. Remember that “understanding” in science and tech-
nology effectively means “mathematical understanding” in the sense that
different relations are expressed in quantitative form in terms of mathe-
matical formulas and numbers.

http://www.youtube.com/watch?v=HjYNExkR6Vo&feature=related
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FIGURE 1.1. To discover a principle is a great thing. There are many out there
yet to be discovered.

1.2 Welcome to BodyandSoul

Welcome to the BodyandSoul Mathematical Simulation Technology pro-
gram. The basic idea is to combine the brain/soul with the computational
power of the computer, with the objective of simulating real and imagined
phenomena.
Symbolic mathematics (formulas) is soul and computational mathemat-

ics (digital computation by computer) is body, and together they form a
very powerful tool for understanding and controling the real World, and to
construct virtual worlds.
The World is complex, but seemingly governed by simple principles ex-

pressed in formulas such as Newton’s 2nd Law F = ma with F force, m
mass and a accelleration. In principle, everything there is can be seen as
material particles interacting by forces. Newton’s 2nd Law connects parti-
cle motion to force by expressing that particle acceleration is proportional
to force, and from accelleration you get velocity and from velocity you get
position, by summation over many time steps, and from position you get
force. And so the World goes around from one time step to the next...
So by letting the computer do the summation, you can simulate particles

interacting by forces, that is the World, if you can formulate the basic prin-
ciples as formulas. Elementary but profound! According to Leibniz principle
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FIGURE 1.2. The Principle of Least Action describing all of mechanics.

of the Best World as the most complex world governed by the most simple
principles!
I hope you are now ready to explore the real and virtual World. Remem-

ber that

• Soul is principle formulated as formula.

• Body is digital computation according to the formula.

Let’s now start our work!

1.3 The Secret Behind the Surface

Here is how it works: Behind the skin there are particles connected by
elastic springs interacting by Newtons 2nd Law:

• Flying Circus Cow: Exterior

• Flying Circus Cow: Interior

• Human Heart Simulator

• What It’s All About 1 and 2.

1.4 Simulators

Simulation technology is developing exponentially in medicine, research,
technology, sports and entertainment, and will revolutionize education.
Here are some glimpses:

• Golf Tennis

• Boeing 757 Take-Off

• Heart Surgery

• Fluids Siggraph 2009 Preview

http://en.wikipedia.org/wiki/Principle_of_least_action
http://www.bodysoulmath.org/movies/circus2_boundary.mpg
http://www.bodysoulmath.org/movies/circus2_physical.mpg
http://www.sml.k.u-tokyo.ac.jp/en/index02.html
http://www.sml.k.u-tokyo.ac.jp/en/report/report01a.html
http://www.sml.k.u-tokyo.ac.jp/en/report/report02.html
http://www.visualsportssys.com/technology.php
http://www.youtube.com/watch?v=iOS_ALZ6iWc
http://www.youtube.com/watch?v=lxT4TUwZw90
http://www.youtube.com/watch?v=4k0q3VC0GrY&feature=related
http://www.youtube.com/watch?v=J4_O1_dkUfo
http://www.youtube.com/watch?v=h7SXcqXzODk
http://www.youtube.com/watch?v=qC5Y9W-E-po&feature=channel
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FIGURE 1.3. Maxwell’s equations describing all of electromagnetics.

FIGURE 1.4. Taylor’s Principle: The principal object of management should be
to secure the maximum prosperity for the employer, coupled with the maximum
prosperity for each employé.

http://hyperphysics.phy-astr.gsu.edu/hbase/electric/maxeq.html
http://www.transtutors.com/homework-help/Industrial+Management/Principles+of+Management/taylor-principle-of-management.aspx
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2
From Pythagoras to Google

Google In Quotes allows you to find quotes from stories linked
to from Google News. Google News compiles these quotations
from online news stories and sorts them into browsable groups
based on who is being quoted.

It is unworthy of excellent men to lose hours like slaves in the
labor of calculation which could be relegated to anyone else
if machines were used.(Gottfried Wilhelm von Leibniz (1646-
1716))

2.1 The Singularity

Listen to Ray Kurzweil describing what is now happening as we are ap-
proaching the Singularity. This gives you a perspective on your studies,
from the very start.

2.2 The Digital World

You are lucky to have been born into the computer age offering you a
new digital world through the Internet. It is a wonderful world of words,
texts, books, sound, music, images, films, computer games, software and
software tools. In this program you will learn skills and which can help you

http://www.youtube.com/watch?v=cc5gIj3jz44&feature=fvst
http://en.wikipedia.org/wiki/Technological_singularity
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FIGURE 2.1. Surfing on the IT-wave.

to understand, organize, control to some degree and enjoy, both the real
world and digital virtual world.
In the digital world everything is represented by numbers, strings of num-

bers, in the computer strings of the two digits 0 and 1. Information Tech-
nology or IT concerns processing digitized information and the processing
means performing arithmetic operations on numbers including addition,
subtraction, multiplication and division, and sorting and searching.
The digital world is built from text, pictures, sound and videos in formats

such as

• pdf

• jpg, eps

• avi, mpg, mp4

• mp3

used in

• texts, books

• pictures, movies

• computer games

• Google

• Youtube.

http://www.youtube.com/watch?v=k2vkwy2vdP4
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FIGURE 2.2. Alan Turing: Creator of the Turing Machine = Computer.

The new IT-society is a read-write-execute society as a development of the
traditional read society, where we can develop from passive consumers to
active consumers-producers in the blogosphere and media such as

• Facebook

• Myspace

• Twitter.

IT offers new tools to humanity such as

• mobile telephone

• gps

• tomography, scanner, ultrasound, medical imaging

• robotics, control

• synthetic speech

• weather forecast

all based on computational mathematics.

http://www.youtube.com/watch?v=sOLFBsmDC_8
http://www.youtube.com/watch?v=YjcfmZw23Wg&feature=related
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The real world can be viewed as a form of analog computation with
physical objets interacting by certain forces, as the World evolves from one
time instant to the next. For example, the planets in our Solar System
move according to Newton’s 2nd Law F =Ma connecting force F to mass
M and accelleration a, combined with Newton’s law connecting the force
F to position. Or the atoms in the air you are breathing, moving around
according to certain forces of attraction and repulsion.
The real world can be simulated by representing physical objects by

numbers and replacing the analog computation by digital computation. In
short:

• If you can compute with numbers, then you can simulate the world.

2.3 From Formal to Real Knowledge

Education is now changing from formalities to realities: Yesterday your em-
ployer would not ask what specifics you learned in school, as long as you
could show evidence that you did well; education offered formal compe-
tence, which was useful for the individual in getting and keeping a position
in business life. In the IT society of today, you need more than formalities;
some knowledge of IT is necessary and expert knowledge can be very useful.
As individuals we can now set up our own

• blog: Blogger

• photo studio: Photoshop

• musical studio: Garageband

• movie studio:Movie Studio 9

• journal: NEWSMILL, MyMill

• publishing house: Amazon-Createspace

• TV-program: Youtube

• chair of expertize: Google-Knol, My-Book-of-Knols

The possibilities are endless: We are free to pick from the trees, eat, enjoy,
and plant some new trees.. Spotify gives youu access to a World of Music,
and Google will soon give you access to all books of the World..Let’s go!.

2.4 Needed: Geometry and Calculus

To describe the World using mathematics you will need two basic tools

http://www.youtube.com/user/johanjanssonkth#p/u
http://claesjohnson.blogspot.com/
https://www.photoshop.com/
http://www.apple.com/ilife/garageband/
http://www.sonycreativesoftware.com/moviestudio
http://www.newsmill.se/
http://www.newsmill.se/user/claesjohnson
https://www.createspace.com/
http://www.youtube.com/
http://knol.google.com/k
http://knol.google.com/k/my-book-of-knols


2.5 Analytic vs Computational Mathematics 31

FIGURE 2.3. Perspective on Mathematics?

• analytic geometry - linear algebra

• Calculus: function, derivate, integral

which are the tools of scientific revolution initiated in the 17th century by
Newton and Leibniz, leading into the industrial society and our modern
information society, see BS What is Mathematics?

2.5 Analytic vs Computational Mathematics

The computer is today changing society, science and education, and math-
ematics. Mathematics is the science closest to the computer, and thus the
revolution of the computer opens mathematics to new questions and an-
swers. This is what is now going in science, engineering, society and educa-
tion, but as all revolutions it is battle between the tradition and the new,
a battle between analytical mathematics performed with symbols on paper
and computational mathematics performed by computers with numbers.
But the science and education of mathematics is a rigidly built church

which is not easily changed by a novelty such as the computer, which upsets
the whole belief system and litania.
Analytical mathematics has its heros, the Field Medal Winners, such as

Terence Tao. The results of todyas edge of professional analytical math-
ematics is closed to evaluation, because it is only understood by a small
group of experts. The general public can only understand that something
remarkable has been done, not what has been done.
Computational mathematics produces simulations of the World which

can be evaluated/appreciated by a general public. Just like the performance
of a piano virtuoso can be evaluated/appreciated by a large audience.

http://www.wired.com/science/discoveries/news/2002/08/54394?currentPage=all
http://www.youtube.com/watch?v=5bHpX9NxABU&feature=related
http://www.youtube.com/watch?v=ZK3O402wf1c
http://www.youtube.com/watch?v=sPqnHpwIDIo
http://www.youtube.com/watch?v=X3KVziBLXhE
http://www.youtube.com/watch?v=5m7r6Cbea58&feature=related
http://www.youtube.com/watch?v=ol_FrffMoQ8&feature=PlayList&p=8CDA8ADA8D009C79&playnext=1&playnext_from=PL&index=32
http://www.youtube.com/watch?v=xKWm-zPHnrw&NR=1
http://www.youtube.com/watch?v=C_EQ5QGNjdE
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FIGURE 2.4. Raphael’s perspective on Plato’s School of Athens.

2.6 Perspectives

As you follow this course you will be encouraged to develop your own
universe of mathematical simulation technology or Simulacra. It is always
useful to have some perspective on what you are doing, because it helps
you to find a direction forward. The author outlines different perspectives
in My Book of Knols including

• Scientists and Science in Cartoons

• Hyperreality in Physics

• What is Science?

• Simulation Technology

• Is the World a Computation?

• Why/What Mathematics for Engineers?

• Modern Mathematics Education

• Is God Mathematician?

• Mathematics = Magics?

http://en.wikipedia.org/wiki/The_School_of_Athens
http://www.stanford.edu/dept/HPS/Baudrillard/Baudrillard_Simulacra.html
http://knol.google.com/k/claes-johnson/-/yvfu3xg7d7wt/0#knols
http://knol.google.com/k/scientists-and-science-in-cartoons
http://knol.google.com/k/hyperreality-in-physics
http://knol.google.com/k/what-is-science
http://knol.google.com/k/simulation-technology
http://knol.google.com/k/is-the-world-a-computation
http://knol.google.com/k/why-what-mathematics-for-engineers
http://knol.google.com/k/modern-mathematics-education
http://knol.google.com/k/is-god-mathematician
http://knol.google.com/k/mathematics-magics
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FIGURE 2.5. Three point perspective.

FIGURE 2.6. Perspective machine by Albrecht Dürer

• Did Einstein Not Understand Mathematics?.

with a parallel discussion on the blog

• Claes Johnson on Mathematics and Science.

See also

• Computational Technology Laboratory

leading the Simulation Technology program at KTH.

http://en.wikipedia.org/wiki/Perspective_(graphical)
http://www.vam.ac.uk/images/image/5166-popup.html
http://knol.google.com/k/did-einstein-not-understand-math
http://claesjohnson.blogspot.com/
http://ctl.csc.kth.se/index.php/Main_Page
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FIGURE 2.7. Pythagoras proving his theorem in Raphael’s School of Athens
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3
About BodyandSoul and Your Studies

In all things of nature there is something of the marvelous.
(Aristotle)

It is simplicity that makes the uneducated more effective than
the educated when addressing popular audiences. (Aristotle)

You cannot teach a man anything; you can only help him find
it within himself. (Galileo Galilei (1564-1642))

There is no adequate defense, except stupidity, against the im-
pact of a new idea. (Percy Williams Bridgman (1882-1961) No-
bel Prize in Physics, 1946)

It requires a very unusual mind to undertake the analysis of the
obvious. (Alfred North Whitehead (1861-1947))

3.1 What is BodyandSoul?

BodyandSoul is a new mathematics education program based on combining
the power of the human soul with the power of body in the form of the
computer as computational workhorse. In short: mathematics boosted by
computer.
The computer is now changing society, science and education, and since

the computer is based on mathematics, it also changes the nature of math-
ematics, from analytical mathematics based on symbolic computation with

http://www.bodysoulmath.org/
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FIGURE 3.1. An ATV computational mathematician able to go from any point
A to any point B.

pen and paper to computational mathematics controlled by human brains
and performed by computers.
Symbolic mathematics represents soul and computation represents body,

with computational mathematics a synthesis of symbolic mathematics and
number crunching computation, as a synthesis of body and soul.
The objective of mathematics and science is to simulate real or vir-

tual worlds, to reach understanding, prediction and control. Computa-
tional mathematics boosted by computers allows simulation of complex
phenomena, such as turbulence, which is is impossible by symbolic analyt-
ical matematics alone.
With computational mathematics almost anything thinkable is possi-

ble, more or less, while with analytical mathematics almost everything is
impossible or very difficult and tricky. This is because computational math-
ematics is like an All Terrain Vehicle ATV allowing you get from A to B
regardless of any paved road or track, while analytical mathematics seeks
to find an elegant dirtless shortcut from A to B, which may not exist at all
or is very difficult to find.
As you follow the BodyandSoul program you will discover that compu-

tational mathematics is based on a quite small set of principles with an
amazing range of applicability. It is like having a small set of moral prin-
ciples to guide you through the complexity of life, with body and soul in
constructive cooperation. You will meet these principles over and over again
and with each encounter understand more of their potential.
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FIGURE 3.2. A classical analytical mathematician able to balance from a point
A to point B, on a preset wire.

3.2 Technology For/With Simulation

You will find that Simulation Technology can be interpreted as

• Technology For Simulation

• Technology With Simulation,

in the following sense:

• For: How to make simulations using mathematics and computer.

• With: How to find out things about the World using simulations.

3.3 A Game About Constructing Games

The BodyandSoul program contains texts and software and supporting ed-
ucational material, all integrated on a webbased platform. The entirely new
possibilities in teaching and learning which are now opened by Internet, can
broadly be described as new forms of interactive simulation with the stu-
dent playing different computer games with the teacher/teaching material.
It is like an arcade game with the objective of acquiring skills and tools to
master (and win) the game.
Mathematical Simulation Technology can be described as the art of con-

structing computer games, and the BodyandSoul educational program can
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itself be viewed as a form of interactive computer game, with the objcetive
of learning how to construct computer games. BS as a game about games,
a game about constructing games.

3.4 About the Text

Part I-XI gives an introduction to Mathematical Simulation Technology,
with the core being Part IV Leibniz’ World of Mathematics and Part V
Descartes World of Analytical Geometry. The material is based on the
earlier books

• BS Applied Mathematics Vol I-III

• Computational Differential Equations

• BS Applied Math Vol IV: Computational Turbulent Incompressible Flow

and connect to the following new books which can be used as source of
inspiration for explorations in different directions:

• Computational Thermodynamics

• The Clock and the Arrow: A Brief Theory of Time

• The (Mathematical) Secret of Flight

• The (Mathematical) Secret of Sailing

• Many-Minds Relativity and Quantum Mechanics.

3.5 Layout

The text is organized as follows:

• I: Introduction: Cover story of Icarus and Daedalus.

• II: Newton’s World of Mechanics: Newton’s 2nd Law.

• III: World of Games.

• IV: Leibniz’ World of Mathematics: Calculus and Linear Algebra.

• V: Descartes’ World of Analytical Geometry.

• VI: Tool Bags: Summary of Calculus and Linear Algebra.

• VII: Sessions: Road Maps to Mastery.

http://www.bodysoulmath.org/books/
http://www.bodysoulmath.org/books/
http://www.nada.kth.se/~jhoffman/pmwiki/pmwiki.php?n=Main.HomePage
http://www.nada.kth.se/~cgjoh/ambsthermo.pdf
http://www.nada.kth.se/~cgjoh/theoryoftime.pdf
http://www.nada.kth.se/~cgjoh/theoryoftime.pdf
http://www.nada.kth.se/~cgjoh/theoryoftime.pdf
http://www.nada.kth.se/~cgjoh/ambsrelativity.pdf
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• VIII: World of Differential Equations: Modeling

• IX: World of Finite Elements: Solving Differential Equations.

• X: Simulators: Vehicles to Drive.

• XI: Technology With Simulation: Understanding, Predicting, Con-
troling.

• XII: 1D Calculus.

• XIII: MultiD Calculus.

• XIV: Complex Calculus.

Parts I-XI can be seen as the main parts with Parts XII-XIV as a form
of supplement. After browsing the introductory Parts I-II you are invited
to the World of Games giving you a direct experience of both mathemat-
ics, finite elements and programming, which prepare for a more detailed
study of Technology For Simulation in IV-X leading into Technology With
Simulation in Part XI. Part XII-XIV gives a more detailed presentation
of various aspects of Calculus from 1D to MultiD to Complex Calculus
including Fourier Analysis.

3.6 Combine Parts III, IV-V and VII

It is a good idea to do Parts III, IV-V and VII in parallel. Part III gives
you computational experience of the basic concepts of geometry, position,
velocity, accelleration, derivative with respect to time/space, physical laws
as differential/algebraic equations, which you can connect to physical ex-
perience.
The mathematics of Part IV-V analyzes these concepts using both a

microscope to see details and and a telescope to see gross patterns. Math-
ematics is partly a play with symbols, and to play the game it is useful to
understand the meaning of the symbols. The other aspect of mathemat-
ics is number crunching, and to play this game it is useful to understand
computational algorithms and to be able to implement them in computer
programs.
The Sessions in Part VII help you to learn to master the tools summarized

in Tool Bags in VI.

3.7 Zapping through BodyandSoul

The IT world and the Internet is based on zapping from one thing to
another, by hyperlinks in texts or using search engines like Google. To read
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a massive book from first to last page line after line, is practiced by a
decreasing number of classically schooled people. Instead an eclectic mode
of learning is encouraged, where you quickly can access information about
anything from the nearest pizza place to global warming or digital photo,
or Calculus and mathematical modeling.
BodyandSoul as an ebook invites the student to zapping, following links

in various directions, and the text is not really intended to be read page
after page. BodyandSoul can be then seen as a set of tools and material
stored on shelves of a bike shop, which the student is invited to use to
construct new bikes for enjoyment, learning, research or commercial use.

3.8 Constructive Mathematics as Turing Machines

You will find that constructive/computational mathematics can be ex-
pressed in computer codes. One can argue that the essence of the math-
ematics then is represented by the code, in the spirit of Turing and his
Turing Machine or universal computer.
In constructive mathematics only constructed (or constructible) math-

ematical objects exist, in the form of Turing machines. In constructive
mathematics the set of all real numbers does not exist (not even the set
of all natural numbers), only specific numbers brought to existence by a
Turing machine.
To insist that the set of real numbers does not exist may be shock-

ing to a mathematician brought up in the ruling paradigm of the lo-
gistic/formalist school based on the dogma that it does exist. You can
test the strength of a constructive approach, or weakness of a formalis-
tic/logistic approach by questioning the dogma. You find material for de-
bate in Do Mathematicians Quarrel?
Following BodyandSoul you will yourself construct mathematics from

scratch by writing the computer codes representing mathematics, and you
will thus become the master of your own mathematical bike shop.

3.9 BodyandSoul: Games

Through the following sequence of games you will be introduced to Calculus
and Linear Algebra and to the construction of simulators and simulation
tools:

1. 1d 2d 3d Pong (motion without forces)

2. 1d 2d 3d Ping-Pong (motion with forces: gravity and friction)

3. 1d 2d 3d Elastic Pong (elastic ball)

http://en.wikipedia.org/wiki/Turing_machine
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4. Elastic String/Membrane/Body

5. Elastic String/Membrane (transversal motion)

which prepare to design games of, for example,

• Tennis

• Table-tennis

• Golf, Minigolf

• Volleyball...

With this preparation you are then ready to simulate just about any-
thing...In particular, remember that science is a game with the objective
of simulating natural phenomena...in words, symbols, images, numbers, by
mathematics plus computer...

3.10 BodyandSoul: Sessions

The BodyandSoul Sessions helps you to get in direct interactive contact
with the material by connecting the mathematical theory from start to
computational simulation. Going through the sessions you develop under-
standing of the mathematical principles and you also acquire skill of pro-
gramming and implemention of mathematical algorithms. Each Session is
self explantory, with references to the text, and treats a specific central
topic. Sessions A gives an introcudtion to programming. Sessions B-D cov-
ers the basics of Calculus and Linear Algbra. Sessions E-F concerns math-
ematics and programjing of FEM.

3.11 BodyandSoul: Simulators

With the tools and skills you will acquire, you will be able to construct your
simulators for a large variety of phenomena. BodyandSoul offers prototypes
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FIGURE 3.3. Herbie Hancock’s chord changes on BodyandSoul in the film
Round Midnight.

http://www.youtube.com/watch?v=rLos7caLSPU&feature=related
http://www.youtube.com/watch?v=8_BSUo5diuA
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or templates which you can use to get a flying start in your own work. You
can build games based on your simulators, or participate in competions
between different simulators.

3.12 BodyandSoul: The Value of Proofs

What is the role of mathematical proofs, in mathematics and mathematics
education? One answer could be that they are used to prove mathematical
theorems expressing mathematical truths, of enough interest to be called
theorems. An auxiliary result needed to prove a theorem is called lemma,
a theorem of minor importance.
One could the focus on the theorem as the end result of the proof as the

most important, or on the proof. The goal or the road to the goal as most
important.
What could then the value be of knowing a proof of a theorem, e.g. the

proof of Pythagoras Theorem? Isn’t it enough to know the theorem, that
a2 + b2 = c2?
The advantage of knowing the proof is that it gives you the ability to

answer the question Why? Why does the length c of the diagonal of a
rectangle with sides of length a and b, satisfy c2 = a2+ b2? And it is useful
to know answers to the question Why?, in politics, business, science and
life in general. Why is it useful?
When a child starts to ask the question Why? at the age of three or so,

it represents an important step in the development to an adult. To answer
is a parental duty which can a pleasure, if you know a good answer, but
also frustrating in the many cases when you do not know an answer. In
school the child quickly learns to not ask the question too often, and not
in later professional life either.
In science and mathematics, the question is central Why, because this

is what science and mathematics is about. That is in the ideal case. In
practice science and mathematics is too often the opposite, that is to just
learn by heart certain formulas and theorems, without being offered any
understandable proofs.
In BodyandSoul we seek to stick to the principles and thus put emphasis

on understandable proofs, as understandable answers of the question Why?
Knowing the answer gives you a strong position in arguments and also

the ability to understand the meaning of the theorem. This is not simply to
read what the theorem states, like a parrot, because the statement has to
be properly interpreted, and if you don’t know the proof it is great danger
that you misunderstand. If you understand the proof, then you understand
the theorem. If not, then misunderstanding is imminent.
It is well known that Einstein did not do well in mathematics in school,

but it is generally believed that nevertheless he developed a mathemati-
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FIGURE 3.4. Proof of Pythagoras Theorem. Can you understand it? Is similarity

used to show that b̄ = b2

c
? Compare below.

cal theory of relativity with stunning theorems about curved-space time
with proofs so difficult (obscure) that nobody has ever claimed to under-
stand them, not even Einstein himself. You can read more in the knol
Did Einstein Not Understand Mathematics?.
My hope is that you will do better than Einstein in math and science,

and that you will spend some time to understand the proofs you will meet.
The number of proofs is kept to a minimum, based on the idea that it is
better to well understand a couple of central proofs or types of arguments,
than to half-understand or misunderstand a larger number. Calculus and
Linear Algebra may first seem to be hopeless mess of theorems, but you
will discover that it carries a long way to master a few central theorems,
with proofs.

3.13 BodyandSoul: Mathematics vs Music

There are several close relations between mathematics and music, which
will be illuminated as we go along. In short, music is a combination of

http://knol.google.com/k/did-einstein-not-understand-math
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FIGURE 3.5. Billie Holiday singing Body and Soul

melody, harmony and rythm formed by sequences of tones and chords from
different scales of tones. Compare Carla Bley’s Ad Infinitum.
Classical music is usually performed from sheet music, written by a now

dead famous composer, as interpretations by classically trained musicians
capable of playing the notes according to the sheets.
Jazz music on the other is improvised without sheets to follow, only cer-

tain predetermined harmonic and rythmic patterns, like a 12 bar blues pat-
tern CCCC7|F7F7C7C7|G7F7C7G7 grouped into three 4-bar patterns.
A jazz musician creates a direct flow of music drawing from a toolbox of
melodic, harmonic and rythmic patterns. The training of a jazz muscian
consists of learning how to use certain standard tools and to develop per-
sonal tools.
We shall see that classical analytical mathematics is similar to classical

notated music: It is usually very difficult and follows a preset scheme writ-
ten down by a now dead famous mathematician. The role of the analytical
mathematician is to interprete the mathematics of the masters, like a pi-
anist interpreting a Beethoven Sonata by skillfully playing the right notes.
An interpreter does not have to know how to compose music, only to play
what is already composed.
More interestingly, we will see that a computational mathematician is

like a jazz musician creating music while playing: A computational mathe-
matician plays on the computer using tools from a toolbox, and the training

http://www.youtube.com/watch?v=VHcppf61OoM
http://www.youtube.com/watch?v=YkBU5aM_6zM
http://www.wattxtrawatt.com/AdInfinitum.pdf
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FIGURE 3.6. Doug McKenzie using tools from his toolbox

consists in learning how to use certain standard tools and to develop per-
sonal tools.
As a good example of webbased jazz piano instruction, take a look at

Doug McKenzie’s Youtube jazz2511’s Channel:

• Doug playing Body and Soul

You see the notes being played by Doug on the keyboard coming up as
sheet music automatically, and you can follow how Doug uses standard
tools and his owns tools to create a new version of BodyandSoul, everytime
he is playing the song. Doug helps you go peek behind the curtains and
understand how the music is put together, and why certain notes are played
rather than others.
The idea of BodyandSoul is the make something similar in mathematics.

3.14 The Power of Language

We do not learn to walk in school, nor to speak our mothers tongue. Chil-
dren generally speak grammatically correct at the age of three without
being taught any grammar at all, in some form of intuitive self-learning
process based on some innate capacity for this complicated task.
Speaking, like musical improvization, means to construct new (more or

less) meaningful sentences or phrases from little elements of sound.
To tell something is to describe some real or imagined phenomenon using

words, as a simulation in words. You can also in words order someone to

http://www.bushgrafts.com/jazz/dvdBuy.htm
http://www.hazemusic.com.au/soloists/doug-mckenzie/
http://www.youtube.com/user/jazz2511
http://www.youtube.com/user/jazz2511#p/u/4/hsLiU6QTKnA
http://en.wikipedia.org/wiki/The_Language_Instinct
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do something according to some specification, which may give the desired
result if your message is understood and has a proper form.
Mathematics offers you a special language allowing you to construct pre-

cise instructions describing real or imagined worlds, which can be under-
stood and executed by computers.

3.15 BodyandSoul: Lyrics

My heart is sad and lonely
For you I sigh, for you dear only

Why haven’t you seen it
I’m all for you body and soul
I spend my days in longing

And wondering why it’s me you’re (ogling)
I tell you I mean it

I’m all for you body and soul I can’t believe it
It’s hard to conceive it

That you turn away romance Are you pretending
It looks like the ending

And less I could have one more chance to prove, dear
My life a wreck you’re making You know

I’m yours for just the taking
I’d gladly surrender myself to you body and soul

My life a wreck you’re making
You know I’m yours for just the taking

I would gladly surrender myself to you body and soul.

3.16 BodyandSoul: Philosophy

• Lacan on the Unconscious

• On Bergson on Body-Soul

• Ghost in the Machine?

• Existence of Soul?

• Descartes in 3 minutes

• The Soul Paradox

http://www.youtube.com/watch?v=URsYj-TVFjc&feature=related
http://www.youtube.com/watch?v=LaDxuiutA_M
http://www.youtube.com/watch?v=4EUa5QaipoE
http://www.youtube.com/watch?v=M6_J79ZsXko
http://www.youtube.com/watch?v=BHihkRwisbE
http://www.youtube.com/watch?v=pGTleaTCXq8
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FIGURE 3.7. The Body and Soul of Salvator Dali.

3.17 BodyandSoul: FEniCS

BodyandSoul is closely related to the FEniCS open source software project
aimed at setting a new standard of Automated Computational Mathematical
Modeling by combining generality, efficiency and simplicity of mathematical
methodology, implementation, and application.
In short, FEniCS offers sofware for automation of (i) formulating math-

ematical equations (modeling) and (ii) solving equations (computation),
with the equations usually taking the form of differential/integral equa-
tions. See

• The FeniCS Project

• The Vision of FEniCS 2003

• Will FEniCS Fly?

• Talks at FEniCS09

• FEniCS10 May 10-12 KTH

FEniCS is based on the same mathematics as you will learn to master
in BodyandSoul. You can use FEniCS as a model for your own software
development as you develop into an expert user capable of contributing
to the further development of FEniCS. In particular, you will be able to
see yourself that FEniCS is concrete evidence that the methodology of
BodyandSoul is functional.

http://www.youtube.com/watch?v=GfHw4ZU0rYE
http://www.youtube.com/watch?v=QHH28cRXu0U
http://www.youtube.com/watch?v=WixEvXAkrZo&NR=1
http://www.fenicsproject.org/wiki/FEniCS_Project
http://knol.google.com/k/claes-johnson/the-fenics-project/yvfu3xg7d7wt/83
http://www.fenicsproject.org/pub/documents/fenics/fenics-projectplan/fenics-projectplan.pdf
http://knol.google.com/k/will-fenics-fly
http://www.youtube.com/user/fenics09
http://ctl.csc.kth.se/index.php/Fenics10
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FIGURE 3.8. FEniCS was born on October 30 2003

FIGURE 3.9. Header for FEniCS 10
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3.18 PS: On Mathematics and Music

Musical form is close to mathematics – not perhaps to math-
ematics itself, but certainly to something like mathematical
thinking and relationship. (Igor Stravinsky)

The most distinct and beautiful statement of any truth (as of
music) must take at last the mathematical form. (Henry David
Thoreau)

We do not listen with the best regard to the verses of a man who
is only a poet, nor to his problems if he is only an algebraist; but
if a man is at once acquainted with the geometric foundation
of things and with their festal splendor, his poetry is exact and
his arithmetic music. (Ralph Waldo Emerson)

It is harmony which restores unity to the contrasting parts and
which moulds them into a cosmos. Harmony is divine, it consists
of numerical ratios. Whosoever acquires full understanding of
this number harmony, he becomes himself divine and immortal.
(B. L. van der Waerden)

In the future, we can expect that not much difference will exist
between education and entertainment. We just have to put in-
telligence behind the entertainment. (North Carolina State Uni-
versity’s James Lester, quoted at the 12th International Con-
ference on College Teaching and Learning)

Musical training is a more potent instrument than any other,
because rhythm and harmony find their way into the inward
places of soul, on which they mightily fasten, imparting grace,
and making the soul of him who is rightly educated graceful.
(Plato)

Music is the pleasure the human soul experiences from counting
without being aware that it is counting. (Leibniz)

Mathematics and music, the most sharply contrasted fields of
scientific activity which can be found, and yet related, support-
ing each other, as if to show forth the secret connection which
ties together all the activities of our mind, and which leads us
to surmise that the manifestations of the artist’s genius are but
the unconscious expressions of a mysteriously acting rationality.
(Hermann von Helmholtz)

May not music be described as mathematics of the sense, math-
ematics as music of the reason? (James Joseph Sylvester)
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Discrete-Continuum-Discrete

I see no hope for the future of our people if they are depen-
dent on the frivolous youth of today, for certainly all youth are
reckless beyond words. When I was a boy, we were taught to
be discrete and respectful of elders, but the present youth are
exceedingly wise and impatient of restraint. (Hesiod)

Life defies our phrases, it is infinitely continuous and subtle
and shaded, whilst our verbal terms are discrete, rude and few.
(William James)

And the continuity of our science has not been affected by all
these turbulent happenings, as the older theories have always
been included as limiting cases in the new ones. (Max Born)

At the point when continuity was interrupted by the first nu-
clear explosion, it would have been too easy to recover the for-
mal sediment which linked us with an age of poetic decorum,
of a preoccupation with poetic sounds. (Salvatore Quasimodo)

4.1 Life at 24 Frames/Second

You will find that computational simulations are performed by computing a
sequence of frames or pictures which make up a film as a sequence of frames
following upon each other with a certain time step (e.g 24 frames/second).

http://mylife24fps.blogspot.com/
http://en.wikipedia.org/wiki/Frame_rate
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Each frame is computed by updating a finite number of variables, and the
simulation is thus performed by using a model which is discrete in both
time and space, that is, the model involves the values of a finite number
of variables representing values at certain points in space at a discrete
sequence time instants.
You will first meet such discrete models in the form of mass-spring sys-

tems modeling the motion of elastic bodies. By increasing the number of
discrete points in time and space, that is increasing the resolution in space
(increasing the number of pixels of a picture) and decreasing the time step,
we will be led to continuous models in the form of differential equations.
For elastic solids, we thus start with discrete models and arrive at con-

tinuous models as idealizations with infinitely fine resolution in time and
space.
For fluids it is more rational to start with continuous models and then

perform the discretization into discrete models by the Finite Element Method
FEM based on

• variational formulation or Galerkin’s method,

• piecewise polynomial approximation.

We will recover certain discrete models for elastic solids discretizing con-
tinuous models by FEM and we will thus become familiar with the full
circle discrete-continuous-discrete, where the computer only accepts dis-
crete models and continuous models are useful to prepare for discretization
by FEM.
The main tools for formulating continuous models as differential equa-

tions is

• Calculus : functions, derivatives and integrals.

The main tool for discretizing by FEM and solving discrete systems by
computers, is

• Linear Algebra: vectors, matrices, linear transformations.

You collect experience of the interplay between discrete and continu-
ous and understand that the continuous models are fictional in the sense
that their solutions are “untouchable” or “unknowable” in complete detail.
Nevertheless the continuos models are useful by their extreme economy of
expression, which is helpful for both computation and imagination through
the ingenious Calculus by Leibniz.

4.2 Watch

• 3d Facial Animator

http://www.youtube.com/watch?v=Wte1FHCvoIA
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FIGURE 4.1. Piecewise polynomial face lift.

FIGURE 4.2. Untouchable continuous solution.
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FIGURE 4.3. Multiscale modeling.

• Discrete Modeling of Facial Expressions of Emotions

• Piecewise Polynomial Approximation of Face

• 3d Head in 8 minutes

4.3 The Illusionist

We shall discover that analytical mathematics is a form of illusion playing
with symbols like

√
2, π, sin(1), and exp(1) , which represent numbers with

neverending non-repeating decimals expansions, which can only be specified
or made known to a finite number of decimals. Analytical mathematics is
thus similar to a novel as a play with words the exact meaning of which
cannot be specified.
Computational mathematics on the other hand plays directly with digits

and decimals and in this sense is more concrete and knowable. On the other
hand it is impossible to follow all the steps of a long digital computation
performed by a computer. We can thus inspect in clear light the output
of a long computation, but not follow the individual steps leading to the
result.
On the other hand, in an analytical argument, or derivation of an an-

alytical formula, we are supposed to follow all the steps, but the precise
nature of the result remains hidden to us.

http://www.youtube.com/watch?v=8COOCMngIPc&NR=1
http://www.youtube.com/watch?v=xls25e08sSg&feature=PlayList&p=8BBB8FF31B81EFDB&playnext=1&playnext_from=PL&index=34
http://www.youtube.com/watch?v=jSJniSdHs1g&feature=related
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FIGURE 4.4. More Multiscale modeling.

We thus can chose bewteen the following possible ways of using mathe-
matics:

• analytical: following the steps in detail to a partly hidden result,

• computational: not following the steps in detail to a fully visible re-
sult.

But we cannot, except in simple cases, follow all the steps in complete
detail to a fully visible result.

FIGURE 4.5. Analytical Mathematician = Illusionist.

http://www.youtube.com/watch?v=SpIK6eqop18
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FIGURE 4.6. Fractal image of broccoli generated by one-line code.

4.4 The Genetic Code and Emergence

The genetic code is the set of rules by which information encoded in genetic
material or genome (DNA or mRNA sequences) is translated into proteins
(amino acid sequences) by living cells.
The human genome is the genome of Homo sapiens, which is stored on 23

chromosome pairs of 3 billion DNA base pairs, contains ca. 23,000 protein-
coding genes (about 1.5 percent of the genome) while the rest consists of
non-coding RNA genes, regulatory sequences, introns, and (controversially
named) ”junk” DNA.
The genom can be seen as a computer code which generates the life

of an individual upon execution in interaction with the environment. The
human genome project has listed the code, but the task to understand the
code remains.
Life is an example of emergence with complex systems and patterns

arising from repeated simple interactions: A short computer code, like the
genome, which generates complex output, is an example of emergence: The
code itself does not display the complexity which comes ou upon execution.
Fractal images are complex emergent patterns generated by one-line code

loops. Turbulence is a prime non-organic example of emergence, which you
will meet below.

http://en.wikipedia.org/wiki/Genetic_code
http://en.wikipedia.org/wiki/Human_Genome_Project
http://en.wikipedia.org/wiki/Emergence
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Wilhelm von Humboldt and Education

Whatever does not spring from a man’s free choice, or is only
the result of instruction and guidance, does not enter into his
very being, but still remains alien to his true nature; he does
not perform it with truly human energies, but merely with me-
chanical exactness. (WvH)

If it were possible to make an accurate calculation of the evils
which police regulations occasion, and of those which they pre-
vent, the number of the former would, in all cases, exceed that
of the latter. (WvH)

5.1 What and Why in Education?

What is education good for? What are you supposed to get out from your
university studies? Is it

• liberal arts education forming you into a good knowledgable demo-
cratic citizen?

• science/technology/economics forming you to a production wheel in
society’s economical growth?

• a road to free your creative spirits and intellectual capacity?
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FIGURE 5.1. Wilhelm von Humboldt: True enjoyment comes from activity of
the mind and exercise of the body; the two are ever united.
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FIGURE 5.2. Wilhelm von Humboldt and his University

Liberal arts education has its roots in the Greek paideia as an education
for free citizens to develop ethics and logics insights to become a good
human being and member of society, with emphasis on skill of rethorics in
political discussion and argumentation towards good goals. In the same way
as physical training can make your Body more able, studies in philosophy
were believed to strengthen the abilities and moral of your Soul.
With his two years younger brother Alexander, Wilhelm von Humboldt

(1767-1835) belonged to a generation which witnessed the collapse of abso-
lute monarchies in the wake of the French Revolution and helped to shape
the construction of a new Europe and Prussian State. The two brothers
were both educated in the spirit of Rousseau and of the philanthropic
school; in their youth, they adopted the ideas of the enlightenment, lived
through the Sturm und drang period and went on to join the Weimar circle
of poets where they enjoyed the friendship of Schiller and Goethe. While
Alexander travelled the world and guided natural science into new paths,
Wilhelm paved the way for the development of the modern moral sciences.
Wilhelm lay the foundations of a new education system in Prussia leading

into the liberal arts education of the 20th century. In his Theory of Human
Education from 1793, Wilhelm states the

• the ultimate task of our existence is to give the fullest possible content
to the concept of humanity in our own person [...] through the impact
of actions in our own lives.

The paideia and philosophy of liberal arts education is largely missing in
science/technology/economics of today, but Wilhelm’s ideas on a modern

http://www.ibe.unesco.org/publications/ThinkersPdf/humbolde.PDF
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FIGURE 5.3. The travels by Alexander von Humboldt.

educational theory have been attracting increasing attention in recent years
and may meet a renaissance in our new information age.
In all modesty BodyandSoul seeks to follow maxims of Wilhelm von

Humboldt such as

• How a person masters his fate is more important than what his fate
is.

• The government is best which makes itself unnecessary.

• True enjoyment comes from activity of the mind and exercise of the
body; the two are ever united.

• If we glance at the most important revolutions in history, we see at
once that the greatest number of these originated in the periodical
revolutions on the human mind.

• Coercion may prevent many transgressions; but it robs even actions
which are legal of a part of their beauty. Freedom may lead to many
transgressions, but it lends even to vices a less ignoble form.

• However great an evil immorality may be, we must not forget that it
is not without its beneficial consequences. It is only through extremes
that men can arrive at the middle path of wisdom and virtue.

Compare with Measuring the World about to giants in mathematics/science
Carl Friedrich Gauss and Alexander von Humboldt:

• One travels, one stays at home. One is liberal, the other conservative.
One is a lover of women, the other forms suspicious attachments to
men. They are bound by genius and nationality.And, finally, at the
1828 Scientific Congress in Berlin, they meet...

http://www.guardian.co.uk/books/2007/apr/01/fiction.features/print
http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://www.humboldt-foundation.de/web/home.html
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6
Simulated Hyperreality: Disney World

What you have to do is enter the fiction of America, enter Amer-
ica as fiction. It is, indeed, on this fictive basis that it dominates
the world. (Baudrillard)

The very definition of the real becomes: that of which it is pos-
sible to give an equivalent reproduction. The real is not only
what can be reproduced, but that which is always already re-
produced. The hyper real. (Baudrillard)

Deep down, the US, with its space, its technological refinement,
its bluff good conscience, even in those spaces which it opens
up for simulation, is the only remaining primitive society. (Bau-
drillard)

According to the French post-modern philosopher Jean Baudrillard, Dis-
ney World is a simulation of a fictitiuos real world which does not exist.
In other words, Disney World is an example of hyperreality. Baudrillard
makes a distinction between reality and hyperreality according to the fol-
lowing characteristics:

• real: what can be reproduced

• hyperreal: what is already reproduced

• hyperreal: model of real without real origin

• hyperreal: masks non-existence of real origin

http://plato.stanford.edu/entries/baudrillard/
http://knol.google.com/k/hyperreality-in-physics
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FIGURE 6.1. Hyperreal characters from a hyperreal world.
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as expressed in his treatise Simulacra and Simulation:

• The simulacrum is never that which conceals the truth–it is the truth
which conceals that there is none. The simulacrum is true.

Baudrillard identifies the following forms of simulation:

1st Order Simulation:

• map of territory

• simulation with real origin

• clear difference between simulation and origin.

2nd Order Simulation:

• map covers territory (Borges On Exactitude in Science)

• simulation cannot be distinguished from origin

• including reproductions of original art, clothes,...

3rd Order Simulation:

• map replaces territory

• simulation without origin

• outside realm of good and evil only performance counts computer
game.

Baudrillard gives the following examples:

• Disneyland: simulation of non-existing idyllic America

• Barbie doll: simulation of non-existing female physics

• Watergate process: mask of non-existing true judiciary process.

Once you start to think about it, you will find that matematical sim-
ulation of real phenomena have qualities of hyperreality, as exposed in
Hyperreality in Physics. See also Simulations by Wittgenstein

http://en.wikipedia.org/wiki/Simulacra_and_Simulation
http://www.youtube.com/watch?v=e3tr0gSNBx4
http://knol.google.com/k/hyperreality-in-physics
http://knol.google.com/k/simulations-by-wittgenstein
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FIGURE 6.2. Photographic simulation of Baudrillard.

FIGURE 6.3. Jacking in to the Matrix.

http://www.youtube.com/watch?v=GtqU57sR0B8
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7
Avatar Simulation Techniques

Everything is backwards now, like out there is the true world,
and in here is the dream. (Jake Sully)

The movie Avatar is based on performance image capture which creates
computerized images from real human action including human emotions
through facial of body expression.
A number of new revolutionary visual effects techniques were used in the

production of Avatar: To achieve the face capturing, actors wore individu-
ally made skull caps fitted with a tiny camera positioned in front of the ac-
tors’ faces; the information collected about their facial expressions and eyes
is then transmitted to computers.[94] According to Cameron, the method
allows the filmmakers to transfer 100 percent of the actors’ physical per-
formances to their digital counterparts. Besides the performance capture
data which were transferred directly to the computers, numerous reference
cameras gave the digital artists multiple angles of each performance.
Unlike past methods that captured dots placed on human faces to trace

movements that are reconstructed digitally, each frame was analyzed for
facial details such as pores and wrinkles that help re-create a moving com-
puterized image.

7.1 Watch

• Avatar Animation Technique 1

• Avatar Animation Technique 2

http://www.avatarmovie.com/
http://en.wikipedia.org/wiki/Avatar_(2009_film)#Visual_effects
http://www.youtube.com/watch?v=CRlw_E8Xkyk
http://www.youtube.com/watch?v=xq_nRfoBSm0
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FIGURE 7.1. Human Jake Sully as Avatar and Neytei Zoe Saldana.

FIGURE 7.2. Avatar emotion capture.

http://fc04.deviantart.net/fs70/f/2009/354/7/a/Avatar_Animation_by_Dipski.gif
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8
The Secret Pythagorean Society

There is geometry in the humming of the strings, there is music
in the spacing of the spheres... There is nothing so easy but that
it becomes difficult when you do it reluctantly. (Pythagoras)

The secret Pythagorean Society in Greece 400 BC led by Pythagoras
was based on the belief that everything in the World can be represented
as relations between the natural numbers 1,2,3,.....But one day somebody
discovered that

√
2, the length of the diagonal of a square with side 1,

cannot be expressed as a rational number as the quotient of two natural
numbers, e.g. as 22

7 = 3 1
7 .

It was thus discovered that
√
2 is not a rational number, that is, that

√
2

is an irrational number. This was first kept as a secret, but like in Climate-
gate a whistleblower revealed the secret public. This was so devastating to
the basic belief of the Pythagoreans that their society collapsed, and was
replaced by the geometric School of Euclide, which resolve the difficulty of
the irrationality of

√
2, by simply defining

√
2 geometrically as the length

of the diagonal of a square with side 1.
The geometric school of Euclide propagated by Aristotle ruled science for

almost 2000 years until Descartes in the 17th century replaced geometry
by analytic geometry based on numbers thus returning to Pythagoras, and
initiating the scientific revolution transforming medieval society into the
industrial society of the 19th century leading up to the information society
of the late 20th and 21st century, which you are lucky to have been born
into. A Pythagorean society based on numbers!

http://www.youtube.com/watch?v=HlBA9_3zj9w
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You may recall from school that
√
2 ≈ 1.41, but computing 1.412 =

1.9881, we see that
√
2 is not exactly equal to 1.41. A better guess is 1.414,

but then we get 1.4142 = 1.999386. No matter how many decimals of x we
add, x2 will not become exactly equal 2. For,example, with 415 decimals
and

x = 1.4142135623730950488016887242096980785696718753

7694807317667973799073247846210703885038753432

7641572735013846230912297024924836055850737212

6441214970999358314132226659275055927557999505

0115278206057147010955997160597027453459686201

4728517418640889198609552329230484308714321450

8397626036279952514079896872533965463318088296

4062061525835239505474575028775996172983557522

0337531857011354374603408498847160386899970699

we have that

x2 = 1.999999999999999999999999999999999999999999999

999999999999999999999999999999999999999999999

999999999999999999999999999999999999999999999

999999999999999999999999999999999999999999999

999999999999999999999999999999999999999999999

999999999999999999999999999999999999999999999

999999999999999999999999999999999999999999999

999999999999999999999999999999999999999999999

999999999999999999999999999999999999999999999

999999999986381037002790393547544921481567520

719364336722392248627179189098787015809960232

640597261312640760405691299950309295747831888

596950070887405605833650165227157380944559332

069004581726422217393596953324251515876023360

427299488914180359897103820495618481233332162

516016097283137123064499497943653479698629776

683334066577024031851330600242723212517527304

354776748660808998780793579777475964587708250

3170068870585486010

No matter how many decimals we take in a guess x of
√
2, we never get a

number which squared gives exactly 2.
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Can you prove that? Can you reveal the secret of the Pythagorean society,
the knowledge that ended the reign of the Pythagoraens?
Hint: Assume that

√
2 = p

q with all common factors of 2 in the natural

numbers p and q. Then consider the equation 2q2 = p2 obtained by squaring
and multiplying by 2q2. Conclude that p must contain the factor 2 and thus
p2 the factor 4 = 2×2 = 22. Conclude that q must contain a factor 2, which
contradicts the assumption that p and q have no common factor 2.
A rational number has a finite or periodic (repeating) decimal expansion,

and an irrational number has a neverending non-periodic (non-repeating)
decimal expansion. Since it is impossible to compute all decimals of an
irrational number, we must acknowledge that an irrational number really
is “irrational” in the sense that its exact value cannot be pinned down in the
same precise sense as for a natural or rational number. Irrational numbers
satisfy the same computational rules as rational numbers, but their exact
values are hidden to our inspection: there is always another decimal to be
computed/discovered somehow. In particular, given two irrational numbers,
it may be impossible to decide if they are exactly equal (all decimals being
equal) or not. For example, the statement 0.99999999...= 1 is correct only
if the dots indicate a (periodic) never-ending squence of the digit 9.
Another irrational number is π = 3, 14159265..., which has been com-

puted to 2 billion digits, but that is not the whole truth...

8.1
√
2-gate, Climategate and Watergate

This was the argument which was kept secret by the Pythagoraen society,
and in a form of

√
2-gate led to the collapse of the society, when it leaked.

Recall that Watergate was the political scandal in the US in the 1970s
caused by the break-in into the Democratic National Committee head-
quarters at the Watergate office complex in Washington, D.C, which led to
the resignation of President Richard Nixon, and indictment and conviction
of several Nixon administration officials.
Climategate unfolded in November 2009 when a whistleblower uploaded

thousands of emails by scientists connected to the UN Intergovernmental
Panel for Climate Change IPCC formed to study Anthropogenic Global
Warming AGW by CO2 emission from burning of fossil fuels. The emails
revealed questionable scientific methods and thus undermined the scientific
basis of AGW.
Below you will meet mathematical models of weather and climate of dif-

ferent complexity , and you will discover that understanding mathematics
helps to uncover some of the mysteries of weather and climate. There is
plenty of experimental data because the physical experiment is going all
time all over the globe.

http://www.youtube.com/watch?v=rxM-iqAi1WQ
http://www.nyteknik.se/popular_teknik/teknikrevyn/article621648.ece
http://www.youtube.com/watch?v=0l1j6UgFeAI
http://www.youtube.com/watch?v=Lp6bv49iMvs
http://factsnotfantasy.blogspot.com/2010/02/climategate-gets-its-own-song.html
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FIGURE 8.1. Babylonian approximation of
√
2.

FIGURE 8.2. A formula for computing
√
2. From where?

8.2 Pythagoras and Music

Pythagoras belief that the World is based on numbers, was supported by his
discovery that the ratio of frequencies of musical scales are simple rational
numbers such as 3

2 for a fifth (G in a scale of C), 9
8 for a second (D), 27

16 for
a sixth (A), and 4

3 for a fourth (F).

8.3 Read More

• The Squareroot of Two.

http://www.youtube.com/watch?v=X0r9jd2KWNA&feature=related
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9
Aristotle and Hypatia: Mathematicians

Reserve your right to think, for even to think wrongly is better
than not to think at all. (Hypathia)

Humor is the only test of gravity, and gravity of humor; for
a subject which will not bear raillery is suspicious, and a jest
which will not bear serious examination is false wit. (Aristotle)

As a formidable student, researcher, teacher, and philosopher in virtually
all scientific disciplines, Aristotle (384 BC -322 BC) had a profound impact
on the way science and mathematics is practiced and investigated today.
His analytical method, now known as Aristotelian logic, is the backbone of
not only mathematics, but of all the natural sciences.
Hypatia of Alexandria (born between 350 and 370; died 415) was a Greek

scholar from Alexandria in Egypt, considered the first notable woman in
mathematics, who also taught philosophy and astronomy. She lived in Ro-
man Egypt, and was killed by a Christian mob who falsely blamed her for
religious turmoil, see the recent film Agora.
A Neoplatonist philosopher, she belonged to the mathematical tradition

of the Academy of Athens represented by Eudoxus of Cnidus; she followed
the school of the 3rd century thinker Plotinus, discouraging empirical en-
quiry and encouraging logical and mathematical studies.
John of Nikiu (7th century) writes;

• And in those days there appeared in Alexandria a female philosopher,
a pagan named Hypatia, and she was devoted at all times to magic,
astrolabes and instruments of music, and she beguiled many people

http://www.youtube.com/watch?v=Tm0Uq08xXhY
http://www.youtube.com/watch?v=cbskP9utQ0M
http://www.youtube.com/watch?v=nSTkMYECxX4
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FIGURE 9.1. Aristotle: Philosopher and Mathematician

FIGURE 9.2. Destruction of Library of Alexandria: In 391, Christian Emperor
Theodosius I ordered the destruction of all ”pagan” (non-Christian) temples, and
the Christian Patriarch Theophilus of Alexandria complied with this request.
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FIGURE 9.3. Hypatia from Alexandria 350-415: Mathematician and Scientist.

through Satanic wiles...A multitude of believers in God arose under
the guidance of Peter the magistrate...and they proceeded to seek for
the pagan woman who had beguiled the people of the city and the
prefect through her enchantments. And when they learnt the place
where she was, they proceeded to her and found her...they dragged her
along till they brought her to the great church, named Caesareum.
Now this was in the days of the fast. And they tore off her clothing
and dragged her...through the streets of the city till she died. And they
carried her to a place named Cinaron, and they burned her body with
fire.
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FIGURE 9.4. Man’s Constitution and the World’s Constitution.

9.1 Integers and Rational Numbers

Of course you know about natural numbers 0, 1, 2, 3, ..., and integers 0,±1,±2,±3, ...
and rational numbers as quotients p

q of integers with q 6= 0. You may also

know that rational numbers have ending (finite) or periodic (non-ending)
decimal expansions. You can refresh your conception of rational numbers
by reading

• Integers.

• Rational numbers.

Remember that numbers is the basis of the digital world or IT-world.

9.2 Read More

• Hans Kayser, 20th Century Pythagorean Master.

http://hanskayser.com/EZ/kayser2/kayser2/index.php
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10
Cover Story: Icarus

Icarus: All limits are self-imposed.

Daedalus: If you fly too low, the waves will soak your dragging
feathers, and make them too heavy. If you fly too high, the sun
will scorch your feathers and make them too heavy.

If you want you can choose as your companions through your studies,
the young Icarus and his father Daedalus, a craftsman from Athens. Icarus
and Daedalus were imprisoned by King Minos in the Labyrinth of Knossos
built for the Minotaur, half-man half-bull. Daedalus was exiled because he
gave Minos’ daughter, Ariadne, a clew of string, ball of yarn, in order to
help Theseus, the enemy of Minos, survive the Labyrinth and defeat the
Minotaur.
Similarly, you can view yourself imprisoned in a Labyrinth of Ignorance,

with the challenge to get out to liberate your potential.
To get into mood, watch:

• Icarus Cup

• Icarus Flying Machine

• Da Vinics Decoded

• Testing Da Vinci’s Flying Machine

• Simulating Flight.

Your studies may now start with the following dialog:

http://www.youtube.com/watch?v=JKHku19fQck
http://en.wikipedia.org/wiki/Icarus
http://rtone.files.wordpress.com/2007/12/daedalus-and-icarus.jpg
http://tronche.com/graphical-art/boris-vallejo/misc/minotaur.gif
http://www.youtube.com/watch?v=WRt299qD-Nc
http://www.youtube.com/watch?v=6Dr7g1sn_2U
http://www.youtube.com/watch?v=I9sAVyVuph4&NR=1
http://www.youtube.com/watch?v=ORGVc1Sg7e8
http://www.youtube.com/user/johanjanssonkth#p/u/6/E6_b7wK7KIQ
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FIGURE 10.1. Daedalus teaching Icarus the basics of aerodynamics.
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FIGURE 10.2. Dream of Icarus I

10.1 The Story

Daedalus: We are in real trouble. I fear we will have to stay imprisoned
for ever. I see no way out.

Icarus: Yes, it seems hopeless. But this morning something surprising hap-
pened: A bird flew in to the Labyrinth and dropped a piece of paper in front
of me. Let me show it to you:

ρ̇+∇ · (ρu) = 0
ṁ+∇ · (mu+ p) = f
ǫ̇+∇ · (ǫu+ pu) = 0

(10.1)

Deadalus: Let me see. Strange. Is it some kind rebus to be resolved?

Icarus: Can it be a message telling us how to get out? A message from a
bird telling us how fly as a bird? I have some friends out there who may
help us to understand.

Deadalus: Can you get the bird to bring the paper to your friends for
them to dechiffer the message?

Icarus: I’ll try. Here the bird comes again...I except to get some feedback...

Daedalus That is our only hope...
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FIGURE 10.3. Dream of Icarus II.

(A couple of days later:)

Icarus: See, there same bird again. It is dropping a message. I have it, let
see what it says:

• The rebus is a set of mathematical equations describing the flow of air.
The equations are called the Navier-Stokes equations. The solution
hides the secret of flight, which the birds have discovered but keep for
themselves. The trouble is that it seems impossible to find a formula
for the solution. People have tried for centuries all possible formulas
but no-one works. Some say that it is because the solution is turbulent
and there is no formula for turbulence. The rich merchant Cassius
Clay has offered one million Drachmas together with his beautiful
daugther Madonna to the person who can find the formula, but it has
not helped. But there are some rumours that it is possible to find a
solution using a computer, and we are now pursuing this upshot. We
will inform you about any progress. Don’t give up your hopes. Since
the birds can fly, it should be possible also for humans...

Daedalus: Can it really be possible for us to fly? I know that mathemati-
cians have proved long ago that it is impossible, but since birds anyway
fly there must be something wrong with the mathematics, if I rely on my
engineering intuition.
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10.2 Your Role

So there you are: You are one of the friends of Icarus and you want to
help Icarus out of the Labyrinth. In doing so you will help yourself out
of your prison of ignorance. To your disposal you have the Internet and
a computer, plus pen and paper. I suggest you start with the question:
Is it possible to fly?
You can view your studies as a form of computer game with the objective

of liberating Icarus and Daedalus from imprisonment, that is yourself from
Ignorance.
You will find that you can see the objective of your studies in science

and engineering to be

• to simulate the world,

which can be described as a

• how to construct computer games

because simulation is a form of game performed with a computer.

10.3 Do Not Read: Secret of Flight

• why it is possible to fly

10.4 Do Not Read: Secret of Turbulence

• computational turbulent flow

10.5 To Watch

• Early Flight Attempts

• Orthithopter

• Wright’s Flyer

• Wright Brothers

• Flyer Replica

• Otto Lilienthal

• Modern Lilienthal

http://www.youtube.com/watch?v=_SP65r3-LAY&feature=related
http://knol.google.com/k/why-it-is-possible-to-fly
http://www.csc.kth.se/~jhoffman/pub/v4.pdf
http://www.youtube.com/watch?v=iMhdksPFhCM
http://www.youtube.com/watch?v=CVFEDccid_A
http://www.youtube.com/watch?v=SBJ4iIPpO1c&feature=PlayList&p=212947FDC928136C&index=4
http://www.youtube.com/watch?v=6QJy2r7mMNY&NR=1
http://www.youtube.com/watch?v=tyRvGKEiY-o&feature=related
http://www.youtube.com/watch?v=Mn4xf_P-l60
http://www.youtube.com/watch?v=KwWi1X3h__0
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FIGURE 10.4. Otto Lilienthal before breaking his neck by stalling at 15 m height.

10.6 Human Powered Aircraft HPA

The dream of Icarus was realized only recently: The first Human Powered
Aircraft HPA was the Gossamer Condor, see slideshow and video, with a
wingspan of 30 meters, wing area of 60 squaremeters and weight 32 kg,
which in 1977 managed to cruise for 7 minutes at speed of 5 meters per
second powered by human legs delivering 0.3 horse powers. The Gossamer
Condor was the winner of the Kremer Prize of 50.000 pounds Sterling, and
there are more Kremer prizes to win. See also MIT Daedalus.
Following BodyandSoul you will be able to understand how this was

possible. The key ingredients are: speed V , weight W , power P connected
by the following magic formula

P =
W

F
V (10.2)

where F , called the finesse, is a magical factor. With F = 20, W = 1000
Newton and V = 5 meter/second, we get

W

F
V =

100× 5

20
= 250 Newtonmeter/second = 0.3 horsepowers,

(10.3)
thus satisfying the requirement of (10.2). There is a second magic formula
for the required wing area S:

W = cLV
2S = 0.7V 2S, that is S =

1000

0.7× 25
≈ 60 square meters. (10.4)

http://www.lilienthal-museum.de/olma/ehome.htm
http://www.raes.org.uk/cms/uploaded/files/SG_HPAG_condor.pdf
http://www.donaldmonroe.com/gallery/gossamer-condor/page/slideshow
http://www.youtube.com/watch?v=sp7yv67B5Sc
http://en.wikipedia.org/wiki/Kremer_prize
http://www.raes.org.uk/cmspage.asp?cmsitemid=SG_hum_pow_kremer
http://en.wikipedia.org/wiki/MIT_Daedalus
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FIGURE 10.5. The first Human Powered Aircraft HPA: The Gossamer Condor,
August 23 1977

FIGURE 10.6. Icarus tests of human power output.

http://en.wikipedia.org/wiki/Gossamer_Condor
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FIGURE 10.7. MIT Daedalus: A later HPA project.

with cL = 0.7 as a second magical factor.
It remains for you to understand what the magical finesse factor F = 20

represents as well as the factor 0.7 in the wing area formula. You will find
that the answers are hidden in the equations (10.1). Are you ready for
lift-off?

FIGURE 10.8. Construction drawings of Gossamer Condor.

http://www.humanpoweredflying.propdesigner.co.uk/html/body_daedalus.html
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11
Ask Why? Be Scientist!

What’s the go of that? What’s the particular go of that? (James
Clerk Maxwell (1831-1879) Scottish physicist. Comments made
as a child expressing his curiousity about mechanical things and
physical phenomena)

Why are things as they are and not otherwise? (Kepler (1571-
1630))

To raise new questions, new possibilities, to regard old problems
from a new angle, requires creative imagination and marks real
advance in science. (Einstein)

11.1 From Questioning to Understanding

BodyandSoul encourages you to be critical, to ask questions, and only ac-
cept what you can understand on rational grounds. You will find that the
nature of mathematics invites to such a critical approach, because in math-
ematics you draw conclusions from certain assumptions using logic and
symbolic or numerical computation. If the assumptions are clearly stated,
and each logical and computational step is open to inspection, then it is
possible to objectively check if mathematical conclusion or result is correct
or not, up to the correctness of the assumptions.
In other words, you will be able to work very much like a scientist, like

a critical scientist who constantly ask ther questions Why? and Why Not?

http://www.youtube.com/watch?v=uYz_kQ7UkY8
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You will yourself discover some of the power of this approach (and also
some of its limitations).
As a child you asked many questions, but then later in school you learned

not to ask too much. In a way you should now try to recover from this
effect of your schooling and return to the questioning of your childhood. It
is not always so easy but it can be very rewarding. The Internet and the
computer are at your disposal, and do not get tired by too many questions
(like maybe your teachers, friends and family) or much work, and thus can
give you good answers if you can only discriminate. To learn to do so is
part of the critical training you can get through BodyandSoul.
You will discover that to say that you understand something of a some

physical process, typically means that there is an underlying mathematical
model with certain properties. For example, if you say that you understand
the motion of pendulum swinging back and forth, as a repeated exchange
between potential and kinetic energies, it means that you know the equa-
tions of motion of the pendulum and you can prove e.g. that the sum of
potential and kinetic energies remains constant.
Or if you say that you understand how an ice skater can increase the

spin faster by pulling the arms tight into the body, it means that you know
the equations of motion and the connection between spin and moment of
inertia.

11.2 Some Questions

As a mathematical scientist you should be ready ask for example, WHY
is it so that

1 + 1 = 2,

(−1)(−1) = 1,

2 + 3 = 3 + 2,

exp(a) exp(b) = exp(a+ b),

log(ab) = log(a) + log(b),

exp(log(a)) = a,

sin(t)2 + cos(t)2 = 1,

length of the perimeter of a circle of unit radius = 2π,

area of a circular disc of unit radius = π,

volume of a sphere of unit radius =
4

3
π.

(11.1)

Maybe you already know good answers, but if you don’t know, don’t worry;
you will naturally discover the answers as you go along, and answers to
many more questions...
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FIGURE 11.1. Spinning quickly by decreasing the moment of inertia while keep-
ing total angular momemntum constant.

http://www.youtube.com/watch?v=AQLtcEAG9v0
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FIGURE 11.2. Clerk Maxwell as a child with his kind mother answering his
questions: What’s the go of that? What’s the particular go of that?
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12
The Secret Agenda

Everyone has a hidden agenda. Except me! (Michael Crichton)

Later mathematicians will regard set theory as a disease from
which one has recovered. (Henri Poincaré)

.
Here is a document describing a secret agenda that will lead to resolving

the mystery of the Navier-Stokes equations and thus the mystery of flight.

1. 1d problem:

2. motion of a body B along a 1d straight line with coordinates x

3. x(t) position of B at time t

4. velocity v(t) as change dx of position x(t) per unit time step dt:
dx = vdt

5. accelleration a(t) as change dv of velocity v(t) per unit time step:
dv = adt

6. Newton’s 2nd Law F =Ma or a = F
M with F force and M mass

7. time stepping: With vn = v(ndt), xn = x(ndt), do for n = 0, 1, 2, ....,

8. vn+1 = vn + andt = vn + Fn

M dt

9. xn+1 = xn + vndt

http://www.globalresearch.ca/index.php?context=va&aid=16514
http://www.youtube.com/watch?v=h6A-JYbu1Os
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10. B moves with zero force: F = 0:

11. v(t) = v is constant

12. x(t) = tv + x̄

13. B moves with constant force F : a = F/M constant:

14. v(t) = ta+ v̄ straight line

15. x(t) = t2/2a+ tv̄ + x̄ curved line.

16. same in 2d or 3d:

17. B moves in 2d Euclidean plane with coordinates x = (x1, x2) or
x = (x1, x2, x3)

18. x(t) position of B depending on time t

19. velocity v(t) as change dx of position x(t) per unit time step dt:
dx = vdt

20. accelleration a(t) as change dv of velocity v(t) per unit time step:
dv = adt

21. Newton’s 2nd Law F =Ma or a = F
M with F force and M mass

22. Time stepping: With vn = v(ndt), xn = x(ndt), do for n = 0, 1, 2, ....,

23. vn+1 = vn + andt = vn + Fn

M dt

24. xn+1 = xn + vndt

25. B moves with F = 0, F constant, F (t) variable

26. connect B to spring with spring force depending on position of B

27. mass-spring systems of several masses and springs in 1-3d

28. mass-spring systems with viscosity

29. derivative with respect to space coordinate: space derivative:

30. gradient, Laplacian

31. Euler’s and Navier-Stokes’ equations of fluid mechanics

32. Navier’s equations of solid mechanics

33. waves in fluids and solids: wave equation

34. Fourier’s equation for heat conduction/diffusion

35. Maxwell’s equations for electromagnetics

36. discover secret of flight.
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FIGURE 12.1. Two approaches to describing and understanding the World.

FIGURE 12.2. Describing the World.

http://mathdl.maa.org/images/upload_library/4/vol6/Growney/MathPoetry.html
http://mathematicalpoetry.blogspot.com/
http://www.google.com/earth/index.html


90 12. The Secret Agenda

FIGURE 12.3. Describing the World: Can you identify the equations, and the
persons behind the equations?

12.1 Watch

• Being in Time according to Heidegger

• Task of Thinking

• Wittgenstein on Language Games

• The World Is All That Is The Case

• Wovon man nicht sprechen kann darüber muss mann schweigen

http://www.youtube.com/watch?v=tRm6dElRZqQ
http://www.youtube.com/watch?v=Yu_UFHrC02k&feature=related
http://www.youtube.com/watch?v=ILlvG78ZldQ&feature=related
http://www.youtube.com/watch?v=-N-0lvL9pu8&feature=related
http://www.youtube.com/watch?v=f1mgKh-P3y8&feature=related
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13
Global Warming?

Climate change should be seen as the greatest challenge to face
man and treated as a much bigger priority in the United King-
dom. (Prince Charles)

The issue of climate change is one that we ignore at our own
peril...What we can be scientifically certain of is that our con-
tinued use of fossil fuels is pushing us to a point of no return.
And unless we free ourselves from a dependence on these fossil
fuels and chart a new course on energy in this country, we are
condemning future generations to global catastrophe. (Barack
Obama)

I want to testify today about what I believe is a planetary emer-
gency - a crisis that threatens the survival of our civilization and
the habitability of the Earth. (Al Gore)

All across the world, in every kind of environment and region
known to man, increasingly dangerous weather patterns and
devastating storms are abruptly putting an end to the long-
running debate over whether or not climate change is real. Not
only is it real, it’s here, and its effects are giving rise to a fright-
eningly new global phenomenon: the man-made natural disas-
ter. (Barack Obama)
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FIGURE 13.1. Common picture in the climate debate. True?

13.1 Climate Sensitivity?

Once Icarus and Daedalus have escaped from the Labyrinth of Ignorance,
they wiil be ready to take on problems. What is the biggest problem facing
humanity today? Is it Global Warming because of increasing CO2 in the
atmosphere from burning fossil fuels like oil and coal, and from humans
breathing and cows letting out? Can we all go on breathing or will it be
reserved for the rich?
The key question is climate sensitivity, which is how much global mean

temperature will increase if the concentration of CO2 doubles from the
present 0.038%. The United Nations Intergovernmentak Panel on Climate
Change IPCC tells us that the increase can be about 3 degrees Celcius C,
give and take 1.5 C, that is up to 4.5 C, which if true would end human
civilization as we know it. Jurrasic Park would be back. But from where
does the 4.5 C or more of potentially catastrophical global warming, come?
Can the climate sensitivity really be so catastropically large? And if so,
then why?
To start our studies, let’s try our hands on this problem. As always we

ask

• What are the physical laws?

• What are the numbers?

Once we know the answers to these basic questions, we can use mathematics
to produce some answer.
OK, so what do we have here? Well, the Earth with atmosphere is heated

by the Sun through incoming radiation of all wavelengths, short to long,

http://en.wikipedia.org/wiki/Climate_sensitivity
http://www.youtube.com/watch?v=CE_avBRQqbk
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and the Earth with atmosphere (troposphere plus stratosphere) radiates
longwave infrared light to outer space. The reason the outgoing radiation
is infrared is that the Earth is not nearly as hot as the Sun, and a colder
object (a so called black body) tends to transform incoming shortwave to
outgoing longwave. It acts like a transformer transforming high voltage to
low voltage current.
We don’t need to know the details of the absorption-emission process of

a black body, only Stefan-Boltzmann’s Radiation Law stating that energy
from a surface of a black body (like the Sun or the Earth with atmosphere)
is proportional to the fourth power of the surface temperature in degrees
Kelvin K. We recall that 273 Kelvin = 0 Celcius and 373 K = 100 C,
so that temperature increase measured in Kelvin K or Celcius C is the
same. Stefan-Boltmann’s law applies to any isolated bodies, in particular
the Earth with its atmosphere if the temprerature is that of the upper
atmosphere.
This means that doubling the temperature increases the radiated energy

by the factor 24 = 16. That is the physical law. Now to the numbers:

• The surface temperature of the Sun can be estimated to 5700 K.

• The radius of the Sun is 695.000 kilometers about 2.3 light seconds.

• The distance between the Earth and the Sun is 500 light seconds.

• The ratio is about 220, and since the area of a sphere scales like the
radius squared, the intensity of the incoming Sun light is decreased
by a factor 2202.

• We assume that the incoming light is distributed evenly over the
surface of the Earth (with atmosphere), which is 4 times bigger than
the disc area as seen from the Sun, and thus the radition from the
Sun is diluted by the factor 4× 2202.

Now we start the mathematics combining laws with numbers:

• Whatever the Earth (with atmosphere) absorbs from the Sun has to
be emmitted according to Stefan-Boltzmann’s law. What ratio r of
the temperatures of Earth atmosphere and of the Sun, then gives
r4 = 4× 2202 ≈ 194000? Your pocket calculator gives r ≈ 21.

• We conclude that the temperature on the top of the Earth atmosphere
must be 5700

21 ≈ 273 K or 0 C. This agrees pretty well the observed
temperature at the top of the stratosphere.

• If the Earth did not have an insulating atmosphere this would also
be the surface temperature of the Earth. Without insulating atmop-
shere the Earth could be covered by ice at 0 C. This agrees with the
observation that the night temperature in Sahara (with clear sky an
very dry air) is about 0 C.

http://en.wikipedia.org/wiki/Troposphere
http://en.wikipedia.org/wiki/Stratosphere
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FIGURE 13.2. The Earth with insulating atmosphere receiving light from the Sun
and radiating from the upper atmosphere at 0 C, while the surface temperature
is 15 C.

• Luckily, the Earth has an atmosphere, which increases the mean
Earth surface temperature to 15 C, by acting like an insultaing win-
dow connecting to the top of the stratosphere at 0 C.

• Climate sensitivity measures change of temperature vs change of ra-
diative forcing. We know the total radiative forcing from the Sun to
be about 270 Watts (per square meter), from the Stefan-Bolzmann
Law and also from measurements. We can then say that total climate
sensitivity equals 15

280 ≈ 0.06 K (squaremeter) per Watt.

• Now IPCC informs us that the extra radiative forcing from doubling
of CO2 should be something like 2− 4 Watts per squaremeter. If we
used the total climate sensivity just computed, we can estimate the
corresponding global warming to 0.12− 0.24 C.

• We see that IPCC’s 4.5 C is 20− 40 time bigger than our result, and
thus IPCC must assume very large positive feed back, if started from
the basic computation we have made.

So there we stand now: We have using physics and mathematics esti-
mated the crucial climate sensitivity to be certainly less than 0.5 C, which
is not alarming at all. Pooh! But is our calculation correct?
IPCC sends out an alarm by suggesting that the climate sensitivity can

be 10 times bigger, apparently assuming very large positive feed-back.What
is the truth? Your further studies will help to find the answer, from physical
laws and numbers. Is global warming a real threat or only imagined? Only
science and mathematics can give an answer. Politics and relgion cannot.
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FIGURE 13.3. Does the atmosphere act like a window with a certain U-factor?
Does the heat transfer through a window follow Stefan-Boltzmann’s Law?

13.2 A More Familiar Example

Suppose you are a poor student living in one-room student dwelling heated
by a 280 Watt lamp maintaining 15 C inside at an outdoor temperature of
0 C. A common situation for a student in Sweden.
Suppose now by chance you have acquired an additional heat source of

3 Watts. What increase of the temperature can you expect? Can you see
the similarity with the above? Yes, the answer is the same 15

280 × 3 = 0.16
C. From 15.0 C to less than 15.2 C say. Impossible to detect. Do you see
the implication?
The U-factor of a window measures heat transfer per square meter and

degree Kelvin. The U-factor of the atmosphere is thus 280
15 . Doubling CO2

with radiative forcing of 2.8 W would correspond to a decrease of U by 1%
and a corresponding global warming of 1% of 15 C, that is 0.15 C.

ttp://resourcecenter.pnl.gov/cocoon/morf/ResourceCenter/article/102
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FIGURE 13.4. Selling windows with small U-factors.
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14
Escaping from Ignorance

Because the world is round, it turns me on; Because the world
is round, Ah...
Because the wind is high, it blows my mind; Because the wind
is high, Ah... (The Beatles: Because)

14.1 Space and Time

We start with the intuitive ideas of space and time we all have: We perceive
that everthing there is in the physical world, has a place in some form of
big container with three independent directions which we call space. We
further experience that things can change shape and position in space, the
rate of which we measure using clocks recording time by periodic motion.
We will record position in space by x and time by t, where x and t represent
numbers. Points in space-time can then be recorded as pairs of numbers
(x, t).
We live in three-dimensional or 3d space and a point x can be identified

by three coordinates or numbers x1, x2 and x3, which we can collect into
a triple (x1, x2, x3) and we can write x = (x1, x2, x3).
If we restrict the world to two dimensions or 2d, that is to a plane, then

we need only two space coordinates x1 and x2, which we can collect into a
pair x = (x1, x2).
If we restrict the world further to one space dimension or 1d, that is to

a line, then just one coordinate is enough and we have x = x1.

http://www.youtube.com/watch?v=LdvM_8W0wxc&feature=related
http://www.youtube.com/watch?v=l0GnS1yNZd4
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FIGURE 14.1. Keplers model of the planetary system.

FIGURE 14.2. The hodometer was used by the Romans to measure distances,
e.g. along roads. Can you figure out how it worked?.

http://www.youtube.com/watch?v=W073Kn40KZ0
http://www.youtube.com/watch?v=8mcPuQ_YgZY
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FIGURE 14.3. The World is a’changing.

We start using rational numbers expressed as decimal numbers like

3.142 =
3142

1000
= 3 + 10−1 + 4× 10−2 + 2× 10−3

using the base 10 and denoting here multiplication by ×. As usual 10−2 =
1

100 , and more generally e.g. 103 = 10× 10× 10, 10−3 = 1
103 .

We recall that a rational number r is the quotient r = p
q of two integers

p and q (of the form 0,±1,±2,±3, ...) with q 6= 0, and the non-negative
integers 0, 1, 2, 3, ... are called natural numbers.
We denote the set of natural numbers by N, and the set of rational

numbers by Q.

14.2 SI Standards of Length and Time

The SI Standard of unit of time is second, which is the duration of a certain
number of oscillations of a certain caesium atom. More precisely:

• one second is the duration of 9,192,631,770 periods of the radiation
corresponding to the transition between the two hyperfine levels of
the ground state of the caesium 133 atom at 0 Kelvin.

The SI Standard of unit of length is a lightsecond, which is the distance
traveled by light in one second, and meter as

http://www.youtube.com/watch?v=V7RRBlng8fg
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FIGURE 14.4. 3d vision.

FIGURE 14.5. Mechanical clock with wheels, gears, escapement and weight.

http://www.youtube.com/watch?v=M8ZEJTNW3OM
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FIGURE 14.6. Entering into the Inner World.

• the distance traveled by light during a time interval of 1/299 792 458
of a second.

14.3 Coordinate Systems in 1d, 2d and 3d

In 1d, for example a horisontal line, we mark the coordinates in meter using
a laser beam and a clock measuring the time it takes for light to pass from
a given point, which we called the origin, to different points to the right
and left marking the points to the left with a minus sign.
In 2d, for example a horisontal plane, we choose two perpendicular 1d

directions which we mark separately as in 1d.
In 3d we choose three perpendicular directions and mark each direction

as in 1d. We can think of these directions as South-North, East-West,
down-up.

14.4 The Time Step

We will denote by dt a smallest unit of time, which can be different in differ-
ent situations. The smallest dt we can measure is the time of one oscillation

http://www.youtube.com/watch?v=HPqK1JJOFxw
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O x1

x2 (x1,x2)

FIGURE 14.7. Coordinate system in the plane.

of a caesium atom, about 0.0000000001 = 10−10 seconds. Depending on the
setting, dt may be one second, minute, hour, day, month, year,...
We will describe as Newton’s World the physical world with a smallest dt

as indicated, and by Leibniz’ World a mathematical fictional world where
dt is assumed to be smaller than any given finite value, or vanishingly small.
We shall find that in Leibniz fictional world with a vanishingly small time

unit, many mathematical expressions and formulas become easier to ma-
nipulate and easier to understand on a conceptual level, than in Newton’s
real world with a finite smallest time unit.
In computational simulations we have to use a finite time step, since the

computer can only perform a finite number of operations per time unit.
We shall use tools from Leibniz world when we construct computational

digital simulations of Newton’s real analog world, because these are efficient
tools, but in the computational simulations effectively use a finite time step
or time unit.
Leibniz world is like the ideal world of Plato, which is useful for thinking

but untouchable in reality or simulation. IT is like the world we can imagine
by using language, which is different from the real world. But we also know
that the real world can be more remarkable than any world we may imagine.
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FIGURE 14.8. The Caesium reference clock at NIST Laboratory, Colorado. The
Caesium atom is large and vibrates slowly. It also reacts with water.

14.5 Point, Vector and Distance = Vector Norm

Let x = (x1, x2, x3) ∈ Q3, where Q3 is the set of triples (x1, x2, x3) with
xi ∈ Q, be a point in a 3d coordinate system. We can to the point x
associate a vector also denoted by x as the directed straight line segment
from the origin O to the point x, or arrow from O to x. We write x ∈ Q3

also for a vector x.
By Pythagoras Theorem, the distance from O to the point x, which is

also the length or norm |x| of the vector x, is given by

|x| =
√
x21 + x22 + x23 or |x|2 = x21 + x22 + x23. (14.1)

which we can think of as the length of the straight line from the origin to
the point x, also referred to as the vector x.

14.6 Scalar Product

If x = (x1, x2, x3) and y = (y1, y2, y3) are two vectors in 3d space, that is
x, y ∈ Q3, then we define their scalar product x · y as follows

x · y = x1y1 + x2y2 + x3y3 (14.2)

We will say that if x · y = 0, then the vectors x and y are orthogonal or
perpendicuar. We note that the length of the vector x, or distance from the
origin (0, 0) to the point (x1, x2) is defined in terms of the scalar product

http://www.youtube.com/watch?v=GDMUb5mQsjo&feature=related
http://www.youtube.com/watch?v=Y8SqERhYWa0
http://www.youtube.com/watch?v=zCARhVfeX5U
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FIGURE 14.9. Pythagoras 580-495 BC.

as follows:

x · x = |x|2. (14.3)

The distance between two points x and y is then given by |x − y|, where
x− y = (x1 − y1, x2 − y2, x3 − y3).
Further, the angle θ between two (non-zero) vectors x and y (with x

an arrow with tail at (0, 0, 0) and head at (x1, x2, x3)) is connected to the
scalar product x ·y by the following formula (which you will derive yourself
below):

cos(θ) =
x · y
|x||y| . (14.4)

The central quantities of geometry of distance and angle, are thus com-
putable in terms of the scalar product. Neat!

14.7 Change of Position/Time Unit = Velocity

Velocity v is defined as change dx of position x per unit time step dt, that
is,

v =
dx

dt
. (14.5)
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FIGURE 14.10. Nude descending a staircase by Marcel Duchamp.

http://www.youtube.com/watch?v=FiO8xFlid90
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FIGURE 14.11. Measuring time.

14.8 Change of Velocity/Time Unit: Acceleration

Accelleration a is defined as change dv of velocity v per unit time step dt,
that is,

a =
dv

dt
. (14.6)

14.9 Particles and Forces

Everything which happens in physical space can be thought of as an in-
teraction between material particles each one occupying a specific point in
space at a given time, with the interaction mediated by certain forces.

14.10 Newton’s 2nd Law: F = Ma

The most basic law of physics is Newton’s 2nd Law stating that

F =Ma (14.7)

where F is force, M is mass and a is accelleration. Since a = dv
dt Newton’s

2nd law can be written
dv

dt
=

F

M
, (14.8)
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FIGURE 14.12. Mixing real reality and virtual reality by Rene Magritte.

or normalizing to M = 1,
dv

dt
= F. (14.9)

This law connects the world of particles, the world of velocities of particles,
with the world of forces.
If we think of the world as consisting of particles interacting by forces,

we understand that somehow the effect of forces acting on particles must
be specified and Newton’s 2nd is the basic law making this specification.

14.11 How to Motivate Newton’s 2nd Law?

Is it possible to understand why Newton’s 2nd Law holds? Or is it simply
a definition of force F ≡ Ma? Or a definition of mass M = F

a ? We will
return to this question below, when we are prepared to give an answer. As
of now, let us accept it and use it in our description of the World.

http://www.youtube.com/watch?v=Cot0ntEat4E
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FIGURE 14.13. Max Planck being struck by the idea of quantum of energy.

14.12 To Think About

• How is length and time measured?

• Is the constancy of the speed of light in vacuum, a definition or physical fact?

• What is the difference between a definition and physical fact? Or is
there no difference?

• What is Planck’s constant?

• Things That Don’t Exist

14.13 Watch

• The Planck Herschel European Space Mission

• What are photons?

• Planck’s quantum of energy?

Time is not a thing, thus nothing which is, and yet it remains
constant in its passing away without being something temporal
like the beings in time. (Martin Heidegger)

When modern physics exerts itself to establish the world’s for-
mula, what occurs thereby is this: the being of entities has re-
solved itself into the method of the totally calculable. (Heidegger)

http://www.youtube.com/watch?v=9UDeor6L288&feature=related
http://www.youtube.com/watch?v=w_DenvIA9gQ&feature=PlayList&p=630AFB68A42C6504&playnext=1&playnext_from=PL&index=3
http://www.youtube.com/watch?v=Tz2D1aahd5A&feature=PlayList&p=630AFB68A42C6504&playnext=1&playnext_from=PL&index=11
http://www.youtube.com/watch?v=m0Nm0FYpETo
http://www.youtube.com/watch?v=H9boZnj_BZ4
http://www.youtube.com/watch?v=qbM39XZMrNI
http://www.youtube.com/watch?v=EzHeTe14qSU
http://www.youtube.com/watch?v=1K-0sf7PfXM
http://www.youtube.com/watch?v=m0Nm0FYpETo
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15
Aristotle’s Physics

It is the mark of an educated mind to be able to entertain
a thought without accepting it. — All paid jobs absorb and
degrade the mind. — The gods too are fond of a joke. — All
human actions have one or more of these seven causes: chance,
nature, compulsion, habit, reason, passion, and desire. — All
men by nature desire knowledge. — For the things we have to
learn before we can do them, we learn by doing them. (Aristotle)

Aristotle (384 BC - 322 BC), Greek philosopher, student of Plato, teacher
of Alexander the Great, is one of the most important founding figures
in Western philosophy. Aristotle’s writings constitute a first at creating a
comprehensive system of Western philosophy, encompassing morality and
aesthetics, logic and science, politics and metaphysics. Aristotle’s views
on the physical sciences profoundly shaped medieval scholarship, and their
influence extended well into the Renaissance, although they were ultimately
replaced by Newtonian physics.
The aim of Aristotle’s logical treatises was to develop a universal method

of reasoning by means of which it would be possible to learn everything
there is to know about reality.
To get a perspective on the basic notions of space, time, motion and

change, you can amuse yourself by browsing Aristotle’s Physics, from which
we cite:

• Everything that is in motion must be moved by something.

http://classics.mit.edu/Aristotle/physics.html
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• The question, what is place? presents many difficulties. An examina-
tion of all the relevant facts seems to lead to divergent conclusions.
Moreover, we have inherited nothing from previous thinkers, whether
in the way of a statement of difficulties or of a solution.

• Now it has three dimensions, length, breadth, depth, the dimensions
by which all body also is bounded. But the place cannot be body; for
if it were there would be two bodies in the same place.

• What in the world then are we to suppose place to be?

• By asking these questions, then, we must raise the whole problem
about place-not only as to what it is, but even whether there is such
a thing.

• Time is a measure of motion and of being moved, and it measures
the motion by determining a motion which will measure exactly the
whole motion, as the cubit does the length by determining an amount
which will measure out the whole. Further ’to be in time’ means for
movement, that both it and its essence are measured by time (for
simultaneously it measures both the movement and its essence, and
this is what being in time means for it, that its essence should be
measured).

• Since time is the measure of motion, it will be the measure of rest
too-indirectly. For all rest is in time. For it does not follow that what
is in time is moved, though what is in motion is necessarily moved.
For time is not motion, but ’number of motion’: and what is at rest,
also, can be in the number of motion. Not everything that is not in
motion can be said to be ’at rest’-but only that which can be moved,
though it actually is not moved, as was said above.

• Time is an aspect of change.

15.1 Perspectives

• Aristotle’s Physics

• Aristotle’s Natural Philosophy

15.2 Watch

• Aristotle’s Metaphysics

http://www.mlahanas.de/Greeks/AristotlePhysics.htm
http://plato.stanford.edu/entries/aristotle-natphil/
http://www.youtube.com/watch?v=peRqNZ4Tpm0
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FIGURE 15.1. Trajecories of projectiles according to Aristotle. Correct?

• Aristotle Playing Soccer

• About Scientific Publication and Peer-Review

• All Men by Nature Desire to Know

The great begins great, manintains itself only through the free
recurrence of greatness within it, and if it is great ends also in
greatness. So it is with the philosophy of the Greeks. It ended
in greatness with Aristotle. (Martin Heidegger)

The Greeks called the essent as a whole physis.We oppose the
psychic, the animated, the living to the “physical”. But for the
Greeks all this belonged to physis and continued to do do even
after Aristotle. (Heidegger)

The meaning of physis is further restricted by contrast with
techne, which denotes neither art nor technology, but a knowl-
edge, the ability to play and organize freely. Techne is creating,
building in the sense of deliberate pro-ducing. (Heidegger)

http://www.youtube.com/watch?v=79vdlEcWxvM&feature=fvw
http://www.youtube.com/watch?v=-VRBWLpYCPY
http://www.youtube.com/watch?v=IYPTLooJRbQ
http://evans-experientialism.freewebspace.com/heidegger5a.htm
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FIGURE 15.2. Newton in 1689: I was like a boy playing on the sea-shore, and
diverting myself now and then finding a smoother pebble or a prettier shell than
ordinary, whilst the great ocean of truth lay all undiscovered before me....I can
calculate the motion of heavenly bodies, but not the madness of people.

http://www.youtube.com/watch?v=NWE_aGqfUDs


This is page 114
Printer: Opaque this



This is page 115
Printer: Opaque this

16
Particles Interacting by Forces

I do not keep up with the details of particle physics. (Murray
Gell-Mann, Nobel Prize in Physics 1969 for the standard model
of elementary particles)

We start from the idea that the physical world consists of elementary par-
ticles, such as electrons, protons and neutrons forming atoms and molecules,
which interact by four different forces : gravity, electromagnetic, weak and
strong nucelar force. We will refer to this physical ”real world” as Newton’s
World of Mechanics.
In Newton’s World we assume that there is a smallest unit of time, or

smallest ”tick”, which we denote by dt. It may Planck time with dt ≈ 10−43

seconds or one oscillation of a caesium atom with dt = 10−10 seconds, or
something in between of relevance in chemical reactions on atomic scales
of size femtoseconds = 10−15 seconds . We may also think of larger time
units such as year on galactic astronomical scales, although galaxies are
made up of atoms. Planck time unit is unimaginably small, seemingly way
beyond any physically meaningful scale.
A quartz watch has a time scale of 1

32768 seconds (compared to the ref-
erence of a caesium atom of 1

9192631770 and rubidium 1
6834682611 ).

16.1 Watch

• Newton’s 2nd Law

• Newton in 7 minutes

http://www.youtube.com/watch?v=EazLCATeYoY
http://www.youtube.com/watch?v=C4mgWoYFK3Y
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FIGURE 16.1. Particle systems in the form of flocks of birds.

FIGURE 16.2. Making Observations

http://www.youtube.com/watch?v=81wFZavdhPU&feature=related
http://www.youtube.com/watch?v=XH-groCeKbE
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• Newton: Physics Simulator

• Newton Game Dynamics

16.2 Read More

• Physics Engine

• Open Dynamics Engine

• Interactive Physics Simulation

http://www.youtube.com/watch?v=11rmKvT-R7U
http://newtondynamics.com/forum/newton.php
http://en.wikipedia.org/wiki/Physics_engine
http://www.ode.org/
http://www.sofa-framework.org/tutorial-vr09
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FIGURE 16.3. Newton’s Principia Mathematica.

http://www.youtube.com/watch?v=RwPm_ogWvTc&feature=PlayList&p=B599707553B79C86&playnext=1&playnext_from=PL&index=14
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17
Newton’s Laws of Motion

• 1st Law: In the absence of a net force, a body either is at
rest or moves in a straight line with constant speed.

• 2nd Law: A body experiencing a force F experiences an
acceleration a related to F by F = ma, where m is the
mass of the body. Alternatively, force is equal to the time
derivative of momentum.

• 3rd Law: Whenever a first body exerts a force F on a
second body, the second body exerts a force -F on the first
body. F and -F are equal in magnitude and opposite in
direction.

17.1 Time-Stepping Newton’s Equations of Motion

Newton’s World is based on the following incremental equations of motion
with smallest unit of time dt:

dx = vdt, dv = adt, (17.1)

as another way of writing

dx

dt
= v,

dv

dt
= a, (17.2)

which combined with Newton’s 2nd Law F = a assuming M = 1, take the
form:

dx = vdt, dv = Fdt, (17.3)
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or
dx

dt
= v,

dv

dt
= F. (17.4)

These equations are solved by time-stepping with time step dt:

dxn = vndt dvn = andt, (17.5)

where
dxn = xn+1 − xn, dvn = vn+1 − vn, (17.6)

and xn = x(ndt) and vn = v(ndt) are the position and velocity at time ndt
after n successive time steps with time step dt.
With each tick of time, velocity and position are thus updated according

to

vn+1 = vn + Fndt, xn+1 = xn + vndt, for n = 0, 1, ..., (17.7)

from given initial values v(0) and x(0) at initial time t = 0, where Fn =
F (ndt) is the force acting on the body at time ndt. We refer to this update
formula as Euler’s method also called Forward Euler.
An alternative update formula is obtained by updating first velocity to

vn+1 and using this value when updating to xn+1:

vn+1 = vn + Fndt, xn+1 = xn + vn+1dt, (17.8)

which we will refer to as Smart-Euler’s method. You will soon discover the
difference between Euler and Smart-Euler.
A variant of Smart-Euler is

vn+1 = vn + Fndt, xn+1 = xn +
1

2
(vn + vn+1)dt, (17.9)

where the mean velocity 1
2 (v

n+ vn+1) is used instead of either vn or vn+1.
Below we shall meet variants with Fn depending on xn+1. The basic

method of this form is the Trapezoidal Method :

vn+1 = vn +
1

2
(Fn + Fn+1)dt, xn+1 = xn +

1

2
(vn + vn+1)dt, (17.10)

where Fn = F (ndt, xn) and Fn+1 = F ((n + 1)dt, xn+1), which requires
iteration because Fn+1 depends on xn+1, which depends on vn+1.
Below we shall recover Midpoint Euler in the form of the continuous

Galerkin cG(1), and Backward Euler with vn and Fn in (17.7) replaced by
vn+1 and Fn+1, as discontinuous Galerkin dG(0).
We also refer to the Trapezoidal Method asMidpoint Euler, with Forward

and Backward Euler as “Endpoint Euler”.
We distinguish between explicit methods like Forward Euler with direct

update, and implicit methods requiring iteration, like Midpoint Euler or
Backward Euler, where the update formula for vn+1 and Fn+1 is repeated
with latest values inserted in the righthand side. With a (small) fixed num-
ber of iterations, implicit methods can be viewed as explicit direct update
methods.
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FIGURE 17.1. Eyeblink as time step.

17.2 Basic Solutions of the Equations of Motion

Newton’s equations of motion, with given initial position x0 and velocity
v0, take the form

dv

dt
=
F

m
,

dx

dt
= v for t > 0, x(0) = x0, v(0) = v0. (17.11)

If F = 0, then the solution is given by

v(t) = v0, x = v0t+ x0 for t ≥ 0, (17.12)

because if v(t) = v0 then dv = 0, and if x(t) = v0t then dx = v0dt.
If F = 2, m = 1 and v0 = 0, then the solution is given by

v(t) = 2t, x = t2 + x0 for t ≥ 0, (17.13)

because if v(t) = 2t then dv = 2dt, and if x(t) = t2 then dx = (t+dt)2−t2 =
(t+ dt+ t) dt ≈ 2t dt using the formula

a2 − b2 = (a+ b)(a− b). (17.14)

By combination, we thus obtain the following solution formula for the
basic case with F constant:

v(t) =
F

m
t+ v0, x(t) =

F

m

t2

2
+ v0t+ x0. (17.15)

It is important that you understand the derivation of this formula. The key
is to understand that dv

dt = 1 if v = t and that dx
dt = 2t if x = t2.
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17.3 The Fight: Newton vs Leibniz

Leibniz and Newton developed the basics of Calculus independently, in the
second half of the 17th century. Newton accused Leibniz for plagiarism
backed by the Royal Society of London, which made Leibniz very unhappy
in his later years, see Newton vs. Leibniz. Of course, since Leibniz was such
an honest scientist, he did not steal anything from Newton. In fact, it is
Leibniz’ Calculus which is now taught, which is a machine for symbolic and
numerical computation with derivatives and integrals, and not Newton’s
theory of fluxions based on geometric arguments which is very difficult to
understand and use.

17.4 Crash Test

• Crash test simulation

• Crash experiment

17.5 Watch

• Newton’s Laws

• Newton’s 2nd Law

• Conservation of Momentum.

17.6 Conservation of Momentum and Kinetic
Energy

The momentum m of a body of massM traveling with velocity v is defined
by m = Mv. If the body is not acted upon by any force (F = 0), then
momentum is conserved :

dm

dt
=

d

dt
(Mv) =M

dv

dt
=Ma = F = 0 (17.16)

If the body is acted upon by a force F , then momentum m changes accord-
ing to

dm

dt
= F (17.17)

If we multiply this equation by v and interprete Fv = W as rate of work
W , then we we can write

dk

dt
=

d

dt

Mv2

2
=Mv

dv

dt
=M

dv

dt
v = Fv =W, (17.18)

http://www.youtube.com/watch?v=AyWM878-OVU
http://www.youtube.com/watch?v=duYYg-qZgcQ
http://www.youtube.com/watch?v=OLmgbtCi7Dg
http://www.youtube.com/watch?v=iH48Lc7wq0U
http://www.youtube.com/watch?v=EazLCATeYoY
http://www.youtube.com/watch?v=YlkTBbFikU8
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where k = Mv2

2 is the kinetic energy. We here used the fact that d
dtv

2 =

2v dvdt , which we will prove shortly. We conclude that the kinetic energy
changes according to

dk

dt
=W = Fv. (17.19)

In particular, if F = 0 then the kinetic energy is conserved.
For a system of particles interacting by elastic collisions, total momentum

and kinetic energy are conserved if exterior forces vanish, because interior
forces and work cancel.
If the velocity is a a vector v = (v1, v2, v3), so is momentum Mv, while

kinetic energy K is a number (scalar)

k =
M |v|2

2
=
M(v21 + v22 + v23)

2
. (17.20)

If we agree to generalize conservation of momentum to dm
dt = F and

conservation of kinetic energy to dk
dt =W (= Fv), then we understand that

• Conservation of momentum is the same as Newton’s 2nd Law.

• Conservation of kinetic energy is obtained by multiplying Newton’s
2nd Law by velocity.

You will find these insights very helpful below.

17.7 Does Time-Stepping Respect Conservation of
Kinetic Energy?

When you start to compute with Forward Euler, Smart Euler and Mid-
point Euler, you will find that Forward Euler gains kinetic energy, Smart
Euler loses kinetic energy, while Midpoint Euler as a compromise essen-
tially conserves kinetic energy, in problems where kinetic energy should
be conserved. You will also discover that the loss and gain decrease with
decreasing time step.
We shall meet conservation of energy in a more general context in the

next chapter, as conservation of total energy as the sum of kinetic energy
and potential/elastic energy

17.8 To Think About

• How did Newton discover the 2nd Law?

• Who won the War of Calculus, Newton or Leibniz?
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FIGURE 17.2. Heraclitus in Raphael’s School of Athens: Pantha rei...Everything
flows...There is nothing permanent except change... .Much learning does not teach
understanding...No man ever steps in the same river twice, for it’s not the same
river and he’s not the same man...The eyes are more exact witnesses than the
ears...Justice will overtake fabricators of lies and false witnesses...Big results re-
quire big ambitions...The way up and the way down are one and the same... Man
is most nearly himself when he achieves the seriousness of a child at play...Men
who wish to know about the world must learn about it in its particular details. .

• Given the velocities of two elastic spheres about to impact, seek the
velocities after impact. Conservation of (total) momentum? Conser-
vation of (total) kinetic energy?

17.9 To Think About: Airbus 340-600

Consider the following data for an Airbus 340-600:

• take-off weight W : 368 tons

• wing area S: 439 square meter

• wing load W
S : 8383 Newton/square meter

• sea-level thrust T : 4× 25.4 tons

• W
T = 3.62

http://en.wikipedia.org/wiki/Heraclitus
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• seats 380.

What is the take-off time and distance? What is the power required at
crusing? Why is the engine power given as thrust in tons rather than horse-
powers?

17.10 To Think About: Fokker 50

Consider the following data for a Fokker 50:

• take-off weight W : 20 tons

• wing area S: 70 square meter

• wing load W
S : 3000 Newton/square meter

• engine power P : 2× 2050 kWatts

• P
W : 100 Watts/kilo

• crusing speed: 526 km/hour

• seats 50.

How many kW are required at crusing if F = 10 (which means that the
thrust is 2 tons)? Are the engines oversized (for crusing?)?

17.11 To Watch: Airbus 340-600

• Crash 340-600 April 16 2009.

• Take off

• Emergence landing on Hudson River

• Construction in 116 seconds.

17.12 To Watch: Spitfire

• The story

• Spitfire vs MX2

• Start off

http://www.youtube.com/watch?v=XQ8k-Lrv1JI&feature=fvw
http://www.youtube.com/watch?v=jQ0akaRClKM&feature=related
http://www.youtube.com/watch?v=_G2TLqxWM04&feature=related
http://www.youtube.com/watch?v=6HTtkgiw9pI&feature=PlayList&p=DD671AF9225F813D&playnext=1&playnext_from=PL&index=51
http://www.youtube.com/watch?v=qISJ2NlLIug
http://www.youtube.com/watch?v=ZeV13PdJzlw
http://www.youtube.com/watch?v=ZeV13PdJzlw
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FIGURE 17.3. Airbus 340-600 and Supermarine Spitfires on mission.

• Under bridge

The Supermarine Spitfire is a British single-seat fighter aircraft used by
the Royal Air Force and many other Allied countries through the Second
World War. Specifications (Spitfire Mk Vb): max weight 3000 kg, engine
Rolls-Royce Merlin 45 supercharged V12 engine, 1,470 hp at 9,250 ft (1,096
kW at 2,820 m), max speed 605 km/hour.

17.13 To Think About: Take-Off

To accellerate an airplane of weight W kp from rest to 60 meter/second
in 60 seconds, requires an accelleration of 1 meter/second squared, that is
a force of W Newton. For a jumbojet of 400 tons a thrust of 40 tons is
required (because 1 kp is about 10 Newton), and the length of the starting
lane is 1

260
2 = 1.800 meters. Doubling the thrust to 80 tons, reduces the

time to 30 seconds and the starting lane to 900 meters, which is more
realistic. To cruise at a finesse F = 20 requires a thrust of 400

20 = 20 tons,
about a quarter of the thrust needed for take-off.
Can you figure out how much the length of the starting lane increases if

you take into account that the drag increases as velocity squared, and thus
the engine power available for acceleration decreases with speed (until the
maximum speed is attained and no further accelleration is possible).

17.14 To Think About: Galileo’s Experiment

Suppose you drop at the same time a tennis ball and a much heavier sim-
ilar size pétanque (boule) ball from the Tower of Pisa, like Galileo did?
How much quicker will the pétanque ball reach the ground? Compare the
Reference Frame. Can you scale the balls so that they fall equally fast?

http://www.youtube.com/watch?v=Xf3UtmHLKUU
http://en.wikipedia.org/wiki/Supermarine_Spitfire
http://motls.blogspot.com/2010/04/claude-allegre-and-gravity.html
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18
Particle-Spring System

Fear always springs from ignorance (Ralph Waldo Emerson, Ameri-
can Poet, Lecturer and Essayist, 1803-1882)

Let x(t) be the position at time t of a unit point mass or particle moving
without friction along a line subject to a linear spring force F (x) = −x.
See Intro to Springs.
Newton’s equations of motion take the form:

dx = vdt, dv = −xdt. (18.1)

u=0 u>0

FIGURE 18.1. Particle-spring system: One particle/mass gliding without friction
along a line attached to one of a spring attached to a fixed wall: Here u(t) = x(t)
is the position at time t measured from some the reference point with zero spring
force

http://www.youtube.com/watch?v=ZzwuHS9ldbY&feature=PlayList&p=AD5B880806EBE0A4&playnext=1&playnext_from=PL&index=64
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FIGURE 18.2. A 2particle-2spring system with dampers

18.1 Watch

• Particle-Spring

• Particle-Spring Frequency Response

• Particle-Spring Cows on Ice

18.2 To Think About

• How does a spring function?

• How to motivate that spring force is proportional to elongation?

18.3 Conservation of Total Energy

The total energy E a particle connected to a linear spring modeled by ẋ = v
and v̇ = −x is defined by

E =
1

2
(x2 + v2). (18.2)

Let us now prove that Midpoint Euler conserves the total energy. This
follows by multiplying the time-stepping equations

xn+1 − xn =
1

2
(vn+1 + vn)dt, vn+1 − vn = −1

2
(xn+1 + xn)dt

by 1
2 (x

n+1 + xn) and 1
2 (v

n+1 + vn), respectively, to get by summation and
reordering (using that (a+ b)(a− b) = a2 − b2),

En+1 ≡ 1

2
((xn+1)2 + (vn+1)2) =

1

2
((xn)2 + (vn)2) ≡ En (18.3)

which expresses conservation of the total energy as En+1 = En.
We understand that as the particle moves back and forth, kinetic energy

is transformed into elastic energy stored as the spring stretches or com-
presses, which is transformed back into kinetic energy as the stretching
and compression is eased.

http://www.youtube.com/watch?v=lyyv0FSu2mk&feature=related
http://www.youtube.com/watch?v=_XTj_ePLvFI
http://www.youtube.com/watch?v=UaI1fYqCvIk&feature=related


This is page 129
Printer: Opaque this

19
Planetary System

I demonstrate by means of philosophy that the earth is round,
and is inhabited on all sides; that it is insignificantly small, and
is borne through the stars. (Johannes Kepler)

The equations of motion for a planet (viewed as a pointlike particle) of
unit mass orbiting a fixed Sun of unit mass centered at the origin, take the
form

dx = vdt, v = Fdt, (19.1)

where
F (x) = − x

|x|3 (19.2)

is the gravitational force. This is a force acting at distance, because the
origin is the Sun at the origin, and it acts at x with distance |x| from the
origin.
Note that (19.2) is Newton’s famous inverse square law of gravitation

stating that the magnitude of the gravitational force F between two bodies
with mass M1 and M − 2 at distance r is given by

F = G
M1M2

r2
, (19.3)

where G is the gravitational constant.
We shall prove below that (19.2) this is a consequence of the fact that

the gravitational potential satisfies a certain differential equation named
Laplace’s equation, and we shall uncover the assumptions leading to Laplace’s
equation. We can this way motivate that the exponent in Newton’s Law is
2 and nothing else.



130 19. Planetary System

FIGURE 19.1. Jupiter.

FIGURE 19.2. The Crab nebulosa: A macroscopic particle system.

http://www.nasa.gov/worldbook/jupiter_worldbook.html
http://en.wikipedia.org/wiki/Crab_Nebula
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FIGURE 19.3. Galileo presenting mathematical arguments to
disbelieving Catholic priests.

http://www.law.umkc.edu/faculty/projects/ftrials/galileo/galileochronology.html
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FIGURE 19.4. Galileo’s telescope.

19.1 Watch

• Poincaré and the chaos of the three-body problem.

19.2 To Think About

• What are Kepler’s Laws?

• What is the simplest solution of a 2-body problem?

19.3 To Read

• BS How to prove Kepler’s laws yourself.

• BS Solar System

19.4 Watch

• Kepler’s Laws I

• Kepler’s Laws II.

http://www.youtube.com/watch?v=hlDlrgCQf1w&feature=related
http://www.youtube.com/watch?v=GcKiG-CuvtA
http://www.youtube.com/watch?v=GcKiG-CuvtA&feature=fvw
http://www.youtube.com/watch?v=mGGDd047AAY
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20
Local Interaction

The apple cannot be stuck back on the Tree of Knowledge;
once we begin to see, we are doomed and challenged to seek the
strength to see more, not less. (Arthur Miller)

When two bodies come in direct contact they may exchange contact
forces, without the need of any medium transmitting the force. Contact
forces between two bodies in contact are symmetric in the sense that the
forces on ecah body have the same magnitude and opposite directions.
Contact forces are easy to grasp by intuition as a form of direct contact
pressure.

20.1 To Think About

• What is Newton’s 3rd Law?

• What is pressure?

20.2 Watch

• Reaction forces

• Saturn V launch

• Apollo 8 launch

http://www.youtube.com/watch?v=mNM5tHou4IQ
http://www.youtube.com/watch?v=wvWHnK2FiCk&feature=related
http://www.youtube.com/watch?v=XKtH0uzg8wU&feature=related
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FIGURE 20.1. Local interaction.

FIGURE 20.2. Contact.

• Apollo 11 launch

• Challenger Explosion

• ABC Challenger Explosion

http://www.thecreationofadam.com/index.php
http://www.youtube.com/watch?v=zGNryrsT7OI&feature=related
http://www.youtube.com/watch?v=_10T4UYpzV8&feature=related
http://www.youtube.com/watch?v=Mr1TMyxArXk&feature=related
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21
Action at Distance

The real lover is the man who can thrill you by kissing your
forehead or smiling into your eyes or just staring into space...I
believe that everything happens for a reason. People change so
that you can learn to let go, things go wrong so that you appre-
ciate them when their right, you believe lies so you eventually
learn to trust noone but yourself, and sometimes good things
fall apart so better things can fall together. (Marilyn Monroe)

If local contact forces in a sense are easy to envision, action at distance by
definition is mysterious. If we can see a chain connecting the source/cause
to a distant effect, the action at distance can be explained as a form of
chain reaction based on repeated local interaction like a row of domino
bricks falling one after the other, with each domino brick knocking down
the next.
The gravitational and electromagnetic forces are key examples of action

at distance because the medium carrying the action seems to be a vaccum
or nothingness.
Physicists like to believe that forces between elementary particles are

transmitted through certain other particles carrying forces over distance.
The gravitational force is conjectured to be transmitted by a hypothetical
particle named graviton, but nobody has been able to detect a particle like
that.
The standard view of gravitation acting at distance is that the presence of

a mass, like the Sun, creates a gravitational field or gravitational potential,



136 21. Action at Distance

FIGURE 21.1. Action at distance.

the variation of which gives rise to a gravitational force in the same way as
a variation of pressure in the air can give rise to a pressure force.
We shall below present an alternative view only based on local interaction

without any gravitons, where it is instead the gravitational field which
creates the mass. This view is like a hen as gravitational field laying an
egg as mass, while the standard view is an egg as mass generating a hen as
gravitational potential.
We believe it is more difficult to explain how an egg can create a hen,

than how a hen can lay can egg.

http://www.youtube.com/watch?v=1DG0cVUd0pI
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FIGURE 21.2. Computing a derivative is like digging where you stand..

21.1 Perspectives

• The Hen and the Egg of Gravitation

• Does the Earth Rotate?

21.2 Local vs Global in Digital Simulation

We shall meet the aspect of local interaction vs action at distance, or lo-
cal vs global, in both Calculus of derivatives and integrals and in digital
computation.
Computation of a derivative of a function is a local operation involving

comparison of function values at nearby points in space/time, while compu-
tation of an integral of a function is a global operation involving summation
over many function values points in space/time which are not close.
Differentiation is like digging a whole where you stand, while integration

is like a rumour spreading over distance by mouth-to-mouth communica-
tion. In general ntegration requires more computational work than differen-
tiation because information needs to spread. Differention is a local process,
while intergration is global.
Derivatives of analytical functions can be computed analytically/symbolically,

while integrals in general cannot.
In digital computation the aspect of processing of local vs global informa-

tion relates to how information is stored in a computers memory, and how
fast it can be accessed. The memory storage pattern can reflect physics
so that nearby points in space are stored nearby in the memory, but in
digital computation action at distance is possible, by addressing any point
in the memory. This is like sending information by email instead of by
person-to-person mouth-to-mouth.

http://knol.google.com/k/the-hen-and-the-egg-of-gravitation
http://knol.google.com/k/does-the-earth-rotate
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FIGURE 21.3. Computing an integral is like walking from one point to another,
step by step.
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FIGURE 21.4. Person to person communication reflecting meshpoint-to-mesh-
point communication in computational mesh.

FIGURE 21.5. Hermes carrying a message over distance.

In computational digital solution of differential equations, information is
processed on a computational mesh reflecting a physical structure. If phys-
ical flow of information between nearby material particles in space/time
is reflected computatinally by communication only between nearby mesh-
points, then the digital flow of information mimics the physical flow and
thus can be termed as “physical”. But in digital solution also communica-
tion between distant points is possible, which as we will see can speed up
the computational process, like email communication can speed up com-
municationby surface snail-mail.
We will meet computational processes with direct meshpoint-to-meshpoint

communication in the form of explicit methods (of time-stepping), while
implict methods will involve more or less global communication. Explicit
methods are “physical” and “simple” but sometimes slow, while implicit
methods are “artificial” and more “complex” but possibly much faster.

http://en.wikipedia.org/wiki/Guglielmo_Marconi
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FIGURE 21.6. Floating on magnetic forces.

FIGURE 21.7. The mysterious Lorentz force acting perpendicular to electrical
current and magnetic field.

21.3 To Think About

• How is gravitational force transmitted?

• How is light transmitted?

• How is an email transmitted?

• How is sound transmitted?

http://en.wikipedia.org/wiki/Maglev_(transport)
http://www.youtube.com/watch?v=_X8jKqZVwoI
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22
Newton: Flight is Impossible!

If I have seen further than others, it is by standing upon the
shoulders of giants... A man may imagine things that are false,
but he can only understand things that are true, for if the things
be false, the apprehension of them is not understanding... Errors
are not in the art but in the artificers...I can calculate the mo-
tion of heavenly bodies, but not the madness of people. (Isaac
Newton)

Newton computed the lift L of a thin flat rectangular wing of (one-
sided) surface area S traveling with velocity V through still air at an angle
of attack α (in radians), to be

L ≈ α2V 2S (22.1)

by considering the lower part of the wing to be deviating incoming air
downwards in the direction of the wing. In other words, Newton argued
that the lift coefficient cL = α2, so that for α = 0.1 as a common angle
of attack, cL = 0.01. For a human being of weight 1000 Newton (100 kp)
traveling on a wing of surface area S = 10 a velocity V = 100 meter/second
(360 km/hour) would be required. Or with V = 10, a wing area of S = 1000
square meters would be needed. Impossible! The flight of birds must have
been totally inexplicable to Newton. And of course: No hope for Icarus!



142 22. Newton: Flight is Impossible!

22.1 To Think About

• How did Newton argue to come up with (22.1)?

To understand what is correct, one has to also understand what is not
correct.

22.2 Kutta and Zhukovsky: Flight is Posssible!

Newton’s computation ruled aerodynamics for more than 200 years until
the two brothers Wilbur and Orwille Wright in 1903 showed that powered
human flight was possible. Newton’s lift coefficient was then quicky in-
creased to

cL = 2πα (22.2)

by the two mathematicians Kutta and Zhukovsky, based on a different
mathematical argument. For α = 10

180 this gave cL = 0.3 and theory and
observation was no longer in glaring contradiction.
In reality cL can be bigger for well designed wings cL ≈ 18α that is with

α in degrees cL ≈ 0.1α so that cL ≈ 1 for α = 10 degrees (100 times bigger
than Newton’s!!). See The Secret of Flight.

22.3 Flight in a Nutshell

The basics of flight can be summarized in the followin two formulas

W = L = cLV
2S, P = DV =

L

F
V, (22.3)

where W is weight (Newton), L is lift (Newton), V velocity (meter/sec), S
wing area (square meter), P power (Watt), D is drag, and cL ≈ 0.1α with
α angle of attack (degrees) is lift coefficient and F = L

D = 10− 20 is finesse
coefficient.
With cL = 1.0 we obtain the wing loading W

S = V 2 ranging from 10
Newton/square meter for a Gossamer Condor, 25 for a common tern, 100
for a wandering albatross, and up to 10 000 for an Airbus 340 at take-off.
The velocity ranges from 5 meter per second for a Gossamer Condor, 10
for a starling, over 30 for a Canada goose up to 250 for an Airbus 380.
The quantity P

WV = D
L = 1

F measures energy consumption per meter
traveled distance and ranges from 0.15 for pigeons, 0.05 for albatrosses
and Boeing 747, 0.035 for Lance Armstrong and French TGV, 0.025 for
sailplanes.
The power P ranges from 1 Watt for a starling at 10 meter/sec, 450

kWatts for a Spitfire and 200 000 kWatts for a Boeing 747. A human being
is capable of 200 Watt.

http://en.wikipedia.org/wiki/Wright_brothers
http://www.nada.kth.se/~cgjoh/ambsflying.pdf
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FIGURE 22.1. Patent of Flying Machine 1869.

FIGURE 22.2. Albatross in flight.

http://en.wikipedia.org/wiki/Albatross
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23
Computational vs Analytical
Mechanics

The reader will find no figures in this work. The methods which
I set forth do not require either constructions or geometrical or
mechanical reasonings: but only algebraic operations, subject
to a regular and uniform rule of procedure. (Lagrange)

For since the fabric of the universe is most perfect and the work
of a most wise Creator, nothing at all takes place in the universe
in which some rule of maximum or minimum does not appear.
(Euler)

Madam, I have come from a country where people are hanged
if they talk. (Euler in Berlin to the Queen Mother of Prussia
on his return from Russia)

23.1 Classical Analytical Mechanics

Newton’s mechanics initiated the scientific and industrial revolution in the
late 17th century. Newton’s masterpiece was to solve the 2-body problem
for a small planet orbiting around a fixed big Sun, showing the orbit to
be an ellipse with the Sun in one of the focal points of the ellipse. Newton
appeared like a Master of the Universe in charge of all motion according to
his immutable marvellous analytical mathematics! Now man was in charge
of his fate with the possibility to control the World according to his wishes,
if only the analytical mathematics would work out.

http://en.wikipedia.org/wiki/Scientific_revolution
http://en.wikipedia.org/wiki/Industrial_Revolution
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But it did not, really: Newton could not even solve the 3-body problem
with two planets (and nobody else either), not to speak of the N-body problem
with N ≥ 3 bodies, and to keep the illusion of a World governed by analyti-
cal mathematics, intense efforts were made by mathematicians including in
particular the top stars Euler and Lagrange to reformulate Newton’s Laws
mathematically as Euler-Lagrange equations characterizing system states
as minimizing Lagrangians being combinations of potential and kinetic en-
ergies. The objective of the reformulation was to describe system states
with as few degrees of freedom (variables) as posssible, so that analytical
solution could become possible, like for the 2-body problem but with more
complicated formulas.
This developed into the discipline of analytical mechanics which has been

taught as a core subject in engineering and science education with a long
tradition, essentially unchanged during the last 100 (or 200) years.
Analytical mechanics is focussed on rigid-body mechanics, because the

motion of a rigid (non-deformable) body can be described with few degrees
of freedom, like the position of its moment of inertia and rotation around
some axis, if the total mass and moment of interia is known.
High points of analytical mechanics are the 2-body and a spinning top.

But problems quickly become very difficult to solve, and various tricks
have been developed, which over the centuries have caused head-ache to
engineering students.
Analytical mechanics is difficult: special formulation is tricky and the

solution work is done by symbolic computation by pen and paper.
A standard classical course in (analytical) mechanics includes:

• Special simple cases of rigid-body mechanics.

• Reformulation of Newton’s Laws as Euler-Lagrange equations.

• Tricky combinations of position and angular variables.

• Clever choices of coordinate systems.

• Highly inventive teaching required: Performance by Prof.Levin.

• A typical rigid-body problem.

Contact between rigid-body mechanics is expressed as constraints on mo-
tion, which can be tricky to express mathematically. Contact forces between
rigid bodies are determined implicitely by global force balance, and thus
can be tricky to compute.

23.2 Computational Mechanics

The computer now opens entirely new possibilities to use Newtonian me-
chanics to model and simulate the World, e.g as a large N-body problem

http://en.wikipedia.org/wiki/N-body_problem
http://en.wikipedia.org/wiki/Euler–Lagrange_equation
http://en.wikipedia.org/wiki/Analytical_mechanics
http://www.mech.eng.unimelb.edu.au/dynamics/11lec.pdf
http://www.youtube.com/watch?v=97oTDANuZco&feature=related
http://www.youtube.com/watch?v=AaALPa7Dwdw&feature=fvw
http://www.youtube.com/watch?v=RUm7P_K_Xqc&feature=channel
http://en.wikipedia.org/wiki/N-body_simulation
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FIGURE 23.1. Newton playing Master of the Universe.

as in the Millennium Run with N = 1010, simply by solving Newton’s
equations by a computer instead of analytical mathematics. This brings
fundamental changes to the teaching, science and engineering practice of
mechanics, by changing both the scope and the tools: The analytically im-
possible N -body problem becomes a simple computational problem, and
so it goes:
Basically any thinkable problem of mechanics becomes possible to model

and simulate computationally, the only limit being computer power, which
is already impressive and continues to increase according to Moore’s law
with doubling every 18 months.
Computational mechanics is useful: general formulation is not tricky and

the solution work is done by computer. BodyandSoul includes a lot of
computational mechanics:

• General particle-spring N -body mechanics with N large.

• General deformable-body mechanics or continuum mechanics.

• General continuum fluid-solid mechanics.

• Standard choice of variables in standard coordinate systems.

Contact between deformable bodies can be expressed through local elastic
spring forces easily implemented in computational models.
We see that there is little overlap between a classical analytical mechanics

course (special rigid-body) and modern computational mechanics (general
deformable-body fluid-solid). Of course the general essentially covers also
the special: Classical building is collapsing...

http://www.youtube.com/watch?v=puXIw_bEqmU&feature=related
http://en.wikipedia.org/wiki/Millennium_Run
http://www.youtube.com/watch?v=byI9yhITDsM&feature=related
http://en.wikipedia.org/wiki/Continuum_mechanics
http://www.youtube.com/watch?v=RuZQpWo9Qhs
http://www.youtube.com/watch?v=tRxH2xd7wsM&NR=1
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23.3 Perspectives

Take a look at:

• Virtual cat walk

• Crash test

• Dummy crash test

• Volvo S80 crash test

• Airbag simulation and experiment

• Real vs virtual testing?

• Earth quake simulation

• Shake-out earth-quake simulation

• Big simulation

• What is water?

• Black hole terror.

And recall the Circus Cow:

• Flying Circus Cow: Exterior

• Flying Circus Cow: Interior

showing the essence of the argument.

23.4 Looking Forward

• Session: Analytical Mechanics

http://www.youtube.com/watch?v=UedzILSR1X0&feature=fvw
http://www.youtube.com/watch?v=hrfcROMz2II&NR=1
http://www.youtube.com/watch?v=dZxbCraFIc0&feature=related
http://www.youtube.com/watch?v=HwjwEwUPzwA&feature=related
http://www.youtube.com/watch?v=QQnOma1zff4
http://www.youtube.com/watch?v=nlWJayKWvw0&feature=related
http://www.youtube.com/watch?v=YdjN7dIXRXo&feature=rec-LGOUT-exp_fresh+div-1r-5-HM
http://www.youtube.com/watch?v=hos_uIKwC-c
http://www.youtube.com/watch?v=xioHswbahPc
http://www.youtube.com/watch?v=W35SYkfdGtw
http://www.youtube.com/watch?v=x8Atqz5YvzQ
http://www.youtube.com/watch?v=ou3TukauccM&feature=related
http://www.bodysoulmath.org/movies/circus2_boundary.mpg
http://www.bodysoulmath.org/movies/circus2_physical.mpg
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FIGURE 23.2. High point of classical analytical mechanics: Spinning top!

http://www.youtube.com/watch?v=kyzQ5SjEsCU&feature=related
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24
Creating Virtual Worlds

In virtual reality or ”la realite virtuelle”, characters, objects,
and images take on the phantasmagoric force of alchemy’s vi-
sionary internal dramas. (Antonin Artaud, French playwright,
poet and actor)

24.1 Interactive Virtual Worlds as Games

There are different types of games:

• between people based on real physics: soccer, tennis...

• between people based on virtual physics: computer games: World of
Warcraft...

• between people based on non-physics: chess, cards...

All games are based on interaction between players and the elements of the
game (balls, cards, guns...).
Computer games are now booming as they offer interesting challenging

environments at small costs as compared to playing real games with real
guns and real sweat.
Computational mathematics is an efficient tool for constructing interac-

tive virtual worlds, and therefore serves as the engine of computer games.
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FIGURE 24.1. Cave Painting Virtual World in the Lascaux Cave.

An area of science can be viewed as virtual physics created by scientists
and used by scientists to discover truths about real physics. Scientist in-
teract with their virtual physics models by giving input and studying the
output.
A scientist interacting with a virtual physics model can be viewed as

playing a form of game with the scientist giving input to the model in
response to output from the model, with the purpose of obtaining maximal
information, a game in which also other scientists participate. Often a tough
merciless game...
Science and technology are like computer games booming as computa-

tional mathematics allows the construction of affordable virtual physical
worlds as an alternative to expensive real experimental labs.
As a student of Simulation Technology you are certainly interested in

mathematics/science/technology as virtual physics, but your interest in
playing games may vary.
In any case it is useful to view virtual physics as games, because the

input-output aspect of the underlying mathematical model then has to be
made clear.
You will now meet this approach in your studies of the real world, in

a sequence of progressively more complex games based on virtual physics,
starting with the most simple and arriving at surprisingly complex physics.
To construct virtual physics game you need to specify the physics in-

volved (e.g. Newton’s 2nd Law) and the rules for interaction. This is like
constructing a machine with certain control knobs.
The game is played using a computer to run the machine and by using

the knobs to control the machine to specific goals.

http://www.youtube.com/watch?v=yM81YQ9Mekg
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FIGURE 24.2. A scientist with a copy of his virtual physics model.

To construct computer games based on virtual physics you need knowl-
edge/skills in

• mathematics: calculus, linear algebra and geometry,

• physics: Newton’s laws, spring forces,

• programming.

In this chapter you will be directly confronted with these aspects in a
progression from the most simple to the more complex, without noticing
how “difficult” and understanding how “advanced”, it is in fact. In sections
entitled Demo + Lab you find material allowing you to

• play a game

• inspect the computer code of the game

• modify the code

• write your own code for your own game variants.

24.2 Python

The demo codes are written in Python. You find an introduction to Python
here.

http://kepler.nasa.gov/
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FIGURE 24.3. The (Ultimate) Game of Life against Death.

24.3 Simulation

You will find that a few basic principles allows you to simulate increasingly
realistic simulations such as:

• Circus Cow.

• Flying Bird

• Volvo Car

• Flapping Flag

You will learn below how this is done (mathematics + programming) and
how to improve realism and add interactivity. With this knowledge you be
a scientist, engineer, teacher, computer game inventor and more...

24.4 Geometry Preparation

To get some know-how about 2d and 3d space, browse

• Analytic Geometry in 2d.

• Analytic Geometry in 3d.

24.5 Watch

• Best computer games 2009

http://www.youtube.com/watch?v=anvRFJFUnRE
http://www.youtube.com/user/johanjanssonkth#p/u/5/MDzBCA7lAJk
http://www.youtube.com/user/johanjanssonkth#p/u/6/E6_b7wK7KIQ
http://www.youtube.com/user/johanjanssonkth#p/u/2/HTOl0lTet9A
http://www.youtube.com/user/johanjanssonkth#p/u/0/qS-RzjQHpCU
http://www.youtube.com/watch?v=6PEKEEwVaY4
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FIGURE 24.4. From World of WarCraft.

FIGURE 24.5. Heavy Rain trailer.

• Computer game design

• Make games online

• Interactive Python programming in 1 min

24.6 Another Story: Heavy Rain Gameplay

Who will write the first Icarus Gameplay?

http://www.youtube.com/watch?v=066_q4DIeqk
http://www.youtube.com/watch?v=W0yeEdeCOUU&feature=related
http://www.youtube.com/watch?v=Pe5P9fC-3kE
http://www.youtube.com/watch?v=zO7-0yS_amc&feature=related
http://www.youtube.com/watch?v=b0rx7jh50DM&feature=related
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25
Homo Ludens: Playing Man

25.1 Homo Ludens and Homo Faber

Homo Sapiens (Knowing Man) has many other names indicating different
characters or qualities including:

• Homo Faber: Making Man

• Homo Ludens: Playing Man

• Homo Amans: Loving Man

• Homo Politicus: Political Man

• Homo Ridens: Laughing Man

• Homo Technologicus: Technological Man

• Homo Discens: Learning Man

• Homo Investigans: Investigating Man

• Homo Musicus: Man Playing Music

• ...

As a student of simulation technology you get a chance to develop several
of these qualities of your personality: constructing games as Homo Faber
and Technologicus and playing games as Homo Ludens...and more...

http://en.wikipedia.org/wiki/List_of_alternative_names_for_the_human_species
http://www.homodiscens.com/home/embodied/ludens_sake/index.htm


158 25. Homo Ludens: Playing Man

FIGURE 25.1. Early Playing Man.



25.2 Huizinga 159

25.2 Huizinga

Johan Huizinga (1872-1945) suggested in his book Homo Ludens that play
is primary to and a necessary (though not sufficient) condition of the gen-
eration of culture. From the Foreword:

• A happier age than ours once made bold to call our species by the
name of Homo Sapiens. In the course of time we have come to realize
that we are not so reasonable after all as the Eighteenth Century,
with its worship of reason and its nave optimism, thought us; hence
modern fashion inclines to designate our species as Homo faber: Man
the Maker. But though faber may not be quite so dubious as sapiens it
is, as a name specific of the human being, even less appropriate, seeing
that many animals too are makers. There is a third function, however,
applicable to both human and animal life, and just as important as
reasoning and making namely, playing. It seems to me that next to
Homo Faber, and perhaps on the same level as Homo Sapiens, Homo
Ludens, Man the Player, deserves a place in our nomenclature.

A central idea of Huizinga is thus that all culture is rooted in play, but he
carries the analysis further by noting that as culture evolves or is refined
the its playful element is suppressed. This can be seen in the transition
from folk and jazz music allowing musicians to play following their own
inspiration, to classical music dictated by composers and conductors with
limited freedom of interpretation.
Huizinga identifies the following characteristics of play:

1. Play is free, is in fact freedom.

2. Play is not “ordinary” or “real” life.

3. Play is distinct from “ordinary” life both as to locality and duration.

4. Play creates order, is order. Play demands order absolute and supreme.

5. Play is connected with no material interest, and no profit can be
gained from it.

You may amuse yourself by playing with the following ideas by Huizinga:

• Play is a uniquely adaptive act, not subordinate to some other adap-
tive act, but with a special function of its own in human experience.

• It is the goal of the American university to be the brains of the repub-
lic.

• If we are to preserve culture we must continue to create it.

• History is the interpretation of the significance that the past has for
us.

http://en.wikipedia.org/wiki/Johan_Huizinga
http://en.wikipedia.org/wiki/Homo_Ludens
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FIGURE 25.2. Kermesse (1567-8) by Pieter Brueghel

• History can predict nothing except that great changes in human rela-
tionships will never come about in the form in which they have been
anticipated

• In Europe art has to a large degree taken the place of religion. In
America it seems rather to be science.

• A superstition which pretends to be scientific creates a much greater
confusion of thought than one which contents itself with simple pop-
ular practices.

• Culture means control over nature.

• Culture must have its ultimate aim in the metaphysical or it will cease
to be culture.

• Systematic philosophical and practical anti-intellectualism such as we
are witnessing appears to be something truly novel in the history of
human culture.

• You only live a short time... and you are dead a long time.

• The second fundamental feature of culture is that all culture has an
element of striving.
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25.3 Roger Caillois

Roger Caillois (1913-78) builds on the theories of Johan Huizinga and dis-
putes many of them, adding a more comprehensive review of play forms:

• The Game Design Reader

• Man, Play and Games

• Man, Play and Games on Google Books

25.4 A Flavor of Mathematical Game Theory

• Mathematical Game Theory: John Nash

• Theorie des Jeux par Pierre-Louis Lions

http://en.wikipedia.org/wiki/Roger_Caillois
http://nideffer.net/classes/270-08/week_01_intro/Caillois.pdf
http://en.wikipedia.org/wiki/Man,_Play_and_Games
http://books.google.se/books?id=bDjOPsjzfC4C&printsec=frontcover&dq=caillois&source=bl&ots=olbeEC3Ijj&sig=WirLfL22Efa9plu2HxO12wCEw3s&hl=sv&ei=5ezaTMvHBM6cOuSHuawJ&sa=X&oi=book_result&ct=result&resnum=3&ved=0CDAQ6AEwAg#v=onepage&q&f=false
http://www.youtube.com/watch?v=vrAc5CVw2zQ&feature=related
http://www.college-de-france.fr/default/EN/all/equ_der/Cours_du_15_janvier_2010_Theor.jsp
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FIGURE 25.3. Huizinga and Caillois.
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26
Pong 1d

Pong (marketed as PONG) is one of the earliest arcade video
games, and is a tennis sports game featuring simple two-dimensional
graphics. The aim is to defeat an opponent either computer-
controlled or a second player by earning a higher score. The
game was originally manufactured by Atari Incorporated (Atari),
who released it in 1972. Pong was created by Allan Alcorn as a
training exercise assigned to him by Atari founder Nolan Bush-
nell. Bushnell based the idea on an electronic ping-pong game
included in the Magnavox Odyssey, which later resulted in a
lawsuit against Atari. Surprised by the quality of Alcorn’s work,
Atari decided to manufacture the game.

26.1 Game

Two players interact with a ball free to move in the interval [0, 1] of a 1d
coordinate axis. One of the players can reverse the velocity by clicking the
mouse when the ball hits x = 0 and the other at x = 1. If the mouse is
clicked to early or too late the game ball is lost.

http://en.wikipedia.org/wiki/Pong
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26.2 Mathematics

Assume the ball moves with constant speed v. The equation of motion is
dx=vdt as long as the ball is inside the interval [0, 1]. If x((n+1)dt) < 0 <
x(ndt) or x(ndt) < 1 < x((n+1)dt, then a player can reverse the direction
of motion, by a mouse click.

26.3 Realization

• Update position by xn+1 = xn + vdt.

• Reverse the sign of v by mouse click when x((n+1)dt) < 0 < x(ndt)
or x(ndt) < 1 < x((n+ 1)dt.

26.4 Demo + Lab

• Test, Modify and Create Yourself (pong1d)

26.5 Generalization

1. Given variable speed v(t).

2. Add given force F (t) and update dv = F
M dt, dx = vdt.

26.6 Perspective

• Short Course of Calculus.
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27
Pong 2d and 3d

27.1 Game

Two players interact with a ball of unit mass free to move inside the unit
square Q = [0, 1] × [0, 1] of a 2d plane by reflection. At reflection the ap-
propriate velocity component switches sign. One of the players can reverse
the velocity by clicking the mouse when the ball hits x1 = 0 and the other
at x1 = 1. If the mouse is clicked to early or too late the game ball is lost.

27.2 Mathematics

Assume the ball moves with constant speed v = (v1, v2). The equation of
motion is dx=vdt as long as the ball is inside Q. If x1((n + 1)dt) < 0 <
x1(ndt) or x1(ndt) < 1 < x((n + 1)dt), then a player can return the ball
by reversing v1 by a mouse click by also moving a cursor moving in the
x2-directionto the point of reflection.

27.3 Realization

• Update position by xn+1 = xn + vdt.

• Reverse the sign of v by mouse click when x1((n+1)dt) < 0 < x1(ndt)
or x1(ndt) < 1 < x − 1((n+ 1)d)t, with an x2 cursor at the point of
reflection.
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27.4 Demo + Lab

• Test, Modify and Create Yourself 2d (pong2d)

• Test, Modify and Create Yourself 3d (pong3d)

27.5 Generalization

1. Same in 3d.

2. Variable speed v(t).

3. Add force F (t) and update dv = F
M dt, dx = vdt.
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28
Viscous Pong

28.1 Mathematics

Newton’s 2nd Law for a particle subject to a viscous (friction) force F =
−µv in the opposite direction to motion, takes the form

Mv̇ = −µv or v̇ + µv = 0, (28.1)

where µ is a non-negative viscosity coefficients and v velocity. The corre-
sponding velocity update formula is (with mass M = 1) given by

vn+1 = vn − µvndt = (1 − µdt)vn. (28.2)

Without additional force the viscous force will act as damping and will
eventually reduce the velocity to zero. With small viscosity µ, this will
take many time steps.

28.2 Demo + Lab

• Test, Modify and Create Yourself (viscouspong)
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FIGURE 28.1. Lucifer being expelled from Paradise. Why?

http://gypsyscholarship.blogspot.com/2008/02/wall-street-journal-lost-in-paradise.html
http://en.wikipedia.org/wiki/Paradise_Lost
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29
Pendulum

Any person, brought into the presence of this fact, stops for a
few moments and remains pensive and silent; and then generally
leaves, carrying with him forever a sharper, keener sense of our
incessant motion through space... The phenomenon develops
calmly, but it is invisible, unstoppable. One feels, one sees it
born and grow steadily; and it is not in one’s power to either
hasten or slow it down. (Leon Foucault 1819-1868)

29.1 Game

Two players interact with a pendulum by controling the direction, magni-
tude and duration of a force. The players have the same finite total amount
of force times duration, with e.g. the objective of getting the pendulum at
a given final time to rotate in a specific direction: e.g clockwise for player
1 and counter-clockwise for player 2.
We think of a pendulum as a mass connected to one end of a stiff weight-

less arm with the other end fixed at a frictionless hinge. The force is applied
to the mass.
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1

u
cos(u)

sin(u)

tension

u

FIGURE 29.1. Pendulum

29.2 Mathematics

Consider a pendulum length L and massM free to rotate around the origin.
Let the position at time t be given by the angle u(t) measured from the
vertical with u = 0 in the rest position of the pendulum (with the mass
under the hinge).The equation of motion is given by Newton’s 2nd Law as
follows, without player force,

Lu̇ = v,Mv̇ = −MG sin(u(t))

since the velocity v is given by Lu̇ and the force perpendicular to the pen-
dulum axis, in the direction of circular motion, is given by −Mg sin(u(t)),
where G is the gravitational constant. Assuming L = G = 1, the equations
of motion thus are

ü(t) + sin(u(t)) = F (t) for t > 0, (29.1)

with given initial conditions u(0) and u̇(0) = 0, and where F (t) is the force
from the players.

29.3 Realization

du = vdt, dv = − sin(u)dt+ Fdt (29.2)

29.4 The Inverted Pendulum

The equations for the inverted pendulum are the same. What is the differ-
ence in mechanical action?

http://www.youtube.com/watch?v=MWJHcI7UcuE&feature=rec-LGOUT-exp_fresh+div-1r-3-HM
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FIGURE 29.2. Foucault’s Pendulum.

http://www.youtube.com/watch?v=6w8XSRxeWio
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29.5 Demo + Lab

• Test, Modify and Create Yourself (pendulum)
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30
Double Pendulum

Already a two-body problem in the form of a double pendulum, has a very
complex dynamics:

• double pendulum

• double pendulum experiments

• Rondo in C

• Two-legged double pendulum

The standard way to model a double pendulum is to consider the two
arms to be rigid (with fixed lengths) with a friction-free joint and to describe
the position in terms of two angles as indicated in Fig. 30. But it is not
so easy to write down the equations of motion in these coordinates, which
you will discover if you try.
A more direct way is to assume that the two arms act like stiff springs and

to model the system like a two-particle two-springs system. The equations
of motion can then formulated directly and simulations can star directly.
Classical analytical mechanics focussed on rigid bodies described by few

cleverly chosen (angular) coordinates or independent variables, and re-
quired tricky mathematics.
In computational mechanics you can afford to go beyond rigid body me-

chanics and use particle-spring models or 3d elasticity models for which the
equations of motion are given once and for all. Computational mechanics
is thus both more useful and easy to understand, than classical analytical
rigid-body mechanics.

http://www.youtube.com/watch?v=Whvl6CikDxA
http://www.youtube.com/watch?v=wRFrVPbj09A
http://www.youtube.com/watch?v=k30IiBsNuDI
http://www.youtube.com/watch?v=2JzMJNMYbRw&NR=1
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FIGURE 30.1. Coordinates for double pendulum as rigid body system.

30.1 Demo + Lab

• Test, Modify and Create Yourself (doublependulum)

30.2 Game

Construct games based on a double-pendulum. Extend to multiple-pendulum.

30.3 Read More in BS

• Lagrange and the Principle of Least Action

• Double Pendulum as Rigid-Body System
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31
Tour de France

When I got off the bike at the end of the Tour, it was fin-
ished...Pain is temporary. Quitting lasts forever. (Lance Arm-
strong after Tour de France)

31.1 To Read

• Newton’s Law of Motion

31.2 Game

Consider a race between two bikers travling on a varying level horisontal
straight road from A to B subject to a variable wind speed. Suppose each
biker has the same total energy to spend on a race over the distance AB.

31.3 Mathematics

The laws of motion for each biker are (with an approximate horisontal
momentum balance):

ẋ = v, v̇ = F − cDv
2 − w(t) − g(x) (31.1)

http://www.youtube.com/watch?v=n8TGWGRWe0s&feature=related
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FIGURE 31.1. Lance Armstrong fighting wind and rain.

where v(t) is the bike velocity, w(t) is a wind force, cD is a drag coefficient,
g(x) is the component of the gravitational force parallel to road elevation
curve, and F (t) the force supplied by the biker. The side condition is that

∫ T

0

F (t)v(t) dt = E, (31.2)

where E is the total energy. We assume that g(t) is given to the biker, but
that the wind drag w(t) is subject to stochastic fluctuations. Each biker
seeks to get from A to B in minimal time with the resource E.

http://www.lancearmstrong.com/
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32
The Wright 1903 Flyer

32.1 To Read

• Human Powered Aircraft

• Newton’s Laws of Motion

• Flight Is Possible

32.2 Game

Construct a flight game based on given lift and drag curves for a wing.

32.3 Mathematics

Suppose the total lift L and dragD of an airplane, like theWright 1903 Flyer,
are given by

L = cLαv
2S, D =

L

F
, (32.1)

where cL ≈ 10 is a given lift coefficient, F = L
D ≈ 10 is a given finesse

coefficient, v ≈ 10 is the airplane velocity in meter/sec, S ≈ 50 is wing
area in square meters, α ≈ 0.1 is the angle of attack of the wing. The

http://en.wikipedia.org/wiki/Wright_Flyer
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FIGURE 32.1. The 1903 Flyer.

equations of motion in a (x− 1, x2)-coordinate system with x2 vertical and
x1 horisontal, are the following:

dx

dt
= v, M

dv

dt
= (F −D + f, L−W ) (32.2)

where F is the engine force (assumed to be horisontal for simplicity) in
Netwon, W ≈ 3000 Newton is the total weight of the airplane and M ≈ W

10
the mass in kg, and f is a given variable head wind force in Newton.
The total energy spent on a trip equals

∫
Fv dt, and the objective may be

to cover a certain distance in shortest time with a given amount of energy
to spend with a given engine, possibly with requirements of reaching certain
altitudes on the way.
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33
Americas Cup 1851

33.1 To Read

• Flight Is Possible

• Newton’s Laws of Motion

33.2 Game

Construct a sailing game based on given lift and drag curves for sail and
keel for different angles of attack. Start with motion against the wind with
close-hauled sails parallel to the boat centerline.

33.3 Mathematics

Define

• ᾱ true angle of incoming wind vs boat centerline,

• α apparent wind angle = angle of attack of (close-hauled) sails,

• β angle between boat centerline and direction of motion = angle of
attack of keel,

• v boat speed vs water,
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FIGURE 33.1. Lift Forces LS and LK , and drag forces DS and DK , from sail
and keel.

• w apparent wind speed.

Assume the boat is currently pointing in the x2-direction of a (x1, x2)
coordinate system. Force balance of lift LS and drag DS from sail and
lift LK and drag from keel DK in the coordinate directions give (under
stationary conditions without accelleration):

Ls sin(α) + LK sin(β) +D2 = DS cos(α) +DK cos(β)

LS cos(α) +D1 sin(α) +D1 = LK cos(β) +DK sin(β),
(33.1)

where (D1, D2) is the drag force from boat hull in water (in the (x1, x2)-
system), assuming there is no drag from hull and rigg in air. Assume

LS = cSα(w + v sin(α+ β))2, DS =
LS
FS

,

LK = cKβv
2, DK =

LK
FK

,

D2 = c2(v cos(α))
2, D1 = c1(v sin(α))

2,

(33.2)

with cS and cK lift coefficients (including areas and fluid densities), and FS
and FK lift/drag are finesse factors for sail and keel. Of course, the apparent
wind velocity can be computed from the true wind and boat velocity.
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FIGURE 33.2. America at the first Americas Cup 1851.

The sailor seeks to control the direction of the boat vs the true wind
so that the boat advances as quickly as possible in a given direction, with
close-hauled sails typically in the direction opposite to the wind.
During a game the true wind changes speed and direction and the helms-

man is supposed to chaange the direction of the boat accordingly.
Note that the main pull forward comes from the component LS sin(α) of

sail lift LS, which is to balance drag from sail, keel and hull, with the heeling
force LS cos(α) roughly balanced by the keel force component LK cos(β).
Typical values are α = 20 and β = 10 (degrees), FS = 10 and FK = 20.

http://www.americascup.com/en/contexte/depuis-1851/32-editions/32-editions-23-41
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34
Planetary Slalom

34.1 Game

Move a space rocket of unit mass from given start position and velocity
to a given end position under the influence of gravitational forces from a
given set of masses at fixed positions, using as short time as possible with
a given total amount of energy W for rocket engines.

34.2 Mathematics

dx = vdt, v = (F + f)dt, (34.1)

where F is the combined gravitational force from the masses and f is the
force from the rocket engines, under the side condition

∫

f

dx ≤W (34.2)

expressing that the total work
∫
f dx does not exceed W .

34.3 Demo + Lab

• Test, Modify and Create Yourself (planetaryslalom)
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35
Arrow

35.1 Game

Throw an arrow of unit mass as far as possible. Control initial speed and
launching angle. Assume different friction forces depending on position and
velocity.

35.2 Mathematics

Equations of motion:
dx = vdt, dv = Fdt, (35.1)

with x(t) = (x1(t), x2(t) position of arrow at time t in a (x1, x2) coordinate
system with x1 horisontal and x2 vertical axis. Assume the force F =
((0,−G) + (f1, f2) with G = 1 gravitational constant and f = (f1, f2)
frictional force depending on the speed |v(t)|.

35.3 Analytical Mathematics

The solution of
ẋ1 = 1, ẋ2 = v2, v̇2 = 2, (35.2)

is given by
x1(t) = t, x2(t) = t2 (35.3)
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FIGURE 35.1. The Art of Bow and Arrow.

which represents a parabola.
x2 = x21 (35.4)

35.4 Experiments

• Experimental setup

• Experiments

35.5 Demo + Lab

• Test, Modify and Create Yourself (arrow)

http://www.youtube.com/watch?v=HxxZ6pTQmB4
http://www.youtube.com/watch?v=KhaUaH8oyjU
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36
Achilles and the Tortoise

Achilles had overtaken the Tortoise, and had seated himself
comfortably on its back. ”So you’ve got to the end of our race-
course?” said the Tortoise. ”Even though it does consist of an
infinite series of distances? I thought some wiseacre or other
had proved that the thing couldn’t be done?”

”It can be done,” said Achilles. ”It has been done! Solvitur
ambulando. You see the distances were constantly diminishing;
and so –”

”But if they had been constantly increasing?” the Tortoise in-
terrupted ”How then?”

”Then I shouldn’t be here,” Achilles modestly replied; ”and you
would have got several times round the world, by this time!”

”You flatter me – flatten, I mean” said the Tortoise; ”for you
are a heavy weight, and no mistake! Well now, would you like
to hear of a race-course, that most people fancy they can get
to the end of in two or three steps, while it really consists of an
infinite number of distances, each one longer than the previous
one?”

”Very much indeed!” said the Grecian warrior, as he drew from
his helmet (few Grecian warriors possessed pockets in those
days) an enormous note-book and a pencil. ”Proceed! And speak
slowly, please! Shorthand isn’t invented yet!” (Lewis Carroll 1895)

http://www.ditext.com/carroll/tortoise.html
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FIGURE 36.1. Achilles and the Tortoise.

36.1 Geometric Series

We have all heard the mathematical argument that the fast Achillles cannot
overtake the slow Tortoise, or not even move a given distance of length 1
say, since first he has to move the half distance 1

2 with 1
2 still to go, and

then half of 1
2 that is 1

4 , and then 1
8 , and so on with always half of the last

step still to go. The traveled distance is given by

1

2
+

1

4
+

1

8
+

1

16
+

1

32
... < 1 (36.1)

It seems that Achilles would be unable to run a distance of 1. Can you
resolve the paradox? Let’s seek an answer in a game.

36.2 Experiments

• Experiment 1.

http://www.youtube.com/watch?v=c6Wehv4y150
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• Experiment 2.

• Zeno’s Paradox.

• Resolution of Zeno’s Paradox.

36.3 Game

Player 1 is Achilles and Player 2 the Tortoise and the game is a 100 meter
dash. The Tortoise starts first and then Achilles. Will he overtake within
100 meters? What is the dependence on the respective velocities?

36.4 Mathematics: The Sum of a Geometric Series

Let 0 < a < 1 and consider the sum

S(n) = 1 + a+ a2 + a3 + ...+ an (36.2)

Multiplying by a we get

aS(n) = a+ a2 + a3 + ...+ an+1 (36.3)

and thus by subtraction term by term S(n) − aS(n) = 1 − an+1, which
gives

1 + a+ a2 + a3 + ...+ an =
1− an+1

1− a
. (36.4)

If we now let n increase without bound, so that n gets bigger than any
given natural number, then an+1 becomes smaller than any given positive
number. We thus write with the dots indicating that n increases without
bound:

1 + a+ a2 + a3 + .. =
1

1− a
, (36.5)

which we write symbolically (with a0 = 1)

∞∑

m=0

am =
1

1− a
. (36.6)

http://www.youtube.com/watch?v=LuUfQKE2FcA
http://www.youtube.com/watch?v=9B7fkvAo6Vo


This is page 190
Printer: Opaque this



This is page 191
Printer: Opaque this

37
Nobel Peace Prize: Climate Sensitivity

During my service in the United States Congress, I took the
initiative in creating the Internet. (Al Gore)

The day I made that statement, about the inventing the in-
ternet, I was tired because I’d been up all night inventing the
Camcorder. (Al Gore)

Our world faces a true planetary emergency. I know the phrase
sounds shrill, and I know it’s a challenge to the moral imagina-
tion. (Al Gore)

37.1 Al Gore and Global Warming

Al Gore recieved the Nobel Peace Prize in 2007 together with Pachauri (about
mathematics at time 15.25) chairman of the Intergovernmental Panel of
Climate Change IPCC, for their alarm reports on Anthropgenic Global
Warming (AGW) claiming a catastrophical climate sensitivity of up to 6
degrees Celsius global warming upon doubling of the CO2 concentration in
the atmosphere.

http://www.youtube.com/watch?v=5ymxLA5oRYI&NR=1
http://www.youtube.com/watch?v=3rCMoA0juQ8
http://www.youtube.com/watch?v=tIcW0-iQMRw
http://www.youtube.com/watch?v=NS_jvYTEhkQ&NR=1
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FIGURE 37.1. Common picture of “global radiative budget”. Correct?

37.2 Mathematics

A (very) simple model for the thermodynamics of the Earth takes the form

Ṫ = Q+ aT − bT = Q− (b − a)T = Q − cT, (37.1)

where T can be the sea surface temperature, Q is direct radiative forcing
from the Sun, bT is outgoing radiation from the troposphere, and aT is feed-
back radiative forcing from water vapour, clouds et cet. The net model is
thus

Ṫ + cT = Q, (37.2)

where c is a positive coefficient.

37.3 Climate Sensitivity

Climate sensitivity S is temperature change vs change of radiative forcing
in stationary state with Ṫ = 0, that is S = 1

c . Can we determine the
climate sensitivity S by observing the change of temperature for given
perturbations of the radiative forcing, over the seasons of the year, or from
day to night, and from such observations deduce the vale of c? For input,
see Climate Sensitivity and Feedback 1-4 and Climate Sensitivity.

http://claesjohnson.blogspot.com/2010/01/climate-sensitivity-and-feedback-4.html
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FIGURE 37.2. ERBE data.

We observe that if Q = sin(t), then the solution of (37.2) with T (0) =
− 1

1+c2 is given by

T (t) =
1

1 + c2
(−cos(t) + c sin(t)). (37.3)

We observe that for c small, T (t) ≈ − cos(t) = sin(t − π
2 ) equal to the

forcing with a π
2 phase shift. For c large, T ≈ 1

c sin(t).

37.4 Game

Player 1 subjects the heat forcing Q = sin(t) to a secret perturbation and
computes the correspond temperature variation T (t) from (37.2) with some
secret coefficient c. The objective of the Player 2 is to recover c from given
variation of T (t), e.g. by fitting of (37.3).
Player 1 and 2 switch roles, and the winner gets a Nobel Prize.

37.5 Data

Real data are given by Earth Radiation Budget Experiment (ERBE) and
On the Determination of Climate Feedbacks from ERBE Data by Lindzen
and Choi.

http://asd-www.larc.nasa.gov/erbe/ASDerbe.html
http://www.leif.org/EOS/2009GL039628-pip.pdf
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FIGURE 37.3. The winner gets a Nobel Prize.

37.6 Extended Model

The above basic model can be extended in many ways, for example by
making a distinction between a mean temperature T1 at the Equator and
T2 at the North Pole:

Ṫ1 = Q1 − c1T − c3(T1 − T2), Ṫ2 = Q2 + c3(T1 − T2)− c2T2 (37.4)

where Q1 and Q2 represent incoming radiative forcing, and c1 and c2 are
coefficients of net outgoing radiation, at the Equator and North Pole, and
c3 is a heat exchange coefficient.
The objective of the game would be to identify the coefficients ci from

observations of T1 and T2 with Q1 and Q2 known seasonal forcing subject to
unknown perturbation, with the exchange coeficient being of special inter-
est as it determines the temperature difference T1−T2 of crucial importance
for glaciation.

37.7 Glaciation vs Eccentricity and Tilt of Earth’s
Orbit

The period of glaciations is roughly 100.000 years, which coincides with
the period of varying eccentricity of the Earth’s orbit around the Sun
(Milankovitch cycles) giving a varying radiative forcing over the year. The
eccentricity varies about 5 percent and higher eccentricity increases the
seasonal contrast over the Northern and Southern Hemisphere depending
also on the tilt which is about 23 degrees.
Figure 37.6 shows that we are at the end the peak of an interglacial period

and are facing a rapdily approaching new ice age to last another 100.000
years...Real estate prices in Sweden are already turning down...only very
long term investors have a chance to survive...

http://www.youtube.com/watch?v=BnFJ8cHAlco
http://en.wikipedia.org/wiki/Milankovitch_cycles


37.7 Glaciation vs Eccentricity and Tilt of Earth’s Orbit 195

FIGURE 37.4. Climate data over 400.000 years. Notice in particular the connec-
tion between eccentricity and glaciation, and of course that the CO2 shadows
temperature with a lag of 800 years (not the other way around).

http://www.trackforum.com/forums/showthread.php?t=130911&page=1
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It seems reasonal to expect that it is the seasonal contrasts that drive
glaciation and not the global mean temperature which has changed just 2
degrees Celcius since Sweden was covered by ice 10.000 years ago. Climate
change alarmists today claim that the small variation of global mean tem-
peratures over periods of glaciation indicates a strong climate sensitivity to
global mean temperatures. The political goal of a 2 degree limit is rooted
in such an argument. But this may not be scienticfially correct, if in fact
the global mean temperature is not strongly coupled to climate change.
The above data indicates that we may be quickly approaching a new ice
age, while the global temperature stays almost constant. The Winter 2010
is an example: Lots of ice an snow in the Northern Hemisphere, while the
global temperature is about 0.6 degrees Celscius above 20th century mean
value.
With larger eccentricity the NH Summer short and hot, while during the

long NH Winter heat is flowing from the Equator, with the net effect that
ice is not building up over Sweden...

37.8 Yearly Dynamics of Climate vs Glaciation

Consider the follwing simple model for coupled Equator-North Pole system:

Ṫ1 = Q1 − e(T1 − T2)− r1T1, Ṫ2 = Q1 + e(T1 − T2)− r2T2, (37.5)

where T1 and T2 are temperatures, r1 and r2 outgoing radiation coefficients,
and Q1 and Q2 are incoming insolations at the Equator and the North Pole,
respectively, and e is a heat exchange coefficient.
Denote yearly average by a bar, and assume that Q1 is year-periodic with

Q̄2 = 0 and that Q1 > 0 is constant. Taking the averages of the equations,
we obtain assuming T1 and T2 to be year perodic so that the averages of
Ṫ1 and Ṫ2 are zero:

Q̄1 = e(T̄1 − T̄2) + r1T̄1, r2T̄2 = e(T̄1 − T̄2), (37.6)

from which follows assuming Q̄1 = 1:

T̄1 =
e+ r2

e(r1 + r2) + r1r2
, T̄2 =

e

e(r1 + r2) + r1r2
. (37.7)

In the extreme case of e = 0, we get T̄1 = 1
r1

and T̄2 = 0, and in the other

extreme case with e very large, we get T̄1 = T̄2 = 1
r1+r2

, as expected.
The total poleward transferred heat/year equals

e(T̄1 − T̄2) =
r2

e(r1 + r2) + r1r2

which does not depend on the yearly dynamics of the NP radiative forcing
Q2, only upon outgoing radiation and exchange.
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Let us now make the heat exchange nonlinear, and then consider the
extreme case with a short hot Summer so that Q2 is large positive for a
short time and slightly negative for a long time, with still Q̄2 = 0. This
would correspond to an extreme eccentricity. The NP temperature T2 then
will have a somewhat delayed large peak for a short time with possibly
T2 > T1. Suppose we eliminate the corresponding heat flow from the NP
towards the Equator, by changing the linear term to e(T1 − T2)

+ with
v+ = v is v > 0 and v = 0 else.
The average of the corresponding exchange term can be approximated

by taking the average only over the long period when T1 > T2, which can
be approximated by

eT̄1 − γeT̄2 (37.8)

with the coefficient 0 < γ < 1 depending on the size of the oscillation of T2
around its mean value. We obtain as above

T̄1 =
γe+ r2

e(γr1 + r2) + r1r2
, T̄2 =

e

e(γr1 + r2) + r1r2
. (37.9)

We see as expected that T̄2 increases as γ decreases. The model thus il-
lustrates that the year dynamics of the radiative NP heating can influence
the poleward heat flow and thus increase the average NP temperature (and
prevent glaciation).
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38
Ping-Pong

Ping-pong is similar to Pong in 3d, with additional restriction of net, return
velocity, return spin et cet.

38.1 Demo + Lab

• Test, Modify and Create Yourself 1d (pingpong1d)

• Test, Modify and Create Yourself 2d (pingpong2d)

• Test, Modify and Create Yourself 3d (pingpong3d)

http://www.youtube.com/watch?v=lrp-FT51zPE
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FIGURE 38.1. The importance of focussing.
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39
Particle-Spring Systems

I do not keep up with the details of particle physics. (Murray
Gell-Mann)

It’s indeed surprising that replacing the elementary particle
with a string leads to such a big change in things. I’m tempted
to say that it has to do with the fuzziness it introduces. (Edward
Witten)

There are no Quantum Jumps, nor are there Particles! (H. D.
Zeh)

39.1 Equations of Motion

We now generalize from pointlike hard particles to flexible systems consist-
ing of hard particles connected by elastic springs, referred to as particle-
spring systems. We start with a system consisting of two particles of mass
M1 and M2, the positions of which we record by the coordinates x1(t) and
x2(t). We connect the particles by an elastic spring with rest length L12

and spring constant E, which establishes a force between the particles, with
the force acting on M1 given by

F12 = E(r12 − L12)e12, (39.1)
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where r12 = |x1−x2|. This is an attractive force if |r12| < L12 and repulsive
if |r12| > L12, and let

e12 =
x2 − x1

r12
(39.2)

be the vector of unit length pointing from x1 to x2. Of course (why?) the
force F21 acting on particle M2 is the reverse of F12 so that F21 = −F12

(Newton’s 3rd Law).
We say that this is a linear spring since the spring force is directly pro-

portional to the elongation |r12| − L12 from the rest length.
The equations of motion are

ẋ1(t) = v1(t), ẋ2(t) = v2(t),

v̇1(t) =
F12

M1
, v̇2(t) =

F21

M2
,

(39.3)

or in incremental form using Smart-Euler:

v1,n+1 = v1,n +
Fn12
M1

dt, v2,n+1 = v2,n +
Fn21
M2

,

x1,n+1 = x1,n + v1,n+1dt, x2,n+1 = x2,n + v1,n+1dt,

(39.4)

where xi,n = xi(ndt), vi,n = vi(ndt) for i = 1, 2, and Fn12 = E(rn12−L12)e
n
12

with en12 = x2,n−x1,n

rn12
and rn12 = |x2,n − x1,n|.

39.2 Experiments

• Flying Circus Cow

• Inside Flying Circus Cow

• Particle-spring elastic system

39.3 Generalization

We can directly generalize to any number of particles connected by any
set of linear springs, including crossing springs. We can generlize to non-
linear springs with a non-linear relation between spring force and spring
elongation. See e.g. N-Body Systems.

39.4 Demo + Lab

• Test, Modify and Create Yourself (particlespring)

http://www.bodysoulmath.org/movies/circus2_boundary.mpg
http://www.bodysoulmath.org/movies/circus2_physical.mpg
http://www.youtube.com/watch?v=S0C2t6buPXA
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40
Elastic Pong 1d

40.1 Demo + Lab

• Test, Modify and Create Yourself 1d (elasticpong1d)

40.2 Computational vs Analytical Elastic Collision

There are two possibilties of describing elastic collision, between two bodies
coming into contact or one body colliding with a solid wall:

1. Formulate a analytical law of collision, like reflection.

2. Insert an elastic spring with short range of action and resolve the
collision process by time-stepping.

Option 2. can be used in general and replaces possibly tricky analytical
mathematics required for 1. by simple computation; imagine e.g. a multiple-
body collision.
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41
Elastic Pong 2d and 3d

Use short-range elastic springs to model elastic collisions and reflections at
boundaries.

41.1 Demo + Lab

• Test, Modify and Create Yourself 2d (elasticpong2d)

• Test, Modify and Create Yourself 3d (elasticpong3d)
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42
Elastic Ping-Pong

42.1 Demo + Lab

• Test, Modify and Create Yourself (elasticpingpong)
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43
Billiards

43.1 Analytical Mathematics

One can find the analytical laws of elastic collision and reflection by using
that momentum and kinetic energy is conserved and that the direction
after impact of the ball at rest before impact, is given by the normal to the
plane of contact.

43.2 Computational Mathematics

In computation short-range elastic springs can be used instead of analytical
collision/reflection laws. Simpler and more general. Contact with friction
can easily be added.

43.3 Spinning Cue-Balls

Spinning the cue-ball (which you do with the cue) is useful to position the
cue ball appropriately after collision. Spin can be modeled by a suitable
additional force on the cue ball. The impact between the cue and the ball
must come along with a friction force, unless the direction of the cue points
at the center of the ball, in order for the ball to move in the direction of the
cue. It is this friction force which causes the spin. Friction can be modeled
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FIGURE 43.1. Billiard angles.

FIGURE 43.2. Paul Newman in The Hustler

http://www.youtube.com/watch?v=yBK6oHXo_Oo
http://www.youtube.com/watch?v=ifvmjrtS1lo
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by adding a force proportional to the spring force in the plane tangent to
the point of contact.

43.4 Watch

• Colliding Elastic Spheres

• Billiards Simulator

43.5 Game

Construct a billiards simulator.

http://www.youtube.com/watch?v=FOiJ9wiM77Y
http://www.youtube.com/watch?v=RuphLw39Nxo
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44
Curling

Curling describes that the stone can be given a rotation at start resulting
(how?) in a sideway force making the trajectory (path) of the stone slightly
curved, more so at the end of the trajectory when the speed is small.

44.1 Watch

• Curling Rocks

• Curling Basics

44.2 Game

Construct a curling simulator and game.

http://www.youtube.com/watch?v=idSdnubrlds
http://www.youtube.com/watch?v=7ExtlBUtBnU&NR=1&feature=fvwp
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FIGURE 44.1. Olympic Champion Anette Norberg.

http://en.wikipedia.org/wiki/Anette_Norberg
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45
Elastic String

We consider a string occupying the interval [0, 1] consisting of equal parti-
cles initially at the points xi = ih, i = 0, 1, ..., J+1, where h is the distance
between two consecutive particles. Assume the particles are connected by
linear springs with spring constant E

h and zero rest length. Notice that the
spring constant is normalized with the length h of each spring. Assume the
particles at the end points x0 and xJ+1 are held fixed. Let ui(t) be the
displacement of particle i from its initial position at ih. In particular, we
have u0(t) = 0, uJ+1(t) = 0.
The spring force between particle i and i+1 acting on particle i is given

by

Fi,i+1 =
E

h
(ui+1 − ui) (45.1)

and the spring force between i− 1 and i acting on particle i, is given by

Fi,i−1 = −Fi−1,i = −E
h
(ui − ui−1). (45.2)

The net force acting on particle i thus is given by

Fi = Fi,i+1 + Fi,i−1 =
E

h
(ui+1 − 2ui + ui−1). (45.3)

The equation of motion for ball i, assuming that the mass of each particle
is Mh (total mass M), is given by

Mhu̇i(t) = vi(t), v̇i(t) =
E

h
(ui+1 − 2ui + ui−1) (45.4)



216 45. Elastic String

that is, assuming E
M = 1 for simplicity,

u̇i(t) = vi(t), v̇i(t) =
ui+1 − 2ui + ui−1

h2
, i = 1, ...., J. (45.5)

Using the notation ü = d
dt u̇ = v̇, we can write the equations of motion

üi(t) =
ui+1 − 2ui + ui−1

h2
i = 1, ..., J. (45.6)

45.1 Demo + Lab

• Test, Modify and Create Yourself (elasticstring)

45.2 Space Derivative

The above derivation of the equations of motion for an elastic string of
particles leads to the definition of space derivative of the displacement u
as change of displacement per unit space step as du

dx where dx = h and
dui = ui+1 − ui. We then have with E = 1

Fi,i+1 =
dui

dx
=
ui+1 − ui

h
. (45.7)

This leads to define the derivative u′(x) of a function u(x) as

u′(x) =
du

dx
=
u(x+ h)− u(x)

h
(45.8)

for small h.
We then define u′′(x) as the derivative of u′(x), that is

u′′(x) =
u′(x+ h)− u′(x)

h
=

u(x+h)−u(x)
h − u(x)−u(x−h)

h

h
(45.9)

that is

u′′(x) =
u(x+ h)− 2u(x) + u(x− h)

h2
(45.10)

for small h.
We also write

u′′ =
d

dx

du

dx
=
d2u

dx2
. (45.11)

Letting the number of particles increase and their mutual distance h
decrease, we are led to the following equations for an elastic string: Find



45.3 To Think About 217

the displacement u(x, t) defined for x ∈ [0, 1] and t ≥ 0, such that:

ü(x, t) = u′′(x, t) for x ∈ (0, 1), t > 0,

u(0, t) = u(1, t) = 0 for t > 0,

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) for x ∈ (0, 1),

(45.12)

where u0(x) and u̇0(x) are given functions.
Note that here we consider small displacements u(x, t) along the string

assuming the string is kept straight. Below we will consider transversal
displacements perpendicular to the string.
The equation

ü = u′′ (45.13)

is called the 1d wave equation. This equation also describes the propagation
of sound waves in a straight tube with the air molecules oscillating back
and forth as if connected by linear springs.
We can write the wave equation as a first order system as follows

u̇ = v

v̇ = F ′

F = u′
(45.14)

where u is displacement, v velocity and F spring tension and F ′ spring
force acting on particles.

45.3 To Think About

• String theory

http://www.youtube.com/watch?v=iejh5fgcvyc&feature=related
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46
Visco-Elastic String

An elastic string with a viscous (damping) force proportional to the velocity
v changes Newtons 2nd Law to

v̇ + νv = F (46.1)

where ν is a non-negative viscosity. The wave equation for an elastic string
with viscous damping thus takes the following form with ν = 1:

u̇ = v, v̇ + v = u′′ (46.2)

which is solved by time stepping and discretization of u′′ as above.

46.1 Demo + Lab

• Test, Modify and Create Yourself (viscoelasticstring)
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47
Elastic Net

Direct generalization to in-plane displacement of an elastic net occupying
[0, 1] × [0, 1] consisting of particles at the points xi,j = (ih, jh), i, j =
0, 1, ...,M , with in-plane displacements ui,j = u(ih, jh), satisfying

u̇i,j(t) = vi,j(t),

ḣ2vi,j(t) =
E

h
h(ui+1,j − 2ui,j + ui−1,j) + E(ui,j+1 − 2ui,j + ui,j−1)

= E(ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j),

(47.1)

with mass of each particle = h2 and the spring constant E
h multiplied by

h to get correct scaling.
With a vanishingly small mesh size h these equations take the following

form if E = 1
h2 :

ü = ∆u, (47.2)

with

∆u =
∂2u

∂dx21
+

∂2u

∂dx22
. (47.3)

We will see below that u can also represent the transversal displacement of
an elastic membrane.
With damping we get a model of the form

ü+ u̇ = ∆u. (47.4)
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47.1 Demo + Lab

• Test, Modify and Create Yourself (elasticnet)
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48
Elastic Body

Generalizing to 3d we are led to the following wave equation for the dynamic
vibration of an elastic body occupying the volume Ω and being fixed at the
boundary Γ (compare an elastic cube without fixation of the boundary):

ü(x, t) = ∆u(x, t) for x ∈ Ω, t > 0,

u(x, t) = 0 for x ∈ Γ, t > 0,
(48.1)

with u(x, 0) and u̇(x, 0) given initial values in Q, and

∆u =
d2u

dx21
+
d2u

dx22
+
d2u

dx23
. (48.2)

48.1 Watch

• Another elastic cube.

Viscosity is introduced by adding a term νu̇ as above.

48.2 Demo + Lab

• Test, Modify and Create Yourself (elasticbody)

http://www.youtube.com/watch?v=NfIreozzZQg
http://www.youtube.com/watch?v=jvkKXR1Ma2U
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49
Elast String: Tranversal Motion

The particle-spring string model (45.6)

üi(t) =
ui+1 − 2ui + ui−1

h2
i = 1, ...,M. (49.1)

can be given a different interpretation with ui being the vertical (transver-
sal) displacement of particle i of a horisontal string of beads, instead of
the horisontal displacement as above. To arrive at this interpretation, we
assume that the tension in the string is uniform so that all springs have
the same spring force of unit strength. The inclination of the spring from

particle i − 1 to particle i is given by ui−ui−1

h and that from particle i to

particle i+1 equals ui+1−ui

h . The vertical component of the spring force on
particle i is thus given by

ui+1 − 2ui + ui−1

h
(49.2)

which gives (49.1) from Newton’s 2nd Law with accelleration force hüi

attributing the mass h to each particle.
We conclude that the 1d wave equation (45.12) also models transversal

vibration of an elastic string.
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49.1 Game

Player 1 controls the left endpoint of the particle-spring string, and Player
2 the right. The objective is to kick a wabe back and forth by suitable
vertical motion of the endpoints.

49.2 Realization
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50
Music = Vibrating Elastic Strings

Music is the pleasure the human mind experiences from count-
ing without being aware that it is counting. (Leibniz)

It is this way that in mathematics speculative theorems and
practical canons are reduced by analysis to definitions, axioms
and postulates. (Leibniz)

There is geometry in the humming of the strings, there is music
in the spacing of the spheres. (Pythagoras)

50.1 Harmonics of a Vibrating Strings

Show that functions un(x, t) of the form

un(x, t) = (an cos(πnt) + bn sin(πnt)) sin(πnx), n = 1, 2, 3, ..., (50.1)

where an and bn are real constants, solve the wave equation (45.12) for
a tranversally vibrating elastic string. The functions sin(πnx) are called
the harmonics of the string and correspond to different musical tones with
different frequencies n, with the base tone given by n = 1 and the overtones
by n > 1.
If the string is plucked, initiated with u0 6= 0 and/or u̇0 6= 0, it will

generate a tone which is a sum

u(x, t) =

N∑

n=1

un(x, t), (50.2)
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of the harmonics sin(nx) with amplitudes (an cos(πnt)+ bn sin(πnt)) vary-
ing with time. If you have several strings, of different lengths/tension as
on a guitar, then you can generate chords consisting of two or more tones,
including overtones.

50.2 The Pythagorean Scale

The Pythagorean scale or tuning is generated from the harmonics based on
the ratio 3 : 2 of a fifth according the the circle of fifths as follows:

• base note: C: 1 (normalized frequency)

• octave: high C: 2

• fifth: G: 3
2

• second: D: 9
8

• sixth: A: 27
16

• third: E: 81
64

• seventh: H: 243
128

• fourth: F: 4
3 ,

with the last fifth, which would come out as F# or F -sharp of frequency
729
512 = 1.423828125, is replaced by F with the simplest possible ratio 4

3 =
1.3333....

50.3 The Equally-Tempered Scale

In the equally-tempered scale with an octave of 12 half-notes, the relative
frequency between successive half-notes is equal to x = 2

1
12 as the positive

solution of the equation x12 = 2.
Compare the Pythgorean scale to the equally-tempered major scale con-

sisting of the following sequence of intervals: whole-whole-half-whole-whole-
whole-half, with a whole interval equal to two half-notes.
Compare:

• Pythagoras and Music 1

• Pythagoras and Music 2

• Pythagorean scale.

• Non-Pythagorean scales.

http://en.wikipedia.org/wiki/Pythagorean_tuning
http://www.youtube.com/watch?v=X0r9jd2KWNA&feature=related
http://www.youtube.com/watch?v=KIHUaaIMMu0&NR=1
http://www.youtube.com/watch?v=0NSZ7KkCP5Q
http://www.youtube.com/watch?v=9TzZPsVMtYM
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FIGURE 50.1. Pythagoras discovering the mathematics of music, and the Uni-
verse
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50.4 Musical Game

Arrange a Song Contest based on e.g the Pythagorean scale.

50.5 Demo + Lab

• Test, Modify and Create Yourself (transversalelasticstring)
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51
Elastic Membrane

The bead-spring string model with transversal partcile motion generalizes
to a vibrating membrane, described by

ü−∆u = f for x ∈ Ω, t > 0,

u(x, t) = 0 for x ∈ Γ, t > 0,

u(x, 0) = u0(x), u̇(x, 0) = u̇0, for x ∈ Ω,

(51.1)

where u(x, t) is the vertical displacement at position x at time t of a ho-
risontal menbrane covering the domain Ω with fixed zero displacement at
its boundary Γ, acted upon by the vertical force dsitribution f(x, t).

51.1 Demo + Lab

• Test, Modify and Create Yourself (transversalelasticmembrane)

51.2 Game

Players can hit the membrane by supplying the force f(x, t) and/or chang-
ing the initial conditions.

51.3 Realization

http://www.youtube.com/watch?v=C0fOraNe3D4
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52
Bungy Jump

Simulate a bungy jump:

52.1 Demo + Lab

• Test, Modify and Create Yourself (bungyjump)

http://www.youtube.com/watch?v=lAZIxuxjogI
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FIGURE 52.1. Free-falling body attached to elastic chord.
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53
Spin-Ping-Pong

A spinning ball flying in the air will follow a curved path (without gravi-
tation) because the spin causes non-symmetric separation with generates a
force perpendicular to the axis of spin and the direction of flight. Add this
effect to your Pong games.

53.1 Perspective

• Why a Topspin Tennis Ball Curves Down.

53.2 Demo + Lab

• Test, Modify and Create Yourself (spinpingpong)

http://knol.google.com/k/why-a-topspin-tennis-ball-curves-down
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54
Elastic Spin-Ping-Pong

Extend to elastic spinning ball.

54.1 Demo + Lab

• Test, Modify and Create Yourself (elasticspinpingpong)
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55
Golf

Construct your own game using experience from spin-ping-pong. Watch

• 3d Minigolf Challenge (Iphone)

• Classic game

• Game with real clubs

• More realistic game

http://www.youtube.com/watch?v=WPp_AhTaDEA&feature=related
http://www.youtube.com/watch?v=FNoi5I3uVh8
http://www.youtube.com/watch?v=myGrsBkZppQ
http://www.youtube.com/watch?v=t6OKDrHRle4
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FIGURE 55.1. Tiger Woods swing.
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56
Tennis

Construct your own game using experience from spin-ping-pong. Watch

• Top Spin 3 Borg-Becker

• Haptic interaction

http://www.youtube.com/watch?v=y5kAE_0XxKs
http://www.youtube.com/watch?v=j0fuPzbBpNQ


This is page 242
Printer: Opaque this

FIGURE 56.1. Björn Borg top spin.
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57
Squash

Construct your own game using experience from spin-ping-pong. Watch

• Rally 2009

• Champions 2009

• Computer game.

http://www.youtube.com/watch?v=DgXuQuk1EVM&feature=related
http://www.youtube.com/watch?v=HMAX6uaPQ-Y&feature=related
http://www.youtube.com/watch?v=ScJ4zo--P3A
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FIGURE 57.1. Squash court
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58
Badminton

Construct your own game using experience from viscous-ping-pong. Watch

• Computer game

• Long rally

• How to play.

http://www.youtube.com/watch?v=zmf3rGvJfQg
http://www.youtube.com/watch?v=RZ2k-tsX5KE
http://www.youtube.com/watch?v=W71aeOYS9I8
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FIGURE 58.1. Badminton court.
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59
Electrostatic Barrier

Build a barrier by suitably lining up electrical charges with the objective
of preventing an equally charged approaching particle to get through. Use
Coulomb’s Law for the respulsive force between electrical charges of equal
sign, which analogous to Newton’s law of gravitation with a change of sign
(repulsion instead of attraction).

59.1 Game

Design a game including electrostatic walls and moving charged particles.
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Leibniz’ World of Calculus
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FIGURE 59.1. Gottfried Wilhelm Leibniz: There are also two kinds of truths:
truth of reasoning and truths of fact. Truths of reasoning are necessary and their
opposite is impossible; those of fact are contingent and their opposite is possi-
ble...When a truth is necessary, the reason for it can be found by analysis, that
is, by resolving it into simpler ideas and truths until the primary ones are reached.
.

http://www.youtube.com/watch?v=P9dpTTpjymE
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60
Differential Equations of Motion

Mathematics has the completely false reputation of yielding in-
fallible conclusions. Its infallibility is nothing but identity. Two
times two is not four, but it is just two times two, and that is
what we call four for short. But four is nothing new at all. And
thus it goes on in its conclusions, except that in the height the
identity fades out of sight. (Goethe)

Making the simple complicated is commonplace; making the
complicated simple, awesomely simple, that’s creativity. (Charles Mingus)

60.1 Initial Value Problem IVP

We recall that velocity v is defined as the change dx of position x per unit
time step dt:

v =
dx

dt
. (60.1)

We also refer to dx
dt as the derivative of x with respect to t. Similarly, we

have
dv

dt
= a , (60.2)

where a is the accelleration. In other words:

• Derivative of position with respect to time = velocity,

• Derivative of velocity with respect to time = accelleration.

http://wn.rsarchive.org/Books/GA001/English/MP1988/GA001_c12.html
http://www.mingusmingusmingus.com/Mingus/index.html
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We will denote derivative with respect to time, alternatively with a dot:

ẋ =
dx

dt
, v̇ =

dv

dt
, (60.3)

where we in the spirit of Leibniz assume the time step to be vanishingly
small. Newton used ẋ and Leibniz used dx

dt to denote the derivative of x
with respect to time t. Newton’s age is sometimes referred to as the dot-age
(while our age may be referred to as the dot-com-age, right?).
The process of computing the derivative ẋ(t) of a function x(t) is called

differentiation, or more precisely, differentiation with respect to t.
Using Newton’s notation we can thus write the equations of motion,

assuming M = 1 for simplicity, as differential equations :

ẋ = v, v̇ = F, (60.4)

which is to be interpreted as

ẋ(t) = v(t), v̇(t) = F (t) for t > 0,

x(0) = x0, v(0) = v0,
(60.5)

where x(t), v(t) and F (t) are viewed as functions of t, and x0 and v0 are
given initial values of position and velocity at an initial time t = 0.
We can generalize to F = F (x, v, t) depending also on x and v, in which

case the equations of motion read

ẋ(t) = v(t), v̇(t) = F (x(t), v(t), t) for t > 0,

x(0) = x0, v(0) = v0.
(60.6)

or with ẍ = v̇

ẍ(t) = F (x(t), ẋ(t), t) for t > 0,

x(0) = x0, ẋ(0) = v0.
(60.7)

We refer to (60.5), (60.6) and (60.7) as Initial Value Problems or IVPs.

60.2 Measures of Change: Continuity, Derivative

Calculus is the mathematics of change with the derivative being a measure
of change, and thus can be viewed as the mathematics of IVPs.
The time derivate ẋ(t) of position x(t) as function of time t, measures

the change of position per unit time step. A function x(t) with derivative
ẋ(t) is said to be differentiable.
Another basic concept of Calculus related to change is continuity, which

is a form of poor cousin of derivative, also measuring change but in a less
precise way.
You will below meet the precise definitions of derivative and continuity,

as more or less precise measures of change. We here prepare these basic
definitions with a short introductory discussion.
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60.3 A Basic Example

If the velocity ẋ(t) of position x(t) is constant ẋ(t) = v with v a constant
velocity, then the position x(t) changes linearly with time: x(t) = x0 + vt
for t > 0 with x0 the position for t = 0. Thus x(t) = x0 + vt is a linear
function of t, since it has the form c0 + c1t with c0 and c1 constants.
If v(t) is not constant, then x(t) will not be linear in t, but if v(t) is

almost constant locally, for small changes of t, then x(t) will be almost
linear locally. We here meet both the concept of continuity and the concept
of differentiability:

• A function v(t) is continuous if v(t) is locally close to a constant.

• A function x(t) is differentiable (with derivative ẋ(t)) if x(t) is locally
close to a linear function in t.

We shall below meet the concept of continuity as Lipschitz continuity in-
cluding a quantitative measure of the local deviation from a constant.
It is natural to generalize, an essential aspect of mathematics, to:

• A function x(t) is two times differentiable if x(t) is locally close to a
quadratic function in t up to a third order term.

This connects to a particle with position x(t) subject to constant acceller-
ation a, in which case the velocity v(t) = ẋ(t) = at+ v0 and the position

x(t) =
a

2
t2 + v0t+ x0 (60.8)

is exactly equal to a quadratic function in t. Differentiating ẋ = at with
respect to t, we find that the second derivative ẍ(t) = d

dt ẋ(t) = a, and thus
(60.8) can be written

x(t) = x(0) + ẋ(0)t+
ẍ(0)

2
t2 (60.9)

while for a general twice differentiable function x(t)

x(t) ≈ x(0) + ẋ(0)t+
ẍ(0)

2
t2 for |t| small, (60.10)

up to a term of order |t|3 (allowing t to also be negative).
We shall below recover this expression as an example of Taylor’s formula

expressing a general function locally as a polynomial with coefficients given
by the values of the function and its derivatives at a specific point.

60.4 Perspectives

• Return of Descartes

http://knol.google.com/k/return-of-descartes
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• Soul as Simulation of Body

• Zeno’s Paradox of Particle Motion

• Slinky as Resolution of Zeno’s Paradox

FIGURE 60.1. Leibniz manuscript from October 29, 1675, introducing the inte-
gral sign

∫
(in the box): It is useful to denote summation (omnia) by

∫
. Yes, it

has shown to be very useful.

60.5 To Think About

• What did Galileo say about motion?

• How is the derivative of a function defined? Computed?

• How does a speedometer on a bike work?

• How does a distance meter on a bike work?

http://knol.google.com/k/claes-johnson/soul-as-simulation-of-body/yvfu3xg7d7wt/82
http://knol.google.com/k/resolution-of-zeno-s-paradox-of-particle-motion
ttp://knol.google.com/k/claes-johnson/slinky-as-resolution-of-zeno-s-arrow/yvfu3xg7d7wt/74
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60.6 Watch

• Newton, Leibniz or Gore?, Leibniz Calculus rap

• Importance of Calculus, Leibniz Monadology

• Quinton about Leibniz

• Feynman on the Relation of Mathematics and Physics

Seeing then that truth consisteth in the right ordering of names in our
affirmations, a man that seeketh precise truth had need to remember
what every name he uses stands for, and to place it accordingly; or
else he will find himself entangled in words, as a bird in lime twigs;
the more he struggles, the more belimed. And therefore in geometry
(which is the only science that it hath pleased God hitherto to bestow
on mankind), men begin at settling the significations of their words;
which settling of significations, they call definitions, and place them
in the beginning of their reckoning. (Leviathan, Thomas Hobbes)

When man reasoneth, he does nothing else but conceive a sum total,
from addition of parcels; or conceive a remainder, from subtraction
of one sum from another: which, if it be done by words, is conceiving
of the consequence of the names of all the parts, to the name of the
whole; or from the names of the whole and one part, to the name of
the other part. And though in some things, as in numbers, besides
adding and subtracting, men name other operations, as multiplying
and dividing; yet they are the same: for multiplication is but adding
together of things equal; and division, but subtracting of one thing,
as often as we can. These operations are not incident to numbers
only, but to all manner of things that can be added together, and
taken one out of another. For as arithmeticians teach to add and
subtract in numbers, so the geometricians teach the same in lines,
figures (solid and superficial), angles, proportions, times, degrees of
swiftness, force, power, and the like; the logicians teach the same
in consequences of words, adding together two names to make an
affirmation, and two affirmations to make a syllogism, and many
syllogisms to make a demonstration; and from the sum, or conclu-
sion of a syllogism, they subtract one proposition to find the other.
(Leviathan, Thomas Hobbes)

http://www.youtube.com/watch?v=9KNEvT9z3_4
http://www.youtube.com/watch?v=NzqgCm4MEtw
http://www.youtube.com/watch?v=LK5JhQBLhJY
http://www.youtube.com/watch?v=iqgBfB4lmKI&feature=related
http://www.youtube.com/watch?v=GmbGbo-oyKc
http://www.youtube.com/watch?v=1SrHzSGn-I8&feature=related
http://oregonstate.edu/instruct/phl302/texts/hobbes/leviathan-a.html#CHAPTERV
http://oregonstate.edu/instruct/phl302/texts/hobbes/leviathan-a.html#CHAPTERV
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61
Functions f : Qm → Qn

All things are subject to interpretation whichever interpretation
prevails at a given time is a function of power and not truth.
(Friedrich Nietzsche)

The function of muscle is to pull and not to push, except in the
case of the genitals and the tongue. (Leonardo da Vinci)

The supreme function of reason is to show man that some things
are beyond reason. (Blaise Pascal)

The function of education is to teach one to think intensively
and to think critically... Intelligence plus character - that is the
goal of true education. (Martin Luther King, Jr.)

We denote by Q the set of rational numbers, that is, the numbers with
finite or periodic decimal expansion.
We write f : D(f) → Q if for each given value of x in some set, called

the domain D(f) of f , a rational number f(x) is assigned, that is, for each
x ∈ D(f) the function value f(x) ∈ Q is assigned.
The set of values f(x) for x ∈ D(f) forms the range R(f) of f . We

can thus write f : D(f) → R(f) stating that for each x ∈ D(f) there is
assigned a value f(x) ∈ R(f), and for each value y ∈ R(f) there is at least
one value x ∈ D(f) such that y = f(x).
In particular, writing f : Q → Q, means that for each x ∈ Q, a function

value f(x) ∈ Q is assigned.
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FIGURE 61.1. NASA definition of function f(x)

Writing f : Qm → Qn means that for eachm-vector x ∈ Qm, an n-vector
f(x) with rational coefficients is assigned.
We often write e.g. f : Qm → Qn without explicitly specifying the do-

main D(f) ⊂ Qm, or the range R(f) ⊂ Qn.
It is common to denote by R the set of all rational numbers together

with the numbers with an infinite non-periodic decimal expansion, referred
to as the set of real numbers.
We shall see a function f : Qm → Qn can be extended to a function

f : Rm → Rn, if the function f(x) is continuous in a way to be specified
precisely below.
We denote by R+ the set of positive real numbers.

61.1 Read More

• What is a Function?

61.2 To Think About

• How did the notion of function develop?

• Who introduced the concept and terminology?
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62
x(t) =

∫ t

0 v(s)ds solves ẋ(t) = v(t)

Without mathematics we cannot penetrate deeply into philoso-
phy. Without philosophy we cannot penetrate deeply into math-
ematics. Without both we cannot penetrate deeply into any-
thing. (Leibniz)

62.1 The Most Basic IVP

The solution of the IVP of finding x : [0, T ] → R such that

ẋ(t) = v(t) for 0 < t ≤ T, x(0) = 0, (62.1)

where v : [0, T ] → R is a given function and [0, T ] a given time-interval, is
denoted by

x(t) =

∫ t

0

v(s) ds, t ∈ [0, T ], (62.2)

and is referred to as the integral or primitive function of v(t). So far the

integral
∫ t
0 v(s) ds is just a sign or name of the solution x(t), and it remains

to give it a concrete meaning. We shall see that the S-like integral sign
∫

can be viewed as indicating a certain form of Summation, which we shall
make precise. The integral sign

∫
was the strike of genius of Leibniz, long

before logotypes became the carriers of the inner meaning of companies
and organizations.
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∫ t
0
v(s)ds solves ẋ(t) = v(t)

The Forward Euler method for the IVP (62.1), is given by

x((n+1)dt) = x(ndt)+v(ndt)dt for n = 0, 1, 2, ..., N, with (N+1)dt = T,
(62.3)

or equally well

x((n+1)ds) = x(nds)+v(nds)ds for n = 0, 1, 2, ..., N, with (N+1)ds = T,
(62.4)

with dt = ds the time step. If we replace x(nds) by x((n − 1)ds) + v((n−
1)ds)ds, and so on, we see that x((n+ 1)ds) can be expressed as as a sum

x((n+1)ds) =

n∑

m=0

v(mds)ds = v(0)ds+v(ds)ds+v(2ds)ds+...+v(nds)ds.

(62.5)
We are thus led to view

∫ t

0

v(s)ds and

n∑

m=0

v(mds) ds, (62.6)

to be similar, which we shall make precise below. We refer to the sum
representation of the integral as a Riemann sum. We sum up so far:

Observation 1: The integral x(t) =
∫ t
0 v(s)ds satisfies by definition

ẋ(t) =
d

dt

∫ t

0

v(s)ds = v(t) for 0 < t ≤ T. (62.7)

The integral x(t) =
∫ t
0 v(s)ds represents a Riemann sum

∑n
m=0 v(mds) ds

with (n+ 1)dt = t.

Observation 2: The solution of the IVP, with possibly non-zero initial
value x0, of finding x : [0, T ] → R such that

ẋ(t) = v(t) for 0 < t ≤ T, x(0) = x0, (62.8)

is given by

x(t) = x0 +

∫ t

0

v(s)ds. (62.9)

This is because the derivative of a constant function (the function w(t) =
x0), is zero (ẇ = 0).

Observation 3: Since ẋ(t) = v(t) and v̇(t) = a(t) with x(t) distance, v(t)
velocity and a(t) accelleration, we can say that

• distance is the integral of velocity,

• velocity is the integral of accelleration.
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FIGURE 62.1. Integral as Riemann sum as area under graph.

62.2 Interpreting the Integral as an Area

The area A(v, t) bounded by the graph of the function v : [0, t] → R and
the s-axis of a (v, s)-coordinate system, can viewed as a sum of rectangu-
lar strips of height v(mdt) and width dt (asssuming for definiteness that
v(mdt) ≥ 0), and thus

A(v, t) =
n∑

m=0

v(mds)ds, t = (n+ 1)ds. (62.10)

We are thus led to interprete the integral as an area:
∫ t

0

v(s)ds = A(v, t) = area under the graph of v(s) on the interval [0, t]

(62.11)
as illustrated in Fig. 60.1.

62.3 The Trapezoidal Rule

Replacing the shaded rectangle area in Fig. 60.1 with the area of a trapezoid
right vertical of length v((m + 1)dt as illustrated in Fig. 60.2, we obtain
the alternative Riemman sum approximation

∫ t

0

v(s)ds ≈
n−1∑

m=0

v(mds) + v((m+ 1)ds)

2
ds =

v(0)

2
ds+

n−1∑

m=1

v(mds)ds+
v(t)

2
ds.

(62.12)
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∫ t
0
v(s)ds solves ẋ(t) = v(t)

FIGURE 62.2. Piecewise linear approximation of the Trapezoidal Rule vs piece-
wise constant approximation of Euler Midpoint. Piecewise linear approximation
is a basic element of computational mathematics including the finite elemeent
method, as you will discover below...Simple and profound...

which is the Trapezoidal Rule. We compare with a Midpoint Euler method
defining the height of the rectangle to be the function value at the midpoint
of the interval. This value is close to the mean-value of the endpoint values
used in the Trapezoidal Method, which thus is close to Midpoint Euler.

62.4 Not All Integrals are Areas

Note that distance is the integral of velocity but it is not very natural to
say that distance is the area under the velocity graph.
Summing up: The integral is defined as the solution to an IVP. Some

integrals can be interpreted as areas, but all integrals are not areas. Some
cars (integrals) are Volvos (areas) but all cars (integrals) are not Volvos
(areas). There are also Saabs...
Nevertheless, many Calculus books introduce the integral as the area

under a graph, based on the pedagocial idea to define a new concept (the
integral) in terms of something supposedly more familiar (area), but this
is questionable from mathematical point of view and also confusing, when
students discover that all integrals are not areas. To say that an integral is
solution to an IVP, is not questionable, because this is what an integral is.
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FIGURE 62.3. IVP of Usain Bolt

62.5 Watch

• Jesse Owens 1936 IVP: 100 on 10.3 sec

• Usain Bolt 2009 IVP: 100 m on 9.58 sec

http://www.youtube.com/watch?v=K1XclGwJY8s
http://www.youtube.com/watch?v=3nbjhpcZ9_g
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63
The Fundamental Theorem of Calculus

63.1 Integration as Inverse of Differentation

The formula (62.7) is referred to as the Fundamental Theorem of Calculus :
Integration of the function v(t) followed by differentiation, gives back the
function v(t):

d

dt

∫ t

0

v(s)ds = v(t) for t > 0. (63.1)

Alternatively, The Fundamental Theorem of Calculus can be expressed
as ∫ t

0

u̇(s)ds = u(t) for t > 0, (63.2)

stating: Integration of the derivative u̇(t) of the function u(t), gives back
the function u(t). This follows from the fact that the derivative with respect
to t of both sides of (63.2) equals u̇(t), combined with the fact that two
functions with the same derivative taking the same value for t = 0, must
coincide. Two cars traveling with the same velocity starting at the same
time from the same location will arrive at the same time to the destination.
Right?
We shall see that (63.2) can be viewed to express the following identity:

The sum (

∫ t

0

or

n∑

m=0

) of the parts (du = u̇ds) = the whole (u(t)).

(63.3)
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FIGURE 63.1. Analog mechanical integrator computing the integral
∫
y(x)dx of

a funtion y(x). Can you explain how it works?

Integration means summing little pieces to make up the whole. In Leibniz
notation this is expressed as

∫ t

0

du

ds
ds =

∫ t

0

du = u(t)− u(0). (63.4)

Elementary and profound.
Below we shall study the dependence of the integral

∫ t
0 v(s)ds of a given

function v(s) on the time step ds, and see that it is a uniquely determined
number for vanishing time step, which is approximated using a finite time
step, with accuracy depending on the variation of the function f(t) with
t. We will thus give a mathematical analysis of the meaning of the Fun-
damental Theoreom of Calculus, which we will refer to as a mathematical
proof of the Fundamental Theorem.
This experience will illustrate the role and meaning of a mathematical

proof as a process of dissecting the structure and meaning of a certain
mathematical statement.

63.2 Read More

• Short Course in Calculus

• The Fundamental Theorem of Calculus
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63.3 To Think About

• What could it mean to prove the Fundamental Theorem?

• Other interpretations of the whole = sum of parts?

• Suppose u(T ) = u(0) = 0. What then about
∫ T
0
u′(t) dt?

63.4 Watch

• Babbages Difference Engine No. 2

• Leibniz binary ball computer

•
√
2 pepper grinder

• Kraftwerk Pocket Calculator

• Kraftwerk Numbers

• Computer World

And as in arithmetic unpractised men must, and professors them-
selves may often, err, and cast up false; so also in any other subject
of reasoning, the ablest, most attentive, and most practised men may
deceive themselves, and infer false conclusions; not but that reason
itself is always right reason, as well as arithmetic is a certain and
infallible art: but no one man’s reason, nor the reason of any one
number of men, makes the certainty; no more than an account is
therefore well cast up because a great many men have unanimously
approved it. And therefore, as when there is a controversy in an ac-
count, the parties must by their own accord set up for right reason
the reason of some arbitrator, or judge, to whose sentence they will
both stand, or their controversy must either come to blows, or be
undecided, for want of a right reason constituted by Nature; so is it
also in all debates of what kind soever: and when men that think
themselves wiser than all others clamour and demand right reason
for judge, yet seek no more but that things should be determined
by no other men’s reason but their own, it is as intolerable in the
society of men, as it is in play after trump is turned to use for trump
on every occasion that suit whereof they have most in their hand.
For they do nothing else, that will have every of their passions, as it
comes to bear sway in them, to be taken for right reason, and that
in their own controversies: bewraying their want of right reason by
the claim they lay to it. (Leviathan, Thomas Hobbes)

http://www.youtube.com/watch?v=0anIyVGeWOI
http://www.youtube.com/watch?v=3AWO2n05SMI
http://www.youtube.com/watch?v=haaCoVrGd6k
http://www.youtube.com/watch?v=MobpPTVobOk
http://www.youtube.com/watch?v=VjN_F0hqtzQ&feature=related
http://www.youtube.com/watch?v=mSERLa1GHAs&feature=related
http://oregonstate.edu/instruct/phl302/texts/hobbes/leviathan-a.html#CHAPTERV
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64
The Fundamental Theorem Game

The two questions, the first that of finding the description of
the curve from its elements, the second that of finding the figure
from the given differences, both reduce to the same thing. From
this it can be taken that the whole of the theory of the inverse
method of the tangents is reducible to quadratures. (Leibniz
1673)

64.1 Game

One player gives a function f : [0, T ] → R and the other player is supposed

to compute its integral u(t) =
∫ t
0 f(s)ds for t ∈ [0, T ], or simply the value

u(T ), as quickly as possible. Return by giving a new f(t) to integrate.

64.2 Mathematics

Solve the IVP u̇ = f by time stepping.

64.3 Demo + Lab

• Test, Modify and Create Yourself (fundamental)
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65
Integrals of Polynomial Functions tp

Does anyone believe that the difference between the Lebesgue
and Riemann integrals can have physical significance, and that
whether say, an airplane would or would not fly could depend
on this difference? If such were claimed, I should not care to fly
in that plane. (Richard Hamming)

Nature laughs at the difficulties of integration. (Laplace)

65.1 Derivatives and Integrals of Polynomials

If v(s) = sp, then with x(0) = 0 we have

x(t) =
tp+1

p+ 1
=

∫ t

0

spds, p = 0, 1, ... (65.1)

To prove this, we note that for p = 0 we have

t =

∫ t

0

1ds, (65.2)

which is the same as
d

dt
t =

dt

dt
= 1. (65.3)

To see this we note that if x(t) = t, then dx(t) = x(t + dt) − x(t) =
t+ dt− t = dt and thus dx

dt = 1.
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For p = 1 we have
t2

2
=

∫ t

0

sds, (65.4)

which is the same as
d

dt
t2 = 2t. (65.5)

To see this we note that if x(t) = t2, then

dx(t) = x(t+dt)−x(t) = (t+dt)(t+dt)−t2 = t2+2tdt+dtdt−t2 = 2tdt−dtdt.
If now dt is small then we can argue that dtdt is so small that it can be
neglected, and thus d

dt t
2 = 2t.

For p = 2 we have
t3

3
=

∫ t

0

s2ds, (65.6)

which is the same as
d

dt
t3 = 3t2. (65.7)

To see this we note that if x(t) = t3, then

dx(t) = x(t+ dt)− x(t) = (t+ dt)(t + dt)(t+ dt)− t2

= t3 + 3t2dt+ 3tdtdt+ dtdtdt− t3 = 3t2dt+ 3tdtdt+ dtdtdt.

If now dt is small then we can argue that 3tdtdt and dtdtdt are so small
that they can be neglected, and thus d

dt t
3 = 3t2. Similarly, one can show

that
d

dt
tp = ptp−1 for p = 1, 2, 3... (65.8)

In BS we show that his formula also holds for negative exponents

d

dt
tp = ptp−1 for t > 0, p = −1,−2,−3, ..., (65.9)

and also for t < 0. In particular, we have for t 6= 0

1

t+ dt
− 1

t
=
t− (t+ dt)

(t+ dt)t
≈ − 1

t2
dt, (65.10)

which proves (65.9) for p = 1.
We shall also discover that the case p = 0 is special, and gives rise to the

logarithm log(t) as the solution of

ẋ(t) = t−1 =
1

t
, for t > 0, u(1) = 0, (65.11)

that is

log(t) =

∫ t

1

1

s
ds, for t > 0. (65.12)

The logarithm function was first constructed by the mathematician, physi-
cist, astronomer/astrologist John Napier (1550-1617) in 1614.

http://www.youtube.com/watch?v=BPcvFm1gPMk
http://www.youtube.com/watch?v=uTCqe_1HspQ&feature=related
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FIGURE 65.1. Derivatives of a polynomial.
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65.2 To Think About

• How to prove (65.8)?

65.3 Generalization

The derivation formulas (65.8) and (65.9) generalize to

d

dt
tp = ptp−1 for p 6= 0, t 6= 0 for p < 1, (65.13)

where p is a rational (or real) number.
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66
The Exponential Function exp(t)

Exponential growth looks like nothing is happening, and then
suddenly you get this explosion at the end. (Ray Kurzweil)

When, several years ago, I saw for the first time an instrument
which, when carried, automatically records the number of steps
taken by a pedestrian, it occurred to me at once that the entire
arithmetic could be subjected to a similar kind of machinery
so that not only addition and subtraction, but also multiplica-
tion and division could be accomplished by a suitably arranged
machine easily, promptly and with sure results.... For it is un-
worthy of excellent men to lose hours like slaves in the labour
of calculations, which could safely be left to anyone else if the
machine was used.... And now that we may give final praise to
the machine, we may say that it will be desirable to all who
are engaged in computations which, as is well known, are the
mangers of financial affairs, the administrators of others estates,
merchants, surveyors, navigators, astronomers, and those con-
nected with any of the crafts that use mathematics. (Leibniz)

66.1 Defining Differential Equation

The solution to dx
dt = v with v = x and x(0) = 1 , that is the solution x(t)

to the IVP
ẋ(t) = x(t) for t > 0, x(0) = 1, (66.1)
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FIGURE 66.1. The exponential functions exp(x) and exp(−x) for x ≥ 0.

is the exponential function

exp(t) =

∫ t

0

exp(s)ds, exp(0) = 1. (66.2)

We shall see below that exp(t) extends to t < 0 by the same differential
equation ẋ(t) = x(t).
Listen to the amazing properties of exponential growth. from Ray Kurzweil

himself.

66.2 Computing exp(t)

Updating dx = xdt gives

xn+1 = xn + xndtn = (1 + dt)xn, forn = 0, 1, 2, ..., (66.3)

and after summation, assuming x0 = 1,

xn = (1 + dt)n. (66.4)

With t = ndt, we thus have with Forward Euler:

exp(t) ≈ (1 +
t

n
)n (66.5)

http://www.youtube.com/watch?v=cc5gIj3jz44&feature=fvst
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In other words, exp(t) is the compund capital after n years of interest at a
yearly rate of t

n = dt with a starting capital of 1.

66.3 Varying the Time Step

We shall see below that as n increases the approximation exp(t) ≈ (1+ t
n )
n

improves and can be made as small as we like. Decreasing the time step t
n

in the formula

exp(t) ≈ (1 +
t

n
)n (66.6)

by increasding n, we thus obtain for t = 1:

n (1 + 1
n )
n

1 2
2 2.25
3 2.37
4 2.4414
5 2.4883
6 2.5216
7 2.5465
10 2.5937
20 2.6533
100 2.7048
1000 2.7169
10000 2.7181

Increasing n we can this way compute any number of decimals of the num-
ber e = exp(1), or more generally of exp(t) for any t > 0.

66.4 Properties of exp(t)

Properties of the exponential function exp(t) can be derived from the defin-
ing differential equation u̇(t) = u(t). For example, the basic property of the
exponential function

exp(t+ s) = exp(t) exp(s) (66.7)

follows by noting that u(t) = exp(t+s) viewed as a a function of t, satisfies

u̇(t) = u(t) for t > 0, u(0) = exp(s),

which means that u(t) = exp(s) exp(t), which proves (66.7).
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FIGURE 66.2. Exponential growth of computing power.

66.5 The Exponential exp(t) for t < 0

The exponential exp(−t) is the solution x(t) of the IVP

ẋ(t) = −x(t) for t > 0, x(0) = 1, (66.8)

If we here change variable writing s = −t, we have dx
dt = − dx

ds and thus the
IVP can also be written

ẋ(s) =
dx

ds
= x(s) for s < 0, x(0) = 1, (66.9)

which extends the original definition (66.1) to t < 0, as we announced.
We conclude that if f(t) = exp(t), the D(f) = R and R(f) = R+. (Why

is exp(t) > 0 for all t?)

66.6 Read More

• The Exponential.

In particular you find here proofs of the basic properties of exp(x):

exp(a+ b) = exp(a) exp(b), exp(a)r = exp(ra), (66.10)



66.7 To Think About 279

or
ea+b = eaeb, (ea)r = era. (66.11)

66.7 To Think About

• Why is usually the growth of an economy/BNPmeasured in per cent?

• Is there exponential growth in Nature?

66.8 Watch

• The Most Important Video You Will Ever See

• Exponential Growth

• Bacteria Growth

Even if I knew nothing of the atoms, I would venture to assert on the
evidence of the celestial phenomena themselves, supported by many
other arguments, that the universe was certainly not created for us by
divine power: it is so full of imperfectio. On the Nature of Things, Lucretius.

Nothing can be created out of nothing. (Lucretius)

...explain by what forces nature steers the courses of the Sun and
the journeyings of the Moon, so that we shall not suppose that they
run their yearly races between heaven and earth of their own free will
[i.e., are gods themselves] or that they are rolled round in furtherance
of some divine plan.... (Lucretius’ Physics)

Let us now take as our theme the cause of stellar movements. First
let us suppose that the great globe of the sky itself rotates.... There
remains the alternative possibility that the sky as a whole is station-
ary while the shining constellations are in motion. This may happen
because swift currents of ether ... whirl round and round and roll
their fires at large across the nocturnal regions of the sky. Or an ex-
ternal current of air from some other quarter may whirl them along
in their course. Or they may swim of their own accord, each respon-
sive to the call of its own food, and feed their fiery bodies in the
broad pastures of the sky. One of these causes must certainly oper-
ate in our world.... But to lay down which of them it is lies beyond
the range of our stumbling progress. (Lucretius’ Physics)

http://www.youtube.com/watch?v=F-QA2rkpBSY
http://www.youtube.com/watch?v=DjlEJNfsOKc
http://www.youtube.com/watch?v=gEwzDydciWc
http://classics.mit.edu/Carus/nature_things.html
http://en.wikipedia.org/wiki/De_rerum_natura#Lucretius.27_physics
http://en.wikipedia.org/wiki/De_rerum_natura#Lucretius.27_physics
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67
t = log(u) as the inverse of u = exp(t)

The spectacular thing about Johnny [von Neumann] was not
his power as a mathematician, which was great, or his insight
and his clarity, but his rapidity; he was very, very fast. And like
the modern computer, which no longer bothers to retrieve the
logarithm of 11 from its memory (but, instead, computes the
logarithm of 11 each time it is needed), Johnny didn’t bother to
remember things. He computed them. You asked him a ques-
tion, and if he didn’t know the answer, he thought for three
seconds and would produce and answer. (Paul R. Halmos)

The function u = u(t) = exp(t) satisfies

du

dt
= u, u(0) = 1, (67.1)

which we can rewrite as
dt

du
=

1

u
, (67.2)

that is, recalling (201.2), t = log(u), since t = 0 for u = 1. In other words.

u = exp(t) if and only if t = log(u) (67.3)

which means that u = exp(t) and t = log(u) are inverse functions. We thus
have for t, u > 0

log(exp(t)) = t, exp(log(u)) = u. (67.4)
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FIGURE 67.1. The logarithm log(x) for x > 0.

Writing
et = exp(t) (67.5)

we refer to e = e1 = exp(1) as the base of the natural logarithm with
exponent t = log(et).
Since by definition

d

dx
log(x) = x−1 for x > 0, (67.6)

the logarihm log(x) fills in the missing value p = 0 in the list (65.8 of
derivatives of xp:

d

dt
xp = xp−1 for p = ±1,±2,±3.., (67.7)

where we changed the name of the variable from t to x.
Note that with p = 0, xp = x01, and d

dtx
0 = 0 6= x−1.

67.1 Domain and Range of log(x)

Since the domain of the function x = exp(t) > 0 is R and range R+, the
domain of the inverse function t = log(x) is R+ and range R. In particular,

− log(x) = −
∫ x

1

1

y
dy =

∫ 1

x

1

y
dy (67.8)
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increases without bound as x > 0 approaches 0.

67.2 To Think About

• What was the use of Napier’s logarithms? Are they still used?

• What is a slide rule and how does it work?

• What are the basic rules for computing with logarithms?

67.3 Read More

• The Logarithm.

In particular you here proofs of the basic properties of log(x):

log(ab) = log(a) + log(b), log(ar) = r log(a). (67.9)

67.4 Watch

• John Napier 1

• John Naper 2

• Napier’s Bones

http://www.youtube.com/watch?v=uTCqe_1HspQ
http://www.youtube.com/watch?v=qAJz9l5LjlA
http://www.youtube.com/watch?v=3gjDfc2AF3w&feature=related
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FIGURE 67.2. Title page of John Napier’s logarithm tables.
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68
Elementary Functions

Elementary, my dearWatson, elementary!...It was easier to know
it than to explain why I know it. If you were asked to prove that
two and two made four, you might find some difficulty, and yet
you are quite sure of the fact...In solving a problem of this sort,
the grand thing is to be able to reason backward. That is a very
useful accomplishment, and a very easy one, but people do not
practise it much. In the everyday affairs of life it is more use-
ful to reason forward, and so the other comes to be neglected.
There are fifty who can reason synthetically for one who can
reason analytically...How often have I said to you that when
you have eliminated the impossible, whatever remains, however
improbable, must be the truth?...I never guess. It is a shocking
habit, destructive to the logical faculty... You know my meth-
ods. Apply them. (Sherlock Holmes)

In general, so called elementary functions, such as the exponential func-
tion, are defined as solutions of certain (basic elementary) differential equa-
tions, can be computed, decimal by decimal, by time stepping with smaller
and smaller time step. There are lots ofelementary functions, since there
are lots of possible more or less elementary differential equations, many of
them named after famous mathematicians, including

• Bessel functions

• Legendre polynomials

• Jacobi functio

http://www.youtube.com/watch?v=fefxO6W06aU
http://en.wikipedia.org/wiki/List_of_mathematical_functions
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FIGURE 68.1. Bessel functions Jα.

• Hermite functions

• Laguerre functions

• Hankel functions.

For example, the Bessel functions are solutions x(t) to the differential equa-
tion

t2ẍ+ tẋ+ (t2 − α2)x = 0 (68.1)

where α is a constant, which arises for in problems with cylindrical or
spherical symmetry.
The time step required to reach a certain precision or number of decimals,

can vary from one differential equation and elementary function to the
other. Below we shall study this problem, that is the dependence on the
solution of differential equation on the time step used to compute it.
We can only compute a finite number of decimals of exp(t), as many

as our computational resources allows, but we can never list all of the
decimals of exp(t), expect for specific values such as exp(0) = 1. We can
think of exp(t) as unique number, with a possibly never repeating decimal
expansion, but we should be aware of the fact that this a kind illusion
because we can never pin down exactly what exp(t) is, except in the implicit
form of saying that it is the function u(t) with the property to solve u̇(t) =
u(t) for t > 0 with u(0) = 1. In old times, the values of elementary functions
were listed in printed mathematical tables obtained by time-stepping the
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FIGURE 68.2. Hermite crab function.

corresponding differential equations. In a computer, the values of elemntary
functins are not stored in tables but are recomputed every time a valu is
requested.

68.1 To Think About

• How are elementary functions computed by your computer?

http://www.youtube.com/watch?v=0jZe_VGLRYI
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69
Trigonometric Functions: cos(t), sin(t)

The integrals which we have obtained are not only general ex-
pressions which satisfy the differential equation, they represent
in the most distinct manner the natural effect which is the ob-
ject of the phenomenon... when this condition is fulfilled, the
integral is, properly speaking, the equation of the phenomenon;
it expresses clearly the character and progress of it, in the same
manner as the finite equation of a line or curved surface makes
known all the properties of those forms. (Fourier)

God does not care about our mathematical difficulties. He in-
tegrates empirically. (Einstein)

69.1 Defining Differential Equation

The trigonometric functions sin(t) and cos(t) are elementary functions de-
fined as solution to dx

dt = v and dv
dt = −x with x(0) = 0 and v(0) = 1 , or

the system

ẋ(t) = v(t), v̇(t) = −x(t) for t > 0,

x(0) = 0, v(0) = 1,
(69.1)

is the trigonometric functions x(t) = sin(t) and v(t) = cos(t). These func-
tions can be extended to t < 0 as solutions to the differential equations for
t < 0.
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FIGURE 69.1. The trigonometric functions sin(t) and cos(t).

69.2 Properties of Trigonometric Functions

By definition, we have

d

dt
sin(t) = cos(t),

d

dt
cos(t) = − sin(t). (69.2)

Further, we have with x(t) = sin(t) and v(t) = cos(t),

d

dt
(x2 + v2) = 2(xẋ+ vv̇) = 2(xv − xv) = 0 (69.3)

and thus (x2(t) + v2(t)) is constant in time, and since (x2(0) + v2(0)) = 1,
we have for all t

sin2(t) + cos2(t) = 1. (69.4)

69.3 Geometric Interpretation

We shall now give an interpretation of sin(t) and cos(t) in the plane with
usual coordinate system x = (x1, x2). If we write denote x1(t) = cos(t) and
x2(t) = sin(t), then the defining differential equation is written

ẋ1(t) = −x2(t), ẋ2(t) = x1(t), (69.5)
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x12+x22=1

FIGURE 69.2. Geometric interpretation of trigonometric functions sin(t) and
cos(t).

from which follows that

ẋ(t) · x(t) = −x2(t)x1(t) + x1(t)x2(t) = 0 (69.6)

which means that the velocity vector ẋ(t) is perpendicular to the vector x
connecting the origin with the point x. Recalling that

x21(t) + x22(t) = ẋ12(t) + ẋ21(t) = 1 (69.7)

it follows that as t varies the point (x1(t), x2(t)) = (cos(t), sin(t)) moves
along a unit circle centered at the origin with unit speed, as illustrated in
Fig. 69.2. We can choose time t to be a measure of the angle, from the
horisontal.
Note that we can interprete (69.7) as Pythagoras Theorem. We have thus

given a proof of Pythagoras theorem which is different from that suggested
in Fig. ?? based on similarity.

69.4 Measuring Angles in Radians

We have seen that (cos(t), sin(t)) are the coordinates of a point moving
counterclockwise on the unit circle with unit velocity starting at (1, 0) for
t = 0. Let us denote by ϕ

2 the first smallest t for which cos(t)) = 0, and by
(69.7) sin(t) = 1. By periodicity it follows that for t = 2π the point will be
back to (1, 0) and thus the length of the circumference is equal to of a unit
circle is equal to 2π. If we agree to measure the angle formed by the line
from the origin to the point (cos(t), sin(t) by t = the length of the circle
arc from (1, 0) to (cos(t), sin(t) then we measure the angle in the unit of
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radians. One revolution will then correspond to 2π radians. In other words
360o = 360 degrees = 2π radians, or

one degree = 1o =
π

180
radians (69.8)

We shall see below that the choice of y = (0, 1) in fact covers the general
case (since a general vetor y of length 1 can be rotated to (0, 1) by an
orthogonal transformation which does not change the scalar product).

69.5 Angle vs Scalar Product

Let x = (x1, x2) and y = (1, 0) be two points in the plane with correspond-
ing vectors (or arrows) from the origin also denoted by x = (x1, x2) and
y = (1, 0). Since

x · y = x1 = |x| cos(θ) (69.9)

where θ is the angle in radians between x and y. This formula extends to
any two vectors x and y:

x · y = |x||y| cos(θ), (69.10)

where θ is the angle between the vectors.

69.6 Read More

• Pythagoras.

• Trigonometric functions.

• Geometry in R2.

• Complex numbers.

69.7 To Think About

• How are trigonomteric functions defined in standard Calculus texts?
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FIGURE 69.3. Table of values of trigonometric functions.
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FIGURE 69.4. Triangulations by Olle Baertling.

FIGURE 69.5. Archimedes computed the value of π by inscribing and circum-
scribing polygons (octagons) to a circle. What value did he obtain?

http://www.baertling.com/
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70
Lipschitz Continuity

All my life as an artist I have asked myself: What pushes me
continually to make sculpture? I have found the answer. art is
an action against death. It is a denial of death... Imagination
is a very precise thing, you know-it is not fantasy; the man
who invented the wheel while he was observing another man
walking-that is imagination!... I am the most curious of all to
see what will be the next thing that I will do. (Jacques Lipchitz)

The Cubist sculptor Jacques Lipchitz (1891-1973) was not at all related
to the German mathematician Rudolf Lipschitz (1832-1903), who is re-
membered for requiring the function f(x) in the IVP

ẋ(t) = f(x(t)) for t > 0, x(0) = x0, (70.1)

to be Lipschitz continuous in order to guarantee that a unique solution
exists.

Definition 70.1 A function u : Q → Q is said to be Lipschitz continuous
if there is a constant L, called the Lipchitz constant, such that

|u(t+ dt)− u(t)| ≤ L|dt| for all t, dt ∈ Q, (70.2)

where we here allow dt to also be negative.

For a Lipschitz continuous function u(t) the difference du = u(t+ dt)−
u(t)| is small if |dt| is small, up to the constant L, in the sense that

|du| ≤ L|dt|. (70.3)

http://en.wikipedia.org/wiki/Jacques_Lipchitz
http://www-history.mcs.st-andrews.ac.uk/Biographies/Lipschitz.html
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FIGURE 70.1. The Lipchitz sculpture Happiness of Living is Lipschitz continu-
ous.
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We may say that a Lipschitz continuous function u(t) is locally close to
a constant value in the sense that u(t + dt) deviates from u(t) less than
L|dt|. By this we don’t mean that u(t) is close to a constant over its entire
span, just locally.
One can relax the concept of Lipschitz continuity to Hölder continuity

requiring instead for some fixed constant 0 < α < 1

|u(t+ dt)− u(t)| ≤ L|dt|α for all t, dt. (70.4)

Hölder continuity also expresses local constancy, but with a different mea-
sure.
In order for a function value u(t) to be well defined for a given argument

t, it is necessary that u is (Lipschitz or Hölder) continuous at t. This is
because if t is an irrational number, then t it is not known exactly to all
its decimals, and thus u(t) has to be replaced by the value u(t+ dt) with
t+ dt a finite decimal approximation of t, and in order for the replacement
to make sense we must be able to guarantee that u(t+ dt) is close to u(t)
if dt is small.

70.1 Extension of a Lipschitz Continous Function

The previous argument can be used to show that a Lipschitz continuous
function f : Q → Q can uniquely be extended to a Lipschitz function
f : R → R. Can you write down the argument? Hint: Is it sufficient to
show that u(t+ dt) is close to u(t) if dt is small?
The concept of Lipschitz continuity is naturally extended to a function

u : I → R defined on some interval or union of intervals I: A function
u : I → R is Lipschitz continuous with Lipschitz constant L if

|u(t+ dt)− u(t)| ≤ L|dt| for t, t+ dt ∈ Q, (70.5)

Two Lipschitz continuos functions defined on two adjoining intervals [a, b]
and [b, c] can be defined as one function defined on the union of intervals
[a, c] with possibly a jump discontinuity at the common point b. We can
thus speak about such piecewise Lipschitz continuous functions, but not
about discontinuos functions in general.

70.2 Extension to a Function u(x)

The concept of Lipschitz continuity is naturally extended to a function u(x)
where x is a space variable, or soem other variable, as follows:

Definition 70.2 A function u : Ω → R where Ω is a domain in Rd, is said
to be Lipschitz continuous with Lipschitz constant L, if

|u(x+ dx)− u(x)| ≤ L|dx| for all x, x+ dx ∈ Ω. (70.6)
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y=3x

y=1/2x

FIGURE 70.2. Two linear functions with different slope and Lipschitz constant.

As above we understand that a Lipschitz continuous function u : Qd → Qd

can uniquely be extended to Lipschitz continuous function u : Rd → Rd.

70.3 A Horrible Function which is a Non-Function

In math books you can find the following specification of values x(t)

• x(t)=1 if t is rational

• x(t)=0 if t is irrational.

Obviously, this is not a Lipschitz or Hölder continuous function, and in
fact it is not a function at all, because you can not in general tell if a given
argument t has a finite/periodic decimal expansion or not.

70.4 To Think About

• Is the sum of two Lipschitz continuous functions, Lipschitz continu-
ous?

• What about other combinations of functions?

A Lipschitz continuous function does not change more rapidly than a
linear function.
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FIGURE 70.3. Leibniz’ desktop computer.

70.5 Read More

• Lipschitz continuity.

70.6 Qualitative Definition of Continuity

The concept of Lipschitz continuity is a quantitative concept of continuity,
with the Lipschitz constant giving quantitative control of a difference in
function value du in terms of difference in argument dt say, as |du| ≤ L|dt|,
which in quantitative form expresses that

• |du| is small if |dt| is small.

In most standard Calculus books such a purely qualitative concept of conti-
nuity is used, which has advantage of being “more general” but at the cost
of being “less precise”, since it does not connect smallness of dt to smallness
of du in any quantitative form. Hölder continuity is also quantitative while
allowing almost any full generality.
The reason we use Lipschitz/Hölder continuity is that it is more precise

than a purely qualitative concept and therefore easier to both understand
and use, while the loss of generality does not have any real cost.

70.7 To Think About

• Can you give an example of a function which is not Lipschitz contin-
uous?

• What about u(x) = 1
x defined for 0 < x ≤ 1.
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71
Derivative with respect to t

Derivatives and Bank Collapse.

But just as much as it is easy to find the derivative of a given
quantity, so it is difficult to find the integral of a given deriva-
tive. Moreover, sometimes we cannot say with certainty whether
the integral of a given quantity can be found or not. (Johann
Bernoulli)

Among all of the mathematical disciplines the theory of differ-
ential equations is the most important... It furnishes the expla-
nation of all those elementary manifestations of nature which
involve time. (Sophus Lie)

We are now ready to give a formal definition of the derivate u̇(t) of a
function u(t) depending on time t.

Definition 71.1 A function u : I → R defined on an interval I = (a, b), is
said to be differentiable in I with derivative u̇ : I → R if for some positive
constant Cu

|u(t+ dt)− u(t)− u̇(t) dt| ≤ Cu|dt|2 for t, t+ dt ∈ I. (71.1)

A differentiable function u(t) is locally close to a linear function in t in
the sense that u(t+ dt) ≈ u(t) + u̇(t)dt up to a quadratic term in |dt|.
A differentiable function is Lipschitz continuous, since it is locally close

to a linear function and a linear function is Lipschitz continuous.

http://seekingalpha.com/article/117312-derivatives-and-bank-collapse-the-scam-that-went-largely-unreported
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We note the following connection between Lipschitz continuity and the
size the derivative.

Theorem 71.2 If u : I → R is differentiable with |u̇(t)| ≤ L for t ∈ I,
then u : I → R is Lipschitz continuous with Lipschitz constant L.

Proof: This result should be intuitively obvious: It is like saying that if
your velocity is never bigger than 1 km/hour, then it is impossible to travel
a distance longer than 1 km in an hour. Right? If you hesitate, consider
the follwoing formal proof: Given t, s ∈ I, we are supposed to show that

|u(t)− u(s)| ≤ L|t− s|. (71.2)

To this end let us note that it is sufficient to prove that for any given ǫ > 0,

|u(t)− u(s)| ≤ (L + ǫ)|t− s|. (71.3)

Now choose first ǫ > 0 and then dt such that Cudt ≤ ǫ and (t−s) = ndt for
some natural number n, assuming t > s. We then have splitting the interval
(s, t) into n subintervals of length dt: (s, s + dt), (s + dt, s + 2dt),....(s +
(n− 1)dt, s+ ndt), and using the definition of u̇ on each subinterval:

|u(s+(m+1)dt)−u(s+mdt)− u̇(s+mdt)dt| ≤ Cudt
2 for m = 0, ..., n−1,

(71.4)
that is, using that |u̇(s+mdt)| ≤ L,

|u(s+ (m+ 1)dt)− u(s+mdt)| ≤ Ldt+ Cudt
2. (71.5)

By the triangle inequality we now have since ndt = t− s = |t− s|,

|u(t)− u(s)|
≤ |u(s+ dt)− u(s)|+ |u(s+ 2dt)− u(s+ dt)|+ ...|u(s+ (n− 1)dt− u(t)|
≤ n(Ldt+ Cudt

2) ≤ L|t− s|+ Cudt|t− s| = (L + ǫ)|t− s|,
(71.6)

which we wanted to show. �

Example 71.1. The function u(t) = |t| is Lipschitz continous (in
particular at t = 0), but is not differentiable at t = 0 because it is not
close to a linear function for t close to 0 (since it has a kink).

71.1 Read More

• Derivative.

• Rules of Differentiation.
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72
Derivative with respect to x

In the fall of 1972 President Nixon announced that the rate of
increase of inflation was decreasing. This was the first time a
sitting president used the third derivative to advance his case
for reelection. (Hugo Rossi)

Calculus required continuity, and continuity was supposed to
require the infinitely little; but nobody could discover what the
infinitely little might be. (Bertrand Russell)

Who has not been amazed to learn that the function u(t) = et,
like a phoenix rising from its own ashes, is its own derivative?
(Francois le Lionnais)

I recoil with dismay and horror at this lamentable plague of
functions which do not have derivatives. (Charles Hermite)

Senate Panel Approves Tougher Rules on Derivatives.

We now extend to a function u(x) depending on position x = (x1, x2, x3)
instead of time t.

Definition 72.1 A function u : Ω → R where Ω ⊂ R3, said to be differen-
tiable in Ω with derivative or gradient

∇u(x) = (
∂u

∂x1
(x),

∂u

∂x2
(x),

∂u

∂x3
(x)), (72.1)

http://www.nytimes.com/2010/04/22/business/22regulate.html?nl=us&emc=politicsemailema1
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FIGURE 72.1. Seeking the derivative as the slope of the tangent for a function
f(x) of one variable x ∈ R.

if for some positive constant Cu and x ∈ Ω,

|u(x+ dx) − u(x)−∇u(x) · dx| ≤ Cu|dx|2 for |dx| small. (72.2)

In particular, choosing dx = (dx1, 0, 0), we have

|u(x1+dx1, x2, x3)−u(x1, x2, x3)−
∂u

∂x1
(x)dx1| ≤ Cu|dx1|2 for |dx1 small.

(72.3)
which means that ∂u

∂x1
(x) is the derivative of f(x) with respect to x1, with

x2 and x3 kept constant, referred to as the partial derivative with respect
to x1.
The definition directly generalizes to real-valued function u(x) of d-vector

variable x = (x1, x2, ...., xd), where the variable components can have have
some other meaning than position. In the case d = 1, that is with u(x) a
function of one variable x ∈ R, we often use u′(x) to denote the derivative,
thus with the defining relation

|u(x+ dx)− u(x)− u′(x)dx| ≤ Cu|dx|2 for |dx| small. (72.4)
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72.1 Vector-valued function of vector variable

The definition of derivative directly generalize to an m-vector-valued func-
tion u(x) = (u1(x), ...., um(x)) of an n-vector variable x = (x1, x2, ...., xn):

Definition 72.2 A function u : Rn → Rm is differentiable with derivative
u′(x) if for som positive constant Cu

|u(x+ dx) − u(x)− u′(x)dx| ≤ Cu|dx|2 for x, x+ dx ∈ Rn. (72.5)

Here the derivative u′(x) is an m× n matrix.

We shall use this derivative below when solving an equation u(x) = 0 where
u : Rn → Rn is a differentiable function with non-singular derivative u′(x)
using Newton’s method.

72.2 Read More

• Calculus of Several Variables.

FIGURE 72.2. Charles Babbage’s Analytical Engine 1871.

http://www.sciencemuseum.org.uk/images/I031/10301732.aspx
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73
Rules of Differentiation

The ultimate reason of things must lie in a necessary substance,
in which the differentiation of the changes only exists eminently
as in their source; and this is what we call God. (Leibniz)

The freedom of thought is a sacred right of every individual
man, and diversity will continue to increase with the progress,
refinement, and differentiation of the human intellect. (Felix
Adler)

How did Biot arrive at the partial differential equation? [the
heat conduction equation] . . . Perhaps Laplace gave Biot the
equation and left him to sink or swim for a few years in trying
to derive it. That would have been merely an instance of the
way great mathematicians since the very beginnings of math-
ematical research have effortlessly maintained their superiority
over ordinary mortals. (Clifford Truesdell)

Common integration is only the memory of differentiation. (Augustus De Morgan)

73.1 Derivative of a Linear Combination

We have directly from the definition

d

dt
(u+ v) =

d(u + v)

dt
=
du

dt
+
dv

dt
(73.1)

http://en.wikipedia.org/wiki/Clifford_Truesdell
http://en.wikipedia.org/wiki/Augustus_De_Morgan
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and if α is a constant

d

dt
(αu) =

d(αu)

dt
= α

du

dt
. (73.2)

Combining these results we have

d

dt
(αu+ βv) = α

du

dt
+ β

dv

dt
(73.3)

where α and β are constants.

73.2 Derivative of Product

If u(t) and v(t) are real-valued differentiable functions of t, then

d(uv) = udv + vdu (73.4)

or
d

dt
(uv) =

du

dt
v + u

dv

dt
= u̇v + uv̇, (73.5)

because

|d(uv)− udv − vdu| = |u(t+ dt)v(t + dt)− u(t)v(t)− u(t)v̇dt− vu̇dt|
= |u(t+ dt)(v(t+ dt)− v(t)) − udv + v(t)(u(t + dt)− u(t))− vdu|
≤ |u(t+ dt)(v(t+ dt)− v(t)) − udv|+ |v(t)(u(t + dt)− u(t))− vdu|
≤ C|dt|2.

(73.6)

73.3 Derivative of a Quotient

We compute the derivative of the quotient 1
v(t) assuming v(t) 6= 0 is differ-

entiable:

1

v(t+ dt)
− 1

v(t)
= −v(t+ dt)− v(t)

v(t+ dt)v(t)
≈ − v̇(t)

u(t)2
dt (73.7)

up to a quadratic deviation in |dt|. Thus, by combination with the previous
result,

d

dt

u

v
=
u̇v − uv̇

v2
. (73.8)
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73.4 The Chain Rule

If v : R → R and w : R → R are two differentiable functions, then the
composite function u(x) = v(w(x)) is differentiable with derivative

u′(x) = v′(w(x))w′(x) or
du

dx
=
dv

dw

dw

dx
. (73.9)

To see this we estimate

u(x+ dx)− u(x) = v(w(x + dx) − v(w(x)) ≈ v′(w(x))(w(x + dx)− w(x))

≈ v′(v(x))w′(x)dx
(73.10)

up to terms of order |dx|2.

73.5 Read More

• Rules of Differentiation.

• Rules of Integration

• Differentiation Rules

73.6 To Think About

• How sensitive is differentiation to perturbations of function values?

• How to compute thye derivate of a function if analytic differentiation
is not an option, because it is too difficult or the function is not given
by an analytic expression?

73.7 Watch

• A no-where differentiable Weierstrass function

• Weierstrass rap

• Perelman million dollar Poincaré rap

• Math professor

http://en.wikipedia.org/wiki/Differentiation_rules
http://www.youtube.com/watch?v=yEoJvlIja6o
http://www.youtube.com/watch?v=dfO18klwKHg
http://www.youtube.com/watch?v=E3tdimtxqic&feature=related
http://www.youtube.com/watch?v=cXkE_HXI15s&feature=related
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FIGURE 73.1. Leibniz’s first paper on calculus, Acta Eruditorum, 1684, with the
above rules for differentation.
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74
Rules of Integration

74.1 Linearity

Basic linearity properties of integrals u(t) =
∫ t
0
f(s) ds follow directly from

linearity of the underlying IVP u̇ = f , that is
∫ t

0

(f(s) + g(s)) ds =

∫

0

tf(s) ds+

∫ t

0

g(s) ds,

∫ t

0

αf(s) ds = α

∫ t

0

f(s) ds,

(74.1)
where α ∈ R is a constant. Further, for a < b < c,

∫ b

a

f(s) ds+

∫ c

b

f(s) ds =

∫ c

a

f(s) ds, (74.2)

which is extended to arbitrary limits a, b and c, by defining for b < a
∫ b

a

f(s) ds = −
∫ a

b

f(s) ds. (74.3)

Alternatively, these rules are derived directly from the Riemann-sum rep-
resentation of the integral.

74.2 Integration by Parts

By the Fundamental Theorem of Calculus, we have

u(t)v(t)− u(0)v(0) =

∫ t

0

d

ds
(u(s)v(s))ds =

∫ t

0

(uv̇ + uv̇)ds. (74.4)
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FIGURE 74.1. On June 30 2007 The Swedish Parliament dismantled Integra-
tionsverket, the Ministry for Integration, and replaced it by the Ministry for
Time-Stepping.

which can be written

∫ t

0

uv̇ ds = [uv]s0 −
∫ t

0

uv̇ ds, (74.5)

with [uv]s0 = u(t)v(t)− u(0)v(0). We see that we ”can move the dot” from
u to v if we change sign and take into account the difference of end-point
values of uv.

74.3 Change of Integration Variable

If w : [a, b] → R is differentiable and v : [w(a), w(b)] → R is Lipschitz
continuous, then

∫ w(b)

w(a)

v(y) dy =

∫ b

a

v(w(x))w′(x)dx, (74.6)

because with y = w(x), we have dy ≡ dw = w′dx.
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75
Proof of the Fundamental Theorem

The quadrature of all figures follow from the inverse method of
tangents, and thus the whole science of sums and quadratures
can be reduced to analysis, a thing nobody even had any hopes
of before. (Leibniz)

Knowing thus the Algorithm of this calculus, which I call Dif-
ferential Calculus, all differential equations can be solved by a
common method. (Leibniz)

Let us now study the effect of the time step in solution of

u̇(t) = f(t), for t > 0, u(0) = u0, (75.1)

by Forward Euler time stepping

u(ndt+ dt) = u(ndt) + f(ndt)dt, n = 0, 1, 2, ... (75.2)

We compare taking one step with time step dt with two steps of time step
dt
2 , for a given n:

u(ndt+ dt)− ū(ndt+ dt) = f(ndt)dt− (f(ndt) + f(ndt+
dt

2
))
dt

2

= (f(ndt)− f(ndt+
dt

2
))
dt

2
,

(75.3)

where ū is computed with time step dt
2 , and we assume that the same intial

value for t = ndt is used so that ū(ndt) = u(ndt). Assuming that f(t) is
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FIGURE 75.1. The fundamental step in the proof of the Fundamental Theorem.

Lipschitz continuous with Lipschitz constant L, we then find that

|u(ndt+ dt)− ū(ndt+ dt)| ≤ L

4
dt2. (75.4)

Summing now the contributions from all time steps with n = 0, 1, 2, ..., N ,
where T = (N + 1)dt is a final time, we get using that

∑N
n=0 dt = T ,

|u(T )− ū(T )| ≤ LT

4
dt, (75.5)

where thus u(T ) is computed with time step dt and ū(T ) with time step
dt
2 . Repeating the argument with successively refined times step dt

4 ,
dt
8 , ...,

we get

|u(T )− ū(T )| ≤ LT

2
dt (75.6)

for the difference between u(T ) computed with time step dt and ū(T ) com-
putes with vanishingly small time step, since

1

4
+

1

8
+

1

16
+ ... <

1

2
. (75.7)

We have now proved the Fundamental Theorem of Calculus:

Theorem 75.1 If f : [0, T ] → R is Lipschitz continuous, then the function

u(t) =
∫ t
0
f(s) defined by Forward Euler time-stepping with vanishing time

step, solves the IVP: u̇(t) = f(t) for t ∈ (0, 1), u(0) = 0.
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The proof shows what it means to understand the Fundamental Theorem
of Calculus, which means to realize that (letting k denote a finite time step
and dt a vanishingly small step)

u(T ) =

∫ T

0

f(t) dt ≈
N∑

n=0

f(nk)k if T = (N + 1)k, (75.8)

as a consequence of

u((n+ 1)k) ≈ u(nk) + f(nk)k, or
u((nk + k)− u(nk)

k
≈ f(nk),

(75.9)
where the sum is referred to as a Riemann sum, with the following bound
for the difference

|
∫ T

0

f(t) dt−
N∑

n=0

f(nk)k| ≤ LTk

2
if T = (N + 1)k, (75.10)

if f : [0, T ] → R is Lipschitz continuous with Lipschitz constant L.

In other words, understanding the integral u(t) =
∫ t
0 f(s) ds of a function

f : [0, T ] → R means to understand that it is determined by Riemann sums
with vanishingly small step size, as the solution to the IVP u̇(t) = f(t),
u(0) = 0, and to understand that the difference between two Riemann sums
with mesh size k and k

2 , is bounded by Lk (or more precisely by L
4 k).

75.1 Even Better Understanding

As a serious student, you now probably ask: In precisely what sense the
differential equation u̇(t) = f(t) is satisfied by an Euler Forward solution
u(t) with time step k? It certainly is so constructed, but can we get a direct
verification? One way to do this is to associate a continuous piecewise linear
function determined by the values u(nk) at the discrete time levels nk,
again denoted by u(t). We then have on each interval (nk, (n+1)k), by the
definition of u(t):

u̇(t) =
u((n+ 1)k)− u(nk)

k
= f(nk), (75.11)

from which we conclude that

|u̇(t)− f(t)| ≤ |f(nk)− f(t)| ≤ Lk for t ∈ ((n+ 1)k, nk). (75.12)

We can thus say that u(t) satisfies the differential equation u̇(t) = f(t)
for all t with a precision of Lk. In other words, the residual u̇(t) − f(t) is
smaller than Lk. We have now understood the Fundamental Theorem even
better, right?
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FIGURE 75.2. The sad result of Archimedes mathematics.

We shall see below that extending a function defined on a discrete set
of points to a continuous piecewise linear function, is a central aspect of
approximation in general and of the finite element method in particular.

75.2 To Think About

• What is fundamental about the Fundamental Theorem?

• Why is d
dt

∫ t
0
f(s) ds = f(t)? (compare with last argument)

• What is the Riemann sum error using the Trapezoidal Rule (62.12)?

Hint:
∫ t+dt
0

f(s) ds−
∫ t
0
f(s) ds =

∫ t+dt
t

f(s) ds = f(t)dt± L
2 dt

2.
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FIGURE 75.3. Babbage’s Difference Engine No. 2 1847.

http://www.sciencemuseum.org.uk/images/I033/10303322.aspx
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76
Contraction Mapping for u = g(u)

Give me a fixed point, and I will move the Earth. (Archimedes)

76.1 Solving f(u) = 0 by Time Stepping

To solve an equation f(u) = (f1(u), f2(u), ..., fN(u)) = 0 of N equations
fi(u) = 0, i = 1, ..., N, in N unknowns u = (u1, u2, ..., uN ), with thus
f : Rn → Rn, it is natural to connect to solution of the IVP: Find u(t)
such that

u̇(t) + f(u(t)) = 0 for t > 0, u(0) = u0, (76.1)

with some given initial value u0. If it turns out that as t increases, the
function u(t) tends to some value û, then u̇(t) could be expected to become
small, and if so, we would have

f(u(t)) ≈ 0. (76.2)

and we would be led to set û = u(t) for some large t and consider û to be
an approximate solution of f(u) = 0 with small residual f(û).
If f(u) has several different solutions, which is often the case, then we

could expect to capture different solutions by chosing different initial values
u0.
Computing u(t) by Forward Euler with time step dt = 1, we would have

un+1 = un − f(un), for n = 0, 1, 2, ..., (76.3)

http://en.wikipedia.org/wiki/Archimedes
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If |un+1 − un| would become small for increasing n, then f(un) would
become small and thus un would be an approximate solution of f(u) = 0
with small residual f(un).

76.2 Solving u = g(u)

We are thus led to study the convergence of the iteration

un+1 = g(un), n = 0, 1, 2, ...., (76.4)

where
g(u) = u− f(u). (76.5)

To this end we take the difference of (76.4) for two consecutive steps to get

en+1 ≡ un+1 − un = g(un)− g(un−1). (76.6)

If g : RN → RN is Lipschitz continuous with Lipschitz constant L, then

|en+1| = |g(un)− g(un−1)| ≤ L|en| ≤ L2|en−1| ≤ Ln|u1 − u0| (76.7)

We see that if L < 1, then |en| becomes vanishingly small as n increases,
which by (76.3) means that f(un) becomes vanishingly small and thus un

may be viewed as an approximate solution of f(u) in the sense that the
residual f(un) is small. In the next chapter we also consider the error in
the approximate root un.
We see that if L << 1 then the convergence is fast, and if L ≈ 1 then the

convergence is slow. If L = 1
2 then the residual |g(un)− un| = |un+1 − un|

is reduced with a factor 2 in each iteration step, that is with a binary digit
per step.
If L < 1 then the mapping u→ g(u) is said to be a contraction, because

|g(u)− g(v)| ≤ L|u− v| < |u− v| (76.8)

expressing that the distance between the images |g(u) − g(v)| is smaller
than the distance between the arguments |u− v|. We have just proved the
famous

Contraction Mapping Theorem: If g : RN → RN is a contraction with
Lipschitz constant L < 1, then the iteration un+1 = g(un) converges to a
unique fixed point satisfying u = g(u) at the rate Ln.
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77
Newton’s Method for f(u) = 0

The sciences, are small power; because not eminent; and there-
fore, not acknowledged in any man; nor are at all, but in a few;
and in them, but of few things. For science is of that nature, as
none can understand it to be, but such as in a good measure
have attained it. (Thomas Hobbes in Leviathan Chapter X 14.)

Arts of public use, as fortifications, making of engines, and other
instruments of war; because they confer to defence, and victory,
are power: and though the true mother of them, be science,
namely the mathematics; yet, because they are brought into
the light, by hand of the artificer, they be esteemed (the mid-
wife passing with vulgar for the mother,) as his issue. (Thomas
Hobbes in Leviathan Chapter X 15.)

We now consider a variant of (76.3) for solving f(u) = 0 with faster
convergence by invoking the (inverse of the) derivative f ′(u), referred to as
Newton’s Method.
Let us then start with N = 1 and let f : R → R be a differentiable

function. Consider the following iteration:

un+1 = un − f(un)

f ′(un)
= g(un) (77.1)

with corresponding function

g(u) = u− f(u)

f ′(u)
(77.2)

http://en.wikipedia.org/wiki/Leviathan_(book)
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assuming that f ′(u) 6= 0. Computing the derivative g′(u), we get

g′(u) = 1− f ′(u)
f ′(u)

+
f(u)f ′′(u)
(f ′(u))2

= 0, (77.3)

if f(u) = 0. Thus we may expect that |g′(u)| is small, that is that L << 1
implying fast convcergence.
The iteration (258.1) is called Newton’s Method for computing a solution

of the equation f(u) = 0. Newton’s method directly generalizes to f :
RN → RN in the form

un+1 = un − (f ′(un))−1f(un) (77.4)

where f ′(un))−1 is the inverse of the N ×N matrix f ′(un) (thus assuming
that f ′(un) is non-singular). One can show that |en+1| ∼ |en|2, if the initial
guess is close enough to the root, which means that the number of correct
digits may double at iteration step.

77.1 Wellposed and Illposed Roots

Suppose u is an approximate solution with residual f(u) ≈ 0, or approxi-
mate root, of an equation f(u) = 0 with exact root ū. We have for small
|u− ū|

f(u)− f(ū) ≈ f ′(u)(u− ū), (77.5)

(still assuming for simplicity N = 1. This shows that

|u− ū| ≈ |f(u)|
|f ′(u)| (77.6)

indicating that the residual error |f(u)| translates to the root error |u− ū|
with the stability factor

S =
1

|f ′(u)| , (77.7)

that is

|u− ū| ≈ S|f(u)| (77.8)

In other words: If |f ′(u)| is not small so that S is not large, then the root
is well defined or wellposed, while if |f ′(u)| is small so that S is large, then
the root is illposed or not well defined.
For a wellposed root u the curve x → f(x) crosses the x-axis at x = u

with a definite slope, which makes the crossing point well determined. For
an illposed root the curve is almost tangent to the x-axis which makes the
crossing point difficult to pin down.
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77.2 Newton’s Method Requires Good Initial
Guess

Newton’s method converges very quickly towards a root, if the starting
value is close enough to the root. If not, the iterations may diverge and then
give rise complex fractal patterns as shown in the figure below showing big
basins of convergence around roots separated by fractal boundary zones.

77.3 Learn More

• Fixed point iteration.

• Newton’s method

77.4 To Think About

• How to compute
√
2? By Solving x2 = 2? How?

77.5 Watch

• Newton’s method fractal 1

• Newton’s method fractal 2

• Newton fractals algorithm

http://www.youtube.com/watch?v=7RZn3B709wo&feature=related
http://www.youtube.com/watch?v=6N320ZAjTuQ&feature=related
http://en.wikipedia.org/wiki/Newton_fractal
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FIGURE 77.1. Fractals from iterations by Newton’s method. Big basins show
roots. Boundaries between basins show fractal complexity.
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78
Generalized Fundamental Theorem

I believe in the fundamental Truth of all the great religions of
the world. I believe that they are all God given. I came to the
conclusion long ago... that all religions were true and also that
all had some error in them. (Mahatma Gandhi)

The fairest thing we can experience is the mysterious. It is the
fundamental emotion which stands at the cradle of true art and
true science. He who know it not and can no longer wonder, no
longer feel amazement, is as good as dead, a snuffed-out can
(Einstein)

Most of the fundamental ideas of science are essentially simple,
and may, as a rule, be expressed in a language comprehensible
to everyone. (Einstein)

78.1 Time Stepping u̇ = u

The Fundamental Theorem concerns time-stepping of the IVP

u̇(t) = f(t) for t > 0, u(0) = u0, (78.1)

where the Lipschitz continuous function f(t) does not depend on the un-
known u, only on the (independent) time variable t.
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We now extend to allow f to depend also on u. Assuming for simplicity
no explicit dependence on t, we thus consider the IVP:

u̇(t) = f(u(t)) for t > 0, u(0) = u0, (78.2)

where f : R → R is a given Lipschitz continuous function with Lipschitz
constant L. The basic question is if the solution can be computed to arbi-
trary precision by time-stepping?
The basic case is f(u) = u and u0 = 1, that is the IVP:

u̇(t) = u(t) for t > 0, u(0) = 1, (78.3)

with L = 1 and the solution u(t) = exp(t) computed by Forward Euler:

exp(t) ≈ (1 +
t

n
)n (78.4)

with time step k = t
n . We estimate the effect of dividing the time-step by

a factor 2, using that (t+ dt)n − tn ≈ ntn−1dt (because d
dt t

n = ntn−1):

(1 +
t

2n
)2n − (1 +

t

n
)n = ((1 +

t

2n
)(1 +

t

2n
))n − (1 +

t

n
)n

= ((1 +
t

n
+

t2

4n2
)n − (1 +

t

n
)n ≈ n(1 +

t

n
)n−1 t2

4n2
≈ t

n
exp(t)

t

4
.

We see that the difference is proportional to the time step k = t
n . As in the

proof of the Fundamental Theorem of Calculus, we conclude that (1+ t
n )
n

determines exp(t) with a precision proportional to the time step with a
multiplicative factor ≈ exp(t) t4 ∼ exp(t).

78.2 Time Stepping u̇ = f(u)

The above proof extends to an arbitrary Lipschitz continuous function f(u)
with the difference that the time-stepping error in computing u(t), now is
proportional to the time step with a multiplicative factor exp(Lt), where
L is the Lipschitz constant of f . This extends to systems with f : Rd → Rd

with d > 1.
It is natural to refer to this result as a Generalized Fundamental Theo-

rem: The Fundamental Theorem concerns u̇(t) = f(t) and the Generalized
Fundamental Theorem concerns u̇(t) = f(u(t)). Calculus in a nutshell!
A proof of the Generalized Fundamental Theorem can be performed by

combining the following two steps:

Step 1: Estimate the difference u((n + 1)k) − ũ((n + 1)k) by taking one
(Forward Euler) time step of length k and two time steps on length k

2 , from
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FIGURE 78.1. Fundamental Step 1 in the proof of the Generalized Fundamental
Theorem.

FIGURE 78.2. Fundamental Step 2 in the proof of the Generalized Fundamental
Theorem.



328 78. Generalized Fundamental Theorem

the same initial value u(nk):

|u((n+ 1)k)− ũ((n+ 1)k)|

= |u(nk) + kf(u(nk))− (u(nk) +
k

2
f(u(nk)) +

k

2
f(u(nk) +

k

2
f(u(nk)))|

=
k

2
|f(u(nk)− f(u(nk) +

k

2
f(u(nk)))| ≤ k

2
L
k

2
|f(u(nk))|.

(78.5)

Step 2: Estimate the difference after one time step from different initial
conditions u(nk)− ũ(nk) :

|u((n+ 1)k)− ũ((n+ 1)k) = |u(nk) + kf(u(nk))− ũ(nk) + kf(ũ(nk))|
≤ (1 + kL)|u(nk)− ũ(nk)|.

(78.6)

Combining Steps 1 and 2, we obtain a final error proportional to the time
step k with a multiplicative factor exp(Lt), which we refer to as a stability
factor. For details see Completion of the Proof.
To see the connection with the basic case f(u) = u, think of estimating a

general function f(u), assuming f(0) = 0 for simlipicity, by f(u) ≈ f ′(0)u,
which suggests that the factor exp(t) for f(u) = u should be replaced by
exp(Lt) for a general f(u) (because |f ′(0)| ≤ L).
Generalization to a vector valued function f : Rd → Rd with d > 1 is

direct, and we have thus presented the essential steps of a proof of the
following main result of Calculus:

Theorem 78.1 Generalized Fundamental Theorem of Calculus:
The solution u(t) of the IVP u̇(t) = f(u(t)) for 0 < t ≤ T with u(0)
given, where f : Rd → Rd is Lipschitz continuous with Lipschitz constant
L, is uniquely computable by Forward Euler time stepping with a precision
proportional to the time step times a stability factor of size exp(LT ).

For a completion of the proof, see below and Special Case and General Case.
The proof is similar for the other methods we have so far encountered

(with un = u(nk)):

un+1 = un + kf(un+1) Backward Euler,

un+1 = un + kf(
un + un+1

2
) Midpoint Euler,

un+1 = un +
k

2
(f(un) + f(un+1)) Trapezoidal Method.

(78.7)

We see that if f(u) is linear in u, then Midpoint Euler and the Trapezoidal
Method coincide.
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78.3 A Posteriori Error Control

For a more precise error control, based on computed solutions, see

• Time Stepping Error Analysis

• Time Stepping by FEM

78.4 The Illusion of an exp(LT ) Bound

If L = 10 and T = 30, which looks pretty harmeless, then exp(LT ) =
exp(300) >> 10100 = googol, an incredibly large number, much larger
than the number of atoms in the Universe. A matching time step of 10−100

is beyond all rationale and thus computation of a solution of an IVP with
moderate Lipschitz constant oevr a moderatley long time interval may be
impossible. An example is the Lorenz system with

f(u) = (−10u1 + 10u2, 28u1 − u2 − u1u3,−
8

3
u3 + u1u2), (78.8)

for which computation on an interval of length T requires computation
with about T/2 digits, see:

• BS The Lorenz System and the Essence of Chaos

• Long-Time Computability of the Lorenz System

78.5 Stiff IVPs

There is a class of IVPs with large or very large Lipschitz constants, which
are computable on long time intervals, because the function f(u) has a
decay property (negative derivative) causing errors to decay rather than
grow exponentially. Such problems are called stiff problems and may re-
quire implicit time stepping to avoid severe time step restrcitions in explicit
methods. See Stiff Problems.

78.6 Wave Equations

IVPs with wavelike solutions, like the system

u̇1 = u2 u̇2 = −u1 (78.9)

with solutions being linear combinations of sin(t) and cos(t), have formally
Lipschitz constants of size 1, can be integrated with error growth ∼ t, in-
stead of ∼ exp(t) by the above (crude) estimate, if a proper time-stepping

http://home.simula.no/~logg/pub/papers/KehletLogg2010a.pdf
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FIGURE 78.3. A Lorenz system solution trajectory.

method (like cG(1)) is used. This is due to error cancellation in wave mo-
tion.
For more complex wave problems, or problems with more or less periodic

solutions, the stability factor can have a polynomial growth in time t, e.g.
quadratic for simple planetary systems.

78.7 Summary: Time Stepping of IVP

The precision in time stepping the solution u(t) of an IVP u̇ = f(u) for
0 < t ≤ T , with first order method with time step k, can be estimated by
S(T )k, where S(t) acts as stability factor measuring error propagation and
accumulation of size

• S(T ) ∼ exp(LT ) (general), where L is the Lipschitz constant of f .

• S(T ) ∼ 1 (stiff: diffusion problems)

• S(T ) ∼ T (wave problems), S(T ) ∼ T 2 (planetary system).

78.8 Preparing for a More Precise Analysis

As a preparation for the more precise error analysis in Time Stepping Error Analysis
and Time Stepping by FEM, we consider two solutions u(t) and ũ(t) com-
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puted with the same time step k but different initial data u0 and ũ0. Sub-
tracting the update formulas we have formally for the difference e = u− ũ:

ė(t) ≈ f ′(u(t))e(t) for t > 0, e(0) = e0 ≡ u0 − ũ0 (78.10)

showng that an initial error is propagated as a solution to a linearized IVP
with coefficient f ′(u(t)) depending on a computed solution u(t). We shall
see that by solving the linearized problem (or rather a closely related dual
linearized problem), the stability factors S(t) measuring error growth can
be computed and the precision on the computation of u(t) can be assessed.
The linearized problem (or its dual) thus gives the key to unlock time

stepping precision.
Note that with f(u) = u, the linearized problem reads ė = e with solution

e(t) = exp(t)e0, showing exponential error growth, as expected.

78.9 Completion of the Proof

To complete the proof of the Generalized Fundmental Theorem we are to
sum up the error contributions from each subinterval of length k, which
according to Step 1 and Step 2 amounts to

N∑

n=1

(1 + kL)nLk2M ≈ kML
N∑

n=0

exp(Lnk)k

≈ kML

∫ T

0

exp(Ls) ds ≈ kM exp(LT ),

(78.11)

where Nk = T and M ≥ maxu |f(u)|. Can you explain what is going on
here? If not, take a look at:

78.10 Hint to Completion of the Proof

We can think of comparing computations with k and k
2 with corresponding

solutions u(t) and ũ(t) in two ways depending on how we choose initial
values on each time interval (nk, (n+ 1)k):

1. Compute u(t) and ũ(t) independently with timestep k and k
2 .

2. Assume that ũ(nk) = u(nk) and account for the effect at final time
of the difference ũ(nk)− u(nk).

1. is the most direct from computational point of view and a corresponding
proof is given in General Case.
Here we consider 2. because the proof is (maybe) simpler: The error from

the first time step is bounded by Lk2M assuming no error in initial data,
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and is propagated with a factor bounded by (1 + kL) for each time step,
thus with a factor (1 + kL)N after N steps. Similarly, the error from the
second time step is bounded by Lk2M , again assuming no error in the
corresponding initial value, and is propagated with a factor (1 + kL)N−1,
et cet. Summing we obtain a bound of the total error after N steps.
It is instructive to in illustrate 1. and 2. in a figure complementing Figs.

77.1-2.

78.11 Uniqueness of Solution

To prove that the solution of the IVP (??) is unique, we assume v(t) is
a possibly different solution also satisfying v̇(t) = f(v(t)) for t > 0 and
v(0) = u0. Subtraction gives for the difference w = u− v

ẇ = f(u)− f(v) (78.12)

and thus taking the scalar product with w and using Cauchy’s inequality,
we get

d

dt

1

2
|w|2 =

d

dt

1

2
w · w = (f(u)− f(v)) · w ≤ L|w||w| (78.13)

and thus for W = |w|2
Ẇ ≤ 2LW, (78.14)

which shows that (why?)

W (t) ≤W (0) exp(2Lt) for t > 0. (78.15)

But W (0) = |u(0) − v(0)| = 0 and thus W (t) = 0 and u(t) = v(t) for
t > 0 and uniqueness follows. But to be scientifically honest, size of the
exponential factor exp(Lt) is crucial. If L10 and t = 30, which does not
look too frightening, then exp(Lt) = exp(300) > 10100 =googol, which
means that the argument the exp(300)W (0) is small (zer0) ifW (0) is small
(zero), is questionable, very questionable, right?

78.12 How to Prove exp(t+ s) = exp(t) exp(s)?

To prove the basic law of the exponential exp(t+ s) = exp(t) exp(s), note
that the function u(s) = exp(t + s) satisfies du

ds = u for s > 0 and u(0) =

exp(t). But the function v(s) = exp(t) exp(s) also satisfies dv
ds = v for s > 0

and v(0) = exp(t), and by uniqueness u(s) = v(s), that is exp(t + s) =
exp(t) exp(s).
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FIGURE 78.4. The Millennium Run: A large n-body computation with
n = 10.077.696.000.
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FIGURE 78.5. Model of a virus as a large molecular dynamics system of differ-
ential equations u̇ = f(u).

http://www.ks.uiuc.edu/Research/STMV/
http://en.wikipedia.org/wiki/Molecular_dynamics


This is page 335
Printer: Opaque this

79
Existence of World from u̇ = f(u)

Dubito ergo cogito; cogito ergo sum. (I doubt, therefore I think;
I think therefore I am). (Descartes)

Man is nothing else but what he makes of himself. Such is the
first principle of existentialism. (Jean-Paul Sarte)

We should all be obliged to appear before a board every five
years and justify our existence...on pain of liquidation. (George
Bernard Shaw)

The person lives most beautifully who does not reflect upon
existence. (Friedrich Nietzsche)

There is no place I know that compares to Pure Imagination.
(Roal Dahl)

We can summarize all our studies as the study of the IVP

u̇(t) = f(u(t)) for t > 0, u(0) = u0, (79.1)

where f(u) a vector valued function depending on the vector function u
and its derivatives, representing the state of a system.
The equation u̇(t) = f(u(t)) connects the rate of change u̇(t) to the

present state u(t) through the function f(u(t)), from which the dynamics
of the system can be computed by time-stepping. The model is the function
f(u).
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FIGURE 79.1. A dot-model of the World.

The Generalized Fundamental Theorem shows that a World modeled by
u̇ = f(u) exists! Convinced? What is the weak point with this argument?
The model u̇ = f(u) thus gives a very compact description of the World.

Easy to remember!

79.1 Autonomous and Non-Autonomous IVPs

An IVP with a function f(u(t), t) with an explicit dependence on t, referred
to as a non-autonomuous IVP, can be rewritten on the autonomuos form
(79.1) by introducing the new dependent variable ud+1 = t to give û =
(u1, ..., ud, ud+1) and adjoining the new equation u̇d+1 = fd+1 ≡ 1 into an

augumented ˙̂u = f̂(û).

79.2 What Calculus is Most Useful?

The Egg of Calculus is the derivative and the integral is the Hen: First
comes the derivative in the formulation of u̇(t) = f(t) and then comes
the integral as the solution u(t), by time-stepping in the same way as the
Egg gradually develops into the Hen. Here f(t) acts as the genetic code in

http://www.youtube.com/user/jazz2511#p/u/142/d3yKtuHob_0
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FIGURE 79.2. Summary of Calculus.

interplay with the environment from which the the solution the Hen as the
solution u(t).
Classical analytical Calculus of primitive functions concerns techniques

for analytical solution of u̇(t) = f(t) as means to circumvent tedious la-
borious time-stepping: An analytical primitive function u(t) can be seen
as a shortcut replacing a tiresome step-by-step solution. In precomputer
times such shortcuts were useful, and thus accordingly highly praised, but
with the computer the original motivation has largely dissappeaed: Time-
stepping solves u̇(t) = f(t) for any f(t) at little computer cost, and thus in
general is much more cost effective than tricky analytical shortcuts.
What is difficult in classical Calculus is analytical integration, since it

consists of a bag of tricks with only limited power. Replacing analytical
integration by time-stepping both simplifies Calculus and makes it more
useful.
Human brains are good at formulating problems using principles, but

cannot to massive computation and require a lot of training to handle bags
of tricks.
The basic philosophy of BodyandSoul is to use the Soul/Brain to formu-

late equations like u̇ = f(u) and then let the Body/Computer compute the
solution by time-stepping. See also The Hen and the Egg of Gravitation.

http://knol.google.com/k/the-hen-and-the-egg-of-gravitation
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80
Stability of Solutions to u̇ = f(u)

It is often in the name of cultural integrity as well as social
stability and national security that democratic reforms based on
human rights are resisted by authoritarian governments. (Aung
San Suu Kyi)

It’s well known I’m a Scientologist, and that has helped me to
find that inner peace in my life and it’s something that has
given me great stability and tools that I use. (Tom Cruise)

A party of order or stability, and a party of progress or reform,
are both necessary elements of a healthy state of political life.
(John Stuart Mill)

80.1 Sensitivity to Perturbations

We return to the fundamental aspect of stability of solutions of an IVP:

u̇(t) = f(u(t)) for 0 < t ≤ T, u(0) = u0, (80.1)

where f : R → R is a given bounded Lipschitz continuous function, u0 ∈ Rd

is a given initial value and [0, T ] a given time interval.
We are thus interested in the sensitivity of a solution u(t) with respect to

perturbations of given data f , u0 and T , that is the change of the solution
u(t) under small changes of data. If the solution changes a little under small
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FIGURE 80.1. Stability in pictures.

changes of data, then the solution is stable, and if the solution changes a lot
under small changes of data, the solution is unstable, qualitatively speaking.
We can also say that the IPV is stable or unstable if this is a charateristic
of all solutions. We focus here on perturbations of the initial data u0.
We now turn to a more precise quantitaive analysis of stability, and

we will then be led to the following linearized problem, assuming f(u) is
differentiable with respect to u with derivative f ′(u),

ϕ̇(t) = f ′(u(t))ϕ(t) for 0 < t ≤ T, ϕ(0) = ϕ0, (80.2)

where u(t) is a given (computed) solution of (80.1) and the solution ϕ(t)
measures the effect on the solution u(t) at time t of an initial perturbation
ϕ0 of initial data u0. We see that the sign of the derivative f ′(u(t)) deter-
mines if ϕ(t) will be growing (if f ′(u(t)) > 0) or decaying (if f ′(u(t)) < 0),
assuming that ϕ0 > 0 with an analogous argument if ϕ0 < 0.
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80.2 Derivation of the Linearized Problem

We start considering a stationary solution u(t) = ū for 0 ≤ t ≤ T , where
ū ∈ R, that is a solution u(t) of (80.1) that is independent of time t. Since
u̇(t) = 0 if u(t) is independent of time, ū is a solution of of the equation
f(ū) = 0, studied in Newton’s Method and Fixed Point Iteration.
We also refer to a stationary solution u(t) = ū with f(ū) = 0 as an

equilibrium solution.
We consider the initial value problem (80.1) with u0 = ū + ϕ0, where

ϕ0 ∈ Rd is a given small perturbation of the initial data ū. We denote the
corresponding solution by u(t) and focus attention on the corresponding
perturbation in the solution, that is ψ(t) = u(t)− ū(t) = u(t)− ū. We want
to derive a differential equation for the perturbation ψ(t), and to this end
we linearize f at ū and write

f(u(t)) = f(ū+ ψ(t)) = f(ū) + f ′(ū)ψ(t) + e(t),

where f ′(ū) is the derivative of f : R → R at ū and the error term e(t) is
quadratic in ψ(t) (and thus is very small if ψ(t) is small). Since f(ū) = 0
and u(t) satisfies (219.1), we have

ψ̇(t) =
d

dt
(ū+ ψ(t))) = f(u(t)) = f ′(ū)ψ(t) + e(t).

Neglecting the quadratic term e(t), we are led to a linear initial value
problem,

ϕ̇(t) = f ′(ū)ϕ(t) for t > 0, ϕ(0) = ϕ0, (80.3)

which is the linearized problem (80.2). Here ϕ(t) is an approximation of
the perturbation ψ(t) = u(t) − ū up to a (small) second order term. The
solution is given by

ϕ(t) = exp(At)ϕ0, (80.4)

where A = f ′(ū) is a constant.
We can immediately generalize to a time-dependent solution u(t) with

linearized problem

ϕ̇(t) = f ′(u(t))ϕ(t) for t > 0, ϕ(0) = ϕ0, (80.5)

with solution
ϕ(t) = exp(A(t))ϕ0, (80.6)

where A′(t) = f ′(u(t)) with A(0) = 0.

80.3 Stability Analysis

We consider the following cases
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• A < 0: stable: perturbation decays: systems returns to initial state,

• A > 0: unstable: perturbation grows: system deviates from initial
state,

• A = i: neutral: perturbation maintains size: system oscillates around
initial state.

We can quantify stability in terms of the following stability factor with the
subscript d referring to (initial) data:

Sd(f, T, ϕ
0) = max

0≤t≤T
|ϕ(t)|
|ϕ0| ,

Sd ≡ Sd(f, T ) = max
ϕ0 6=0

Sd(f, T, ϕ
0).

(80.7)

A large Sd will then indicate an unstable solution, and a moderate size or
small Sd a stable or netural solution.

80.4 Dual Linearized Problem

Sd(u, T, ϕ
T ) =

|ψ(T )|
|ϕT | =

|ϕ(0)|
|ϕT | , Sd ≡ Sd(u, T ) = max

ϕT 6=0
Sd(u, T, ϕ

T ).

(80.8)

80.5 Learn More

• Linearization and Stability of IVP

• The Crash Problem

• BMW stability control

• Unstable mathematics I

• Unstable mathematics II

The existence of life must be considered as an elementary fact
that can not be explained, but must be taken as a starting
point in biology, in a similar way as the quantum of action,
which appears as an irrational element from the point of view
of classical mechanical physics, taken together with the exis-
tence of elementary particles, forms the foundation of atomic
physics. The asserted impossibility of a physical or chemical ex-
planation of the function peculiar to life would in this sense be
analogous to the insufficiency of the mechanical analysis for the
understanding of the stability of atoms. (Niels Bohr)

http://www.youtube.com/watch?v=ncE-Vk7egRo
http://www.youtube.com/watch?v=YDh3imVf2Wo
http://www.youtube.com/watch?v=YDh3imVf2Wo
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FIGURE 80.2. Stability of floating bodies, see Archimedes Prinicple
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The stability of the atom is inexplicable. (Max Born)

http://books.google.se/books?id=NmM-KujxMtoC&pg=PA82&lpg=PA82&dq=stability+of+atom+physics+quote&source=bl&ots=yDbikbQeLD&sig=Dom_qRNnd2UtC0Yuggxqfk8BB9Y&hl=sv&ei=06_fTNqPE4bpOdWv7O4O&sa=X&oi=book_result&ct=result&resnum=5&ved=0CDYQ6AEwBA#v=onepage&q&f=false
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81
What about Limits and Sequences?

If you always put limit on everything you do, physical or any-
thing else. It will spread into your work and into your life. There
are no limits. There are only plateaus, and you must not stay
there, you must go beyond them. (Bruce Lee)

The mind is the limit. As long as the mind can envision the fact
that you can do something, you can do it, as long as you really
believe 100 percent. (Arnold Schwarzenegger)

81.1 Alternative Definitions of Continuity and
Derivative

In Calculus books you usually find definitions of continuity and derivative
based on the notion of limit : A function x : R → R is said to be continuous
(at t) if

x(t) = lim
dt→0

x(t+ dt), (81.1)

and differentiable with derivative ẋ(t) if

ẋ(t) = lim
dt→0

x(t + dt)− x(t)

dt
where dt 6= 0). (81.2)

If you define continuity and derivative this way using limits, obviously there
is a reason to confront the student with the (difficult) concept of limit.
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FIGURE 81.1. Computational mathematics without limits.

The notion of limit relates to converging sequences with limdt→0+ x(t +
dt) = x(t) expressing that for any decreasing sequence of positive time
steps dt1 > dt2 > .... > dtn > dtn+1, .... approaching 0, the difference
|x(t+ dtn)− x(t)| is smaller than any given positive number if only dtn is
small enough (but not zero).
The notion is extended to also dtn < 0 with |tn| approaching 0. In math-

ematical terms this is usually expressed as: For any given ǫ > 0 there is a
δ > 0 such that

|x(t+ dt)− x(t)| < ǫ if |dt| < δ. (81.3)

This looks more precise or “mathematical”, but if you do not relate δ to
ǫ, then it is as vague as saying that x(t+ dt) is close to x(t) if dt is small,
which is a pure qualitative statement.

81.2 Quantitative vs Qualitative Definitions

On the other hand, in our definitions of Lipschitz continuity and differ-
entiability, no limits are visible. You can argue that our definitions are
more precise since they are quantitative, not just qualitative, as expressed
through the constants L and Cu.
Is it good or bad? Are we missing something using this approach? Well,

you may judge yourself? Does the notion of limit capture the essence of
continuity and differentiability?
An answer may be suggested by Achilles and the tortoise: With the

limit/sequence definition, Achilles can be seen approaching the tortoise in
a seemingly neverending sequential limit process with always half of the
rest remaining, which appears paradoxical. With the definition without
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limit/sequence, Achilles will simply at a certain moment in time have trav-
eled the same distance as the tortoise and thereafter be ahead: No paradox.
In fact, the limit/sequence definitions, seemingly requiring that myste-

rious inifinitely small yet nonzero quantity dt, have created a lot of con-
fusion and trouble through the history of Calculus, for both teachers and
students, trouble which serves no reasonable purpose. To require that some-
thing locally is close to a constant or linear function, which we do in our
limit/sequence-less definitions of continuity and differentiability, does not
invite to any paradoxes, real or imagined.
The limit/sequence definitions, commonly viewed to be too difficult for

high-school, form the core of university Honors Calculus with the pretention
of giving a deeper understanding.

81.3 Sequences from Computation

In our approach, sequences will naturally occur as the output of a compu-
tational algorithm which generates a sequence u1, u2, ..., such as fixed point
iteration/Newton’s method, or by successive reduction of the time step k

with a factor 2. We will meet sequences satisfying |un − un+1| ≤ C)
2

−n
,

which uniquely determine a decimal expansion of a unique number. But
we see no reason to consider other sequences than those generated by such
computational algoritms. This simplifies the mathematics without loss of
anything essential.

81.4 To Think About

• What is the use of limits in a standard Calculus text?

• What sequences in a standard Calculus text arise naturally?
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82
Time Stepping Error Analysis

Sapiens nihil affirmat quod non probat.

After experience had taught me that all the usual surroundings
of social life are vain and futile; seeing that none of the objects of
my fears contained in themselves anything either good or bad,
except in so far as the mind is affected by them, I finally resolved
to inquire whether there might be some real good having power
to communicate itself, which would affect the mind singly, to the
exclusion of all else: whether, in fact, there might be anything of
which the discovery and attainment would enable me to enjoy
continuous, supreme, and unending happiness. (Spinoza)

82.1 Midpoint Euler

Consider a linear scalar IVP of the form: Find u(t) such that

u̇(t) +Au(t) = F (t) for t > 0, u(0) = u0, (82.1)

where A is a constant and F (t) a given functions, which has the standard
form u̇(t) = f(t, u(t)) with f(t, u) = F (t)−Au.
Compute an approximate solution U(t) by time stepping according to

the Trapezoidal Method: Find Un = U(nk) such that

Un+1 +
k

2
(AUn+1 +AUn) = Un +

∫

In

F (t) dt, for n = 0, 1, 2, ..., (82.2)
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with In = (nk, (n + 1)k) and U0 ≈ u0, assuming the integral of F (t)
can be evaluated analytically. We here think of U(t) as a piecewise linear
continuous function taking on the computed values Un at the discrete time
levels nk with time step k. If so the Trapezoidal Method and Midpoint
Euler coincide. In particular, we then have

∫

In

U̇ dt = Un+1 − Un,

∫

In

AU dt =
k

2
(AUn+1 +AUn), (82.3)

which shows that Trapezoidal/Midpoint Euler satisfies:

∫

In

(U̇ +AU − F ) dt = 0 for n = 0, 1, 2, ... (82.4)

In other words, the mean-value over each subinterval In of the residual
R(U) ≡ U̇ +AU − F vanishes.
We shall consider the following basic choices of A with different stability

characteristics connecting back to Summary: Timestepping of IVP:

1. constant non-negative: A ≥ 0,

2. constant imaginary: A = i,

3. constant negative: A < 0,

4. oscillating positive-negative: A(t) = sin(t),

where we also added a basic case with A(t) depending on t. We shall below
see that (82.1) can also be interpreted as a system of differential equations
with A a square matrix with the following analogous stability characteris-
tics:

1. A positive semi-definite (symmetric): diffusion problems

2. A anti-symmetric: wave problems

3. A negative definite (symmetric) or general matrix: inverted pendu-
lum...

4. A oscillating with zero mean: turbulence...

For a general non-linear system u̇+f(u) = 0, the matrix A then corresponds
to the Jacobian f ′(u(t)) as concerns stability.

82.2 Error Analysis of Midpoint Euler

We shall now estimate the error |u(T ) − U(T )| at a given time T = Nk
in terms of the time step k and relevant quantities to be defined, where
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we assume the u(t) is an exact solution satisfying (82.1) to high precision
(computed with a (vanishingly) small time step).
We shall do this by representing the error in terms of the solution ϕ(t)

of the following dual problem:

{
−ϕ̇+Aϕ = 0 for T > t ≥ 0,

ϕ(T ) = ±1 = sign of e(T ),
(82.5)

where e = u − U . We note that that (82.5) runs “backwards in time”
starting at time T , because the (initial) data is given at t = T , and that
(accordingly) the time derivative term ϕ̇ has a minus sign. We start from
the identity

0 =

∫ T

0

e (−ϕ̇+Aϕ) dt,

and integrate by parts to get the following error representation (since
|e(T )| = e(T )ϕ(T )):

|e(T )| =
∫ T

0

(ė+ Ae)ϕdt+ e(0)ϕ(0),

where we allow U(0) to be different from u(0), corresponding to an er-
ror e(0) in the initial value u(0). Since u solves the differential equation
(220.10), that is u̇+Au = F , we have

ė+Ae = u̇+Au− F − (U̇ +AU − F ) = F − U̇ −AU = −R(U),

and thus we obtain the following representation of the error |e(T )| in terms
of the residual R(U) = U̇ +AU − F and the dual solution ϕ:

|e(T )| = −
∫ T

0

R(U)ϕdt+ e(0)ϕ(0). (82.6)

Recalling (82.4) we have

∫

In

R(U) dt = 0 for n = 0, 1, 2, ...,

which allows us to rewrite (82.6) as

|e(T )| = −
∫ T

0

R(U)(ϕ− ϕ̄) dt+ e(0)ϕ(0), (82.7)

where ϕ̄ is the mean-value of ϕ over each time interval In, that is

ϕ̄(t) =
1

k

∫

In

ϕ(s) ds for t ∈ In.
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We shall now use the fact that
∫

In

|ϕ− ϕ̄| dt ≤ k

∫

In

|ϕ̇| dt,

which follows by integration from the facts that

ϕ(t)− ϕ̄(t) =
1

k

∫

In

(ϕ(t)− ϕ(s)) ds,

and

|ϕ(t)− ϕ(s)| ≤
∫ t

s

|ϕ̇(σ)| dσ ≤
∫

In

|ϕ̇(σ)| dσ for s, t ∈ In.

Thus, (220.13) implies

|e(T )| ≤
N−1∑

n=0

Rn

∫

In

|ϕ− ϕ̄|dt+ |e(0)||ϕ(0)|

≤
N−1∑

n=0

k Rn

∫

In

|ϕ̇|dt+ |e(0)||ϕ(0)|,
(82.8)

where
Rn(U) = max

t∈In
|R(U(t))|.

Bringing out the max of knRn over n, we get

|e(T )| ≤ max
0≤n≤N−1

kRn

∫ T

0

|ϕ̇| dt+ |e(0)||ϕ(0)|.

Defining the stability factors Sc(T ) and Sd(T ) by

Sc(T ) =

∫ T

0

|ϕ̇(s)| ds, Sd(T ) = |ϕ(0)|, (82.9)

we get the following a posteriori error estimate:

Theorem 82.1 The approximate solution U(t) of the initial value prob-
lem (82.1) computed by Midpoint Euler with time step k over intervals In,
satisfies for T > 0

|u(T )− U(T )| ≤ Sc(T )max
n

kRn(U) + Sd(T )|u(0)− U(0)|, (82.10)

where u(t) is the exact solution computed with vanishingly small time step,
Rn(U) = maxIn |U̇+AU−F | measures the residual over In, and Sc(T ) and
Sc(T ) are stability factors defined by (82.9) related to time-discretization
and initial data.
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The stability factors Sc(T ) and Sd(T ) measure the effects of the accu-
mulation of error in the approximation. To give the analysis a quantitative
meaning, we have to give a quantitative bound of these factors. In general
the stablity factors are computed by computing the solution of the dual
problem. In special cases the stability factors can be computed analyti-
cally, as we now show:
The following lemma gives an estimate for Sc(T ) and Sd(T ) depending

on the nature of A, in particular the sign of A, with possibly vastly different
stability factors. We notice that the solution ϕ(t) of (220.11) if A is constant
is given by the explicit formula

ϕ(t) = ± exp(−A(T − t)).

We see that if A > 0, then the solution ϕ(t) decays as t decreases from T ,
and the case A > 0 is thus the “stable case”. If A < 0 then the exponen-
tial factor exp(−AT ) enters, and depending on the size of A this case is
“unstable”. More precisely, we conclude directly from the explicit solution
formula that

Theorem 82.2 The stability factors Sc(T ) and Sd(T ) satisfy if A < 0:

Sd(T ) ≤ exp(|A|T ), Sc(T ) ≤ exp(|A|T ), (82.11)

if A ≥ 0:
Sd(T ) ≤ 1, Sc(T ) ≤ 1 (82.12)

if A = i:
Sd(T ) ≤ 1, Sc(T ) ≤ T, (82.13)

if A = sin(t):
Sd(T ) ≤ exp(1), Sc(T ) ≤ exp(1)T. (82.14)

Proof: Changing variables T − t → t, we can write the dual equation as
the forward-in-time problem ϕ̇ = −Aϕ for t > 0, ϕ(0) = 1 with solution
exp(−At), if A is constant. We note that if A > 0, then

∫ T

0

|ϕ̇(t)| dt =
∫ T

0

A exp(−At) dt = −
∫ T

0

d

dt
exp(−At) dt = 1−exp(−AT ) < 1.

(82.15)
Further, if A < 0, then

∫ T

0

|ϕ̇(t)| dt =
∫ T

0

d

dt
exp(−At) dt = exp(−AT )− 1 ≈ exp(|A|T ) (82.16)

If A = i, then

∫ T

0

|ϕ̇(t)| dt =
∫ T

0

| d
dt

exp(−it)| dt =
∫ T

0

1 dt = T. (82.17)
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Finally, if A = sin(t) then ϕ(t) = exp(cos(t)), and so

|ϕ(T )| ≤ exp(1),

∫ T

0

|ϕ̇(t)| dt ≤ exp(1)T. (82.18)

�.
The size of the stability factors indicate the degree of stability of the

solution u(t) being computed. If the stability factors are large, the residuals
R(U(t)) and e(0) have to be made correspondingly smaller by choosing
smaller time steps and the computational problem is more demanding.

82.3 A Priori Error Estimate

The a posteriori error estimate (82.19) estimates the error in terms of the
computed solution U(t). There is a corresponding a priori error estimate
with R(U) replaced by R(uk) where uk is the piecewise linear interpolant of
the exact solution u(t) taking on the same values at the discrete time levels
nk. In this case the stability factors measure the stability of a corresponding
discrete dual problem.
How big is then R(uk)? Well, with piecewise linear interpolation, we have

|u̇− u̇k| ≈ k|ü|, and thus the a priori estimate takes the form

|u(T )− U(T )| ≤ Sc(T )C(u)k
2 + Sd(T )|e(0)|, (82.19)

where C(u) = maxt|ü(t)|. In short, Midpoint Euler is second-order accurate
with error proportional to k2. Backward Euler and Forward Euler are first
order accurate with error proportional to k.

82.4 Generalization

The above error analysis extends to a general IVP u̇(t) = f(u(t)) for t > 0,
u(0) = u0, as shown in Chapter (161).

82.5 To Think About

• Show that the a posteriori estimate (82.19) directly extends to vari-
able time steps kn with knRn replacing kRn.

• For a basic aspect of duality in error estimation, see Error Control by Duality.
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83
Integration in Several Dimensions

This is a tricky domain because, unlike simple arithmetic, to
solve a calculus problem - and in particular to perform integra-
tion - you have to be smart about which integration technique
should be used: integration by partial fractions, integration by
parts, and so on. (Marvin Minsky)

Let f(x) = f(x1, x2) by a Lipschitz continuous real-valued function of
x = (x1, x2) defined on the unit square Ω = {x : 0 ≤ x1, x2 ≤ 2}, that is
f : Ω → R. We define by iterated 1d integration

∫

Ω

f(x) dx =

∫ 1

0

(

∫ 1

0

f(x1, x2)dx1) dx2 =

∫ 1

0

(

∫ 1

0

f(x1, x2)dx2) dx1,

(83.1)
where the order of 1d integration is irrelevant, since both integrals express
the common Riemann sum

N∑

i,j=1

f(ih, jh)h2. (83.2)

Generalization to any domain in 2d or 3d is direct, by iterated 1d integra-
tion. Linearity properties follow directly from the Riemann sum represen-
tation. By the triangle inequality it follows that

|
∫

Ω

f(x) dx| ≤
∫

Ω

|f(x)| dx. (83.3)

http://en.wikipedia.org/wiki/Marvin_Minsky
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Cauchy’s inequality takes the form

|
∫

Ω

f(x)g(x) dx| ≤ (

∫

Ω

f2(x) dx)
1
2 (

∫

Ω

g2(x) dx)
1
2 . (83.4)

83.1 Learn More

• Double integrals

• Multiple integrals

83.2 To Think About

• Is there a Fundamental Theorem for integration in 3d?
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84
The Divergence Theorem

Many who have had an opportunity of knowing any more about
mathematics confuse it with arithmetic, and consider it an arid
science. In reality, however, it is a science which requires a great
amount of imagination. — Say what you know, do what you
must, come what may. — It is impossible to be a mathematician
without being a poet in soul(Sophia Kovalevskaya)

If Ω is a volume with boundary Γ with outward unit normal n, then

∫

Ω

∇ · u dx =

∫

Γ

u · n ds, (84.1)

which is referred to as the Divergence Theorem or alternatively Gauss’
Theorem. We can see this result as a multidimensional analog of the Fun-
damental Theorem of Calculus:

∫ 1

0

u′(x)dx =

∫ 1

0

du

dx
dx = u(1)− u(0). (84.2)

In the case Ω is the unit square in 2d or unit cube in 3d, the Divergence
Theorem follows directly from the Fundamental Theorem. Show this, by
consider the special case

∫

Ω

∂u1
∂x1

dx1dx2 =

∫

Γ

u1n1 dx2. (84.3)
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FIGURE 84.1. Sonya (Sophia) Kovalevskaya (1850-1891) of Russian origin, full
professor of mathematics at the University of Stockholm 1889-91, remembered
by the Cauchy-Kovalevskaya theorem, first female professor in Northern Europe:
It is impossible to be a mathematician without being a poet in soul...Many who
have had an opportunity of knowing any more about mathematics confuse it with
arithmetic, and consider it an arid science. In reality, however, it is a science
which requires a great amount of imagination...Say what you know, do what you
must, come what may...It seems to me that the poet has only to perceive that which
others do not perceive, to look deeper than others look. And the mathematician
must do the same thing. .
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84.1 Learn More

• The Divergence Theorem
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85
Green’s and Stokes’ Theorems

If Ω is a domain in R3 with boundary Γ with outward unit normal n =
(n1, n2, n3), and u : Ω → R3 and v, w : Ω → R, then we obtain applying
the Divergence Theorem to the product vw,

∫

Ω

∂v

∂xi
w dx =

∫

Γ

vw ni ds−
∫

Ω

v
∂w

∂xi
dx, i = 1, 2, 3.

Further, similarly,

∫

Ω

∇v · ∇w dx =

∫

Γ

v∂nw ds−
∫

Ω

v∆w dx,

and ∫

Ω

v∆w dx−
∫

Ω

∆v w dx =

∫

Γ

v ∂nw ds−
∫

Γ

∂nv w ds.

These formulas are referred to as Green’s Formulas and express 3d analogs
to integration by parts in 1d.
If S is a surface in R3 bounded by a closed curve Γ, n is a unit normal

to S, Γ is oriented in a clockwise direction following the positive direction
of the normal n, and u : R3 → R3 is differentiable, then

∫

S

(∇× u) · n ds =
∫

Γ

u · ds,

which is Stokes’ Theorem.
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FIGURE 85.1. Proof that 1 + 1 = 2 in Principia Mathematica

85.1 Read More

• The Divergence Theorem

• Stokes’ Theorem
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86
Who Invented Calculus?

Newton’s Calculus is based on geometry and his notion of “fluxions”, while
Leibniz’ Calculus is based on an algebra, a machine, for derivation and
integration. Newton accussed Leibniz for plagiarism, and managed to get
the Royal Society to set up a committee to pronounce on the priority
dispute. The report of the committee, finding in favor of Newton, was
written by Newton himself, while Leibniz was kept out to give his version
of the events. Leibniz was defeated to death, but Leibniz’ Calculus survived
and is what we use today, while Newton’s fluxions are forgotten. See

• The Newton-Leibniz Controversy

• The Baroque Cycle by Neal Stephenson.

• Letters between Newton and Leibniz in 6 minutes

• BBC Controversy Documentary (with my friend Erwing Stein)

We recall the beauty of Leibniz notation in his formulation of the Fun-
damental Theorem of Calculus:

∫ b

a

du

dt
dt =

∫ b

a

du = u(b)− u(a). (86.1)

86.1 Watch

• Newton vs Leibniz

http://en.wikipedia.org/wiki/Leibniz_and_Newton_calculus_controversy
http://en.wikipedia.org/wiki/The_Baroque_Cycle
http://www.youtube.com/watch?v=ha5OBQPRyU0
http://www.youtube.com/watch?v=0iMOFPJT3v8
http://www.youtube.com/watch?v=WouIyOxuMKk&feature=related
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FIGURE 86.1. The Controversy.
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FIGURE 86.2. Problem formulated and solved by Leibniz Calculus.
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87
Perspectives of Reformation

The fewer the words, the better the prayer....When schools
flourish, all flourishes... Music is the art of the prophets and
the gift of God. (Martin Luther)

You have now met the basics of Calculus and you have seen that math-
ematical modeling involves (i) formulating and (ii) solving equations.
Traditional elementary school mathematics concerns a linear algebraic

equation expressing proportionality:

ax+ b = c, (87.1)

with a 6= 0 and b and c given numbers, with solution

x =
c− b

a
. (87.2)

To compute the solution of ax + c = b both sides are subtracted by c and
then multiplied by 1

a to give x = 1
aax = c−b

a . Not difficult.
I highschool mathematics the scope is extended to the quadratic algebraic

equation

ax2 + 2bx+ c = 0 (87.3)

with solution

x = − b

a
±
√
b2

a2
− c

a
, (87.4)
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assuming b2 ≥ ac so that the squareroot is a real number (it is imaginary
if b2 < ac). To solve for x, the equation is divided by a to give

x2 + 2
b

a
x+

b2

a2
=
b2

a2
− c (87.5)

obtained by adding b2

a2 to both sides (and moving c to the right hand side).
This is referred to as “completing the square” on the left hand side, since

x2 + 2
b

a
x+

b2

a2
= (x+

b

a
)2. (87.6)

With this clever operation, the equation takes the form

(x+
b

a
)2 =

b2

a2
− c

a
(87.7)

from which follows that

x+
b

a
= ±

√
b2

a2
− c

a
(87.8)

which gives the solution formula (87.4).
In traditional school mathematics students are supposed to solve a large

number of equations of the form (87.2) and (87.4) by using the analytical
solution formulas. The objective of this activity, which fills a large part of
the schedule, is to demonstate to students that analytical mathematics is
powerful and can be used to solve many equations.
The trouble with this approach is that it does no longer work: Many

students find it difficult to formulate linear or quadratic algebraic equations
from some given information, and tend to mix up the solution formulas and
don’t see the beauty of “completing the square”. On top of that there is a
growing insight that analytical solution formulas are non-existing for more
general problems: Already a 3rd order equation is tricky and a 5th order
impossible to solve by taking roots (as shown by Galois shortly before his
tragic death in a silly duel in 1832 at the age of 20).
On the other hand we have seen that just about any equation is solvable

computationally, by Newton’s method for algebraic equations, and time
stepping for differential equations. The analytical solution formula (87.4)
for a quadratic equation in fact involves a root, which will have to be
computed somehow anyway, and thus instead of memorizing the formula
with its trick of “completing the square”, we may as well apply Newton’s
method to the original form of the equation and forget the trick.
In computational mathematics we can use methods with general appli-

cability, while in analytical mathematics we are restricted to tricks for a
few very special cases. We understand that there is a big difference between
a general method and a bag of tricks, and that this difference requires a
reformation of mathematics education...

http://en.wikipedia.org/wiki/Évariste_Galois
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FIGURE 87.1. Martin Luther posting his 95 Theses in Wittenberg in 1517 spark-
ing the Protestant Reformation: Who loves not wine, women and song, Remains
a fool his whole life long... If you are not allowed to laugh in heaven, I don’t want
to go there.

http://en.wikipedia.org/wiki/The_Ninety-Five_Theses
http://en.wikipedia.org/wiki/Protestant_Reformation
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88
How to Learn and Use Calculus

Among all of the mathematical disciplines the theory of differ-
ential equations is the most important... It furnishes the expla-
nation of all those elementary manifestations of nature which
involve time. (Sophus Lie, famous Norwegian mathematician)

I recoil with dismay and horror at this lamentable plague of
functions which do not have derivatives. (Charles Hermite)

But just as much as it is easy to find the differential [derivative]
of a given quantity, so it is difficult to find the integral of a given
differential. Moreover, sometimes we cannot say with certainty
whether the integral of a given quantity can be found or not.
(Johann Bernoulli)

You have now been exposed to the basics of Calculus, the wonderful
invention by Leibniz and Newton, and you have gathered some experience.
You have seen that Calculus concerns

• functions together with derivates and integrals of functions,

• differential equations expressed in terms of derivatives functions,

• (there are also integral equations in terms of integrals of functions).

Further, you have

• discovered rules for differentiation and integration,
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• met elementary functions as solutions to basic (elementary) differen-
tial equations,

• discovered their properties through their defining differential equa-
tions.

All of this can be captured in a set of formulas. You find in mathematics
teaching and learning different attitudes to these formulas:

1. Learn formulas by heart and apply them to many similar problems.

2. Learn to prove a few basic formulas from basics and a few basic
computational algorithms, implement them in computer code, and
use them for a rich variety of problems.

Case 1 is very common in traditional mathematics focussed on problem
solving, which is evidenced by large collections of similar problems to be
solved, one after the other. There are endless variations of proportionality
leading to the simple equation ax = b in x, or the simple 2 × 2 system of
equations ax+ by = c and dx+ ey = f in x and y.
We advocate case 2, where the essence is not to remember a certain for-

mula or algorithm by heart, but instead to remember that you have once
proved the formula and convergence of a computation algorithm, and im-
plemented the formula and algorithm in computer code. With this approach
you are able to solve e.g. an algebraic equation of any order by Newton’s
method, by using your computer.
The advantage of 2 is that you can use mathematics for a much richer

variety of problems, by letting the computer do computational work:

• mathematics with computational turbo,

• mathematics as instruction telling the computer what to do,

• a combination of brains and pedals moving you forward.
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FIGURE 88.1. Mathematics with Turbo: Brains and Pedals.
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FIGURE 88.2. Descartes: The Principle which I have always observed in my
studies and which I believe has helped me the most to gain what knowledge I
have, has been never to spend beyond a few hours daily in thoughts which occupy
the imagination, and a few hours yearly in those which occupy the understanding,
and to give all the rest of my time to the relaxation of the senses and the repose
of the mind...As for me, I have never presumed my mind to be in any way better
than the minds of people in general. As for reason or good sense, I am inclined
to believe that it exists whole and complete in each of us, because it is the only
thing that makes us men and distinguishes us from the lower animals.

http://www.earlymoderntexts.com/f_descarte.html
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89
Analytic Geometry in R2

Philosophy is written in the great book (by which I mean the Uni-
verse) which stands always open to our view, but it cannot be under-
stood unless one first learns how to comprehend the language and
interpret the symbols in which it is written, and its symbols are tri-
angles, circles, and other geometric figures, without which it is not
humanly possible to comprehend even one word of it; without these
one wanders in a dark labyrinth. (Galileo)

89.1 Introduction

We give a brief introduction to analytic geometry in two dimensions, that
is the linear algebra of the Euclidean plane. Our common school experience
has given us an intuitive geometric idea of the Euclidean plane as an infi-
nite flat surface without borders consisting of points, and we also have an
intuitive geometric idea of geometric objects like straight lines, triangles
and circles in the plane. We brushed up our knowledge and intuition in
geometry somewhat in Chapter Pythagoras and Euclid. We also presented
the idea of using a coordinate system in the Euclidean plane consisting
of two perpendicular copies of Q, where each point in the plane has two
coordinates (a1, a2) and we view Q2 as the set of ordered pairs of rational
numbers. With only the rational numbers Q at our disposal, we quickly run
into trouble because we cannot compute distances between points in Q2.
For example, the distance between the points (0, 0) and (1, 1), the length of
the diagonal of a unit square, is equal to

√
2, which is not a rational num-
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ber. The troubles are resolved by using real numbers, that is by extending
Q2 to R2.
In this chapter, we present basic aspects of analytic geometry in the

Euclidean plane using a coordinate system identified with R2, following
the fundamental idea of Descartes to describe geometry in terms of num-
bers. Below, we extend to analytic geometry in three-dimensional Euclidean
space identified with R3 and we finally generalize to analytic geometry in
Rn, where the dimension n can be any natural number. Considering Rn

with n ≥ 4 leads to linear algebra with a wealth of applications outside
Euclidean geometry, which we will meet below. The concepts and tools
we develop in this chapter focussed on Euclidean geometry in R2 will be
of fundamental use in the generalizations to geometry in R3 and Rn and
linear algebra.
The tools of the geometry of Euclid is the ruler and the compasses, while

the tool of analytic geometry is a calculator for computing with numbers.
Thus we may say that Euclid represents a form of analog technique, while
analytic geometry is a digital technique based on numbers. Today, the use
of digital techniques is exploding in communication and music and all sorts
of virtual reality.

89.2 Descartes, Inventor of Analytic Geometry

The foundation of modern science was laid by René Descartes (1596-1650)
in Discours de la méthod pour bien conduire sa raison et chercher la vérité
dans les sciences from 1637. The Method contained as an appendix La Ge-
ometrie with the first treatment of Analytic Geometry. Descartes believed
that only mathematics may be certain, so all must be based on mathemat-
ics, the foundation of the Cartesian view of the World.
In 1649 Queen Christina of Sweden persuaded Descartes to go to Stock-

holm to teach her mathematics. However the Queen wanted to draw tan-
gents at 5 a.m. and Descartes broke the habit of his lifetime of getting up
at 11 o’clock, c.f. Fig. 88.2. After only a few months in the cold North-
ern climate, walking to the palace at 5 o’clock every morning, he died of
pneumonia.

89.3 Descartes: Dualism of Body and Soul

Descartes set the standard for studies of Body and Soul for a long time with
his De homine completed in 1633, where Descartes proposed a mechanism
for automatic reaction in response to external events through nerve fibrils,
see Fig. 89.1. In Descartes’ conception, the rational Soul, an entity distinct
from the Body and making contact with the body at the pineal gland,
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might or might not become aware of the differential outflow of animal
spirits brought about though the nerve fibrils. When such awareness did
occur, the result was conscious sensation – Body affecting Soul. In turn,
in voluntary action, the Soul might itself initiate a differential outflow of
animal spirits. Soul, in other words, could also affect Body.
In 1649 Descartes completed Les passions de l’ame, with an account of

causal Soul/Body interaction and the conjecture of the localization of the
Soul’s contact with the Body to the pineal gland. Descartes chose the pineal
gland because it appeared to him to be the only organ in the brain that
was not bilaterally duplicated and because he believed, erroneously, that
it was uniquely human; Descartes considered animals as purely physical
automata devoid of mental states.

FIGURE 89.1. Automatic reaction in response to external stimulation from
Descartes De homine 1662.

89.4 The Euclidean Plane R2

We choose a coordinate system for the Euclidean plane consisting of two
straight lines intersecting at a 90◦ angle at a point referred to as the origin.
One of the lines is called the x1-axis and the other the x2-axis, and each
line is a copy of the real line R. The coordinates of a given point a in the
plane is the ordered pair of real numbers (a1, a2), where a1 corresponds to
the intersection of the x1-axis with a line through a parallel to the x2-axis,
and a2 corresponds to the intersection of the x2-axis with a line through
a parallel to the x1-axis, see Fig. 89.2. The coordinates of the origin are
(0, 0).



380 89. Analytic Geometry in R2

In this way, we identify each point a in the plane with its coordinates
(a1, a2), and we may thus represent the Euclidean plane as R2, where R2

is the set of ordered pairs (a1, a2) of real numbers a1 and a2. That is

R2 = {(a1, a2) : a1, a2 ∈ R}.

We have already used R2 as a coordinate system above when plotting a
function f : R → R, where pairs of real numbers (x, f(x)) are represented
as geometrical points in a Euclidean plane on a book-page.

x1

x2

a1

a2
(a1, a2)

FIGURE 89.2. Coordinate system for R2

To be more precise, we can identify the Euclidean plane with R2, once
we have chosen the (i) origin, and the (ii) direction (iii) scaling of the co-
ordinate axes. There are many possible coordinate systems with different
origins and orientations/scalings of the coordinate axes, and the coordi-
nates of a geometrical point depend on the choice of coordinate system.
The need to change coordinates from one system to another thus quickly
arises, and will be an important topic below.
Often, we orient the axes so that the x1-axis is horizontal and increasing

to the right, and the x2-axis is obtained rotating the x1 axis by 90◦, or a
quarter of a complete revolution counter-clockwise, see Fig. 89.2 or Fig. 89.3
displaying MATLAB’s view of a coordinate system. The positive direction
of each coordinate axis may be indicated by an arrow in the direction of
increasing coordinates.
However, this is just one possibility. For example, to describe the position

of points on a computer screen or a window on such a screen, it is not
uncommon to use coordinate systems with the origin at the upper left
corner and counting the a2 coordinate positive down, negative up.
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FIGURE 89.3. Matlabs way of visualizing a coordinate system for a plane.

89.5 Surveyors and Navigators

Recall our friends the Surveyor in charge of dividing land into properties,
and the Navigator in charge of steering a ship. In both cases we assume that
the distances involved are sufficiently small to make the curvature of the
Earth negligible, so that we may view the world as R2. Basic problems faced
by a Surveyor are (s1) to locate points in Nature with given coordinates
on a map and (s2) to compute the area of a property knowing its corners.
Basic problems of a Navigator are (n1) to find the coordinates on a map of
his present position in Nature and (n2) to determine the present direction
to follow to reach a point of destiny.
We know from Chapter 2 that problem (n1) may be solved using a GPS

navigator, which gives the coordinates (a1, a2) of the current position of
the GPS-navigator at a press of a button. Also problem (s1) may be solved
using a GPS-navigator iteratively in an ‘inverse” manner: press the button
and check where we are and move appropriately if our coordinates are not
the desired ones. In practice, the precision of the GPS-system determines
its usefulness and increasing the precision normally opens a new area of
application. The standard GPS with a precision of 10 meters may be OK
for a navigator, but not for a surveyor, who would like to get down to
meters or centimeters depending on the scale of the property. Scientists
measuring continental drift or beginning landslides, use an advanced form
of GPS with a precision of millimeters.
Having solved the problems (s1) and (n1) of finding the coordinates of a

given point in Nature or vice versa, there are many related problems of type
(s2) or (n2) that can be solved using mathematics, such as computing the
area of pieces of land with given coordinates or computing the direction of a
piece of a straight line with given start and end points. These are examples
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of basic problems of geometry, which we now approach to solve using tools
of analytic geometry or linear algebra.

89.6 A First Glimpse of Vectors

Before entering into analytic geometry, we observe that R2, viewed as the
set of ordered pairs of real numbers, can be used for other purposes than
representing positions of geometric points. For example to describe the
current weather, we could agree to write (27, 1013) to describe that the
temperature is 27 C ◦ and the air pressure 1013 millibar. We then describe a
certain weather situation as an ordered pair of numbers, such as (27, 1013).
Of course the order of the two numbers is critical for the interpretation. A
weather situation described by the pair (1013, 27) with temperature 1013
and pressure 27, is certainly very different from that described by (27, 1013)
with temperature 27 and pressure 1013.
Having liberated ourselves from the idea that a pair of numbers must

represent the coordinates of a point in a Euclidean plane, there are end-
less possibilities of forming pairs of numbers with the numbers representing
different things. Each new interpretation may be viewed as a new interpre-
tation of R2.
In another example related to the weather, we could agree to write

(8, NNE) to describe that the current wind is 8 m/s and headed North-
North-East (and coming from South-South-East. Now, NNE is not a real
number, so in order to couple to R2, we replace NNE by the corresponding
angle, that is by 22.5◦ counted positive clockwise starting from the North
direction. We could thus indicate a particular wind speed and direction
by the ordered pair (8, 22.5). You are no doubt familiar with the weather
man’s way of visualizing such a wind on the weather map using an arrow.
The wind arrow could also be described in terms of another pair of

parameters, namely by how much it extends to the East and to the North
respectively, that is by the pair (8 sin(22.5◦), 8 cos(22.5◦)) ≈ (3.06, 7.39).
We could say that 3.06 is the “amount of East”, and 7.39 is the “amount
of North” of the wind velocity, while we may say that the wind speed is 8,
where we think of the speed as the “absolute value” of the wind velocity
(3.06, 7.39). We thus think of the wind velocity as having both a direction,
and an “absolute value” or “length”. In this case, we view an ordered pair
(a1, a2) as a vector, rather than as a point, and we can then represent the
vector by an arrow.
We will soon see that ordered pairs viewed as vectors may be scaled

through multiplication by a real number and two vectors may also be added.
Addition of velocity vectors can be experienced on a bike where the wind

velocity and our own velocity relative to the ground add together to form
the total velocity relative to the surrounding atmosphere, which is reflected
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in the air resistance we feel. To compute the total flight time across the
Atlantic, the airplane pilot adds the velocity vector of the airplane versus
the atmosphere and the velocity of the jet-stream together to obtain the
velocity of the airplane vs the ground. We will return below to applications
of analytic geometry to mechanics, including these examples.

89.7 Ordered Pairs as Points or Vectors/Arrows

We have seen that we may interpret an ordered pair of real numbers (a1, a2)
as a point a in R2 with coordinates a1 and a2. We may write a = (a1, a2)
for short, and say that a1 is the first coordinate of the point a and a2 the
second coordinate of a.
We shall also interpret an ordered pair (a1, a2) ∈ R2 in a alternative

way, namely as an arrow with tail at the origin and the head at the point
a = (a1, a2), see Fig. 89.4. With the arrow interpretation of (a1, a2), we
refer to (a1, a2) as a vector. Again, we agree to write a = (a1, a2), and we
say that a1 and a2 are the components of the arrow/vector a = (a1, a2).
We say that a1 is the first component, occurring in the first place and a2
the second component occurring in the second place.

x1

x2

a1

a2

a

(a1, a2)

FIGURE 89.4. A vector with tail at the origin and the head at the point
a = (a1, a2)

We thus may interpret an ordered pair (a1, a2) in R2 in two ways: as
a point with coordinates (a1, a2), or as an arrow/vector with components
(a1, a2) starting at the origin and ending at the point (a1, a2). Evidently,
there is a very strong connection between the point and arrow interpreta-
tions, since the head of the arrow is located at the point (and assuming that
the arrow tail is at the origin). In applications, positions will be connected
to the point interpretation and velocities and forces will be connected to
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the arrow/vector interpretation. We will below generalize the arrow/vector
interpretation to include arrows with tails also at other points than the
origin. The context will indicate which interpretation is most appropriate
for a given situation. Often the interpretation of a = (a1, a2) as a point
or as an arrow, changes without notice. So we have to be flexible and use
whatever interpretation is most convenient or appropriate. We will need
even more fantasy when we go into applications to mechanics below.
Sometimes vectors like a = (a1, a2) are marked by boldface or an arrow,

like a or ~a or a, or double script or some other notation. We prefer not
to use this more elaborate notation, which makes the writing simpler, but
requires fantasy from the user to make the proper interpretation of for
example the letter a as a scalar number or vector a = (a1, a2) or something
else.

89.8 Vector Addition

We now proceed to define addition of vectors in R2, and multiplication of
vectors in R2 by real numbers. In this context, we interpret R2 as a set of
vectors represented by arrows with tail at the origin.
Given two vectors a = (a1, a2) and b = (b1, b2) in R2, we use a + b to

denote the vector (a1+b1, a2+b2) in R2 obtained by adding the components
separately.We call a+b the sum of a and b obtained through vector addition.
Thus if a = (a1, a2) and b = (b1, b2) are given vectors in R2, then

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2), (89.1)

which says that vector addition is carried out by adding components sepa-
rately. We note that a+b = b+a since a1+b1 = b1+a1 and a2+b2 = b2+a2.
We say that 0 = (0, 0) is the zero vector since a+0 = 0+a = a for any vector
a. Note the difference between the vector zero and its two zero components,
which are usually scalars.

Example 89.1. We have (2, 5)+(7, 1) = (9, 6) and (2.1, 5.3)+(7.6, 1.9)
= (9.7, 7.2).

89.9 Vector Addition and the Parallelogram Law

We may represent vector addition geometrically using the Parallelogram
Law as follows. The vector a+b corresponds to the arrow along the diagonal
in the parallelogram with two sides formed by the arrows a and b displayed
in Fig. 89.5. This follows by noting that the coordinates of the head of a+b
is obtained by adding the coordinates of the points a and b separately. This
is illustrated in Fig. 89.5.
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This definition of vector addition implies that we may reach the point
(a1 + b1, a2 + b2) by walking along arrows in two different ways. First,
we simply follow the arrow (a1 + b1, a2 + b2) to its head, corresponding
to walking along the diagonal of the parallelogram formed by a and b.
Secondly, we could follow the arrow a from the origin to its head at the
point (a1, a2) and then continue to the head of the arrow b̄ parallel to b and
of equal length as b with tail at (a1, a2). Alternative, we may follow the
arrow b from the origin to its head at the point (b1, b2) and then continue
to the head of the arrow ā parallel to a and of equal length as a with tail
at (b1, b2). The three different routes to the point (a1 + b1, a2 + b2) are
displayed in Fig. 89.5.

a1 b1

a

b

ā

b̄

a+b

FIGURE 89.5. Vector addition using the Parallelogram Law

We sum up in the following theorem:

Theorem 89.1 Adding two vectors a = (a1, a2) and b = (b1, b2) in R2 to
get the sum a + b = (a1 + b1, a2 + b2) corresponds to adding the arrows a
and b using the Parallelogram Law.

In particular, we can write a vector as the sum of its components in the
coordinate directions as follows, see Fig. 89.6.

(a1, a2) = (a1, 0) + (0, a2). (89.2)

89.10 Multiplication of a Vector by a Real Number

Given a real number λ and a vector a = (a1, a2) ∈ R2, we define a new
vector λa ∈ R2 by

λa = λ(a1, a2) = (λa1, λa2). (89.3)
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a

(a1, 0)

(0, a2)

FIGURE 89.6. A vector a represented as the sum of two vectors parallel with the
coordinate axes.

For example, 3 (1.1, 2.3) = (3.3, 6.9). We say that λa is obtained by multi-
plying the vector a = (a1, a2) by the real number λ and call this operation
multiplication of a vector by a scalar. Below we will meet other types of
multiplication connected with scalar product of vectors and vector product
of vectors, both being different from multiplication of a vector by a scalar.
We define −a = (−1)a = (−a1,−a2) and a− b = a+(−b). We note that

a− a = a+ (−a) = (a1 − a1, a2 − a2) = (0, 0) = 0. We give an example in
Fig. 89.7.

a

b

−b

0.7a− b

FIGURE 89.7. The sum 0.7a − b of the multiples 0.7a and (−1)b of a and b.



89.11 The Norm of a Vector 387

89.11 The Norm of a Vector

We define the Euclidean norm |a| of a vector a = (a1, a2) ∈ R2 as

|a| = (a21 + a22)
1/2. (89.4)

By Pythagoras theorem and Fig. 89.8, the Euclidean norm |a| of the vector
a = (a1, a2) is equal to the length of the hypothenuse of the right angled
triangle with sides a1 and a2. In other words, the Euclidean norm of the
vector a = (a1, a2) is equal to the distance from the origin to the point
a = (a1, a2), or simply the length of the arrow (a1, a2). We have |λa| = |λ||a|
if λ ∈ R and a ∈ R2; multiplying a vector by the real number λ changes the
norm of the vector by the factor |λ|. The zero vector (0, 0) has Euclidean
norm 0 and if a vector has Euclidean norm 0 then it must be the zero
vector.

a

a1

a2
(a1, a2)

|a| = (a21 + a22)
1/2

FIGURE 89.8. The norm |a| of a vector a = (a1, a2) is |a| = (a21 + a22)
1/2.

The Euclidean norm of a vector measures the “length” or “size” of the
vector. There are many possible ways to measure the “size” of a vector
corresponding to using different norms. We will meet several alternative
norms of a vector a = (a1, a2) below, such as |a1|+ |a2| or max(|a1|, |a2|).
We used |a1| + |a2| in the definition of Lipschitz continuity of f : R2 → R
above.

Example 89.2. If a = (3, 4) then |a| =
√
9 + 16 = 5, and |2a| = 10.

89.12 Polar Representation of a Vector

The points a = (a1, a2) in R2 with |a| = 1, corresponding to the vectors a
of Euclidean norm equal to 1, form a circle with radius equal to 1 centered
at the origin which we call the unit circle, see Fig. 89.9.
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Each point a on the unit circle can be written a = (cos(θ), sin(θ)) for
some angle θ, which we refer to as the angle of direction or direction of the
vector a. This follows from the definition of cos(θ) and sin(θ) in Chapter
Pythagoras and Euclid, see Fig. 89.9

1

1

a

x1

x2

a1

a2

θ

|a| = 1
a1 = cos(θ)
a2 = sin(θ)

FIGURE 89.9. Vectors of length one are given by (cos(θ), sin(θ))

Any vector a = (a1, a2) 6= (0, 0) can be expressed as

a = |a|â = r(cos(θ), sin(θ)), (89.5)

where r = |a| is the norm of a, â = (a1/|a|, a2/|a|) is a vector of length
one, and θ is the angle of direction of â, see Fig. 89.10. We call (89.5) the
polar representation of a. We call θ the direction of a and r the length of
a, see Fig. 89.10.

r

r

a

x1

x2

a1

a2

θ

|a| = r
a1 = r cos(θ)
a2 = r sin(θ)

FIGURE 89.10. Vectors of length r are given by
a = r(cos(θ), sin(θ)) = (r cos(θ), r sin(θ)) where r = |a|.
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We see that if b = λa, where λ > 0 and a 6= 0, then b has the same
direction as a. If λ < 0 then b has the opposite direction. In both cases,
the norms change with the factor |λ|; we have |b| = |λ||a|.
If b = λa, where λ 6= 0 and a 6= 0, then we say that the vector b is parallel

to a. Two parallel vectors have the same or opposite directions.

Example 89.3. We have

(1, 1) =
√
2(cos(45◦), sin(45◦)) and (−1, 1) =

√
2(cos(135◦), sin(135◦)).

89.13 Standard Basis Vectors

We refer to the vectors e1 = (1, 0) and e2 = (0, 1) as the standard basis
vectors in R2. A vector a = (a1, a2) can be expressed in term of the basis
vectors e1 and e2 as

a = a1e1 + a2e2,

since

a1e1 + a2e2 = a1(1, 0) + a2(0, 1) = (a1, 0) + (0, a2) = (a1, a2) = a.

a

e1

e2

(a1, a2)

a = a1e1 + a2e2

FIGURE 89.11. The standard basis vectors e1 and e2 and a linear combination
a = (a1, a2) = a1e1 + a2e2 of e1 and e2.

We say that a1e1 + a2e2 is a linear combination of e1 and e2 with coeffi-
cients a1 and a2. Any vector a = (a1, a2) in R2 can thus be expressed as a
linear combination of the basis vectors e1 and e2 with the coordinates a1
and a2 as coefficients, see Fig. 89.11.

Example 89.4. We have (3, 7) = 3 (1, 0) + 7 (0, 1) = 3e1 + 7e2.
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89.14 Scalar Product

While adding vectors to each other and scaling a vector by a real number
multiplication have natural interpretations, we shall now introduce a (first)
product of two vectors that is less motivated at first sight.
Given two vectors a = (a1, a2) and b = (b1, b2) in R2, we define their

scalar product a · b by
a · b = a1b1 + a2b2. (89.6)

We note, as the terminology suggests, that the scalar product a · b of two
vectors a and b in R2 is a scalar, that is a number in R, while the factors a
and b are vectors in R2. Note also that forming the scalar product of two
vectors involves not only multiplication, but also a summation!
We note the following connection between the scalar product and the

norm:

|a| = (a · a) 1
2 . (89.7)

Below we shall define another type of product of vectors where also the
product is a vector. We shall thus consider two different types of products
of two vectors, which we will refer to as the scalar product and the vector
product respectively. At first when limiting our study to vectors in R2, we
may also view the vector product to be a single real number. However,
the vector product in R3 is indeed a vector in R3. (Of course, there is also
the (trivial) “componentwise” vector product like MATLAB c© ’s a. ∗ b =
(a1b1, a2b2).)
We may view the scalar product as a function f : R2 × R2 → R where

f(a, b) = a · b. To each pair of vectors a ∈ R2 and b ∈ R2, we associate
the number f(a, b) = a · b ∈ R. Similarly we may view summation of two
vectors as a function f : R2×R2 → R2. Here, R2×R2 denotes the set of all
ordered pairs (a, b) of vectors a = (a1, a2) and b = (b1, b2) in R2 of course.

Example 89.5. We have (3, 7)·(5, 2) = 15+14 = 29, and (3, 7)·(3, 7) =
9 + 49 = 58 so that |(3, 7)| =

√
58.

89.15 Properties of the Scalar Product

The scalar product a · b in R2 is linear in each of the arguments a and b,
that is

a · (b+ c) = a · b+ a · c,
(a+ b) · c = a · c+ b · c,

(λa) · b = λ a · b, a · (λb) = λ a · b,
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for all a, b ∈ R2 and λ ∈ R. This follows directly from the definition (89.6).
For example, we have

a · (b+ c) = a1(b1 + c1) + a2(b2 + c2)

= a1b1 + a2b2 + a1c1 + a2c2 = a · b+ a · c.

Using the notation f(a, b) = a · b, the linearity properties may be written
as

f(a, b+ c) = f(a, b) + f(a, c), f(a+ b, c) = f(a, c) + f(b, c),

f(λa, b) = λf(a, b) f(a, λb) = λf(a, b).

We also say that the scalar product a · b = f(a, b) is a bilinear form on
R2 ×R2, that is a function from R2 ×R2 to R, since a · b = f(a, b) is a real
number for each pair of vectors a and b in R2 and a · b = f(a, b) is linear
both in the variable (or argument) a and the variable b. Furthermore, the
scalar product a · b = f(a, b) is symmetric in the sense that

a · b = b · a or f(a, b) = f(b, a),

and positive definite, that is

a · a = |a|2 > 0 for a 6= 0 = (0, 0).

We may summarize by saying that the scalar product a · b = f(a, b) is a
bilinear symmetric positive definite form on R2 × R2.
We notice that for the basis vectors e1 = (1, 0) and e2 = (0, 1), we have

e1 · e2 = 0, e1 · e1 = 1, e2 · e2 = 1.

Using these relations, we can compute the scalar product of two arbitrary
vectors a = (a1, a2) and b = (b1, b2) in R2 using the linearity as follows:

a · b = (a1e1 + a2e2) · (b1e1 + b2e2)

= a1b1 e1 · e1 + a1b2 e1 · e2 + a2b1 e2 · e1 + a2b2 e2 · e2 = a1b1 + a2b2.

We may thus define the scalar product by its action on the basis vectors
and then extend it to arbitrary vectors using the linearity in each variable.

89.16 Geometric Interpretation of the Scalar
Product

We shall now prove that the scalar product a · b of two vectors a and b in
R2 can be expressed as

a · b = |a||b| cos(θ), (89.8)
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where θ is the angle between the vectors a and b, see Fig. 89.12. This formula
has a geometric interpretation. Assuming that |θ| ≤ 90◦ so that cos(θ) is
positive, consider the right-angled triangle OAC shown in Fig. 89.12. The
length of the side OC is |a| cos(θ) and thus a · b is equal to the product
of the lengths of sides OC and OB. We will refer to OC as the projection
of OA onto OB, considered as vectors, and thus we may say that a · b is
equal to the product of the length of the projection of OA onto OB and
the length of OB. Because of the symmetry, we may also relate a · b to
the projection of OB onto OA, and conclude that a · b is also equal to the
product of the length of the projection of OB onto OA and the length of
OA.

a
b

O

A
B

C
θ

FIGURE 89.12. a · b = |a| |b| cos(θ).

To prove (89.8), we write using the polar representation

a = (a1, a2) = |a|(cos(α), sin(α)), b = (b1, b2) = |b|(cos(β), sin(β)),
where α is the angle of the direction of a and β is the angle of direction of b.
Using a basic trigonometric formula from Chapter Pythagoras and Euclid,
we see that

a · b = a1b1 + a2b2 = |a||b|(cos(α) cos(β) + sin(α) sin(β))

= |a||b| cos(α − β) = |a||b| cos(θ),
where θ = α − β is the angle between a and b. Note that since cos(θ) =
cos(−θ), we may compute the angle between a and b as α− β or β − α.

89.17 Orthogonality and Scalar Product

We say that two non-zero vectors a and b in R2 are geometrically orthogonal,
which we write as a ⊥ b, if the angle between the vectors is 90◦ or 270◦,
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see Fig. 89.13. The basis vectors e1 and e2 are examples of geometrically
orthogonal vectors, see Fig. 89.11.

a

b

FIGURE 89.13. Orthogonal vectors a and b.

Let a and b be two non-zero vectors making an angle θ. From (89.8), we
have a · b = |a||b| cos(θ) and thus a · b = 0 if and only if cos(θ) = 0, that is,
if and only if θ = 90◦ or θ = 270◦. We have now proved the following basic
result, which we state as a theorem.

Theorem 89.2 Two non-zero vectors a and b are geometrically orthogonal
if and only if a · b = 0.

This result fits our experience in the chapter Pythagoras and Euclid,
where we saw that the angle OAB formed by two line segments extend-
ing from the origin O out to the points A = (a1, a2) and B = (b1, b2)
respectively is a right angle if and only if

a1b1 + a2b2 = 0.

Summing up, we have translated the geometric condition of two vectors
a = (a1, a2) and b = (b1, b2) being geometrically orthogonal to the algebraic
condition a · b = a1b1 + a2b2 = 0.
Below, in a more general context we will turn this around and define two

vectors a and b to be orthogonal if a · b = 0, where a · b is the scalar product
of a and b. We have just seen that this algebraic definition of orthogo-
nality may be viewed as an extension of our intuitive idea of geometric
orthogonality in R2. This follows the basic principle of analytic geometry
of expressing geometrical relations in algebraic terms.
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89.18 Projection of a Vector onto a Vector

The concept of projection is basic in linear algebra. We will now meet this
concept for the first time and will use it in many different contexts below.

a
b

c

d

FIGURE 89.14. Orthogonal decomposition of b

Let a = (a1, a2) and b = (b1, b2) be two non-zero vectors and consider
the following fundamental problem: Find vectors c and d such that c is
parallel to a, d is orthogonal to a, and c+d = b, see Fig. 89.14. We refer to
b = c + d as an orthogonal decomposition of b. We refer to the vector c as
the projection of b in the direction of a, or the projection of b onto a, and
we use the notation Pa(b) = c. We can then express the decomposition of b
as b = Pa(b)+ (b−Pa(b)), with c = Pa(b) and d = b−Pa(b). The following
properties of the decomposition are immediate:

Pa(b) = λa for some λ ∈ R,

(b − Pa(b)) · a = 0.

Inserting the first equation into the second, we get the equation (b−λa)·a =
0 in λ, which we solve to get

λ =
b · a
a · a =

b · a
|a|2 ,

and conclude that the projection Pa(b) of b onto a is given by

Pa(b) =
b · a
|a|2 a. (89.9)

We compute the length of Pa(b) as

|Pa(b)| =
|a · b|
|a|2 |a| = |a| |b| | cos(θ)|

|a| = |b|| cos(θ)|, (89.10)
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a
b

θ Pa(b)

|Pa(b)| = |b| | cos(θ)| = |b · a|/|a|

FIGURE 89.15. The projection Pa(b) of b onto a.

where θ is the angle between a and b, and we use (89.8). We note that

|a · b| = |a| |Pb|, (89.11)

which conforms with our experience with the scalar product in Section
89.16, see also Fig. 20.15.
We can view the projection Pa(b) of the vector b onto the vector a as a

transformation of R2 into R2: given the vector b ∈ R2, we define the vector
Pa(b) ∈ R2 by the formula

Pa(b) =
b · a
|a|2 a. (89.12)

We write for short Pb = Pa(b), suppressing the dependence on a and the
parenthesis, and note that the mapping P : R2 → R2 defined by x → Px
is linear. We have

P (x+ y) = Px+ Py, P (λx) = λPx, (89.13)

for all x and y in R2 and λ ∈ R (where we changed name of the independent
variable from b to x or y), see Fig. 89.16.
We note that P (Px) = Px for all x ∈ R2. This could also be expressed

as P 2 = P , which is a characteristic property of a projection. Projecting a
second time doesn’t change anything!
We sum up:

Theorem 89.3 The projection x → Px = Pa(x) onto a given nonzero
vector a ∈ R2 is a linear mapping P : R2 → R2 with the property that
PP = P .

Example 89.6. If a = (1, 3) and b = (5, 2), then Pa(b) =
(1,3)·(5,2)

1+32 (1, 3)
= (1.1, 3.3).
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a

x

λx

Px

P (λx) = λPx

FIGURE 89.16. P (λx) = λPx.

89.19 Rotation by 90◦

We saw above that to find the orthogonal decomposition b = c + d with
c parallel to a given vector a, it suffices to find c because d = b − c. Al-
ternatively, we could seek to first compute d from the requirement that it
should be orthogonal to a. We are thus led to the problem of finding a
direction orthogonal to a given direction, that is the problem of rotating a
given vector by 90◦, which we now address.
Given a vector a = (a1, a2) in R2, a quick computation shows that the

vector (−a2, a1) has the desired property, because computing its scalar
product with a = (a1, a2) gives

(−a2, a1) · (a1, a2) = (−a2)a1 + a1a2 = 0,

and thus (−a2, a1) is orthogonal to (a1, a2). Further, it follows directly that
the vector (−a2, a1) has the same length as a.
Assuming that a = |a|(cos(α), sin(α)) and using the facts that − sin(α) =

cos(α+90◦) and cos(α) = sin(α+90◦), we see that the vector (−a2, a1) =
|a|(cos(α + 90◦), sin(α + 90◦)) is obtained by rotating the vector (a1, a2)
counter-clockwise 90◦, see Fig. 89.17. Similarly, the vector (a2,−a1) =
−(−a2, a1) is obtained by clockwise rotation of (a1, a2) by 90◦.
We may view the counter clockwise rotation of a vector by 90◦ as a

transformation of vectors: given a vector a = (a1, a2), we obtain another
vector a⊥ = f(a) through the formula

a⊥ = f(a) = (−a2, a1),
where we denoted the image of the vector a by both a⊥ and f(a). The
transformation a→ a⊥ = f(a) defines a linear function f : R2 → R2 since

f(a+ b) = (−(a2 + b2), a1 + b1) = (−a2, a1) + (−b2, b1) = f(a) + f(b),

f(λa) = (−λa2, λa1) = λ(−a2, a1) = λf(a).
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(a1, a2)

(−a2, a1)

FIGURE 89.17. Counter-clockwise rotation of a = (a1, a2) by 90◦.

To specify the action of a→ a⊥ = f(a) on an arbitrary vector a, it suffices
to specify the action on the basis vectors e1 and e2:

e⊥1 = f(e1) = (0, 1) = e2, e⊥2 = f(e2) = (−1, 0) = −e1,

since by linearity, we may compute

a⊥ = f(a) = f(a1e1 + a2e2) = a1f(e1) + a2f(e2)

= a1(0, 1) + a2(−1, 0) = (−a2, a1).

Example 89.7. Rotating the vector (1, 2) the angle 90◦ counter-
clockwise, we get the vector (−2, 1).

89.20 Rotation by an Arbitrary Angle θ

We now generalize to counter-clockwise rotation by an arbitrary angle θ.
Let a = |a|(cos(α), sin(α)) in R2 be a given vector. We seek a vector Rθ(a)
in R2 of equal length obtained by rotating a the angle θ counter-clockwise.
By the definition of the vector Rθ(a) as the vector a = |a|(cos(α), sin(α))
rotated by θ, we have

Rθ(a) = |a|(cos(α + θ), sin(α+ θ)).

Using the standard trigonometric formulas from Chapter Pythagoras and
Euclid,

cos(α+ θ) = cos(α) cos(θ)− sin(α) sin(θ),

sin(α+ θ) = sin(α) cos(θ) + cos(α) sin(θ),
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we can write the formula for the rotated vector Rθ(a) as

Rθ(a) = (a1 cos(θ)− a2 sin(θ), a1 sin(θ) + a2 cos(θ)). (89.14)

We may view the counter-clockwise rotation of a vector by the angle θ as
a transformation of vectors: given a vector a = (a1, a2), we obtain another
vector Rθ(a) by rotation by θ according to the above formula. Of course,
we may view this transformation as a function Rθ : R2 → R2. It is easy
to verify that this function is linear. To specify the action of Rθ on an
arbitrary vector a, it suffices to specify the action on the basis vectors e1
and e2,

Rθ(e1) = (cos(θ), sin(θ)), Rθ(e2) = (− sin(θ), cos(θ)).

The formula (89.14) may then be obtained using linearity,

Rθ(a) = Rθ(a1e1 + a2e2) = a1Rθ(e1) + a2Rθ(e2)

= a1(cos(θ), sin(θ)) + a2(− sin(θ), cos(θ))

= (a1 cos(θ)− a2 sin(θ), a1 sin(θ) + a2 cos(θ)).

Example 89.8. Rotating the vector (1, 2) the angle 30◦, we obtain the

vector (cos(30◦)− 2 sin(30◦), sin(30◦) + 2 cos(30◦)) = (
√
3
2 − 1, 12 +

√
3).

89.21 Rotation by θ Again!

We present yet another way to arrive at (89.14) based on the idea that the
transformation Rθ : R2 → R2 of counter-clockwise rotation by θ is defined
by the following properties,

(i) |Rθ(a)| = |a|, and (ii) Rθ(a) · a = cos(θ)|a|2. (89.15)

Property (i) says that rotation preserves the length and (ii) connects the
change of direction to the scalar product. We now seek to determine Rθ(a)
from (i) and (ii). Given a ∈ R2, we set a⊥ = (−a2, a1) and express Rθ(a) as
Rθ(a) = αa+βa⊥ with appropriate real numbers α and β. Taking the scalar
product with a and using a · a⊥ = 0, we find from (ii) that α = cos(θ).
Next, (i) states that |a|2 = |Rθ(a)|2 = (α2 + β2)|a|2, and we conclude
that β = ± sin(θ) and thus finally β = sin(θ) using the counter-clockwise
orientation. We conclude that

Rθ(a) = cos(θ)a+ sin(θ)a⊥ = (a1 cos(θ)− a2 sin(θ), a1 sin(θ) + a2 cos(θ)),

and we have recovered (89.14).
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89.22 Rotating a Coordinate System

Suppose we rotate the standard basis vectors e1 = (1, 0) and e2 = (0, 1)
counter-clockwise the angle θ to get the new vectors ê1 = cos(θ)e1+sin(θ)e2
and ê2 = − sin(θ)e1 +cos(θ)e2. We may use ê1 and ê2 as an alternative co-
ordinate system, and we may seek the connection between the coordinates
of a given vector (or point) in the old and new coordinate system. Letting
(a1, a2) be the coordinates in the standard basis e1 and e2, and (â1, â2) the
coordinates in the new basis ê1 and ê2, we have

a1e1 + a2e2 = â1ê1 + â2ê2

= â1(cos(θ)e1 + sin(θ)e2) + â2(− sin(θ)e1 + cos(θ)e2)

= (â1 cos(θ) − â2 sin(θ))e1 + (â1 sin(θ) + â2 cos(θ))e2,

so the uniqueness of coordinates with respect to e1 and e2 implies

a1 = cos(θ)â1 − sin(θ)â2,

a2 = sin(θ)â1 + cos(θ)â2.
(89.16)

Since e1 and e2 are obtained by rotating ê1 and ê2 clockwise by the angle
θ,

â1 = cos(θ)a1 + sin(θ)a2,

â2 = − sin(θ)a1 + cos(θ)a2.
(89.17)

The connection between the coordinates with respect to the two coordinate
systems is thus given by (89.16) and (89.17).

Example 89.9. Rotating 45◦ counter-clockwise gives the following
relation between new and old coordinates

â1 =
1√
2
(a1 + a2), â2 =

1√
2
(−a1 + a2).

89.23 Vector Product

We now define the vector product a × b of two vectors a = (a1, a2) and
b = (b1, b2) in R2 by the formula

a× b = a1b2 − a2b1. (89.18)

The vector product a× b is also referred to as the cross product because of
the notation used (don’t mix up with the “×” in the “product set” R2×R2

which has a different meaning). The vector product or cross product may
be viewed as a function R2 × R2 → R. This function is bilinear as is easy
to verify, and anti-symmetric, that is

a× b = −b× a, (89.19)
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which is a surprising property for a product.
Since the vector product is bilinear, we can specify the action of the

vector product on two arbitrary vectors a and b by specifying the action
on the basis vectors,

e1 × e1 = 0, e2 × e2 = 0, e1 × e2 = 1, e2 × e1 = −1. (89.20)

Using these relations,

a×b = (a1e1+a2e2)×(b1e1+b2e2) = a1b2e1×e2+a2b1e2×e1 = a1b2−a2b1e2.

We next show that the properties of bilinearity and anti-symmetry in
fact determine the vector product in R2 up to a constant. First note that
anti-symmetry and bilinearity imply

e1 × e1 + e1 × e2 = e1 × (e1 + e2) = −(e1 + e2)× e1

= −e1 × e1 − e2 × e1.

Since e1 × e2 = −e2 × e1, we have e1 × e1 = 0. Similarly, we see that
e2× e2 = 0. We conclude that the action of the vector product on the basis
vectors is indeed specified according to (89.20) up to a constant.
We next observe that

a× b = (−a2, a1) · (b1, b2) = a1b2 − a2b1,

which gives a connection between the vector product a× b and the scalar
product a⊥ ·b with the 90◦ counter-clockwise rotated vector a⊥ = (−a2, a1).
We conclude that the vector product a × b of two nonzero vectors a and
b is zero if and only if a and b are parallel. We state this basic result as a
theorem.

Theorem 89.4 Two nonzero vectors a and b are parallel if and only if
a× b = 0.

We can thus check if two non-zero vectors a and b are parallel by checking
if a× b = 0. This is another example of translating a geometric condition
(two vectors a and b being parallel) into an algebraic condition (a× b = 0).
We now squeeze more information from the relation a×b = a⊥·b assuming

that the angle between a and b is θ and thus the angle between a⊥ and b
is θ + 90◦:

|a× b| = |a⊥ · b| = |a⊥||b| | cos(θ + π

2
)|

= |a| |b| | sin(θ)|,

where we use |a⊥| = |a| and | cos(θ ± π/2)| = | sin(θ)|. Therefore,

|a× b| = |a||b|| sin(θ)|, (89.21)
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a

b
θ

(−a2, a1)

FIGURE 89.18. Why |a × b| = |a| |b| | sin(θ)|.

where θ = α− β is the angle between a and b, see Fig. 89.18.
We can make the formula (89.21) more precise by removing the absolute

values around a×b and the sine factor if we adopt a suitable sign convention.
This leads to the following more developed version of (89.21), which we
state as a theorem, see Fig. 89.19.

Theorem 89.5 For two non-zero vectors a and b,

a× b = |a||b| sin(θ), (89.22)

where θ is the angle between a and b counted positive counter-clockwise and
negative clockwise starting from a.

a

b
θ

FIGURE 89.19. a × b = |a| |b| sin(θ) is negative here because the angle θ is
negative.
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89.24 The Area of a Triangle with a Corner at the
Origin

Consider a triangle OAB with corners at the origin O and the points A =
(a1, a2) and B = (b1, b2) formed by the vectors a = (a1, a2) and b = (b1, b2),
see Fig. 89.20. We say that the triangle OAB is spanned by the vectors a
and b. We are familiar with the formula that states that the area of this
triangle can be computed as the base |a| times the height |b|| sin(θ)| times
the factor 1

2 , where θ is the angle between a and b, see Fig. 89.20. Recalling
(89.21), we conclude

Theorem 89.6

Area(OAB) =
1

2
|a| |b| | sin(θ)| = 1

2
|a× b|.

θ
a

b

A

B

O

|b| sin(θ)

FIGURE 89.20. The vectors a and b span a triangle with area 1
2
|a× b|.

The area of the triangle OAB can be computed using the vector product
in R2.

89.25 The Area of a General Triangle

Consider a triangle CAB with corners at the points C = (c1, c2), A =
(a1, a2) and B = (b1, b2). We consider the problem of computing the area
of the triangle CAB. We solved this problem above in the case C = O
where O is the origin. We may reduce the present case to that case by
changing coordinate system as follows. Consider a new coordinate system
with origin at C = (c1, c2) and with a x̂1-axis parallel to the x1-axis and a
x̂2-axis parallel to the x2-axis, see Fig. 89.21.
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O
x1

x2

x̂1

x̂2

a−c

b−c

C = (c1, c2)

A = (a1, a2)

B = (b1, b2)

θ

FIGURE 89.21. Vectors a−c and b−c span triangle with area 1
2
|(a−c)× (b−c)|.

Letting (â1, â2) denote the coordinates with respect to the new coordi-
nate system, the new are related to the old coordinates by

â1 = a1 − c1, â2 = a2 − c2.

The coordinates of the points A, B and C in the new coordinate system
are thus (a1− c1, a2− c2) = a− c, (b1− c1, b2− c2) = b− c and (0, 0). Using
the result from the previous section, we find the area of the triangle CAB
by the formula

Area(CAB) =
1

2
|(a− c)× (b − c)|. (89.23)

Example 89.10. The area of the triangle with coordinates at A =
(2, 3), B = (−2, 2) and C = (1, 1), is given by Area(CAB) = 1

2 |(1, 2)×
(−3, 1)| = 7

2 .

89.26 The Area of a Parallelogram Spanned by
Two Vectors

The area of the parallelogram spanned by a and b, as shown in Fig. 89.22,
is equal to |a × b| since the area of the parallelogram is twice the area of
the triangle spanned by a and b. Denoting the area of the parallelogram
spanned by the vectors a and b by V (a, b), we thus have the formula

V (a, b) = |a× b|. (89.24)

This is a fundamental formula which has important generalizations to R3

and Rn.
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a

b

θ

|b| sin(θ)

FIGURE 89.22. The vectors a and b span a rectangle with area
|a× b| = |a| |b| sin(θ)|.

89.27 Straight Lines

The points x = (x1, x2) in the plane R2 satisfying a relation of the form

n1x1 + n2x2 = n · x = 0, (89.25)

where n = (n1, n2) ∈ R2 is a given non-zero vector, form a straight line
through the origin that is orthogonal to (n1, n2), see Fig. 89.23. We say
that (n1, n2) is a normal to the line. We can represent the points x ∈ R2

on the line in the form
x = sn⊥, s ∈ R,

where n⊥ = (−n2, n1) is orthogonal to n, see Fig. 89.23. We state this
insight as a theorem because of its importance.

Theorem 89.7 A line in R2 passing through the origin with normal n ∈
R2, may be expressed as either the points x ∈ R2 satisfying n · x = 0, or
the set of points of the form x = sn⊥ with n⊥ ∈ R2 orthogonal to n and
s ∈ R.

Similarly, the set of points (x1, x2) in R2 such that

n1x1 + n2x2 = d, (89.26)

where n = (n1, n2) ∈ R2 is a given non-zero vector and d is a given constant,
represents a straight line that does not pass through the origin if d 6= 0.
We see that n is a normal to the line, since if x and x̂ are two points on the
line then (x− x̂) · n = d− d = 0, see Fig. 89.24. We may define the line as
the points x = (x1, x2) in R2, such that the projection n·x

|n|2n of the vector

x = (x1, x2) in the direction of n is equal to d
|n|2n. To see this, we use the

definition of the projection and the fact n · x = d.
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x

n n

x1 x2

x2x2

n⊥ x = sn⊥

FIGURE 89.23. Vectors x = sa with b orthogonal to a given vector n generate a
line through the origin with normal a.

The line in Fig. 89.23 can also be represented as the set of points

x = x̂+ sn⊥ s ∈ R,

where x̂ is any point on the line (thus satisfying n · x̂ = d). This is because
any point x of the form x = sn⊥ + x̂ evidently satisfies n · x = n · x̂ = d.
We sum up in the following theorem.

Theorem 89.8 The set of points x ∈ R2 such that n ·x = d, where n ∈ R2

is a given non-zero vector and d is given constant, represents a straight line
in R2. The line can also be expressed in the form x = x̂ + sn⊥ for s ∈ R,
where x̂ ∈ R2 is a point on the line.

O x1

x2

n

n⊥

x̂

x = (x1, x2)

FIGURE 89.24. The line through the point x̂ with normal n generated by direc-
tional vector a.
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Example 89.11. The line x1+2x2 = 3 can alternatively be expressed
as the set of points x = (1, 1) + s(−2, 1) with s ∈ R.

89.28 Projection of a Point onto a Line

Let n · x = d represent a line in R2 and let b be a point in R2 that does
not lie on the line. We consider the problem of finding the point Pb on the
line which is closest to b, see Fig. 89.27. This is called the projection of the
point b onto the line. Equivalently, we seek a point Pb on the line such that
b− Pb is orthogonal to the line, that is we seek a point Pb such that

n · Pb = d (Pb is a point on the line),

b− Pb is parallel to the normal n, (b − Pb = λn, for some λ ∈ R).

We conclude that Pb = b − λn and the equation n · Pb = d thus gives
n · (b− λn) = d, that is λ = b·n−d

|n|2 and so

Pb = b− b · n− d

|n|2 n. (89.27)

If d = 0, that is the line n · x = d = 0 passes through the origin, then (see
Problem 89.26)

Pb = b− b · n
|n|2 n. (89.28)

89.29 When Are Two Lines Parallel?

Let
a11x1 + a12x2 = b1,
a21x1 + a22x2 = b2,

be two straight lines in R2 with normals (a11, a12) and (a21, a22). How do
we know if the lines are parallel? Of course, the lines are parallel if and
only if their normals are parallel. From above, we know the normals are
parallel if and only if

(a11, a12)× (a21, a22) = a11a22 − a12a21 = 0,

and consequently non-parallel (and consequently intersecting at some
point) if and only if

(a11, a12)× (a21, a22) = a11a22 − a12a21 6= 0, (89.29)

Example 89.12. The two lines 2x1 + 3x2 = 1 and 3x1 + 4x2 = 1 are
non-parallel because 2 · 4− 3 · 3 = 8− 9 = −1 6= 0.
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89.30 A System of Two Linear Equations in Two
Unknowns

If a11x1 + a12x2 = b1 and a21x1 + a22x2 = b2 are two straight lines in R2

with normals (a11, a12) and (a21, a22), then their intersection is determined
by the system of linear equations

a11x1 + a12x2 = b1,
a21x1 + a22x2 = b2,

(89.30)

which says that we seek a point (x1, x2) ∈ R2 that lies on both lines. This
is a system of two linear equations in two unknowns x1 and x2, or a 2× 2-
system. The numbers aij , i, j = 1, 2 are the coefficients of the system and
the numbers bi, i = 1, 2, represent the given right hand side.
If the normals (a11, a12) and (a21, a22) are not parallel or by (89.29),

a11a22 − a12a21 6= 0, then the lines must intersect and thus the system
(89.30) should have a unique solution (x1, x2). To determine x1, we multiply
the first equation by a22 to get

a11a22x1 + a12a22x2 = b1a22.

We then multiply the second equation by a12, to get

a21a12x1 + a22a12x2 = b2a12.

Subtracting the two equations the x2-terms cancel and we get the following
equation containing only the unknown x1,

a11a22x1 − a21a12x1 = b1a22 − b2a12.

Solving for x1, we get

x1 = (a22b1 − a12b2)(a11a22 − a12a21)
−1.

Similarly to determine x2, we multiply the first equation by a21 and sub-
tract the second equation multiplied by a11, which eliminates a1. Alto-
gether, we obtain the solution formula

x1 = (a22b1 − a12b2)(a11a22 − a12a21)
−1, (89.31a)

x2 = (a11b2 − a21b1)(a11a22 − a12a21)
−1. (89.31b)

This formula gives the unique solution of (89.30) under the condition
a11a22 − a12a21 6= 0.
We can derive the solution formula (89.31) in a different way, still assum-

ing that a11a22 − a12a21 6= 0. We define a1 = (a11, a21) and a2 = (a12, a22),
noting carefully that here a1 and a2 denote vectors and that a1 × a2 =
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a11a22 − a12a21 6= 0, and rewrite the two equations of the system (89.30)
in vector form as

x1a1 + x2a2 = b. (89.32)

Taking the vector product of this equation with a2 and a1 and using a2 ×
a2 = a1 × a1 = 0,

x1a1 × a2 = b× a2, x2a2 × a1 = b× a1.

Since a1 × a2 6= 0,

x1 =
b× a2
a1 × a2

, x2 =
b× a1
a2 × a1

= − b× a1
a1 × a2

, (89.33)

which agrees with the formula (89.31) derived above.
We conclude this section by discussing the case when a1× a2 = a11a22−

a12a21 = 0, that is the case when a1 and a2 are parallel or equivalently the
two lines are parallel. In this case, a2 = λa1 for some λ ∈ R and the system
(89.30) has a solution if and only if b2 = λb1, since then the second equation
results from multiplying the first by λ. In this case there are infinitely many
solutions since the two lines coincide. In particular if we choose b1 = b2 = 0,
then the solutions consist of all (x1, x2) such that a11x1+a12x2 = 0, which
defines a straight line through the origin. On the other hand if b2 6= λb1,
then the two equations represent two different parallel lines that do not
intersect and there is no solution to the system (89.30).
We summarize our experience from this section on systems of 2 linear

equations in 2 unknowns as follows:

Theorem 89.9 The system of linear equations x1a1 + x2a2 = b, where
a1, a2 and b are given vectors in R2, has a unique solution (x1, x2) given by
(89.33) if a1 × a2 6= 0. In the case a1 × a2 = 0, the system has no solution
or infinitely many solutions, depending on b.

Below we shall generalize this result to systems of n linear equations in n
unknowns, which represents one of the most basic results of linear algebra.

Example 89.13. The solution to the system

x1 + 2x2 = 3,
4x1 + 5x2 = 6,

is given by

x1 =
(3, 6)× (2, 5)

(1, 4)× (2, 5)
=

3

−3
= −1, x2 = − (3, 6)× (1, 4)

(1, 4)× (2, 5)
= − 6

−3
= 2.
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89.31 Linear Independence and Basis

We saw above that the system (89.30) can be written in vector form as

x1a1 + x2a2 = b,

where b = (b1, b2), a1 = (a11, a21) and a2 = (a12, a22) are all vectors in R2,
and x1 and x2 real numbers. We say that

x1a1 + x2a2,

is a linear combination of the vectors a1 and a2, or a linear combination
of the set of vectors {a1, a2}, with the coefficients x1 and x2 being real
numbers. The system of equations (89.30) expresses the right hand side
vector b as a linear combination of the set of vectors {a1, a2} with the
coefficients x1 and x2. We refer to x1 and x2 as the coordinates of b with
respect to the set of vectors {a1, a2}, which we may write as an ordered
pair (x1, x2).
The solution formula (89.33) thus states that if a1 × a2 6= 0, then an

arbitrary vector b in R2 can be expressed as a linear combination of the
set of vectors {a1, a2} with the coefficients x1 and x2 being uniquely deter-
mined. This means that if a1 × a2 6= 0, then the the set of vectors {a1, a2}
may serve as a basis for R2, in the sense that each vector b in R2 may be
uniquely expressed as a linear combination b = x1a1+x2a2 of the set of vec-
tors {a1, a2}. We say that the ordered pair (x1, x2) are the coordinates of b
with respect to the basis {a1, a2}. The system of equations b = x1a1+x2a2
thus give the coupling between the coordinates (b1, b2) of the vector b in
the standard basis, and the coordinates (x1, x2) with respect to the basis
{a1, a2}. In particular, if b = 0 then x1 = 0 and x2 = 0.
Conversely if a1×a2 = 0, that is a1 and a2 are parallel, then any nonzero

vector b orthogonal to a1 is also orthogonal to a2 and b cannot be expressed
as b = x1a1 + x2a2. Thus, if a1 × a2 = 0 then {a1, a2} cannot serve as a
basis. We have now proved the following basic theorem:

Theorem 89.10 A set {a1, a2} of two non-zero vectors a1 and a2 may
serve as a basis for R2 if and only if if a1 × a2 6= 0. The coordinates
(b1, b2) of a vector b in the standard basis and the coordinates (x1, x2) of b
with respect to a basis {a1, a2} are related by the system of linear equations
b = x1a1 + x2a2.

Example 89.14. The two vectors a1 = (1, 2) and a2 = (2, 1) (expressed
in the standard basis) form a basis for R2 since a1 × a2 = 1 − 4 = −3.
Let b = (5, 4) in the standard basis. To express b in the basis {a1, a2},
we seek real numbers x1 and x2 such that b = x1a1 + x2a2, and using
the solution formula (89.33) we find that x1 = 1 and x2 = 2. The
coordinates of b with respect to the basis {a1, a2} are thus (1, 2), while
the coordinates of b with respect to the standard basis are (5, 4).
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We next introduce the concept of linear independence, which will play
an important role below. We say that a set {a1, a2} of two non-zero vectors
a1 and a2 two non-zero vectors a1 and a2 in R2 is linearly independent if
the system of equations

x1a1 + x2a2 = 0

has the unique solution x1 = x2 = 0. We just saw that if a1 × a2 6= 0, then
a1 and a2 are linearly independent (because b = (0, 0) implies x1 = x2 = 0).
Conversely if a1 × a2 = 0, then a1 and a2 are parallel so that a1 = λa2 for
some λ 6= 0, and then there are many possible choices of x1 and x2, not
both equal to zero, such that x1a1 + x2a2 = 0, for example x1 = −1 and
x2 = λ. We have thus proved:

Theorem 89.11 The set {a1, a2} of non-zero vectors a1 and a2 is linearly
independent if and only if a1 × a2 6= 0.

x1

x2

c1
c2

c = 0.73c1 + 1.7c2

FIGURE 89.25. Linear combination c of two linearly independent vectors c1 and
c2

89.32 The Connection to Calculus in One Variable

We have discussed Calculus of real-valued functions y = f(x) of one real
variable x ∈ R, and we have used a coordinate system in R2 to plot graphs
of functions y = f(x) with x and y representing the two coordinate axis.
Alternatively, we may specify the graph as the set of points (x1, x2) ∈ R2,
consisting of pairs (x1, x2) of real numbers x1 and x2, such that x2 = f(x1)
or x2 − f(x1) = 0 with x1 representing x and x2 representing y. We refer
to the ordered pair (x1, x2) ∈ R2 as a vector x = (x1, x2) with components
x1 and x2.
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We have also discussed properties of linear functions f(x) = ax + b,
where a and b are real constants, the graphs of which are straight lines
x2 = ax1+ b in R2. More generally, a straight line in R2 is the set of points
(x1, x2) ∈ R2 such that x1a1 + x2a2 = b, where the a1, a2 and b are real
constants, with a1 6= 0 and/or a2 6= 0. We have noticed that (a1, a2) may
be viewed as a direction in R2 that is perpendicular or normal to the line
a1x1 + a2x2 = b, and that (b/a1, 0) or (0, b/a2) are the points where the
line intersects the x1-axis and the x2-axis respectively.

89.33 Linear Mappings f : R2 → R

A function f : R2 → R is linear if for any x = (x1, x2) and y = (y1, y2) in
R2 and any λ in R,

f(x+ y) = f(x) + f(y) and f(λx) = λf(x). (89.34)

Setting c1 = f(e1) ∈ R and c2 = f(e2) ∈ R, where e1 = (1, 0) and e2 =
(0, 1) are the standard basis vectors in R2, we can represent f : R2 → R as
follows:

f(x) = x1c1 + x2c2 = c1x1 + c2x2,

where x = (x1, x2) ∈ R2. We also refer to a linear function as a linear
mapping.

Example 89.15. The function f(x1, x2) = x1 + 3x2 defines a linear
mapping f : R2 → R.

89.34 Linear Mappings f : R2 → R2

A function f : R2 → R2 taking values f(x) = (f1(x), f2(x)) ∈ R2 is linear
if the component functions f1 : R2 → R and f2 : R2 → R are linear. Setting
a11 = f1(e1), a12 = f1(e2), a21 = f2(e1), a22 = f2(e2), we can represent
f : R2 → R2 as f(x) = (f1(x), f2(x)), where

f1(x) = a11x1 + a12x2, (89.35a)

f2(x) = a21x1 + a22x2, (89.35b)

and the aij are real numbers.
A linear mapping f : R2 → R2 maps (parallel) lines onto (parallel) lines

since for x = x̂+ sb and f linear, we have f(x) = f(x̂+ sb) = f(x̂)+ sf(b),
see Fig. 89.26.

Example 89.16. The function f(x1, x2) = (x1+3x2, 2x1−x3) defines
a linear mapping R2 → R2.
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x1

x2

y1

y2

x = s b

x = x̂+ s b

y = sf(b)

y = f(x̂) + sf(b)

FIGURE 89.26. A linear mapping f : R2 → R2 maps (parallel) lines to (parallel)
lines, and consequently parallelograms to parallelograms.

89.35 Linear Mappings and Linear Systems of
Equations

Let a linear mapping f : R2 → R2 and a vector b ∈ R2 be given. We
consider the problem of finding x ∈ R2 such that

f(x) = b.

Assuming f(x) is represented by (89.35), we seek x ∈ R2 satisfying the
2× 2 linear system of equations

a11x1 + a12x2 = b1, (89.36a)

a21x1 + a22x2 = b2, (89.36b)

where the coefficients aij and the coordinates bi of the right hand side are
given.

89.36 A First Encounter with Matrices

We write the left hand side of (89.36) as follows:
(
a11 a12
a21 a22

)(
x1
x2

)
=

(
a11x1 + a12x2
a21x1 + a22x2

)
. (89.37)

The quadratic array (
a11 a12
a21 a22

)

is called a 2× 2 matrix. We can view this matrix to consist of two rows
(
a11 a12

)
and

(
a21 a22,

)
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or two columns (
a11
a21

)
and

(
a12
a22

)
.

Each row may be viewed as a 1× 2 matrix with 1 horizontal array with 2
elements and each column may be viewed as a 2× 1 matrix with 1 vertical
array with 2 elements. In particular, the array

(
x1
x2

)

may be viewed as a 2 × 1 matrix. We also refer to a 2 × 1 matrix as a
2-column vector, and a 1× 2 matrix as a 2-row vector. Writing x = (x1, x2)
we may view x as a 1 × 2 matrix or 2-row vector. Using matrix notation,
it is most natural to view x = (x1, x2) as a 2-column vector.
The expression (89.37) defines the product of a 2× 2 matrix and a 2× 1

matrix or a 2-column vector. The product can be interpreted as
(
a11 a12
a21 a22

)(
x1
x2

)
=

(
c1 · x
c2 · x

)
(89.38)

where we interpret r1 = (a11, a12) and r2 = (a21, a22) as the two ordered
pairs corresponding to the two rows of the matrix and x is the ordered pair
(x1, x2). The matrix-vector product is given by

(
a11 a12
a21 a22

)(
x1
x2

)
(89.39)

i.e. by taking the scalar product of the ordered pairs r1 and r2 corresponding
to the 2-row vectors of the matrix with the order pair corresponding to the

2-column vector x =

(
x1
x2

)
.

Writing

A =

(
a11 a12
a21 a22

)
and x =

(
x1
x2

)
and b =

(
b1
b2

)
, (89.40)

we can phrase the system of equations (89.36) in condensed form as the
following matrix equation:

Ax = b, or

(
a11 a12
a21 a22

)(
x1
x2

)
=

(
b1
b2

)
.

We have now got a first glimpse of matrices including the basic operation
of multiplication of a 2× 2-matrix with a 2× 1 matrix or 2-column vector.
Below we will generalize to a calculus for matrices including addition of
matrices, multiplication of matrices with a real number, and multiplication
of matrices. We will also discover a form of matrix division referred to
as inversion of matrices allowing us to express the solution of the system
Ax = b as x = A−1b, under the condition that the columns (or equivalently,
the rows) of A are linearly independent.
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89.37 First Applications of Matrix Notation

To show the usefulness of the matrix notation just introduced, we rewrite
some of the linear systems of equations and transformations which we have
met above.

Rotation by θ

The mapping Rθ : R2 → R2 corresponding to rotation of a vector by an
angle θ is given by (89.14), that is

Rθ(x) = (x1 cos(θ)− x2 sin(θ), x1 sin(θ) + x2 cos(θ)). (89.41)

Using matrix notation, we can write Rθ(x) as follows

Rθ(x) = Ax =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
x1
x2

)
,

where A thus is the 2× 2 matrix

A =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. (89.42)

Projection Onto a Vector a

The projection Pa(x) = x·a
|a|2 a given by (89.9) of a vector x ∈ R2 onto a

given vector a ∈ R2 can be expressed in matrix form as follows:

Pa(x) = Ax =

(
a11 a12
a21 a22

)(
x1
x2

)
,

where A is the 2× 2 matrix

A =

(
a21
|a|2

a1a2
|a|2

a1a2
|a|2

a22
|a|2

)
. (89.43)

Change of Basis

The linear system (89.17) describing a change of basis can be written in
matrix form as

(
x̂1
x̂2

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
x1
x2

)
,

or in condensed from as x̂ = Ax, where A is the matrix

A =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)

and x and x̂ are 2-column vectors.
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89.38 Addition of Matrices

Let A be a given 2× 2 matrix with elements aij , i, j = 1, 2, that is

A =

(
a11 a12
a21 a22

)
.

We write A = (aij). Let B = (bij) be another 2 × 2 matrix. We define the
sum C = A + B to be the matrix C = (cij) with elements cij = aij + bij
for i, j = 1, 2. In other words, we add two matrices element by element:

A+B =

(
a11 a12
a21 a22

)
+

(
b11 b12
b21 b22

)
=

(
a11 + b11 a12 + b12
a21 + b21 a22 + b22

)
= C.

89.39 Multiplication of a Matrix by a Real Number

Given a 2× 2 matrix A with elements aij , i, j = 1, 2, and a real number λ,
we define the matrix C = λA as the matrix with elements cij = λaij . In
other words, all elements aij are multiplied by λ:

λA = λ

(
a11 a12
a21 a22

)
=

(
λa11 λa12
λa21 λa22

)
= C.

89.40 Multiplication of Two Matrices

Given two 2× 2 matrices A = (aij) and B = (bij) with elements, we define
the product C = AB as the matrix with elements cij given by

cij =

2∑

k=1

aikbkj .

Writing out the sum, we have

AB =

(
a11 a12
a21 a22

)(
b11 b12
b21 b22

)

=

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
= C.

In other words, to get the element cij of the product C = AB, we take the
scalar product of row i of A with column j of B.
The matrix product is generally non-commutative so that AB 6= BA

most of the time.
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We say that in the product AB the matrix A multiplies the matrix B
from the left and that B multiplies the matrix A from the right. Non-
commutativity of matrix multiplication means that multiplication from
right or left may give different results.

Example 89.17. We have
(
1 2
1 1

)(
1 3
1 1

)
=

(
3 5
2 4

)
, while

(
1 3
1 1

)(
1 2
1 1

)
=

(
4 5
2 3

)
.

Example 89.18. We compute BB = B2, where B is the projection
matrix given by (89.43), that is

B =

(
a21
|a|2

a1a2
|a|2

a1a2
|a|2

a22
|a|2

)
=

1

|a|2
(
a21 a1a2
a1a2 a22

)
.

We have

BB =
1

|a|4
(
a21 a1a2
a1a2 a22

)(
a21 a1a2
a1a2 a22

)

=
1

|a|4
(
a21(a

2
1 + a22) a1a2(a

2
1 + a22)

a1a2(a
2
1 + a22) a22(a

2
1 + a22)

)
=

1

|a|2
(
a21 a1a2
a1a2 a22

)
= B,

and see as expected that BB = B.

Example 89.19. As another application we compute the product of
two matrices corresponding to two rotations with angles α and β:

A =

(
cos(α) − sin(α)
sin(α) cos(α)

)
and B =

(
cos(β) − sin(β)
sin(β) cos(β)

)
. (89.44)

We compute

AB =

(
cos(α) − sin(α)
sin(α) cos(α)

)(
cos(β) − sin(β)
sin(β) cos(β)

)

(
cos(α) cos(β)− sin(α) sin(β) − cos(α) sin(β) − sin(α) cos(β)
cos(α) sin(β) + sin(α) cos(β) cos(α) cos(β) − sin(α) sin(β)

)

=

(
cos(α+ β) − sin(α+ β)
sin(α+ β) cos(α+ β)

)
,

where again we have used the formulas for cos(α + β) and sin(α + β)
from Chapter Pythagoras and Euclid. We conclude as expected that
two successive rotations of angles α and β corresponds to a rotation of
angle α+ β.
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89.41 The Transpose of a Matrix

Given a 2 × 2 matrix A with elements aij , we define the transpose of A
denoted by A⊤ as the matrix C = A⊤ with elements c11 = a11, c12 = a21,
c21 = a12, c22 = a22. In other words, the rows of A are the columns of A⊤

and vice versa. For example

if A =

(
1 2
3 4

)
then A⊤ =

(
1 3
2 4

)
.

Of course (A⊤)⊤ = A. Transposing twice brings back the original matrix.
We can directly check the validity of the following rules for computing with
the transpose:

(A+B)⊤ = A⊤ +B⊤, (λA)⊤ = λA⊤,

(AB)⊤ = B⊤A⊤.

89.42 The Transpose of a 2-Column Vector

The transpose of a 2-column vector is the row vector with the same ele-
ments:

if x =

(
x1
x2

)
, then x⊤ =

(
x1 x2

)
.

We may define the product of a 1×2 matrix (2-row vector) x⊤ with a 2×1
matrix (2-column vector) y in the natural way as follows:

x⊤y =
(
x1 x2

)(y1
y2

)
= x1y1 + x2y2.

In particular, we may write

|x|2 = x · x = x⊤x,

where we interpret x as an ordered pair and as a 2-column vector.

89.43 The Identity Matrix

The 2× 2 matrix (
1 0
0 1

)

is called the identity matrix and is denoted by I. We have IA = A and
AI = A for any 2× 2 matrix A.
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89.44 The Inverse of a Matrix

Let A be a 2 × 2 matrix with elements aij with a11a22 − a12a21 6= 0. We
define the inverse matrix A−1 by

A−1 =
1

a11a22 − a12a21

(
a22 −a12
−a21 a11

)
. (89.45)

We check by direct computation that A−1A = I and that AA−1 = I, which
is the property we ask an “inverse” to satisfy. We get the first column of
A−1 by using the solution formula (89.31) with b = (1, 0) and the second
column choosing b = (0, 1).
The solution to the system of equations Ax = b can be written as x =

A−1b, which we obtain by multiplying Ax = b from the left by A−1.
We can directly check the validity of the following rules for computing

with the inverse:

(λA)−1 = λA−1

(AB)−1 = B−1A−1.

89.45 Rotation in Matrix Form Again!

We have seen that a rotation of a vector x by an angle θ into a vector y
can be expressed as y = Rθx with Rθ being the rotation matrix:

Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
(89.46)

We have also seen that two successive rotations by angles α and β can be
written as

y = RβRαx, (89.47)

and we have also shown that RβRα = Rα+β . This states the obvious fact
that two successive rotations α and β can be performed as one rotation
with angle α+ β.
We now compute the inverse R−1

θ of a rotation Rθ using (89.45),

R−1
θ =

1

cos(θ)2 + sin(θ)2

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
=

(
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)

(89.48)
where we use cos(α) = cos(−α), sin(α) = − sin(−α). We see that R−1

θ =
R−θ, which is one way of expressing the (obvious) fact that the inverse of
a rotation by θ is a rotation by −θ.
We observe that R−1

θ = R⊤
θ with R⊤

θ the transpose of Rθ, so that in
particular

RθR
⊤
θ = I. (89.49)
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We use this fact to prove that the length of a vector is not changed by
rotation. If y = Rθx, then

|y|2 = yT y = (Rθx)
⊤(Rθx) = x⊤R⊤

θ Rθx = x⊤x = |x|2. (89.50)

More generally, the scalar product is preserved after the rotation. If y =
Rθx and ŷ = Rθx̂, then

y · ŷ = (Rθx)
⊤(Rθx̂) = x⊤R⊤

θ Rθx̂ = x · x̂. (89.51)

The relation (89.49) says that the matrix Rθ is orthogonal. Orthogonal
matrices play an important role, and we will return to this topic below.

89.46 A Mirror in Matrix Form

Consider the linear transformation 2P − I, where Px = a·x
|a|2 a is the projec-

tion onto the non-zero vector a ∈ R2, that is onto the line x = sa through
the origin. In matrix form, this can be expressed as

2P − I =
2

|a|2
(
a21 − 1 a1a2
a2a1 a22 − 1

)
.

After some reflection(!), looking at Fig. 89.27, we understand that the trans-
formation I + 2(P − I) = 2P − I maps a point x into its mirror image in
the line through the origin with direction a.

a

x Px−x

FIGURE 89.27. The mapping 2P − I maps points to its mirror point relative to
the given line.

To see if 2P − I preserves scalar products, we assume that y = (2P − I)x
and ŷ = (2P − I)x̂ and compute:

y · ŷ = ((2P − I)x)⊤(2P − I)x̂ = x⊤(2P⊤ − I)(2P − I)x̂ = (89.52)

x⊤(4P⊤P − 2P⊤I − 2PI + I)x̂ = x⊤(4P − 4P + I)x̂ = x · x̂, (89.53)
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where we used the fact that P = P⊤ and PP = P , and we thus find an
affirmative answer.

89.47 Change of Basis Again!

Let {a1, a2} and {â1, â2} be two different bases in R2. We then express any
given b ∈ R2 as

b = x1a1 + x2a2 = x̂1â1 + x̂2â2, (89.54)

with certain coordinates (x1, x2) with respect to {a1, a2} and some other
coordinates (x̂1, x̂2) with respect {â1, â2}.
To connect (x1, x2) to (x̂1, x̂2), we express the basis vectors {â1, â2} in

terms of the basis {a1, a2}:

c11a1 + c21a2 = â1,

c12a1 + c22a2 = â2,

with certain coefficients cij . Inserting this into (89.54), we get

x̂1(c11a1 + c21a2) + x̂2(c12a1 + c22a2) = b.

Reordering terms,

(c11x̂1 + c12x̂2)a1 + (c21x̂1 + c22x̂2)a2 = b.

We conclude by uniqueness that

x1 = c11x̂1 + c12x̂2, (89.55)

x2 = c21x̂1 + c22x̂2, (89.56)

which gives the connection between the coordinates (x1, x2) and (x̂1, x̂2).
Using matrix notation, we can write this relation as x = Cx̂ with

C =

(
c11 c12
c21 c22

)
.

89.48 Queen Christina

Queen Christina of Sweden (1626-1689), daughter of Gustaf Vasa King of
Sweden 1611-1632, crowned to Queen at the age 5, officially coronated 1644,
abdicated 1652, converted to Catholicism and moved to Rome 1655.
Throughout her life, Christina had a passion for the arts and for learning,

and surrounded herself with musicians, writers, artists and also philoso-
phers, theologians, scientists and mathematicians. Christina had an im-
pressive collection of sculpture and paintings, and was highly respected for
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x1

x2

b b

a1

a2

b2

b2

b̂1 b̂1

â1
â2

FIGURE 89.28. A vector b may be expressed in terms of the basis {a1, a2} or the
basis {â1, â2}.

both her artistic and literary tastes. She also wrote several books, includ-
ing her Letters to Descartes and Maxims. Her home, the Palace Farnese,
was the active center of cultural and intellectual life in Rome for several
decades.
Duc de Guise quoted in Georgina Masson’s Queen Christina biography

describes Queen Chistina as follows: “She isn’t tall, but has a well-filled
figure and a large behind, beautiful arms, white hands. One shoulder is
higher than another, but she hides this defect so well by her bizarre dress,
walk and movements.... The shape of her face is fair but framed by the
most extraordinary coiffure. It’s a man’s wig, very heavy and piled high
in front, hanging thick at the sides, and at the back there is some slight
resemblance to a woman’s coiffure.... She is always very heavily powdered
over a lot of face cream”.

Chapter 89 Problems

89.1. Given the vectors a, b and c in R2 and the scalars λ, µ ∈ R, prove the
following statements

a+ b = b+ a, (a+ b) + c = a+ (b+ c), a+ (−a) = 0

a+ 0 = a, 3a = a+ a+ a, λ(µa) = (λµ)a,

(λ+ µ)a = λa+ µa, λ(a+ b) = λa+ λb, |λa| = |λ||a|.
Try to give both analytical and geometrical proofs.

89.2. Give a formula for the transformation f : R2 → R2 corresponding to
reflection through the direction of a given vector a ∈ R2. Find the corresponding
matrix.

89.3. Given a = (3, 2) and b = (1, 4), compute (i) |a|, (ii) |b|, (iii) |a + b|, (iv))
|a− b|, (v) a/|a|, (vi) b/|b|.
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FIGURE 89.29. Queen Christina to Descartes: “If we conceive the world in that
vast extension you give it, it is impossible that man conserve himself therein
in this honorable rank, on the contrary, he shall consider himself along with
the entire earth he inhabits as in but a small, tiny and in no proportion to
the enormous size of the rest. He will very likely judge that these stars have
inhabitants, or even that the earths surrounding them are all filled with creatures
more intelligent and better than he, certainly, he will lose the opinion that this
infinite extent of the world is made for him or can serve him in any way”.
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89.4. Show that the norm of a/|a| with a ∈ R2, a 6= 0, is equal to 1.

89.5. Given a, b ∈ R2 prove the following inequalities a) |a + b| ≤ |a| + |b|, b)
a · b ≤ |a||b|.

89.6. Compute a · b with
(i) a = (1, 2), b = (3, 2) (ii) a = (10, 27), b = (14,−5)

89.7. Given a, b, c ∈ R2, determine which of the following statements make sense:
(i) a · b, (ii) a · (b · c), (iii) (a · b) + |c|, (iv) (a · b) + c, (v) |a · b|.

89.8. What is the angle between a = (1, 1) and b = (3, 7)?

89.9. Given b = (2, 1) construct the set of all vectors a ∈ R2 such that a · b = 2.
Give a geometrical interpretation of this result.

89.10. Find the projection of a onto b onto (1, 2) with (i) a = (1, 2), (ii) a =
(−2, 1), (iii) a = (2, 2), (iv) a = (

√
2,
√
2).

89.11. Decompose the vector b = (3, 5) into one component parallel to a and
one component orthogonal to a for all vectors a in the previous exercise.

89.12. Let a, b and c = a− b in R2 be given, and let the angle between a and b
be ϕ. Show that:

|c|2 = |a|2 + |b|2 − 2|a||b| cosϕ.
Give an interpretation of the result.

89.13. Prove the law of cosines for a triangle with sidelengths a, b and c:

c2 = a2 + b2 − 2ab cos(θ),

where θ is the angle between the sides a and b.

89.14. Given the 2 by 2 matrix:

A =

(
1 2
3 4

)

compute Ax and ATx for the following choice of x ∈ R2:

(i) xT = (1, 2) (ii) xT = (1, 1)

89.15. Given the 2× 2-matrices:

A =

(
1 2
3 4

)
, B =

(
5 6
7 8

)
,

compute (i) AB, (ii) BA, (iii) ATB, (iv) ABT , (v) BTAT , (vi) (AB)T , (vii) A−1,
(viii) B−1, (ix) (AB)−1, (x) A−1A.

89.16. Show that (AB)T = BTAT and that (Ax)T = xTAT .
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89.17. What can be said about A if: a) A = AT b) AB = I?

89.18. Show that the projection:

Pa(b) =
b · a
|a|2 a

can be written in the form Pb, where P is a 2 × 2 matrix. Show that PP = P
and P = P T .

89.19. Compute the mirror image of a point with respect to a straight line in
R2 which does not pass through the origin. Express the mapping in matrix form.

89.20. Express the linear transformation of rotating a vector a certain given
angle as a matrix vector product.

89.21. Given a, b ∈ R2, show that the “mirror vector” b̄ obtained by reflecting
b in a can be expressed as:

b̄ = 2Pb − b

where P is a certain projection Show that the scalar product between two vectors
is invariant under a reflection, that is

c · d = c̄ · d̄.

89.22. Compute a× b and b× a with (i) a = (1, 2), b = (3, 2), (ii) a = (1, 2), b =
(3, 6), (iii) a = (2,−1), b = (2, 4).

89.23. Extend the Matlab functions for vectors in R2 by writing functions for
vector product (x = vecProd(a, b)) and rotation (b = vecRotate(a, angle)) of
vectors.

89.24. Check the answers to the above problems using Matlab.

89.25. Verify that the projection Px = Pa(x) is linear in x. Is it linear also in
a? Illustrate, as in Fig. 89.16, that Pa(x+ y) = Pa(x) + Pa(y).

89.26. Prove that the formula (90.29) for the projection of a point onto a line
through the origin, coincides with the formula (89.9) for the projection of the
vector b on the direction of the line.

89.27. Show that if â = λa, where a is a nonzero vector R2 and λ 6= 0, then
for any b ∈ R2 we have Pâ(b) = Pa(b), where Pa(b) is the projection of b onto a.
Conclude that the projection onto a non-zero vector a ∈ R2 only depends on the
direction of a and not the norm of a.
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90
Analytic Geometry in R3

We must confess that in all humility that, while number is a product
of our mind alone, space has a reality beyond the mind whose rules
we cannot completely prescribe. (Gauss 1830)

You can’t help respecting anybody who can spell TUESDAY, even
if he doesn’t spell it right. (The House at Pooh Corner, Milne)

90.1 Introduction

We now extend the discussion of analytic geometry to Euclidean three di-
mensional space or Euclidean 3d space for short. We imagine this space
arises when we draw a normal through the origin to a Euclidean two di-
mensional plane spanned by orthogonal x1 and x2 axes, and call the normal
the x3-axis. We then obtain an orthogonal coordinate system consisting of
three coordinate x1, x2 and x3 axes that intersect at the origin, with each
axis being a copy of R, see Fig. 90.1.
In daily life, we may imagine a room where we live as a portion of R3,

with the horizontal floor being a piece of R2 with two coordinates (x1, x2)
and with the vertical direction as the third coordinate x3. On a larger
scale, we may imagine our neighborhood in terms of three orthogonal di-
rections West-East, South-North, and Down-Up, which may be viewed to
be a portion of R3, if we neglect the curvature of the Earth.
The coordinate system can be oriented two ways, right or left. The coor-

dinate system is said to be right-oriented, which is the standard, if turning
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x1x1

x2x2

x3x3

(a1, a2, a3)

(a1, a2, a3)

FIGURE 90.1. Coordinate system for R3

a standard screw into the direction of the positive x3-axis will turn the
x1-axis the shortest route to the x2-axis, see Fig. 90.2. Alternatively, we
can visualize holding our flattened right hand out with the fingers aligned
along the x1 axis so that when we curl our fingers inward, they move to-
wards the positive x2 axis, and then our extended thumb will point along
the positive x3 axis.

x1

x1

x1

x2x2

x2 x3

x3

x3

FIGURE 90.2. Two “right” coordinate systems and one “left”, where the vertical
coordinate of the view point is assumed positive, that is, the horizontal plane is
seen from above. What happens if the vertical coordinate of the view point is
assumed negative?

Having now chosen a right-oriented orthogonal coordinate system, we
can assign three coordinates (a1, a2, a3) to each point a in space using the
same principle as in the case of the Euclidean plane, see Fig. 90.1. This
way we can represent Euclidean 3d space as the set of all ordered 3-tuples
a = (a1, a2, a3), where ai ∈ R for i = 1, 2, 3, or as R3. Of course, we
can choose different coordinate systems with different origin, coordinate
directions and scaling of the coordinate axes. Below, we will come back to
the topic of changing from one coordinate system to another.
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90.2 Vector Addition and Multiplication by a
Scalar

Most of the notions and concepts of analytic geometry of the Euclidean
plane represented by R2 extend naturally to Euclidean 3d space represented
by R3.
In particular, we can view an ordered 3-tuple a = (a1, a2, a3) either as

a point in three dimensional space with coordinates a1, a2 and a3 or as a
vector/arrow with tail at the origin and head at the point (a1, a2, a3), as
illustrated in Fig. 90.1.
We define the sum a+b of two vectors a = (a1, a2, a3) and b = (b1, b2, b3)

in R3 by componentwise addition,

a+ b = (a1 + b1, a2 + b2, a3 + b3),

and multiplication of a vector a = (a1, a2, a3) by a real number λ by

λa = (λa1, λa2, λa3).

The zero vector is the vector 0 = (0, 0, 0). We also write −a = (−1)a and
a − b = a + (−1)b. The geometric interpretation of these definitions is
analogous to that in R2. For example, two non-zero vectors a and b in R3

are parallel if b = λa for some non-zero real number λ. The usual rules
hold, so vector addition is commutative, a + b = b + a, and associative,
(a + b) + c = a + (b + c). Further, λ(a + b) = λa + λb and κ(λa) = (κλ)a
for vectors a and b and real numbers λ and κ.
The standard basis vectors in R3 are e1 = (1, 0, 0), e2 = (0, 1, 0) and

e3 = (0, 0, 1).

90.3 Scalar Product and Norm

The standard scalar product a · b of two vectors a = (a1, a2, a3) and b =
(b1, b2, b3) in R3 is defined by

a · b =
3∑

i=1

aibi = a1b1 + a2b2 + a3b3. (90.1)

The scalar product in R3 has the same properties as its cousin in R2, so it
is bilinear, symmetric, and positive definite.= We say that two vectors a
and b are orthogonal if a · b = 0.
The Euclidean length or norm |a| of a vector a = (a1, a2, a3) is defined

by

|a| = (a · a) 1
2 =

( 3∑

i=1

a2i
) 1

2 , (90.2)
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which expresses Pythagoras theorem in 3d, and which we may obtain by
using the usual 2d Pythagoras theorem twice. The distance |a− b| between
two points a = (a1, a2, a3) and b = (b1, b2, b3) is equal to

|a− b| =
( 3∑

i=1

(ai − bi)
2
)1/2

.

Cauchy’s inequality states that for any vectors a and b in R3,

|a · b| ≤ |a| |b|. (90.3)

We give a proof of Cauchy’s inequality in Chapter Analytic Geometry in
Rn below. We note that Cauchy’s inequality in R2 follows directly from the
fact that a · b = |a| |b| cos(θ), where θ is the angle between a and b.

90.4 Projection of a Vector onto a Vector

Let a be a given non-zero vector in R3. We define the projection Pb = Pa(b)
of a vector b in R3 onto the vector a by the formula

Pb = Pa(b) =
a · b
a · a a =

a · b
|a|2 a. (90.4)

This is a direct generalization of the corresponding formula in R2 based
on the principles that Pb is parallel to a and b − Pb is orthogonal to a as
illustrated in Fig. 90.3, that is

Pb = λa for some λ ∈ R and (b− Pb) · a = 0.

This gives the formula (90.4) with λ = a·b
|a|2 .

The transformation P : R3 → R3 is linear, that is for any b and c ∈ R3

and λ ∈ R,
P (b+ c) = Pb+ Pc, P (λb) = λPb,

and PP = P .

90.5 The Angle Between Two Vectors

We define the angle θ between non-zero vectors a and b in R3 by

cos(θ) =
a · b
|a| |b| , (90.5)
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where we may assume that 0 ≤ θ ≤ 180◦. By Cauchy’s inequality (90.3),
|a · b| ≤ |a| |b|. Thus, there is an angle θ satisfying (90.5) that is uniquely
defined if we require 0 ≤ θ ≤ 180◦. We may write (90.5) in the form

a · b = |a||b| cos(θ), (90.6)

where θ is the angle between a and b. This evidently extends the corre-
sponding result in R2.
We define the angle θ between two vectors a and b via the scalar product

a · b in (90.5), which we may view as an algebraic definition. Of course,
we would like to see that this definition coincides with a usual geometric
definition. If a and b both lie in the x1 − x2-plane, then we know from
the Chapter Analytic geometry in R2 that the two definitions coincide. We
shall see below that the scalar product a · b is invariant (does not change)
under rotation of the coordinate system, which means that given any two
vectors a and b, we can rotate the coordinate system so make a and b lie
in the x1 − x2-plane. We conclude that the algebraic definition (90.5) of
angle between two vectors and the usual geometric definition coincide. In
particular, two non-zero vectors are geometrically orthogonal in the sense
that the geometric angle θ between the vectors satisfies cos(θ) = 0 if and
only if a · b = |a||b| cos(θ) = 0.

x1x1

x2x2

x3x3

aa

bb

Pb

Pb θθ

FIGURE 90.3. Projection Pb of a vector b onto a vector a.

90.6 Vector Product

We now define the vector product a× b of two vectors a = (a1, a2, a3) and
b = (b1, b2, b3) in R3 by the formula

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1). (90.7)
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We note that the vector product a× b of two vectors a and b in R3 is itself
a vector in R3. In other words, with f(a, b) = a× b, f : R3 → R3. We also
refer to the vector product as the cross product, because of the notation.

Example 90.1. If a = (3, 2, 1) and b = (4, 5, 6), then a × b = (12 −
5, 4− 18, 15− 8) = (7,−14, 7).

Note that there is also the trivial, componentwise “vector product” de-
fined by (using MATLAB c© ’s notation) a.∗b = (a1b1, a2b2, a3b3). The vector
product defined above, however, is something quite different!
The formula for the vector product may seem a bit strange (and com-

plicated), and we shall now see how it arises. We start by noting that the
expression a1b2 − a2b1 appearing in (90.7) is the vector product of the
vectors (a1, a2) and (b1, b2) in R2, so there appears to be some pattern at
least.
We may directly check that the vector product a× b is linear in both a

and b, that is

a× (b + c) = a× b+ a× c, (a+ b)× c = a× c+ b× c, (90.8a)

(λa) × b = λa× b, a× (λb) = λa× b, (90.8b)

where the products × should be computed first unless something else is
indicated by parentheses. This follows directly from the fact that the com-
ponents of a× b depend linearly on the components of a and b.
Since the vector product a× b is linear in both a and b, we say that a× b

is bilinear. We also see that the vector product a × b is anti-symmetric in
the sense that

a× b = − b× a. (90.9)

Thus, the vector product a× b is bilinear and antisymmetric and moreover
it turns out that these two properties determine the vector product up to
a constant just as in in R2.
For the vector products of the basis vectors ei, we have (check this!)

ei × ei = 0, i = 1, 2, 3, (90.10a)

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2, (90.10b)

e2 × e1 = −e3, e3 × e2 = −e1, e1 × e3 = −e2. (90.10c)

We see that e1×e2 = e3 is orthogonal to both e1 and e2. Similarly, e2×e3 =
e1 is orthogonal to both e2 and e3, and e1×e3 = −e2 is orthogonal to both
e1 and e3.
This pattern generalizes. In fact, for any two non-zero vectors a and b,

the vector a× b is orthogonal to both a and b since

a ·(a×b) = a1(a2b3−a3b2)+a2(a3b1−a1b3)+a3(a1b2−a2b1) = 0, (90.11)
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and similarly b · (a× b) = 0.
We may compute the vector product of two arbitrary vectors a = (a1, a2,

a3) and b = (b1, b2, b3) by using linearity combined with (90.10) as follows,

a× b = (a1e1 + a2e2 + a3e3)× (b1e1 + b2e2 + b3e3)

= a1b2 e1 × e2 + a2b1 e2 × e1

+ a1b3 e1 × e3 + a3b1 e3 × e1

+ a2b3 e2 × e3 + a3b2 e3 × e2

= (a1b2 − a2b1)e3 + (a3b1 − a1b3)e2 + (a2b3 − a3b2)e1

= (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1),

which conforms with (90.7).

90.7 Geometric Interpretation of the Vector
Product

We shall now make a geometric interpretation of the vector product a× b
of two vectors a and b in R3.
We start by assuming that a = (a1, a2, 0) and b = (b1, b2, 0) are two

non-zero vectors in the plane defined by the x1 and x2 axes. The vector
a×b = (0, 0, a1b2−a2b1) is clearly orthogonal to both a and b, and recalling
the basic result (89.21) for the vector product in R2, we have

|a× b| = |a||b|| sin(θ)|, (90.12)

where θ is the angle between a and b.
We shall now prove that this result generalizes to arbitrary vectors a =

(a1, a2, a3) and b = (b1, b2, b3) in R3. First, the fact that a× b is orthogonal
to both a and b was proved in the previous section. Secondly, we note that
multiplying the trigonometric identity sin2(θ) = 1− cos2(θ) by |a|2 |b|2 and
using (90.6), we obtain

|a|2|b|2 sin2(θ) = |a|2|b|2 − (a · b)2. (90.13)

Finally, a direct (but somewhat lengthy) computation shows that

|a× b|2 = |a|2|b|2 − (a · b)2,

which proves (90.12). We summarize in the following theorem.

Theorem 90.1 The vector product a× b of two non-zero vectors a and b
in R3 is orthogonal to both a and b and |a × b| = |a||b|| sin(θ)|, where θ is
the angle between a and b. In particular, a and b are parallel if and only if
a× b = 0.
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x1

x2

x3

a

b

θ

a×b

|a×b| = A(a, b) = |a| |b| | sin(θ)|

FIGURE 90.4. Geometric interpretation of the vector product.

We can make the theorem more precise by adding the following sign rule:
The vector a × b is pointing in the direction of a standard screw turning
the vector a into the vector b the shortest route.

90.8 Connection Between Vector Products in R2

and R3

We note that if a = (a1, a2, 0) and b = (b1, b2, 0), then

a× b = (0, 0, a1b2 − a2b1). (90.14)

The previous formula a×b = a1b2−a2b1 for a = (a1, a2) and b = (b1, b2) in
R2 may thus be viewed as a short-hand for the formula a× b = (0, 0, a1b2−
a2b1) for a = (a1, a2, 0) and b = (b1, b2, 0), with a1b2 − a2b1 being the third
coordinate of a × b in R3. We note the relation of the sign conventions
in R2 and R3: If a1b2 − a2b1 ≥ 0, then turning a screw into the positive
x3-direction should turn a into b the shortest route. This corresponds to
turning a into b counter-clockwise and to the angle θ between a and b
satisfying sin(θ) ≥ 0.

90.9 Volume of a Parallelepiped Spanned by Three
Vectors

Consider the parallelepiped spanned by three vectors a, b and c, according
to Fig. 90.5.
We seek a formula for the volume V (a, b, c) of the parallelepiped. We

recall that the volume V (a, b, c) is equal to the area A(a, b) of the base
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x1

x2

x3

a

bc

θ

a×b

FIGURE 90.5. Parallelepiped spanned by three vectors

spanned by the vectors a and b times the height h, which is the length of
the projection of c onto a vector that is orthogonal to the plane formed by
a and b. Since a× b is orthogonal to both a and b, the height h is equal to
the length of the projection of c onto a × b. From (90.12) and (90.4), we
know that

A(a, b) = |a× b|, h =
|c · (a× b)|
|a× b| ,

and thus

V (a, b, c) = |c · (a× b)|. (90.15)

Clearly, we may also compute the volume V (a, b, c) by considering b and c
as forming the base, or likewise the vectors a and c forming the base. Thus,

V (a, b, c) = |a · (b× c)| = |b · (a× c)| = |c · (a× b)|. (90.16)

Example 90.2. The volume V (a, b, c) of the parallelepiped spanned
by a = (1, 2, 3), b = (3, 2, 1) and c = (1, 3, 2) is equal to a · (b × c) =
(1, 2, 3) · (1,−5, 7) = 12.

90.10 The Triple Product a · b× c

The expression a · (b × c) occurs in the formulas (90.15) and (90.16). This
is called the triple product of the three vectors a, b and c. We usually write
the triple product without the parenthesis following the convention that the
vector product × is performed first. In fact, the alternative interpretation
(a · b)× c does not make sense since a · b is a scalar and the vector product
× requires vector factors!
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The following properties of the triple product can be readily verified by
direct application of the definition of the scalar and vector products,

a · b× c = c · a× b = b · c× a,

a · b× c = −a · c× b = −b · a× c = −c · b× a.

To remember these formulas, we note that if two of the vectors change place
then the sign changes, while if all three vectors are cyclically permuted (for
example the order a, b, c is replaced by c, a, b or b, c, a), then the sign is
unchanged.
Using the triple product a · b× c, we can express the geometric quantity

of the volume V (a, b, c) of the parallelepiped spanned by a, b and c in the
concise algebraic form,

V (a, b, c) = |a · b× c|. (90.17)

We shall use this formula many times below. Note, we later prove that the
volume of a parallelepiped can be computed as the area of the base times
the height using Calculus below.

90.11 A Formula for the Volume Spanned by
Three Vectors

Let a1 = (a11, a12, a13), a2 = (a21, a22, a23) and a3 = (a31, a32, a33) be three
vectors in R3. Note that here a1 is a vector in R3 with a1 = (a11, a12, a13),
et cetera. We may think of forming the 3 × 3 matrix A = (aij) with the
rows corresponding to the coordinates of a1, a2 and a3,

A =



a11 a12 a13
a21 a22 a23
a31 a32 a33




We will come back to 3 × 3 matrices below. Here, we just use the matrix
to express the coordinates of the vectors a1, a2 and a3 in handy form.
We give an explicit formula for the volume V (a1, a2, a3) spanned by three

vectors a1, a2 and a3. By direct computation starting with (90.17),

±V (a1, a2, a3) = a1 · a2 × a3

= a11(a22a33 − a23a32)− a12(a21a33 − a23a31)

+ a13(a21a32 − a22a31).

(90.18)

We note that V (a1, a2, a3) is a sum of terms, each term consisting of the
product of three factors aijaklamn with certain indices ij, kl and mn. If we
examine the indices occurring in each term, we see that the sequence of row
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indices ikm (first indices) is always {1, 2, 3}, while the sequence of column
indices jln (second indices) corresponds to a permutation of the sequence
{1, 2, 3}, that is the numbers 1, 2 and 3 occur in some order. Thus, all
terms have the form

a1j1a2j2a3j3 (90.19)

with {j1, j2, j3} being a permutation of {1, 2, 3}. The sign of the terms
change with the permutation. By inspection we can detect the following
pattern: if the permutation can be brought to the order {1, 2, 3} with an
even number of transpositions, each transposition consisting of interchang-
ing two indices, then the sign is +, and with an uneven number of transpo-
sitions the sign is −. For example, the permutation of second indices in the
term a11a23a32 is {1, 3, 2}, which is uneven since one transposition brings it
back to {1, 2, 3}, and thus this term has a negative sign. Another example:
the permutation in the term a12a23a31 is {2, 3, 1} is even since it results
from the following two transpositions {2, 1, 3} and {1, 2, 3}.
We have now developed a technique for computing volumes that we will

generalize to Rn below. This will lead to determinants. We will see that
the formula (90.18) states that the signed volume ±V (a1, a2, a3) is equal
to the determinant of the 3× 3 matrix A = (aij).

90.12 Lines

Let a be a given non-zero vector in R3 and let x̂ be a given point in R3.
The points x in R3 of the form

x = x̂+ sa,

where s varies over R, form a line in R3 through the point x̂ with direction
a, see Fig. 90.6. If x̂ = 0, then the line passes through the origin.

Example 90.3. The line through (1, 2, 3) in the direction (4, 5, 6) is
given by

x = (1, 2, 3) + s(4, 5, 6) = (1 + 4s, 2 + 5s, 3 + 6s) s ∈ R.

The line through (1, 2, 3) and (3, 1, 2) has the direction (3, 1, 2)−(1, 2, 3)
= (2,−1,−1), and is thus given by x = (1, 2, 3) + s(2,−1,−1).

Note that by choosing other vectors to represent the direction of the
line, it may also be represented, for example, as x = (1, 2, 3)+ŝ(−2, 1, 1)
or x = (1, 2, 3)+s̃(6,−3,−3). Also, the “point of departure” on the line,
corresponding to s = 0, can be chosen arbitrarily on the line of course.
For example, the point (1, 2, 3) could be replaced by (−1, 3, 4) which is
another point on the line.
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x1

x2

x3

a

s a

x̂

x = x̂+ s a

FIGURE 90.6. Line in R3 of the form x = x̂+ s a.

90.13 Projection of a Point onto a Line

Let x = x̂ + sa be a line in R3 through x̂ with direction a ∈ R3. We seek
the projection Pb of a given point b ∈ R3 onto the line, that is we seek
Pb ∈ R3 with the property that (i) Pb = x̂ + sa for some s ∈ R, and (ii)
(b−Pb) ·a = 0. Note that we here view b to be a point rather than a vector.
Inserting (i) into (ii) gives the following equation in s: (b− x̂− sa) · a = 0,
from which we conclude that s = b·a−x̂·a

|a|2 , and thus

Pb = x̂+
b · a− x̂ · a

|a|2 a . (90.20)

If x̂ = 0, that is the line passes through the origin, then Pb = b·a
|a|2a in

conformity with the corresponding formula (89.9) in R2.

90.14 Planes

Let a1 and a2 be two given non-zero non-parallel vectors in R3, that is
a1 × a2 6= 0. The points x in R3 that can be expressed as

x = s1a1 + s2a2, (90.21)

where s1 and s2 vary over R, form a plane in R3 through the origin that
is spanned by the two vectors a1 and a2. The points x in the plane are
all the linear combinations x = s1a1 + s2a2 of the vectors a1 and a2 with
coefficients s1 and s2 varying over R, see Fig. 90.7. The vector a1 × a2 is
orthogonal to both a1 and a2 and therefore to all vectors x in the plane.
Thus, the non-zero vector n = a1 × a2 is a normal to the plane. The points
x in the plane are characterized by the orthogonality relation

n · x = 0. (90.22)
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We may thus describe the points x in the plane by the representation
(90.21) or the equation (90.22). Note that (90.21) is a vector equation
corresponding to 3 scalar equations, while (90.22) is a scalar equation.
Eliminating the parameters s1 and s2 in the system (90.21), we obtain the
scalar equation (90.22).
Let x̂ be a given point in R3. The points x in R3 that can be expressed

as
x = x̂+ s1a1 + s2a2, (90.23)

where s1 and s2 vary over R, form a plane in R3 through the point x̂ that
is parallel to the corresponding plane through the origin considered above,
see Fig. 90.8.
If x = x̂+s1a1+s2a2 then n ·x = n · x̂, because n ·ai = 0, i = 1, 2. Thus,

we can describe the points x of the form x = x̂+ s1a1 + s2a2 alternatively
as the vectors x satisfying

n · x = n · x̂. (90.24)

Again, we obtain the scalar equation (90.24) if we eliminate the parameters
s1 and s2 in the system (90.23).
We summarize:

Theorem 90.2 A plane in R3 through a point x̂ ∈ R3 with normal n
can be expressed as the set of x ∈ R3 of the form x = x̂ + s1a1 + s2a2
with s1 and s2 varying over R, where a1 and a2 are two vectors satisfying
n = a1 × a2 6= 0. Alternatively, the plane can be described as the set of
x ∈ R such that n · x = d, where d = n · x̂.

Example 90.4. Consider the plane x1 + 2x2 + 3x3 = 4, that is the
plane (1, 2, 3) · (x1, x2, x3) = 4 with normal n = (1, 2, 3). To write the
points x in this plane on the form x = x̂+s1a1+s2a2, we first choose a
point x̂ in the plane, for example, x̂ = (2, 1, 0) noting that n · x̂ = 4. We
next choose two non-parallel vectors a1 and a2 such that n ·a1 = 0 and
n ·a2 = 0, for example a1 = (−2, 1, 0) and a2 = (−3, 0, 1). Alternatively,
we choose one vector a1 satisfying n ·a1 = 0 and set a2 = n×a1, which
is a vector orthogonal to both n and a1. To find a vector a1 satisfying
a1 ·n = 0, we may choose an arbitrary non-zero vectorm non-parallel to
n and set a1 = m× n, for example m = (0, 0, 1) giving a1 = (−2, 1, 0).

Conversely, given the plane x = (2, 1, 0) + s1(−2, 1, 0) + s2(−3, 0, 1),
that is x = x̂ + s1a1 + s2a2 with x̂ = (2, 1, 0), a1 = (−2, 1, 0) and
a2 = (−3, 0, 1), we obtain the equation x1 + 2x2 + 3x3 = 4 simply by
computing n = a1 × a2 = (1, 2, 3) and n · x̂ = (1, 2, 3) · (2, 1, 0) = 4,
from which we obtain the following equation for the plane: n · x =
(1, 2, 3) · (x1, x2, x3) = x1 + 2x2 + 3x3 = n · x̂ = 4.

Example 90.5. Consider the real-valued function z = f(x, y) = ax+
by+ c of two real variables x and y, where a, b and c are real numbers.
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x1

x2

x3

a1

a2

n = a1×a2

x = s1a1 + s2a2

FIGURE 90.7. Plane through the origin spanned by a1 and a2, and with normal
n = a1 × a2.

x1

x2

x3

a1

a2

n = a1×a2

x = s1a1 + s2a2

x̂ x = x̂+ s1a1 + s2a2

FIGURE 90.8. Plane through x̂ with normal n defined by n · x = d = n · x̂.
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Setting x1 = x, x2 = y and x3 = z, we can express the graph of
z = f(x, y) as the plane ax1 + bx2 − x3 = −c in R3 with normal
(a, b,−1).

90.15 The Intersection of a Line and a Plane

We seek the intersection of a line x = x̂+sa and a plane n ·x = d that is the
set of points x belonging to both the line and the plane, where x̂, a, n and
d are given. Inserting x = x̂+ sa into n · x = d, we obtain n · (x̂+ sa) = d,
that is n · x̂+ s n · a = d. This yields s = (d− n · x̂)/(n · a) if n · a 6= 0, and
we find a unique point of intersection

x = x̂+ (d− n · x̂)/(n · a) a. (90.25)

This formula has no meaning if n · a = 0, that is if the line is parallel to
the plane. In this case, there is no intersection point unless x̂ happens to
be a point in the plane and then the whole line is part of the plane.

Example 90.6. The intersection of the plane x1 + 2x2 + x3 = 5
and the line x = (1, 0, 0) + s(1, 1, 1) is found by solving the equation
1 + s + 2s + s = 5 giving s = 1 and thus the point of intersection is
(2, 1, 1).The plane x1+2x2+x3 = 5 and the line x = (1, 0, 0)+s(2,−1, 0)
has no point of intersection, because the equation 1 + 2s− 2s = 5 has
no solution. If instead we consider the plane x1 +2x2 + x3 = 1, we find
that the entire line x = (1, 0, 0) + s(2,−1, 0) lies in the plane, because
1 + 2s− 2s = 1 for all real s.

90.16 Two Intersecting Planes Determine a Line

Let n1 = (n11, n12, n13) and n2 = (n21, n22, n23) be two vectors in R3 and
d1 and d2 two real numbers. The set of points x ∈ R3 that lie in both the
plane n1 · x = d1 and n2 · x = d2 satisfy the system of two equations

n1 · x = d1,

n2 · x = d2.
(90.26)

Intuition indicates that generally the points of intersection of the two planes
should form a line in R3. Can we determine the formula of this line in the
form x = x̂+ sa with suitable vectors a and x̂ in R3 and s varying over R?
Assuming first that d1 = d2 = 0, we seek a formula for the set of x such
that n1 · x = 0 and n2 · x = 0, that is the set of x that are orthogonal to
both n1 and n2. This leads to a = n1 × n2 and expressing the solution x
of the equations n1 · x = 0 and n2 · x = 0 as x = s n1 × n2 with s ∈ R. Of
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course it is natural to add in the assumption that n1 ×n2 6= 0, that is that
the two normals n1 and n2 are not parallel so that the two planes are not
parallel.
Next, suppose that (d1, d2) 6= (0, 0). We see that if we can find one vector

x̂ such that n1 · x̂ = d1 and n2 · x̂ = d2, then we can write the solution x of
(90.26) as

x = x̂+ s n1 × n2, s ∈ R. (90.27)

We now need to verify that we can indeed find x̂ satisfying n1 · x̂ = d1 and
n2 · x̂ = d2. That is, we need to find x̂ ∈ R3 satisfying the following system
of two equations,

n11x̂1 + n12x̂2 + n13x̂3 = d1,

n21x̂1 + n22x̂2 + n23x̂3 = d2.

Since n1 × n2 6= 0, some component of n1 × n2 must be nonzero. If for
example n11n22 − n12n21 6= 0, corresponding to the third component of
n1 × n2 being non-zero, then we may choose x̂3 = 0. Then recalling the
role of the condition n11n22 − n12n21 6= 0 for a 2 × 2-system, we may
solve uniquely for x̂1 and x̂2 in terms of d1 and d2 to get a desired x̂. The
argument is similar in case the second or first component of n1×n2 happens
to be non-zero.
We summarize:

Theorem 90.3 Two non-parallel planes n1 · x = d1 and n2 · x = d2 with
normals n1 and n2 satisfying n1 × n2 6= 0, intersect along a straight line
with direction n1 × n2.

Example 90.7. The intersection of the two planes x1+x2+x3 = 2 and
3x1+2x2−x3 = 1 is given by x = x̂+sa with a = (1, 1, 1)×(3, 2,−1) =
(−3, 4,−1) and x̂ = (0, 1, 1).

90.17 Projection of a Point onto a Plane

Let n · x = d be a plane in R3 with normal n and b a point in R3. We seek
the projection Pb of b onto the plane n · x = d. It is natural to ask Pb to
satisfy the following two conditions, see Fig. 90.9,

n · Pb = d, that is Pb is a point in the plane,

b− Pb is parallel to the normal n, that is b− Pb = λn for some λ ∈ R.

We conclude that Pb = b − λn and the equation n · Pb = d thus gives
n · (b− λn) = d. So, λ = b·n−d

|n|2 and thus

Pb = b− b · n− d

|n|2 n. (90.28)
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If d = 0 so the plane n · x = d = 0 passes through the origin, then

Pb = b− b · n
|n|2 n. (90.29)

If the plane is given in the form x = x̂+ s1a1 + s2a2 with a1 and a2 two
given non-parallel vectors in R3, then we may alternatively compute the
projection Pb of a point b onto the plane by seeking real numbers x1 and
x2 so that Pb = x̂+ x1a1 + x2a2 and (b−Pb) · a1 = (b−Pb) · a2 = 0. This
gives the system of equations

x1a1 · a1 + x2a2 · a1 = b · a1 − x̂ · a1,
x1a1 · a2 + x2a2 · a2 = b · a2 − x̂ · a2

(90.30)

in the two unknowns x1 and x2. To see that this system has a unique
solution, we need to verify that â11â22 − â12â21 6= 0, where â11 = a1 · a1,
â22 = a2 ·a2, â21 = a2 ·a1 and â12 = a1 ·a2. This follows from the fact that
a1 and a2 are non-parallel, see Problem 90.24.

Example 90.8. The projection Pb of the point b = (2, 2, 3) onto
the plane defined by x1 + x2 + x3 = 1 is given by Pb = (2, 2, 3) −
7−1
3 (1, 1, 1) = (0, 0, 1).

Example 90.9. The projection Pb of the point b = (2, 2, 3) onto the
plane x = (1, 0, 0) + s1(1, 1, 1) + s2(1, 2, 3) with normal n = (1, 1, 1)×
(1, 2, 3) = (1,−2, 1) is given by Pb = (2, 2, 3)− (2,2,3)·(1,−2,1)

6 (1,−2, 1) =
(2, 2, 3)− 1

6 (1,−2, 1) = 1
6 (11, 14, 17).

90.18 Distance from a Point to a Plane

We say that the distance from a point b to a plane n · x = d is equal to
|b − Pb|, where Pb is the projection of b onto the plane. According to the
previous section, we have

|b− Pb| = |b · n− d|
|n| .

Note that this distance is equal to the shortest distance between b and any
point in the plane, see Fig. 90.9 and Problem 90.22.

Example 90.10. The distance from the point (2, 2, 3) to the plane

x1 + x2 + x3 = 1 is equal to |(2,2,3)·(1,1,1)−1|√
3

= 2
√
3.
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x1

x2

x3

n

b

Pb

b−Pb

FIGURE 90.9. Projection of a point/vector onto a plane.

90.19 Rotation Around a Given Vector

We now consider a more difficult problem. Let a ∈ R3 be a given vector
and θ ∈ R a given angle. We seek the transformation R : R3 → R3 corre-
sponding to rotation of an angle θ around the vector a. Recalling Section
89.21, the result Rx = R(x) should satisfy the following properties,

(i) |Rx−Px| = |x−Px|, (ii) (Rx−Px) · (x−Px) = cos(θ)|x−Px|2.

where Px = Pa(x) is the projection of x onto a, see Fig. 90.10. We write

x1

x2

x3

x Px
Rx

θ

FIGURE 90.10. Rotation around a = (0, 0, 1) a given angle θ.

Rx−Px as Rx−Px = α(x−Px)+β a× (x−Px) for real numbers α and
β, noting that Rx− Px is orthogonal to a and a× (x− Px) is orthogonal
to both a and (x− Px). Taking the scalar product with (x − Px), we use

(ii) to get α = cos(θ) and then use (i) to find β = sin(θ)
|a| with a suitable
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orientation. Thus, we may express Rx in terms of the projection Px as

Rx = Px+ cos(θ)(x − Px) +
sin(θ)

|a| a× (x− Px). (90.31)

90.20 Lines and Planes Through the Origin Are
Subspaces

Lines and planes in R3 through the origin are examples of subspaces of R3.
The characteristic feature of a subspace is that the operations of vector
addition and scalar multiplication does not lead outside the subspace. For
example if x and y are two vectors in the plane through the origin with
normal n satisfying n · x = 0 and n · y = 0, then n · (x + y) = 0 and
n · (λx) = 0 for any λ ∈ R, so the vectors x+ y and λx also belong to the
plane. On the other hand, if x and y belong to a plane not passing through
the origin with normal n, so that n · x = d and n · y = d with d a nonzero
constant, then n · (x+y) = 2d 6= d, and thus x+y does not lie in the plane.
We conclude that lines and planes through the origin are subspaces of R3,
but lines and planes not passing through the origin are not subspaces. The
concept of subspace is very basic and we will meet this concept many times
below.
We note that the equation n · x = 0 defines a line in R2 and a plane

in R3. The equation n · x = 0 imposes a constraint on x that reduces the
dimension by one, so in R2 we get a line and in R3 we get a plane.

90.21 Systems of 3 Linear Equations in 3
Unknowns

Consider now the following system of 3 linear equations in 3 unknowns x1,
x2 and x3 (as did Leibniz already 1683):

a11x1 + a12x2 + a13x3 = b1,
a21x1 + a22x2 + a23x3 = b2,
a31x1 + a32x2 + a33x3 = b3,

(90.32)

with coefficients aij and right hand side bi, i, j = 1, 2, 3. We can write this
system as the following vector equation in R3:

x1a1 + x2a2 + x3a3 = b, (90.33)

where a1 = (a11, a21, a31), a2 = (a12, a22, a32), a3 = (a13, a23, a33) and
b = (b1, b2, b3) are vectors in R3, representing the given coefficients and the
right hand side.
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When is the system (90.32) uniquely solvable in x = (x1, x2, x3) for a
given right hand side b? We shall see that the condition to guarantee unique
solvability is

V (a1, a2, a3) = |a1 · a2 × a3| 6= 0, (90.34)

stating that the volume spanned by a1, a2 and a3 is not zero.
We now argue that the condition a1 ·a2×a3 6= 0 is the right condition to

guarantee the unique solvability of (90.32). We can do this by mimicking
what we did in the case of a 2×2 system: Taking the scalar product of both
sides of the vector equation x1a1+x2a2+x3a3 = b by successively a2×a3,
a3 × a1, and a2 × a3, we get the following solution formula (recalling that
a1 · a2 × a3 = a2 · a3 × a1 = a3 · a1 × a2):

x1 =
b · a2 × a3
a1 · a2 × a3

,

x2 =
b · a3 × a1
a2 · a3 × a1

=
a1 · b× a3
a1 · a2 × a3

,

x3 =
b · a1 × a2
a3 · a1 × a2

=
a1 · a2 × b

a1 · a2 × a3
,

(90.35)

where we used the facts that ai · aj × ak = 0 if any two of the indices
i, j and k are equal. The solution formula (90.35) shows that the system
(90.32) has a unique solution if a1 · a2 × a3 6= 0.
Note the pattern of the solution formula (90.35), involving the common

denominator a1 · a2 × a3 and the numerator for xi is obtained by replacing
ai by b. The solution formula (90.35) is also called Cramer’s rule. We have
proved the following basic result:

Theorem 90.4 If a1 · a2 × a3 6= 0, then the system of equations (90.32)
or the equivalent vector-equation (90.33) has a unique solution given by
Cramer’s rule (90.35).

We repeat: V (a1, a2, a3) = a1 · a2 × a3 6= 0 means that the three vectors
a1, a2 and a3 span a non-zero volume and thus point in three different
directions (such that the plane spanned by any two of the vectors does not
contain the third vector). If V (a1, a2, a3) 6= 0, then we say that the set of
three vectors {a,a2, a3} is linearly independent, or that the three vectors
a1, a2 and a3 are linearly independent.

90.22 Solving a 3× 3-System by Gaussian
Elimination

We now describe an alternative to Cramer’s rule for computing the solu-
tion to the 3× 3-system of equations (90.32), using the famous method of
Gaussian elimination. Assuming a11 6= 0, we subtract the first equation
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multiplied by a21 from the second equation multiplied by a11, and likewise
subtract the first equation multiplied by by a31 from the third equation
multiplied by a11, to rewrite the system (90.32) in the form

a11x1 + a12x2 + a13x3 = b1,
(a22a11 − a21a12)x2 + (a23a11 − a21a13)x3 = a11b2 − a21b1,
(a32a11 − a31a12)x2 + (a33a11 − a31a13)x3 = a11b3 − a31b1,

(90.36)
where the unknown x1 has been eliminiated in the second and third equa-
tions. This system has the form

a11x1+ a12x2 + a13x3 = b1,

â22x2 + â23x3 = b̂2,

â32x2 + â33x3 = b̂3,

(90.37)

with modified coefficients âij and b̂i. We now proceed in the same way
considering the 2 × 2-system in (x2, x3), and bring the system to the final
triangular form

a11x1+ a12x2 + a13x3 = b1,

â22x2 + â23x3 = b̂2,

ã33x3 = b̃3,

(90.38)

with modified coefficients in the last equation. We can now solve the third
equation for x3, then insert the resulting value of x3 into the second equa-
tion and solve for x2 and finally insert x3 and x2 into the first equation to
solve for x1.

Example 90.11. We give an example of Gaussian elimination: Con-
sider the system

x1 +2x2 + 3x3 = 6,
2x1 +3x2 + 4x3 = 9,
3x1 +4x2 + 6x3 = 13.

Subtracting the first equation multiplied by 2 from the second and the
first equation multiplied by 3 from the third equation, we get the system

x1 +2x2 + 3x3 = 6,
−x2 − 2x3 = −3,
−2x2 − 3x3 = −5.

Subtracting now the second equation multiplied by 2 from the third
equation, we get

x1 + 2x2+ 3x3 = 6,
−x2− 2x3 = −3,

x3 = 1,

from which we find x3 = 1 and then from the second equation x2 = 1
and finally from the first equation x1 = 1.
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90.23 3× 3 Matrices: Sum, Product and Transpose

We can directly generalize the notion of a 2× 2 matrix as follows: We say
that the quadratic array



a11 a12 a13
a21 a22 a23
a31 a32 a33




is a 3×3 matrix A = (aij) with elements aij , i, j = 1, 2, 3, and with i being
the row index and j the column index.
Of course, we can also generalize the notion of a 2-row (or 1× 2 matrix)

and a 2-column vector (or 2×1 matrix). Each row of A, the first row being
(a11 a12 a13), can thus be viewed as a 3-row vector (or 1× 3 matrix), and
each column of A, the first column being



a11
a21
a31




as a 3-column vector (or 3 × 1 matrix). We can thus view a 3 × 3 matrix
to consist of three 3-row vectors or three 3-column vectors.
Let A = (aij) and B = (bij) be two 3 × 3 matrices. We define the sum

C = A + B to be the matrix C = (cij) with elements cij = aij + bij for
i, j = 1, 2, 3. In other words, we add two matrices element by element.
Given a 3 × 3 matrix A = (aij) and a real number λ, we define the

matrix C = λA as the matrix with elements cij = λaij . In other words, all
elements aij are multiplied by λ.
Given two 3× 3 matrices A = (aij) and B = (bij), we define the product

C = AB as the 3× 3 matrix with elements cij given by

cij =

3∑

k=1

aikbkj i, j = 1, 2, 3. (90.39)

Matrix multiplication is associative so that (AB)C = A(BC) for matrices
A, B and C, see Problem 90.10. The matrix product is however not commu-
tative in general, that is there are matrices A and B such that AB 6= BA,
see Problem 90.11.
Given a 3× 3 matrix A = (aij), we define the transpose of A denoted by

A⊤ as the matrix C = A⊤ with elements cij = aji, i, j = 1, 2, 3. In other
words, the rows of A are the columns of A⊤ and vice versa. By definition
(A⊤)⊤ = A. Transposing twice brings back the original matrix.
We can directly check the validity of the following rules for computing

with the transpose:

(A+B)⊤ = A⊤ +B⊤, (λA)⊤ = λA⊤,

(AB)⊤ = B⊤A⊤.
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Similarly, the transpose of a 3-column vector is the 3-row vector with the
same elements. Vice versa, if we consider the 3× 1 matrix

x =



x1
x2
x3




to be a 3-column vector, then the transpose x⊤ is the corresponding 3-row
vector (x1 x2 x3). We define the product of a 1 × 3 matrix (3-row vector)
x⊤ with a 3× 1 matrix (3-column vector) y in the natural way as follows:

x⊤y =
(
x1 x2 x3

)


y1
y2
y3


 = x1y1 + x2y2 + x3y3 = x · y,

where we noted the connection to the scalar product of 3-vectors. We thus
make the fundamental observation that multiplication of a 1 × 3 matrix
(3-row vector) with a 3× 1 matrix (3-column vector) is the same as scalar
multiplication of the corresponding 3-vectors. We can then express the
element cij of the product C = AB according to (90.39) as the scalar
product of row i of A with column j of B,

cij =
(
ai1 ai2 ai3

)


b1j
b2j
b3j


 =

3∑

k=1

aikbkj .

We note that
|x|2 = x · x = x⊤x,

where we interpret x both as an ordered triple and as a 3-column vector.
The 3× 3 matrix 


1 0 0
0 1 0
0 0 1




is called the 3 × 3 identity matrix and is denoted by I. We have IA = A
and AI = A for any 3× 3 matrix A.
If A = (aij) is a 3×3 matrix and x = (xi) is a 3×1 matrix with elements

xi, then the product Ax is the 3× 1 matrix with elements

3∑

k=1

aikxk i = 1, 2, 3.

The linear system of equations

a11x1 + a12x2 + a13x3 = b1,
a21x1 + a22x2 + a23x3 = b2,
a31x1 + a32x2 + a33x3 = b3,
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can be written in matrix form as


a11 a12 a13
a21 a22 a23
a31 a32 a33





x1
x2
x3


 =



b1
b2
b3


 ,

that is
Ax = b,

with A = (aij) and x = (xi) and b = (bi).

90.24 Ways of Viewing a System of Linear
Equations

We may view a 3× 3 matrix A = (aij)


a11 a12 a13
a21 a22 a23
a31 a32 a33




as being formed by three column-vectors a1 = (a11, a21, a31), a2 = (a12, a22,
a32), a3 = (a13, a23, a33), or by three row-vectors â1 = (a11, a12, a13), â2 =
(a21, a22, a23), â3 = (a31, a32, a33). Accordingly, we may view the system of
equations 


a11 a12 a13
a21 a22 a23
a31 a32 a33





x1
x2
x3


 =



b1
b2
b3


 ,

as a vector equation in the column vectors:

x1a1 + x2a2 + x3a3 = b, (90.40)

or as a system of 3 scalar equations:

â1 · x = b1
â2 · x = b2
â3 · x = b3,

(90.41)

where the rows âi may be interpreted as normals to planes. We know
from the discussion following (90.34) that (90.40) can be uniquely solved if
±V (a1, a2, a3) = a1 · a2 × a3 6= 0.
We also know from Theorem 90.3 that if â2 × â3 6= 0, then the set

of x ∈ R3 satisfying the two last equations of (90.41) forms a line with
direction â2× â3. If â1 is not orthogonal to â2× â3 then we expect this line
to meet the plane given by the first equation of (90.41) at one point. Thus,
if â1 · â2× â3 6= 0 then (90.41) should be uniquely solvable. This leads to the
conjecture that V (a1, a2, a3) 6= 0 if and only if V (â1, â2, â3) 6= 0. In fact,
direct inspection from the formula (90.18) gives the more precise result,
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Theorem 90.5 If a1, a2 and a3 are the vectors formed by the columns of
a 3× 3 matrix A, and â1, â2 and â3 are the vectors formed by the rows of
A, then V (a1, a2, a3) = V (â1, â2, â3).

90.25 Non-Singular Matrices

Let A be a 3×3 matrix formed by three 3-column vectors a1, a2, and a3. If
V (a1, a2, a3) 6= 0 then we say that A is non-singular, and if V (a1, a2, a3) = 0
then we say that A is singular. From Section 90.21, we know that if A is
non-singular then the matrix equation Ax = b has a unique solution x for
each b ∈ R3. Further, if A is singular then the three vectors a1, a2 and a3
lie in the same plane and thus we can express one of the vectors as a linear
combination of the other two. This implies that there is a non-zero vector
x = (x1, x2, x3) such that Ax = 0. We sum up:

Theorem 90.6 If A is a non-singular 3 × 3 matrix then the system of
equations Ax = b is uniquely solvable for any b ∈ R3. If A is singular then
the system Ax = 0 has a non-zero solution x.

90.26 The Inverse of a Matrix

Let A be a non-singular 3 × 3 matrix. Let ci ∈ R3 be the solution to the
equation Aci = ei for i = 1, 2, 3, where the ei denote the standard basis
vectors here interpreted as 3-column vectors. Let C = (cij) be the matrix
with columns consisting of the vectors ci. We then have AC = I, where I
is the 3 × 3 identity matrix, because Aci = ei. We call C the inverse of A
and write C = A−1 and note that A−1 is a 3× 3 matrix such that

AA−1 = I, (90.42)

that is multiplication of A by A−1 from the right gives the identity. We now
want to prove that also A−1A = I, that is that we get the identity also by
multiplying A from the left by A−1. To see this, we first note that A−1 must
be non-singular, since if A−1 was singular then there would exist a non-zero
vector x such that A−1x = 0 and multiplying by A from the left would give
AA−1x = 0, contradicting the fact that by (90.42) AA−1x = Ix = x 6= 0.
Multiplying AA−1 = I with A−1 from the left, we get A−1AA−1 = A−1,
from which we conclude that A−1A = I by multiplying from the right with
the inverse of A−1, which we know exists since A−1 is non-singular.
We note that (A−1)−1 = A, which is a restatement of A−1A = I, and

that
(AB)−1 = B−1A−1

since B−1A−1AB = B−1B = I. We summarize:
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Theorem 90.7 If A is a 3× 3 non-singular matrix, then the inverse 3× 3
matrix A−1 exists, and AA−1 = A−1A = I. Further, (AB)−1 = B−1A−1.

90.27 Different Bases

Let {a1, a2, a3} be a linearly independent set of three vectors in R3, that is
assume that V (a1, a2, a3) 6= 0. Theorem 90.4 implies that any given b ∈ R3

can be uniquely expressed as a linear combination of {a1, a2, a3},
b = x1a1 + x2a2 + x3a3, (90.43)

or in matrix language


b1
b2
b3


 =



a11 a12 a13
a21 a22 a23
a31 a32 a33





x1
x2
x3


 or b = Ax,

where the columns of the matrix A = (aij) are formed by the vectors a1 =
(a11, a21, a31), a2 = (a12, a22, a32), a3 = (a13, a23, a33). Since V (a1, a2, a3) 6=
0, the system of equations Ax = b has a unique solution x ∈ R3 for any
given b ∈ R3, and thus any b ∈ R3 can be expressed uniquely as a linear
combination b = x1a1 + x2a2 + x3a3 of the set of vectors {a1, a2, a3} with
the coefficients (x1, x2, x3). This means that {a1, a2, a3} is a basis for R3

and we say that (x1, x2, x3) are the coordinates of b with respect to the
basis {a1, a2, a3}. The connection between the coordinates (b1, b2, b3) of b
in the standard basis and the coordinates x of b in the basis {a1, a2, a3} is
given by Ax = b or x = A−1b.

90.28 Linearly Independent Set of Vectors

We say that a set of three vectors {a1, a2, a3} in R3 is linearly independent
if V (a1, a2, a3) 6= 0. We just saw that a linearly independent set {a1, a2, a3}
of three vectors can be used as a basis in R3.
If the set {a1, a2, a3} is linearly independent then the system Ax = 0 in

which the columns of the 3× 3 matrix are formed by the coefficients of a1,
a2 and a3 has no other solution than x = 0.
Conversely, as a test of linear dependence we can use the following crite-

rion: if Ax = 0 implies that x = 0, then {a1, a2, a3} is linearly independent
and thus V (a1, a2, a3) 6= 0.
We summarize:

Theorem 90.8 A set {a1, a2, a3} of 3 vectors in R3 is linearly independent
and can be used as a basis for R3 if ±V (a1, a2, a3) = a1 ·a2× a3 6= 0. A set
{a1, a2, a3} of 3 vectors in R3 is linearly independent if and only if Ax = 0
implies that x = 0.
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90.29 Orthogonal Matrices

A 3 × 3 matrix Q satisfying Q⊤Q = I is called an orthogonal matrix. An
orthogonal matrix is non-singular with Q−1 = Q⊤ and thus also QQ⊤ = I.
An orthogonal matrix is thus characterized by the relation Q⊤Q = QQ⊤ =
I.
Let qi = (q1i, q2i, q3i) for i = 1, 2, 3, be the column vectors of Q, that is

the row vectors of Q⊤. Stating that Q⊤Q = I is the same as stating that

qi · qj = 0 for i 6= j, and |qi| = 1,

that is the columns of an orthogonal matrix Q are pairwise orthogonal and
have length one.

Example 90.12. The matrix

Q =



cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1


 , (90.44)

is orthogonal and corresponds to rotation of an angle θ around the x3
axis.

90.30 Linear Transformations Versus Matrices

Let A = (aij) be a 3×3 matrix. The mapping x→ Ax, that is the function
y = f(x) = Ax, is a transformation from R3 to R3. This transformation is
linear since A(x+y) = Ax+Ay and A(λx) = λAx for λ ∈ R. Thus, a 3×3
matrix A generates a linear transformation f : R3 → R3 with f(x) = Ax.
Conversely to each linear transformation f : R3 → R3, we can associate

a matrix A with coefficients given by

aij = fi(ej)

where f(x) = (f1(x), f2(x), f3(x)). The linearity of f(x) implies

f(x) = (f1(

3∑

j=1

xjej), f2(

3∑

j=1

xjej), f3(

3∑

j=1

xjej))
⊤

= (
3∑

j=1

f1(ej)xj ,
3∑

j=1

f2(ej)xj ,
3∑

j=1

f3(ej)xj)
⊤

= (

3∑

j=1

a1jxj ,

3∑

j=1

a2jxj ,

3∑

j=1

a3jxj)
⊤ = Ax,

which shows that a linear transformation f : R3 → R3 can be represented
as f(x) = Ax with the matrix A = (aij) with coefficients aij = fi(ej).
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Example 90.13. The projection Px = x·a
|a|2 a onto a non-zero vector

a ∈ R3 takes the matrix form

Px =




a21
|a|2

a1a2
|a|2

a1a3
|a|2

a2a1
|a|2

a22
|a|2

a2a3
|a|2

a3a1
|a|2

a3a2
|a|2

a23
|a|2






x1
x2
x3




Example 90.14. The projection Px = x− x·n
|n|2n onto a plane n ·x = 0

through the origin takes the matrix form

Px =




1− n2
1

|n|2 −n1n2

|n|2 −n1n3

|n|2

−n2n1

|n|2 1− n2
2

|n|2 −n2n3

|n|2

−n3n1

|n|2 −n3n2

|n|2 1− n2
3

|n|2






x1
x2
x3




Example 90.15. The mirror image of a point x with respect to a plane
through the origin given by (2P − I)x, where Px is the projection of x
onto the plane, takes the matrix form

(2P − I)x =




2
a21
|a|2 − 1 2a1a2|a|2 2a1a3|a|2

2a2a1|a|2 2
a22
|a|2 − 1 2a2a3|a|2

2a3a1|a|2 2a3a2|a|2 2
a23
|a|2 − 1






x1
x2
x3




90.31 The Scalar Product Is Invariant Under
Orthogonal Transformations

Let Q be the matrix {q1, q2, q2} formed by taking the columns to be the
basis vectors qj . We assume that Q is orthogonal, which is the same as as-
suming that {q1, q2, q2} is an orthogonal basis, that is the qj are pairwise or-
thogonal and have length 1. The coordinates x̂ of a vector x in the standard
basis with respect to the basis {q1, q2, q2} are given by x̂ = Q−1x = Q⊤x.
We shall now prove that if ŷ = Q⊤y, then

x̂ · ŷ = x · y,
which states that the scalar product is invariant under orthogonal coordi-
nate changes. We compute

x̂ · ŷ = (Q⊤x) · (Q⊤y) = x · (Q⊤)⊤Q⊤y = x · y,
where we used that for any 3× 3 matrix A = (aij) and x, y ∈ R3

(Ax) · y =

3∑

i=1

(

3∑

j=1

aijxj)yi =

3∑

j=1

(

3∑

i=1

aijyi)xj

= (A⊤y) · x = x · (A⊤y),

(90.45)
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with A = Q⊤, and the facts that (Q⊤)⊤ = Q and QQ⊤ = I.
We can now complete the argument about the geometric interpretation

of the scalar product from the beginning of this chapter. Given two non-
parallel vectors a and b, we may assume by an orthogonal coordinate trans-
formation that a and b belong to the x1 − x2-plane and the geometric
interpretation from Chapter Analytic geometry in R2 carries over.

90.32 Looking Ahead to Functions f : R3 → R3

We have met linear transformations f : R3 → R3 of the form f(x) = Ax,
where A is a 3× 3 matrix. Below we shall meet more general (non-linear)
transformations f : R3 → R3 that assign a vector f(x) = (f1(x), f2(x),
f3(x)) ∈ R3 to each x = (x1, x2, x3) ∈ R3. For example,

f(x) = f(x1, x2, x3) = (x2x3, x
2
1 + x3, x

4
3 + 5)

with f1(x) = x2x3, f2(x) = x21+x3, f3(x) = x43+5.We shall see that we may
naturally extend the concepts of Lipschitz continuity and differentiability
for functions f : R → R to functions f : R3 → R3. For example, we say
that f : R3 → R3 is Lipschitz continuous on R3 if there is a constant Lf
such that

|f(x)− f(y)| ≤ Lf |x− y| for all x, y ∈ R3.

Chapter 90 Problems

90.1. Show that the norm |a| of the vector a = (a1, a2, a3) is equal to the distance
from the origin 0 = (0, 0, 0) to the point (a1, a2, a3). Hint: apply Pythagoras
Theorem twice.

90.2. Which of the following coordinate systems are righthanded?

x1

x1

x1

x2

x2

x2 x3x3

x3
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90.3. Indicate the direction of a × b and b × a in Fig. 90.1 if b points in the
direction of the x1-axis. Consider also the same question in Fig. 90.2.

90.4. Given a = (1, 2, 3) and b = (1, 3, 1), compute a× b.

90.5. Compute the volume of the parallelepiped spanned by the three vectors
(1, 0, 0), (1, 1, 1) and (−1,−1, 1).

90.6. What is the area of the triangle formed by the three points: (1, 1, 0),
(2, 3,−1) and (0, 5, 1)?

90.7. Given b = (1, 3, 1) and a = (1, 1, 1), compute a) the angle between a and
b, b) the projection of b onto a, c) a unit vector orthogonal to both a and b.

90.8. Consider a plane passing through the origin with normal n = (1, 1, 1) and
a vector a = (1, 2, 3). Which point p in the plane has the shortest distance to a?

90.9. Is it true or not that for any 3 × 3 matrices A, B, and C and number λ
(a) A+B = B +A, (b) (A+B) +C = A+ (B +C), (c) λ(A+B) = λA+ λB?

90.10. Prove that for 3 × 3 matrices A, B and C: (AB)C = A(BC). Hint:
Use that D = (AB)C has the elements dij =

∑3
k=1(

∑3
l=1 ailblk)ckj , and do the

summation in a different order.

90.11. Give examples of 3×3-matrices A and B such that AB 6= BA. Is it difficult
to find such examples, that is, is it exceptional or “normal” that AB 6= BA.

90.12. Prove Theorem 90.5.

90.13. Write down the three matrices corresponding to rotations around the x1,
x2 and x3 axis.

90.14. Find the matrix corresponding to a rotation by the angle θ around a
given vector b in R3.

90.15. Give the matrix corresponding to be mirroring a vector through the
x1 − x2-plane.

90.16. Consider a linear transformation that maps two points p1 and p2 in R3

into the points p̂1, p̂2, respectively. Show that all points lying on a straight line
between p1, p2 will be transformed onto a straight line between p̂1 and p̂2.

90.17. Consider two straight lines in R3 given by: a + λb and c + µd where
a, b, c, d ∈ R3, λ, µ ∈ R. What is the shortest distance between the two lines?

90.18. Compute the intersection of the two lines given by: (1, 1, 0) + λ(1, 2,−3)
and (2, 0,−3) + µ(1, 1,−3). Is it a rule or an exception that such an intersection
can be found?

90.19. Compute the intersection between two planes passing through the origin
with normals n1 = (1, 1, 1), n2 = (2, 3, 1). Compute the intersection of these two
planes and the x1 − x2 plane.
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x1

x2

x3

r

a

n

b

90.20. Prove that (90.42) implies that the inverse of A−1 exists.

90.21. Consider a plane through a point r with normal n. Determine the re-
flection in the plane at r of a light ray entering in a direction parallel to a given
vector a.

90.22. Show that the distance between a point b and its projection onto a plane
n · x = d is equal to the shortest distance between b and any point in the plane.
Give both a geometric proof based on Pythagoras’ theorem, and an analytical
proof. Hint: For x in the plane write |b− x|2 = |b− Pb+ (Pb− x)|2 = (b− Pb+
(Pb− x), b− Pb+ (Pb− x)) and expand using that (b− Pb, P b− x) = 0).

90.23. Express (90.31) i matrix form.

90.24. Complete the proof of the claim that (90.30) is uniquely solvable.
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90.34 Gösta Mittag-Leffler

The Swedish mentor of Sonya Kovalevskaya was Gösta Mittag-Leffler (1846-
1927), famous Swedish mathematician and founder of the prestigous jour-
nal Acta Mathematica, see Fig. 90.34. The huge mansion of Mittag-Leffler,
beautifully situated in in Djursholm, just outside Stockholm, with an im-
pressive library, now houses Institut Mittag-Leffler bringing mathemati-
cians from all over the world together for work-shops on different themes
of mathematics and its applications. Mittag-Leffler made important con-
tributions to the theory of functions of a complex variable, see Chapter
Analytic functions below.

FIGURE 90.11. Gösta Mittag-Leffler, Swedish mathematician and founder of
Acta Mathematica: “The mathematician’s best work is art, a high perfect art, as
daring as the most secret dreams of imagination, clear and limpid. Mathematical
genius and artistic genius touch one another”.
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91
Complex numbers

The imaginary number is a fine and wonderful recourse of the divine
spirit, almost an amphibian between being and not being. (Leibniz)

The composition of vast books is a laborious and impoverishing
extravagance. To go on for five hundred pages developing an idea
whose perfect oral exposition is possible in a few minutes! A better
course of procedure is to pretend that these books already exist, and
then to offer a resume, a commentary...More reasonable, more inept,
more indolent, I have preferred to write notes upon imaginary books.
(Borges, 1941)

91.1 Introduction

In this chapter, we introduce the set of complex numbers C. A complex
number, typically denoted by z, is an ordered pair z = (x, y) of real numbers
x and y, where x represents the real part of z and y the imaginary part of
z. We may thus identify C with R2 and we often refer to C as the complex
plane. We further identify the set of complex numbers with zero imaginary
part with the set of real numbers and write (x, 0) = x, viewing the real
line R as the x-axis in the complex plane C. We may thus view C as an
extension of R. Similarly, we identify the set of complex numbers with
zero real part with the y-axis, which we also refer to as the set of purely
imaginary numbers. The complex number (0, 1) is given a special name
i = (0, 1), and we refer to i as the imaginary unit.
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i = (0, 1)

1 = (1, 0)

z = (x, y)

x = Re z

y = Im z

FIGURE 91.1. The complex plane C = R2

The operation of addition in C coincides with the operation of vector
addition in R2. The new aspect of C is the operation of multiplication of
complex numbers, which differs from scalar and vector multiplication in
R2.
The motivation to introduce complex numbers comes from considering

for example the polynomial equation x2 = −1, which has no root if x is
restricted to be a real number. There is no real number x such that x2 = −1
since x2 ≥ 0 for x ∈ R. We shall see that if we allow x to be a complex
number, the equation x2 = −1 becomes solvable and the two roots are
x = ±i. More generally, the Fundamental Theorem of Algebra states that
any polynomial equation with real or complex coefficients has a root in the
set of complex numbers. In fact, it follows that a polynomial equation of
degree n has exactly n roots.
Introducing the complex numbers finishes the extension process from nat-

ural numbers over integers and rational numbers to real numbers, where
in each case a new class of polynomial equations could be solved. Further
extensions beyond complex numbers to for example quarternions consisting
of quadruples of real numbers were made in the 19th century by Hamilton,
but the initial enthusiasm over these constructs faded since no fully con-
vincing applications were found. The complex numbers, on the other hand,
have turned out to be very useful.

91.2 Addition and Multiplication

We define the sum (a, b) + (c, d) of two complex numbers (a, b) and (c, d),
obtained through the operation of addition denoted by +, as follows:

(a, b) + (c, d) = (a+ c, b+ d), (91.1)
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that is we add the real parts and imaginary parts separately. We see that
addition of two complex numbers corresponds to vector addition of the cor-
responding ordered pairs or vectors in R2. Of course, we define subtraction
similarly: (a, b)− (c, d) = (a− c, b− d).
We define the product (a, b)(c, d) of two complex numbers (a, b) and (c, d),

obtained through the operation of multiplication, as follows:

(a, b)(c, d) = (ac− bd, ad+ bc). (91.2)

We can readily check using rules for operating with real numbers that the
operations of addition and multiplication of complex numbers obey the
commutative, associative and distributive rules valid for real numbers.
If z = (x, y) is a complex number, we can write

z = (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x+ iy, (91.3)

referring to the identification of complex numbers of the form (x, 0) with x,
(and similarly (y, 0) with y of course) and the notation i = (0, 1) introduced
above. We refer to x is the real part of z and y as the imaginary part of z,
writing x = Re z and y = Im z, that is

z = Re z + i Im z = (Re z, Im z). (91.4)

We note in particular that

i2 = i i = (0, 1)(0, 1) = (−1, 0) = −(1, 0) = −1, (91.5)

and thus z = i solves the equation z2 + 1 = 0. Similarly, (−i)2 = −1, and
thus the equation z2 + 1 = 0 has the two roots z = ±i.
The rule (91.2) for multiplication of two complex numbers (a, b) and

(c, d), can be retrieved using that i2 = −1 (and taking the distributive law
for granted):

(a, b)(c, d) = (a+ ib)(c+ id) = ac+ i2bd+ i(ad+ bc) = (ac− bd, ad+ bc).

We define the modulus or absolute value |z| of a complex number z =
(x, y) = x+ iy, by

|z| = (x2 + y2)1/2, (91.6)

that is, |z| is simply the length or norm of the corresponding vector (x, y) ∈
R2. We note that if z = x+ iy, then in particular

|x| = |Re z| ≤ |z|, |y| = |Im z| ≤ |z|. (91.7)

91.3 The Triangle Inequality

If z1 and z2 are two complex numbers, then

|z1 + z2| ≤ |z1|+ |z2|. (91.8)

This is the triangle inequality for complex numbers, which follows directly
from the triangle inequality in R2.
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91.4 Open Domains

We extend the notion of an open domain in R2 to C in the natural way.
We say that a domain Ω in C is open if the corresponding domain in R2 is
open, that is for each z0 ∈ Ω there is a positive number r0 such that the
complex numbers z with |z − z0| < r also belong to Ω. For example, the
set Ω = {z ∈ C : |z| < 1}, is open.

91.5 Polar Representation of Complex Numbers

Using polar coordinates in R2, we can express a complex number as follows

z = (x, y) = r(cos(θ), sin(θ)) = r(cos(θ) + i sin(θ)), (91.9)

where r = |z| is the modulus of z and θ = arg z is the argument of z, and
we also used (91.3). We usually assume that θ ∈ [0, 2π), but by periodicity
we may replace θ by θ + 2πn with n = ±1,±2, ...,. Choosing θ ∈ [0, 2π),
we obtain the principal argument of z, which we denote by Arg z.

x = Re z

y = Im z

θ

r

x = r cos(θ)

y = r sin(θ)
z = (x, y) = r (cos(θ), sin(θ))

FIGURE 91.2. Polar representation of a complex number

Example 91.1. The polar representation of the complex number z =
(1,

√
3) = 1+ i

√
3 is z = 2(cos(π3 ), sin(

π
3 )), or z = 2(cos(60◦), sin(60◦)).

91.6 Geometrical Interpretation of Multiplication

To find the operation on vectors in R2 corresponding to multiplication of
complex numbers, it is convenient to use polar coordinates,

z = (x, y) = r(cos(θ), sin(θ)),
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where r = |z| and θ = Arg z. Letting ζ = (ξ, η) = ρ(cos(ϕ), sin(ϕ)) be an-
other complex number expressed using polar coordinates, the basic trigono-
metric formulas from the Chapter Pythagoras and Euclid imply

zζ = r(cos(θ), sin(θ)) ρ(cos(ϕ), sin(ϕ))

= rρ(cos(θ) cos(ϕ) − sin(θ) sin(ϕ), cos(θ) sin(ϕ) + sin(θ) cos(ϕ))

= rρ(cos(θ + ϕ), sin(θ + ϕ)).

We conclude that multiplying z = r(cos(θ), sin(θ)) by ζ = ρ(cos(ϕ), sin(ϕ))
corresponds to rotating the vector z the angle ϕ = Arg ζ, and changing its
modulus by the factor ρ = |ζ|. In other words, we have

arg zζ = Arg z +Arg ζ, |zζ| = |z||ζ|. (91.10)

1
x = Re z

y = Im z

z

ζ

z ζ

|z ζ| = |z| |ζ|
Arg z ζ = Arg z +Arg ζ

FIGURE 91.3. Geometrical interpretation of multiplication of a complex numbers

Example 91.2. Multiplication by i corresponds to rotation counter-
clockwise π

2 , or 90
◦.

91.7 Complex Conjugation

If z = x+ iy is a complex number with x and y real, we define the complex
conjugate z̄ of z as

z̄ = x− iy.

We see that z is real if and only if z̄ = z and that z is purely imaginary,
that is Re z = 0, if and only z = −z̄.
Identifying C with R2, we see that complex conjugation corresponds

to reflection in the real axis. We also note the following relations, easily
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verified,

|z|2 = zz̄, Re z =
1

2
(z + z̄), Im z =

1

2i
(z − z̄). (91.11)

91.8 Division

We extend the operation of division (denoted by /) of real numbers to
division of complex numbers by defining for w, u ∈ C with u 6= 0,

z = w/u =
w

u
if and only if uz = w.

To compute w/u for given w, u ∈ C with u 6= 0, we proceed as follows:

w/u =
w

u
=
wū

uū
=
wū

|u|2 .

Example 91.3. We have

1 + i

2 + i
=

(1 + i)(2− i)

5
=

3

5
+ i

1

5
.

Note that we consider complex numbers as scalars although they have a
lot in common with vectors in R2. The main reason for this is that ....

91.9 The Fundamental Theorem of Algebra

Consider a polynomial equation p(z) = 0, where p(z) = a0+a1z+ ...+anz
n

is a polynomial in z of degree n with complex coefficients a0, ..., an. The
Fundamental Theorem of Algebra states that the equation p(z) has at least
one complex root z1 satisfying p(z1) = 0. By the factorization algorithm,
it follows that p(z) can be factored into

p(z) = (z − z1)p1(z),

where p1(z) is a polynomial of degree at most n−1. Indeed, the factorization
algorithm from the Chapter Combinations of functions (Section 11.4) shows
that

p(z) = (z − z1)p1(z) + c,

where c is a constant. Setting z = z1, it follows that c = 0. Repeating the
argument, we find that p(z) can be factored into

p(z) = c(z − z1)....(z − zn),

where z1, .., zn are the (complex valued in general) roots of p(z) = 0.



91.10 Roots 463

91.10 Roots

Consider the equation in w ∈ C

wn = z,

where n = 1, 2, .. is a natural number and z ∈ C is given. Using polar
coordinates with z = |z|(cos(θ), sin(θ)) ∈ C and w = |w|(cos(ϕ), sin(ϕ)) ∈
C, the equation wn = z takes the form

|w|n(cos(nϕ), sin(nϕ)) = |z|(cos(θ), sin(θ))

from which it follows that

|w| = |z| 1n , ϕ =
θ

n
+ 2π

k

n
,

where k = 0, ..., n−1. We conclude that the equation wn = z has n distinct
roots on the circle |w| = |z| 1

n . In particular, the equation w2 = −1 has the
two roots w = ±i. The n roots of the equation wn = 1 are called the n
roots of unity.

11

z z
w1

w1

w2

w2

w3

x = Re zx = Re z

y = Im zy = Im z

θ/2 θ/2 θ/3

FIGURE 91.4. The “square” and “cubic” roots of z.

91.11 Solving a Quadratic Equation
w2 + 2bw + c = 0

Consider the quadratic equation for w ∈ C,

w2 + 2bw + c = 0,

where b, c ∈ C. Completing the square, we get

(w + b)2 = b2 − c.
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If b2 − c ≥ 0 then
w = −b±

√
b2 − c,

while if b2 − c < 0 then

w = −b± i
√
c− b2.

Chapter 91 Problems

91.1. Show that (a) 1
i
= −i, (b) i4 = 1.

91.2. Find (a) Re 1
1+i

, (b) Im 3+4i
7−i , (c) Im

z
z̄
.

91.3. Let z1 = 4− 5i and z2 = 2 + 3i. Find in the form z = x+ iy (a) z1z2, (b)
z1
z2
, (c) z1

z1+z2
.

91.4. Show that the set of complex numbers z satisfying an equation of the form
|z − z0| = r, where z0 ∈ C is given and r > 0, is a circle in the complex plane
with center z0 and radius r.

91.5. Represent in polar form (a) 1 + i, (b) 1+i
1−i , (c)

2+3i
5+4i

.

91.6. Solve the equations (a) z2 = i, (b) z8 = 1, (c) z2 + z + 1 = −i, (d)
z4 − 3(1 + 2i)z2 + 6i = 0.

91.7. Determine the sets in the complex plane represented by (a) | z+i
z−i | = 1, (b)

Im z2 = 2, (c) |Arg z| ≤ π
4
.

91.8. Express z/w in polar coordinates in terms of the polar coordinates of z
and w.

91.9. Describe in geometrical terms the mappings f : C → C given by (a)

f(z) = az + b, with a, b ∈ C, (b) f(z) = z2, (c) f(z) = z
1
2 .
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92
Analytic Geometry in Rn

I also think that the (mathematical) mine has become too deep and
sooner or later it will be necessary to abandon it if new ore-bearing
veins shall not be discovered. Physics and Chemistry display now
treasures much more brilliant and easily exploitable, thus, appar-
ently, everybody has turned completely in this direction, and possi-
bly posts in Geometry in the Academy of Sciences will some day be
like chairs in Arabic Language in universities at present. (Lagrange,
1781)

92.1 Introduction and Survey of Basic Objectives

We now generalize the discussion of analytic geometry to Rn, where n is
an arbitrary natural number. Following the pattern set above for R2 and
R3, we define Rn to be the set of all possible ordered n-tuples of the form
(x1, x2, ...., xn) with xi ∈ R for i = 1, ..., n. We refer to Rn as n-dimensional
Euclidean space.
We all have a direct concrete experience of R3 as the three-dimensional

space of the real World, and we may think of R2 as an infinite flat sur-
face, but we don’t have a similar experience with for example R4, except
possibly from some science fiction novel with space ships travelling in four-
dimensional space-time. Actually, Einstein in his theory of relativity used
R4 as the set of space-time coordinates (x1, x2, x3, x4) with x4 = t repre-
senting time, but of course had the same difficulty as we all have of “seeing”
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an object in R4. In Fig. 42.1, we show a projection into R3 of a 4-cube in
R4, and we hope the clever reader can “see” the 4-cube.

FIGURE 92.1. A cube in R4

More generally, the need of using Rn arises as soon as we have n different
variables to deal with, which occurs all the time in applications, and Rn

is thus one of the most useful concepts in mathematics. Fortunately, we
can work with Rn purely algebraically without having to draw geometric
pictures, that is we can use the tools of analytic geometry in Rn in pretty
much the same way as we have done in R2 and R3.
Most of this chapter is one way or the other connected to systems of m

linear equations in n unknowns x1, ..., xn, of the form

n∑

j=1

aijxj = bi for i = 1, ...,m, (92.1)

that is,
a11x1 + a12x2 + ....+ a1nxn = b1,
a21x1 + a22x2 + ....+ a2nxn = b2,

......
am1x1 + am2x2 + ....+ amnxn = bm,

(92.2)

where the aij are given (real) coefficients and (b1, ..., bm) ∈ Rm is a given
right-hand side. We will write this system in matrix form as

Ax = b, (92.3)

that is 


a11 a12 .. a1n
. . .. .
. . .. .

am1 am2 .. amn







x1
.
.
xn


 =




b1
.
.
bm


 , (92.4)

where A = (aij) is a m×n matrix with rows (ai1, ...., ain), i = 1, ...,m, and
columns (a1j , ..., amj), j = 1, ..., n, and we view x = (x1, ..., xn) ∈ Rn and
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b = (b1, ..., bm) ∈ Rm as column vectors. We will also write the system in
the form

x1a1 + · · ·+ xnan = b, (92.5)

expressing the given column vector b ∈ Rm as a linear combination of
the column vectors aj = (a1j , a2j , ..., amj), j = 1, 2, ..., n, with coefficients
(x1, ..., xn). Notice that we use both (column) vectors in Rm (such as the
columns of the matrix A and the right hand side b) and (column) vectors
in Rn such as the solution vector x.
We shall view f(x) = Ax as a function or transformation f : Rn → Rm,

and we thus focus on a particular case of our general problem of solving
systems of equations of the form f(x) = b, where f : Rn → Rm is the
linear transformation f(x) = Ax. We shall denote by R(A) the range of
f(x) = Ax, that is

R(A) = {Ax ∈ Rm : x ∈ Rn} = {
n∑

j=1

xjaj : xj ∈ R},

and by N(A) the null space of f(x) = Ax that is

N(A) = {x ∈ Rn : Ax = 0} = {x ∈ Rn :

n∑

j=1

xjaj = 0}.

We are interested in the question of existence and/or uniqueness of solu-
tions x ∈ Rn to the problem Ax = b for a given m× n matrix A and right
hand side b ∈ Rm. Of particular interest is the case m = n with as many
equations as unknowns.
Existence of a solution x to Ax = b is of course the same as saying that

b ∈ R(A), which is the same as saying that b is a linear combination of the
columns of A. Uniqueness is the same as saying that N(A) = 0, because if
x and x̂ satisfy Ax = b and Ax̂ = b, then by linearity, A(x − x̂) = 0, and
if N(A) = 0 then x − x̂ = 0 that is x = x̂. Further, the non-uniqueness
of solutions of Ax = b is described by N(A): If Ax̂ = b and Ax = b, then
x− x̂ ∈ N(A).
We may thus formulate the following prime objectives of our study of

the linear transformation f(x) = Ax given by the matrix A:

• Determine R(A).

• Determine N(A).

• Solve Ax = b for given b.

We state here the following partial answer given by the Fundamental The-
orem of Linear Algebra, which we will prove in a couple of different ways
below: Let m = n and suppose that N(A) = 0. Then Ax = b has a unique
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solution for any b ∈ Rm, that is, R(A) = Rm. In other words, if m = n,
then uniqueness implies existence.
In our study we will be led to concepts such as: linear combination,

linear span, linear space, vector space, subspace, linear independence, basis,
determinant, linear transformation and projection, which we have already
met in the chapters on analytic geometry in R2 and R3 above.
This chapter focusses mostly on theoretical issues while the computa-

tional methods such as Gaussian elimination and iterative methods are
considered in more detail in Chapter Solving systems of linear equations
below.

92.2 Body/Soul and Artificial Intelligence

Before plunging into the geometry of Rn, we take a brake and return to the
story of Body and Soul which continues into our time with new questions:
Is it possible to create computer programs for Artificial Intelligence AI,
that is, can we give the computer some more or less advanced capability of
acting like an intelligent organism with some ability of “thinking”? It ap-
pears that this question does not yet have a clear positive answer, despite
many dreams in that direction during the development of the computer.
In seeking an answer, Spencer’s principle of adaptivity of course plays an
important role: an intelligent system must be able to adapt to changes in
its environment. Further, the presence of a goal or final cause according
to Leibniz, seems to be an important feature of intelligence, to judge if an
action of a system is stupid or not. Below we will design adaptive IVP-
solvers, which are computer programs for solving systems of differential
equations, with features of adaptive feed-back from the computational pro-
cess towards the goal of error control. These IVP-solvers thus show some
kind of rudiments of intelligence, and at any rate are infinitely much more
“clever” than traditional non-adaptive IVP-solvers with no feed-back.

92.3 The Vector Space Structure of Rn

We view Rn as a vector space consisting of vectors which are ordered n-
tuples, x = (x1, ...., xn) with components xi ∈ R, i = 1, ..., n. We write
x = (x1, ...., xn) for short, and refer to x ∈ Rn as a vector with component
xi in position i.
We may add two vectors x = (x1, ...., xn) and y = (y1, ...., yn) in Rn by

componentwise addition to get a new vector x+ y in Rn defined by

x+ y = (x1 + y1, x2 + y2, ...., xn + yn). (92.6)

Further, we may multiply a vector x = (x1, ...., xn) by a real number λ by
componentwise multiplication with λ, to get a new vector λx in Rn defined
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by
λx = (λx1, ..., λxn). (92.7)

The operations of adding two vectors in Rn and multiplying a vector
in Rn with a real number, of course directly generalize the corresponding
operations from the cases n = 2 and n = 3 considered above. The gener-
alization helps us to deal with Rn using concepts and tools which we have
found useful in R2 and R3.
We may thus add vectors in Rn and multiply them by real numbers

(scalars), the usual commutative and distributive rules hold for these op-
erations, and Rn is thus a vector space. We say that (0, 0, .., 0) is the zero
vector in Rn and write 0 = (0, 0, .., 0).
Linear algebra concerns vectors in vector spaces, also refereed to as linear

spaces, and linear functions of vectors, that is linear transformations of
vectors. As we just saw, Rn is a vector space, but there are also many
other types of vector spaces, where the vectors have a different nature. In
particular, we will below meet vector spaces consisting of vectors which
are functions. In this chapter we focus on Rn, the most basic of all vector
spaces. We know that linear transformations in R2 and R3 lead to 2 × 2
and 3 × 3 matrices, and we shall now generalize to linear transformations
from Rn into Rm which can be represented by m× n matrices.
We give in this chapter a condensed (and dry) presentation of some basic

facts of linear algebra in Rn. Many applications of the theoretical results
presented will appear in the rest of the book.

92.4 The Scalar Product and Orthogonality

We define the scalar product x · y = (x, y) of two vectors x and y in Rn, by

x · y = (x, y) =

n∑

i=1

xiyi. (92.8)

This generalizes the scalar product in R2 and R3. Note that here we intro-
duce a new notation for the scalar product of two vectors x and y, namely
(x, y), as an alternative to the “dot product” x · y used in R2 and R3. We
should be ready to use both notations.
The scalar product is bilinear in the sense that (x+y, z) = (x, z)+(y, z),

(λx, z) = λ(x, z), (x, y + z) = (x, y) + (x, z) and (x, λy) = λ(x, y), and
symmetric in the sense that (x, y) = (y, x), for all vectors x, y, z ∈ Rn and
λ ∈ R.
We say that two vectors x and y in Rn are orthogonal if (x, y) = 0. We

define

|x| = (

n∑

i=1

x2i )
1/2 = (x, x)1/2 (92.9)
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to be the Euclidean length or norm of the vector x. Note that this definition
of length is a direct generalization of the natural length |x| of a vector x in
Rn, n = 1, 2, 3.

Example 92.1. Let x = (2,−4, 5, 1, 3) and y = (1, 4, 6,−1, 2) be two
vectors in R5. We compute (x, y) = 2×1+(−4)×4+5×6+1× (−1)+
3× 2 = 21.

92.5 Cauchy’s Inequality

Cauchy’s inequality states that for x, y ∈ Rn,

|(x, y)| ≤ |x| |y|.

In words: the absolute value of the scalar product of two vectors is bounded
by the product of the norms of the vectors. We prove Cauchy’s inequality
by noting that for all s ∈ R,

0 ≤ |x+ sy|2 = (x + sy, x+ sy) = |x|2 + 2s(x, y) + s2|y|2,

and then assuming that y 6= 0, choosing s = −(x, y)/|y|2 (which minimizes
the right-hand side), to get

0 ≤ |x|2 − 2
(x, y)2

|y|2 +
(x, y)2

|y|2 = |x|2 − (x, y)2

|y|2 ,

which proves the desired result.
We recall that for n = 2, 3,

(x, y) = x · y = cos(θ)|x||y|,

where θ is the angle between x and y, from which of course Cauchy’s
inequality follows directly using the fact that | cos(θ)| ≤ 1.
We define the angle θ ∈ [0, 2π) between two non-zero vectors x and y in

Rn by

cos(θ) =
(x, y)

|x||y| , (92.10)

which generalizes the corresponding notion for n = 2, 3.

Example 92.2. The angle between the vectors x = (1, 2, 3, 4) and
y = (4, 3, 2, 1) inR4 is equal to arccos 2

3 ≈ 0.8411 ≈ 48◦ since (x, y) = 20

and |x| = |y| =
√
30.
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92.6 The Linear Combinations of a Set of Vectors

We know that two non-parallel vectors a1 and a2 in R3 define a plane in R3

through the origin consisting of all the linear combinations λ1a1+λ2a2 with
coefficients λ1 and λ2 in R. The normal to the plane is given by a1 × a2. A
plane through the origin is an example of subspace of R3, which is a subset
of R with the property that vector addition and scalar multiplication does
not lead outside the set. So, a subset S of R3 is a subspace if the sum of
any two vectors in S belongs to S and scalar multiplication of a vector in
S gives a vector in S. Clearly, a plane through the origin is a subspace of
R3. Similarly, a line through the origin defined as the scalar multiples λ1a1
with coefficients λ1 ∈ R and a1 a given vector in R3, is a subspace of R3.
The subspaces of R3 consist of lines and planes through the origin. Notice
that a plane or line in R3 not passing through the origin, is not a subspace.
More generally, we use the concept of a vector space to denote a set of

vectors for which the operations of vector addition and scalar multiplication
does not lead outside the set. Of course, R3 is a vector space. A subspace
of R3 is a vector space. A plane or line in R3 through the origin is a vector
space. The concept of vector space is fundamental in mathematics and we
will meet this term many times below.
We will now generalize to Rm with m > 3 and we will then meet new

examples of vector spaces and subspaces of vector spaces. Let a1, a2,...,an,
be n non-zero vectors in Rm. A vector b in Rm of the form

b = λ1a1 + λ2a2 + · · ·+ λnan, (92.11)

where the λi ∈ R, is said to be a linear combination of the set of vectors
{a1, ..., an} with coefficients λ1, ..., λn. If

c = µ1a1 + µ2a2 + · · ·+ µnan, (92.12)

is another linear combination of {a1, ..., an} with coefficients µj ∈ R, then
the vector

b+ c = (λ1 + µ1)a1 + (λ2 + µ2)a2 + · · ·+ (λ+µn)an, (92.13)

is again a linear combination of {a1, ..., am} now with coefficients λj + µj .
Further, for any α ∈ R the vector

αb = αλ1a1 + αλ2a2 + · · ·+ αλmam (92.14)

is also a linear combination of {a1, ..., am} with coefficients αλj . This means
that if we let S(a1, ...an) denote the set of all linear combinations

λ1a1 + λ2a2 + · · ·+ λnan, (92.15)

of {a1, ..., an}, where the coefficients λj ∈ R, then S(a1, ...an) is indeed a
vector space, since vector addition and multiplication by scalars do not lead
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outside the set. The sum of two linear combinations of {a1, ..., an} is also a
linear combination of {a1, ..., an}, and a linear combination of {a1, ..., an}
multiplied by a real number is also a linear combination of {a1, ..., an}.
We refer to the vector space S(a1, ...an) of all linear combinations of the

form (92.15) of the vectors {a1, ..., an} in Rm as the subspace of Rm spanned
by the vectors {a1, ..., an}, or simply just the span of {a1, ..., an}, which we
may describe as:

S(a1, ...an) =
{ n∑

i=1

λjaj : λj ∈ R, j = 1, ..., n
}
.

If m = 2 and n = 1, then the subspace S(a1) is a line in R2 through the
origin with direction a1. If m = 3 and n = 2, then S(a1, a2) corresponds
to the plane in R3 through the origin spanned by a1 and a2 (assuming a1
and a2 are non-parallel), that is, the plane through the origin with normal
given by a1 × a2.
Note that for any µ ∈ R, we have

S(a1, a2, ..., an) = S(a1, a2 − µa1, a3, ..., an), (92.16)

since we can replace each occurrence of a2 by the linear combination (a2 −
µa1) + µa1 of a2 − µa1 and a1. More generally, we can add any multiple
of one vector to one of the other vectors without changing the span of the
vectors! Of course we may also replace any vector aj with a µaj where µ
is a non-zero real number without changing the span. We shall return to
these operations below.

92.7 The Standard Basis

The set of vectors in Rn:

{(1, 0, 0, · · · , 0, 0), (0, 1, 0, · · · , 0, 0), · · · , (0, 0, 0, · · · , 0, 1)} ,
commonly denoted by {e1, ...., en}, where ei = (0, 0, .., 0, 1, 0, ..., 0) with a
single coefficient 1 at position i, is called the standard basis for Rn. Any
vector x = (x1, ..., xn) ∈ Rn can be written as a linear combination of the
basis vectors {e1, ..., en}:

x = x1e1 + x2e2 + · · ·+ xnen, (92.17)

with the coefficients xj of x appearing as coefficients of the basis vectors
ej. We note that (ej , ek) = ej · ek = 0 for j 6= k, that is the standard basis
vectors are pairwise orthogonal, and of length one since (ej , ej) = |ej |2 = 1.
We may thus express the coefficients xi of a given vector x = (x1, ..., xn)
with respect to the standard basis {e1, ...., en} as follows:

xi = (ei, x) = ei · x. (92.18)
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92.8 Linear Independence

We recall that to specify a plane in R3 as the set of linear combinations of
two given vectors a1 and a2, we assume that a1 and a2 are non-parallel.
The generalization of this condition to a set {a1, ..., am} of m vectors in
Rn, is referred to as linear independence, which we now proceed to define.
Eventually, this will lead us to the concept of basis of a vector space, which
is one of the most basic(!) concepts of linear algebra.
A set {a1, ..., an} of vectors in Rm is said to be linearly independent if

none of the vectors ai can be expressed as a linear combination of the
others. Conversely, if some of the vectors ai can be expressed as a linear
combination of the others, for example if

a1 = λ2a2 + ...+ λnan (92.19)

for some numbers λ2,...,λn, we say that the set {a1, a2, ..., an} is linearly
dependent. As a test of linear independence of {a1, a2, ..., an}, we can use:
if

λ1a1 + λ2a2 + ...+ λnan = 0 (92.20)

implies that λ1 = λ2 = .... = λn = 0, then {a1, a2, ..., an} is linearly
independent. This is because if (92.20) holds with some of the λj different
from 0, for example, λ1 6= 0, then we could divide by λ1 and express a1 as
a linear combination of {a2, ..., am}:

a1 = −λ2
λ1
a2 + ...+−λn

λ1
an. (92.21)

The standard basis {e1, ..., en} is (of course) a linearly independent set,
since if

λ1e1 + ....+ λnen = 0,

then λi = 0 for i = 1, ..., n, because 0 = (0, 0, ..., 0) = λ1e1 + ....+ λnen =
(λ1, ..., λn).

92.9 Reducing a Set of Vectors to get a Basis

Consider the subspace S(a1, ..., an) spanned by the set of vectors {a1, a2, ...,
an}. If the set {a1, a2, ..., an} is linearly dependent, say that an can be
expressed as a linear combination of {a1, ..., an−1}, then S(a1, ..., an) is in
fact spanned by {a1, ..., an−1} and thus S(a1, ..., an) = S(a1, ..., an−1). This
follows simply by replacing all occurrences of an by its linear combination of
{a1, ..., an−1}. Continuing this way, eliminating linearly dependent vectors,
we may express S(a1, ..., an) as the span of {a1, a2, ..., ak} (with a suitable
enumeration), that is, S(a1, ..., an) = S(a1, a2, ..., ak}, where k ≤ n, and the
set {a1, a2, ..., ak} is linearly independent. This means that {a1, a2, ..., ak} is
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a basis for the vector space S = S(a1, ..., an) in the sense that the following
two conditions are fulfilled:

• any vector in S can be expressed as a linear combination of
{a1, a2, ..., ak},

• the set {a1, a2, ..., ak} is linearly independent.

Note that by the linear independence the coefficients in the linear combi-
nation are uniquely determined: if two linear combinations

∑k
j=1 λjaj and∑k

j=1 µjaj are equal, then λj = µj for j = 1, .., k.
Each vector b ∈ S can thus be expresses as a unique linear combination

of the basis vectors {a1, a2, ..., ak}:

b =

k∑

j=1

λjaj ,

and we refer to (λ1, ..., λk) as the coefficients of b with respect to the basis
{a1, a2, ..., ak}.
The dimension of a vector space S is equal to the number of basis vectors

in a basis for S. We prove below that the dimension is uniquely defined so
that two sets of basis vectors always have the same number of elements.

Example 92.3. Consider the three vectors a1 = (1, 2, 3, 4), a2 =
(1, 1, 1, 1), and a3 = (3, 3, 5, 6) in R4. We see that a3 = a1 + 2a2, and
thus the set {a1, a2, a3} is linearly dependent. The span of {a1, a2, a3}
thus equals the span of {a1, a2}, since each occurrence of a3 can be
replaced by a1 + 2a2. The vector a3 is thus redundant, since it can be
replaced by a linear combination of a1 and a2. Evidently, {a1, a2} is
linearly independent, since a1 and a2 are non-parallel. Thus, {a1, a2} is
a linearly independent set spanning the same subset as {a1, a2, a3}. We
can also express a2 in terms of a1 and a3, or a1 in terms of a2 and a3,
and thus any set of two vectors {a1, a2}, {a1, a3} or {a2, a3}, can serve
as a basis for the subspace spanned by {a1, a2, a3}.

92.10 Using Column Echelon Form to Obtain a
Basis

We now present a constructive process for determining a basis for the vec-
tor space S(a1, ..., an) spanned by the set of vectors {a1, a2, ..., an}, where
aj = (a1j , ..., amj) ∈ Rm for j = 1, ..., n which we view as column vec-
tors. We refer to this process as reduction to column echelon form. It is of
fundamental importance and we shall return to it below in several differ-
ent contexts. Assume then first that a11 = 1 and choose µ ∈ R so that
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µa11 = a12, and note that S(a1, ..., an) = S(a1, a2 − µa1, a3, ..., an), where
now the first component of a2 − µa1 is zero. We here used the fact that
we can add one vector multiplied by a scalar to another vector without
changing the span of the vectors. Continuing in the same way we obtain
S(a1, ..., an) = S(a1, â2, â3, ...ân) where â1j = 0 for j > 1. In matrix form
with the aj ∈ Rm as column vectors, we may express this as follows:

S




a11 a12 .. a1n
a21 a22 .. a2n
. . .. .

am1 am2 .. amn


 = S




1 0 .. 0
a21 â22 .. â22
. . .. .

am1 âm2 .. âmn




We can now repeat the process by cutting out the first row and first column
and reduce to a set of n−1 vectors in Rm−1. Before doing this we take care
of the case a11 6= 1. If a11 6= 0, then we transform to the case a11 = 1 by
replacing a1 by µa1 with µ = 1/a11, noting that we can multiply any column
with a non-zero real number without changing the span. By renumbering
the vectors we may then assume that either a11 6= 0, which thus led to the
above construction, or a1j = 0 for j = 1, ..., n, in which case we seek to
compute a basis for

S




0 0 .. 0
a21 a22 .. a22
. . .. .

am1 am2 .. amn




with only zeros in the first row. We may then effectively cut out the first
row and reduce to a set of n vectors in Rm−1.
Repeating now the indicated process, we obtain with k ≤ min(n,m),

S




a11 a12 .. a1n
. . .. .
. . .. .

am1 am2 .. amn


 = S




1 0 0 .. 0 .. 0
â21 1 0 .. 0 .. 0
. . . 0 0 .. 0
. . .. 1 0 .. 0
. . .. . . .. .

âm1 âm2 .. âmk 0 .. 0



,

where we refer to the matrix on the right as the column echelon form
of the matrix to the left, and k is the number of non-zero columns. We
see that each non-zero column âj , j = 1, ..., k, in the echelon form has a
coefficient equal to 1 and that all matrix elements to the right and above
that coefficient is equal to zero. Further, the ones appear in a staircase
form descending to the right on or below the diagonal. The set of non-zero
columns {â1, ..., âk} is linearly independent, because if

k∑

j=1

x̂j âj = 0,
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then we get successively x̂1 = 0, x̂2 = 0,..., x̂k = 0, and thus {â1, ..., âk}
forms a basis for S(a1, ..., an). The dimension of S(a1, ..., an) is equal to k.
If zero columns appear in the echelon form, then the original set {a1, ..., an}
is linearly dependent.
We note that, because of the construction, zero columns must appear if

n > m, and we thus understand that a set of n vectors in Rm is linearly
dependent if n > m. We may also understand that if n < m, then the
set {a1, ..., an} cannot span Rm, because if k < m, then there are vectors
b ∈ Rm which cannot be expressed as linear combinations of {â1, ..., âk} as
we now show: if

b =

k∑

j=1

x̂j âj ,

then the coefficients x̂1, ..., x̂k are determined by the coefficients b1, ..., bk, of
b occurring in the rows with the coefficient 1. For example, in the case the
1s appear on the diagonal, we first compute x̂1 = b1, then x̂2 = b1 − â21x̂1
etc, and thus the remaining coefficients bk+1, ..., bm of b cannot be arbitrary.

92.11 Using Column Echelon Form to Obtain R(A)

By reduction to column echelon form we can construct a basis for R(A) for
a given m× n matrix A with column vectors a1, ..., an because

Ax =
n∑

j=1

xjaj

and thus R(A) = S(a1, ..., an) expressing that the range R(A) = {Ax : x ∈
Rn} is equal to the vector space S(a1, ..., an) of all linear combinations of
the set of column vectors {a1, ..., an}. Setting now

A =




a11 a12 .. a1n
. . .. .
. . .. .

am1 am2 .. amn


 , Â =




1 0 0 .. 0 .. 0
â21 1 0 .. 0 .. 0
. . . 0 0 .. 0
. . .. 1 0 .. 0
. . .. . . .. .

âm1 âm2 .. âmk 0 .. 0




with Â obtained from A by reduction to column echelon form, we have

R(A) = R(Â) = S(â1, ..., âk),

and thus {â1, ..., âk} forms a basis for R(A). In particular we can easily
check if a given vector b ∈ Rm belongs to R(A), by using the echelon
form. By reduction to column echelon form we can thus give an answer
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to the basic problem of determining R(A) for a given matrix A. Not bad.
For example, in the case m = n we have that R(A) = Rm if and only if
k = n = m, in which case the echelon form Â has 1s all along the diagonal.
We give an example showing the sequence of matrices appearing in re-

duction to column echelon form:

Example 92.4. We have

A =




1 1 1 1 1
1 2 3 4 7
1 3 4 5 8
1 4 5 6 9


→




1 0 0 0 0
1 1 2 3 6
1 2 3 4 7
1 3 4 5 8




→




1 0 0 0 0
1 1 0 0 0
1 2 −1 −2 −5
1 3 −2 −4 −10


→




1 0 0 0 0
1 1 0 0 0
1 2 1 −2 −5
1 3 2 −4 −10




→




1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 2 0 0


 = Â.

We conclude that R(A) is spanned by the 3 non-zero columns of Â and
thus in particular that the dimension of R(A) is equal to 3. In this
example, A is a 4 × 5 matrix and R(A) does not span R4. Solving the
system

Âx̂ =




1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 2 0 0







x̂1
x̂2
x̂3
x̂4
x̂5




=




b1
b2
b3
b4




we compute uniquely x̂1, x̂2 and x̂3 from the first three equations, and
to have the fourth equation satisfied, we must have b4 = x̂1+3x̂2+2x̂3
and thus b4 can not be chosen freely.

92.12 Using Row Echelon Form to Obtain N(A)

We take the chance to solve the other basic problem of determining N(A)
by reduction to row echelon form, which is analogous to reduction to column
echelon form working now with the rows instead of the columns. We thus
consider a m× n matrix

A =




a11 a12 .. a1n
. . .. .
. . .. .

am1 am2 .. amn


 ,
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and perform the operations of (i) multiplying one row with a real num-
ber and (ii) multiplying one row with a real number and subtracting it
from another row. We then obtain the row echelon form of A (possibly by
reordering rows):

Â =




1 â12 . . .. . â1n
0 1 . .. . .. â2n
. . . . . .. .
0 0 .. 1 . .. âkn
0 0 .. 0 0 .. 0
. . .. . . .. .
0 0 .. 0 0 .. 0




Each non-zero row of the row echelon matrix Â has one element equal to 1
and all elements to the left and below are equal to zero, and the 1s appear
in a staircase form on or to the right of the diagonal from the upper left
corner.
We notice that the row operations do not change the null space N(A) =

{x : Ax = 0}, because we may perform the row operations in the system
of equations Ax = 0, that is

a11x1 + a12x2 + ....+ a1nxn = 0,
a21x1 + a22x2 + ....+ a2nxn = 0,

......
am1x1 + am2x2 + ....+ amnxn = 0,

to reduce it to the echelon form system Âx = 0 without changing the vector
x = (x1, ..., xn). We conclude that

N(A) = N(Â)

and we may thus determine N(A) by using that we can directly determine
N(Â) from the echelon form of A. It is easy to see that the dimension of
N(A) = N(Â) is equal to n− k, as illustrated in the following example. In
the case n = m, we have that N(A) = 0 if and only if k = m = n in which
all diagonal elements of Â are equal to 1.
We give an example showing the sequence of matrices appearing in re-

duction to row echelon form:

Example 92.5. We have

A =




1 1 1 1 1
1 2 3 4 7
1 3 4 5 8
1 4 5 6 9


→




1 1 1 1 1
0 1 2 3 6
0 2 3 4 7
0 3 4 5 8


→




1 1 1 1 1
0 1 2 3 6
0 0 −1 −2 −5
0 0 −2 −4 −10


→




1 1 1 1 1
0 1 2 3 6
0 0 1 2 5
0 0 0 0 0


 = Â.
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We now determine N(A) by determining N(Â) = N(A) by seeking the
solutions x = (x1, ..., x5) of the system Âx = 0, that is




1 1 1 1 1
0 1 2 3 6
0 0 1 2 5
0 0 0 0 0







x1
x2
x3
x4
x5




=




0
0
0
0


 .

We see that we can freely choose x4 and x5 and then solve for x3, x2
and x1 to get the solution in the form

x = λ1




0
1
−2
1
0




+ λ2




0
4
−5
0
1




where λ1 and λ2 are any real numbers. We have now computed a basis
for N(A) and we see in particular that the dimension of N(A) is equal
to 2. We recall that the dimension of R(A) is equal to 3 and we note
that the sum of the dimensions of R(A) and N(A) happens to be equal
to 5 that is the number of columns of A. This is a general fact which
we prove in the Fundamental Theorem below.

92.13 Gaussian Elimination

Gaussian elimination to compute solutions to the system



a11 a12 .. a1n
. . .. .
. . .. .

am1 am2 .. amn







x1
.
.
xn


 =




b1
.
.
bm




closely couples to reduction to row echelon form. Performing row operations
we may reduce to a system of the form

Â =




1 â12 . . .. . â1n
0 1 . .. . .. â2n
. . . . . .. .
0 0 .. 1 . .. âkn
0 0 .. 0 0 .. 0
. . .. . . .. .
0 0 .. 0 0 .. 0







x1
.
.
xn


 =




b̂1
.
.

b̂m




with the same solution vector x. We may assume, by possibly by renum-
bering the components of x, that the 1s appear on the diagonal. We see
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that solvability is equivalent to having b̂j = 0 for j = k + 1, ..,m, and the
non-uniqueness is expressed by N(A) as explained above. In the casem = n
we have that N(A) = 0 if and only if k = m = n in which case all diagonal

elements of Â are equal to 1, and the system Âx = b̂ is uniquely solv-
able for all b̂ ∈ Rm, and thus Ax = b is uniquely solvable for all b ∈ Rm.
We conclude that if m = n, then uniqueness implies existence. We may
thus say that by Gaussian elimination or reduction to row echelon form,
we may solve our basic problems of existence and uniqueness of solutions
to the system Ax = b. We shall add more information on these problems
in the Fundamental Theorem of Linear Algebra below. For more informa-
tion on Gaussian elimination, we refer to Chapter Solving Linear Algebraic
Systems below.

92.14 A Basis for Rn Contains n Vectors

Let us now prove that if {a1, ..., am} is a basis for Rn, then m = n, that
is any basis for Rn has exactly n elements, no more no less. We already
deduced this fact from the column echelon form above, but we here give a
“coordinate-free” proof which applies to more general situations.
We recall that a set {a1, ..., am} of vectors in Rn is a basis for Rn if the

following two conditions are fulfilled:

• {a1, ..., am} is linearly independent,

• any vector x ∈ Rn can be expressed as a linear combination x =∑m
j=1 λjaj of {a1, ..., am} with coefficients λj .

Of course, {e1, ..., en} is a basis for Rn in this sense.
To prove that m = n, we consider the set {e1, a1, a2, ..., am}. Since

{a1, ..., am} is a basis for Rn, that is spans Rn, the vector e1 can be ex-
pressed as a linear combination of {a1, ..., am}:

e1 =

m∑

j=1

λjaj,

with some λj 6= 0. Suppose λ1 6= 0. Then, dividing by λ1 expresses a1
as a linear combination of {e1, a2, ..., am}. This means that {e1, a2, ..., am}
spans Rn. Consider now the set {e1, e2, a2, ..., am}. The vector e2 can be
expressed as a linear combination of {e1, a2, ..., am} and some of the coef-
ficients of the aj must be non-zero, since {e1, e2} are linearly independent.
Supposing the coefficient of a2 is non-zero, we can eliminate a2 and thus
the set {e1, e2, a3, ..., am} now spans Rn. Continuing this way we get the set
{e1, e2, ..., en, an+1, ..., am} if m > n and the set {e1, e2, ..., en} if m = n,
which both span Rn. We conclude that m ≥ n, since if e.g. m = n − 1,
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we would end up with the set {e1, e2, ..., en−1} which does not span Rn

contrary to the assumption.
Repeating this argument with the roles of the basis {e1, e2, ..., en} and

{a1, a2, ..., am} interchanged, we get the reverse inequality n ≥ m and thus
n = m. Of course, intuitively, there are n independent directions in Rn and
thus a basis of Rn has n elements, no more no less.
We also note that if {a1, ..., am} is a linearly independent set in Rn, then

it can be extended to a basis {a1, ..., am, am+1, .., an} by adding suitable
elements am+1,..,an. The extension starts by adding am+1 as any vector
which cannot be expressed as a linear combination of the set {a1, ..., am}.
Then {a1, ..., am, am+1} is linearly independent, and if m + 1 < n, the
process may be continued.
We summarize as follows:

Theorem 92.1 Any basis of Rn has n elements. Further, a set of n vectors
in Rn span Rn if and only if it is linearly independent, that is a set of n
vectors in Rn that spans Rn or is independent, must be a basis. Also, a set
of fewer than n vectors in Rn cannot span Rn, and a set of more than n
vectors in Rn must be linearly dependent.

The argument used to prove this result can also be used to prove that
the dimension of a vector space S is well defined in the sense that any two
bases have the same number of elements.

92.15 Coordinates in Different Bases

There are many different bases in Rn if n > 1 and the coordinates of
a vector with respect to one basis are not equal to the coordinates with
respect to another basis.
Suppose {a1, ..., an} is a basis for Rn and let us seek the connection

between the coordinates of one and the same vector in the standard basis
{e1, ..., en} and the basis {a1, ..., an}. Assume then that the coordinates of
the basis vectors aj in the standard basis {e1, ..., en} are given by aj =
(a1j , ...anj) for j = 1, ...n, that is

aj =

n∑

i=1

aijei.

Denoting the coordinates of a vector x with respect to {e1, ..., en} by xj
and the coordinates with respect to {a1, ..., an} by x̂j , we have

x =

n∑

j=1

x̂jaj =

n∑

j=1

x̂j

n∑

i=1

aijei =

n∑

i=1

(

n∑

j=1

aij x̂j)ei, (92.22)
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that is since also x =
∑n

i=1 xiei and the coefficients xi of x are unique,

xi =

n∑

j=1

aij x̂j for i = 1, ...n. (92.23)

This relation expresses the connection between the coordinates x̂j with
respect to the basis {a1, ..., an}, and the coordinates xi with respect to
the standard basis {e1, ..., en}, in terms of the coordinates aij of the basis
vectors aj with respect to {e1, ..., en}. This is a basic connection, which will
play a central role in the development to come.
Using the scalar product we can express the coordinates aij of the basis

vector aj as aij = (ei, aj). To find the connection (92.23) between the
coordinates x̂j with respect to the basis {a1, ..., an}, and the coordinates
xi with respect to the standard basis {e1, ..., en}, we may start from the
equality

∑n
j=1 xjej = x =

∑n
j=1 x̂jaj and take the scalar product of both

sides with ei, to get

xi =

n∑

j=1

x̂j(ei, aj) =

n∑

j=1

aij x̂j , (92.24)

where aij = (ei, aj).

Example 92.6. The set {a1, a2, a3} with a1 = (1, 0, 0), a2 = (1, 1, 0),
a3 = (1, 1, 1) in the standard basis, forms a basis for R3 since the set
{a1, a2, a3} is linearly independent. This is because if λ1a1 + λ2a2 +
λ3a3 = 0, then λ3 = 0 and thus also λ2 = 0 and thus also λ1 = 0.
If (x1, x2, x3) are the coordinates with respect to the standard basis
and (x̂1, x̂2, x̂3) are the coordinates with respect to {a1, a2, a3} of a
certain vector, then the connection between the coordinates is given by
(x1, x2, x3) = x̂1a1 + x̂2a2 + x̂3a3 = (x̂1 + x̂2 + x̂3, x̂2 + x̂3, x̂3). Solving
for the x̂j in terms of the xi, we get (x̂1, x̂2, x̂3) = (x1−x2, x2−x3, x3).

92.16 Linear Functions f : Rn → R

A linear function f : Rn → R satisfies

f(x+ y) = f(x)+ f(y), f(αx) = αf(x) for all x, y ∈ Rn, α ∈ R. (92.25)

We say that f(x) is a scalar linear function since f(x) ∈ R. Expressing
x = x1e1 + ... + xnen in the standard basis {e1, ..., en}, and using the
linearity of f(x), we find that

f(x) = x1f(e1) + ....+ xnf(en), (92.26)
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and thus f(x) has the form

f(x) = f(x1, ..., xn) = a1x1 + a2x2 + ....+ anxn, (92.27)

where the aj = f(ej) are real numbers. We can write f(x) as

f(x) = (a, x) = a · x, (92.28)

where a = (a1, ..., an) ∈ Rn, that is f(x) can be expressed as the scalar
product of x with the vector a ∈ Rn with components aj given by aj =
f(ej).
The set of scalar linear functions is the mother of all other functions. We

now generalize to systems of scalar linear functions. Linear algebra is the
study of systems of linear functions.

Example 92.7. f(x) = 2x1 + 3x2 − 7x3 defines a linear function
f : R3 → R with coefficients f(e1) = a1 = 2, f(e2) = a2 = 3 and
f(e3) = a3 = −7.

92.17 Linear Transformations f : Rn → Rm

A function f : Rn → Rm is said to be linear if

f(x+ y) = f(x)+ f(y), f(αx) = αf(x) for all x, y ∈ Rn, α ∈ R. (92.29)

We also refer to a linear function f : Rn → Rm as a linear transformation
of Rn into Rm.
The image f(x) of x ∈ Rn is a vector in Rm with components which

we denote by fi(x), i = 1, 2, ...,m, so that f(x) = (f1(x), ..., fm(x)). Each
coordinate function fi(x) is a linear scalar function fi : Rn → R if f : Rn →
Rm is linear. We can thus represent a linear transformation f : Rn → Rm

as
f1(x) = a11x1 + a12x2 + ....+ a1nxn
f2(x) = a21x1 + a22x2 + ....+ a2nxn
......

fm(x) = am1x1 + am2x2 + ....+ amnxn

(92.30)

with the coefficients aij = fi(ej) = (ei, f(ej)) ∈ R.
We can write (92.30) in condensed form as

fi(x) =
n∑

j=1

aijxj for i = 1, ...,m. (92.31)

Example 92.8. f(x) = (2x1 + 3x2 − 7x3, x1 + x3) defines a linear
function f : R3 → R2 with coefficients f1(e1) = a11 = 2, f1(e2) =
a12 = 3 and f1(e3) = a13 = −7, f2(e1)a21 = 1, f2(e2)a22 = 0 and
f2(e3) = a23 = 1.
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92.18 Matrices

We now return to the notion of a matrix and develop a matric calculus.
The connection to linear transformations is very important. We define the
m× n matrix A = (aij) as the rectangular array




a11 a12 .. a1n
. . .. .
. . .. .

am1 am2 .. amn


 (92.32)

with rows (ai1, ...., ain), i = 1, ...,m, and columns (a1j , ..., amj), j = 1, ..., n,
where aij ∈ R.
We may view each row (ai1, ...., ain) as a n-row vector or as a 1 × n

matrix, and each column (a1j , ..., amj) as an m-column vector or a m × 1
matrix. We can thus view the m×n matrix A = (aij) with elements aij , as
consisting of m row vectors (ai1, ...., ain), i = 1, ...,m or n column vectors
(a1j , ..., amj), j = 1, ..., n.

92.19 Matrix Calculus

Let A = (aij) and B = (bij) be two m× n matrices. We define C = A+B
as the m× n matrix C = (cij) with elements

cij = aij + bij , i = 1, ..., n, j = 1, ...,m. (92.33)

We may thus add twom×nmatrices by adding the corresponding elements.
Similarly, we define for λ a real number the matrix λA with elements

(λaij), corresponding to multiplying all elements of A by the real number
λ.
We shall now define matrix multiplication and we start by defining the

product Ax of an m × n matrix A = (aij) with a n × 1 column vector
x = (xj) as the m × 1 column vector y = Ax with elements yi = (Ax)i
given by

(Ax)i =

n∑

j=1

aijxj , (92.34)

or with matrix notation



y1
y2
...
ym


 =




a11 a12 ... a1n
a21 a22 ... a2n
...
am1 am2 ... amn







x1
x2
...
xn


 .

The element yi = (Ax)i of the matrix-vector product Ax is thus obtained
by taking the scalar product of row i of A with the vector x, as expressed
by (92.34).
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We can now express a linear transformation f : Rn → Rm as a matrix-
vector product

f(x) = Ax,

where A = (aij) is anm×nmatrix with elements aij = fi(ej) = (ei, f(ej)),
where f(x) = (f1(x), ..., fm(x)). This is a restatement of (92.31).
We now proceed to define the product of an m×p matrix A = (aij) with

a p× n matrix B = (bij). We do this by connecting the matrix product to
the composition f ◦ g : Rn → Rm given by

f ◦ g(x) = f(g(x)) = f(Bx) = A(Bx), (92.35)

where f : Rp → Rm is the linear transformation given by f(y) = Ay, where
A = (aij) and aik = fi(ek), and g : Rn → Rp is the linear transformation
given by g(x) = Bx, where B = (bkj) and bkj = gk(ej). Here ek denote the
standard basis vectors in Rp, and ej the corresponding basis vectors in Rn.
Clearly, f ◦ g : Rn → Rm is linear and thus can be represented by an m×n
matrix. Letting (f ◦ g)i(x)) denote the components of (f ◦ g)(x), we have

(f ◦ g)i(ej) = fi(g(ej)) = fi(

p∑

k=1

bkjek) =

p∑

k=1

bkjfi(ek) =

p∑

k=1

aikbkj ,

which shows that f ◦ g(x) = Cx, where C = (cij) is the m× n matrix with
elements cij given by the formula

cij =

p∑

k=1

aikbkj , i = 1, ...,m, j = 1, ..., n. (92.36)

We conclude that A(Bx) = Cx, and we are thus led to define the matrix
product AB = C by (92.36), where thus A is an m× p matrix and B is a
p× n matrix, and the product AB is a m× n matrix. We can then write

A(Bx) = ABx

as a reflection of f(g(x)) = f ◦ g(x).
Formally, to get the m×n format of the product AB, we cancel the p in

the m× p format of A and the p× n format of B. We see that the formula
(92.36) may be expressed as follows: the element cij in row i and column j
of AB is obtained by taking the scalar product of row i of A with column
j of B.
We may write the formula for matrix multiplication as follows:

(AB)ij =

p∑

k=1

aikbkj , for i = 1, .., n, j = 1, ..,m, (92.37)
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or with matrix notation

AB =




a11 a12 ... a1p
a21 a22 ... a2p
...
am1 am2 ... amp







b11 b12 ... b1n
b21 b22 ... b2n
...
bp1 bp2 ... bpn




=




∑p
k=1 a1kbk1

∑p
k=1 a1kbk2 ...

∑p
k=1 a1kbkn∑p

k=1 a2kbk1
∑p

k=1 a2kbk2 ...
∑p

k=1 a2kbkn
...∑p

k=1 amkbk1
∑p

k=1 amkbk2 ...
∑p

k=1 amkbkn


 .

Matrix multiplication is not commutative, that is AB 6= BA in general.
In particular, BA is defined only if n = m.
As a special case, we have that the product Ax of an m × n matrix A

with an n× 1 matrix x is given by (92.34). We may thus view the matrix-
vector product Ax defined by (92.34) as a special case of the matrix product
(92.36) with the n × 1 matrix x being a column vector. The vector Ax is
obtained taking the scalar product of the rows of A with the column vector
x.
We sum up in the following theorem.

Theorem 92.2 A linear transformation f : Rn → Rm can be expressed as

f(x) = Ax, (92.38)

where A = (aij) is an m×n matrix with elements aij = fi(ej) = (ei, f(ej)),
where f(x) = (f1(x), ..., fm(x)). If g : Rn → Rp and f : Rp → Rm are
two linear transformations with corresponding matrices A and B, then the
matrix of f ◦ g : Rn → Rm is given by AB.

92.20 The Transpose of a Linear Transformation

Let f : Rn → Rm be a linear transformation defined by f(x) = Ax, where
A = (aij) is an m×n-matrix. We now define another linear transformation
f⊤ : Rm → Rn, which we refer to as the transpose of f , by the relation

(x, f⊤(y)) = (f(x), y) for all x ∈ Rn, y ∈ Rm. (92.39)

Using that f(x) = Ax, we have

(f(x), y) = (Ax, y) =

m∑

i=1

n∑

j=1

aijxjyi, (92.40)

and thus setting x = ej, we see that

(f⊤(y))j =
m∑

i=1

aijyi. (92.41)
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This shows that f⊤(y) = A⊤y, where A⊤ is the n×m matrix with elements
(a⊤ji) given by a⊤ji = aij . In other words, the columns of A⊤ are the rows of
A and vice versa. For example, if

A =

(
1 2 3
4 5 6

)
, then A⊤ =



1 4
2 5
3 6


 . (92.42)

Summing up we have:

Theorem 92.3 If A = (aij) is a m× n matrix, then the transpose A⊤ is
an n×m matrix with elements a⊤ji = aij, and

(Ax, y) = (x,A⊤y) for all x ∈ Rn, y ∈ Rm. (92.43)

An n× n matrix such that A⊤ = A, that is aij = aji for i, j = 1, ...n, is
said to be a symmetric matrix.

92.21 Matrix Norms

In many situations we need to estimate the “size” of a m× n matrix A =
(aij). We may use this information to estimate the “length” of y = Ax in
terms of the “length” of x. We observe that

m∑

i=1

|yi| ≤
m∑

i=1

n∑

j=1

|aij ||xj | =
n∑

j=1

m∑

i=1

|aij ||xj | ≤ max
j=1,...,n

m∑

i=1

|aij |
n∑

j=1

|xj |,

which shows that if we define ‖x‖1 =
∑ |xj | and ‖y‖1 =

∑ |yi|, then

‖y‖1 ≤ ‖A‖1‖x‖1
if we define

‖A‖1 = max
j=1,...,n

m∑

i=1

|aij |

Similarly, we have

max
i

|yi| ≤ max
i

n∑

j=1

|aij |xj | ≤ n
max
i

n∑

j=1

|aij |max
j

|xj |

which shows that if we define ‖x‖∞ = maxj |xj | and ‖y‖∞ = maxi |yi|,
then

‖y‖∞ ≤ ‖A‖∞‖x‖∞
if we define

‖A‖∞ = max
i+1,...,m

n∑

j=1

|aij |.
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We may also define the Euclidean norm ‖A‖ by

‖A‖ = max
x∈Rn

‖Ax‖
‖x‖ , (92.44)

where we maximize over x 6= 0, and ‖ · ‖ denotes the Euclidean norm. We
thus define ‖A‖ to be the smallest constant C such that ‖Ax‖ ≤ C‖x‖ for
all x ∈ Rn. We shall return in Chapter The Spectral theorem below to the
problem of giving a formula for ‖A‖ in terms of the coefficients of A in the
case A is symmetric (with in particular m = n). By definition, we clearly
have

‖Ax‖ ≤ ‖A‖ ‖x‖. (92.45)

If A = (λi) is a diagonal n × n matrix with diagonal elements aii = λi,
then

‖A‖ = max
i=1,...,n

|λi|. (92.46)

92.22 The Lipschitz Constant of a Linear
Transformation

Consider a linear transformation f : Rn → Rm given by a m × n matrix
A = (aij), that is

f(x) = Ax, for x ∈ Rn.

By linearity we have

‖f(x)− f(y)‖ = ‖Ax−Ay‖ = ‖A(x− y)‖ ≤ ‖A‖‖x− y‖.

We may thus say that the Lipschitz constant of f : Rn → Rm is equal to
‖A‖. Alternatively, working with the norms ‖ · ‖1 or ‖ · ‖∞, we may view
the Lipschitz constant to be equal to ‖A‖1 or ‖A‖∞.

92.23 Volume in Rn: Determinants and
Permutations

Let {a1, a2, ..., an} be a set of n vectors in Rn. We shall now generalize the
concept of volume V (a1, ..., an) spanned by {a1, a2, ..., an}, which we have
met above in the case n = 2 and n = 3. In particular, the volume will
give us a tool to determine whether the set of vectors {a1, .., an} is linearly
independent or not. Using the determinant we shall also develop Cramer’s
solution formula for an n×n system Ax = b, which generalizes the solution
formulas for 2×2 and 3×3 which we have already met. The determinant is a
quite complicated object, and we try to make the presentation as accessible
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as possible. When it comes to computing determinants. we shall return to
the column echelon form.
Before actually giving a formula for the volume V (a1, ..., an) in terms

of the coordinates (a1j , ..., anj) of the vectors aj , j = 1, 2, ..., n, we note
that from our experience in R2 and R3, we expect V (a1, ..., an) to be a
multilinear alternating form, that is

V (a1, ..., an) ∈ R,

V (a1, ..., an) is linear in each argument aj ,

V (a1, ..., an) = −V (â1, ..., ân),

where â1, ..., ân is a listing of a1, ..., an with two of the aj interchanged.
For example â1 = a2, â2 = a1 and âj = aj for j = 3, ..., n. We note that
if two of the arguments in an alternating form is the same, for example
a1 = a2, then V (a1, a2, a3, .., an) = 0. This follows at once from the fact
that V (a1, a2, a3, .., an) = −V (a2, a1, a3, .., an). We are familiar with these
properties in the case n = 2, 3.
We also need a little preliminary work on permutations. A permutation

of the ordered list {1, 2, 3, 4, ...., n} is a reordering of the list. For example
{2, 1, 3, 4, ..., n} is a permutation corresponding to interchanging the ele-
ments 1 and 2. Another permutation is {n, n− 1, ...., 2, 1} corresponding to
reversing the order.
We can also describe a permutation as a one-to-one mapping of the set

{1, 2, ...., n} onto itself. We may denote the mapping by π : {1, 2, ...., n} →
{1, 2, ...., n}, that is π(j) is one of the numbers 1, 2, ..., n for each j =
1, 2, ..., n and π(i) 6= π(j) if i 6= j. We can then talk about the product στ
of two permutations σ and τ defined as the composition of τ and σ:

στ(j) = σ(τ(j)), for j = 1, ..., n, (92.47)

which is readily seen to be a permutation. Note that the order may be
important: in general the permutation στ is different from the permutation
τσ. In other words, multiplication of permutations is not commutative.
However, multiplication is associative:

(πσ)τ = π(στ), (92.48)

which directly follows from the definition by composition of functions.
A permutation corresponding to interchanging two elements, is called

a transposition. More precisely, if π is a transposition then there are two
elements p and q of the elements {1, 2, ..., n}, such that

π(p) = q

π(q) = p

π(j) = j for j 6= p, j 6= q.
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The permutation π with π(j) = j for j = 1, ..., n is called the identity
permutation.
We shall use the following basic fact concerning permutations (a proof

will be given in the Appendix).

Theorem 92.4 Every permutation can be written as a product of trans-
positions. The representation is not unique, but for a given permutation
the number of transpositions in such a representation cannot be odd in one
case and even in another case; it is odd for all representations or even for
all representations.

We call a permutation even if it contains an even number of transposition
factors, and odd if it contains an odd number of transpositions. The number
of even perturbations is equal to the number of odd perturbations, and thus
the total number of perturbations, including the identity, is even.

92.24 Definition of the Volume V (a1, ...an)

Assuming that V (a1, ..., an) is multilinear and alternating and that
V (e1, e2, ..., en) = 1, we get the following relation

V (a1, ..., an) = V (
∑

j

aj1ej ,
∑

j

aj2ej , ....,
∑

j

ajnej)

=
∑

π

±aπ(1) 1aπ(2) 2 · · · aπ(n)n,
(92.49)

where we sum over all permutations π of the set {1, ..., n}, and the sign
indicates if the permutation is even (+) or odd (-). Note that we give the
identity permutation, which is included among the permutations, the sign
+. We recall that aj = (a1j , ..., anj) for j = 1, ..., n.
We now turn around in this game, and simply take (92.49) as a definition

of the volume V (a1, ..., an) spanned by the set of vectors {a1, ..., an}. By
this definition it follows that V (a1, ..., an) is indeed a multilinear alternating
form on Rn. Further, V (e1, ...., en) = 1, since the only non-zero term in the
sum (92.49) in this case corresponds to the identity perturbation.
We can transform the definition V (a1, ..., an) to matrix language as fol-

lows. Let A = (aij) be the n× n matrix




a11 a12 ... a1n
a21 a22 ... a2n
. . ... .
an1 an2 ... ann


 (92.50)
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formed by the column vectors a1, ...., an with coefficients aj = (a1j , ...anj).
We define the determinant det A of A, by

det A = V (a1, ..., an) =
∑

π

±aπ(1) 1aπ(2) 2 · · ·aπ(n)n,

where we sum over all permutations π of the set {1, ..., n}, and the sign
indicates if the permutation is even (+) or odd (-).
We note that since the unit vectors ej in Rn are mapped by A into the

column vectors aj , that is since Aej = aj , we have that A maps the unit
n-cube in Rn onto the parallelepiped in Rn spanned by a1,..., an. Since
the volume of the n-cube is one and the volume of the the parallelepiped
spanned by a1,..., an is V (a1, ...an), the volume scale of the mapping x →
Ax is equal to V (a1, ..., an).

92.25 The Volume V (a1, a2) in R2

If A is the 2× 2-matrix (
a11 a12
a21 a22

)
,

then det A = V (a1, a2) is given

det A = V (a1, a2) = a11a22 − a21a12. (92.51)

of course, a1 = (a11, a21) and a2 = (a12, a22) are the column vectors of A.

92.26 The Volume V (a1, a2, a3) in R3

If A is the 3× 3-matrix


a11 a12 a13
a21 a22 a23
a31 a32 a33


 ,

then det A = V (a1, a2, a3) is given by

det A = V (a1, a2, a3) = a1 · a2 × a3

= a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31).
(92.52)

We see that we can express det A as

det A = a11 det A11 − a12 det A12 + a13A13

= a11V (â2, â3)− a12V (â1, â3) + a13V (â1, â2) (92.53)
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where the A1j are 2 × 2 matrices formed by cutting out the first row and
j:th column of A, explicitly given by

A11 =

(
a22 a23
a32 a33

)
A12 =

(
a21 a23
a31 a33

)
A13 =

(
a21 a22
a31 a32

)

and â1 = (a21, a31), â2 = (a22, a32), â3 = (a23, a33) are the 2-column vectors
formed by cutting out the first element of the 3-columns aj. We say that
(92.53) is an expansion of the 3 × 3 matrix A in terms of the elements of
the first row of A and the corresponding 2 × 2 matrices. The expansion
formula follows by collecting all the terms with a11 as a factor, and all the
terms with a12 as a factor and all the terms with a13 as a factor.

92.27 The Volume V (a1, a2, a3, a4) in R4

Using the expansion formula we can compute the determinant det A =
V (a1, ..., a4) of a 4× 4 matrix A = (aij) with column vectors
aj = (a1j , ..., a4j) for j = 1, 2, 3, 4. We have

det A = V (a1, a2, a3, a4) = a11V (â2, â3, â4)− a12V (â1, â3, â4)

+a13V (â1, â2, â4)− a14V (â1, â2, â3),

where the âj , j = 1, 2, 3, 4 are the 3-column vectors corresponding to cut-
ting out the first coefficient of the aj . We have now expressed the determi-
nant of the 4× 4 matrix A as a sum of determinants of 3× 3 matrices with
the first row of A as coefficients.

92.28 The Volume V (a1, ..., an) in Rn

Iterating the row-expansion formula indicated above, we can compute the
determinant of an arbitrary n × n matrix A. As an example we give the
expansion formula for a 5× 5 matrix A = (aij):

det A = V (a1, a2, a3, a4, a5) = a11V (â2, â3, â4, â5)− a12V (â1, â3, â4, â5)

+a13V (â1, â2, â4, â5)− a14V (â1, â2, â3, â5) + a15V (â1, â2, â3, â4).

Evidently, we can formulate the following a rule of sign for the term with
the factor aij : choose the + if i+ j is even and the − if i + j is odd. This
rule generalizes to expansions with respect to any row of A.

92.29 The Determinant of a Triangular Matrix

Let A = (aij) be a upper triangular n× n matrix, that is aij = 0 for i > j.
All elements aij of A below the diagonal are zero. In this case the only
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non-zero term in the expression for detA, is the product of the diagonal
elements of A corresponding to the identity perturbation, so that

detA = a11a22 · · · ann. (92.54)

This formula also applies to a lower triangular n×n matrix A = (aij) with
aij = 0 for i < j.

92.30 Using the Column Echelon Form to
Compute detA

We now present a way to compute detA = V (a1, ..., an), where the aj are
the columns of a n × n matrix A = (aij), based on reduction to column
echelon form. We then use that the volume does not change if we subtract
one column multiplied by a real number from another column, to obtain

detA = V (a1, a2, ..., an) = V (â1, â2, â3, ..., ân)

where âij = 0 if j > i, that is the corresponding matrix Â is a lower
triangular matrix. We then compute V (â1, â2, â3, ..., ân) by multiplying the
diagonal elements. As usual, if we meet a zero diagonal term we interchange
columns until we meet a nonzero diagonal term, or if all diagonal terms
appearing this way are zero, we proceed to modify the next row. At least
one of the diagonal terms in the final triangular matrix will then be zero,
and thus the determinant will be zero.

Example 92.9. We show the sequence of matrices in a concrete case:

A =



1 1 1
2 4 6
3 4 6


 →



1 0 0
2 2 4
3 1 3


 →



1 0 0
2 2 0
3 1 1




and conclude that detA = 2.

92.31 The Magic Formula detAB = detA detB

Let A and B be two n × n matrices. We know that AB is the matrix of
the composite transformation f(g(x)), where f(y) = Ay and g(x) = Bx.
The volume scale of the mapping x→ Bx is equal to detB and the volume
scale of the mapping y → Ay is detA, and hence the volume scale of the
mapping x→ ABx is equal to detAdetB. This proves that

detAB = detAdetB,
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which is one of the corner stones of the calculus of determinants. The
proof suggested is a “short proof” avoiding algebraic computations. One
can also give a direct algebraic proof using suitable expansion formulas for
the determinant.

92.32 Test of Linear Independence

To test the linear independence of a given set of n vectors {a1, a2, ..., an} in
Rn, we can use the volume V (a1, a2, ..., an). More precisely, we shall prove
that {a1, a2, ..., an} is linearly independent if and only if V (a1, a2, ..., an) 6=
0. First, we note that if {a1, a2, ..., an} is linearly dependent, for example if
a1 =

∑n
j=2 λjaj is a linear combination of {a2, ..., an}, then V (a1, a2, ..., an)

=
∑n
j=2 λjV (aj , a2, ..., an) = 0, since each factor V (aj , a2, ..., an) has two

equal vectors.
Secondly, if {a1, a2, ..., an} is linearly independent, i.e., {a1, a2, ..., an} is

a basis for Rn, then we must have V (a1, ..., an) 6= 0. We see this as follows.
We express each ej as a linear combination of the set {a1, a2, ..., an}, for
example e1 =

∑
λ1jaj . We have, since V is multilinear and vanishes if

two arguments are the same, and V (aπ(1), .., aπ(n)) = ±V (a1, .., an) for any
permutation π, that

1 = V (e1, .., en) = V (
∑

j

λ1jaj , e2, .., en) =
∑

j

λ1jV (aj , e2, .., en)

=
∑

j

λ1jV (aj ,
∑

k

λ2kak, e3, .., en) = .... = cV (a1, .., an),
(92.55)

for some constant c. We conclude that V (a1, ..., an) 6= 0. We summarize as
follows:

Theorem 92.5 A set {a1, a2, ..., an} of n vectors in Rn is linearly inde-
pendent if and only if V (a1, ..., an) 6= 0.

We may restate this result in matrix language as follows: The columns
of an n× n-matrix A are linearly independent if and only if detA 6= 0. We
may thus sum up as follows:

Theorem 92.6 Let A be a n × n matrix. Then the following statements
are equivalent:

• The columns of A are linearly independent.

• If Ax = 0 then x = 0.

• detA 6= 0.



92.33 Cramer’s Solution for Non-Singular Systems 495

To test linear independence of the columns of a given matrix A we may
thus compute detA and check if detA = 0. We can also use this test in
more quantitative form as follows: If detA is small then the columns are
close to being linearly dependent and uniqueness is at risk!
A matrix A with detA = 0 is called singular, while matrices with detA 6=

0 are referred to as non-singular. Thus an n×n-matrix is non-singular if and
only if its columns are linearly independent. Again we can go to quantitative
forms and say that a matrix A is close to singular if its determinant is close
to zero. The dependence of the solution on the size of the determinant is
clearly expressed in the next chapter.

92.33 Cramer’s Solution for Non-Singular Systems

Consider again the n× n linear system of equations

Ax = b (92.56)

or
n∑

j=1

ajxj = b (92.57)

where A = (aij) is an n × n matrix with columns aj = (a1j , ..., anj),
j = 1, ..., n. Suppose that the columns aj of A are linearly independent,
or equivalently, that detA = V (a1, ..., an) 6= 0. We then know that (92.56)
has a unique solution x ∈ Rn for any given b ∈ Rn, we shall now seek a
formula for the solution x in terms of b and the columns aj of A.
Using the basic property of the volume function V (g1, ..., gn) of a set

{g1, ..., gn} of n vectors gi, in particular the property that V (g1, ..., gn) = 0
if any two of the gi are equal, we obtain the following solution formula
(Cramer’s formula):

x1 =
V (b, a2, ...., an)

V (a1, a2, ...., an)
,

....

xn =
V (a1, ..., an−1, b)

V (a1, a2, ...., an)
.

(92.58)

For example, to obtain the formula for x1, use that

V (b, a2, ..., an) = V (
∑

j

ajxj , a2, ..., an)

=

n∑

j=1

xjV (aj , a2, ..., an) = x1V (a1, a2, .., an).

We summarize:
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Theorem 92.7 If A is a n× n non-singular matrix with detA 6= 0, then
the system of equations Ax = b has a unique solution x for any b ∈ Rn.
The solution is given by Cramer’s formula (92.58).

A result like this was first derived by Leibniz and then by Gabriel Cramer
(1704-1752) (who got a Ph.D. at the age of 18 with a thesis on the theory of
sound) in Introduction l’analyse des lignes courbes algbraique. Throughout
the book Cramer makes essentially no use of the Calculus in either Leibniz’
or Newton’s form, although he deals with such topics as tangents, maxima
and minima, and curvature, and cites Maclaurin and Taylor in footnotes.
One conjectures that he never accepted or mastered Calculus.

FIGURE 92.2. Gabriel Cramer: “I am friendly, good-humoured, pleasant in voice
and appearance, and possess good memory, judgement and health”.

Note that Cramer’s solution formula for Ax = b is very computationally
demanding, and thus cannot be used for actually computing the solution
unless n is small. To solve linear systems of equations other methods are
used, like Gaussian elimination and iterative methods, see Chapter Solving
systems of linear equations.

92.34 The Inverse Matrix

Let A be a non-singular n × n matrix with V (a1, ..., an) 6= 0. Then Ax =
b can be solved uniquely for all b ∈ Rn according to Cramer’s solution
formula (92.58). Clearly, x depends linearly on b, and the solution x may
be expressed as A−1b, where A−1 is an n×nmatrix which we refer to as the
inverse of A. The j:th column of A−1 is the solution vector corresponding
to choosing b = ej . Cramer’s formula thus gives the following formula for
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the inverse A−1 of A:

A−1 = V (a1, .., an)
−1




V (e1, a2, .., an) .. V (a1, .., an−1, e1)
. .. .
. .. .

V (en, a2, .., an) .. V (a1, .., an−1, en)


 . (92.59)

The inverse matrix A−1 of A satisfies

A−1A = AA−1 = I,

where I is the n× n identity matrix, with ones on the diagonal and zeros
elsewhere.
Evidently, we can express the solution to Ax = b in the form x = A−1b

if A is a non-singular n × n matrix (by multiplying Ax = b by A−1 from
the left)..

92.35 Projection onto a Subspace

Let V be a subspace of Rn spanned by the linearly independent set of
vectors {a1, ..., am}. In other words, {a1, ..., am} is a basis for V . The pro-
jection Pv of a vector v ∈ Rn onto V is defined as the vector Pv ∈ V
satisfying the orthogonality relation

(v − Pv,w) = 0 for all vectors w ∈ V, (92.60)

or equivalently
(Pv, aj) = (v, aj) for j = 1, ..,m. (92.61)

To see the equivalence, we note that (92.60) clearly implies (92.61). Con-
versely, any w ∈ V is a linear combination of the form

∑
µjaj , and mul-

tiplying (92.61) by µj and summing over j, we obtain (Pv,
∑

j µjaj) =
(v,
∑

j µjaj), which is (92.60) with w =
∑

j µjaj as desired.

Expressing Pv =
∑m

i=1 λiai in the basis {a1, ..., am} for V , the orthogo-
nality relation (92.61) corresponds to the m×m linear system of equations

m∑

i=1

λi(ai, aj) = (v, aj) for j = 1, 2, ...m. (92.62)

We shall now prove that this system admits a unique solution, which proves
that the projection Pv of v onto V exists and is unique. By Theorem 92.6
it is enough to prove uniqueness. We thus assume that

m∑

i=1

λi(ai, aj) = 0 for j = 1, 2, ...m.
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Multiplying by λj and summing we get

0 = (

m∑

i=1

λiai,

m∑

j=1

λjaj) = |
m∑

i=1

λiai|2,

which proves that
∑
i λiai = 0 and thus λi = 0 for i = 1, ...,m, since the

{a1, ..., am} is linearly independent.
We have now proved the following fundamental result:

Theorem 92.8 Let V be a linear subspace of Rn. Then for all v ∈ Rn the
projection Pv of v onto V , defined by Pv ∈ V and (v − Pv,w) = 0 for all
w ∈ V , exists and is unique.

We note that P : Rn → V is a linear mapping. To see this, let v and v̂ be
two vectors in Rn, and note that since (v−Pv,w) = 0 and (v̂−P v̂, w) = 0
for all w ∈ V , we have

(v + v̂ − (Pv + P v̂), w) = (v − Pv,w) + (v̂ − P v̂, w) = 0,

which shows that Pv+P v̂ = P (v+ v̂). Similarly, Pw = λPv if w = λv, for
any λ ∈ R and v ∈ Rn. This proves the linearity of P : Rn → V .
We further note that PP = P . We sum up as follows:

Theorem 92.9 The projection P : Rn → V onto a linear subspace V of
Rn is a linear transformation defined by (v − Pv,w) = 0 for all w ∈ V ,
which satisfies PP = P .

92.36 An Equivalent Characterization of the
Projection

We shall now prove that the projection Pv of a vector v ∈ Rn onto V is
the vector Pv ∈ V with minimum distance to v, that is |v − Pv| ≤ |v −w|
for all w ∈ V .
We state the equivalence of the two definitions of the projection in the

following fundamental theorem:

Theorem 92.10 . Let v ∈ Rn be given. The vector Pv ∈ V satisfies the
orthogonality relation

(v − Pv,w) = 0 for all vectors w ∈ V, (92.63)

if and only if Pv minimizes the distance to v in the sense that

|v − Pv| ≤ |v − w| for all w ∈ V. (92.64)

Further, the element Pv ∈ V satisfying (92.63) and (92.64) is uniquely
determined.
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To prove the theorem we note that by the orthogonality (92.60), we have
for any w ∈ V ,

|v − Pv|2 = (v − Pv, v − Pv)

= (v − Pv, v − w) + (v − Pv,w − Pv) = (v − Pv, v − w),

since w − Pv ∈ V . Using Cauchy-Schwarz inequality, we obtain

|v − Pv|2 ≤ |v − Pv| |v − w|,

which shows that |v − Pv| ≤ |v − w| for all w ∈ V .
Conversely, if |v − Pv| ≤ |v − w| for all w ∈ V , then for all ǫ ∈ R and

w ∈ V

|v − Pv|2 ≤ |v − Pv + ǫw|2

= |v − Pv|2 + ǫ(v − Pv,w) + ǫ2|w|2,

that is for all ǫ > 0
(v − Pv,w) + ǫ|w|2 ≥ 0,

which proves that

(v − Pv,w) ≥ 0 for all w ∈ V.

Changing w to −w proves the reverse inequality and we conclude that
(v − Pv,w) = 0 for all w ∈ V .
Finally, to prove uniqueness, assume that z ∈ V satisfies

(v − z, w) = 0 for all vectors w ∈ V.

Then (Pv− z, w) = (Pv− v, w) + (v− z, w) = 0+ 0 = 0 for all w ∈ V , and
Pv−z is a vector in V . Choosing w = Pv−z thus shows that |Pv−z|2 = 0,
that is z = Pv. The proof of the theorem is now complete.
The argument just given is very fundamental and will be used many

times below in various forms, so it is worth taking the time to understand
it now.

92.37 Orthogonal Decomposition: Pythagoras
Theorem

Let V be a subspace of Rn. Let P be the projection onto V . Any vector x
can be written

x = Px+ (x− Px) (92.65)

where Px ∈ V , and further (x − Px) ⊥ V since by the definition of P we
have (x − Px,w) = 0 for all w ∈ V . We say that x = Px+ (x− Px) is an
orthogonal decomposition of x since (Px, x− Px) = 0.
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Define the orthogonal complement V ⊥ to V by V ⊥ = {y ∈ Rn : y ⊥
V } = {y ∈ Rn : y ⊥ x for all x ∈ V }. It is clear that V ⊥ is a linear
subspace of Rn. We have that if x ∈ V and y ∈ V ⊥, then (x, y) = 0.
Further, any vector z ∈ Rn can be written z = x + y, with x = Pz ∈ V
and y = (x− Px) ∈ V ⊥. We can summarize by saying that

V ⊕ V ⊥ = Rn, (92.66)

is an orthogonal decomposition of Rn into the two orthogonal subspaces V
and V ⊥: x ∈ V and y ∈ V ⊥ implies (x, y) = 0 and any z ∈ Rn can be
written uniquely in the form z = x+y. The uniqueness of the decomposition
z = Pz + (z − Pz) follows from the uniqueness of Pz.
We note the following generalization of Pythagoras theorem: for any

x ∈ Rn, we have

|x|2 = |Px|2 + |x− Px|2. (92.67)

This follows by writing x = Px+ (x−Px) and using that Px ⊥ (x−Px):

|x|2 = |Px+ (x− Px)|2 = |Px|2 + 2(Px, x− Px) + |x− Px|2.

More generally, we have if z = x+ y with x ⊥ y (that is (x, y) = 0), that

|z|2 = |x|2 + |y|2.

92.38 Properties of Projections

Let P be the orthogonal projection onto a linear subspace V in Rn. Then
P : Rn → Rn is a linear transformation that satisfies

P⊤ = P and PP = P. (92.68)

We have already seen that PP = P . To see that P⊤ = P we note that

(w,P⊤v) = (Pw, v) = (Pw, Pv) = (w,Pv) for all v, w ∈ Rn, (92.69)

and thus P⊤ = P . Conversely, let P : Rn → Rn be a linear transformation
which satisfies (92.68). Then P is the orthogonal projection onto a subspace
V of Rn. To see this, set V = R(P ) and note that since P⊤ = P and
PP = P , we have

(x− Px, Px) = (x, Px) − (Px, Px) = (x, Px)− (x, P⊤Px)

= (x, Px) − (x, Px) = 0.

This shows that x = Px + (x − Px) is an orthogonal decomposition, and
thus P is the orthogonal projection onto V = R(P ).
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92.39 Orthogonalization: The Gram-Schmidt
Procedure

Let {a1, ..., am} be a basis for a subspace V of Rn, i.e., {a1, ..., am} is
linearly independent and V is the set of linear combinations of {a1, ..., am}.
We try to construct another basis {ê1, ..., êm} for V that is orthonormal,
i.e. such that the basis vectors êi are mutually orthogonal and have length
equal to one or

(êi, êj) = 0 for i 6= j, and |êi| = 1 (92.70)

We choose ê1 = 1
|a1|a1 and let V1 be the subspace spanned by ê1, or equiv-

alently by a1. Let P1 be the projection onto V1. Define

ê2 =
1

|a2 − P1a2|
(a2 − P1a2).

Then (ê1, ê2) = 0 and |ê2| = 1. Further, the subspace V2 spanned by
{a1, a2} is also spanned by {ê1, ê2}. We now continue in the same way: Let
P2 be the projection onto V2 and define

ê3 =
1

|a3 − P2a3|
(a3 − P2a3)

Then the subspace V3 spanned by {a1, a2, a3} is also spanned by the or-
thonormal set {ê1, ê2, ê3}.
Continuing, we obtain an orthonormal basis {ê1, ..., êm} for the subspace

spanned by {a1, ..., am} with the property that for i = 1, ...,m, the subspace
spanned by {a1, ..., ai} is spanned by {ê1, ..., êi}.
Note that since the basis {ê1, ..., êm} is orthogonal, the system of equa-

tions (92.62) corresponding to computing Pi−1ai, is diagonal.

92.40 Orthogonal Matrices

Consider the matrix Q with columns ê1, .., ên, where {ê1, .., ên} is an or-
thonormal basis for Rn. Since the vectors êj are pairwise orthogonal and
of length one, Q⊤Q = I, where I is the n× n identity matrix. Conversely,
if Q is a matrix such that Q⊤Q = I, where I is an identity matrix, then
the columns of Q must be orthonormal.
An n×n-matrixQ such that Q⊤Q = I, is called an orthogonal matrix. An

orthogonal n× n-matrix can thus be characterized as follows: Its columns
form an orthonormal basis for Rn, that is a basis consisting of pairwise
orthogonal vectors of length, or norm, one.
We summarize:

Theorem 92.11 An orthogonal matrix Q satisfies Q⊤Q = QQ⊤ = I, and
Q−1 = Q⊤.
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92.41 Invariance of the Scalar Product Under
Orthogonal Transformations

Let Q by an n × n orthonormal matrix with the columns formed by the
coefficients of basis vectors êj of an orthonormal basis {ê1, .., ên}. We then
know that the coordinates x of a vector with respect to the standard basis,
and the coordinates x̂ with respect to the basis {ê1, .., ên}, are connected
by

x = Qx̂.

We now prove that the scalar product is invariant under the orthonormal
change of coordinates x = Qx̂. We compute setting y = Qŷ,

(x, y) = (Qx̂,Qŷ) = (Q⊤Qx̂, ŷ) = (x̂, ŷ),

that is the scalar product is the same in the {e1, .., en} coordinates as in
the {ê1, .., ên} coordinates. We summarize:

Theorem 92.12 If Q is an orthogonal n×n matrix, then (x, y) = (Qx,Qy)
for all x, y ∈ Rn.

92.42 The QR-Decomposition

We can give the Gram-Schmidt orthogonalization procedure the following
matrix interpretation: Let {a1, ..., am} be m linearly independent vectors
in Rn and let A be the n×m matrix with the aj occurring as columns. Let
{ê1, ..., êm} be the corresponding orthonormal set generated by the Gram-
Schmidt procedure, and let Q be the n×m matrix with the êj as columns.
Then

A = QR, (92.71)

where R is a m×m upper triangular matrix, which expresses each aj as a
linear combination of {ê1, ..., êj}.
The matrix Q satisfies Q⊤Q = I, where I is the m×m identity matrix,

since the êj are pairwise orthogonal and have length 1. We conclude that
a m× n matrix A with linearly independent columns can be factored into
A = QR, where Q satisfies Q⊤Q = I, and R is upper triangular. The
columns of the matrix Q are orthonormal, as in the case of an orthonormal
matrix, but if m < n, then they do not span all of Rn.

92.43 The Fundamental Theorem of Linear
Algebra

We return to our basic question of existence and uniqueness of solutions to
the system Ax = b with A a given m×n matrix and b ∈ Rm a given vector.
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We now allow m to be different from n, remembering that we focussed on
the case m = n above. We shall now prove the Fundamental Theorem of
Linear Algebra giving an answer of theoretical nature to our basic questions
of existence and uniqueness.
We note the following chain of equivalent statements for a m×n-matrix

A, where “iff” is shorthand for “if and only if”:

x ∈ N(A) iff Ax = 0 iff x ⊥ rows of A iff

x ⊥ columns of A⊤ iff

x ⊥ R(A⊤) iff

x ∈ (R(A⊤)⊥.

Thus N(A) = (R(A⊤)⊥, and since R(A⊤)⊥ ⊕R(A⊤) = Rn, we see that

N(A)⊕R(A⊤) = Rn. (92.72)

As a consequence of this orthogonal splitting, we see that

dim N(A) + dim R(A⊤) = n, (92.73)

where dim V is the dimension of the linear space V . We recall that the
dimension dim V of a linear space V is the number of elements in a basis
for V . Similarly, replacing A by A⊤ and using that (A⊤)⊤ = A, we have

N(A⊤)⊕R(A) = Rm, (92.74)

and thus in particular,

dim N(A⊤) + dim R(A) = m. (92.75)

Next we note that, letting g1, ..., gk be a basis in N(A)⊥ so that Ag1, ..., Agk
span R(A) and thus dim R(A) ≤ k, we have

dim N(A) + dim R(A) ≤ n, and also dim N(A⊤) + dim R(A⊤) ≤ m.
(92.76)

Adding (92.73) and (92.75), we conclude that equality holds in (92.76). We
summarize in:

Theorem 92.13 (The Fundamental Theorem of Linear Algebra)
Let A be a m× n matrix. Then

N(A)⊕R(A⊤) = Rn N(A⊤)⊕R(A) = Rm,

dim N(A) + dim R(A⊤) = n, dim N(A⊤) + dim R(A) = m,

dim N(A) + dim R(A) = n, dim N(A⊤) + dim R(A⊤) = m,

dim R(A) = dim R(A⊤).
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In the special casem = n, we have that R(A) = Rm if and only ifN(A) =
0 (which we proved above using Cramer’s rule), stating that uniqueness
implies existence.
We call dim R(A) the column rank of the matrix A. The column rank

of A is equal to the dimension of the space spanned by the columns of A.
Similarly the row rank of A is equal to the dimension of the space spanned
by the rows of A. The equality dim R(A) = dim R(A⊤) in the Fundamental
Theorem expresses that the the column ranks of A and A⊤ are equal, that
is that the column rank of A is equal to the row rank of A. We state this
result as:

Theorem 92.14 The number of linearly independent columns of A is equal
to the number of linearly independent rows of A.

Example 92.10. Returning to Example 41.5, we note that the column
echelon form of A⊤ is the transpose of the row echelon form of A, that
is

R(A⊤) =




1 0 0 0
1 1 0 0
1 2 1 0
1 3 2 0
1 6 5 0



.

We check that the columns vectors (0, 1,−2, 1, 0) and (0, 4,−5, 0, 1)
spanning N(A) are orthogonal to R(A⊤), that is orthogonal to the
columns of the echelon form of A⊤. Of course, this is just a restatement
of the fact that these vectors are orthogonal to the rows of the row
echelon form Â of A (as is evident from the proof of the Fundamen-
tal Theorem). We see that N(A) ⊕ R(A⊤) = R5 as predicted by the
Fundamental Theorem.

92.44 Change of Basis: Coordinates and Matrices

Let {s1, ..., sn} be a basis for Rn where the coordinates of the basis vectors
in the standard basis {e1, ..., en} are given by sj = (s1j , ..., snj). Recalling
(92.23), we have the following connection between the coordinates xi of a
vector x with respect to the standard basis and the coordinates x̂j of x
with respect to the basis {s1, ..., sn}:

xi =

n∑

j=1

sij x̂j for i = 1, ...n. (92.77)

This follows from taking the scalar product of
∑n

j=1 xjej =
∑n

i=1 x̂jsj with
ei and using that sij = (ei, sj).
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Introducing the matrix S = (sij), we thus have the following connection
between the coordinates x = (x1, ..., xn) with respect to {e1, ..., en}, and
the coordinates x̂ = (x̂1, ...x̂n) with respect to {s1, ..., sn}:

x = Sx̂, that is x̂ = S−1x. (92.78)

Consider now a linear transformation f : Rn → Rn with matrix A = (aij)
with respect to the standard basis {e1, ...en}, that is with aij = fi(ej) =
(ei, f(ej)), where f(x) = (f1(x), ..., fn(x)) in the standard basis {e1, ...en},
that is

y = f(x) =
∑

i

fi(x)ei =

n∑

i=1

n∑

j=1

aijxjei = Ax.

Writing y = Sŷ and x = Sx̂, we have

Sŷ = ASx̂ that is ŷ = S−1ASx̂

This shows that the matrix of the linear transformation f : Rn → Rn, with
the matrix A with respect to the standard basis, takes the following form
in the basis {s1, ...sn}:

S−1AS, (92.79)

where the the coefficients sij of the matrix S = (sij) are the coordinates of
the basis vectors sj with respect to the standard basis.

92.45 Least Squares Methods

Consider the m× n linear system of equations Ax = b, or

n∑

j

ajxj = b,

where A = (aij) is an m × n matrix with columns aj = (a1j , ..., amj),
j = 1, ..., n. We know that if b ∈ R(A) then the system can be solved,
and if N(A) = 0, then the solution is unique. Suppose now that b /∈ R(A).
Then there is no x ∈ Rn such that Ax = b, and the system Ax = b has no
solution. We can replace the problem by the following least squares problem

min
x∈Rn

|Ax− b|2.

This problem amounts to seeking the projection Pb of b onto R(A), that is
the projection of b onto the space spanned by the columns aj of A.
By the properties of projections given above, we know that Pb ∈ R(A)

exists and is uniquely determined by the relation

(Pb, y) = (b, y) for all y ∈ R(A),
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that is we seek Pb = Ax̂ for some x̂ ∈ Rn such that

(Ax̂,Ax) = (b, Ax) for all x ∈ Rn.

This relation can be written

(A⊤Ax̂, x) = (A⊤b, x) for all x ∈ Rn,

which is the same as the matrix equation

A⊤Ax̂ = A⊤b,

which we refer to as the normal equations.
The matrix A⊤A is an n × n symmetric matrix. Assume now that the

columns aj of A are linearly independent. Then A⊤A is non-singular, be-
cause if A⊤Ax = 0, then

0 = (A⊤Ax, x) = (Ax,Ax) = |Ax|2,

and thus Ax = 0 and therefore x = 0, since the columns of A are linearly
independent. Thus the equation A⊤Ax̂ = A⊤b has a unique solution x̂ for
each right hand side A⊤b, given by the formula

x̂ = (A⊤A)−1A⊤b.

In particular, we have the following formula for the projection Pb of b onto
R(A),

Pb = A(A⊤A)−1A⊤b.

We can directly check that P : Rm → Rm defined this way is symmetric
and satisfies P 2 = P .
If the columns of A are linearly dependent, then x̂ is undetermined

up to vectors x̂ in N(A). It is then natural to single out a unique x̂ by
requiring that |x̂|2 to be minimal. Using the orthogonal decomposition
Rn = R(A⊤) ⊕ N(A), this is equivalent to seeking x̂ in R(A⊤), since by
Pythagoras theorem this minimizes |x̂|. We thus seek x̂ so that

• Ax̂ is equal to the projection Pb of b onto R(A)

• x̂ ∈ R(A⊤).

This leads to the following equation for x̂ = A⊤ŷ:

(Ax̂,AA⊤y) = (b, AA⊤y) for all y ∈ Rm, (92.80)

with x̂ uniquely determined.
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Chapter 92 Problems

92.1. Prove that a plane in R3 not passing through the origin is not a subspace
of R3.

92.2. (a) What is a vector space? (b) What is a subspace of a vector space?

92.3. Verify (92.17) and (92.18).

92.4. Why must a set of more than n vectors in Rn be linearly dependent? Why
must a set of n linearly independent vectors in Rn be a basis?

92.5. Verify that R(A) and N(A) are linear subspaces of Rm and Rn, respec-
tively, and further that the orthogonal complement V ⊤ of a subspace V of Rn is
also a subspace of Rn.

92.6. (a) Give an example showing that permutations need not commute. (b)
Verify the associative law for permutations.

92.7. Compute the determinants of some n× n matrices with n = 2, 3, 4, 5.

92.8. Fill out the details in the proof of Cauchys inequality.

92.9. Write an algorithm for the Gram-Schmidt orthogonalization procedure,
and implement it in Matlab, for example.

92.10. Fill in the details in (92.55)

92.11. Verify that for an orthogonal matrix QQ⊤ = I . Hint: Multiply Q⊤Q = I
from the right with C and from the right with Q, where C is the matrix such
that QC = I .

92.12. Prove for 2× 2 matrices A and B that detAB = detA detB.

92.13. How many operations are needed to solve an n × n system of linear
equations using Cramer’s formula?

92.14. Prove by reduction to column echelon form that a basis for Rn contains
n elements.

92.15. Implement algorithms for reduction to column and row echelon forms.

92.16. Prove that the solution x̂ ∈ R(A⊤) of (92.80) is uniquely determined.

92.17. Construct the row and column echelon forms of different (small) matrices,
and check the validity of the Fundamental Theorem.
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93
The Spectral Theorem

There seems to be three possibilities (of a Unified Theory of Physics):

1. There really is a complete unified theory, which we will someday
discover if we are smart enough.

2. There is no ultimate theory of the Universe, just an infinite
sequence of theories that describe the Universe more and more
accurately.

3. There is no theory of the Universe; events cannot be predicted
beyond a certain extent but occur in a random and arbitrary
manner. (Stephen Hawking, in A Brief History of Time)

93.1 Eigenvalues and Eigenvectors

Let A = (aij) be a quadratic n× n matrix. We investigate the situation in
which multiplication by A acts like scalar multiplication. To start with, we
assume that the elements aij are real numbers. If x = (x1, ..., xn) ∈ Rn is
a non-zero vector that satisfies

Ax = λx, (93.1)

where λ is a real number, then we say that x ∈ Rn is an eigenvector of A
and that λ is a corresponding eigenvalue of A. An eigenvector x has the
property that Ax is parallel to x (if λ 6= 0), or Ax = 0 (if λ = 0). This is a
special property, as easy to verify with almost any example we might make
up.
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If x is an eigenvector with corresponding eigenvalue λ then x̄ = µx for
any non-zero real number µ is also an eigenvector corresponding to the
eigenvalue λ because

if Ax = λx, then Ax̄ = µAx = µλx = λµx = λx̄.

Thus, we may change the length of an eigenvector without changing the
corresponding eigenvalue. For example, we may normalize an eigenvector
to have length equal to 1. In essence, the direction of an eigenvector is
determined, but not its length.
We shall now study the problem of finding eigenvalues and corresponding

eigenvectors of a given a quadratic matrix. We shall see that this is a basic
problem of linear algebra arising in many different situations. We shall
prove the Spectral Theorem stating that if A is a symmetric real n × n
matrix, then there is an orthogonal basis for Rn consisting of eigenvectors.
We shall also briefly discuss the case of non-symmetric matrices.
Rewriting (93.1) as (A−λI)x = 0 with x ∈ Rn a non-zero eigenvector and

I the identity matrix, we see that the matrix A−λI must be singular if λ is
an eigenvalue, that is det(A−λI) = 0. Conversely, if det(A−λI) = 0 then
A− λI is singular and thus the null-space N(A− λI) is different from the
zero vector and thus there is a non-zero vector x such that (A− λI)x = 0,
that is there is an eigenvector x with corresponding eigenvalue λ. Using
the expansion formula for the determinant, we see that det(A − λI) is a
polynomial in λ of degree n with coefficients depending on the coefficients
aij of A. The polynomial equation

det(A− λI) = 0

is called the characteristic equation. We summarize:

Theorem 93.1 The number λ is an eigenvalue of the n × n matrix A if
and only if λ is a root of the characteristic equation det(A− λI) = 0.

Example 93.1.

If A = (aij) is a 2× 2 matrix, then the characteristic equation is

det(A− λI) = (a11 − λ)(a22 − λ)− a12a21 = 0,

which is a second order polynomial equation in λ. For example, if

A =

(
0 1
1 0

)
,

then the characteristic equation is det(A−λI) = λ2 − 1 = 0 with roots
λ1 = 1 and λ2 = −1. The corresponding normalized eigenvectors are
s1 = 1√

2
(1, 1) and s2 = 1√

2
(1,−1) since

(A− λ1I)

(
1
1

)
=

(
−1 1
1 −1

)(
1
1

)
=

(
0
0

)
,
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and similarly (A−λ2)s2 = 0. We observe that (s1, s2) = s1 ·s2 = 0, that
is eigenvectors corresponding to different eigenvalues are orthogonal.

93.2 Basis of Eigenvectors

Suppose {s1, ..., sn} is a basis for Rn consisting of eigenvectors of the n×n
matrix A = (aij) with corresponding eigenvalues λ1,...,λn so

Asi = λisi for i = 1, ..., n. (93.2)

Let S be the matrix with the columns equal to the eigenvectors sj expressed
in the standard basis. We can then write (93.2) in matrix form as follows,

AS = SD, (93.3)

where D is the diagonal matrix with the eigenvalues λj on the diagonal.
We thus have

A = SDS−1 or D = S−1AS, (93.4)

where D is a diagonal matrix. We say that S transforms A into a diagonal
matrix D with the eigenvalues on the diagonal.
Conversely, if we can express a matrix A in the form A = SDS−1 with S

non-singular and D diagonal then AS = SD, which says that the columns
of S are eigenvectors with corresponding eigenvalues on the diagonal of D.
Viewing the n × n matrix A as defining a linear transformation f :

Rn → Rn by f(x) = Ax, we can express the action of f(x) in a basis
of eigenvectors {s1, ..., sn} by the diagonal matrix D since f(si) = λisi.
Thus, the linear transformation f : Rn → Rn is expressed by the matrix
A in the standard basis and by the diagonal matrix D matrix in a basis of
eigenvectors. The coupling is given by

D = S−1AS.

Of course, the action of a diagonal matrix is very easy to describe and
to understand and this is the motivation for considering eigenvalues and
eigenvectors.
We now formulate the following basic question in two equivalent forms:

• Given a n× n matrix A, is there a basis of eigenvectors of A?

• Given a n × n matrix A, is there a non-singular matrix S such that
S−1AS is diagonal?

As we have seen, the columns of the matrix S are the eigenvectors of A
and the diagonal elements are the eigenvalues.
We shall now give the following partial answer: if A is an n×n symmetric

matrix, then there is an orthogonal basis for Rn consisting of eigenvectors.
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This is the celebrated Spectral Theorem for symmetric matrices. Notice
the assumption that A is symmetric and that in this case the basis of
eigenvectors may be chosen to be orthogonal.

Example 93.2. Recalling Example 93.1, we see that s1 = 1√
2
(1, 1)

and s2 = 1√
2
(1,−1) form an orthogonal basis. By the orthogonality of

S, S−1 = S⊤, and

S−1AS =
1

2

(
1 1
1 −1

)(
0 1
1 0

)(
1 1
1 −1

)

=
1

2

(
1 1
−1 1

)(
1 1
1 −1

)
=

(
1 0
0 −1

)
.

93.3 An Easy Spectral Theorem for Symmetric
Matrices

The following version of the Spectral Theorem for symmetric matrices is
easy to prove:

Theorem 93.2 Let A be a symmetric n × n matrix. Suppose A has n
distinct eigenvalues λ1,..., λn and corresponding normalized eigenvectors
s1,....,sn with ‖sj‖ = 1, j = 1, ..., n. Then, {s1, ..., sn} is an orthonormal
basis of eigenvectors. Letting Q = (qij) be the orthogonal matrix with the
columns (q1j , ..., qnj) being the coordinates of the eigenvectors sj with re-
spect to the standard basis, then D = Q−1AQ is a diagonal matrix with the
eigenvalues λj on the diagonal and A = QDQ−1, where Q−1 = Q⊤.

To prove this result, it suffices to prove that eigenvectors corresponding
to different eigenvalues are orthogonal. This follows from the assumption
that there are n distinct eigenvalues λ1,..., λn with corresponding normal-
ized eigenvectors s1,....,sn. If we prove that these eigenvectors are pairwise
orthogonal, then they form a basis for Rn and the proof is complete. Thus,
assume that si and sj are eigenvectors corresponding to different eigenval-
ues λi and λj . Since A is symmetric and (Ax, y) = (x,Ay) for all x, y ∈ Rn,
we have

λi(si, sj) = (λisi, sj) = (Asi, sj) = (si, Asj)

= (si, λjsj) = λj(si, sj),

which implies that (si, sj) = 0 since λi 6= λj . We state this observation as
a theorem because of its basic importance.

Theorem 93.3 If A is a symmetric n×n matrix, and si and sj are eigen-
vectors of A corresponding to the eigenvalues λi and λj with λi 6= λj, then
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(si, sj) = 0. In other words, eigenvectors corresponding to different eigen-
values are orthogonal.

Note that above we prove the Spectral Theorem for a symmetric n× n
matrix A in the case the characteristic equation det(A − λI) = 0 has n
different roots. It thus remains to consider the case of multiple roots where
there are less than n different roots. We will consider this below. The reader
in hurry may skip that proof.

93.4 Applying the Spectral Theorem to an IVP

We show a typical application of the Spectral Theorem. Consider the initial
value problem: find u : [0, 1] → Rn such that

u̇ = Au, for 0 < t ≤ 1, u(0) = u0,

where A = (aij) is a symmetric n × n matrix with real coefficients aij
independent of t. Systems of this form arise in many applications and the
behavior of such a system may be very complicated.
Suppose now that {g1, ..., gn} is an orthonormal basis of eigenvectors of

A and let Q be the matrix with columns comprised of the coordinates of
the eigenvectors gj with respect to the standard basis. Then A = QDQ−1,
where D is the diagonal matrix with the eigenvalues λj on the diagonal.
We introduce the new variable v = Q−1u, that is we set u = Qv, where
v : [0, 1] → Rn. Then, the equation u̇ = Au takes the form Qv̇ = AQv, that
is v̇ = Q−1AQv = Dv, where we use the fact that Q is independent of time.
Summing up, we get the following diagonal system in the new variable v,

v̇ = Dv for 0 < t ≤ 1, v(0) = v0 = Q−1u0.

The solution of this decoupled system is given by

v(t) =




exp(λ1t) 0 0 .... 0
0 exp(λ2t) 0 .... 0
. . . . .
0 0 0 .... exp(λn)


 v0 = exp(Dt)v0,

where exp(Dt) is a diagonal matrix with the elements exp(λjt) on the
diagonal. The dynamics of this system is easy to grasp: each component
vj(t) of v(t) evolves according to vj(t) = exp(λjt)v0j .
Transforming back, we get the following solution formula in the original

variable u(t),

u(t) = Q exp(Dt)Q−1u0. (93.5)
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With A as in Example 93.1, we get the solution formula

u(t) =
1

2

(
1 1
1 −1

)(
et 0
0 e−t

)(
1 1
1 −1

)(
u01
u02

)

=
1

2

(
(et + e−t)u01 + (et − e−t)u02
(et − e−t)u01 + (et + e−t)u02

)
.

93.5 The General Spectral Theorem for Symmetric
Matrices

Above, we saw that eigenvalues of a matrix A are roots of the characteristic
equation det(A − λI) = 0. In principle, we can find the eigenvalues and
eigenvectors of given matrix by first solving the characteristic equation to
find all the eigenvalues, and then for each eigenvalue λ find corresponding
eigenvectors by solving the linear system of equations (A− λI)x = 0.
We shall now present an alternative way of constructing/finding the

eigenvectors and eigenvalues of a symmetric matrix A that also proves
the Spectral Theorem for a symmetric n× n matrix A in the general case
with possibly multiple roots. In the proof, we construct an orthonormal
basis of eigenvectors {s1, ..., sn} of A by constructing the eigenvectors one
by one starting with s1.

Constructing the First Eigenvector s1

To construct the first eigenvector s1, we consider the minimization problem:
find x̄ ∈ Rn such that

F (x̄) = min
x∈Rn

F (x), (93.6)

where

F (x) =
(Ax, x)

(x, x)
=

(f(x), x)

(x, x)
(93.7)

is the so-called Rayleigh quotient. We note that the function F (x) is ho-
mogenous of degree zero, that is for any λ ∈ R, λ 6= 0, we have

F (x) = F (λx),

because we can simply divide out the factor λ. In particular, for any x 6= 0,

F (x) = F (
x

‖x‖ ), (93.8)

and thus we may restrict the x in (93.6) to have length one, that is we may
consider the equivalent minimization problem: find x̄ with ‖x̄‖ = 1 such
that

F (x̄) = min
x∈Rn ‖x‖=1

F (x) (93.9)
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Since F (x) is Lipschitz continuous on the closed and bounded subset {x ∈
Rn : ‖x‖ = 1} of Rn, we know by the Chapter Minimization, that the
problem (93.9) has a solution x̄, and thus also the problem (93.6) has a
solution x̄. We set s1 = x̄, and check that g1 is indeed an eigenvector of A,
that is an eigenvector of f : Rn → Rn.
Since x̄ solves the minimization problem (93.6), we have ∇F (x̄) = 0,

where ∇F is the gradient of F . Computing ∇F (x) using the symmetry of
F (x) or the matrix A, we find that

∇F (x) = (x, x)2Ax − (Ax, x)2x

(x, x)2
, (93.10)

so that with x = x̄ satisfying (x̄, x̄) = 1,

∇F (x̄) = 2(Ax̄− (Ax̄, x̄)x̄) = 0,

that is
Ax̄ = λ1x̄, (93.11)

where

λ1 = (Ax̄, x̄) =
(Ax̄, x̄)

(x̄, x̄)
= min

x∈Rn
F (x). (93.12)

Setting s1 = x̄, we thus have

As1 = λ1s1, λ1 = (As1, s1), ‖s1‖ = 1.

We have now constructed the first normalized eigenvector s1 with corre-
sponding eigenvalue λ1. We now let V1 be the orthogonal complement of
the space spanned by s1, consisting of all the vectors x ∈ Rn such that
(x, s1) = 0. The dimension of V1 is n− 1.

Invariance of A

Note that V1 is invariant with respect to A in the sense that if x ∈ V1 then
Ax ∈ V1. This follows because if (x, g1) = 0 then (Ax, s1) = (x,As1) =
(x, λ1s1) = λ1(x, s1) = 0. This means that we can now restrict attention to
the action of A on V1, having handled the action of A on the space spanned
by the first eigenvector s1.

Constructing the Second Eigenvector s2

Consider the minimization problem to find x̄ ∈ V1 such that

F (x̄) = min
x∈V1

F (x). (93.13)

By the same argument, this problem has a solution which we denote s2 and

which satisfies As2 = λ2s2, where λ2 = (As2,s2)
(s2,s2)

, and ‖s2‖ = 1. Because in
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(93.13) we minimize over a smaller set than in (93.6), λ2 ≥ λ1. Note that
it may happen that λ2 = λ1, although V1 is a subset of Rn. In that case,
we say that λ1 = λ2 is a multiple eigenvalue.

Continuing the Process

Let V2 be the orthogonal subspace to the space spanned by s1 and s2
Again A is invariant on V2 and the space spanned by {s1, s2}. Continuing
this way, we obtain a orthonormal basis {s1, ..., sn} of eigenvectors of A
with corresponding real eigenvalues λi.
We have now proved the famous

Theorem 93.4 (Spectral Theorem): If f : R → R is a linear sym-
metric transformation with corresponding symmetric n × n matrix A in
the standard basis, then there is an orthogonal basis (g1, ..., gn) of Rn con-
sisting of eigenvectors gi of f with corresponding real eigenvalues λj sat-
isfying f(gj) = Agj = λjgj, for j = 1, ..., n. We have D = Q−1AQ and
A = QDQ−1, where Q is the orthogonal matrix with the coefficients of the
eigenvectors gj in the standard basis forming the columns, and D is the
diagonal matrix with the eigenvalues λj on the diagonal.

93.6 The Norm of a Symmetric Matrix

We recall that we have defined the Euclidean norm ‖A‖ of a n× n matrix
A by

‖A‖ = max
x∈Rn

‖Ax‖
‖x‖ , (93.14)

where we maximize over x 6= 0. By the definition, we have

‖Ax‖ ≤ ‖A‖ ‖x‖, (93.15)

and we may thus view ‖A‖ to be the smallest constant C such that ‖Ax‖ ≤
C‖x‖ for all x ∈ Rn.
We shall now prove that if A is symmetric, then we can directly relate

‖A‖ to the eigenvalues λ1, ..., λn of A:

‖A‖ = max
i=1,...,n

|λi|. (93.16)

We do this as follows. Using the Spectral theorem, we can write A as A =
Q⊤ΛQ with Q orthogonal and Λ a diagonal matrix with the eigenvalues λi
on the diagonal. We recall that (cf. (92.46))

‖Λ‖ = max
i=1,...,n

|λi| = |λj | (93.17)
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and thus for all x ∈ Rn,

‖Ax‖ = ‖Q⊤ΛQx‖ = ‖ΛQx‖ ≤ ‖Λ‖‖Qx‖ = ‖Λ‖‖x‖ = max
i=1,...,n

|λi|‖x‖,

which proves that ‖A‖ ≤ maxi=1,...,n |λi|. Choosing x to be equal to the
eigenvector corresponding to the eigenvalue λj of maximal modulus proves
that indeed ‖A‖ = maxi=1,...,n |λi| = |λj |. We have proved the following
result, which is a corner stone of numerical linear algebra.

Theorem 93.5 If A is a symmetric n × n matrix, then ‖A‖ = max |λi|,
where λ1, ..., λn are the eigenvalues of A.

93.7 Extension to Non-Symmetric Real Matrices

Up until now, we have mainly focussed on the case of real scalars, that
is we assume that the components of vectors are real numbers. We know
that we can also let the components of vectors be complex numbers, and
we may then allow eigenvalues to be complex numbers. The fundamental
theorem of algebra states that a polynomial equation of degree n with com-
plex coefficients, has n complex roots, and thus the characteristic equation
det(A− λI) = 0 has n complex roots λ1,....,λn, and thus a n× n matrix A
has n complex eigenvalues λ1,....,λn, if roots are counted with multiplicity.
We have in this chapter focussed on symmetric matrices A with real coef-
ficients and we have proved that a symmetric matrix with real coefficients
has n real eigenvalues, counted with multiplicity. For symmetric matrices
we can thus limit ourselves to real roots of the characteristic equation.

Chapter 93 Problems

93.1. Verify (93.10).

93.2. Compute the eigenvalues and eigenvectors of an arbitrary symmetric 2×2
matrix A. Solve the corresponding initial-value problem u̇(t) = Au(t) for t > 0,
u(0) = u0.
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94
Solving Linear Algebraic Systems

All thought is a kind of computation. (Hobbes)

94.1 Introduction

We are interested in solving a system of linear equations

Ax = b,

where A is a given n × n matrix and b ∈ Rn is a given n-vector and we
seek the solution vector x ∈ Rn. We recall that if A is non-singular with
non-zero determinant, then the solution x ∈ Rn is theoretically given by
Cramer’s formula. However if n is large, the computational work in using
Cramer’s formula is prohibitively large, so we need to find a more efficient
means of computing the solution.
We shall consider two types of methods for solving the system Ax = b: (i)

direct methods based on Gaussian elimination that theoretically produce
a solution after a finite number of arithmetic operations, and (ii) iterative
methods that produce a generally infinite sequence of increasingly accurate
approximations.

94.2 Direct Methods

We begin by noting that some linear systems are easier to solve than others.
For example if A = (aij) is diagonal, which means that aij = 0 if i 6= j,



520 94. Solving Linear Algebraic Systems

then the system is solved in n operations: xi = bi/aii, i = 1, ..., n. Further,
if the matrix is upper triangular, which means that aij = 0 if i > j, or
lower triangular, which means that aij = 0 if i < j, then the system can
be solved by backward substitution or forward substitution respectively; see
Fig. 94.1 for an illustration of these different types. For example if A is

0

0 0

0

FIGURE 94.1. The pattern of entries in diagonal, upper, and lower triangular
matrices. A “∗” denotes a possibly nonzero entry.

upper triangular, the “pseudo-code” shown in Fig. 94.2 solves the system
Ax = b for the vector x = (xi) given the vector b = (bi) (assuming that
akk 6= 0): In all three cases, the systems have a unique solution as long as

for k = n-1, n-2, ..., 1, do

sum = 0

for j = k+1, ..., n, do

sum = sum + akj
. xj

xk = (bk - sum)/akk

xn = bn/ann

FIGURE 94.2. An algorithm for solving an upper triangular system by back
substitution.

the diagonal entries of A are nonzero.
Direct methods are based on Gaussian elimination, which in turn is based

on the observation that the solution of a linear system is not changed under
the following elementary row operations:

• interchanging two equations

• adding a multiple of one equation to another

• multiplying an equation by a nonzero constant.

The idea behind Gaussian elimination is to transform using these opera-
tions a given system into an upper triangular system, which is solved by
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back substitution. For example, to solve the system

x1 + x2 + x3 = 1

x2 + 2x3 = 1

2x1 + x2 + 3x3 = 1,

we first subtract 2 times the first equation from the third to get the equiv-
alent system,

x1 + x2 + x3 = 1

x2 + 2x3 = 1

−x2 + x3 = −1.

We define the multiplier to be the factor 2. Next, we subtract −1 times the
second row from the third to get

x1 + x2 + x3 = 1

x2 + 2x3 = 1

3x3 = 0.

In this case, the multiplier is −1. The system is now upper triangular and
using back substitution, we obtain x3 = 0, x2 = 1, and x1 = 0. Gaussian
elimination can be coded in a straightforward way using matrix notation.

Matrix Factorization

There is another way to view Gaussian elimination that is useful for the
purposes of programming and handling special cases. Namely, Gaussian
elimination is equivalent to computing a factorization of the coefficient
matrix, A = LU , where L is a lower triangular and U an upper triangular
n× n matrix. Given such a factorization of A, solving the system Ax = b
is straightforward. We first set y = Ux, then solve Ly = b by forward
substitution and finally solve Ux = y by backward substitution.
To see that Gaussian elimination gives an LU factorization of A, consider

the example above. We performed row operations that brought the system
into upper triangular form. If we view these operations as row operations
on the matrix A, we get the sequence



1 1 1
0 1 2
2 1 3


→



1 1 1
0 1 2
0 −1 1


→



1 1 2
0 1 2
0 0 3


 ,

which is an upper triangular matrix. This is the “U” in the LU decompo-
sition.
The matrix L is determined by the observation that the row operations

can be performed by multiplying A on the left by a sequence of special
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matrices called Gauss transformations. These are lower triangular ma-
trices that have at most one nonzero entry in the off-diagonal positions
and 1s down the diagonal. We show a Gauss transformation in Fig. 94.3.
Multiplying A on the left by the matrix in Fig. 94.3 has the effect of adding




1 0 · · · 0
0 1 0 0

. . . 1
. . . 0

...
...

0 0 0
. . . 0

0 αij 0
. . . 1

. . .

0 0 0
. . .

0 1 0
0 · · · 0 1




FIGURE 94.3. A Gauss transformation.

αij times row j of A to row i of A. Note that the inverse of this matrix is
obtained changing αij to −αij ; we will use this below.
To perform the first row operation on A above, we multiply A on the left

by

L1 =




1 0 0
0 1 0
−2 0 1


 ,

to get

L1A =



1 1 1
0 1 2
0 −1 −1


 .

The effect of pre-multiplication by L1 is to add −2× row 1 of A to row 3.
Note that L1 is lower triangular and has ones on the diagonal.
Next we multiply L1A on the left by

L2 =



1 0 0
0 1 0
0 1 1


 ,

and get

L2L1A =



1 1 1
0 1 2
0 0 3


 = U.
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L2 is also lower triangular with ones on the diagonal. It follows that A =
L−1
1 L−1

2 U or A = LU , where

L = L−1
1 L−1

2 =



1 0 0
0 1 0
2 −1 1


 .

It is easy to see that L is also lower triangular with 1’s on the diagonal with
the multipliers (with sign change) occurring at the corresponding positions.
We thus get the factorization

A = LU =



1 0 0
0 1 0
2 −1 1





1 1 1
0 1 2
0 0 3


 .

Note that the entries in L below the diagonal are exactly the multipliers
used to perform Gaussian elimination on A.
A general linear system can be solved in exactly the same fashion by

Gaussian elimination using a sequence of Gauss transformations to obtain
a factorization A = LU .
An LU factorization can be performed in situ using the storage space

allotted to the matrix A. The fragment of code shown in Fig. 94.4 computes
the LU factorization of A, storing U in the upper triangular part of A and
storing the entries in L below the diagonal in the part of A below the
diagonal. We illustrate the storage of L and U in Fig. 94.5.

for k = 1, ..., n-1, do

for j = k+1, ..., n, do

ajk = ajk/akk

for m = k+1, ..., n, do

ajm = ajm - ajk akm

(step through rows)

(store the entry of L)

(eliminate entries
below diagonal entry)

(correct entries
down the row)

(store the entry of U)

FIGURE 94.4. An algorithm to compute the LU factorization of A that stores
the entries of L and U in the storage space of A.

Measuring the Cost

The cost of solving a linear system using a direct method is measured
in terms of computer time. In practice, the amount of computer time is
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u11

u22

unn

u12 u1n

l21

ln1 lnn-1

FIGURE 94.5. The matrix output from the algorithm in Fig. 94.4. L and U are
stored in the space allotted to A.

proportional to the number of arithmetic and storage operations the com-
puter uses to compute the solution. It is traditional (on a sequential com-
puter) to simplify the cost calculation by equating storing a value, addition,
and subtraction and equating multiplication and division when counting
operations. Moreover, since multiplication (i.e. multiplications and divi-
sions) generally cost much more than addition on older computers, it is
also common to simply count the number of multiplications (=multiplica-
tions+divisions).
By this measure, the cost of computing the LU decomposition of an n×n

matrix is n3 − n/3 = O(n3/3). We introduce some new notation here, the
big “O”. The actual count is n3/3−n/3, however when n is large, the lower
order term −n/3 becomes less significant. In fact,

lim
n→∞

n3/3− n/3

n3/3
= 1, (94.1)

and this is the definition of the big “O”. (Sometimes the big “O” notation
means that the limit of the ratio of the two relevant quantities is any con-
stant). With this notation, the operations count of the LU decomposition
is just O(n3).
The cost of the forward and backward substitutions is much smaller:

Pivoting

During Gaussian elimination, it sometimes happens that the coefficient of
a variable in the “diagonal position” becomes zero as a result of previous
eliminations. When this happens of course, it is not possible to use that
equation to eliminate the corresponding entries in the same column lying
below the diagonal position. If the matrix is invertible, it is possible to find
a non-zero coefficient in the same column and below the diagonal position,
and by switching the two rows, the Gaussian elimination can proceed. This
is called zero pivoting, or just pivoting.
Adding pivoting to the LU decomposition algorithm is straightforward.

Before beginning the elimination using the current diagonal entry, we check
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to see if that entry is non-zero. If it is zero, we search the entries below
in the same column for the first non-zero value, then interchange the row
corresponding to that non-zero entry with the row corresponding to the
current diagonal entry which is zero. Because the row interchanges involve
rows in the “un-factored” part of A, the form of L and U are not affected.
We illustrate this in Fig. 94.6.

for k = 1, ..., n-1, do

for j = k+1, ..., n, do

ajk = ajk/akk

for m = k+1, ..., n, do

ajm = ajm - ajk akm

(step through rows)

(store the entry of L)

(eliminate entries
below diagonal entry)

(correct entries
down the row)

(store the entry of U)

j=k

while ajk = 0, j=j+1

for m = 1, ..., n do

temp = akm

akm = ajm

ajm = temp

(search for the first
non-zero entry in
the current column)

(switch the kth and jth

rows of A)

FIGURE 94.6. An algorithm to compute the LU factorization of A that used
pivoting to avoid zero-valued diagonal entries.

To obtain the correct solution of the linear system Ax = b, we have to
mirror all pivots performed on A in the data b. This is easy to do with
the following trick. We define the vector of integers p = (1 2 . . . n)⊤.
This vector is passed to the LU factorization routine and whenever two
rows of A are interchanged, we interchange the corresponding entries in p.
After getting the altered p vector back, we pass it to the forward/backward
routine. Here, we address the vector b indirectly using the vector p, i.e., we
use the vector with entries (bpi)

n
i=1, which has the effect of interchanging

the rows in b in the correct fashion.
There are additional reasons to pivot in practice. As we have noted, the

computation of the LU decomposition can be sensitive to errors originating
from the finite precision of the computer if the matrix A is close to being
non-invertible. We discuss this further below. We mention here however
that a special kind of pivoting, called partial pivoting can be used to reduce
this sensitivity. The strategy behind partial pivoting is to search the entries
in the same column and below the current diagonal entry for the largest in
absolute value. The row corresponding to the largest entry in magnitude is
interchanged with the row corresponding to the current entry at the diago-
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nal. The use of partial pivoting generally gives more accurate results than
factorization without partial pivoting. One reason is that partial pivoting
insures that the multipliers in the elimination process are kept as small as
possible and consequently the errors in each entry are magnified by as little
as possible during the course of the Gaussian elimination. We illustrate this
with an example. Suppose that we solve

.000100x1 + 1.00x2 = 1.00

1.00x1 + 1.00x2 = 2.00

on a computer that holds three digits. Without pivoting, we get

.000100x1 + 1.00x2 = 1.00

−10000x2 = −10000

which implies that x2 = 1 and x1 = 0. Note the large multiplier that is
required for the elimination. Since the true answer is x1 = 1.0001 and
x2 = .9999, the computed result has an error of 100% in x1. If we switch
the two rows before eliminating, which corresponds exactly to the partial
pivoting strategy, we get

1.00x1 + 1.00x2 = 2.00

1.00x2 = 1.00

which gives x1 = x2 = 1.00 as a result.

94.3 Direct Methods for Special Systems

It is often the case that the matrices arising from the Galerkin finite element
method applied to a differential equation have special properties that can
be useful during the solution of the associated algebraic equations. For
example, the stiffness matrix for the Galerkin finite element approximation
of the two-point boundary value problem with no convection is symmetric,
positive-definite, and tridiagonal. In this section, we examine a couple of
different classes of problems that occur frequently.

Symmetric, Positive-Definite Systems

As we mentioned, symmetric, positive-definite matrices are often encoun-
tered when discretizing differential equations (especially if the spatial part
of the differential equation is of the type called elliptic). If A is symmetric
and positive-definite, then it can be factored as A = BB⊤ where B is a
lower triangular matrix with positive diagonal entries. This factorization
can be computed from the LU decomposition of A, but there is a compact
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method of factoring A that requires only O(n3/6) multiplications called
Cholesky’s method.:

b11 =
√
a11

bi1 =
ai1
b11

, 2 ≤ i ≤ n,




bjj =

(
ajj −

∑j−1
k=1 b

2
jk

)1/2
,

bij =
(
aij −

∑j−1
k=1 bikbjk

)
/bjj ,

2 ≤ j ≤ n, j + 1 ≤ i ≤ n

This is called a compact method because it is derived by assuming that
the factorization exists and then computing the coefficients of B directly
from the equations obtained by matching coefficients in BB⊤ = A. For
example, if we compute the coefficient in the first row and column of BB⊤

we get b211, which therefore must equal a11. It is possible to do this because
A is positive-definite and symmetric, which implies among other things
that the diagonal entries of A remain positive throughout the factorization
process and pivoting is not required when computing an LU decomposition.
Alternatively, the square roots in this formula can be avoided by com-

puting a factorization A = CDC⊤ where C is a lower triangular matrix
with ones on the diagonal and D is a diagonal matrix with positive diagonal
coefficients.

Banded Systems

Banded systems are matrices with non-zero coefficients only in some num-
ber of diagonals centered around the main diagonal. In other words, aij = 0
for j ≤ i− dl and j ≥ i+ du, 1 ≤ i, j ≤ n, where dl is the lower bandwidth,
du is the upper bandwidth, and d = du + dl − 1 is called the bandwidth. We
illustrate this in Fig. 94.7. The stiffness matrix computed for the two-point
boundary value problem with no convection is an example of a tridiagonal
matrix, which is a matrix with lower bandwidth 2, upper bandwidth 2, and
bandwidth 3.
When performing the Gaussian elimination used to compute the LU

decomposition, we see that the entries of A that are already zero do not
have to be reduced further. If there are only relatively few diagonals with
non-zero entries, then the potential saving is great. Moreover, there is no
need to store the zero-valued entries of A. It is straightforward to adapt the
LU factorization and forward/backward substitution routines to a banded
pattern, once a storage scheme has been devised. For example, we can store
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a11

a22

ann

a12 0
a21

0

a13 a1du
0

adl1

0

ann-dl+10

ann-du+1

0

du

d
l

FIGURE 94.7. The notation for a banded matrix.

a tridiagonal matrix as a 3× n matrix:



a21 a31 0 · · · 0
a12 a22 a32 0 · · · 0

0 a13 a23 a33 0 · · ·
...

. . .
. . .

. . .
. . .

. . . 0
... 0 a1n−1 a2n−1 a3n−1

0 · · · 0 a1n a2n




.

The routine displayed in Fig. 94.8 computes the LU factorization, while
the routine in Fig. 94.9 performs the forward/backward substitution.

for k = 2, ..., n, do

a1k = a1k/a2k-1

a2k = a2k - a1k a3k-1

FIGURE 94.8. A routine for computing the LU factorization of a tridiagonal
system.

The cost of this routine grows linearly with the dimension, rather than
at a cubic rate as in the full case. Moreover, we use only the equivalent of
six vectors of dimension n for storage. A more efficient version, derived as
a compact method, uses even less.
This algorithm assumes that no pivoting is required to factor A. Pivoting

during the factorization of a banded matrix raises the difficulty that the
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for k = n-1, ..., 1, do

xn = yn/a2n

xk = yk - a3k xk+1 /a2k

for k = 2, ..., n, do

y1 = b1

yk = bk - a1k yk-1

FIGURE 94.9. Using forward and backward substitution to solve a tridiagonal
system given the LU factorization.

bandwidth becomes larger. This is easy to see in a tridiagonal matrix, in
which case we have to store an extra vector to hold the extra elements
above the diagonal that result if two adjacent rows are switched.
As for a tridiagonal matrix, it is straightforward to program special LU

factorization and forward/backward substitution routines for a matrix with
bandwidth d. The operations count is O(nd2/2) and the storage require-
ment is a matrix of dimension d× n if no pivoting is required. If d is much
less than n, the savings in a special approach are considerable.
While it is true that if A is banded, then L and U are also banded,

it is also true that in general L and U have non-zero entries in positions
where A is zero. This is called fill-in. In particular, the stiffness matrix for a
boundary value problem in several variables is banded and moreover most
of the sub-diagonals in the band have zero coefficients. However, L and U
do not have this property and we may as well treat A as if all the diagonals
in the band have non-zero entries.
Banded matrices are one example of the class of sparse matrices. Recall

that a sparse matrix is a matrix with mostly zero entries. As for banded
matrices, it is possible to take advantage of sparsity to reduce the cost of
factoring A in terms of time and storage. However, it is more difficult to do
this than for banded matrices if the sparsity pattern puts non-zero entries
at any location in the matrix. One approach to this problem is based on
rearranging the equations and variables, or equivalently rearranging the
rows and columns to form a banded system.

94.4 Iterative Methods

Instead of solving Ax = b directly, we now consider iterative solution meth-
ods based on computing a sequence of approximations x(k), k = 1, 2, ...,
such that

lim
k→∞

x(k) = x or lim
k→∞

‖x(k) − x‖ = 0,
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for some norm ‖ · ‖.
Note that the finite precision of a computer has a different effect on an

iterative method than it has on a direct method. A theoretically convergent
sequence can not reach its limit in general on a computer using a finite
number of digits. In fact, at the point at which the change from one iterate
to the next occurs outside the range of digits held by the computer, the
sequence simply stops changing. Practically speaking, there is no point
computing iterations past this point, even if the limit has not been reached.
On the other hand, it is often sufficient to have less accuracy than the limit
of machine precision, and thus it is important to be able to estimate the
accuracy of the current iterate.

Minimization Algorithms

We first construct iterative methods for a linear system Ax = b where
A is symmetric and positive-definite. In this case, the solution x can be
characterized equivalently as the solution of the quadratic minimization
problem: find x ∈ Rn such that

F (x) ≤ F (y) for all y ∈ Rn, (94.2)

where

F (y) =
1

2
(Ay, y)− (b, y),

with (·, ·) denoting the usual Euclidean scalar product.
We construct an iterative method for the solution of the minimization

problem (94.2) based on the following simple idea: given an approximation
x(k), compute a new approximation x(k+1) such that F (x(k+1)) < F (x(k)).
On one hand, since F is a quadratic function, there must be a “downhill”
direction from the current position, unless we are at the minimum. On
the other hand, we hope that computing the iterates so that their func-
tion values are strictly decreasing, will force the sequence to converge to
the minimum point x. Such an iterative method is called a minimization
method.
Writing x(k+1) = x(k) + αkd

(k), where d(k) is a search direction and αk
is a step length, by direct computation we get

F (x(k+1)) = F (x(k)) + αk
(
Ax(k) − b, d(k)

)
+
α2
k

2

(
Ad(k), d(k)

)
,

where we used the symmetry of A to write (Ax(k), d(k))=(x(k), Ad(k)). If the
step length is so small that the second order term in αk can be neglected,
then the direction d(k) in which F decreases most rapidly, or the direction
of steepest descent, is

d(k) = −(Ax(k) − b) = −r(k),
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which is the opposite direction to the residual error r(k) = Ax(k) − b. This
suggests using an iterative method of the form

x(k+1) = x(k) − αkr
(k). (94.3)

A minimization method with this choice of search direction is called a
steepest descent method. The direction of steepest descent is perpendicular
to the level curve of F through x(k), which is the curve in the graph of F
generated by the points where F has the same value as at x(k). We illustrate
this in Fig. 94.10.

x(k)

x(k)
x

x

d(k)

F

level curves

FIGURE 94.10. The direction of steepest descent of F at a point is perpendicular
to the level curve of F through the point.

It remains to choose the step lengths αk. Staying with the underlying
principle, we choose αk to give the minimum value of F in the direction of
d(k) starting from x(k). Differentiating F (x(k) + αkr

(k)) with respect to αk
and setting the derivative zero gives

αk = −
(
r(k), d(k)

)

(d(k), Ad(k))
. (94.4)

As a simple illustration, we consider the case

A =

(
λ1 0
0 λ2

)
, 0 < λ1 < λ2, (94.5)

and b = 0, corresponding to the minimization problem

min
y∈Rn

1

2

(
λ1y

2
1 + λ2y

2
2

)
,
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with solution x = 0.
Applying (94.3) to this problem, we iterate according to

x(k+1) = x(k) − αkAx
(k),

using for simplicity a constant step length with αk = α instead of (94.4).
In Fig. 94.11, we plot the iterations computed with λ1 = 1, λ2 = 9, and
x(0) = (9, 1)⊤. The convergence in this case is quite slow. The reason is that

if λ2 ≫ λ1, then the search direction −(λ1x
(k)
1 , λ2x

(k)
2 )⊤ and the direction

−(x
(k)
1 , x

(k)
2 )⊤ to the solution at the origin, are very different. As a result

the iterates swing back and forth across the long, narrow “valley”.

0 2 4 6 8

−1

−0.5

0.5

1

x1

x2

x(0)

x(1)

x(2)

FIGURE 94.11. A sequence generated by the steepest descent method for (94.5)
plotted together with some level curves of F .

It turns out that the rate at which the steepest descent method converges
in general depends on the condition number κ(A) = λn/λ1 of A, where
λ1 ≤ λ2 ≤ ... ≤ λn are the eigenvalues of A (counted with multiplicity). In
other words, the condition number of a symmetric positive definite matrix
is the ratio of the largest eigenvalue to the smallest eigenvalue.
The general definition of the condition number of a matrix A in terms of

a norm ‖ ·‖ is κ(A) = ‖A‖‖A−1‖. In the ‖ ·‖2 norm, the two definitions are
equivalent for symmetric matrices. Using any definition, a matrix is said
to be ill-conditioned if the log(κ(A)) is of the order of the number of digits
used in the computer. As we said, we can expect to have difficulty solving
an ill-conditioned system; which in terms of direct methods means large
errors due to rounding errors and in terms of iterative methods means slow
convergence.
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We now analyze the steepest descent method for Ax = b in the case of a
constant step length α, where we iterate according to

x(k+1) = x(k+1) − α(Ax(k) − b).

Since the exact solution x satisfies x = x−α(Ax− b), we get the following
equation for the error e(k) = x− x(k):

e(k+1) = (I − αA)e(k).

The iterative method converges if the error tend to zero. Taking norms, we
get

‖e(k+1)‖ ≤ µ ‖e(k)‖ (94.6)

where we use the spectral estimate (93.16) to write

µ = ‖I − αA‖ = max
j

|1− αλj |,

since the eigenvalues of the matrix I−αA are 1−αλj , j = 1, ..., n. Iterating
this estimate we get

‖e(k+1)‖ ≤ µk ‖e(0)‖, (94.7)

where e(0) is the initial error.
To understand when (94.6), or (94.7), guarantees convergence, consider

the scalar sequence {λk} for k ≥ 0. If |λ| < 1, then λk → 0; if λ = 1,
then the sequence is always 1; if λ = −1, the sequence alternates between 1
and −1 and does not converge; and if |λ| > 1, then the sequence diverges.
Therefore if we want the iteration to converge for any initial value, then
we must choose α so that µ < 1. Since the λj are positive by assumption,
1 − αλj < 1 automatically, and we can guarantee that 1 − αλj > −1 if α
satisfies α < 2/λn. Choosing α = 1/λn, which is not so far from optimal,
we get

µ = 1− 1/κ(A).

If κ(A) is large, then the convergence can be slow because then the
reduction factor 1− 1/κ(A) is close to one. More precisely, the number of
steps required to lower the error by a given amount is proportional to the
condition number.
When an iteration converges in this fashion, i.e. the error decreases (more

or less) by a given factor in each iteration, then we say that the iteration
converges linearly. We define the rate of convergence to be − log(µ). The
motivation is that the number of iterations are required to reduce the error
by a factor of 10−m is approximately −m log(µ). Note that a faster rate of
convergence means a smaller value of µ.
This is an a priori estimate of the error reduction per iteration, since we

estimate the error before the computation. Such an analysis must account
for the slowest possible rate of convergence because it holds for all initial
vectors.
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Consider the system Ax = 0 with

A =



λ1 0 0
0 λ2 0
0 0 λ3


 , (94.8)

where 0 < λ1 < λ2 < λ3. For an initial guess x(0)=(x01, x
0
2, x

0
3)

⊤, the
steepest descent method with α = 1/λ3 gives the sequence

x(k) =

((
1− λ1

λ3

)k
x01,
(
1− λ2

λ3

)k
x02, 0

)
, k = 1, 2, ...,

and,

‖e(k)‖ =

√(
1− λ1

λ3

)2k (
x01
)2

+

(
1− λ2

λ3

)2k (
x02
)2
, k = 1, 2, ...

Thus for a general initial guess, the size of the error is given by the root
mean square average of the corresponding iterate and the rate that the
errors decrease is the root mean square average of the rates of decrease of
the components. Therefore, depending on the initial vector, initially the
iterates will generally converge more quickly than the rate of decrease of
the first, i.e. slowest, component. In other words, more quickly than the
rate predicted by (94.6), which bounds the rate of decrease of the errors
by the rate of decrease in the slowest component. However, as the iteration
proceeds, the second component eventually becomes much smaller than the
first component (as long as x01 6= 0) and we can neglect that term in the
expression for the error, i.e.

‖e(k)‖ ≈
(
1− λ1

λ3

)k|x01| for k sufficiently large. (94.9)

In other words, the rate of convergence of the error for almost all initial
vectors eventually becomes dominated by the rate of convergence of the
slowest component. It is straightforward to show that the number of itera-
tions that we have to wait for this approximation to be valid is determined
by the relative sizes of the first and second components of x(0).
This simple error analysis does not apply to the unmodified steepest

descent method with varying αk. However, it is generally true that the
rate of convergence depends on the condition number of A, with a larger
condition number meaning slower convergence. If we again consider the
2 × 2 example (94.5) with λ1 = 1 and λ2 = 9, then the estimate (94.6)
for the simplified method suggests that the error should decrease by a
factor of 1 − λ1/λ2 ≈ .89 in each iteration. The sequence generated by
x(0) = (9, 1)⊤ decreases by exactly .8 in each iteration. The simplified
analysis over-predicts the rate of convergence for this particular sequence,
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though not by a lot. By way of comparison, if we choose x(0) = (1, 1)⊤, we
find that the ratio of successive iterations alternates between ≈ .126 and
≈ .628, because αk oscillates in value, and the sequence converges much
more quickly than predicted. On the other hand, there are initial guesses
leading to sequences that converge at the predicted rate.
The stiffness matrix A of a linear second order two-point boundary value

problem with no convection is symmetric and positive-definite, and its con-
dition number κ(A) ∝ h−2. Therefore the convergence of the steepest de-
scent method is very slow if the number of mesh points is large.

A General Framework for Iterative Methods

We now briefly discuss iterative methods for a general, linear system Ax =
b, following the classical presentation of iterative methods in Isaacson and
Keller ([?]). Recall that some matrices, like diagonal and triangular matri-
ces, are relatively easy and cheap to invert, and Gaussian elimination can
be viewed as a method of factoring A into such matrices. One way to view
an iterative method is an attempt to approximate A−1 by the inverse of
a part of A that is easier to invert. This is called an approximate inverse
of A, and we use this to produce an approximate solution to the linear
system. Since we don’t invert the matrix A, we try to improve the approx-
imate solution by repeating the partial inversion over and over. With this
viewpoint, we start by splitting A into two parts:

A = N − P,

where the part N is chosen so that the system Ny = c for some given c
is relatively inexpensive to solve. Noting that the true solution x satisfies
Nx = Px+ b, we compute x(k+1) from x(k) by solving

Nx(k+1) = Px(k) + b for k = 1, 2, ..., (94.10)

where x(0) is an initial guess. For example, we may choose N to be the
diagonal of A:

Nij =

{
aij , i = j,

0, i 6= j,

or triangular:

Nij =

{
aij , i ≥ j,

0, i < j.

In both cases, solving the system Nx(k+1) = Px(k) + b is cheap compared
to doing a complete Gaussian elimination on A. so we could afford to do it
many times.
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As an example, suppose that

A =




4 1 0
2 5 1
−1 2 4


 and b =



1
0
3


 , (94.11)

and we choose

N =



4 0 0
0 5 0
0 0 4


 and P =




0 −1 0
−2 0 −1
1 −2 0


 ,

in which case the equation Nx(k+1) = Px(k) + b reads

4xk+1
1 = −xk2 + 1

5xk+1
2 = −2xk1 − xk3

4xk+1
3 = xk1 − 2xk2 + 3.

Being a diagonal system it is easily solved, and choosing an initial guess
and computing, we get

x(0) =



1
1
1


 , x(1) =




0
−.6
.5


 , x(2) =




.4
−.1
1.05


 , x(3) =



.275
−.37
.9


 ,

x(4) =




.3425
−.29

1.00375


 , · · · x(15) =



.333330098
−.333330695
.999992952


 , · · ·

The iteration appears to converge to the true solution (1/3, −1/3,1)⊤.
In general, we could choose N = Nk and P = Pk to vary with each

iteration.
To analyze the convergence of (94.10), we subtract (94.10) from the equa-

tion Nx = Px+ b satisfied by the true solution to get an equation for the
error e(k) = x− x(k):

e(k+1) =Me(k),

where M = N−1P is the iteration matrix. Iterating on k gives

e(k+1) =Mk+1e(0). (94.12)

Rephrasing the question of convergence, we are interested in whether e(k) →
0 as k → ∞. By analogy to the scalar case discussed above, ifM is “small”,
then the errors e(k) should tend to zero. Note that the issue of convergence
is independent of the data b.
If e(0) happens to be an eigenvector of M , then it follows from (94.12)

‖e(k+1)‖ = |λ|k+1‖e(0)‖,
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and we conclude that if the method converges then we must have |λ| < 1
(or λ = 1). Conversely, one can show that if |λ| < 1 for all eigenvalues of
M , then the method (94.10) indeed does converge:

Theorem 94.1 An iterative method converges for all initial vectors if and
only if every eigenvalue of the associated iteration matrix is less than one
in magnitude.

This theorem is often expressed using the spectral radius ρ(M) ofM , which
is the maximum of the magnitudes of the eigenvalues of A. An iterative
method converges for all initial vectors if and only if ρ(M) < 1. In general,
the asymptotic limit of the ratio of successive errors computed in ‖ ‖∞ is
close to ρ(M) as the number of iterations goes to infinity. We define the
rate of convergence to be RM = − log(ρ(M)). The number of iterations
required to reduce the error by a factor of 10m is approximately m/RM .
Practically speaking, “asymptotic” means that the ratio can vary as the

iteration proceeds, especially in the beginning. In previous examples, we
saw that this kind of a priori error result can underestimate the rate of
convergence even in the special case when the matrix is symmetric and
positive-definite (and therefore has an orthonormal basis of eigenvectors)
and the iterative method uses the steepest descent direction. The general
case now considered is more complicated, because interactions may oc-
cur in direction as well as magnitude, and a spectral radius estimate may
overestimate the rate of convergence initially. As an example, consider the
non-symmetric (even non-normal) matrix

A =

(
2 −100
0 4

)
(94.13)

choosing

N =

(
10 0
0 10

)
and P =

(
8 100
0 6

)
gives M =

(
.9 10
0 .8

)
.

In this case, ρ(M) = .9 and we expect the iteration to converge. In-
deed it does converge, but the errors become quite large before they start
to approach zero. We plot the iterations starting from x(0) = (1, 1)⊤ in
Fig. 94.12.
The goal is obviously to choose an iterative method so that the spectral

radius of the iteration matrix is small. Unfortunately, computing ρ(M) in
the general case is much more expensive than solving the original linear
system and is impractical in general. We recall that |λ| ≤ ‖A‖ holds for
any norm and any eigenvalue λ of A. The following theorem indicates a
practical way to check for convergence.

Theorem 94.2 Assume that ‖N−1P‖ ≤ µ for some constant µ < 1 and
matrix norm ‖ · ‖. Then the iteration converges and ‖e(k)‖ ≤ µk‖e(0)‖ for
k ≥ 0.
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FIGURE 94.12. The results of an iterative method computed using a non-normal
matrix.

This theorem is also an a priori convergence result and suffers from the
same deficiency as the analysis of the simplified steepest descent method
presented above. In fact, choosing an easily computable matrix norm, like
‖ ‖∞, generally leads to an even more inaccurate estimate of the conver-
gence rate than would be obtained by using the spectral radius. In the worst
case, it is entirely possible that ρ(M) < 1 < ‖M‖ for the chosen norm, and
hence the iterative method converges even though the theorem does not
apply. The amount of “slack” in the bound in Theorem 94.2 depends on
how much larger ‖A‖∞ is than ρ(A).
For the 3 × 3 example (94.11), we compute ‖N−1P‖∞ = 3/4 = λ and

therefore we know the sequence converges. The theorem predicts that the
error will get reduced by a factor of 3/4 every iteration. If we examine the
error of each iterate along with the ratios of successive errors after the first
iteration:

i ‖e(i)‖∞ ‖e(i)‖∞/‖e(i−1)‖∞
0 1.333
1 .5 .375
2 .233 .467
3 .1 .429
4 .0433 .433
5 .0194 .447
6 .00821 .424
7 .00383 .466
8 .00159 .414
9 .000772 .487

we find that after the first few iterations, the errors get reduced by a factor
in the range of .4–.5 each iteration and not the factor 3/4 predicted above.
The ratio of e(40)/e(39) is approximately .469. If we compute the eigenvalues
of M , we find that ρ(M) ≈ .476 which is close to the ratio of successive
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errors. To decrease the initial error by a factor of 10−4 using the predicted
decrease of .75 per iteration, we would compute 33 iterations, while only
13 iterations are actually needed.
We get different methods, and different rates of convergence, by choosing

different N and P . The method used in the example above is called the
Jacobi method. In general, this consists of choosing N to be the “diagonal
part” of A and P to be the negative of the “off-diagonal” part of A. This
gives the set of equations

xk+1
i = − 1

aii

(∑

j 6=i
aijx

k
j − bi

)
, i = 1, ..., n.

To derive a more sophisticated method, we write out these equations in
Fig. 94.13. The idea behind the Gauss-Seidel method is to use the new

x1
k+1 =- 1

a11
(0 + a12x2

k + . . . + a1nxn
k - b1 )

x2
k+1 =- 1

a22
(a21x1

k + 0 + a23x3
k + . . . + a2nxn

k - b2 )

x3
k+1 =- 1

a33
(a31x1

k + a32x2
k + 0 + a34x4

k + . . . - b3 )

xn
k+1 =- 1

ann
(an1x1

k + an2x2
k + . . . + ann-1xk

n-1 + 0 - bn )

FIGURE 94.13. The Gauss-Seidel method substitutes new values of the iteration
as they become available.

values of the approximation in these equations as they become known. The
substitutions are drawn in Fig. 94.13. Presumably, the new values are more
accurate than the old values, hence we might guess that this iteration will
converge more quickly. The equations can be written

xk+1
i =

1

aii

(
−
i−1∑

j=1

aijx
k+1
j −

n∑

j=i+1

aijx
k
j + bi

)
.

If we decompose A into the sum of its lower triangular L, diagonal D, and
upper triangular U parts, A = L+D+U , then the equations can be written
Dx(k+1) = −Lx(k+1) − Ux(k) + b or

(D + L)x(k+1) = −Ux(k) + b.

Therefore, N = D + L and P = −U . The iteration matrix is MGS =
N−1P = −(D + L)−1U .
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A diagonally dominant matrix often occurs when a parabolic problem
is discretized. We have already seen the other case, if A is symmetric and
positive-definite then the Gauss-Seidel method converges. This is quite hard
to prove, see Isaacson and Keller ([?]) for details.

94.5 Estimating the Error of the Solution

The issue of estimating the error of the numerical solution of a linear system
Ax = b arises both in Gaussian elimination, because of the cumulative
effects of round-off errors, and when using iterative methods, where we
need a stopping criterion. Therefore it is important to be able to estimate
the error in some norm with a fair degree of accuracy.
We discussed this problem in the context of iterative methods in the

last section when we analyzed the convergence of iterative methods and
Theorem 94.2 gives an a priori estimate for the convergence rate. It is
an a priori estimate because the error is bounded before the computation
begins. Unfortunately, as we saw, the estimate may not be very accurate on
a particular computation, and it also requires the size of the initial error.
In this section, we describe a technique of a posteriori error estimation that
uses the approximation after it is computed to give an estimate of the error
of that particular approximation.
We assume that xc is a numerical solution of the system Ax = b with

exact solution x, and we want to estimate the error ‖x−xc‖ in some norm
‖ · ‖. We should point out that we are actually comparing the approximate
solution x̃c of Ãx̃ = b̃ to the true solution x̃, where Ã and b̃ are the finite
precision computer representations of the true A and b respectively. The
best we can hope to do is compute x̃ accurately. To construct a complete
picture, it would be necessary to examine the effects of small errors in A
and b on the solution x. To simplify things, we ignore this part of the
analysis and drop the ˜ . In a typical use of an iterative method, this turns
out to be reasonable. It is apparently less reasonable in the analysis of a
direct method, since the errors arising in direct methods are due to the
finite precision. However, the initial error caused by storing A and b on a
computer with a finite number of digits occurs only once, while the errors
in the arithmetic operations involved in Gaussian elimination occur many
times, so even in that case it is not an unreasonable simplification.
We start by considering the residual error

r = Axc − b,

which measures how well xc solves the exact equation. Of course, the resid-
ual error of the exact solution x is zero but the residual error of xc is not
zero unless xc = x by some miracle. We now seek to estimate the unknown
error e = x− xc in terms of the computable residual error r.
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By subtracting Ax− b = 0 from Axc− b = r, we get an equation relating
the error to the residual error:

Ae = −r. (94.14)

This is an equation of the same from as the original equation and by solv-
ing it numerically by the same method used to compute xc, we get an
approximation of the error e. This simple idea will be used in a more so-
phisticated form below in the context of a posteriori error estimates for
Galerkin methods.
We now illustrate this technique on the linear system arising in the Galer-

kin finite element discretization of a two-point boundary value problem
with no convection. We generate a problem with a known solution so that
we can compute the error and test the accuracy of the error estimate. We
choose the true solution vector x with components xi = sin(πih), where
h = 1/(M+1), corresponding to the function sin(πx) and then compute the
data by b = Ax, where A is the stiffness matrix. We use the Jacobi method,
suitably modified to take advantage of the fact that A is tridiagonal, to solve
the linear system. We use ‖ ‖ = ‖ ‖2 to measure the error.
We compute the Jacobi iteration until the residual error becomes smaller

than a given residual tolerance RESTOL. In other words, we compute the
residual r(k) = Ax(k) − b after each iteration and stop the process when
‖r(k)‖ ≤ RESTOL. We present computations using the stiffness matrix
generated by a uniform discretization with M = 50 elements yielding a
finite element approximation with an error of .0056 in the l2 norm. We
choose the value of RESTOL so that the error in the computation of the
coefficients of the finite element approximation is about 1% of the error of
the approximation itself. This is reasonable since computing the coefficients
of the approximation more accurately would not significantly increase the
overall accuracy of the approximation. After the computation of x(k) is
complete, we use the Jacobi method to approximate the solution of (94.14)
and compute the estimate of the error.
Using the initial vector x(0) with all entries equal to one, we compute 6063

Jacobi iterations to achieve ‖r‖ < RESTOL = .0005. The actual error of
x(6063), computed using the exact solution, is approximately .0000506233.
We solve (94.14) using the Jacobi method for 6063 iterations, reporting the
value of the error estimate every 400 iterations:

Iter. Error Est. Iter. Error Est. Iter. Error Est.
1 0.00049862 2001 0.000060676 4001 0.000050849
401 0.00026027 2401 0.000055328 4401 0.000050729
801 0.00014873 2801 0.000052825 4801 0.000050673
1201 0.000096531 3201 0.000051653 5201 0.000050646
1601 0.000072106 3601 0.000051105 5601 0.000050634

We see that the error estimate is quite accurate after 6001 iterations and
sufficiently accurate for most purposes after 2000 iterations. In general,
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we do not require as much accuracy in the error estimate as we do in the
solution of the system, so the estimation of the accuracy of the approximate
solution is cheaper than the computation of the solution.
Since we estimate the error of the computed solution of the linear system,

we can stop the Jacobi iteration once the error in the coefficients of the
finite element approximation is sufficiently small so that we are sure the
accuracy of the approximation will not be affected. This is a reasonable
strategy given an estimate of the error. If we do not estimate the error,
then the best strategy to guarantee that the approximation accuracy is not
affected by the solution error is to compute the Jacobi iteration until the
residual error is on the order of roughly 10−p, where p is the number of digits
that the computer uses. Certainly, there is not much point to computing
further Jacobi iterations after this. If we assume that the computations
are made in single precision, then p ≈ 8. It takes a total of 11672 Jacobi
iterations to achieve this level of residual error using the same initial guess
as above. In fact, estimating the error and computing the coefficients of
the approximation to a reasonable level of accuracy costs significantly less
than this crude approach.
This approach can also be used to estimate the error of a solution com-

puted by a direct method, provided the effects of finite precision are in-
cluded. The added difficulty is that in general the residual error of a solu-
tion of a linear system computed with a direct method is small, even if the
solution is inaccurate. Therefore, care has to be taken when computing the
residual error because the possibility that subtractive cancellation makes
the calculation of the residual error itself inaccurate. Subtractive cancella-
tion is the name for the fact that the difference of two numbers that agree
to the first i places has i leading zeroes. If only the first p digits of the
numbers are accurate then their difference can have at most p− i accurate
significant digits. This can have severe consequences on the accuracy of the
residual error if Axc and b agree to most of the digits used by the com-
puter. One way to avoid this trouble is to compute the approximation in
single precision and the residual in double precision (which means compute
the product Axc in double precision, then subtract b). The actual solution
of (94.14) is relatively cheap since the factorization of A has already been
performed and only forward/backward substitution needs to be done.

94.6 The Conjugate Gradient Method

We learned above that solving an n× n linear system of equations Ax = b
with A symmetric positive definite using the gradient method, requires a
number of iterations, which is proportional to the condition number κ(A) =
λn/λ1, where λ1 ≤ ... ≤ λn are the eigenvalues of A. Thus the number of
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iteration will be large, maybe prohibitively so, if the condition number κ(A)
is large.
We shall now present a variant of the gradient method, referred as the

conjugate gradient method, where the number of iterations scales instead
like

√
κ(A), which may be much smaller than κ(A) if κ(A) is large.

In the conjugate gradient method each new search direction is chosen to
be orthogonal, with respect to the scalar product induced by the positive
definite symmetric matrix A, which prevents choosing inefficient search
directions as in the usual gradient method.
The conjugate gradient method may be formulated as follows: for k =

1, 2, ... compute an approximate solution xk ∈ Rn as the solution of the
minimization problem

min
y∈Kk(A)

F (y) = min
y∈Kk(A)

1

2
(Ay, y)− (b, y)

where Kk(A) is the Krylov space spanned by the vectors {b, Ab, ..., Ak−1b}.
This is the same as defining xk to be the projection of x onto Kk(A)

with respect to the scalar product < y, z > on Rn × Rn defined by
< y, z >= (Ay, z), because we have using the symmetry of A and that
Ax = b:

1

2
(Ay, y)− (b, y) =

1

2
< y − x, y − x > −1

2
< x, x > .

In particular, the conjugate gradient method has the following minimiza-
tion property

‖x− xk‖A = min
y∈Kk(A)

‖x− y‖A ≤ ‖pk(A)x‖A

where pk(x) is a polynomial of degree k with p(0) = 1, and ‖ · ‖A is the
norm associated with the scalar product < ·, · >, that is, ‖y‖2A =< y, y >.
This follows by using that since b = Ax, we have that Kk(A) is spanned
by the vectors {Ax,A2x, ..., Akx}. In particular, we conclude that for all
polynomials pk(x) of degree k such that pk(0) = 1, we have

‖x− xk‖A ≤ max
λ∈Λ

|pk(λ)|‖x‖A (94.15)

where Λ is the set of eigenvalues of A. By choosing the polynomial pk(x)
properly, e.g as a so-called Chebyshev polynomial qk(x) with the property
that qk(x) is small on the interval [λ1, λn] containing the eigenvalues of A,
one can prove that the number of iterations scales like

√
κ(A) if n is large.

If n is not large, we have in particular from (94.15) that we get the exact
solution after at most n iterations, since we may choose the polynomial
pk(x) to be zero at the n eigenvalues of A.
We have now defined the conjugate gradient method through it struc-

tural properties: projection onto a Krylov space with respect to a certain
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scalar product, and we now address the problem of actually computing the
sequence xk step by step. This is done as follows: For k = 0, 1, 2, ...,

xk+1 = xk + αkd
k, αk = − (rk, dk)

< dk, dk >
, (94.16)

dk+1 = −rk+1 + βkd
k, βk =

< rk+1, dk >

< dk, dk >
, (94.17)

where rk = Axk − b is the residual of the approximation xk, and we choose
x0 = 0 and d0 = b. Here, (94.17) signifies that the new search direction
dk+1 gets new directional information from the new residual rk+1 and is
chosen to be orthogonal (with respect to the scalar product < ·, · >) to
the old search direction dk. Further, (94.16), expresses that xk+1 is chosen
so as to to minimize F (x(k) + αdk) in α, corresponding to projection onto
Kk+1(A). We prove these properties in a sequence of problems below.
Note that if we choose the initial approximation x0 different from zero,

then we may reduce to the above case by considering instead the problem
Ay = b−Ax0 in y, where y = x− x0.

94.7 GMRES

The conjugate gradient method for solving an n×n system Ax = b builds on
the matrix A being symmetric and positive definite. If A is non-symmetric
or non-positive definite, but yet non-singular, then we may apply the con-
jugate gradient method to the least squares problem A⊤Ax = A⊤b, but
the since the condition number of A⊤A typically is the square of the con-
dition number of A, the required number of iterations may be too large for
efficiency.
Instead we may try the Generalized Minimum Residual method referred

to as GMRES, which generates a sequence of approximations xk of the
solution x of Ax = b, satisfying for any polynomial pk(x) of degree at most
k with pk(0) = 1

‖Axk − b‖ = min
y∈Kk(A)

‖Ay − b‖ ≤ ‖pk(A)b‖, (94.18)

that is xk is the element in the Krylov space Kk(A) which minimizes the
Euclidean norm of the residual Ay − b with y ∈ Kk(A). Assuming that
the matrix A is diagonalizable, there exist a nonsingular matrix V so that
A = V DV −1, where D is a diagonal matrix with the eigenvalues of A on
the diagonal. We then have that

‖Axk − b‖ ≤ κ(V )max
λ∈Λ

|pk(λ)|‖b‖, (94.19)

where Λ is the set of eigenvalues of A.
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In the actual implementation of GMRES we use the Arnoldi iteration, a
variant of the Gram-Schmidt orthogonalization, that constructs a sequence
of matrices Qk whose orthogonal column vectors span the successive Krylov
spaces Kk(A), and we write xk = Qkc to get the following least squares
problem:

min
c∈Rk

‖AQnc− b‖. (94.20)

The Arnoldi iteration is based on the identity AQk = Qk+1Hk, where Hk

is an upper Hessenberg matrix so that hij = 0 for all i > j + 1. Using this
identity and multiplying from the left by QTk+1 gives us another equivalent
least squares problem:

min
c∈Rk

‖Hkc−QTk+1b‖. (94.21)

Recalling the construction of the Krylov spaces Kk(A), in particular that
K1(A) is spanned by b, we find that QTk+1b = ‖b‖e1, where e1 = (1, 0, 0, ...),
and we obtain the final form of the least squares problem to be solved in
the GMRES iteration:

min
c∈Rk

‖Hkc− ‖b‖e1‖. (94.22)

This problem is now easy to solve due to the simpel structure of the Hes-
senberg matrix Hk.
In Figure 94.14 we compare the performance of the conjugate gradi-

ent method and GMRES for system with a tridiagonal 200 × 200 matrix
with 1 on the diagonal, and random off-diagonal entries that take values in
(−0.5, 0.5) and the right hand side a random vector with values in [−1, 1].
The system matrix in this case is not symmetric, but it is strictly diago-
nally dominant and thus may be viewed asa perturbation of the identity
matrix and should be easy to solve iteratively. We see that both the con-
jugate gradient method and GMRES converge quite rapidly, with GMRES
winning in number of iterations.
In GMRES we need to store the basis vectors for the increasing Krylov

space, which may be prohibitive for large systems requiring many iterations.
To avoid this problem, we may restart GMRES when we have reached a
maximal number of stored basis vector, by using as initial approximation
x0 the last approximation before restart. The trade-off is of course that a
retarted GMRES may require more iterations for the same accuracy than
GMRES without restart.
We now consider the more challenging problem of solving a 200 × 200

stiffness matrix system, that is a system with a tridiagonal matrix with
2 on the diagonal, and -1 on the off-diagonal (which is not strictly diago-
nally dominant). We will meet this type of system matrix in Chapter FEM
for Two-Point Boundary Value Problems below, and we will see that it
has a condition number proportional to the square of the number of un-
knowns. We thus expect the conjugate gradient method to require about
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FIGURE 94.14. Log-plot of the residual versus the number of iterations for di-
agonal dominant random matrix, using the conjugate gradient method (′·′) and
GMRES (’triangles’).

the same number of iterations as the number of unknowns. In Figure 94.15
we compare again the performance of the conjugate gradient method with
the GMRES method, now restarted after 100 iterations. We find that the
conjugate gradient method as expected converges quite slowly (and non
monotonically), until immediate convergence at iteration 200 as predicted
by theory. The GMRES iteration on the other hand has a monotone but
still quite slow convergence in particular after each restart when the Krylov
subspace is small.
In Figure 94.16 we compare different restart conditions for GMRES, and

we find that there is a trade-off between the convergence rate and the
memory consumption: few restarts give a faster convergence, but require
more memory to store more basis vectors for the Krylov space. On the other
hand we save memory by using more restarts, but then the convergence rate
deteriorates.
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FIGURE 94.15. Log-plot of the residual versus the number of iterations for stiff-
ness matrix, using the conjugate gradient method and GMRES, restarted after
100 iterations.
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FIGURE 94.16. Log-plot of the residual versus the number of iterations for stiff-
ness matrix using GMRES and restarted GMRES, restarted after 20,50,100,150
iterations (left), and a close-up on the cases of no restart and restart after 100
and 150 iterations (right).

Chapter 94 Problems

94.1. Using a similar format, write down algorithms to solve a diagonal system
and then a lower triangular system using forward substitution. Determine the
number of arithmetic operations needed to compute the solution.

94.2. Prove that multiplying a square matrix A on the left by the matrix in
Fig. 94.3 has the effect of adding αij times row j of A to row i of A. Prove that
the inverse of the matrix in Fig. 94.3 is obtained changing αij to −αij

94.3. Show that the product of two Gauss transformations is a lower triangular
matrix with ones on the diagonal and the inverse of a Gauss transformation is a
Gauss transformation.

94.4. Solve the system

x1 − x2 − 3x3 = 3

−x1 + 2x2 + 4x3 = −5

x1 + x2 = −2

by computing an LU factorization of the coefficient matrix and using forward/
backward substitution.

94.5. On some computers, dividing two numbers is up to ten times more ex-
pensive than computing the reciprocal of the denominator and multiplying the
result with the numerator. Alter this code to avoid divisions. Note: the reciprocal
of the diagonal element akk has to be computed just once.
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94.6. Write some pseudo-code that uses the matrix generated by the code in
Fig. 94.4 to solve the linear system Ax = b using forward/backward substitution.
Hint: the only missing entries of L are the 1s on the diagonal.

94.7. Show that the cost of a backward substitution using an upper triangular
matrix of dimension n× n is O(n2/2).

94.8. Determine the cost of multiplying a n× n matrix with another.

94.9. One way to compute the inverse of a matrix is based on viewing the
equation AA−1 = I as a set of linear equations for the columns of A−1. If a(j)

denotes the jth column of A−1, then it satisfies the linear system

Aa(j) = ej

where ej is the standard basis vector of Rn with a one in the jth position. Use
this idea to write a pseudo-code for computing the inverse of a matrix using LU
factorization and forward/backward substitution. Note that it suffices to compute
the LU factorization only once. Show that the cost of computing the inverse in
this fashion is O(4n3/3).

94.10. Solve the system

x1 + x2 + x3 = 2

x1 + x2 + 3x3 = 5

−x1 − 2x3 = −1.

This requires pivoting.

94.11. Alter the LU decomposition and forward/backward routines to solve a
linear system with pivoting.

94.12. Modify the code in Problem 94.11 to use partial pivoting.

94.13. Count the cost of Cholesky’s method.

94.14. Compute the Cholesky factorization of




4 2 1
2 3 0
1 0 2





94.15. Show that the operations count for solving a tridiagonal system using
the solver described in Fig. 94.9 is O(5n).

94.16. Find an algorithm to solve a tridiagonal system that stores only four
vectors of dimension n.
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94.17. A factorization of a tridiagonal solver can be derived as a compact
method. Assume that A can be factored as

A =





α1 0 · · · 0

β2 α2 0
...

0 β3 α3

...
. . . 0

0 · · · 0 βn αn









1 γ1 0 · · · 0
0 1 γ2 0
...

. . .
. . .

1 γn−1

0 · · · 0 1





Multiply out the factors and equate the coefficients to get equations for α, β, and
γ. Derive some code based on these formulas.

94.18. Write some code to solve the tridiagonal system resulting from the
Galerkin finite element discretization of a two-point boundary value problem.
Using 50 elements, compare the time it takes to solve the system with this tridi-
agonal solver to the time using a full LU decomposition routine.

94.19. Show that the operations count of a banded solver for a n × n matrix
with bandwidth d is O(nd2/2).

94.20. Write code to solve a linear system with bandwidth five centered around
the main diagonal. What is the operations count for your code?

94.21. Prove that the solution of (94.2) is also the solution of Ax = b.

94.22. Prove that the direction of steepest descent for a function F at a point
is perpendicular to the level curve of F through the same point.

94.23. Prove (94.4).

94.24. Prove that the level curves of F in the case of (94.5) are ellipses with
major and minor axes proportional to 1/

√
λ1 and 1/

√
λ2, respectively.

94.25. Compute the iteration corresponding to λ1 = 1, λ2 = 2, λ3 = 3, and
x(0) = (1, 1, 1)⊤ for the system Ax = 0 with A defined in (94.8). Make a plot of
the ratios of successive errors versus the iteration number. Do the ratios converge
to the ratio predicted by the error analysis?

94.26. Prove that the estimate (94.9) generalizes to any symmetric positive-
definite matrix A, diagonal or not. Hint: use the fact that there is a set of eigen-
vectors of A that form an orthonormal basis for Rn and write the initial vector
in terms of this basis. Compute a formula for the iterates and then the error.

94.27. (a) Compute the steepest descent iterations for (94.5) corresponding to
x(0) = (9, 1)⊤ and x(0) = (1, 1)⊤, and compare the rates of convergence. Try
to make a plot like Fig. 94.11 for each. Try to explain the different rates of
convergence.

(b) Find an initial guess which produces a sequence that decreases at the rate
predicted by the simplified error analysis.
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94.28. Prove that the method of steepest descent corresponds to choosing

N = Nk =
1

αk
I, and P = Pk =

1

αk
I − A,

with suitable αk in the general iterative solution algorithm.

94.29. Compute the eigenvalues and eigenvectors of the matrix A in (94.13) and
show that A is not normal.

94.30. Prove that the matrix

(
1 −1
1 1

)
is normal.

94.31. Prove Theorem 94.2.

94.32. Compute 10 Jacobi iterations using the A and b in (94.11) and the initial
guess x(0) = (−1, 1, −1)⊤. Compute the errors and the ratios of successive errors
and compare to the results above.

94.33. Repeat Problem 94.32 using

A =




4 1 100
2 5 1
−1 2 4



 and b =




1
0
3



 .

Does Theorem 94.2 apply to this matrix?

94.34. Show that for the Jacobi iteration, N = D and P = −(L+ U) and the
iteration matrix is MJ = −D−1(L+ U)

94.35. (a) Solve (94.11) using the Gauss-Seidel method and compare the conver-
gence with that of the Jacobi method. Also compare ρ(M) for the two methods.
(b) Do the same for the system in Problem 94.33.

94.36. (Isaacson and Keller ([?])) Analyze the convergence of the Jacobi and
Gauss-Seidel methods for the matrix

A =

(
1 ρ
ρ 1

)

in terms of the parameter ρ.

In general it is difficult to compare the convergence of the Jacobi method
with that of the Gauss-Seidel method. There are matrices for which the Ja-
cobi method converges and the Gauss-Seidel method fails and vice versa.
There are two special classes of matrices for which convergence can be es-
tablished without further computation. A matrix A is diagonally dominant
if

|aii| >
n∑

j=1

j 6=i

|aij |, i = 1, ..., n.

If A is diagonally dominant then the Jacobi method converges.
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94.37. Prove this claim.

94.38. Derive an algorithm that uses the Jacobi method to solve a tridiagonal
system. Use as few operations and as little storage as possible.

94.39. Devise an algorithm to estimate the error of the solution of a linear
system using single and double precision as suggested. Repeat the example using
a tridiagonal solver and your algorithm to estimate the error.

94.40. Show that the sequences {xk} and {dk} generated by the conjugate
gradient method (94.16)-(94.17), with x1 = 0 and d1 = b, satisfies for k = 1, 2, ...,
(a) xk ∈ Kk(A) = {b, ..., Ak−1b}, (b) dk+1 is orthogonal to Kk(A), (c) x

k is the
projection of x onto Kk(A) with respect to the scalar product < y, z >= (Ay, z).

94.41. The Cbebyshev polynomial qk(x) if degree k is defined for −1 ≤ x ≤ 1
by the formula qk(x) = cos(k arccos(x)). Show that q′k(0) ≈ k2. Deduce from this
result that the number of iterations in the conjugate gradient method scales like√
κA).

94.42. Compare the GMRES-algorithm for Ax = b with the conjugate gradient
method fro the normal equations A⊤A = A⊤b.

94.43. The formula AQk = Qk+1Hk, with Hk an upper Hessenberg matrix
(hij = 0 for all i > j + 1), defines a recurrence relation for the column vector
qk+1 of Qk+1 in terms of itself and the previous Krylov vectors. (a) Derive this
recurrence relation. (b) Implement an algorithm that computes Qk+1 and Hk,
given a matrix A (this is the Arnoldi iteration).

94.44. Prove that QTk+1b = ‖b‖e1.

94.45. Implement the GMRES-method.
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95
1D Calculus

95.1 Integers

We start with the set of integers Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · ·} to-
gether with the usual operations of addition, subtraction and multiplica-
tion. We define the set of rational numbers Q as the set of pairs (p, q) with
p and q 6= 0 integers, and we write (p, q) = p

q along with the arithmetic
operations of addition

p

q
+
r

s
=
ps+ qr

qs
,

multiplication

p

q
× r

s
=
pr

qs
,

and division

(p, q)/(r, s) =
(p, q)

(r, s)
= (ps, qr),

assuming r 6= 0. With the operation of division, we can solve the equation
ax = b to get x = b/a for a, b ∈ Q with a 6= 0.
Rational numbers have periodic decimal expansions. There is no rational

number x such that x2 = 2.
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95.2 Real numbers. Sequences and Limits

Definitions: A real number is specified by an infinite decimal expansion
of the form

±pm · · · p0.q1q2q3 · · ·
with a never ending list of decimals q1, q2, ...., where each of the pi and qj
are one of the 10 digits 0, 1, ..., 9. The set of (all possible) real numbers is
denoted by R.
A sequence {xi}∞i=1 of real numbers converges to a real number x if for

any ǫ > 0 there is a natural number N such that |xi − x| < ǫ for i ≥ N
and we then write x = limi→∞ xi.
A sequence {xi}∞i=1 of real numbers is a Cauchy sequence if for all ǫ > 0

there is a natural number N such that

|xi − xj | ≤ ǫ for i, j ≥ N.

Basic properties: A convergent sequence of real numbers is a Cauchy
sequence. A Cauchy sequence of real numbers converges to a unique real
number. We have limi→∞ xi = x, where {xi}∞i=1 is the sequence of trun-
cated decimal expansions of x.

95.3 Polynomials and Rational Functions

A polynomial function f : R → R of degree n has the form f(x) = a0 +
a1x+ · · ·+ anx

n with coefficients ai ∈ R. A rational function h(x) has the
form h(x) = f(x)/g(x), where f(x) and g(x) are polynomials.

95.4 Lipschitz Continuity

Definition: A function f : I → R, where I is an interval of real numbers,
is Lipschitz continuous on I with Lipschitz constant Lf ≥ 0 if

|f(x1)− f(x2)| ≤ Lf |x1 − x2| for all x1, x2 ∈ I.

Basic facts: Polynomial functions are Lipschitz continuous on bounded
intervals. Sums, products and composition of Lipschitz continuous func-
tions are Lipschitz continuous. Quotients of Lipschitz continuous functions
are Lipschitz continuous on intervals where the denominator is bounded
away from zero. A Lipschitz continuous function f : I → R, where I is an
interval of real numbers, satisfies:

f( lim
i→∞

xi) = lim
i→∞

f(xi),

for any convergent sequence {xi} in I with limi→∞ xi ∈ I.
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95.5 Derivatives

Definition:The function f : (a, b) → R is differentiable at x̄ ∈ (a, b) with
derivative f ′(x̄) = df

dx(x̄) if there are real numbers f ′(x̄) and Kf (x̄) such
that for x ∈ (a, b) close to x̄,

f(x) = f(x̄) + f ′(x̄)(x− x̄) + Ef (x, x̄),

with |Ef (x, x̄)| ≤ Kf (x̄)|x− x̄|2.

If the constant Kf (x̄) can be chosen independently of x̄ ∈ (a, b), then
f : (a, b) → R is said to be uniformly differentiable on (a, b).

Derivative of xα with α 6= 0: The derivative of f(x) = xα is f ′(x) =
αxα−1 for α 6= 0, and x 6= 0 for α < 1.

Bounded derivative implies Lipschitz continuity: If f(x) is uniformly
differentiable on the interval I = (a, b) and there is a constant L such that

|f ′(x)| ≤ L, for x ∈ I,

then f(x) is Lipschitz continuous on I with Lipschitz constant L.

95.6 Differentiation Rules

Linear Combination rule:

(f + g)′(x) = f ′(x) + g′(x),

(cf)′(x) = cf ′(x),

where c is a constant.

Product rule:
(fg)′(x) = f(x)g′(x) + f ′(x)g(x).

Chain rule:

(f ◦ g)′(x) = f ′(g(x))g′(x), or

dh

dx
=
df

dy

dy

dx
,

where h(x) = f(y) and y = g(x), that is h(x) = f(g(x)) = (f ◦ g)(x).
Quotient rule:

(
f

g

)′
(x) =

f ′(x)g(x) − f(x)g′(x)
g(x)2

,

provided g(x) 6= 0.
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The derivative of an inverse function:

d

dy
f−1(y) =

1
d
dxf(x)

.

where y = f(x) and x = f−1(y).

95.7 Solving f(x) = 0 with f : R → R

Bisection: If f : [a, b] → R is Lipschitz continuous on [a, b] and f(a)f(b) <
0, then the Bisection algorithm converges to a root x̄ ∈ [a, b] of f(x) = 0.

Fixed Point Iteration: A Lipschitz continuous function g : R → R with
Lipschitz constant L < 1 is said to be a contraction mapping. A contraction
mapping g : R → R has a unique fixed point x̄ ∈ R satisfying x̄ = g(x̄)
and any sequence {xi}∞i=1 generated by Fixed Point Iteration xi = g(xi−1)
converges to x̄.

Bolzano’s theorem: If f : [a, b] → R is Lipschitz continuous and
f(a)f(b) < 0, then there is a real number x̄ ∈ [a, b] such that f(x̄) = 0
(consequence of Bisection above).

Newton’s method: Newton’s method xi+1 = xi − f(xi)
f ′(xi)

for computing a

root x̄ of f : R → R converges quadratically if f ′(x) is bounded away from
zero for x close to x̄ and the initial approximation is sufficiently close to
the root x̄.

95.8 Fundamental Theorem of Calculus

The Fundamental Theorem of Calclulus: If f : [a, b] is Lipschitz con-
tinuous, then there is a unique uniformly differentiable function u : [a, b] →
R, that solves the initial value problem

{
u′(x) = f(x) for x ∈ (a, b],

u(a) = ua,

where ua ∈ R is given. The function u : [a, b] → R can be expressed as

u(x̄) = ua +

∫ x̄

a

f(x) dx for x̄ ∈ [a, b],

where ∫ x̄

0

f(x) dx = lim
n→∞

j∑

i=1

f(xni−1)hn,
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with x̄ = xnj , x
n
i = a+ ihn, hn = 2−n(b−a). More precisely, if the Lipschitz

constant of f is Lf then for n = 1, 2, ...,

∣∣∣
∫ x̄

a

f(x) dx −
j∑

i=1

f(xni−1)hn

∣∣∣ ≤ 1

2
(x̄ − a)Lfhn.

Furthermore, if |f(x)| ≤ Mf for x ∈ [a, b], then u : [a, b] → R is Lipschitz
continuous with Lipschitz constant Mf and Ku ≤ 1

2Lf , where Ku is the
constant of uniform differentiability of u.

95.9 1D Integration Rules

Additivity: ∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx.

Linearity: If α and β are real numbers then,

∫ b

a

(αf(x) + βg(x)) dx = α

∫ b

a

f(x) dx + β

∫ b

a

g(x) dx.

Monotonicity: If f(x) ≥ g(x) for a ≤ x ≤ b, then

∫ b

a

f(x) dx ≥
∫ b

a

g(x) dx.

Differentiation and integration are inverse operations:

d

dx

∫ x

a

f(y) dy = f(x).

Change of variables: Setting y = g(x), we have with formally dy =
g′(x) dx, ∫ b

a

f(g(x))g′(x) dx =

∫ g(b)

g(a)

f(y) dy.

Integration by parts:

∫ b

a

u′(x)v(x) dx = u(b)v(b)− u(a)v(a)−
∫ b

a

u(x)v′(x) dx.

The Mean Value theorem: If u(x) is uniformly differentiable on [a, b]
with Lipschitz continuous derivative u′(x), then there is a (at least one)
x̄ ∈ [a, b], such that

u(b)− u(a) = u′(x̄)(b − a).
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Taylor’s theorem:

u(x) = u(x̄) + u′(x̄)(x− x̄) + · · ·+ u(n)(x̄)

n!
(x− x̄)n

+

∫ x

x̄

(x− y)n

n!
u(n+1)(y) dy.

95.10 The Logarithm

Definition:

log(x) =

∫ x

1

1

y
dy for x > 0.

Basic properties:

d

dx
log(x) =

1

x
for x > 0,

log(ab) = log(a) + log(b) for a, b > 0,

log(ar) = r log(a), for r ∈ R, a > 0.

95.11 The Exponential

Definition: exp(x) = ex is the unique solution of the differential equation
u′(x) = u(x) for x ∈ R and u(0) = 1.

Basic properties:

d

dx
exp(x) = exp(x),

exp(a+ b) = exp(a) exp(b) or ea+b = eaeb,

exp(x) = lim
j→∞

(1 +
x

j
)j .

The inverse of the exponential is the logarithm:

y = exp(x) if and only if x = log(y).

The function ax with a > 0:

ax = exp(x log(a)),
d

dx
ax = log(a)ax.
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95.12 The Trigonometric Functions

Definition of sin(x) and cos(x): The initial value problem u′′(x)+u(x) =
0 for x > 0 with u0 = 0 and u1 = 1, has a unique solution, which is denoted
by sin(x). The initial value problem u′′(x)+u(x) = 0 for x > 0 with u0 = 1
and u1 = 0, has a unique solution, which is denoted by cos(x). The functions
sin(x) and cos(x) extend to x < 0 as solutions of u′′(x) + u(x) = 0 and are
periodic with period 2π, and sin(π) = 0, cos(π2 ) = 0.

Properties:

d

dx
sin(x) = cos(x),

d

dx
cos(x) = − sin(x), cos(−x) = cos(x),

sin(−x) = − sin(x),

cos(π − x) = − cos(x),

sin(π − x) = sin(x),

cos(x) = sin(
π

2
− x),

sin(x) = cos(
π

2
− x),

sin(
π

2
+ x) = cos(x),

cos(
π

2
+ x) = − sin(x).

Definition of tan(x) and cot(x):

tan(x) =
sin(x)

cos(x)
, cot(x) =

cos(x)

sin(x)
.

Derivatives of tan(x) and cot(x):

d

dx
tan(x) =

1

cos2(x)
,

d

dx
cot(x) = − 1

sin2(x)
.

Trigonometric formulas:

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y),

sin(x− y) = sin(x) cos(y)− cos(x) sin(y),

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y),

cos(x− y) = cos(x) cos(y) + sin(x) sin(y),

sin(2x) = 2 sin(x) cos(x)

cos(2x) = cos2(x)− sin2(x) = 2 cos2(x)− 1 = 1− 2 sin2(x).
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cos(x)− cos(y) = −2 sin(
x + y

2
) sin(

x− y

2
),

tan(x+ y) =
tan(x) + tan(y)

1− tan(x) tan(y)
,

tan(x− y) =
tan(x) − tan(y)

1 + tan(x) tan(y)
,

sin(x) + sin(y) = 2 sin(
x + y

2
) cos(

x − y

2
),

sin(x)− sin(y) = 2 cos(
x+ y

2
) sin(

x − y

2
),

cos(x) + cos(y) = 2 cos(
x+ y

2
) cos(

x− y

2
).

Inverses of trigonometric functions: The inverse of f(x) = sin(x) with
D(f) = [−π2 ,

π
2 ] is f

−1(y) = arcsin(y) with D(arcsin) = [−1, 1]. The in-
verse of f(x) = tan(x) with D(f) = (−π2 ,

π
2 ) is f−1(y) = arctan(y) with

D(arctan) = R. The inverse of y = f(x) = cos(x) with D(f) = [0, π] is
f−1(y) = arccos(y) with D(arccos) = [−1, 1]. The inverse of f(x) = cot(x)
with D(f) = (0, π) is f−1(y) = arccot(y) with D(arccot) = R. We have

d

dy
arcsin(y) =

1√
1− y2

d

dy
arctan(y) =

1

1 + y2

d

dy
arccos(y) = − 1√

1− y2

d

dy
arccot(y) = − 1

1 + y2
,

arctan(u) + arctan(v) = arctan(
u+ v

1 − uv
).

Definition of sinh(x) and cosh(x):

sinh(x) =
ex − e−x

2
and cosh(x) =

ex + e−x

2
forx ∈ R.

Derivatives of of sinh(x) and cosh(x):

Dsinh(x) = cosh(x) and Dcosh(x) = sinh(x).

Inverses of of sinh(x) and cosh(x): the inverse of y = f(x) = sinh(x)
with D(f) = R is f−1(y) = arcsinh(y) with D(arcsinh) = R. The in-
verse of y = f(x) = cosh(x) with D([0,∞)), is f−1(y) = arccosh(y) with
D(arccosh) = [1,∞). We have

d

dy
arcsinh(y) =

1√
y2 + 1

,
d

dy
arccosh(y) =

1√
y2 − 1

.
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95.13 List of Primitive Functions

∫ x

x0

1

s− c
ds = log |x− c| − log |x0 − c|, c 6= 0,

∫ x

x0

s− a

(s− a)2 + b2
dx =

1

2
log((x− a)2 + b2)− 1

2
log((x0 − a)2 + b2),

∫ x

x0

1

(s− a)2 + b2
ds = [

1

b
arctan(

x− a

b
)]− [

1

b
arctan(

x0 − a

b
)], b 6= 0,

∫ x

0

y cos(y) dy = x sin(x) + cos(x) + 1,

∫ x

0

sin(
√
y) dy = −2

√
x cos(

√
x) + 2 sin(

√
x),

∫ x

1

y2 log(y) dy =
x3

3
log(x) − x3

9
+

1

9∫ x

0

1√
1− y2

dy = arcsin(x) for x ∈ (−1, 1)

∫ x

0

1√
1− y2

=
π

2
− arccos(x) dy for x ∈ (−1, 1)

∫ x

0

1

1 + y2
dy = arctan(x) for x ∈ R

∫ x

0

1

1 + y2
dy =

π

2
− arccot(x) for x ∈ R.

95.14 Series

Definition of convergence: A series
∑∞
i=1 ai converges if and only if the

sequence {sn}∞n=1 of partial sums sn =
∑n

i=1 ai converges.

Geometric series:
∑∞

i=0 a
i = 1

1−a if |a| < 1.

Basic facts: A positive series
∑∞

i=1 ai converges if and only if the sequence
of partial sums is bounded above.

The series
∑∞

i=1 i
−α converges if and only if α > 1.

An absolutely convergent series is convergent.

An alternating series with the property that the modulus of its terms tends
monotonically to zero, converges. Example:

∑∞
i=1(−i)−1 converges.
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95.15 The Differential Equation
u̇ + λ(x)u(x) = f(x)

The solution to the initial-value problem u̇ + λ(x)u(x) = f(x) for x > 0,
u(0) = u0, is given by

u(x) = exp(−Λ(x))u0 + exp(−Λ(x))

∫ x

0

exp(Λ(y))f(y) dy,

where Λ(x) is a primitive function of λ(x) satisfying Λ(0) = 0.

95.16 Separable Scalar Initial Value Problems

The solution of the separable scalar initial value problem

u′(x) =
h(x)

g(u(x))
for 0 < x ≤ 1, u(0) = u0,

where g : R → R and h : R → R are given functions, satisfies for 0 ≤ x ≤ 1
the algebraic equation

G(u(x)) = H(x) + C,

where G(v) and H(x) are primitive functions of g(v), and C = G(u0) −
H(0).
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Timeo hominem unius libri. (St. Thomas of Aquino)

96.1 Introduction

We here collect the basic tools of Calculus of functions f : Rn → Rm, that is
Calculus of vector-valued functions of several real variables. The Euclidean
norm of a vector x = (x1, ..., xn) ∈ Rn is denoted by ‖x‖ =

∑n
i=1 x

2
i .

96.2 Lipshitz Continuity

A function f : A → Rm with a subset of Rn is Lipschitz continuous on A
if there is a constant L such that

‖f(x)− f(y)‖ ≤ L‖x− y‖ for all x, y ∈ A.

96.3 Differentiability

A function f : A → Rm is differentiable at x̄ ∈ A, where A is an open
subset of Rn, if there is a m × n matrix f ′(x̄), called the Jacobian of the
function f(x) at x̄, and a constant Kf(x̄), such that for all x ∈ A close to
x̄,

f(x) = f(x̄) + f ′(x̄)(x − x̄) + Ef (x, x̄),
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where Ef (x, x̄) is an m-vector satisfying ‖Ef (x, x̄)‖ ≤ Kf (x̄)‖x− x̄‖2. We
say that f : A → Rm is uniformly differentiable on A if the constant
Kf(x̄) = Kf can be chosen independently of x̄ ∈ A. We write f ′ = ∇f if
m = 1 and call ∇f the gradient of f .

96.4 The Chain Rule

If g : Rn → Rm is differentiable at x̄ ∈ Rn, and f : Rm → Rp is differen-
tiable at g(x̄) ∈ Rm and further g : Rn → Rm is Lipschitz continuous, then
the composite function f ◦ g : Rn → Rp is differentiable at x̄ ∈ Rn with
Jacobian

(f ◦ g)′(x̄) = f ′(g(x̄))g′(x̄).

96.5 Mean Value Theorem for f : Rn → R

If f : Rn → R is differentiable on Rn with a Lipschitz continuous gradient
∇f , then for given x and x̄ in Rn, there is y = x+ t̄(x− x̄) with t̄ ∈ [0, 1],
such that

f(x)− f(x̄) = ∇f(y) · (x− x̄).

96.6 A Minimum Point Is a Stationary Point

If x̄ ∈ Rn is a local minimum point of a differentiable function f : Rn → R,
that is, f(x̄) ≤ f(x) for all x close to x̄, then ∇f(x̄) = 0.

96.7 Taylor’s Theorem

If f : Rn → R is twice differentiable with Lipschitz continuous Hessian

H = (hij) with elements hij =
∂2f

∂xi∂xj
, then, for given x and x̄ ∈ Rn, there

is y = x+ t̄(x − x̄) with t̄ ∈ [0, 1], such that

f(x) = f(x̄) +∇f(x̄) · (x− x̄) +
1

2

n∑

i,j=1

∂2f

∂xi∂xj
(y)(xi − x̄i)(xj − x̄j)

= f(x̄) +∇f(x̄) · (x− x̄) +
1

2
(x− x̄)⊤H(y)(x− x̄).
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96.8 Contraction Mapping Theorem

If g : Rn → Rn is Lipschitz continuous with Lipschitz constant L < 1,
then the equation x = g(x) has a unique solution x̄ = limi→∞ x(i), where
{x(i)}∞i=1 is a sequence in Rn generated by Fixed Point Iteration: x(i) =
g(x(i−1)), starting with any initial value x(0).

96.9 Inverse Function Theorem

Let f : Rn → Rn and assume the coefficients of f ′(x) are Lipschitz contin-
uous close to x̄ and f ′(x̄) is non-singular. Then for y sufficiently close to
ȳ = f(x̄), the equation f(x) = y has a unique solution x. This defines x as
a function x = f−1(y) of y.

96.10 Implicit Function Theorem

If f : Rn×Rm → Rn with f(x, y) ∈ Rn and x ∈ Rn and y ∈ Rm, f(x̄, ȳ) = 0,
and the Jacobian f ′

x(x, y) with respect to x is Lipschitz continuous for x
close to x̄ and y close to ȳ, and f ′

x(x̄, ȳ) is non-singular, then for y close to
ȳ, the equation f(x, y) = 0 has a unique solution x = g(y), which defines
x as a function g(y) of y.

96.11 Newton’s Method

If x̄ is a root of f : Rn → Rn such that f(x) is uniformly differentiable
with a Lipschitz continuous derivative close to x̄ and f ′(x̄) is non-singular,
then Newton’s method x(i+1) = x(i)−f ′(x(i))−1f(x(i)) for solving f(x) = 0
converges quadratically if started sufficiently close to x̄.

96.12 Differential Operators

Gradient of a function u : Rd → R:

grad u = ∇u =

(
∂u

∂x1
,
∂u

∂x2
, ...,

∂u

∂xd

)
.

Divergence of a vector function u : Rd → Rd:

div u = ∇ · u =

d∑

i=1

∂ui
∂xi

.
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Rotation of a vector function u : R3 → R3:

rot u = ∇× u =

(
∂u3
∂x2

− ∂u2
∂x3

,
∂u1
∂x3

− ∂u3
∂x1

,
∂u2
∂x1

− ∂u1
∂x2

)
.

Laplacian of a function u : Rd → R:

∆u = ∇ · (∇u) = div (grad u) =

d∑

i=1

∂2u

∂x2i
.

Identities:

∇ · (∇× u) = 0,

∇× (∇u) = 0,

∇× (∇× u) = −∆u+∇(∇ · u).

Laplacian in R2 in polar coordinates x = (x1, x2) = (r cos(θ), r sin(θ)):

∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
.

Laplacian in spherical coordinates
x = (r sin(ϕ) cos(θ), r sin(ϕ) sin(θ), r cos(ϕ)):

∆u =
1

r2
∂

∂r

(
r2
∂u

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂u

∂θ

)
+

1

r2 sin2(θ)

∂2u

∂ϕ2
.

The Laplacian is invariant under orthogonal coordinate transformations in
Rd.

96.13 Curve Integrals

If Γ = s([a, b]) is a curve in Rn given by the function s : [a, b] → Rn, and
u : Γ → R, then

∫

Γ

u ds =

∫

Γ

u(x) ds(x) ≡
∫ b

a

u(s(t))‖s′(t)‖ dt,
∫

Γ

u · ds =
∫ b

a

u(s(t)) · s′(t) dt,
∫

Γ

ds =

∫ b

a

‖s′(t)‖ dt = length of Γ.

If u = ∇ϕ, then ∫

Γ

u · ds = ϕ(s(b))− ϕ(s(a)).
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96.14 MultiD Integrals

Integral over the unit square: If f : Q = [0, 1]× [0, 1] → R is Lipschitz
continuous, then

∫

Q

f(x) dx =

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 = lim
n→∞

N∑

i=1

N∑

j=1

f(xn1,i, x
n
2,j)hnhn,

where hn = 2−n, xnj,i = ihn, N = 2n, and

∫

Q

f(x) dx ==

∫ 1

0

(∫ 1

0

f(x1, x2) dx2
)
dx1 =

∫ 1

0

(∫ 1

0

f(x1, x2) dx1
)
dx2.

Change of variables: If y → x = g(y) maps a domain Ω̃ in Rd onto
a domain Ω in Rd, where the Jacobian of g is Lipschitz continuous and
f : Ω → R be Lipschitz continuous, then

∫

Ω

f(x) dx =

∫

Ω̃

f(g(y))| det g′(y)| dy,

Polar coordinates:
∫

Ω

f(x1, x2) dx1dx2 =

∫

Ω̃

f(r cos(θ, r sin(θ)) rdr dθ,

where (r, θ) → x is a one-to-one mapping of Ω̃ onto Ω given by x =
(r cos(θ, sin(θ)).
Spherical coordinates:

∫

Ω

f(x) dx

=

∫

Ω̃

f
(
r sin(ϕ) cos(θ), r sin(ϕ) sin(θ), r cos(ϕ)

)
r2 sin(ϕ) dr dθ dϕ,

where (r, θ, ϕ) → x is a one-to-one mapping of Ω̃ onto Ω given by x =
(r sin(ϕ) cos(θ), r sin(ϕ) sin(θ), r cos(ϕ)).

96.15 Surface Integrals

If S = s(Ω) is a surface in R3 parameterized by the mapping s : Ω → R3,
where Ω is a domain in R2, and u : S → R is a real-valued function defined
on S, then ∫

S

u ds =

∫

Ω

u(s(y))‖s′,1(y)× s′,2(y)‖ dy,

where s′,i = (∂s1∂yi
, ∂s2∂yi

, ∂s3∂yi
).
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96.16 Green’s and Gauss’ Formulas

If Ω is a domain in R3 with boundary Γ with outward unit normal n =
(n1, n2, n3), and u : Ω → R3 and v, w : Ω → R, then

∫

Ω

∂v

∂xi
dx =

∫

Γ

v ni ds, i = 1, 2, 3.

∫

Ω

∂v

∂xi
w dx =

∫

Γ

vw ni ds−
∫

Ω

v
∂w

∂xi
dx, i = 1, 2, 3.

∫

Ω

∇ · u dx =

∫

Γ

u · n ds, (Gauss’ Divergence theorem)

∫

Ω

∇× u dx =

∫

Γ

n× u ds,

∫

Ω

∇v · ∇w dx =

∫

Γ

v∂nw ds−
∫

Ω

v∆w dx,

∫

Ω

v∆w dx−
∫

Ω

∆v w dx =

∫

Γ

v ∂nw ds−
∫

Γ

∂nv w ds.

96.17 Stokes’ Theorem

If S is a surface in R3 bounded by a closed curve Γ, n is a unit normal to
S, Γ is oriented in a clockwise direction following the positive direction of
the normal n, and u : R3 → R3 is differentiable, then

∫

S

(∇× u) · n ds =
∫

Γ

u · ds.
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97.1 Linear Algebra in R2

Scalar product of two vectors a = (a1, a2) and b = (b1, b2) in R2:

a · b = (a, b) = a1b1 + a2b2.

Norm: |a| = (a21 + a22)
1/2.

Angle between two vectors a and b in R2: cos(θ) = a·b
|a| |b| .

The vectors a and b are orthogonal if and only if a · b = 0.

Vector product of two vectors a = (a1, a2) and b = (b1, b2) in R3:

a× b = a1b2 − a2b1.

Properties of vector product: |a × b| = |a||b|| sin(θ)|, where θ is the
angle between a and b. In particular, a and b are parallel if and only if
a× b = 0.

Volume of parallelogram spanned by two vectors a, b ∈ R2:

V (a, b) = |a× b| = |a1b2 − a2b1|.
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97.2 Linear Algebra in R3

Scalar product of two vectors a = (a1, a2, a3) and b = (b1, b2, b3) in R3:

a · b =
3∑

i=1

aibi = a1b1 + a2b2 + a3b3.

Norm: |a| = (a21 + a22 + a23)
1/2.

Angle between two vectors a and b in R3: cos(θ) = a·b
|a| |b| .

The vectors a and b are orthogonal if and only if a · b = 0.
Vector product of two vectors a = (a1, a2, a3) and b = (b1, b2, b3) in R3:

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

Properties of vector product: The vector product a × b of two non-
zero vectors a and b in R3, is orthogonal to both a and b, and |a × b| =
|a||b|| sin(θ)|, where θ is the angle between a and b. In particular, a and b
are parallel if and only if a× b = 0.

Volume of parallelepiped spanned by three vectors a, b, c ∈ R3:

V (a, b, c) = |c · (a× b)|.

97.3 Linear Algebra in Rn

Definition of Rn: The set of ordered n-tuples, x = (x1, ...., xn) with com-
ponents xi ∈ R, i = 1, ..., n.

Vector addition and scalar multiplication: For x = (x1, ...., xn) and
y = (y1, ...., yn) in Rn and λ ∈ R, we define

x+ y = (x1 + y1, x2 + y2, ...., xn + yn), λx = (λx1, ..., λxn).

Scalar product: x · y = (x, y) =
∑n

i=1 xiyi. Norm: |x| = (
∑n

i=1 x
2
i )

1/2.

Cauchy’s inequality: |(x, y)| ≤ |x| |y| .

Angle of two vectors x and y in Rn: cos(θ) = (x,y)
|x||y| .

Standard basis: {e1, ...., en}, where ei = (0, 0, .., 0, 1, 0, ..., 0) with a single
coefficient 1 at position i.

Linear independence: A set {a1, ..., an} of vectors in Rm is said to be
linearly independent if none of the vectors ai can be expressed as a linear
combination of the others, that is, if

∑n
i=1 λiai = 0 with λi ∈ R implies

that λi = 0 for i = 1, ..., n.
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A basis for Rn is a linearly independent set of vectors whose linear com-
binations span Rn. Any basis of Rn has n elements. Further, a set of n
vectors in Rn span Rn if and only if it is linearly independent, that is, a set
of n vectors in Rn that spans Rn or is independent, must be a basis. Also,
a set of fewer than n vectors in Rn cannot span Rn, and a set of more than
n vectors in Rn must be linearly dependent.

97.4 Linear Transformations and Matrices

An m × n real (or complex) matrix A = (aij) is rectangular array with
rows (ai1, ...., ain), i = 1, ...,m, and columns (a1j , ..., amj), j = 1, ..., n,
where aij ∈ R (or aij ∈ C).

Matrix addition: Given two m× n matrices A = (aij) and B = (bij), we
define C = A+B as them×nmatrix C = (cij) with elements cij = aij+bij ,
corresponding to elementwise addition.

Multiplication by scalar Given am×nmatrix A = (aij) and a real num-
ber λ, we define the m× n matrix λA with elements (λaij), corresponding
to multiplying all elements of A by the real number λ.

Matrix multiplication: Given a m × p matrix A and a p × n matrix
B we define a m × n matrix AB with elements (AB)ij =

∑p
k=1 aikbkj .

Matrix multiplication is not commutative, that is, AB 6= BA in general. In
particular, BA is defined only if n = m.

A linear transformation f : Rn → Rm can be expressed as f(x) = Ax,
where A = (aij) is anm×nmatrix with elements aij = fi(ej) = (ei, f(ej)),
where f(x) = (f1(x), ..., fm(x)). If g : Rn → Rp and f : Rp → Rm are
two linear transformations with corresponding matrices A and B, then the
matrix of f ◦ g : Rn → Rm is given by AB.

Transpose: If A = (aij) is a real m× n matrix, then the transpose A⊤ is
an n ×m matrix with elements a⊤ji = aij , and (Ax, y) = (x,A⊤y) for all
x ∈ Rn, y ∈ Rm.

Matrix norms:

‖A‖1 = max
j=1,...,n

m∑

i=1

|aij |, ‖A‖∞ = max
i+1,...,m

n∑

j=1

|aij |, ‖A‖ = max
x∈Rn

‖Ax‖
‖x‖ .

If A = (λi) is a diagonal n × n matrix with diagonal elements aii = λi,
then

‖A‖ = max
i=1,...,n

|λi|.

Lipschitz constant of a linear transformation: The Lipschitz constant
of a linear transformation f : Rn → Rm given by a m×n matrix A = (aij)
is equal to ‖A‖.
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97.5 The Determinant and Volume

The determinant det A of an n × n matrix A = (aij), or the volume
V (a1, ..., an) spanned by the column vectors of A, is defined by

det A = V (a1, ..., an) =
∑

π

±aπ(1) 1aπ(2) 2 · · ·aπ(n)n,

where we sum over all permutations π of the set {1, ..., n}, and the sign
indicates if the permutation is even (+) or odd (-). We have detA = detA⊤.

Volume V (a1, a2) in R2:

det A = V (a1, a2) = a11a22 − a21a12.

Volume V (a1, a2, a3) in R3:

det A = V (a1, a2, a3) = a1 · a2 × a3

= a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31).

Volume V (a1, a2, a3, a4) in R4:

det A = V (a1, a2, a3, a4) = a11V (â2, â3, â4)− a12V (â1, â3, â4)

+a13V (â1, â2, â4)− a14V (â1, â2, â3),

where the âj , j = 1, 2, 3, 4 are the 3-column vectors corresponding to cut-
ting out the first coefficient of the aj .

Determinant of a triangular matrix: If A = (aij) is a upper triangular
n× n matrix, that is aij = 0 for i > j, then

detA = a11a22 · · · ann.
This formula also applies to a lower triangular n×n matrix A = (aij) with
aij = 0 for i < j.

The magic formula: detAB = detAdetB.

Test of linear independence: A set {a1, a2, ..., an} of n vectors in Rn is
linearly independent if and only if V (a1, ..., an) 6= 0. The following state-
ments are equivalent for an n × n matrix A: (a) The columns of A are
linearly independent, (b) If Ax = 0, then x = 0, (c) detA 6= 0.

97.6 Cramer’s Formula

If A is a n × n non-singular matrix with detA 6= 0, then the system of
equations Ax = b has a unique solution x = (x1, ..., xn) for any b ∈ Rn.
given by

xi =
V (a1, ..., ai−1, b, ai+1, ...., an)

V (a1, a2, ...., an)
, i = 1, ..., n.
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97.7 Inverse

A nonsingular n× n matrix A has a inverse matrix A−1 satisfying:

A−1A = AA−1 = I,

where I is the n× n identity matrix.

97.8 Projections

The projection Pv ∈ V of v ∈ Rn, where V is a linear subspace of Rn,
is uniquely defined defined by (v − Pv,w) = 0 for all w ∈ V and satisfies
|v − Pv| ≤ |v − w| for all w ∈ V . Further, PP = P and P⊤ = P .

97.9 The Fundamental Theorem of Linear Algebra

If A is a m × n matrix with null space N(A) = {x ∈ Rn : Ax = 0} and
range R(A) = {y = Ax : x ∈ Rn} , then

N(A)⊕R(A⊤) = Rn N(A⊤)⊕R(A) = Rm,

dim N(A) + dim R(A⊤) = n, dim N(A⊤) + dim R(A) = m,

dim N(A) + dim R(A) = n, dim N(A⊤) + dim R(A⊤) = m,

dim R(A) = dim R(A⊤),

The number of linearly independent columns of A is equal to the number
of linearly independent rows of A.

97.10 The QR-Decomposition

An n×m matrix A can be expressed in the form

A = QR,

where Q is a n × m matrix with orthogonal columns and R is a m × m
upper triangular matrix.
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97.11 Change of Basis

A linear transformation f : Rn → Rn, with matrix A with respect to the
standard basis, has the following matrix in a basis {s1, ...sn}:

S−1AS,

where the the coefficients sij of the matrix S = (sij) are the coordinates of
the basis vectors sj with respect to the standard basis.

97.12 The Least Squares Method

The least squares solution of the linear system Ax = b with A an m × n
matrix minimizing |Ax − b|2 satisfies A⊤Ax = A⊤b, and is unique if the
columns of A are linearly independent.

97.13 Eigenvalues and Eigenvectors

If A is an n × n matrix and x =∈ Rn is a non-zero vector which satisfies
Ax = λx, where λ is a real number, then we say that x ∈ Rn is an eigen-
vector of A and that λ is a corresponding eigenvalue of A. The number
λ is an eigenvalue of the n × n matrix A if and only if λ is a root of the
characteristic equation det(A− λI) = 0.

97.14 The Spectral Theorem

If A is a symmetric n × n matrix A, then there is an orthonormal basis
{q1, ..., qn} of Rn consisting of eigenvectors qj of A with corresponding real
eigenvalues λj , satisfying Aqj = λjqj , for j = 1, ..., n. We haveD = Q−1AQ
and A = QDQ−1, where Q is the orthogonal matrix with the eigenvectors
qj in the standard basis forming the columns, and D is the diagonal matrix
with the eigenvalues λj on the diagonal. Further, ‖A‖ = maxi=1,...,n |λi|.

97.15 The Conjugate Gradient Method for Ax = b

For k = 0, 1, 2, ..., with rk = Axk − b, x0 = 0 and d0 = b, do

xk+1 = xk + αkd
k, αk = − (rk, dk)

(dk, Adk)
,

dk+1 = −rk+1 + βkd
k, βk =

(rk+1, Adk)

(dk, Adk)
.
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98
Overview

It was when I found out I could make mistakes that I knew I
was on to something. (Ornette Coleman)

Jazz is a mental attitude rather than a style. It uses a cer-
tain process of the mind expressed spontaneously through some
musical instrument. I’m concerned with retaining that process.
(Bill Evans)

Jam Session = An informal gathering of musicians to play im-
provised or unrehearsed music. (Online Jam Session)

The BodyandSoul Sessions help you to master basic tools of Calculus
and Linear Algebra in interaction with a computer, including the following
topics presented in Leibniz World of Mathematics:

1. functions,

2. Lipschitz continuity,

3. derivatives,

4. Fundamental Theorems of Calculus and Linear Algebra,

5. elementary functions

6. geometry in R2 and R3,

7. fixed point iteration and Newton’s method,

http://www.youtube.com/watch?v=7UtSvkltyFI
http://onlinejamsessions.com/ojs/about_us.php
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8. time stepping and adaptive error control

9. gradient, divergence and Laplacian,

10. piecewise linear interpolation.

11. finite element programming,

Each Session contains simple Python codes which you can use as templates
to get a quick start.

A set of Sessions using Matlab is available as Sessions A-F.

A new set based on Python is presented in the following chapters.

Further below you will find additional Sessions related to the material of

• Part VII World of Differential Equations.

• Part VIII World of Finite Elements.

The material covered by the Sessions is summarized in

• 1D Calculus

• MultiD Calculus

• Geometry and Linear Algebra.

98.1 Python Code

The Sessions includes writing Python code for

• Functions.

• Computing derivatives, analytically and computationally.

• Time stepping of u̇ = f(t) and u̇ = f(u). Quadrature in 1d.

• Computing elementary functions.

• Computing maximum of a Lipschitz continuous function.

• Fixed point iteration for x = g(x).

• Newton’s method for f(x) = 0.

• Transformation of matrix to row and column echelon form.

• Gaussian elimination.

• Jacobi iteration for linear system Ax = b with A diagonally dominant.

http://www.bodysoulmath.org/sessions/
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• Conjugate gradient method for linear system Ax with A positive def-
inite.

• Least squares method for linear system Ax = b.

• Geometry in R2 and R3: scalar and vector product, projection, re-
flection, rotation,..

• Level curves of f : R2 → R.

• Level surfaces of f : R3 → R.

• Graphics: curves, surfaces and volumes.

• Quadrature in 2d and 3d.
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99
Functions

All things are subject to interpretation whichever interpretation
prevails at a given time is a function of power and not truth.
(Friedrich Nietzsche)

Although all the good arts serve to draw man’s mind away from
vices and lead it toward better things, this function can be more
fully performed by this art, which also provides extraordinary
intellectual pleasure. (Nicolaus Copernicus)

99.1 To Read

• Functions

• What Is a Function?

99.2 To Do

Do the following:

• Plot some polynomial and rational functions f : Q → Q.

• Construct different functions in Python code.
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FIGURE 99.1. Educational road bridge in Beijing: Do you get the message?
(F = m1m2/r

2, E =MC2, f(b)− f(a) = f ′(ξ)(b− a))

FIGURE 99.2. (Jam) Session with Jan Johansson (piano) and Stan Getz (sax)

• Contemplate how functions are specified in Python. Does it tell us
what a function is?

• Is t → f(t) = sin(t) a function? How is f(t) determined for a given
value of t? By table or computation? How is sin(

√
2) specified?

• Reflect over symbolic vs constructive digital specification of functions.

http://www.youtube.com/watch?v=j6ztGbPQFWc
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100
Derivatives and Lipschitz Continuity

It is incontestable and deplorable that Negroes have committed
crimes; but they are derivative crimes. They are born of the
greater crimes of the white society. (Martin Luther King, Jr)

The power of kings and magistrates is nothing else but what
is only derivative; transformed and committed to them in trust
from the people to the common good of them all, in whom the
power yet remains fundamentally, and cannot be taken from
them without a violation of their natural birthright. (John Mil-
ton)

Continuous eloquence wearies. Grandeur must be abandoned to
be appreciated. Continuity in everything is unpleasant. Cold is
agreeable, that we may get warm. (Blaise Pascal)

100.1 To Read

• Lipschitz Continuity

• Definition of Derivative
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FIGURE 100.1. The concept of derivative.

100.2 To Do

Recall that the derivative u̇ : R → R of a function u : R → R is defined by
the relation

|u(t+ k)− u(t)− u̇(t)k| ≤ Ck2 for k > 0. (100.1)

where C is a constant.

• Compute u̇(t) using (??) for different u(t) and k.

• Compare with analytical formulas for u(t) polynomial.

• Study what time step k to best use with respect to the precision of
function values u(t). (Hint)

• Study the relation between Lipschitz constant and derivative. (Hint)

• Give examples of functions which are (i) Lipschitz continuous but not
differentiable, (ii) not Lipschitz continuous.

• Reflect over how a Lipschitz continuous function f : Q → Q can be
thought to be extended to f : R → R.

• Which functions u(t) satisfy |u(t + k) − u(t)| ≤ Ckθ for all k > 0,
where θ > 1 a constant?

• Find a function u(t) satisfying |u(t+ k)− u(t)| ≤ Ckθ for all k > 0,
where 0 < θ < 1 is a constant.

• Compare with Weierstrass functions. (optional)

http://en.wikipedia.org/wiki/Weierstrass_function
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101
FundThm Calculus: u̇(t) = f(t)

Discipline in art is a fundamental struggle to understand one-
self, as much as to understand what one is drawing. (Henry
Moore)

Fundamental progress has to do with the reinterpretation of
basic ideas. (Alfred North Whitehead)

101.1 To Read

• Fundamental Theorem of Calculus

• Proof of Fundamental Theorem of Calculus

• The Integral (optional)

101.2 To Do

Consider the IVP

u̇(t) = f(t) for t > 0, u(0) = u0, (101.1)

where f : R → R is a given Lipschitz continuous function with Lip constant
L, and u0 a given initial value. Compute u(t) by time stepping:

u((n+ 1)k) = u(nk) + kf(nk) for n = 0, 1, ..., with u(0) = u0, (101.2)
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FIGURE 101.1. What is (so) Fundamental?

with some given time step k.

Do the following:

• Write Python code implementing (101.2).

• Compute with f(t) polynomial and compare with analytical formulas.

• Compute the difference ek(t) = u(t) − ū(t) between u(t) computed
with time step k and ū(t) computed with time step k

2 .

• Study computationally the dependence of ek(t) on k, t and L.

• Estimate ek(t) analytically in terms of k, t and L.

• Compare analytical theory and computational experience.

• Show that convergence follows if |ek(t)| ≤ Ck for some constant C, by
comparing with Achilles and the Tortoise computing with time steps
k, k2 ,

k
4 , ....

• Interprete time-stepping as quadrature of integral as area. (Hint)

• Compare using Midpoint Euler, and motivate why this method also
is called the trapezoidal method.

• Compare the accuracy of Forward and Midpoint Euler.

• Argue that the error in Midpoint Euler should be proportional to k2.
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102
FundThm Calculus: u̇ = f(u)

102.1 To Read

• General Fundamental Theorem of Calculus

102.2 To Do

Consider the IVP

u̇(t) = f(u(t)) for t > 0, u(0) = u0, (102.1)

where f : R → R is a given Lipschitz continuous function with Lip constant
L, and u0 a given initial value. Compute u(t) by time stepping:

u((n+1)k) = u(nk)+kf(u(nk)) for n = 0, 1, ..., with u(0) = u0, (102.2)

with some given time step k.

• Write Python code implementing (102.2).

• Compute the difference ek(t) = u(t) − ū(t) between u(t) computed
with time step k and ū(t) computed with time step k

2 .

• Study computationally the dependence of ek(t) on k, t and L.

• Estimate ek(t) analytically in terms of k, t and L (e.g. in the case
f(u) = u).
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FIGURE 102.1. Fundamental physics?.

• Compare theory and experience.

• Compare with BodySoul Session E.

• Compare the accuracy of Forward and Midpoint Euler in terms of
powers of k.

http://www.bodysoulmath.org/sessions/
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103
Fundamental Theorem Games

103.1 To Do

Design computer games based on the Fundamental Theorem e.g. along the
following lines (see also the next Session):

1. Game of Keeping Even Pace: Let U : [0, 1] → R be a given function
with U(0) = 0 and seek to control the input v(t) of the IVP u̇(t) = v(t) so
that

|U(t)− u(t)| ≤ δ for 0 < t < 1, (103.1)

where δ > 0 is a given tolerance. This is like keeping even pace with some-
body by controling your velocity.

2. Game of Fastest Integrator 1: Given v : [0, T ] → R compute as fast
as possible, up to a certain tolerance, the solution of the IVP: u̇(t) = v(t)
for 0 < t < 1 and u(0) = 0.

2. Game of Fastest Integrator 2: Given f : [0, T ] → R and u0 compute
as fast as possible, up to a given tolerance, the solution of the IVP: u̇(t) =
f(u(t)) for 0 < t ≤ T and u(0) = u0.
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104
Elementary Functions

From time immemorial, man has desired to comprehend the
complexity of nature in terms of as few elementary concepts as
possible. (Abdus Salam)

What I try to do in the book is to trace the chain of relationships
running from elementary particles, fundamental building blocks
of matter everywhere in the universe, such as quarks, all the way
to complex entities, and in particular complex adaptive system
like jaguars. (Murray Gell-Mann)

Elementary, my dear Watson.

104.1 To Read

• exponential function

• trigonometric functions

• exponential complex

• logarithm

104.2 To Do

The elementary functions are solutions of elementary IVPs such as

http://www.youtube.com/watch?v=BfgHuNwNWXk
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FIGURE 104.1. Legendre polynomials P1(x),...,P4(x).

• u̇ = u, (u(t) = exp(t)),

• u̇ = v, v̇ = −u, (u(t) = sin(t) or u(t) = cos(t)),

• u̇(t) = 1
t , (u(t) = log(t)).

Do the following:

• Compute elementary functions by time stepping.

• Derive the basic properties of exp(t), log(t), sin(t) and cos(t) from
their defining IVPs:

• exp(a+ b) = exp(a) exp(b), (exp(a))r = exp(ra),

• log(ab) = log(a) + log(b), log(ar) = r log(a),

• d
dt sin(t) = cos(t), d

dt cos(t) = − sin(t),

• sin(t+ π) = − sin(t), sin(t+ π
2 ) = cos(t),...

• Define exp(it) = cos(t) + i sin(t) where i2 = −1.

• Prove that d
dt exp(it) = i exp(it).

• Prove formulas like sin(2t) = 2 sin(t) cos(t) (using that exp(i2t) =
exp(it) exp(it)).

• Study in the same spirit some other elementary functions, like Bessel
functions (optional).

• Solve some Separable IVPs computationally and compare with ana-
lytical solutions. Consider e.g.: u̇ = −u2, u̇ = u2, u̇ = u(1− u).

• Write Python code for analytical differentiation of combinations of
elementary functions.
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105
Geometry in R2

All one’s inventions are true, you can be sure of that. Poetry is
as exact a science as geometry. (Gustave Flaubert)

Geometry is not true, it is advantageous. (Henri Poincare)

I am coming more and more to the conviction that the necessity
of our geometry cannot be demonstrated, at least neither by,
nor for, the human intellect. (Carl Friedrich Gauss)

105.1 To Read

• Geometry in R2

105.2 To Do

Write Python code for

• length or norm of a vector,

• distance between two points,

• scalar product of two vectors,

• ×-product of two vectors
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FIGURE 105.1. Math Fear.

• projection of one vector on another,

• orthogonalizing two non-colinear vectors,

• angle between two vectors,

• area of a romb spanned by two vectors

• rigid rotation and translation.
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106
Geometry in R3

The early study of Euclid made me a hater of geometry. (James
Joseph Sylvester)

106.1 To Read

• Geometry in R3

106.2 To Do

Write Python code for

• length or norm of a vector,

• distance between two points,

• scalar product of two vectors,

• vector product of two vectors,

• triple-product of three vectors,

• projection of one vector on another,

• projection of a vector on a plane,
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FIGURE 106.1. Geometry of Ales Stenar.

• orthogonalizing three non-coplanar vectors,

• angle between two vectors,

• volume of a parallelepiped spanned by three vectors,

• rigid rotation and translation.

http://sv.wikipedia.org/wiki/Ales_stenar
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107
FundThm of Linear Algebra

Algebra is generous; she often gives more than is asked of her.
(D’Alembert)

I do not believe there is anything useful which men can know
with exactitude that they cannot know by arithmetic and alge-
bra. (Nicholas Malebranche)

107.1 To Read

• Geometry in Rn

• vector, linear combination, scalar product, Cauchy’s inequality,

• matrix, transpose, matrix product, linear independence, basis, vol-
ume,...

• orthogonal matrix, inverse matrix.

107.2 To Do: Fundamental Theorem

• Write Python codes for determining the column and row echelon
forms of a matrix A.
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FIGURE 107.1. Gilbert Strang with a generic −1 2 − 1 diagonal Cake Matrix.

• Use the code to determine the range R(A) and null space N(A) of
different matrices A.

• Check the Fundamental Theorem of Linear Algebra computationally
for different matrices.

• Check the Proof of the Fundamental Theorem of Linear Algebra.

107.3 To Do: Gaussion Elimination

• Write Python code for Gaussian elimination.

107.4 Watch

• Gilbert Strang on Linear Algebra

http://www.youtube.com/watch?v=ZK3O402wf1c
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108
Contraction Mapping

108.1 To Read

• Fixed Point Iteration

108.2 To Do

Consider an equation of the form

x = g(x) (108.1)

where g : R → R is a Lipschitz continuous function with Lip constant L.
A number x satisfying this equation is said to a fixed point of g. Consider
the iteration

x(n+ 1) = g(x(n)), , n = 0, 1, 2, ... (108.2)

with x(0) given.

Do the following

• Study computationally the convergence of the sequence x(0), x(1), x(2), ..
with different functions g with different L.

• Experience convergence if L < 1.

• Study the dependence of |x(n+ 1)− x(n)| on L < 1.
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FIGURE 108.1. Fixed Point Iteration in images.

• Study the convergence to a fixed point x satisfying x = g(x).

• Study the role of the derivative g′(x).

• What is Banach’s Contraction Mapping Theorem?
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109
Newton’s Method

109.1 To Read

• Newton’s method

109.2 To Do

Consider Newton’s method for an equation f(x) = 0:

x(n+ 1) = x(n) − f(x(n))

f ′(x(n))
for n = 0, 1, 2, ..., (109.1)

which has the form of fixed point iteration for the function g(x) = x− f(x)
f ′(x) .

Do the following

• Study computationally the convergence of the sequence x(0), x(1), x(2), ..
with different functions f .

• Experience convergence and divergence.

• Study the role of the condition f ′(x) 6= 0.

• Study the rate of convergence.

• Show that g′(x) = 0 if f ′(x) 6= 0 and f ′ is differentiable.

• Show quadratic convergence. (Hint)
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FIGURE 109.1. Newton’s method.
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110
Root Functions

110.1 To Do

• Show that for a > 0 the equation x2 = a has a unique positive
solution x =

√
a = a

1
2 .

• Compute
√
a by Newton’s method.

• Compute the solution of the equation x12 = 2 using Newton’s method.
Connect to well-tempered musical scales.

Prove the following rules for computing with the square root function
(Hint):

• √
a
√
b =

√
ab, that is a

1
2 b

1
2 = (ab)

1
2 .

•
√

1
a = 1√

a

• What about a
1
m for m = 3, 4, ..?
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FIGURE 110.1. Cylindrical Root Beer.
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111
Maximum of a Continuous Function

Consider a Lipschitz continuous function u : [a, b] → R defined on a closed
bounded interval [a, b].

111.1 To Do

• Does u(x) attain a maxium value at u(ξ) at some point ξ ∈ [a, b]?

• How to determine u(ξ) and ξ?

• Write Python code for computing u(ξ) and ξ?

• Can the code profit from knowledge of:

• the Lip constant of u(x)?

• if u(x) is differentiable?

• What is the number of operations required to determine u(ξ) to a
certain precision?

• The same for ξ?
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FIGURE 111.1. Reaching a maxium point.

FIGURE 111.2. The production of oil is about to peak.

http://www.dailymail.co.uk/news/article-465214/The-human-cannonball-mastered-art-flying.html
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112
RN as Vector Space

112.1 To Do

Write Python code for RN as vector space including the operations

• vector addition,

• multiplication of vector by scalar,

• scalar product, length of vector,

• projection on subspace,

• orthogonal decomposition,

• linear independence, volume?

Assume that operations on real numbers are defined.
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113
Kepler vs Newton

113.1 To Contemplate

Kepler got famous by showing experimentally that the planets move in
elliptical orbits around the Sun satisfying Keplers three laws of motion.
Newton got even more famous by proving mathematically that Kepler’s
three laws all follow from one single inverse square law of gravitation.
Why did Newton become more famous than Kepler? Theory vs practice?

Is one law better than three?

113.2 To Do

Consider the basic two-body problem with one light body (the Earth) or-
biting a heavy body (th Sun) under the action of a gravitational force,
assuming the heavy body to be fixed (at the origin say).

• Verify Kepler’s Laws computationally.

• Try to verify Kepler’s Laws analytically.

113.3 Hint: Newton’s Strike og Genius

According to Lagrange the two-body problem for a small mass orbiting
around a heavy mass, such as the Earth moving around the Sun neglecting



610 113. Kepler vs Newton

FIGURE 113.1. Kepler dressed for party.

FIGURE 113.2. Newton controling the planets by brain power.
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the influence of the other planets can be formulated as follows in polar
coordinates (r, θ) with the origin at the center of the heavy mass:

{
r̈ − rθ̇2 = − 1

r2 , t > 0,
d
dt(r

2θ̇) = 0, t > 0,
(113.1)

complemented with initial values for position and velocity. Introducing the
change of variables u = r−1, show that θ̇ = cu2 for c constant. Use this
relation together with the fact that the chain rule implies that

dr

dt
=
dr

du

du

dθ

dθ

dt
= −cdu

dθ
and r̈ = −c2u2 d

2u

dθ2

to rewrite the system (113.1) as

d2u

dθ2
+ u = c−2. (113.2)

Show that the general solution of this equation is

u =
1

r
= γ cos(θ − α) + c−2,

where γ and α are constants. Here γ controls the eccentricity with γ = 0
corresponding to the zero eccentricity of a circular orbit, and we can choose
α = 0 without loss og generality.
Finally, show that the solution is either an ellipse, parabola, or hyperbola,

using the fact that these curves can be described as the loci of points for
which the ratio of the distance to a fixed point and to a fixed straight line,
is constant. Polar coordinates are suitable for expressing this relation.
Round off by proving Kepler’s three laws for planetary motion using the

experience you have gained.

113.4 Insolation and Glacial cycles

To connect to climate, consider the amount of insolation from the Sun
depending on the distance to the Sun. The insolation scales like r−2dt
assuming the radiation from the Sun spreads spherically. Why? Because
the the surface area of a sphere scales like r2 and the area of the Earth
absorbing radiation is fixed. Thus the insolation intensity I(t) per unit of
time is proportional to u2, that is I(t) = Cu2 for som constant C. The
total insolation over a year period [0, T ] is thus given by

∫ T

0

I(t) dt = C

∫ T

0

u2 dt =
C

c

∫ T

0

dθ

dt
dt =

C

c

∫ 2π

0

dθ = 2π
C

c
, (113.3)
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independent of the eccentricty parameter γ. The total amount of received
radiation over a year is thus independent of the eccentricity.
This connects to the blog post Glacial Cycles and Eccentricty: Both glacial

cycles and eccentricty shows a periodicity of 100.000 years (over the last
million years), with glaciation coupled to small eccentricty. It appears
that the stronger North Hemisphere Summer heating with larger eccen-
tricty keeps the Ice Age away, presumably because the climate dynamics is
stronger with hotter shorter NH Summer and more heat transfered North
from the Equator during the long NH Winter.

http://claesjohnson.blogspot.com/2010/04/glacial-cycles-and-eccentricity.html
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114
Separable IVPs

114.1 To Read

• Separable IVPs

114.2 To Do: Take-Off

Consider
v̇ = 1− v2 (114.1)

as model for take-off of an aircraft.

• Motivate the model.

• Find an analytical solution formula.

• Compare analytical and computational solution.

• Compare the time required to find analytical vs computational solu-
tion.

114.3 To Do: Fox-Rabbit Model

Consider
u̇ = au− buv, v̇ = −α+ βuv (114.2)
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FIGURE 114.1. To live or not live?

where a, b, α and β are constant cofficients, as a predator-prey model.

• Motivate the model.

• Find an analytical solution formula.

• Compare analytical and computational solution.

• Compare the time required to find analytical vs computational solu-
tion.
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115
Elementary Arithmetics

115.1 To Read

Recall the algorithms for addition, subtraction, multiplication and long
division of integers, from elementary school education.

115.2 To Do

• Write Python code for integer computation with multidigit integers
based on one-digit computation of addition,subtraction, multiplica-
tion and long division.
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116
Iterative Methods for Linear Systems

116.1 To Browse

• Numerical Linear Algebra

116.2 To Do: Jacobi

Consider a linear system of equations

Ax = b, (116.1)

where A = (aij) is a d× d matrix. Consider Jacobi iteration

aiixi(n+ 1) = b−
∑

j 6=i
aijxj(n), i = 1, ..., d, (116.2)

or more generally, damped Jacobi:

x(n+ 1) = x(n)− α(Ax(n) − b), (116.3)

where α = (αi) is a diagonal matrix with positive coefficients (chosing
αi =

1
aii

gives back Jacobi).

Do the following:

• Study convergence of Jacobi iteration for different A.
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FIGURE 116.1. Preconditioned conjugate gradient method.

• Study convergence of damped Jacobi for different A.

• Study the IVP ẋ + Ax = 0 for t > 0, and connect to eigenvalues of
A.

116.3 To Do: Conjugate Gradient

• Write Python code for the conjugate gradient method for a positive
definite linear system.
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117
Least Squares Method for Ax = b

117.1 To Read

• Least Squares Methods

117.2 To Do

Solve different (overdetermined) linear systems Ax = b by a least squares
method, where A is an m × n matrix with m > n. In other words, solve
the positive (semi-definite) symmetric n× n system

A⊤A = A⊤b (117.1)

by an iterative method or Gaussian elimination.

117.3 Connection to Singular Value Decomposition

Recall that the spectral decomposition of a symmetric n× n matrix B

Q⊤B⊤BQ = Λ, (117.2)

where Λ is a diagonal n × n matrix with non-negative elements λi and
Q is an orthogonal matrix (with Q⊤Q = I), is closely connected to a
Singular Value Decomposition SVD of A = UΣV ⊤, where U and V are

http://en.wikipedia.org/wiki/Singular_value_decomposition#Based_on_the_spectral_theorem
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FIGURE 117.1. Obsession.

orthogonal matrices and Σ a diagonalm×n matrix with elements (singular
values)

√
λi. Watch:

• Strang on SVD

• Strang Review of Linear Algebra

117.4 Principal Component Analysis

The eigenvectors corresponding to largest singular values can be used to
give information about principal features of A, see:

• Singular Values and Principal Components.

• Singular Value Decomposition and Data Mining.

http://www.youtube.com/watch?v=Nx0lRBaXoz4
http://www.youtube.com/watch?v=RWvi4Vx4CDc&feature=SeriesPlayList&p=E7DDD91010BC51F8
http://public.lanl.gov/mewall/kluwer2002.html
http://cacs.usc.edu/education/cs653/SVDmine.pdf
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118
Calculus in Several Dimensions

118.1 To Read

• Integration in Several Dimensions

• The Divergence Theorem

• Green’s and Stokes’ Theorems

118.2 To Browse

• Calculus in Several Dimensions

• Divergence, Rotation and Laplacian

• Curve Integrals

• Surface Integrals

• Multiple Integrals

• Gauss’ and Green’s Theorems

• Stokes’ Theorem
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FIGURE 118.1. 4-dimensional cube.

118.3 To Do

Compute analytically

• gradient, divergence, rotation, Laplacian of selected functions,

• selected multiple integrals by iterated 1d integration,

• selected curve and surface integrals.

Show that

• level curves of u : Rd → R are orthogonal to ∇u,

• divergence and Laplacian are invariant under orthogonal coordinate
transformations.

Compute by quadrature

• selected curve, surface and multiple integrals.
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119
Piecewise Linear Interpolation

119.1 Defining the Interpolant

To estimate finite element discretization errors (in time and space), we
are led to estimate the interpolation error between a given function u(x)
defined on a domain Ω and its piecewise linear interpolant uh taking on the
same values as u(x) at the nodes of a triangulation. Here x represents time
or a space coordinate. To estimate the interpolation error over the domain
Ω it is sufficient to consider the error over each finite element separately,
because the interpolant is uniquely defined by the nodal values for each
element (interval, triangle or tetrahedron).
Recall that Midpoint Euler (or The Trapezoidal Method) constructs a

solution to u̇(t) = f(u(t)) for t > 0 as a continuous piecewise linear function
u(t) of time t.

119.2 To Do 1d

Consider a differentiable function u(x) defined on the interval [0, h] and
let uh be a linear function interpolating u(x) at the end points, that is
uh(0) = u(0) and uh(h) = u(h). We seek to estimate the interpolation
error

eh = u(x)− uh(x) for x ∈ [0, h]. (119.1)

Step 1: Reduce to the case u(0) = u(h) = 0, by changing u(x) and uh(x)
by the same linear function. Notice that in this case uh(x) ≡ 0 for x ∈ [0, h].
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Step 2: Assume that uh(x) 6= u(x) for some x ∈ (0, h). Motivate that u(x)
takes on a maximum or minimimum value at some point ξ ∈ (0, h) and
show that u′(ξ) = 0.

Step 3: Use the differentiability of u(x) to show that for x ∈ [0, h]

|u(x)− u(ξ)| = |u(x)− u(ξ)− u′(ξ)(x− ξ)| ≤ C|x− ξ|2 ≤ Ch2,

|u′(x) − u′(ξ)| ≤ C|x− ξ| ≤ Ch.
(119.2)

Alternatively, use Taylor’s formula or Taylor series with expansion around
x = ξ.

Step 4: Conclude that

|u(x)− uh(x)| ≤ C0Ch
2, (C0 ≈ 1

8
)

|u′(x) − u′h(x) ≤ C1Ch, (C1 ≈ 1

2
)

(119.3)

where C bounds |u′′(x)| for x ∈ [0, h].

Alternative proof: Let x ∈ (0, h) and consider the function g(y) defined
for y ∈ [0, h] by

g(y) = u(y)− u(0)
h− y

h
− u(h)

y

h
− γ(x)y(h− y), (119.4)

where γ(x) is so chosen that g(x) = 0. Notice that g(0) = g(x) = g(h) = 0
and use the mean-value theorem (first for g(y) twice and then for g′(y) once)
to show that g′′(ξ) = 0 for some ξ ∈ (0, h) and thus that γ(x) = − 1

2u
′′(ξ).

Then show that C0 = 1
8

119.3 Direct Computation of Interpolation errors

Let ūh be a piecewise quadratic interpolant of u(x) interpolating at the
endpoints and midpoint of each element. Use

max
x∈[0,h]

|ūh(x)− uh(x)|, max
x∈[0,h]

|ū′h(x)− u′h(x)| (119.5)

as direct quantitative estimates of the interpolation errors

max
x∈[0,h]

|u(x)− uh(x)|, max
x∈[0,h]

|u′(x)− u′h(x)|. (119.6)

Use this technique for estimation of errors in piecewise linear interpolation
of different functions.

http://en.wikipedia.org/wiki/Taylor_series
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119.4 To Do in 2d and 3d

Extend to 2d and 3d.

119.5 Compare

• Piecewise Polynomials 1d

• Piecewise Polynomials 2d and 3d

119.6 Piecewise Constant Approximation

In piecewise constant approximation the interpolant uh is defined as a con-
stant on each finite element, e.g, as the mean-value over the element. Recall
from Time Stepping Error Analysis

max
x∈[0,h]

|u(x)− uh(x)| ≤ h max
x∈[0,h]

|u′(x)|. (119.7)

119.7 L2-projection onto Piecewise Constants

Define uh(x) on [0, h] as the mean-value of u(x), that is,

uh(x) =
1

h

∫ h

0

u(y) dy x ∈ [0, h]. (119.8)

Show that uh(x) can be defined as the constant Pu defined by the orthog-
onality relation ∫ h

0

(u(y)− Pu)v(y) dy = 0 (119.9)

for all constant functions v(y) on [0, h]. Show that the constant Pu is a
best approximation of u(y) in the sense that

∫ h

0

(u(y)− Pu)2 dy ≤
∫ h

0

(u(y)− v(y))2 dy (119.10)

for all constant functions v(y). Hint: Write

∫ h

0

(u− Pu)2 dy =

∫ h

0

(u− Pu)(u− Pu) dy +

∫ h

0

(u− Pu)(Pu− v) dy

=

∫ h

0

(u− Pu)(u− v) dy

(119.11)
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and use Cauchy’s inequality for integrals.
Extend to piecewise constant approximation on a partition of an interval.

Extend to 2d and 3d.
Note: This is the basic step in the basic error analysis of the finite element

method.



This is page 627
Printer: Opaque this

120
Quadrature

120.1 Quadrature by Piecewise Polynomial
Interpolation

An integral
∫
I u(x) dx of a function u(x) over an interval I, van be computed

by replacing (interpolating) u(x) by a piecewise polynomial interpolant
(constant, linear, quadratic,...) uh on some partition of I into subintervals,
and computing the integral

∫
I uh(x) dx analytically (as a sum of analyt-

ically computable integrals over subintervals). This is called (numerical)
quadrature. The quadrature is then exact if u(x) is a piecewise polynomial
in question.

120.2 Trapezoidal Rule by Linear Approximation

Let [0, h] be an interval and consider the quadrature formula (Trapezoidal
Rule): ∫ h

0

u(x) dx ≈ h

2
(u(0) + u(h)) (120.1)

obtained by replacing the given function u(x) by its linear interpolant

uh = (1 − x

h
)u(0) +

x

h
u(h) (120.2)

and computing the integral of uh analytically.
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The quadrature error can be estimated by reducing to the case u(0) =
u(h) = 0 and then assuming that u(x) is quadratic (linear plus one) so that
u(x) = x(h− x). We compute

∫ h

0

x(h− x) dx =
h3

6
, (120.3)

suggesting the quadrature error estimate (since the second derivative of
x(h− x) equals −2):

|
∫ h

0

u(x) dx − h

2
(u(0) + u(h))| ≤ h3

12
max
[0,h]

|u′′| (120.4)

The accurcay of the Trapezoidal rule is thus of order h2, when normalizing
for the length h of the interval, so that over an interval I of unit length
partitioned into subintervals of length h, the quadrature error is bounded

by h2

12 maxI |u′′|.

120.3 To Do

• Estimate the quadrature error in the rectangle and trapezoidal quadra-
ture rules corresponding to piecewise constant and linear linear ap-
proximation.

• Compare with Forward/Backward/Midpoint Euler time stepping.

• Contemplate adaptive quadrature with variable subinterval length.

120.4 To Read

• Adaptive Quadrature
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121
Residual vs Output Error

121.1 To Read

Consider a linear system of equations

Ax̄ = b (121.1)

where A is a d× d matrix, b ∈ Rd a given vector and x̄ an exact solution.
Consider an approximate solution x with residual R(x) = Ax − b 6= 0,
computed by some iterative method, (or by Gaussian elimination using
single precision). Suppose we want to estimate the solution error x − x̄ in
terms of the residual R(x) (computed in double precision).
Suppose we then choose a vector ψ ∈ Rd, e.g. ψ = (1, 1, ..., 1), and

consider the output error

E(x) = (x − x̄, ψ) (=
d∑

i=1

(xi − x̄i)). (121.2)

Let then ϕ solve the dual problem A⊤ϕ = ψ and note that

(x− x̄, ψ) = (x− x̄, A⊤ϕ) = (Ax−Ax̄, ϕ) = (R(x), ϕ) (121.3)

which offers a representation of the output error (x− x̄, ψ) in terms of the
scalar product of the residul R(x) with the dual solution ϕ.
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FIGURE 121.1. Residual is a cross-platform 3D game interpreter.

121.2 To Do

Use the error representation to estimate the output error E(x) by solv-
ing the dual equation A⊤ϕ = ψ approximatively by iteration (or single
precision Gaussian elimination). Consider in particular:

• different weights ψ corresponding to mean-values, point-values and
norms,

• A pos def with eigenvalues bounded away from zero (well-conditioned),

• A pos def with small eigenvalues (ill-conditioned)

• A anti-symmetric.

http://residual.sourceforge.net/
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122
Adaptive Time-Step Error Control

122.1 To Read

• Time Stepping Error Analysis

122.2 To Do

• Extend the a posteriori error estimate for Midpoint Euler to variable
time step.

• Formulate an algorithm for control of the error at final time in terms
of variable time step.

• Test the algorithm on different problems with different characteris-
tics.

• Prove an a posteriori error estimate for Backward Euler and formulate
a corresponding algorithm.
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123
Stability Analysis

123.1 To Read

• Time Stepping Error Analysis

123.2 To Do

Consider an IVP of the form

u̇+Au = 0 for t > 0, u(0) = u0, (123.1)

where A is a d× d constant matrix. Consider the following two basic cases

• (1) A symmetric positive (semi-)definite,

• (2) A anti-symmetric (A⊤ = −A),

• (3) A symmetric negative definite,

• (4) A anything.

Show in case (1) the following stability estimate:

|u(t)|2 + 2

∫ t

0

(Au, u) dt = |u0|2. (123.2)
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FIGURE 123.1. The difference between stable and unstable.

In particular

Sd(T ) ≡ max
0≤t≤T

|u(t)|
|u0| ≤ 1 (123.3)

Show in case (2) the following stability estimate:

|u(t)|2 = |u0|2, (123.4)

that is Sd(T ) = 1 for T > 0.

Show in the case (3) and (4) that it is possible that Sd(T ) grows exponen-
tially with T and thus may be very large.

Show that (1) is representative of diffusion. Show that (2) is representative
of wave propagation. Compute solutions in concrete illustrating cases.
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124
Analytical Mechanics

Rotation is a universal phenomenon; the Earth and all the other
members of the solar system rotate on their axes, the satellites
revolve aoround the planets, the planets revolve around the Sun,
and the Sun itself is a member of the galaxy or Milky Way sys-
tem which revolves in a very remarkable way. How did all these
rotary motions come into being? And what part do they play in
the system of the world? (E. T. Whittaker in a lecture on Spin
in the Universe, author of A Treatise on the Analytical Dynamics
of Particles and Rigid Bodies, 1904)

124.1 Degrees of Freedom

In analytical mechanics one seeks to describe a mechanical system with
few cleverly chosen degrees of freedom, in order to allow analytical solution
of the equations of motion. The starting point is always Newton’s laws,
with the 2nd Law expressing conservation of (linear) momentum directly
connecting to the translation of the center of mass, which imply conserva-
tion of also angular momentum connecting to rotation around the center
of mass.
The motion of an N -body (N -particle system connected by springs) can

be described by 6N degrees of freedom (3 for position and 3 for velocity for
each particle). If the springs are very stiff, the N -body is close to a rigid
body which does not change form under external forcing. The motion of a

http://en.wikipedia.org/wiki/E._T._Whittaker
http://www.archive.org/details/atreatiseonanal00whitgoog
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rigid N -body can be described the motion of its center of mass together
with rigid rotations around the center of mass, together at most 6 degrees
of freedom.

124.2 To Read

• Lagrange’s equations

• N-body mechanics

124.3 Conservation of Linear Momentum

Consider an N -body B consisting of set of particles of mass mi located at
xi(t) at time t, i = 1, ..., N , somehow connected by springs. Newton’s 2nd
Law for each particle reads

miẍ
i = F i ≡ F iint + F iext, (124.1)

where F iint is the internal spring force and F iext an exterior force acting on
particle i. Assuming that exterior forces vanish and using that by Newton’s
3rd Law the internal spring forces sum to zero, we have by summation

d2

dt2

J∑

1

mix
i =

d2

dt2
MX = 0 (124.2)

where M =
∑J

1 mi and

X =
1

M

J∑

1

mix
i (124.3)

is the position of the center of mass of B. In other words, without exterior
forcing the center of mass of B moves along a straight line X = V t+X0,
where

V = Ẋ =
1

M

J∑

1

miẋ
i (124.4)

is a constant velocity, and X0 the position of the center of mass at t = 0.

124.4 Conservation of Angular Momentum

The angular momentum L of B with respect to the origin is defined by

L =

J∑

1

xi ×miẋ
i. (124.5)
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We have since by the 3rd Law
∑

i x
i × F iint = 0 (verify this!),

L̇ =
∑

i

ẋi ×miẋ
i +
∑

i

xi ×miẍ
i =

∑

i

xi × F iext = 0 (124.6)

if F iext = 0 for i = 1, .., J . Angular momentum is thus conserved if exterior
forces vanish.
If we write xi = X + x̄i and ẋi = V + v̄i with x̄i and v̄i position and

velocity with respect to the center of mass, we have

∑

i

mix̄i = 0,
∑

i

miv̄
i = 0, (124.7)

and we can thus write

L =
∑

i

(X + x̄i)×mi(V + v̄i) = X ×MV +
∑

i

x̄i ×miv̄
i, (124.8)

eapressing the angular momentum L as the sum of the angular momentum
of the center of mass and the angular momentum with respect to the center
of mass.

124.5 Moment of Inertia of a Rigid Body

We now assume that B is a rigid body connected by very stiff springs
maintaing the form of B. If B is rotating with angular velocity ω around
a unit vector n, the velocity ẋi of particle i is given by

ẋi = ωn× xi (124.9)

and thus the angular momentum Ln with respect to the direction n, is
given by

Ln = n× L =
∑

i

min× xi × (ωn× xi) = ω
∑

mir
2
i ≡ ωIn, (124.10)

where

In
∑

mir
2
i (124.11)

is the moment of inertia with respect to n with ri the distance of par-
ticle i to the axis of rotation. The angular velosity ω is thus conserved
in the absence of exterior forcing. Accordingly, decreasing In will corre-
spond to increasing ω in the absence of exterior forcing, as shown by the
spinning ice-skater.

http://www.youtube.com/watch?v=AQLtcEAG9v0
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FIGURE 124.1. A simple rigid body system described by two angular variables.
Can you write down the equations of motion?

124.6 To Do

• Compute the center of mass and the moments of inertia with respect
to different axes of rotation for various rigid bodies.

• Formulate equations of motion as conservation of linear momentum
with respect to the center of mass, and conservation of angular mo-
mentum.

• Solve the equations of motion analytically in some simple cases, and
computationally else.
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FIGURE 124.2. The masterpiece by Langarnge.
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125
Finite Element Programming

See BodySoul Session F.

http://www.bodysoulmath.org/sessions/
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126
Tool Bag Proof Inspection

To test your level of theoretical knowledge you can take on to prove the
analytical results stated in Tool Bags including

• rules for differentiation,

• rules for integration,

• Fundamental Theorems.

• convergence of fixed point iteration and Newton’s method,

• ...

The idea is that knowledge of the construction of a tool, is helpful when
using the tool: Understanding how a plyer is designed can be helpful when
figuring out how to apply it.

126.1 To Do

• Prove (some of) the analytical results listed in Tool Bags.
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127
Climate Sensitivity

Some aspects of climate have not been observed to change.
(IPCC Summary for Policymakers 2007)

127.1 To Browse

• On Climate Sensitivity 1, 2, 3, 4, 5, 6.

• The Incorrect Postulate of Climate Alarmism 1, 2.

• What is the GreenHouse Effect, Really?

• The Maximal GreenHouse Effect

127.2 A Simple Model

Consider the following model for the vertical heat transfer in the atmo-
sphere:

Ṫ + βT ′ + αT − ǫT ′′ = q for t > 0, 0 < x < 1,

−ǫT ′(0, t) = Q(t), −ǫT ′(1, t) = 0 for t > 0
(127.1)

where x ∈ [0, 1] is a vertical coordinate, T (x, t) is atmosphere temperature
at x at time t > 0, α(x, t) is a coefficient of net outgoing radiation, β(x, t)

http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf
http://claesjohnson.blogspot.com/2010/04/on-climate-sensitivity.html
http://claesjohnson.blogspot.com/2010/04/climate-sensitivity-2.html
http://claesjohnson.blogspot.com/2010/04/climate-sensitivity-3.html
http://claesjohnson.blogspot.com/2010/04/on-climate-sensitivity-4.html
http://claesjohnson.blogspot.com/2010/04/on-climate-sensitivity-5.html
http://claesjohnson.blogspot.com/2010/04/climate-sensitivity-5-superferry.html
http://claesjohnson.blogspot.com/2010/04/incorrect-postulate-of-climate-science.html
http://claesjohnson.blogspot.com/2010/04/incorrect-postulate-of-climate-alarmism.html
http://claesjohnson.blogspot.com/2010/04/what-is-greenhouse-effect-really.html
http://claesjohnson.blogspot.com/2010/04/maximal-greenhouse-effect.html
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is a vertical convection velocity, ǫ a heat conduction/diffusion coefficient,
Q(t) is incoming heat flux from the ocean (originating from insolation), and
q(x, t) is a internal heat source from evaporation/condensation. As usual,
Ṫ = ∂T

∂t and ′T = ∂T
∂x .

127.3 Without Convection-Radiation-Evaporation-
Condensation

The basic stationary case is Q(t) = 1 constant, β = α0, q = 0 and ǫ con-
stant, which gives T = 1−x

ǫ , with corresponding temperature sensitivity
T (0) = 1

ǫ (which is large if ǫ is small). This a case of high temperature
sensitivity connected to heat conduction/radiation driven by negative tem-
perature gradients.

127.4 With Convection-Radiation-Evaporation-
Condensation

Consider now the case has q = −1 for 0 < x < 0.5 (evaporation) and q = 1
for 0.5 < x < 1 (condensation), ǫ small and β = 1, which gives T (x) ≈ −x
for 0 < x < 0.5 and T (x) ≈ x − 1 for 0.5 < x < 1, with corresponding
temperature sensitivity T (0) = 0. This is a case of small temperature sen-
sitivity connected to convection combined with evaporation/condensation
with temperature gradients of varying sign.
We conclude that convection coupled with evaporation/condensation,

like in the real atmosphere, can change temperature sensitivity drastically,
and since climate sensitivity is related to temperature sensitivity, also cli-
mate sensitivity can be drastically reduced as compared to that of the
simplest radiative model. Compare with Greenhouse Gas. Conclusion?
Compare with a common green house, which has high temperature sen-

sitivity because convection is prevented by the glass enclosure. Compare
also with a boiling pot where increasing the forcing results in more vigorous
boiling while the temperature stays the same, resulting in zero temperature
sensitivity is zero.

127.5 To Do

• Study the dynamics of the model under varying forcing.

• Estimate global climate sensitivity from the model.

http://en.wikipedia.org/wiki/Greenhouse_gas
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FIGURE 127.1. Model temperature distribution in the atmosphere without and
with convection and evaporation/condensation.

FIGURE 127.2. Real temperature distribution in the atmosphere. Notice simi-
larity in troposphere-stratosphere with model.
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FIGURE 127.3. The energy budget of the Earth according to NASA.

http://asd-www.larc.nasa.gov/erbe/ASDerbe.html
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128
From Google to Googol

128.1 To Read

One googol is equal to 10100. The name Google is inspired by googol as a
very large number. How large isthen a googol? Let us compare with

• 1080 = estimated number of atoms in the Universe

• 2 × 1016 bytes processed by Google each day (is Google close to
googol?)

• 1014 number of neural connectins in a human brain

• 1014 number of cells in a human body

• 6× 1023 number of atoms in a mole

• 4× 1017 age of the Universe in seconds

• 1030 all possible passwords of 40 characters

• 1013 US budget deficit in Swedish Crowns

• 6 × 10−34 Planck’s constant, supposedly the smallest quantum of
energy

• 4× 109 clock rate of Pentium4 microprocessor.

• exp(LT ) ≈ 10100 if L = 20, T = 10: Compare Illusion of exponential growth
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FIGURE 128.1. Google servers.

128.2 To Do

• Compute SN =
∑N

n=1
1
n = 1+ 1

2 + ...+ 1
N for different increasing N .

• Argue that SN ≈ log(N). How large does SN become, computation-
ally?

• Compare computing SN summing from left to right (smaller and
smaller terms) with summing from right to left (larger and larger
terms). Explain the discrepancy.

• What is the machine epsilon (precision) of your computer?

• What is the range of integers your computer is willing to deal with?
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129
Equivalence of Inertial and
Gravitational Mass

Then let the beginning of our reflections be the consideration
that whatever motion comes to be attributed to the Earth must
necessarily remain imperceptible to us and as if nonexistent, so
long as we look only at terrestrial objects; for as inhabitants of
the Earth, we consequently participate in the same motion....
(Salvatio in Galileos Dialogue, Day 2)

129.1 To Read: The Origin of Newton’s Law

Einstein got famous by stating that inertial and gravitational mass cannot
be distinguished. Let’s see if this statement is any reason to be famous, and
let us at the same time seek to understand from where Newton’s 2nd Law
comes. Newton’s 2nd Law states

M
dv

dt
= F (129.1)

where M is the inertial mass of a body B moving with velocity v (with
respect to a certain coordinate system) subject to a force F We note that
Newton’s 2nd Law is Galilean invariant, that is it takes exactly the same
form in all coordinate systems which move with uniform velocity with re-
spect to each other and use the same length (and time) scale. This is
because the accelleration A = dv

dt is invariant under coordinate transforma-
tions with constant velocity.

http://www.law.umkc.edu/faculty/projects/ftrials/galileo/dialogue2.html
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Newton’s law F = MA expresses superposition of inertial mass as lin-
earity in M : If we put two masses together to form one mass, then the
corresponding forces add up, which expresses conservation of mass: Putting
two masses into a basket does not make part of the combined mass mys-
teriously disappear (as it does in a fusion reactor like the Sun, where part
of the mass is turned into energy). Newton’s law F =MA is thus linear in
inertial mass M , as an expression of conservation of mass.
Secondly, if we apply the double force 2F by first applying the F to

give the accelleration A with respect to an initial rest state, and then the
remaining F to give accelleration with respect to the current state, then
the accellerations will add up to 2A with respect to the initial rest state,
as a consequence of Galilean invariance. Newton’s 2nd Law is thus linear
also in accelleration A, as an expression of Galilean invariance.
Newton’s law F =MA thus can be viewed to express Galilean invariance

and conservation of mass. We can agree to define one of the three variables
F , A and M in terms of the other: For example, we can agree to define
inertial mass M in terms of F and A = dv/dt as M = F/A.

129.2 To Read: Gravitational Mass

Let now Mg be the gravitational mass of the body B of nertial mass M .
This means that the body is acted upon by a force F =Mgf where f is a
normalized gravitational force. Newton’s 2nd Law now takes the form

Mv̇ = F =Mgf (129.2)

in a fixed x-coordinate system. The body B is thus falling freely under the
gravitational force F =Mgf . Let us now consider a different x′ coordinate
system with origin O′, which we can imagine being in free fall under the
normalized gravitational force f , thus with velocity v′0 in the x system
satisfying

v̇′0 = f (129.3)

Let us now write x = x′0 + x′′ and v = v′0 + v′′, where x′0 and v′O are the
position and velocity of O′ in the x-system, with x′′ and v′′ being position
and velocity of B in the x′-system. Now, observe that

Mg

M
f = v̇ = v̇′0 + v̇′′ = f (129.4)

where v′′ = 0, because both the body and the coordinate system are falling
freely in the same way (this is the assumption). This shows that Mg =M ,
thus that gravitational mass is the same as inertial mass. In other words,
there is just one mass, that is, inertial mass.
How do we understand that all bodies fall frely the same way?Well, if not

bodies would be torn apart under free fall, because different parts would
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tend to fall differently. For example, the person in the free falling elevator,
would bump the head into the ceiling or still feel pressure under the feet.
And this is not what seems to be the case. Convinced? What about doing
an elevator experiment?

129.3 To Read: How to Determine Mass?

How do determine the massM of a body B? Since inertial and gravitational
mass are the same, we have two possibilities:

• Measure aceelerationA under a given force F , and determineM = F
A .

• Hang the body in a spring and measure spring force F , and determine
M = F

f , where f is strength of the gravitational field.

129.4 To Browse

• Does the Earth Rotate?

129.5 To Do

• Is Einstein’s Equivalence prinicple a deep new physical law worthy of
Nobel Prize or “just” a trivial consequence of Newton’s 2nd Law?

• Did Galileo understand that all bodies fall freely the same way?

http://knol.google.com/k/does-the-earth-rotate
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FIGURE 129.1. Title page of Galileo’s Dialogue Concerning the Two Chief World
Systems. See also Summary.

For consider: Motion, in so far as It is and acts as motion, to
that extent exists relatively to things that lack it; and among
things which all share equally in any motion, it does not act,
and is as if It did not exist. Thus the goods with which a ship is
laden leaving Venice, pass by Corfu, by Crete, by Cyprus and
go to Aleppo. Venice, Corfu, Crete, etc. stand still and do not
move with the ship; but as to the sacks, boxes, and bundles
with which the boat is laden and with respect to the ship itself,
the motion from Verflice to Syria is as nothing, and in no way
alters their relation among themselves. This is so because it
is common to all of them and all share equally in it. If, from
the cargo in the ship, a sack were shifted from a chest one
single inch, this alone would be more of a movement for it than
the two-thousand-mile journey made by all of them together.
(Salvatio in Galileos Dialogue, Day 2)

http://www.law.umkc.edu/faculty/projects/FTrials/galileo/dialogue.html
http://www.calstatela.edu/faculty/kaniol/a360/galileo_dialogue.htm
http://www.law.umkc.edu/faculty/projects/ftrials/galileo/dialogue2.html
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130
Conservation Laws

A State without the means of some change is without the means
of its conservation. (Edmund Burke)

130.1 Basic Laws of Solid/Fluid Mechanics

The basic laws describing mechanics of material bodies in the form of gases-
fluids-solids, express

• conservation laws expressing conservation of mass, momentum and
total energy,

• constitutive laws connecting stress to material motion/deformation.

The form of the conservation laws are given with conservation of momentum
expressing Newton’s 2nd Law, conservation energy reflecting the definition
of total energy as the sum of kinetic and heat energy, and conservation of
mass reflecting that matter is non-destructible (in the absense of nuclear
fusion).
The modeling thus concerns the constitutive laws, which range in diffi-

culty from complex non-linear to simple linear, like modeling the stress-
strain relation of a spring.
The conservation and constitutive laws are expressed as Partial Differ-

ential Equations or PDEs using combinations of the following differential
operators:
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• time derivative ∂
∂t

• gradient ∇

• divergence ∇·

• rotation ∇×

• Laplacian ∆ .

with the space derivates referring to a fixed orthogonal coordinate system
in R3. We will refer to this fixed coordinate system, which does not change
with the motion of material bodies, as Eulerian, to be distinguished from
a Lagrangian system deforming with material motion.

130.2 Read More

• Laplacian Models.

130.3 Conservation of Mass

Consider matter of density ρ(x, t) moving in a volume Ω ⊂ R3 with velocity
v(x, t) where x are coordinates in a fixed coordinate system in R3. Consider
a fixed small volume V ⊂ Ω with boundary B. The amount of material
flowing into of V through the B per unit time step, is given by

−
∫

B

ρv · n ds = −
∫

V

∇ · (ρv) dx, (130.1)

where n is the outward unit normal to B and we used the Divergence
Theorem. The following equation expresses that mass is conserved: What
goes in increases what’s inside:

∂

∂t

∫

V

ρ dx = −
∫

V

∇ · (ρv) dx, (130.2)

that is ∫

V

(ρ̇+∇ · (ρv)) dx = 0 (130.3)

and thus since V is an arbitrary volume in Ω:

ρ̇+∇ · (ρv) = 0 in Ω, (130.4)

which is the conservation law expressing conservation of mass of density ρ
moving with velocity v.
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FIGURE 130.1. Conservation of mass.

130.4 Conservation of Momentum

Conservation of momentum m = ρv of matter subject to force ∇p from a
pressure p, is expressed by replacing ρ in (130.4) by each of the components
of momentum mi = ρvi and balancing by the force according to Newton’s
2nd law, to get

ṁi +∇ · (miv) = − ∂p

∂xi
in Ω, (130.5)

or in short vector notation

ṁ+∇ · (mv) +∇p = 0 in Ω. (130.6)
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130.5 Conservation of Total Energy

Conservation of total energy ǫ is expressed by replacing ρ in (130.4) by
ǫ and compensating with the the rate of work −pv · n performed on the
boundary B of the control volume V according to the Divergence Theorem

−
∫

B

pv · n ds = −
∫

V

∇ · (pv) dx, (130.7)

to get the conservation law expressing conservation of total energy:

ǫ̇+∇ · (ǫv + pv) = 0 in Ω. (130.8)

130.6 Conservation of Mass, Momentum, Energy

We collect the basic conservation laws of mass, momentum and energy:

ρ̇+∇ · (ρv) = 0,

ṁ+∇ · (mv) +∇p = 0,

ǫ̇+∇ · (ǫv + pv) = 0,

(130.9)

which is a very concise efficient mathematical formulation of mechanics in
terms of mass ρ, momentum m = ρv with v velocity, and total energy
ǫ = 1

2ρ|v|2 + e with e heat energy. A constitutive law for the pressure p
completes the model for a gas/fluid: For a compressible perfect gas p =
(γ − 1)e with γ and gas constant. For a nearly incompressible gas/fluid
δ∆p = ∇ · v with δ a small positive (regularization) parameter. Effects
from viscosity, heat conductivity and mass diffusion are here not included,
and will be added later.
Constitutive laws for solids are given in Chapter 132.

130.7 To Think About

• Suppose ρv · n = 0 on the boundary of Ω. What can you say about
the total mass

∫
Ω ρ(x, t) dx as a function of time t?

• The same about m and ǫ?
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131
Initial and Boundary Conditions

Science is a differential equation. Religion is a boundary condi-
tion. (Alan Turing)

We may regard the present state of the universe as the effect
of its past and the cause of its future. An intellect which at a
certain moment would know all forces that set nature in motion,
and all positions of all items of which nature is composed, if
this intellect were also vast enough to submit these data to
analysis, it would embrace in a single formula the movements of
the greatest bodies of the universe and those of the tiniest atom;
for such an intellect nothing would be uncertain and the future
just like the past would be present before its eyes. (Laplace)

131.1 Dirichlet, Neumann and Robin Boundary
Conditions

The conservation and constitutive differential equations are formulated over
domains Ω in Rn, n = 1, 2, 3, and are complemented by initial conditions
and boundary conditions according to the following specifications, in the
presence of viscous or diffusive effects:

• If an unknown u(x, t) appears with a time derivative u̇, then an initial
condition u(x, 0) = u0(x) for x ∈ Ω is specified. If a second time
derivative ü appears, then also u̇(x, t) requires an initial condition.
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• The boundary conditions for an unknown u(x, t) specified on (part
of) the boundary Γ of Ω, may take one of the following forms:

Dirichlet condition:

u(x, t) = û(x, t) for x ∈ Γ, t > 0, (131.1)

where û is given on Γ.

Neumann condition:

ν
∂u

∂n
(x, t) = g(x, t) for x ∈ Γ, t > 0, (131.2)

where g is given on Γ and
∂u

∂n
= n · ∇u (131.3)

is the normal derivative in the outward normal direction n to Γ. We will see
that the Neumann condition is related to the presence of the term −ν∆u
in a conservation law. This is the reason ν appears as a coefficient of the
normal derivative.

Robin condition:

αu(x, t) + ν
∂u

∂n
(x, t)α = αû(x, t) + g(x, t) for x ∈ Γ, t > 0, (131.4)

where α ≥ 0 is a coefficient. With α = 0 we get the Neumann condition,
and with α large and/or ν small, we get the Dirichlet condition.
For Maxwell’s equations of electromagnetics involving the operator ∇×,

also the boundary conditions u× n and u · n appear.

131.2 Essential and Natural Boundary Conditions

We shall see that a Neumann boundary condition reflects the presence of
the Laplacian in the differential equation (modeling viscous or diffusive
effects), and therefore in variational formulations do not have to be ex-
plicitely enforced like a Dirichlet condition. For this reason a Neumann,
and also a Robin, condition is called a natural boundary condition, while a
Dirichlet condition is called an essential boundary condition.

131.3 How Many Boundary Conditions to Specify?

As a general rule, we expect to have to specify either Dirichlet or Neu-
mann/Robin boundary conditions on a given portion of the boundary. We
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FIGURE 131.1. Non-natural boundary condition.

shall see this requires the presence of a viscous term of the principal form
−ν∆u with ν > 0. We can always assume the presence of such a term just
by assuming ν to be sufficiently small, but we must then be prepared to see
boundary layers developing at Dirichlet boundaries where material particles
leave the computational domain, with a boundary layer being narrow zone
along the boundary where a variable changes rapidly to satisfy a specied
Dirichlet condition. Neumann conditions also give rise to boundary layers,
but with much smaller change of variable values, since it is the normal
derivative which may have to change quickly.
We will discover that at boundary portions where material particles enter

the computational domain, Dirichlet boundary conditions will have to be
imposed, while the choice is free at other parts.

131.4 To Think About

• What interpretation can a Robin boundary condition have?

If we knew exactly the laws of nature and the situation of the
universe at the initial moment, we could predict exactly the
situation of that same universe at a succeeding moment. but
even if it were the case that the natural laws had no longer
any secret for us, we could still only know the initial situation
approximately. If that enabled us to predict the succeeding sit-
uation with the same approximation, that is all we require, and
we should say that the phenomenon had been predicted, that it
is governed by laws. But it is not always so; it may happen that
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FIGURE 131.2. Initial conditions.

small differences in the initial conditions produce very great
ones in the final phenomena. A small error in the former will
produce an enormous error in the latter. Prediction becomes
impossible, and we have the fortuitous phenomenon. (Poincaré
in a 1903 essay Science and Method)
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132
Constitutive Laws: Fluids/Solids

To those who ask what the infinitely small quantity in mathe-
matics is, we answer that it is actually zero. Hence there are not
so many mysteries hidden in this concept as they are usually
believed to be. (Euler)

Madam, I have come from a country where people are hanged
if they talk. (Euler to Queen Mother of Prussia, on his lack of
conversation in his meeting with her, on his return from Russia)

The reader will find no figures in this work. The methods which
I set forth do not require either constructions or geometrical or
mechanical reasonings: but only algebraic operations, subject
to a regular and uniform rule of procedure. (Lagrange)

It took the mob only a moment to remove his head; a century
will not suffice to reproduce it. (Lagrange about the chemist
Lavoisier)

132.1 Eulerian and Lagrangian Descriptions

We can describe natural phenomena in concise mathematical form using
differential equations expressing laws of balance in material continuous me-
dia modeling fluids and solids. To model fluids it is efficient to use an Eu-
lerian description with observers tied to fixed points in space which do not
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FIGURE 132.1. Euler after losing one eye, and Lagrange.

move with material particles. To model solids it is often convenient to use
a Lagrangian description with observers tied to moving material particles.
Eulerian coordinates refer to a fixed space-time coordinate system, while

Lagrangian coordinates refer to a coordinate system which deforms with
the motion of material particles.
In a Lagrangian description individual material particles have markers

making it possible to directly follow their motion. In an Eulerian descrip-
tion, particles have no markers; instead velocities are recorded at fixed
points in space of particles which happen to pass. From such velocities it
is possible to follow particle trajectories in secondary step.
If you float along with the flow of in a river, then your observations of

the flow will be Lagrangian. If you tie yourself to the shore, then your
observations will be Eulerian.
The World emerges in an interaction of fluids and solids we need to

find a unified formulation combining Eulerian and Lagrangian descriptions.
We show that this is possible expressing Newton’s 2nd Law in Eulerian
form, and allowing the computational mesh to deform with the solid in
Lagrangian form.
We start with fluid dynamics in Eulerian form, proceed to solid mechanics

in total Lagrangian and updated Lagrangian form, and then present a
unified formulation of so-called Arbitary Eulerian-Lagrangian ALE form.

132.2 Fluids vs Solids

In a viscous fluid the viscous stress σ (with pressure subtracted) is related
to velocity strain ǫ(v) = (ǫij(v)) as the symmetric form of the gradient ∇v
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FIGURE 132.2. Viscosimeter for measuring viscosity. How does it work?

of the velocity v = (v1, v2, v3),

ǫ(v) =
1

2
(∇v +∇v⊤) = (ǫij(v)); ǫij(v) =

1

2
(
∂vi
∂xj

+
∂vi
∂xj

). (132.1)

In the basic case of a Newtonian fluid by a linear constitutive law

σ = 2νǫ(v), (132.2)

where ν > 0 a viscosity coefficient.
In an elastic solid the stress σ = (σij) is related to the strain of displace-

ment u, In the case of small displacements/strains and linear elasticity by
Hooke’s Law :

σ = Eǫ(u) ≡ λ∇ · uδ + 2νǫ(u), (132.3)

where λ and µ are positive Lamé coefficients, and δ = (δij) with δij = 1
if i = j and = 0 else. The coefficient λ is referred to as Young’s modulus
which for a 1d problem measures stress increase per unit strain increase.
For large discplacements/strains different strain measures are relevant:

A strain measure with reference to the initial configuration of an elastic
solid before loading, is given by

1

2
(FF⊤ − I) (132.4)

where F = ∂x
∂X with x(t,X) the position at time t of a particle at position

X at initial time. A corresponding Hooke’s Law can take the form

σ =
E

2
(FF⊤ − I) (132.5)

http://www.youtube.com/watch?v=YTG1mqgekyE
http://www.youtube.com/watch?v=fFtM9JznLh8
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FIGURE 132.3. Stress-strain curve for elasto-plastic material.

with E acting as above. A corresponding constitutive law with the strain
measure referring instead to the current configuration after loading, is given
by

σ =
E

2
(I − (FF⊤)−1). (132.6)

We note that the displacement u is defined by x(t,X) = X + u(t,X) or
u = x(t,X)−X , which gives

F = I +
∂u

∂X
(132.7)

and thus for small displacements/strains

1

2
(FF⊤ − I) ≈ ǫ(u), (132.8)

since

FF⊤ − I ≈ (I +
∂u

∂x
)(I +

∂u

∂x

⊤
) ≈ ∇u+∇u⊤ = 2ǫ(u).

We refer to (132.5) and (132.6) as total Lagrangian formulations following
particle trajectories x(t,X) with x(0, X) = X , and computing F = ∂x

∂X .
Note that if x = QX , where Q is an orthogonal matrix, then F = Q and

FF⊤ − I = QQ⊤ − I = 0, which fits with the inituitive idea that a rigid
rotation of an elastic body does not generate strains and thus no stresses
(if we negelect dynamic accelleration forces from the rotation, which is
possible for slow rotation).
An alternative time-differentiated form of the constitutive law (132.5)

can be derived as follows: The material time derivative Dσ
Dt (following mate-

rial particles) computed using (132.5) combined with the fact that (proved
below)

DF

Dt
= ∇v F, (132.9)

http://www.youtube.com/watch?v=fFtM9JznLh8
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is given by

Dσ

Dt
= ∇vFF⊤+FF⊤∇v⊤ = ∇v(FF⊤−I)+(FF⊤−I)∇v⊤ = ∇vσ+σ∇v⊤.

We thus obtain a constitutive law connecting a certain stress rate σ̇ to
velocity strain ǫ(v), assuming E = 2I for simplicity, of the form

σ̇ ≡ Dσ

Dt
−∇vσ − σ∇v⊤ = (∇v +∇T ) = 2ǫ(v). (132.10)

which we refer to as an updated Lagrangian formulation.
The constitutive law for a solid/fluid continuum can thus be written on

the form

σ = 2νǫ(v) in fluid (Eulerian)

σ =
E

2
(FF⊤ − I) in solid (total Lagrangian)

σ̇ = Eǫ(v) in solid (updated Lagrangian),

σ = Eǫ(u) in solid if displacements/strains are small.

(132.11)

Note that F in the total Lagrangian formulation can be computed by up-
dating F accordig to (132.9).
We can also combine into a hybrid between solid and fluid in a constitu-

tive equation of the form

α1σ̇ + α2σ = Eǫ(v), (132.12)

with the αi nonnegative coefficients.
For a fluid contained in a fixed volume, we do not have to trace fluid

particles, since what appears in the constitutive equations σ = 2νǫ(v) is
the velocity v(x, t) of particles at the point x at time t, irrespective of from
where they came.
For a solid which deforms, in general we have to follow material particles

to record the current configuration of the body, and to compute F = ∂x
∂X

appearing in (132.5) in a total Lagrangian formulation.
In the updated Lagrangian formulation σ̇ = Eǫ(v), the velocity v is

also expressed in Eulerian coordinates, and the time stepping of σ by the
definition of σ̇ automatically follows the motion of material particles.
In the case of displacement/strain is small, the initial configuration can

be used as reference throughout and an Eulerian formulation is possible
also for a solid.
We sum up our observations concerning the formulation of constitutive

laws

• In a viscous fluid stress is related to velocity strain. Eulerian descrip-
tion is efficient.
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• In an elastic solid stress is related to displacement strain. A total or
updated Lagrangian description is efficient, which for small displace-
ments/strains reduces to Eulerian in initial configuration.

132.3 Cauchy Stresses in Eulerian Coordinates

For a solid in equilibrium, the differential equation expressing conservation
of momentum is referred to as the equilibrium equation expressing equlib-
rium of internal and exterior forces. Like conservation of momemtum, the
equlibrium equation can be expressed in Eulerian coordinates in terms of
stresses measured in the current deformed configuration, which are referred
to as Cauchy stresses.
We shall find that formulating the equilibrium equation in Eulerian co-

ordinates is efficient, in particular for fluid-solid interaction.
It is also possible to express the equlibrium equation using other stress

measures referring to the initial undeformed configuration, but this is more
complicated.

132.4 Fluid-Solid in a Nutshell

The constitutive laws for fluids and solids and visco-elastic hybrids can be
summarized as

σ = Eǫ(v) in viscous fluid

σ̇ = Eǫ(v) in elastic solid

σ + σ̇ = Eǫ(v) in visco-elastic fluid-solid,

(132.13)

noting that “only a dot” makes a viscous fluid into an elastic solid. Neat!
Extension to include effects of plasticity is also possible in this formula-

tion.

132.5 Proof that DF
Dt = ∇v F

To prove (132.9) we change order of differentiation to get

DF

Dt
=

∂

∂t

∂x(t,X)

∂X
=

∂

∂X
v(x(t,X), t) =

∂v

∂x

∂x

∂X
= ∇vF. (132.14)

132.6 Watch

• Designing a bridge

http://www.nada.kth.se/~jjan/publications/sisc2009_fsi_preprint.pdf
http://www.youtube.com/watch?v=28yU5NFu108&feature=related
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• Twin Towers collapse

• Solid mechanics FEM simulation

• Solid mechanics FEM demo

132.7 To Think About

• Motivation of (132.4) as strain measure?

• Motivation of (132.5) as stress-strain law?

• How to measure viscosity?

• How to measure a spring constant?

• How to measure coefficients of elasticity?

132.8 Unicorn Simulations

Unicorn is a FEniCS module for fluid, structure and fluid-structure inter-
action based on the unified material model (132.13) combined with con-
servation of mass, momentum and energy in Eulerian coordinates (130.9).
For orientation browse the following prototype Unicorn simulations:

• Simple Flapping Bird

• Flapping Flag

• 2d Benchmark

to which we will return in more detail below.

http://www.youtube.com/watch?v=cjq-yK2ak_U
http://www.youtube.com/watch?v=geUCvKayhHE&NR=1
http://www.youtube.com/watch?v=Whr6bu2n1iY&feature=related
http://www.fenicsproject.org/wiki/Unicorn
http://www.youtube.com/watch?v=E6_b7wK7KIQ
http://www.youtube.com/user/johanjanssonkth#p/a/u/0/qS-RzjQHpCU
http://www.youtube.com/user/johanjanssonkth#p/u/4/YhVwdtlSpRg
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FIGURE 132.4. Eulerian observers tied to the shore.

FIGURE 132.5. Lagrangian observers floating freely.
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133
Diffusion

Available energy is energy which we can direct into any desired
channel. Dissipated energy is energy which we cannot lay hold
of and direct at pleasure, such as the energy of the confused
agitation of molecules which we call heat. Now, confusion, like
the correlative term order, is not a property of material things
in themselves, but only in relation to the mind which perceives
them. A memorandum-book does not, provided it is neatly writ-
ten, appear confused to an illiterate person, or to the owner who
understands it thoroughly, but to any other person able to read
it appears to be inextricably confused. Similarly the notion of
dissipated energy could not occur to a being who could not turn
any of the energies of nature to his own account, or to one who
could trace the motion of every molecule and seize it at the
right moment. It is only to a being in the intermediate stage,
who can lay hold of some forms of energy while others elude his
grasp, that energy appears to be passing inevitably from the
available to the dissipated state. (James Clerk Maxwell)

133.1 Model

Heat conduction is a diffusion process which is modeled by the conservation
law

κu̇+∇ · q = f (133.1)
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FIGURE 133.1. Heat conduction/diffusion vs convection and radiation.

where e(x, t) is temperature, q is heat flow, κ is a given coefficient of heat
capacity, and f a given heat source, which expresses conservation of heat
energy. This law is complemented by a constitutive law relating the heat
flow q to the temperature gradient ∇e, in the simplest case by Fourier’s
Law

q = −µ∇e. (133.2)

With κ = µ = 1 , we obtain the heat equation

ė−∆e = f (133.3)

with the following stationary form

−∆e = f (133.4)

which is Poisson’s equation.

133.2 Simulations

• 2d heat equation model problem.

• Transient heat conduction.

• Heat transfer in brake disc.

133.3 Read More

• Poisson’s equation: stationary diffusion

http://www.youtube.com/watch?v=B1FWTKVyJNc&feature=related
http://www.youtube.com/watch?v=Vr34kDsnS_o&feature=related
http://www.youtube.com/watch?v=KpEOkeZAJg4&feature=related
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• The Power of Abstraction

• Heat equation: time-dependent diffusion

133.4 To Think About

• How to motivate Fourier’s Law (232.3)?
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FIGURE 133.2. Diffusion tends to smooth sharp gradients and spread out.
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134
Diffusion-Convection-Reaction

On the diffusion of education among the people rest the preser-
vation and perpetuation of our free institutions. (Daniel Web-
ster)

When they come to model Heaven And calculate the stars,
how they will wield The mighty frame, how build, unbuild,
contrive To save appearances, how grid the sphere With cen-
tric and eccentric scribbled o’er Cycle and epicycle, orb in orb.
(John Milton in Paradise Lost)

134.1 Convection of Heat

Heat can also convect with a given velocity v, in which case conservation
of heat takes the same form as conservation of mass, letting temperature e
replace density ρ:

ė+∇ · (ve) = 0, (134.1)

assuming unit heat capacity, which we refer to as a (linear) convection
equation if the velocity v is given.

http://en.wikipedia.org/wiki/Paradise_Lost
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134.2 Convection-Diffusion of Heat

Adding diffusion, we obtaoin the convection-diffusion equation of the form

ė+∇ · (ve)−∆e = f, (134.2)

where we added a source term f .

134.3 Convection-Diffusion-Reaction of Anything

If we add also reaction we get the following convection-diffusion-reaction
equation for any quantity which is convecting-diffusing subject to change
from reaction and a source, like a chemical substance in a fluid:

ė+ αe +∇ · (ve)−∆ = f, (134.3)

where α is a reaction rate coefficientl.

134.4 Read More

• Stationary Reaction-Diffusion-Convection

• Time-dependent Reaction-Diffusion-Convection

134.5 Watch

• Convection-diffusion experiment

• Ice cube experiment

• Convection-diffusion in Spanish

134.6 To Think About

• How to motivate the reaction term αu? What does the sign of α
signify?

http://www.youtube.com/watch?v=iuLAc3G9tvc
http://www.youtube.com/watch?v=QBVMm9i-pvo
http://www.youtube.com/watch?v=OSm7mgyziAc&feature=related
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FIGURE 134.1. To make good beer requires a proper combination of diffusion,
convection and reaction.
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135
Compressible Euler

Remote from human passions, remote even from the pitiful facts
of nature, the generations have gradually created an ordered
cosmos, where pure thought can dwell as in its natural home
and where one, at least, of our nobler impulses can escape from
the dreary exile of the actual world. (Bertrand Russell)

135.1 Model

The compressible Euler equations express conservation of mass, momentum
(Newton’s 2nd Law) and total energy of a compressible perfect inviscid
gas/fluid in the form: Find the density ρ, velocity v, total energy ǫ =

ρ |v|2
2 + e with e internal energy as functions of (x, t), such that

ρ̇+∇ · (ρv) = 0,
ṁ+∇ · (mu+ p) = f
ǫ̇+∇ · (ǫv + pv) = 0,

(135.1)

combined with the constitutive law p = (γ − 1)e with 1 < γ < 2 a gas
constant, for the pressure of a perfect gas. Here f is a given volume force.
Whoops, haven’t we seen these formulas before?



682 135. Compressible Euler

135.2 To Think About

• How to motivate the gas law p ∼ e, with e ∼ ρT and T temperature?
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136
Incompressible Euler

136.1 Model

For an incompressible fluid the density ρ does not change under motion,
which means that the material time derivative Dρ

Dt , the rate of change fol-
lowing particle trajectories x(t) satisfying ẋ(t) = v(x(t), t) with v(x, t) the
velocity, vanishes. In matheamtical notation this means that

Dρ

Dt
≡ ∂

∂
ρ(x(t), t) = (ρ̇+ v · ∇ρ)(x(t), t) = 0 (136.1)

which by conservation of mass using the Chain Rule:

0 = ρ̇+∇ · (ρv) = ρ̇+ v · ∇ρ+ ρ∇ · v = ρ∇ · v, (136.2)

that is,

∇ · v = 0. (136.3)

This leads to the incompressible Euler equations assuming ρ ≡= 1:

v̇ + v · ∇v +∇p = f,

∇ · v = 0,
(136.4)

with the law of conservation of energy decoupled assuming (v, p) deter-
mined by (136.4).
We shall discover the the Euler equations are formal mathematical mod-

els which have to complemented with small viscous terms to make sense.
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We note that mass conservation can be written

Dρ

Dt
= −ρ∇ · v (136.5)

which expresses that ρ increases where ∇ · v < 0, which expresses that
fluid particles are concentrating, as we expect. Accumulation of fluid parti-
cles increases density and spreading fljuid particles apart decreases density.
Elementary, my Dear Watson.
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137
Incompressible Navier-Stokes

137.1 Model

Adding Newtonian viscosity to the Euler equations changes the momentum
equation to the principal form

v̇ + v · ∇v +∇p− ν∆v = f, (137.1)

where ν > 0 is a viscosity coefficient and the Laplacian term −ν∆v acts
like diffusion on the velocity v.
The viscous effect in Newtonian fluid is more precisely modeled as

−∇ · σ (137.2)

where σ is the viscous stress given by

σ = µǫ(v) ≡ µ
1

2
(
∂vi
∂xj

+
∂vj
∂xi

). (137.3)

Note that σ is a shear stress because
∑3
i=1 σii = µ∇ · v = 0.

This leads to the incompressible Navier-Stokes equations for a unit den-
sity Newtonian fluid with viscosity µ: Find the velocity v(x, t) velocity,
pressure p(x, t) and viscous shear stress σ(x, t) such that

v̇ + v · ∇v +∇p−∇ · σ = 0,

∇ · v = 0

σ = µǫ(v)

(137.4)
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FIGURE 137.1. Turbulent incompressible flow around a Volvo by FEniCS/Unicorn.

where

ǫ(v) =
1

2
(
∂vi
∂xj

+
∂vj
∂xi

), (137.5)

and ν > 0 is a constant viscosity coefficient. The case with small viscos-
ity, modeling the flow of air and water at macroscales, is of particular
relevance in applications and include the phenomenon of turbulence. We
shall discover that computational solution of the Navier-Stokes equations
is possible, which opens to understanding and predicting turbulent flow.

137.2 Simulations

• Turbulent flow around a car by Unicorn.

• Turbulent flow 1

• Turbulent flow 2

• Turbulent boundary layer flow

137.3 To Browse

• Computational Turbulent Incompressible Flow

http://www.youtube.com/watch?v=HTOl0lTet9A
http://www.youtube.com/watch?v=HTOl0lTet9A
http://www.youtube.com/watch?v=RuZQpWo9Qhs
http://www.youtube.com/watch?v=dfka4kRLEXI
http://www.dlr.de/as/en/Portaldata/5/Resources/animationen/tbl_sw.gif
http://www.csc.kth.se/~jhoffman/pub/v4.pdf
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138
Nearly Incompressible Navier-Stokes

138.1 Model

Water is a very nearly incompressible fluid, and air at speeds much lower
than the speed of sound is nearly incompressible, but no fluid is exactly
incompressible. We shall discover that in computational simulation it is
preferable to change the incompressibility condition ∇ · v = 0 to the fol-
lowing constititutive law for the pressure:

δ1ṗ− δ2∆p = −∇ · v, (138.1)

where δ1 and δ2 are small positive regularization parameters. This relation
expresses that where div · v < 0, that is where fluid density is increasing
by accumulating fluid particles, the pressure will increase and generate
a pressure gradient ∇p tending to spread fluid particles apart. Similarly,
where fluid density is decreasing with∇·v > 0, a counter-balancing pressure
gradient will be generated. Altogether, the pressure law (138.1) will seek
to maintain any initial density: Fluid is neither compressed nor stretched,
just squeezed.
A common choice of the regularization parameters is δ1 = 0 and δ2 = h

where h is the mesh size. With this choice the regularized nearly incom-
pressible Navier-Stokes equations take the form

v̇ + v · ∇v +∇p−∇ · σ = 0,

−h∆p+∇ · v = 0

σ = µǫ(v).

(138.2)
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138.2 Simulations

• Incompressible turbulent cavity flow

• Sloshing blood

• Navier-Stokes waterfall

• Interactive real-time Navier-Stokes

http://www.youtube.com/watch?v=cO5tEJ8TZN8&feature=related
http://www.youtube.com/watch?v=D4FY75GwA00&feature=related
http://www.youtube.com/watch?v=QU-MBRb5gBQ&feature=related
http://www.youtube.com/watch?v=KqzwvsVBb2g&feature=related
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139
Compressible Navier-Stokes

139.1 Model

The comnpressible Navier-Stokes equations expand the compressible Eulr
equations to include viscous forces σ, which for a Newtonian fluid connect
to velocity strains ǫ(v) and velocity divergence ∇ · v by a linear relation of
the form

σ = 2µǫ(v) + κ∇ · vδ (139.1)

where µ and κ are positive constants and δ = (δij) Kronecker’s delta with
δij) = 1 if i = j and δij = 0 else. The momentum equation is then modified
to

ṁ+∇ · (mu + p)−∇ · σ = f. (139.2)

139.2 Simulations

• Implosion with reflections by Unicorn.

• Falling at supersonic speeds

• Supersonic bullet

• High speed compressor

• Diesel engine intake flow

http://www.youtube.com/user/johanjanssonkth#p/u/3/EkHS28WjgkU
http://www.youtube.com/watch?v=AIKCKdovzro
http://www.youtube.com/watch?v=EqljnJB9Qo4
http://www.youtube.com/watch?v=z_xmCKaXcY4&feature=related
http://www.youtube.com/watch?v=mcJWK0N6i-o&feature=related
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FIGURE 139.1. Compressible Flow.

139.3 To Browse

• Secret of Thermodynamics

• Computational Thermodynamics

http://www.youtube.com/watch?v=K1blRT2hi10&NR=1
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140
Navier/Lagrange: Solid Mechanics

140.1 Model

The equations of solid mechanics are the conservation laws of mass, mo-
mentum and energy combined with constitutive laws for stresses in terms
of strains, in total or updated Lagrangian formulations.
In Lagrangian formulations material particles (of given mass) are traced

and conservation of mass is then automatic (if particles are not lost). If
heat effects are not included this reduces the description to conservation of
momentum (equlibrium equation) in Eulerian coordinates combined with
stress-strain constitutive laws.
In Lagrangian FEM the finite element mesh moves with the material par-

ticles, and thus is distorted with the motion. Remeshing may be necessary
to avoid mesh collapse.

140.2 Simulations

• Elastic circus cow by Unicorn.

• Elastic truss

• Golden Gate Bridge

• Earthquake simulation.

• WTC collapse simulation

http://www.youtube.com/user/johanjanssonkth#p/u/5/MDzBCA7lAJk
http://www.youtube.com/watch?v=R9EWUI1IMFw
http://www.youtube.com/watch?v=E2erAzChqCk&NR=1
http://www.youtube.com/watch?v=hwnKy1mOnM4&feature=related
http://www.youtube.com/watch?v=ExmSMU9ls-w&feature=PlayList&p=425F7A0422588F69&playnext=1&playnext_from=PL&index=30


692 140. Navier/Lagrange: Solid Mechanics

• Commercial software: Nastran.

140.3 To Browse

• Automated computational modeling

http://www.youtube.com/watch?v=wrtHn8UX_t0
http://www.csc.kth.se/~jjan/publications/dissertation.pdf
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141
Fluid-Structure Interaction

141.1 Model

A incompressible unit density solid interacting with an incompressible unit-
density fluid, is described by

v̇ + v · ∇v +∇p−∇ · σ = 0,

∇ · v = 0,

σ = 2µǫ(v) in fluid,

σ̇ = Eǫ(v) in solid,

(141.1)

where v(x, t) is the velocity of material particles at x at time t, and σ is
the Cauchy stress, and σ is a stress rate.

141.2 Simulations

• Fluid-structure interaction bench-mark by Unicorn.

• Flapping prehistoric bird by Unicorn.

• Flapping plate by Unicorn.

• Flapping-wing micro air vehicle.

• Breaking wine glass.

http://www.youtube.com/user/johanjanssonkth#p/u/4/YhVwdtlSpRg
http://www.youtube.com/user/johanjanssonkth#p/u/6/E6_b7wK7KIQ
http://www.youtube.com/user/johanjanssonkth#p/u/0/qS-RzjQHpCU
http://www.youtube.com/watch?v=u6Xrhdkuqr0
http://www.youtube.com/watch?v=ciqHd8LXnMU&NR=1
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FIGURE 141.1. Fluid-structure interaction.

141.3 To Browse

• Unified fluid-structure modeling.

http://www.youtube.com/watch?v=oHKA5GrIbv4
http://www.csc.kth.se/~jjan/publications/sisc2009_fsi_preprint.pdf
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142
Wave Equation

Go ahead and faith will come to you. (d’Alembert)

Souls act according to the laws of final causes, through ap-
paritions, ends and means. Bodies act according to the laws of
efficient causes or of motions. And these two kingdoms, that of
efficient causes and that of final causes, are in harmony with
each other. (Leibniz)

Those beautiful laws of physics are a marvellous proof of an
intelligent and free being against the system of absolute and
brute necessity. (Leibniz)

142.1 Model

Recall from World of Games

• elastic string

• elastic net

• elasticbody

modeled by the wave equation

ü−∆u = f (142.1)

in dimension 1,2 and 3, with Dirichlet, Neumann or Robin boundary con-
ditions, and initial conditions for u and u̇.
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FIGURE 142.1. Particle motion in deep and shallow water waves.

142.2 Simulations

• Wave relections in a pond

• Acoustics simulations

142.3 Read More

• Wave Equation

http://www.youtube.com/watch?v=VNenUvw9rDA
http://www.youtube.com/watch?v=FDL39J-i0yQ
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143
Maxwell: Electromagnetics

143.1 Introduction

143.2 Faraday, Ampére, Coulomb, Gauss, Ohm

The interaction between electric and magnetic fields are described by
Maxwell’s equations:





∂B

∂t
+∇× E = 0,

−∂D
∂t

+∇×H = J,

∇ · B = 0, ∇ ·D = ρ,

B = µH, D = ǫE, J = σE,

(143.1)

where E is the electric field, H is the magnetic field , D is the electric
displacement, B is the magnetic flux , J is the electric current, ρ is the
charge, µ is the magnetic permeability, ǫ is the dielectric constant of elec-
tric permittivity, and σ is the electric conductivity. The first equation is
referred to as Faraday’s law, the second is Ampère’s law, ∇ · D = ρ is
Coulomb’s law, Gauss law ∇ · B = 0 expresses the absence of “magnetic
charge”, and J = σE is Ohm’s law. Maxwell, see Fig. 232.7, included the
term ∂D/∂t for purely mathematical reasons and then used Calculus to

http://www.youtube.com/watch?v=DSRLvkP0vmg
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predict the existence of electromagnetic waves before these had been ob-
served experimentally.

FIGURE 143.1. Maxwell (1831-1879), inventor of the mathematical theory of
electromagnetism: “We can scarcely avoid the conclusion that light consists in
the transverse undulations of the same medium which is the cause of electric and
magnetic phenomena”.

Typical boundary conditions include various combinations of E · n (per-
fect insulator), E × n (perfect conductor), H · n and H × n.
Maxwell’s equations describe the whole world of electromagnetic phe-

nomena with an astounding economy of notation and accuracy of mod-
elling. See Chart of Electromagnetic Spectrum. Our modern information
society builds on electromagnetic waves. We shall now pick out a couple
of Laplace equation models from Maxwell’s equations by considering some
basic particular cases.

143.3 To Read

For a presentation of Maxwell’s equations including the crucial aspect of
relative motion, e.g. between a magnetic field and electrical current, see

• Maxwell’s Equations for Bodies in Motion

http://www.electrical-res.com/EX/10-17-19/SURA_Electromagnetic_Spectrum_Full_Chart.jpg
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143.4 Watch

• Electromagnetic waves

• Faraday and Maxwell

• Feynman on electromagnetic waves

• Feynman on confusion

• Dipole antenna

• Wave equation for E and B

• How an electric motor works

143.5 Simulations

• Radiation from dipole antenna

• Electromagnetic simulation software

• More software

• Direct current electric engine principle

FIGURE 143.2. Solar wind of charged particles interacting with magnetic field of the Earth.

http://www.astronomynotes.com/light/emanim.gif
http://www.youtube.com/watch?v=uYz_kQ7UkY8&feature=related
http://www.youtube.com/watch?v=AU8PId_6xec
http://www.youtube.com/watch?v=lytxafTXg6c&feature=related
http://www.youtube.com/watch?v=4xF1Fq2wB1I&feature=related
http://www.youtube.com/watch?v=YLlvGh6aEIs&feature=PlayList&p=034D577688532234&playnext=1&playnext_from=PL&index=14
http://www.youtube.com/watch?v=1W1sbFALXEA
http://www.youtube.com/watch?v=nYkj8RVi2hc&NR=1
http://www.youtube.com/watch?v=UuFYNcSd6ok
http://www.youtube.com/watch?v=HCKfHstgxpc
http://www.youtube.com/watch?v=Xi7o8cMPI0E
http://www.ucar.edu/communications/staffnotes/9601/time.html
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144
Schrödinger: Quantum Mechanics

144.1 Introduction

• Intro 1.

• Intro 2...

• Intro 6.

• Wave function and wave-particle duality??

• Quamtum confusion?

• BBC Illusion of reality

• The reality does not exist??

144.2 Read

• Many-Minds Quantum Mechanics

144.3 Simulations

• 1d particle in various potentials

http://www.youtube.com/watch?v=s_HEUHyoZWI&feature=fvw
http://www.youtube.com/watch?v=TfPhZpNcUUE&feature=channel
http://www.youtube.com/watch?v=Rc_VxquAUsw&feature=related
http://www.youtube.com/watch?v=7GTCus7KTb0
http://www.youtube.com/watch?v=2SjRvhJdLUg&feature=related
http://www.youtube.com/watch?v=80bvk_4QYic&feature=related
http://www.youtube.com/watch?v=OZj9Qps8H6M&feature=related
http://www.youtube.com/watch?v=a88GlrUmI9Y
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FIGURE 144.1. Schrödinger’s equation.

144.4 To Think About

• Schrödinger’s cat.

http://www.youtube.com/watch?v=CrxqTtiWxs4&feature=related
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FIGURE 144.2. Schrödinger’s equation vs harmonic oscillator.
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145
Kohn-Sham: Quantum Chemistry

145.1 Simulations

• Carbon Nanotube 1

• Carbon nanotube 2

• Fullerne impact on nanotube

http://www.youtube.com/watch?v=Kk-uCYvs7dM
http://www.youtube.com/watch?v=POz3TICpW6s&NR=1
http://www.youtube.com/watch?v=IfwebOmOQyk&NR=1
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146
Black-Scholes: Options

146.1 Model

• The Formula

146.2 The Differential Equation

The Formula gives the solution to the Black-Scholes differential equation:

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, 0 < t < T, S > 0,

V (S, T ) = VT (S) S > 0,

(146.1)

where V (S, t) is the asset value, the variable S represents the underlying
stock price, the constants σ and r represent volatility and interest rate, and
VT (S) and V (0, t) are given data. Note that time t is running backwards
with initial data being given at t = T and final time at t = 0. This is a 1d
convection-diffusion-reaction equation which alternatively can be (quickly)
solved by FEM.

http://www.youtube.com/watch?v=eKXwBD4Ji4k
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FIGURE 146.1. Myron Scholes and Fischer Black and one of their solutions (they
all look alike).
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147
Differential Equations Tool Bag

It seems to me that there are at least four different viewpoints– or
extremes of viewpoint– that one may reasonably hold:

1. All thinking is computation; in particular, feelings of conscious
awareness are evoked merely by the carrying out of appropriate
computations. (Hard AI)

2. Awareness is a feature of the brain’s physiological action; and
whereas any physical action can be simulated computation-
ally, computational simulation cannot by itself evoke awareness.
(Soft AI)

3. Appropriate physical action of the brain evokes awareness, but
this physical action cannot even be properly simulated compu-
tationally. (Penrose’s view)

4. Awareness cannot be explained by physical, computational, or
any other scientific terms.

(R. Penrose in Shadows of the Mind)

147.1 Introduction

We here collect basic facts about solving differential equations analytically
and numerically.



710 147. Differential Equations Tool Bag

147.2 The Equation u′(x) = λ(x)u(x)

The solution to the scalar initial value problem

u′(x) = λ(x)u(x) for x > a, u(a) = ua,

where λ(x) is a given function of x, and ua a given initial value, is

u(x) = exp(Λ(x))ua = eΛ(x)ua,

where Λ(x) is a primitive function of λ(x) such that Λ(a) = 0. In particular,
if λ is a constant, then u(x) = exp(λx)ua.

147.3 The Equation u′(x) = λ(x)u(x) + f(x)

The solution the scalar initial value problem

u′(x) = λ(x)u(x) + f(x) for x > a, u(a) = ua,

where λ(x) and f(x) are given functions of x, and ua a given initial value,
can be expressed using Duhamel’s principle in the form

u(x) = eΛ(x)ua + eΛ(x)

∫ x

a

e−Λ(y)f(y) dy.

where Λ(x) is a primitive function of λ(x) such that Λ(a) = 0.

147.4 The Differential Equation∑n
k=0 akD

ku(x) = 0

A solution to the constant coefficient differential equation

p(D)u(x) =

n∑

k=0

akD
ku(x) = 0, for x ∈ I,

where I is an interval of real numbers, has the form

u(x) = α1 exp(λ1) + ....+ αn exp(λn),

where the αi are arbitrary constants and the λi are the roots of the poly-
nomial equation p(λ) = 0 with p(λ) =

∑n
k=0 akλ

k, assuming there are n
distinct roots. If p(λ) = 0 has a multiple root λi of multiplicity r, then the
solution is the sum of terms of the form form q(x) exp(λix), where q(x) is a
polynomial of degree at most r− 1. For example, if p(D) = (D− 1)2, then
a solution of p(D)u = 0 has the form u(x) = (a0 + a1x) exp(x).
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147.5 The Damped Linear Oscillator

A solution u(t) to

ü+ µu̇+ ku = 0, for t > 0,

where µ and k are constants, has the form

u(t) = ae−
1
2 (µ+

√
µ2−4k)t + be−

1
2 (µ−

√
µ2−4k)t,

if µ2 − 4k > 0, and

u(t) = ae−
1
2µt cos(

t

2

√
4k − µ2) + be−

1
2µt sin(

t

2

√
4k − µ2),

if µ2 − 4k < 0, and

u(t) = (a+ bt)e−
1
2µt,

if µ2 − 4k = 0, where a and b are arbitrary constants.

147.6 The Matrix Exponential

The solution to the initial value problem linear system

u′(x) = Au(x) for 0 < x ≤ T, u(0) = u0,

where A is a constant d× d matrix, u0 ∈ Rd, T > 0, is given by

u(x) = exp(xA)u0 = exAu0.

If A is diagonalizable so that A = SDS−1, where S is nonsingular and D
is diagonal with diagonal elements di (the eigenvalues of A), then

exp(xA) = S exp(xD)S−1.

where exp(xD) be the diagonal matrix with diagonal elements equal to
exp(xdi).
The solution to the initial value problem

u′(x) = Au(x) + f(x) for 0 < x ≤ 1, u(0) = u0,

where f(x) is a given function, is given by Duhamel’s principle:

u(x) = exp(xA)u0 +

∫ x

0

exp((x − y)A)f(y) dy.
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147.7 Fundamental Solutions of the Laplacian

The function Φ(x) = 1
4π

1
‖x‖ for x ∈ R3 satisfies the differential equation

−∆Φ = δ0 in R3, where δ0 represents a point mass at the origin. The
function Φ(x) = 1

2π log( 1
‖x‖ ) for x ∈ R2 satisfies the differential equation

−∆Φ = δ0 in R2, where δ0 represents a point mass at the origin.

147.8 The wave equation in 1d

The general solution to the one-dimensional wave equation

ü− u′′ = 0 for x, t ∈ R,

is given by u(x, t) = v(x − t) + w(x + t) where v, w : R → R are arbitrary
functions.

147.9 Numerical Methods for IVPs

The dG(O), the discontinuous Galerkin method with piecewise constants,
for the initial value problem u̇(t) = f(u(t), t) for t > 0, u(0) = u0, with
f : Rd+1 → Rd, takes the form

Un = Un−1 +

∫ tn

tn−1

f(Un, t) dt, n = 1, 2, ...,

where U(t) is piecewise constant on a partition 0 = t0 < t1 < · · · < tn <
tn+1 < · · · , with U(t) = Un for t ∈ (tn−1, tn] and U(0) = u0. With right-
end point quadrature we obtain the implicit backward-Euler method:

Un = Un−1 + knf(U
n, tn) dt, n = 1, 2, ...,

where kn = tn − tn−1. The explicit forward Euler method reads:

Un = Un−1 + knf(U
n−1, tn−1) dt, n = 1, 2, ...,

The cG(1), the continuous Galerkin method with continuous piecewise lin-
ear functions, takes the form

U(tn) = U(tn−1) +

∫ tn

tn−1

f(U(t), t) dt, n = 1, 2, ...,

where U(t) is continuous piecewise linear with nodal values U(tn) ∈ Rd

and U(0) = u0.
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147.10 cg(1) for Convection-Diffusion-Reaction

The cG(1) finite element method for the scalar convection-diffusion-
reaction problem

−∇ · (a∇u) +∇ · (ub) + cu = f in Ω,

a
∂u

∂n
+ κu = g on Γ,

with Robin boundary conditions, where f and g are given data, and a > 0,
b, c and κ ≥ 0 are given coefficients, and Ω is a given domain in R2 with
boundary Γ, takes the form: Find U ∈ Vh such that

∫

Ω

a∇U · ∇v dx+

∫

Ω

∇ · (ub)v dx+

∫

Ω

cuv dx+

∫

Γ

κuv ds

=

∫

Ω

fv dx+

∫

Γ

gv ds,

where Vh is a space of continuous piecewise linear functions on a triangu-
lation of Ω with no restriction on the nodal values on the boundary.

147.11 Svensson’s Formula for Laplace’s Equation

Ui,j =
1

4
(Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1), for i, j ∈ Z,

where Ui,j approximates u(ih, jh) with h > 0 and u : R2 → R solves
∆u = 0.

147.12 Optimal Control

The stationary equations for the saddle point problemminv,qmaxµ L(v, q, µ),
with

L(v, q, µ) =
1

2
‖v − û‖2 + α

2
‖q‖2 + (v̇ + f(v, q), µ)

with (v, w) =
∫ T
0
v · w dt and (v, q, µ) varying freely (with v(0) = u0 and

µ(T ) = 0), take the form:

u̇+ f(u, p) = 0 on [0, T ], u(0) = u0, (147.1)

− λ̇+ f ′
v(u, p)

⊤λ = û− u on [0, T ], λ(T ) = 0. (147.2)

f ′
q(u, p)

⊤λ+ αp = 0 on [0, T ], (147.3)

where⊤ denotes transpose. Here (237.1) is the state equation, (237.2) is the
costate equation, and (237.3) is the feed back control coupling the optimal
control p to the costate λ.
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148
Applications Tool Bag

148.1 Introduction

In this section we collect the basic models of engineering and science ex-
pressed as differential equations. For specification of boundary and initial
values we refer to the text.

148.2 Malthus’ Population Model

u̇ = λu− µu,

where u(t) is the population at time t, λ ≥ 0 the birth rate and µ ≥ 0 the
death rate.

148.3 The Logistics Equation

u̇ = u(1− u)

148.4 Mass-Spring-Dashpot System

mü+ µu̇+ ku = f, ((force balance),
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where u(t) is the displacement, m is the mass, µ the viscosity, and k the
spring constant.

148.5 LCR-Circuit

Lü+Ru̇+
u

C
= f, ((balance of potentials),

where u(t) is a primitive function of the current, L is the inductance, R
the resistance, C the capacitance, and f a potential.

148.6 Laplace’s Equation for Gravitation

−∆u = ρ,

where u : R3 → R is the gravitational potential and ρ(x) the mass density.

148.7 The Heat Equation

u̇−∇ · q = f, q = k∇u (heat balance and Fourier’s law)

where u(x, t) is a temperature, q(x, t) a heat flux, k(x, t) > 0 a conduction
coefficient and f(x, t) a heat source. If k = 1, then we get the heat equation:
u̇−∆u = f .

148.8 The Wave Equation

ü−∆u = f.

148.9 Convection-Diffusion-Reaction

u̇+∇ · (βu) + αu−∇ · (ǫ∇u) = f.

where u(x, t) a concentration, β(x, t) is a convection velocity, α(x, t) a reac-
tion coefficient, ǫ(x, t) a diffusion coefficient, and f(x, t) a production rate.
.
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148.10 Maxwell’s Equations




∂B

∂t
+∇× E = 0, (Faraday’s law)

−∂D
∂t

+∇×H = J, (Ampère’s law)

∇ · B = 0, ∇ ·D = ρ, (Gauss’ and Coulomb’s laws

B = µH, D = ǫE, J = σE, (constitutive laws and Ohm’s law)

where E is the electric field, H is the magnetic field , D is the electric
displacement, B is the em magnetic flux , J is the electric current, ρ is the
charge, µ is the magnetic permeability , ǫ is the dielectric constant, and σ
is the electric conductivity.

148.11 The Incompressible Navier-Stokes
Equations

∂u

∂t
+ (u · ∇)u+∇p− ν∆u = f, ∇ · u = 0,

where u(x, t) is the fluid velocity, p(x, t) the pressure, f(x, t) a given force
and ν > 0 a constant viscosity.

148.12 Schrödinger’s Equation

i
∂ϕ

∂t
=
(
−1

2

∑

j

∆j + V (r1, ..., rN )
)
ϕ(r1, ..., rN ), rj ∈ R3.

i
∂ϕ

∂t
=
(
−1

2
∆ +

1

|x|
)
ϕ(x), x ∈ R3, (Hydrogen atom).
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149
The Finite Element Method

Mathematics as an expression of the human mind reflects the
active will, the contemplative reason, and the desire for aes-
thetic perfection. Its basic elements are logic and intuition, anal-
ysis and construction, generality and individuality. (Richard
Courant)

149.1 FEM as Discretization of PDEs

The Finite Element Method or FEM is a general mathematical method-
ology for discretizing Partial Differential Equations or PDEs into systems
of algebraic equations which can be fed into a computer and solved by
numerical linear algebra.
FEM thus transforms PDEs with infinitely small space and time steps,

into systems of algebraic equations with finite space and time steps, which
can be solved by a computer.
More precisely, FEM is a general methodoloy for generating discrete

approximations of derivates on general meshes in space and time. FEM
is a central tool in automation of computational mathematical modeling
being realized in the FEniCS Project closely connected to BodyandSoul.
FEM discretizes with respect to both space and time, based on

• (a) variational formulation of IBVPs,

• (b) piecewise polynomial approximation.

http://www.fenicsproject.org/wiki/FEniCS_Project
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FIGURE 149.1. The birth of FEM.

Recall that Lagrangian formulations naturally can be viewed in discrete
form as mass-spring systems, while Eulerian formulations most naturally
start with continuous PDE formulations which are then discretized by
FEM.

149.2 More Detailed Presentations

We present below a shortcut to FEM focussing a skeleton with a minimum
of mathematical notation. Once you have chartered this introduction you
are ready to get a fuller picture in

• Piecewise polynomials 1d

• FEM in 1d or FEM for twopoint BVP

• Piecewise polynomials 2d/3d

• FEM in 2d and 3d and FEm for Poisson

• Abstract FEM

• FEM for scalar IVP and FEM for system IVP

• FEM for heat equation

• FEM for wave equation
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• FEM for Convection-Diffusion-Reaction

• FEM for Navier-Stokes equations.

• Computational Turbulent Incompressible Flow

• Computational Compressible Flow.

• Computational Thermodynamics

The BodyandSoul Sessions E-F gives an introduction to the mathematics
and programming of FEM.

149.3 Why FEM Modeling is Efficient

We have seen that many phenomena of the real world can be efficiently
modeled as differential equations, and with FEM as an automatic dis-
cretizer of differential equations, we get an efficient tool of generating dis-
crete systems of equations which can be solved by computers, and act as
simulators of complex phenomena.
PDEs allow an efficient formulation of basic laws of physics, because com-

plex discrete matter is replaced by a fictional simple continuum. But there
is a hook: The “simple continuum” is closed to inspection by analytical so-
lution and thus the continuum has to be discretized to allow computational
solution and FEM is a very flexible and efficient tool for discretization. Al-
together PDEs discretized by FEM makes it possible for you to uncover
secrets of science and technology.
We first consider FEM discretization of PDEs in space, leading to systems

of time-dependent ODEs (Ordinary Differential Equations), and then FEM
discretization in time, leading to formally implicit time stepping methods
with algebraic equations for the computer to solve. Altogether, you will find
FEM to be general method for discretizing PDEs in space-time on general
adaptive meshes into algebraic equations solvable by computers.

149.4 Connection to Particle-Spring Models

We recall that the 1d wave equation ü = u′′ came out from a discrete
particle-spring system modeled by

üi(t) =
ui+1 − 2ui + ui−1

h2
, (149.1)

with ui(t) = u(ih, t) (using here subindices) and

u′′ =
d2u

dx2
≈ ui+1 − 2ui + ui−1

h2
, (149.2)

http://www.csc.kth.se/~jhoffman/pub/v4.pdf
http://www.nada.kth.se/~cgjoh/ambsthermo.pdf
http://www.bodysoulmath.org/sessions/
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resulting from repeated differentiation with

u′ =
du

dx
≈ ui+1 − ui

h
, (149.3)

where h is the mesh size.
We shall now recover these basic derivative approximations, also referred

to as difference quotients, using simple finite elements (piecewise linear
functions) on regular (equally-spaced) meshes.
In general, a FEM discretization can be viewed as a form of particle-

spring model, where particle masses and spring constants are determined
by FEM from the coefficients of the underlying differential equation. FEM
is thus a general method for discretizing PDEs which can be automated as
shown in the FEniCS Project closely connected to the authors.
A particle-spring model requires input of particle masses and spring con-

stants, and to do this by hand for a system of many particles and springs
is impossible. FEM automates this procedure.

149.5 Watch FEM and Get Inspired

• Mesh refinement in FEniCS Unicornwith Corresponding supersonic flow

• Nastran demo

• Heart: Healthy vs Sick

• The Origin of Drag

• CTLabs TV Channel

149.6 Leibniz Solution of the Brachistochrone
Problem

The brachistochrone problem was one of the earliest problems posed to
test the potential of the new Calculus: Find the shape of the curve down
which a bead sliding from rest and accelerated by gravity will slip (without
friction) from one point to another in the least time. Watch an experiment
and a discussion.
The term derives from the Greek (brachistos) ”the shortest” and (chronos)

”time, delay.” Leibniz easily solved the problem using an argument based
on piecewise linear approximation, which can be viewed as an early appli-
cation of FEM, cf. Fig 149.6.

http://www.fenicsproject.org/wiki/FEniCS_Project
http://www.youtube.com/user/ctlabtv#p/u/9/hQjo4DkSFyA
http://www.youtube.com/user/ctlabtv#p/u/8/wrWCfat5O9g
http://www.youtube.com/watch?v=geUCvKayhHE
http://www.youtube.com/user/ctlabtv#p/u/1/pUCu_smHg_I
http://www.youtube.com/user/ctlabtv#p/u/0/8fDmdZepY74
http://www.youtube.com/user/ctlabtv#p/a
http://mathworld.wolfram.com/BrachistochroneProblem.html
http://www.youtube.com/watch?v=li-an5VUrIA
http://www.youtube.com/watch?v=li-an5VUrIA
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FIGURE 149.2. The first(?) application FEM by Leibniz: The Brachistochrone.

FIGURE 149.3. Books about FEM.
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FIGURE 149.4. Richard Courant inventing FEM in 1943.

FIGURE 149.5. Richard Courant’s version of BodyandSoul.

http://en.wikipedia.org/wiki/Richard_Courant
http://en.wikipedia.org/wiki/What_Is_Mathematics$%$3F
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150
FEM Wave: ü− u′′ = f

Science is a differential equation. Religion is a boundary condi-
tion. (Alan Turing)

We are not interested in the fact that the brain has the consis-
tency of cold porridge. (Alan Turing)

We now proceed to recover mass-spring models by FEM discretizations
of PDEs and start with the wave equation for an elastic string which we
met in World of Games: Find u(x, t) such that

ü− u′′ = f for x ∈ (0, 1), t > 0,

u(0, t) = u(1, t) = 0 for t > 0,

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) for x ∈ (0, 1),

(150.1)

where f(x, t) is a given function and u0(x) and u̇0(x) are given initial value
functions. Here u(x, t) denotes the transversal deflection at location x at
time t of an elastic string of unit tension covering the interval [0, 1] in its
reference configuration and being fixed at its ends, and f(x, t) is a given
transversal force. One may think of a horsiontal string with u(x, t) being
its vertical displacement from straight reference configuration and f(x, t)
a vertical force.

150.1 Experience Vibrating Strings

• Piano string harmonics and chords

http://www.youtube.com/watch?v=121DoSs62eY&feature=related
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• String vibration

• Traveling waves as sums of stationary waves

• Wave propagation

• Slow motion: Snare drum.

150.2 Linear Combination of Tent-Functions

We seek a solution u(x, t) as a linear combination

u(x, t) =

J∑

j=1

uj(t)ϕj(x), (150.2)

of J given basis functions ϕ1(x), ..., ϕJ (x) depending on x, with unknown
coefficients u1(t), ...., uJ(t), depending on t.
The basis functions ϕj(x) are chosen as the following continuous piece-

wise linear functions defined on [0, 1] by

ϕi(jh) = 1 if j = i, ϕi(jh) = 0 else, i, j = 1, ..., J, (150.3)

where h = 1
J+1 is the mesh size of a mesh covering [0, 1] with mesh points

or nodes jh, j = 0, ..., J + 1.
Each function ϕj(x) has the shape of a “tent” spanned by a pole of unit

length at x = jh and tied down to zero at the neighboring points (j − 1)h
and (j+1)h, and is thus referred to as a tent function or a hat function as
depicted in Fig. 215.5.
The functions ϕ1, ..., ϕJ are basis functions in the sense that an arbitrary

continuous piecewise linear function v(x) on the given mesh, satisfying the
boundary conditions v(0) = v(1) = 0, can be uniquely expressed as a linear
combination of the basis functions:

v(x) =

J∑

j=1

vjϕj(x), with vj = v(jh). (150.4)

In the representation (150.2) the coefficient functions thus are uniquely
given by the nodal values uj(t) = u(jh, t).
We may compare with a Fourier series expansion with the basis functions

being trigonometric functions, e.g. sin(jx), j = 1, 2, ..., J , of the form

u(t, x) =

J∑

j=1

uj(t) sin(jπx), uj(t) = 2

∫ 1

0

u(x, t) sin(jπx) dx, (150.5)

http://www.youtube.com/watch?v=CLJLYNlv0IQ&feature=related
http://www.youtube.com/watch?v=GMXlzCX5gio&feature=related
http://www.youtube.com/watch?v=jEELoMU7c7Y&NR=1
http://www.youtube.com/watch?v=STSWLX23xqc&feature=fvw
http://en.wikipedia.org/wiki/Fourier_series
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a x1 xi-1 xi xi+1 b

i

FIGURE 150.1. Basis function as tent or hat function.

where as above each term uj(t) sin(jx) is written as a product of one func-
tions depending on t only and one function depending on x only, thus
using what is called separation of variables. FEM is based on piecewise
polynomial (linear) approximation instead of trigonometric functions used
by Fourier. Modern image or information processing use a blend of Fourier
and finite element functions in the form of wavelets including in particular
a Mexican hat wavelet.
Fourier’s great idea was to express a general function as a sum of trigono-

metric functions with global support, and one of the ingredients of FEM
is to write a general function as a sum of piecewise polynomial functions
with local support.
We note that each tent function is non-zero on at most two subintervals;

a whole tent on two and a half tent on one. In other words the support of
each basis function consists of at most two intervals, and thus the finite ele-
ment basis functions have local support, to be compared with trigonometric
basis functions of Fourier series with global support like the trigonometric
function sin(jπx) on the interval [0, 1]). Since finite element basis functions
have local support they only interact locally, which we shall see is a major
advantage. Fourier series basis fuhctions compensate the global support be
being orthogonal (in a certain sense), while wavelet basis functions combine
local support with orthogonality.

xixi-1 xM+1x0

hi 10

FIGURE 150.2. A continuous piecewise linear function in Vh.

http://en.wikipedia.org/wiki/Wavelet
http://en.wikipedia.org/wiki/Mexican_hat_wavelet
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xixi-1

xM+1x0

FIGURE 150.3. The derivative of the continuous piecewise linear function in
Fig. 150.2.

150.3 FEM as Galerkin’s Method

We now seek to determine the coefficient functions u1(t), ..., uJ(t), using
Galerkin’s Method by inserting the Ansatz (150.2) into the differential equa-
tion ü− u′′ = f , then multiplying by ϕi(x) for i = 1, ..., J, and integrating
with respect to x, to get moving derivatives inside the sum:

∫ 1

0

(
J∑

i=1

üj(t)ϕj(x))ϕi(x) dx+

∫ 1

1

(
J∑

i=0

uj(t)ϕ
′
j(x))ϕ

′
i(x) dx

=

∫ 1

0

f(x, t)ϕi(x) dx, i = 1, ..., J.

(150.6)

We here also used integration by parts, recalling the boundary condition
ϕi(0) = ϕi(1) = 0, to replace

−
∫ 1

0

u′′(x)ϕi(x) dx by

∫ 1

0

u′(x)ϕ′
i(x) dx, (150.7)

motivated by the fact that u(x, t) as a continuous piecewise linear function
is only differentiable once, with a piecewise constant derivative. Formally,
we thus distribute the second derivative in −

∫
u′′ϕidx carried by u alone,

into
∫
u′ϕ′

idx as first derivatives carried by both u and ϕi in partnership.
Using next linearity to bring the summation outside the integration, we

obtain for i = 1, .., J ,

J∑

i=1

∫ 1

0

ϕi(x)ϕj(x) dx üj(t)+

J∑

j=1

∫ 1

0

ϕ′
i(x)ϕ

′
j(x) dxuj(t) =

∫ 1

0

f(x, t)ϕi(x) dx,

(150.8)
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which is system of ODEs in the coefficient vector function u = (u1, u2, ...., uJ)
of the form: Find u(t) such that

Mü(t) +Au(t) = b(t) for t > 0,

u(0) = u0,
(150.9)

where M = (mij) is a mass matrix, A = (aij) a stiffness matrix and
b(t) = (bi(t) is a load vector with coefficients given by

mij =

∫ 1

0

ϕi(x)ϕj(x) dx aij =

∫ 1

0

ϕ′
i(x)ϕ

′
j(x) dx,

bi(t) =

∫ 1

0

f(x, t)ϕi(x) dx, i, j = 1, ..., J.

(150.10)

Direct analytical evaluation of the integrals with piecewise polynomial

xi-1 xi

ii-1

xi

i

xi+1xi

i i+1

FIGURE 150.4. Three possibilities to obtain a non-zero element in the stiffness
matrix.

integrands, gives

mii =
2h

3
, mi i+1 = mi i−1 =

h

6
, mij = 0 else, i, j = 1, ..., J,

aii =
2

h
, ai i+1 = − 1

h
, ai i−1 = − 1

h
, aij = 0 else, i = 1, ..., J.

(150.11)

We thus obtain the following system of ODEs: Find u(t) = (u1(t), ...., uJ (t))
such that for t > 0:

h

6
üi−1+

2h

3
üi+

h

6
üi+1−

ui+1 − 2ui + ui−1

h
= bi(t), i = 1, ..., J, (150.12)

with u(0) and u̇(0) given by initial data u0 and u̇0.
If we lump the mass matrix moving the off-diagonal coefficients 1

6 to the
diagonal, then we obtain the system

hüi −
ui+1 − 2ui + ui−1

h
= bi, for i = 1, ..., J, (150.13)

or dividing by h

üi −
ui+1 − ui + ui−1

h2
=
bi
h

≈ f(ih, t), for i = 1, ..., J, (150.14)
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which (as announced) coincides with the previous particle-spring model.
Recall that we can imagine

u′′(ih) ≈ ui+1 − 2ui + ui−1

h2
, (150.15)

and thus (150.14) can be seen as a discrete analog of ü−u′′ = f . Note also

that bi(t)
h = 1

h

∫
f(x, t)ϕi(x) dx is a local average of f(x, t) around x = ih,

because the area under a hat equals h,
We see that the matrices M and A are sparse in the sense that all el-

ements outside a diagonal band (of width three elements) are zero, as a
consequence of the local support of the basis functions. Matrix-vector mul-
tiplication is fast for sparse matrices, which means that efficient computa-
tional solution of the discrete system Mü + Au = b or its lumped analog,
is possible.
M and A are both symmetric and positive definite tri-diagonal matrices.

The mass matrixM with positive coefficients can be seen as an approximate
(scaled) identity matrix.
We can solve the discrete equation (150.14 by time-stepping e.g. as fol-

lows:

un+1
i = 2uni − un−1

i +
k2

h2
(uni+1 − 2uni + uni−1), i = 1, ..., J, n = 1, 2, ...,

(150.16)
where k is a time step, and u0 and u1 are given by initial data.

150.4 Damped Wave: ü+ u̇− u′′ = f

A damped elastic string can be modeled by: Find u(x, t) such that

ρü+ µu̇− u′′ = f for x ∈ (0, 1), t > 0,

u(0, t) = u(1, t) = 0 for t > 0,

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) for x ∈ (0, 1),

(150.17)

where the new term u̇ models viscous damping (damping proportional to
velocity) with viscosity coefficient µ > 0, and we also inserted the coefficient
ρ > 0 representing mass density. The corresponding FEM-model takes the
form

ρMü(t) + µMu̇+Au(t) = b(t) for t > 0, u(0) = u0, u̇(0) = u̇0.
(150.18)

We note the limit case with ρ = 0 and µ = 1:

Mu̇+Au(t) = b(t) for t > 0, u(0) = u0. (150.19)

We shall return to this model below with a different interpretation as a
discrete heat equation.
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FIGURE 150.5. Exploring FEM engineer inspecting a FEM simulation.

150.5 Stationary Solution

In the stationary case with b independent of time and ü = u̇ = 0, the
discrete model is a linear system of equations:

Au = b (150.20)

which thus models the deflection of an elastic string under a static load, as
illustrated in Fig. 151. We now turn to a study of this model.
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151
FEM Elasticity or Diffusion: −u′′ = f

Mathematics compares the most diverse phenomena and dis-
covers the secret analogies that unite them. (Joseph Fourier)

We consider an stationary elastic string subject to forcing f(x) modeled
by the BVP: Find u : [0, 1] → R such that

−u′′(x) = f(x) for x ∈ (0, 1),

u(0t) = u(1) = 0,
(151.1)

with corresponding FEM discretization::

Au = b, (151.2)

where u = (u1, ..., uJ) and A = (aij) and b = (bi) with

aij =

∫ 1

0

ϕ′
i(x)ϕ

′
j(x) dx, bi =

∫ 1

0

f(x)ϕi(x)dx, (151.3)

and the ϕi are the tent functions introduced above. The matrix A is sym-
metric and positive definite in the sense that

Au · u =

∫ 1

0

(u′)2dx > 0, if u 6= 0, (151.4)

where we associate with to the vector u ∈ RJ the function u : [0, 1] → R

u(x) =

J∑

j=1

ujϕj(x), (151.5)
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with the result that as above uj = u(jh). We thus denote by u both the
vector u = (ui) and the function u(x) just defined.
We see that (151.4) holds by observing that

Au · u =

J∑

i,j=1

aijujui =

J∑

i,j=1

uj

∫ 1

0

ϕ′
jϕ

′
i dxui

=

∫ 1

0

(
∑

j

ujϕj)
′(
∑

i

uiϕi)
′ dx =

∫ 1

0

u′u′ dx =

∫ 1

0

(u′)2 dx

(151.6)

Since A is symmetric and positive definite, the linear system of equations
Au = b has a unique solution u for each given right hand side b.
The BVP (151.1) also describes diffusion of heat in a heat conduction rod,

with u(x) representing temperature and f(x) the intensity of a heat source.
More generally, (151.1) models diffusion of some substance of concentration
u(x) with f(x) a source. Mathematically (151.1) is a the basic example of
an elliptic differential equation, with the wave equation being hyperbolic
and the heat equation parabolic.

151.1 Read More

• Two-point BVP
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FIGURE 151.1. Elastic string loaded by clothes.
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152
FEM Error: −u′′ = f

Read Euler: He is our master in everything. (Laplace)

152.1 The Beauty of FEM

We now seek to estimate the discretization error in (151.2) as as a model
of a stationary elastic string (151.1). Let us divide each interval of length
h into two intervals of length h

2 and let the corresponding FEM solution
be denoted by ū. Can we estimate the difference u− ū? We have using the
FEM equations defining u and ū

∫ 1

0

(u − ū)′ϕ′
i dx =

∫ 1

0

fϕi dx −
∫ 1

0

fϕi dx, i = 1, ..., J, (152.1)

since ϕi(x) is piecewise linear also on the finer subdivision. Thus

∫ 1

0

(u− ū)′(u− ū)′ dx =

∫ 1

0

(u− ū)′(ū − û)′ dx, (152.2)

where

û(x) =
J∑

j=1

ū(jh)ϕj(x). (152.3)

can be chosen to take on the values of ū at xj = jh. In other words, û is
an interpolant of ū (on a mesh of mesh size h). Using Cauchy’s inequality
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to bound the right-hand side of (152.2), we obtain

‖u′ − ū′‖ ≤ ‖û′ − ū′‖, (152.4)

where

‖w‖ = (

∫ 1

0

w(x)2dx)
1
2 . (152.5)

We now seek to bound the difference ū′− û′ in terms of the mesh length h.
On each subinterval of length h in the mesh underlying û, the interpolant
û takes on the same value at the endpoints as the finer-mesh ū, which has
a “kink” in the middle of the interval equal to

ū(ih+ h
2 )− ū(ih)
h
2

− ū(ih)− ū(ih− h
2 )

h
2

=
2

h
(ū(ih+

h

2
)− 2ū(ih) + ū(ih− h

2
)).

The difference in slope ū′ − û′ on the interval is easily seen to be bounded
by the kink, which can be expressed as

|ū′ − û′| ≤ h

2
|ū′′| (152.6)

with

ū′′i ≡ ū(ih+ h
2 )− 2ū(ih) + ū(ih− h

2 )

(h2 )
2

≈ f(ih+
h

2
). (152.7)

We can thus estimate the difference between u with space step h and ū
with half space step h

2 as follows:

‖u′ − ū′‖ ≤ ‖ū′ − û′‖ ≤ h

2
‖ū′′‖ ≈ h

2
‖f‖. (152.8)

Repeating the process with space step h
4 as in the proof of the Fundamental

Theorem, we are thus led to the following a priori error estimate for the
difference between a computed u with time step h and a fictional exact
solution ū computed with vanishingly small space step:

Theorem 152.1 The finite element solution u of the BVP (151.1) on a
mesh with mesh size h, satisfies the following error estimate:

‖u′ − ū′‖ ≤ ‖ū′ − û′‖ ≤ h‖ū′′‖ ≤ h‖f‖. (152.9)

where û is an h-interpolant of the solution ū with vanishingly small mesh
size.
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152.2 A Posteriori and A Priori Error Estimates

The error estimate (152.9) can be viewed in two ways, as:

• An a posteriori error estimate, where the error is estimated in terms
of the data and more generally also the computed solution u, but not
the hypothetical fine-mesh solution ū.

• An a priori error estimate, where the error is estimated in terms of
a hypothetical fine-mesh solution ū, which is not computed.

The a posteriori variant takes the form

‖u′ − ū′‖ ≤ 2h‖f‖, (152.10)

and the a priori variant:

‖u′ − ū′‖ ≤ 2h‖ū′′‖. (152.11)

An a posteriori error estimate can be made only after u has been com-
puted, because the estimate involves u (in general). An a priori estimate
states something about the error before the computation, but involves a
hypothetical (in general unknown) fine-mesh solution.
A a posteriori error estimate is directly useful, while the practical value

of an a priori estimate involving an unknown fine-mesh solution, is unclear.
We shall see that a sharp (accurate) a posteriori error estimates can be

derived in great generality, and thus are very useful. On the other hand,
sharp a priori error estimates can be derived only for special problems and
thus are less useful.
You will see below that the the technique to derive a posteriori error es-

timates is based on computational solution of an auxiliary linearized (dual)
problem, which reveals the crucial quantitative stability aspects connecting
residuals of computed solutions to output errors. In a priori error estima-
tion without computation, the quantitative stability aspects have to be
revealed analytically, which is possible only in simple model problems.
The net result is that a posteriori error estimation is possible in great

generality, because the stability is assessed computationally, and a priori
error estimation in general is impossible, because the stability cannot be
assessed analytically.

152.3 Read More

• Two-point BVP
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FIGURE 152.1. FEM mesh resolving the narrow straits of the Canadian Arctic
Archipelago.

FIGURE 152.2. FEM mesh around an Airbus 319 by Gmsh.

http://geuz.org/gmsh/
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153
FEM as Best Possible

One cannot inquire into the foundations and nature of mathe-
matics without delving into the question of the operations by
which the mathematical activity of the mind is conducted. If one
failed to take that into account, then one would be left studying
only the language in which mathematics is represented rather
than the essence of mathematics. (Luitzen Egbertus Brouwer)

153.1 A Magical Property

The argument leading to the a priori error estimate (152.9) shows that the
FEM solution u on a given mesh makes the error as small as possible in the
sense that there is no other function v formed by the same basis functions
with a smaller error:

‖u′ − ū′‖ ≤ ‖v′ − ū′‖ (153.1)

You met the same argument in Session Piecewise Linear Interpolation in
the proof that the L2-projection is best-possible.
FEM chooses a best solution on a given mesh in the sense that the

deviation to the solution with vanishingly small mesh size, is as small as
possible (in the specific sense of the estimate) using functions on the given
mesh.
FEM thus has the, at first sight magical, property of choosing a best

approximation on a given mesh with finite mesh size to the (exact) solution



742 153. FEM as Best Possible

FIGURE 153.1. FEM mesh of human heart and upper body.

with vanishing mesh size, without knowing the exact solution, only the data
to the differential equation.
FEM is thus a clever method: It can be expected to do the best possible

on a given mesh. Below we shall find the extent and limits of this optimality.

153.2 Learn More

• How good is best possible?

• Two-point BVP
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154
FEM Heat: u̇− u′′ = f

Heat, like gravity, penetrates every substance of the universe,
its rays occupy all parts of space. The object of our work is
to set forth the mathematical laws which this element obeys.
The theory of heat will hereafter form one of the most impor-
tant branches of general physics. (Joseph Fourier in Analytical
Theory of Heat)

We consider the IBVP: Find u(x, t) such that

u̇− u′′ = f for x ∈ (0, 1), t > 0,

u(0, t) = u(1, t) = 0 for t > 0,

u(x, 0) = u0(x), for x ∈ (0, 1),

(154.1)

where f(x, t) is a given forcing function and u0(x) a given initial value
function. This problem describes heat conduction in a rod occupying the
interval [1, 0] with coefficient of heat conductivity of unit size. Another
interpretation is damped elastic string assuming small mass so that the
dynamic term ü is small and therefore can be neglected, as discussed above.
We repeat the procedure of discretization by FEM introduced above for

the wave equation: We seek a solution u(x, t) of the form

u(x, t) =

J∑

j=1

uj(t)ϕj(x) (154.2)

with ϕ1(x), ..., ϕJ (x), tent functions defined by

ϕi(jh) = 1 if j = i, ϕi(jh) = 0 else, (154.3)
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where h = 1
J+1 is the step size in x, and u1(t), ...., uJ(t), are unknown

coefficients depending on t.
We seek to determine the coefficient functions u1(t), ..., uJ(t), by multi-

plying the differential equation u̇ − u′′ = f by ϕi(x) for i = 1, ..., J, and
integrate with respect to x to get

J∑

i=1

u̇i(t)

∫ 1

0

ϕi(x)ϕj(x) dx +

J∑

i=1

ui(t)

∫ 1

0

ϕ′
i(x)ϕ

′
j(x) dx =

∫ 1

0

fϕj dx

(154.4)
where we used integration by parts to rewrite

−
∫ 1

0

u′′ϕi dx =

∫ 1

0

u′ϕ′
i dx (154.5)

moving one derivative from u′′ onto ϕi and changing sign, using that
ϕi(0) = ϕi(1) = 0.
This is a system of ODEs in the coefficient vector function u = (u1, u2, ...., uJ)

of the form: Find u(t)

Mu̇(t) +Au(t) = b(t) for t > 0,

u(0) = u0,
(154.6)

with M and A = (aij) mass and stiffness matrices given by

mij =

∫ 1

0

ϕi(x)ϕj(x) aij =

∫ 1

0

ϕ′
i(x)ϕ

′
j(x) dx, (154.7)

and the forcing b(t) = (b1(t), ..., bJ(t) is given by

bi(t) =

∫ 1

0

f(t, x)ϕi(x)dx. (154.8)

As before A is symmetric with coefficients

aii =
2

h
, ai i+1 = ai i−1 = − 1

h
, aij = 0 else, (154.9)

which corresponds to the approximation

u′′ =
d2u

dx2
≈ ui+1 − 2ui + ui−1

h2
. (154.10)

Also the mass matrix M is the same as above, and can be thought of as an
approximate (scaled) identity matrix.
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155
FEM Convection: u̇ + u′ = 0

For scholars and laymen alike it is not philosophy but active ex-
perience in mathematics itself that can alone answer the ques-
tion: What is mathematics? (Richard Courant)

155.1 A Basic Model of Convection

We now consider the IBVP: Find u(x, t) such that

u̇+ u′ = 0 for x ∈ (0, 1), t > 0,

u(0, t) = g(t) for t > 0

u(x, 0) = u0(x) for x ∈ (0, 1),

(155.1)

where g(t) is a given boundary value and u0(x) a given initial value. This
problem describes convection along the x-axis with velocity 1 to the right.
The solution is given by

u(x, t) = u0(x− t) for x > t,

u(x, t) = g(t− x) for x < t.
(155.2)

The solution u(x, t) is constant on straight lines x = t+c with c a constant,
with the value u(c, 0) = u0(c) for c > 0 being transported to u(t + c, t),
and the value u(0, t) = g(t) being transported to u(x, x+ t), signifying that
“information is flowing” from left to right (in the positive x-direction) with
speed 1. The straight lines x = t + c are called characteristics, and the
solution values thus are propagated along the characteristics.
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155.2 FEM

We seek a solution u(x, t) of the form

u(x, t) =

J∑

j=0

uj(t)ϕj(x) (155.3)

where ϕ0(x), ..., ϕJ (x), are continuous piecewise linear tent functions de-
fined on (0, 1) by

ϕi(jh) = 1 if j = i, ϕi(jh) = 0 else, (155.4)

where we set the mesh size h = 1
J . Note that ϕ0(x) and ϕ̂J(x) are “half

tents”, because we restrict to 0 < x < 1.
We set u0(t) = g(t) and seek to determine the remaining coefficient

functions u1(t), ..., uJ(t), by multiplying the differential equation u̇ = −u′
by ϕi(x) for i = 1, ..., J, and integrating with respect to x to get

J∑

i=0

u̇j(t)

∫ 1

0

ϕi(x)ϕj(x) dx +

J∑

j=0

uj(t)

∫ 1

0

ϕi(x)ϕ
′
j(x) dx = 0, (155.5)

resulting in the following ODE: Find u = (u0, u1, u2, ...., uJ) such that

Mu̇(t) +Au(t) = 0, u0(t) = g(t), for t > 0,

uj(0) = u0(jh), j = 1, ..., J,
(155.6)

where M = (mij) and A = (aij) with coefficients

mij =

∫ 1

0

ϕi(x)ϕj(x) dx, aij = −
∫ 1

0

ϕi(x)ϕ
′
j(x) dx, i = 1, ..., J, j = 0, ..., J.

(155.7)
Direct analytical evaluation of the integrals with piecewise polynomial in-
tegrands gives

mii =
2h

3
, mi i+1 = mi i−1 =

h

6
, mij = 0 else, i, j = 1, ..., J − 1,

mJ,J =
h

3
, mJ J−1 =

h

6

aii = 0, ai i+1 =
1

2
, ai i−1 = −1

2
, aij = 0 else, i = 1, ..., J − 1,

, aJ J−1 = −1

2
, aJ J =

1

2
.

(155.8)

that is the equation for ui(t) takes the following form for i = 1, , J − 1,

1

6
u̇i−1 +

2

3
u̇i +

1

6
u̇i+1 +

ui+1 − ui−1

2h
= 0, i = 1, ..., J − 1, (155.9)
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where u0 = g is given, and for i = J,

1

6
u̇J−1 +

1

3
u̇J +

uJ − uJ−1

2h
= 0. (155.10)

If we lump the mass matrix moving the off-diagonal coefficients 1
6 to the

diagonal, then we get

u̇i+
ui+1 − ui−1

2h
= 0, for i = 1, ..., J−1,

1

2
u̇J+

uJ − uJ−1

2h
= 0, (155.11)

where we can imagine

u′(ih) ≈ ui+1 − ui−1

2h
for i = 1, ..., J − 1, u′(Jh) ≈ uJ − uJ−1

h
,

(155.12)
and thus view (155.11) as a discrete analog of u̇+ u′ = 0.
Note that the square stiffness matrix A = (aij) with i, j = 1, ..., J is

no longer symmetric, but anti-symmetric in the sense that transposition
changes the sign: A⊤ = −A, while for a symmetric matrix transposition
doesn’t change anything. The sign change under transposition makes con-
vection problem very different from a diffusion problem, motivating to make
a distinction between convection-dominated and diffusion-dominated prob-
lems, as indicated in the next section.
We can solve the discrete equations by time-stepping as follows:

miiu
n+1
i = −

∑

j 6=i
miju

n
j + dt

J∑

j=1

aiju
n
j , i = 1, ..., J, (155.13)

where uni = ui(nk) and k is a time step.

155.3 Central vs Upwind Discrete Derivative

We meet in the discrete problem (155.11) the following two approximations
of the derivative u′(ih):

u′(ih) ≈ ui+1 − ui−1

2h
(central approximation),

u′(ih) ≈ ui − ui−1

h
= 0 (upwind approximation),

(155.14)

where the central approximation uses the two points (i+ 1)h and (i− 1)h
centered around ih, while the upwind approximation uses only the point
(i − 1)h to the left (or upwind since the “wind” is coming from the left
with the information propagating from left to right) of ih. We understand
that an upwind approximation is more physical, since information is prop-
agated from left to right over the time step. On the other hand the central
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approximation is formally of higher accuracy (second order in h) than the
upwind approximation(first order in h).
When you compute with the above method you will discover that it gives

garbage in certain cases, as a consequence of the (partly unphysical) central
approximation of the convection term u′. Below you will see how to modify
the standard (basic) Galerkin FEM just presented to work well in all cases.
There two main classes of problems in fluid mechanics: convection-dominated

problems and diffusion-dominated problems, or problems with small vis-
cosity and large viscosity. You will discover that for convection-dominated
problems with quickly varying solutions (non-smooth solutions), standard
Galerkin does not work well and has to be modified, while for diffusion-
dominated problems no modification is necessary. The modification has
made FEM into a general method for a wide variety of problems.

155.4 Read More

• Stationary Convection-Diffusion Analysis

• Stationary Convection-Diffusion FEM

• Time-Dependent Convection-Diffusion Analysis

• Time-Dependent Convection-Diffusion FEM
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FIGURE 155.1. FEM simulation of convection-dominated airflow around a Volvo.
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156
FEM Heat: u̇−∆u = f

Either mathematics is too big for the human mind or the human
mind is more than a machine. (Kurt Gdel)

We consider the IBVP: Find u(x, t) such that

u̇−∆u = f for x ∈ Ω, t > 0,

u(x, t) = 0 for x ∈ Γ, t > 0,

u(x, 0) = u0(x), for x ∈ Ω,

(156.1)

where Ω is a domain in space with boundary Γ, f(x, t) is a given forcing
function and u0(x) a given initial value function. Seek a solution u(x, t) of
the form

u(x, t) =

J∑

j=1

uj(t)ϕj(x), (156.2)

where ϕ1(x), ..., ϕJ (x), are the following continuous piecewise linear tent
functions defined by

ϕi(x
j) = 1 if j = i, ϕi(x

j) = 0 else, (156.3)

where now x1, ..., xJ are the interior nodes of a triangulation of Ω with
mesh size h. Since only interiors nodes appear, all basis functions vanish
on the boundary Γ.
We seek to determine the coefficient functions u1(t), ..., uJ(t), by multi-

plying the differential equation u̇ − ∆u = f by ϕi(x) for i = 1, ..., J, and
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integrating with respect to x to get

J∑

j=1

u̇j(t)

∫

Ω

ϕiϕj dx+
J∑

j=1

uju(t)

∫

Ω

∇ϕj∇ϕi dx =

∫

Ω

fϕi dx, i = 1, ..., J,

(156.4)
where we used integration by parts to rewrite

−
∫

Ω

∆uϕi dx =

∫

Ω

∇u∇ϕi dx (156.5)

moving one derivative from ∆u onto ϕi and changing sign, and using that
ϕi = 0 on Γ.
This is a system of ODEs in the coefficient vector function u = (u1, u2, ...., uJ)

of the form: Find u(t) such that

Mu̇(t) +Au(t) = b(t) for t > 0,

u(0) = u0,
(156.6)

with M and A = (aij) mass and stiffness matrices given by

mij =

∫

Ω

ϕiϕj dx, aij =

∫

Ω

∇ϕi∇ϕj dx, (156.7)

and the forcing b(t) has coefficients

bi(t) =

∫

Ω

f(t, x)ϕi(x) dx. (156.8)

We can solve this system by time-stepping as above.

156.1 Learn More

• FEM for Heat Equation
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157
FEM Poisson: −∆u = f

To those who ask what the infinitely small quantity in mathe-
matics is, we answer that it is actually zero. Hence there are not
so many mysteries hidden in this concept as they are usually
believed to be. (Leonhard Euler)

The stationary version of the previous IBVP is the BVP: Find u : Ω → R
such that

−∆u = f for x ∈ Ω,

u(x) = 0 for x ∈ Γ,
(157.1)

where Ω is a domain in space with boundary Γ, f(x) is a given forcing
function. Seek a solution u(x) of the form

u(x) =

J∑

j=1

ujϕj(x) (157.2)

where ϕ1(x), ..., ϕJ (x), are tent functions on a triangulation and u1, ...., uJ ,
are unknown coefficients associated with interior nodes.
We seek to determine the coefficients u1, ..., uJ , by multiplying the dif-

ferential equation u̇−∆u=f by ϕi(x) for i = 1, ..., J, and integrating with
respect to x to get

J∑

j=1

u̇j

∫

Ω

ϕiϕj dx+

J∑

j=1

uj

∫

Ω

∇ϕi∇ϕj dx =

∫

Ω

fϕi dx, i = 1, ..., J,

(157.3)
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FIGURE 157.1. FEM solution of Poisson’s equation.

where we used integration by parts to rewrite

−
∫

Ω

∆uϕi dx =

∫

Ω

∇u∇ϕi dx (157.4)

moving one derivative from ∆u onto ϕi and changing sign.
This is a linear system in the coefficient vector u = (u1, u2, ...., uJ) of the

form: Find u = (u1, ..., uJ) such that

Au = b, (157.5)

where A = (aij) is a stiffness matrix with coefficients

aij =

∫

Ω

∇ϕi∇ϕj dx (157.6)

and the forcing vector b has coefficients

bi =

∫

Ω

f(x)ϕi(x) dx (157.7)

The stiffness matrix A is symmetric and positive definite, and the system
Au = b can be solved by Gaussian elimination or time-stepping.

157.1 The Finite Element Space Vh

It is useful to introduce the linear space of functions Vh spanned by the
basis functions ϕ1, , ϕJ , which consists of all functions v(x) of the form

v(x) =

J∑

j=1

vjϕj(x) (157.8)
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where v1, , vj , are real coefficients. The finite element solution u(x) is of this
form and thus u ∈ Vh, and of course each basis function ϕj ∈ Vh. We can
now formulate FEM for Possion’s equation as follows: Find u ∈ Vh such
that ∫

Ω

∇u∇ϕj dx =

∫

Ω

fϕj dx for j = 1, ..., J, (157.9)

which is equivalent to: Find u ∈ Vh such that

∫

Ω

∇u∇v dx =

∫

Ω

fv dx for all v ∈ Vh. (157.10)

The basic “best-possible” error estimate can then be expressed as follows:
The FEM solution u ∈ Vh satisfies

‖∇(u− ū)‖ ≤ ‖∇(v − ū)‖ for all v ∈ Vh, (157.11)

where ū is the (unique) solution with vanishingly small mesh size, where

‖∇w‖ = (

∫

Ω

|∇w|2 dx) 1
2 . (157.12)

In particular, chosing v = û ∈ Vh as a nodal interpolant, gives the following
a priori error estimate

‖∇(u− ū)‖ ≤ ‖∇(û− ū)‖ ≤ Ch‖D2ū‖, (157.13)

where h is the mesh size, D2u measures the maximal second derivate of u,
and C ≈ 1.

157.2 Learn More

• FEM for Poisson’s Equation
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FIGURE 157.2. FEM simulation of stress distribution in wheel on rail.
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158
FEM Wave: ü−∆u = f

The reader will find no figures in this work. The methods which
I set forth do not require either constructions or geometrical or
mechanical reasonings: but only algebraic operations, subject
to a regular and uniform rule of procedure. (Joseph-Louis La-
Grange)

FEM for the wave equation leads to the ODE: Find u = (u1, ..., uJ) such
that

Mü(t) +Au(t) = b(t) for t > 0,

u(0) = u0, u̇(0) = u̇0,
(158.1)

with M , A and b(t) the same as for the heat equation above. Again the
ODE an be solved by time stepping as above.

158.1 Learn More

• FEM for Wave Equation
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FIGURE 158.1. FEM mesh for simulation of Earth quake in the San Andreas
Fault.
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FIGURE 158.2. Is this a FEM triangulation of space? (Ask Thomas Saraceno)

http://www.tanyabonakdargallery.com/artist.php
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159
“Do Nothing” Natural Boundary
Conditions

To do nothing at all is the most difficult thing in the world, the
most difficult and the most intellectual. (Oscar Wilde)

All that is necessary for the triumph of evil is for good men to
do nothing. (Edmund Burke)

159.1 Robin with Neumann and Dirichlet

We now turn to the question of boundary conditions, considered in the
World of Differential Equations.
So far, we have here considered Poisson’s equation −∆u = f in a domain

Ω with boundary Γ assuming homogeneous Dirichlet boundary conditions
u = 0 on Γ. We now consider Robin boundary conditions of the form

κu+
∂u

∂n
= g on Γ, (159.1)

where κ and ν are non-negative coefficients and g is given, and ∂u
∂n =

n · ∇u with n the outward unit normal to Γ. In the context of the heat
equation, the boundary condition expresses with κ > 0 proportionality
between the heat flux across the boundary n · ∇u and the temperature
difference (u+ − u) if we choose g = κu+ through the coefficient κ, where
u+ is a given temperature just outside and u the unkown temperature
inside the boundary.
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Chosing κ = 0 gives the Neumann boundary condition

∂u

∂n
= g on Γ, (159.2)

and letting κ become large, we effectively obtain the non-homogeneous
Dirichlet condition

u = u+ (159.3)

if we choose g = κu+ as above.
We can thus view the Robin condition to effectively contain also (non-

homogeneous) Neumann and Dirichlet boundary conditions. The advantage
with a Robin condition is that it is a natural boundary condition or in
other words a “do nothing” condition, in the sense that the finite element
functions are not required to satisfy any boundary conditions at all. The
Robin boundary condition is instead implicitely contained in the Galerkin
variational formulation by changing the stiffness matrix A = (aij) to

aij =

∫

Ω

∇ϕi · ∇ϕj dx+

∫

Γ

κϕiϕj dx, (159.4)

and the load vector to

bi =

∫

Ω

fϕi dx+

∫

Γ

gϕi dx. (159.5)

Galerkin’s method thus implements the Robin boundary condition in vari-
ational form; as compared to explicite enforcement of the boundary con-
dition in strong form, as when requiring both trial and test functions to
satisfy a homogeneous Dirichlet condition u = 0.
A Robin condition in variational form is also a called a natural boundary

condition, while a Dirichlet condition is strong form i callled an essential
boundary condition.
Does this work? Yes! But why is here “do nothing” OK? If you want to

know, take a look at FEM in 2d and 3d or FEm for Poisson.
Recall that implementing non-homogeneous Dirichlet conditions in strong

form requires care to ask trial functions to satisfy the given boundary con-
ditions, while letting the test functions satisfy a homogeneous condition.
Further, trying to satisfy Neumann conditions in strong form leads to great
difficulties. All of this can be avoided by simply using a Robin condition
implemented in variational form as a “do nothing” condition. Sometimes,
do nothing is the best you can do...in a Leibnizian best of worlds.
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160
Linearization and Stability of Initial
Value Problems

The logos of somewome to that base anything, when most character-
istically mantissa minus, comes to nullum in the endth: orso, here is
nowet badder than the sin of Aha with his cosin Lil, verswaysed on
coversvised, and all that’s consecants and cotangincies... (Finnegans
Wake, James Joyce)

160.1 Introduction

We now address the basic problem of stability of solutions to differential
equations as a measure of the sensitivity of solutions to perturbations in
given data.
We consider our basic IVP: Find u : [0, T ] → Rd such that

u̇(t) = f(u(t)) for 0 < t ≤ T, u(0) = u0, (160.1)

where f : Rd → Rd is a given bounded Lipschitz continuous function,
u0 ∈ Rd is a given initial value and [0, T ] as a given time interval.
To study the stability of a given solution u(t) to small perturbations in

given data, e.g. in the given initial data u0, we will consider an associated
linearized problem that arises upon linearizing the function v → f(v) at the
solution u(t).
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160.2 Stationary Solutions

We consider first the simplest case of a stationary solution u(t) = ū for
0 ≤ t ≤ T , that is a solution u(t) of (219.1) that is independent of time
t. Since u̇(t) = 0 if u(t) is independent of time, u(t) = ū is a stationary
solution if f(ū) = 0 and u0 = ū, where ū = (ū1, ..., ūd) ∈ Rd.
The equation f(ū) = 0 corresponds to a system of d equations fi(ū1, ..., ūd) =

0, i = 1, ..., d, in d unknowns ū1, ..., ūd, where the fi are the components of
f . We studied computational solution of such systems in Newton’s Method
and Fixed Point Iteration.
Here, we assume the existence of a stationary solution u(t) = ū so that

ū ∈ Rd satisfies the equation f(ū) = 0. In general, there may be several
roots ū of the equation f(v) = 0 and thus there may be several stationary
solutions. We also refer to a stationary solution u(t) = ū as an equilibrium
solution.

160.3 Linearization at a Stationary Solution

We shall now study perturbations of a given stationary solution under
small perturbations of initial data. We thus assume f(ū) = 0 and denote
the corresponding equilibrium solution by ū(t) for t > 0, that is ū(t) = ū for
t > 0. We consider the initial value problem (219.1) with u0 = ū+ϕ0, where
ϕ0 ∈ Rd is a given small perturbation of the initial data ū. We denote the
corresponding solution by u(t) and focus attention on the corresponding
perturbation in the solution, that is ψ(t) = u(t)− ū(t) = u(t)− ū. We want
to derive a differential equation for the perturbation ψ(t), and to this end
we linearize f at ū and write

f(u(t)) = f(ū+ ψ(t)) = f(ū) + f ′(ū)ψ(t) + e(t),

where f ′(ū) is the Jacobian of f : Rd → Rd at ū and the error term e(t) is
quadratic in ψ(t) (and thus is very small if ψ(t) is small). Since f(ū) = 0
and u(t) satisfies (219.1), we have

ψ̇(t) =
d

dt
(ū+ ψ(t))) = f(u(t)) = f ′(ū)ψ(t) + e(t).

Neglecting the quadratic term e(t), we are led to a linear initial value
problem,

ϕ̇(t) = f ′(ū)ϕ(t) for t > 0, ϕ(0) = ϕ0, (160.2)

or
ϕ̇(t) = Aϕ(t) for t > 0, ϕ(0) = ϕ0, (160.3)

where A = f ′(ū) is a constant d × d matrix and ϕ(t) is an approximation
of the perturbation ψ(t) = u(t)− ū up to a second order term.
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If the matrix A is diagonalizable, so that A = BΛB−1 where B is a
non-singular d× d matrix and Λ is a diagonal matrix with the eigenvalues
λ1, ..., λd of A on the diagonal, then we can write the solution to (160.3) as

ϕ(t) = B exp(tΛ)B−1ϕ0 for t ≥ 0. (160.4)

where exp(tΛ) is a diagonal matrix with diagonal elements exp(tλ1), ..., exp(tλd).
We see that each component of ϕ(t) is a linear combination of exp(tλ1),...,
exp(tλd) and the sign of the real part Re λi of λi determines if the corre-
sponding term grows or decays exponentially. If some Re λi > 0, then we
have exponential growth of certain perturbations, which indicates that the
corresponding stationary solution ū is unstable. On the other hand, if all
Re λi ≤ 0, then we would expect ū to be stable.
These considerations are qualitative in nature, and to be more precise we

should base judgements of stability or instability on quantitative estimates
of perturbation growth. In the diagonalizable case, (219.5) implies in the
Euclidean vector and matrix norms that

‖ϕ(t)‖ ≤ ‖B‖‖B−1‖ max
i=1,...,d

exp(tλi)‖ϕ0‖. (160.5)

We see that the maximal perturbation growth is governed by the maximal
exponential factors exp(tλi) as well as the factors ‖B‖ and ‖B−1‖ related to
the transformation matrix B. If the transformation matrix B is orthogonal,
then ‖B‖ = ‖B−1‖ = 1, and the perturbation growth is governed solely by
the exponential factors exp(tλi). We give this case special attention:

160.4 Stability Analysis when f ′(ū) Is Symmetric

If A = f ′(ū) is symmetric so that A = QΛQ−1 with Q orthogonal and Λ a
diagonal matrix with real diagonal elements λi, then

‖ϕ(t)‖ ≤ max
i=1,...,d

exp(tλi)‖ϕ0‖. (160.6)

In particular, if all eigenvalues λi ≤ 0 then perturbations ϕ(t) cannot grow
with time, and we say that the solution ū is stable. On the other hand,
if some eigenvalue λi > 0 and the corresponding eigenvector is gi then
ϕ(t) = exp(tλi)gi solves the linearized initial value problem (219.3) with
ϕ0 = gi, and evidently the particular perturbation ϕ(t) grows exponentially.
We then say that the solution ū is unstable. Of course, the size of the positive
eigenvalues influence the perturbation growth, so that if λi > 0 is small,
then then growth is slow and the instability is mild. Likewise, if λi is small
negative, then the exponential decay is slow.
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160.5 Stability Factors

We may express the stability features of a particular perturbation ϕ0

through a stability factor Sd(T, ϕ0) defined as follows:

Sd(T, ϕ0) = max
0≤t≤T

‖ϕ(t)‖
‖ϕ0‖ ,

where ϕ(t) solves the linearized problem (219.3) with initial data ϕ0. The
stability factor Sd(T, ϕ0) measures the maximal growth of the norm of ϕ(t)
over the time interval [0, T ] versus the norm of the initial value ϕ0. with the
subscript d representing data. In computational solution we meet another
stability factor denoted by Sc with c for computation.
We can now seek to capture the overall stability features of a stationary

solution ū by maximization over all different perturbations:

Sd(T ) = max
ϕ0 6=0

S(T, ϕ0).

If the stability factor S(T ) is large, then some perturbations grow very
much over the time interval [0, T ], which indicates a strong sensitivity to
perturbations or instability. On the other hand, if S(T ) is of moderate size
then the perturbation growth is moderate, which signifies stability. Using
the Euclidean matrix norm, we can also express S(T ) as

Sd(T ) = max
0≤t≤T

‖ exp(tA)‖.

Example 160.1. If A = f ′(ū) is symmetric with eigenvalues λ1, ..., λd,
then

Sd(T ) = max
i=1,...,d

max
0≤t≤T

exp(tλi).

In particular, if all λi ≤ 0, then S(T ) = 1.

Example 160.2.

The initial value problem for a pendulum takes the form

u̇1 = u2, u̇2 = − sin(u1) for t > 0,

u1(0) = u01, u2(0) = u02,

corresponding to f(u) = (u2,− sin(u1) and the equilibrium solutions
are ū = (0, 0) and ū = (π, 0). We have

f ′(ū) =

(
0 1

− cos(ū1) 0

)
,

and the linearized problem at ū = (0, 0) thus takes the form

ϕ̇(t) =

(
0 1
−1 0

)
ϕ(t) ≡ A0ϕ(t) for t > 0, ϕ(0) = ϕ0,
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with solution

ϕ1(t) = ϕ0
1 cos(t) + ϕ0

2 sin(t), ϕ2(t) = −ϕ0
1 sin(t) + ϕ0

2 cos(t).

It follows by a direct computation (or using that

(
cos(t) sin(t)
− sin(t) cos(t)

)
is

an orthogonal matrix), that for t > 0

‖ϕ(t)‖2 = ‖ϕ0‖2,

and thus the norm ‖ϕ(t)‖ of a solution ϕ(t) of the linearized equations
is constant in time, which means that the stability factor S(T ) = 1
for all T > 0. We conclude that if the norm of a perturbation is small
initially, it will stay small for all time. This means that the equilibrium
solution ū = (0, 0) is stable. More precisely, if the pendulum is perturbed
initially a little from its bottom position, the pendulum will oscillate
back and forth around the bottom position with constant amplitude.
This fits our direct experimental experience of course.

Note that the linearized operator A0 is non-symmetric; the eigenvalues
of A0 are purely imaginary ±i, which says that ‖ϕ(t)‖ = ‖ϕ0‖, that
is a perturbation neither grows nor decays. Another way to derive this
fact is to use the fact that A0 is antisymmetric, that is A⊤

0 = −A0,
which shows that (A0ϕ, ϕ) = (ϕ,A⊤

0 ϕ) = −(ϕ,A0ϕ) = −(A0ϕ, ϕ), and
thus (A0ϕ, ϕ) = 0, where (·, ·) is the R2 scalar product. It follows from
the equation ϕ̇ = A0ϕ upon multiplication by ϕ that 0 = (ϕ̇, ϕ) =
1
2
d
dt (ϕ, ϕ) =

1
2
d
dt‖ϕ‖2, which proves that ‖ϕ(t)‖2 = ‖ϕ0‖2.

The linearized problem at ū = (π, 0) reads

ϕ̇(t) =

(
0 1
1 0

)
ϕ(t) ≡ Aπϕ(t) for t > 0, ϕ(0) = ϕ0,

with symmetric matrix Aπ with eigenvalues ±1. Since one eigenvalue is
positive, the stationary solution ū = (π, 0) is unstable. More precisely,
the solution is given by

ϕ1 =
ϕ0
1

2
(et+ e−t) +

ϕ0
2

2
(et− e−t), ϕ2 =

ϕ0
1

2
(et− e−t)+

ϕ0
2

2
(et+ e−t),

and due to the exponential factor et, perturbations will grow exponen-
tially in time, and thus an initially small perturbation will become large
as soon as t ≥ 10 say. Physically, this means that if the pendulum is
perturbed initially a little from its top position, the pendulum will even-
tually move away from the top position, even if the initial perturbation
is very small. This fact of course has direct experimental evidence: to
balance a pendulum with the weight in the top position is tricky busi-
ness. Small perturbations quickly grow to large perturbations and the
equilibrium solution (π, 0) of the pendulum is unstable.
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160.6 Stability of Time-Dependent Solutions

We now seek to extend the scope to linearization and linearized stability
for a time-dependent solution ū(t) of (219.1). We want to study solutions of
the form u(t) = ū(t)+ψ(t), where ψ(t) is a perturbation. Using d

dt ū = f(ū)
and linearizing f at ū(t), we obtain

d

dt
(ū+ ψ)(t) = f(ū(t)) + f ′(ū(t))ψ(t) + e(t),

with e(t) quadratic in ψ(t). This leads to the linearized equation

ϕ̇(t) = A(t)ϕ(t) for t > 0, ϕ(0) = ϕ0, (160.7)

where A(t) = f ′(ū(t)) is an d × d matrix that now depends on t if ū(t)
depends on t. We have no analytical solution formula to this general prob-
lem and thus although the stability properties of the given solution ū(t)
are expressed through the solutions ϕ(t) of the linearized problem (219.10),
it may be difficult to analytically assess these properties. We may define
stability factors S(T, ϕ0) and S(T ) just as above, and we may say that a
solution ū(t) is stable if S(T ) is moderately large, and unstable if S(T ) is
large. To determine S(T ) in general, we have to use numerical methods and
solve (219.10) with different initial data ϕ0. We return to the computation
of stability factors in the next chapter on adaptive solvers for initial value
problems.

160.7 Sum Up

The question of stability of solutions to initial value problems is of fun-
damental importance. We can give an affirmative answer in the case of a
stationary solution with corresponding symmetric Jacobian. In this case a
positive eigenvalue signifies instability, with the instability increasing with
increasing eigenvalue, and all eigenvalues non-positive means stability. The
case of an anti-symmetric Jacobian also signifies stability with the norm of
perturbations being constant in time. If the Jacobian is non-normal we have
to watch out and remember that just looking at the sign of the real part
of eigenvalues may be misleading: in the non-normal case algebraic growth
may in fact dominate slow exponential decay for finite time. In these cases
and also for time-dependent solutions, an analytical stability analysis may
be out of reach and the desired information about stability may be obtained
by numerical solution of the associated linearized problem.
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Chapter 160 Problems

160.1. Determine the stationary solutions to the system

u̇1 = u2(1− u2
1),

u̇2 = 2− u1u2,

and study the stability of these solutions.

160.2. Determine the stationary solutions to the following system (Minea’s
equation) for different values of δ > 0 and γ,

u̇1 = −u1 − δ(u2
2 + u2

3) + γ,

u̇2 = −u2 − δu1u2,

u̇3 = −u3 − δu1u3,

and study the stability of these solutions.

160.3. Determine the stationary solutions of the system (219.1) with (a) f(u) =
(u1(1−u2), u2(1−u1)), (b) f(u) = (−2(u1−10)+u2 exp(u1),−2u2−u2 exp(u1)),
(c) f(u) = (u1 +u1u

2
2 +u1u

2
3,−u1+u2−u2u3+u1u2u3, u2 +u3−u2

1), and study
the stability of these solutions.

160.4. Determine the stationary solutions of the system (219.1) with (219.1)
with (a) f(u) = (−1001u1 + 999u2, 999u1 − 1001u2), (b) f(u) = (−u1 + 3u2 +
5u3,−4u2 +6u3, u3), (c) f(u) = (u2,−u1 − 4u2), and study the stability of these
solutions.

160.5. Analyze the stability of the following variant of the linearized problem
(219.8) with ǫ > 0 small,

ϕ̇(t) =

(
−ν κ
ǫ −ν

)
ϕ(t) ≡ Aν,κ,ǫϕ(t) for t > 0, ϕ(0) = ϕ0, (160.8)

by diagonalizing the matrix ≡ Aν,κ,ǫ. Note that the diagonalization degenerates
as ǫ tends to zero (that is, the two eigenvectors become parallel). Check if Aν,κ,ǫ
is a normal or non-normal matrix.
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161
Time Discretization by FEM

On two occasions I have been asked (by members of Parlia-
ment), “Pray, Mr Babbage, if you put into the machine wrong
figures, will the right answer come out?”. I am not able rightly
to apprehend the kind of confusion of ideas that could provoke
such a question. (Babbage (1792-1871))

161.1 Introduction

FEM is used not only for discretization in space, but also for discretization
in time, or time-stepping. Altogether, FEM is a methodology for discretiza-
tion in space-time.
FEM for time discretization comes in two forms:

• Discontinuous Galerkin with polynomials of degree q: dG(q), q =
0, 1, 2, ...,

• Continuous Galerkin with polynomials of degree q: cG(q), q = 1, 2, ...

For an IVP of the basic form

u̇(t) = f(u(t)), for t ∈ (0, T ],

u(0) = u0,
(161.1)

the basic methods dG(0) and cG(1) take the form dG(0) or Backward
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Euler :

un+1 = un + f(un+1, ndt)dt (161.2)

where u(t) = un+1 is constant on (ndt, (n + 1)dt], and piecewise constant
discontinuos on [0, T ].

Midpoint method cG(1):

un+1 = un +

∫ (n+1)dt

ndt

f(u(t), t)dt ≈ un +
1

2
(f(un) + f(un+1))dt (161.3)

where u(t) is linear on [ndt, (n+ 1)dt], and piecewise linear continuous on
[0, tT ].
Both methods are implicit requiring the solution of a system of equations

in un+1, since un+1 appears on the right hand side.
We compare with the basic explicit Forward Euler method:

un+1 = un + f(un, ndt)dt (161.4)

where un+1 is directly updated by evaluating f(un).

161.2 Read More

• Scalar IVP

• System IVP

161.3 Adaptive Error Control

For simplicity we have so far assumed the time step to be constant, but
this is not economical.
In this chapter, we discuss the important issue of adaptive error con-

trol for numerical methods for initial value problems. This is the subject
of automated choice of the time step with the purpose of controlling the
numerical error to within a given tolerance level. The basic idea is to com-
bine feed-back information from the computation concerning the residual of
the computed solution and the results of auxiliary computations of stabil-
ity factors. We focus first on on the cG(1) method and then comment on
the backward Euler method, also referred to as dG(0), the discontinuous
Galerkin method with piecewise constants.
We also discuss the application of cG(1) and dG(0) to a class of so-called

stiff IVPs typically arising in chemical reaction modeling.
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161.4 The cG(1) Method

We recall that cG(1), the continuous Galerkin method with polynomials of
order 1, for the initial value problem u̇(t) = f(u(t)) for t > 0, u(0) = u0,
with f : Rd → Rd, takes the form

U(tn) = U(tn−1) +

∫ tn

tn−1

f(U(t)) dt, n = 1, 2, ..., (161.5)

where U(t) is continuous piecewise linear with nodal values U(tn) ∈ Rd at
an increasing sequence of discrete time levels 0 = t0 < t1 < ..., and U(0) =
u0. If we evaluate the integral in (220.1) with the midpoint quadrature rule,
we obtain the Midpoint method:

U(tn) = U(tn−1) + knf

(
U(tn) + U(tn−1)

2

)
, n = 1, 2, ..., (161.6)

where kn = tn − tn−1 is the time step. The cG(1)-method is the first in
a family of cG(q)-methods with q = 1, 2, ...,, where the solution is ap-
proximated by continuous piecewise polynomials of order q. The Galerkin
“orthogonality” of cG(1) is expressed by the fact that the method can be
formulated

∫ tn

tn−1

(U̇(t)− f(U(t))) · v dt = 0, n = 1, 2, ..., (161.7)

for all v ∈ Rd. This says that the residual

R(U(t) = U̇(t)− f(U(t)), t ∈ [0, T ], (161.8)

of the continuous piecewise linear approximate solution U(t) is orthogonal
to the constant functions v(t) = v ∈ Rd on each subinterval (tn−1, tn). The
residual u̇(t) − f(u(t)) of the exact solution is zero since u̇(t) = f(u(t)),
while the residual of R(U(t)) of the approximate solution U(t) is non-zero
in general. Similarly, in cG(q) the residual is orthogonal on (tn−1, tn) to
polynomials of degree q − 1. Note that (220.1) is a vector equation that
reads

Ui(tn) = Ui(tn−1) +

∫ tn

tn−1

fi(U(t)) dt, n = 1, 2, ..., i = 1, ..., d,

as can be seen from (220.3) upon setting v = ei, i = 1, ..., d.
We will now study the problem of automatic step-size control with the

purpose of keeping the error

‖u(T )− U(T )‖ ≤ TOL,
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where T = tN is a final time and TOL is a given tolerance, while using
as few time steps as possible. The objective is the same as that of com-
puting an integral over an interval [0, T ] using numerical quadrature to a
certain tolerance using as few quadrature points as possible. This is ex-
actly the problem we meet in the case of a scalar initial value problem
u̇(t) = f(u(t), t) with f(u(t), t) = f(t).
We shall derive an a posteriori error estimate in which the final error

‖u(T )−U(T )‖ is estimated in terms of the residual R(U(t) = U̇(t)−f(U(t))
and certain stability factors that measure the accumulation of the numerical
errors introduced in each time step.
The a posteriori error estimate takes the form

‖u(T )− U(T )‖ ≤ Sc(T ) max
0≤t≤T

‖k(t)R(U(t)‖, (161.9)

where k(t) = kn = tn− tn−1 for t ∈ [tn−1, tn) and where the stability factor
Sc(T ) is defined as follows. We consider the linearized problem

− ϕ̇(t) = A⊤(t)ϕ(t) for 0 < t < T, ϕ(T ) = ϕ0, (161.10)

where

A(t) =

∫ 1

0

f ′(su(t) + (1 − s)U(t)) ds.

We note that replacing u(t) by U(t) gives the following approximate formula
for A(t),

A(t) ≈ f ′(U(t)),

assuming U(t) is close to u(t). We conclude that A(t) is close to the Jaco-
bian f ′(u(t)) of f(v) at v = u(t) if U(t) is a reasonable approximation of
u(t) Note that the dual A⊤(t) of A(t) occurs in (220.6). Note further that
the linearized dual problem (220.6) runs backward in time since the initial
value ϕ(T ) = ϕ0 is specified at time t = T . We are now ready to introduce
the following stability factors:

Sd(T ) = max
ϕ0∈Rd

‖ϕ(0)‖
‖ϕ0‖ ,

Sc(T ) = max
ϕ0∈Rd

∫ T
0 ‖ϕ̇(s)‖ ds

‖ϕ0‖ ,

(161.11)

where ϕ solves (220.6). We note that the stability factors measure different
features of the the dual solution ϕ. The stability factor Sd(t) measures the
maximal perturbation growth over the time interval [0, T ]. We met this
factor in the previous chapter. We shall see that this factor is tailored to
measure the effect of an error in the initial data u0 and the “d” in Sd
refers to “data”. The stability factor Sc(t) measures the integral of ‖ϕ̇‖
over [0, T ] and is geared to evaluate the error in cG(1) and the “c” in Sc
refers to “computation”.
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We shall give the proof of (220.5) below, first in a very simple case with
n = 1 and f(u(t)) = au(t) with a a constant and then in the general case.
The proofs are very similar. Before plunging into the proofs, we shall try to
digest the a posteriori error estimate, and see how it can be used to design
an adaptive algorithm aiming at controlling the final error ‖u(T )− U(T )‖
on a given tolerance level with as few time steps as possible.
The stability factors Sc(T ) and Sd(T ) can be computed by numerically

solving the linearized dual problem (220.6) with ϕ0 = ei for i = 1, ..., d. If d
is large, then we may reduce the variation of the initial data by limiting the
error control to certain components only, or by trying to choose ϕ0 parallel
to u(T )−U(T ), which we approximate as Uh(T )−UH(T ) with Uh(T ) and
UH(T ) being approximations computed with two different tolerances.

161.5 Adaptive Time Step Control for cG(1)

We recall the basic error estimate (220.5):

‖u(T )− U(T )‖ ≤ Sc(T ) max
0≤t≤T

‖k(t))R(t)‖, (161.12)

where R(t) = U̇(t)− f(U(t)) and we assume that the stability factor S(T )
has been computed or estimated. We will return to this issue below. To
achieve ‖u(T ) − U(T )‖ ≤ TOL, we use (220.5) to choose the time steps
kn = tn − tn−1 so that

k(t) = kn ≈ TOL

Sc(T )Rn
for t ∈ [tn−1, tn), (161.13)

where
Rn = max

tn−1≤t≤tn
‖U̇(t)− f(U(t))‖

is the residual on the time interval [tn−1, tn). Note that the residual Rn
is computable from the computed solution U(t) and if Sc(T ) is known,
timestepalg gives an equation for the time step kn = tn− tn−1, where tn−1

already known. As with adaptive numerical quadrature, (220.9) yields a
nonlinear equation for the time step kn = tn − tn−1 that we can seek
to solve using some form of trial-and-error strategy or by prediction, e.g.
replacing Rn by Rn−1.

161.6 Analysis of cG(1) for a Linear Scalar IVP

We shall now prove an a posteriori error estimate for cG(1) for a a linear
scalar IVP of the form

u̇(t) = au(t) + f(t) for t > 0, u(0) = u0, (161.14)
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where a is a constant and f(t) is a given function. The analysis is based
on representing the error in terms of the solution ϕ(t) of the following dual
problem: {

−ϕ̇ = aϕ for T > t ≥ 0,

ϕ(T ) = e(T ),
(161.15)

where e = u − U . Note again that (220.11) runs “backwards” in time
starting at time tN and that the time derivative term ϕ̇ has a minus sign.
We start from the identity

|e(T )|2 = |e(T )|2 +
∫ T

0

e (−ϕ̇− aϕ) dt,

and integrate by parts to get the following representation of |e(T )|2,

|e(T )|2 =

∫ T

0

(ė− ae)ϕdt+ e(0)ϕ(0),

where we allow U(0) to be different from u(0), corresponding to an error
in the initial value u(0). Since u solves the differential equation (220.10),
that is u̇+ au = f , we have

ė− au = u̇− au− U̇ + aU = f − U̇ + aU,

and thus we obtain the following representation of the error |e(T )|2 in terms
of the residual R(U) = U̇ − aU − f and the dual solution ϕ ,

|e(T )|2 =

∫ T

0

(f + aU − U̇)ϕdt+ e(0)ϕ(0) = −
∫ tN

0

R(U)ϕdt+ e(0)ϕ(0).

(161.16)
Next, we use the Galerkin orthogonality of cG(1),

∫ tn

tn−1

R(U) dt = 0 for n = 1, 2, ...,

to rewrite (220.12) as

e(T )2 = −
∫ T

0

R(U)(ϕ− ϕ̄) dt+ e(0)ϕ(0), (161.17)

where ϕ̄ is the mean-value of ϕ over each time interval, that is

ϕ̄(t) =
1

kn

∫ tn

tn−1

ϕ(s) ds for t ∈ [tn−1, tn).

We shall now use ∫

In

|ϕ− ϕ̄| dt ≤ kn

∫

In

|ϕ̇| dt,
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which follows by integration from the facts that

ϕ(t)− ϕ̄(t) =
1

kn

∫ tn

tn−1

(ϕ(t)− ϕ(s)) ds,

and

|ϕ(t)− ϕ(s)| ≤
∫ t

s

|ϕ̇(σ)| dσ ≤
∫ tn

tn−1

|ϕ̇(σ)| dσ for s, t ∈ [tn−1, tn].

Thus, (220.13) implies

|e(T )|2 ≤
N∑

n=1

Rn

∫

In

|ϕ− ϕ̄|dt+ |e(0)||ϕ(0)|

≤
N∑

n=1

knRn

∫

In

|ϕ̇|dt+ |e(0)||ϕ(0)|,
(161.18)

where
Rn = max

tn−1≤t≤tn
|R(U(t))|.

Bringing out the max of knRn over n, we get

|e(T )|2 ≤ max
1≤n≤N

knRn

∫ tN

0

|ϕ̇| dt+ |e(0)||ϕ(0)|.

Recalling that ϕ(T ) = e(T ) and using the definitions of Sc(tN ) and Sd(tN ),
we get the following final estimate,

|e(T )| ≤ Sc(T ) max
0≤t≤T

|k(t)R(U(t))|+ Sd(T )|e(0)|.

The stability factors Sc(T ) and Sd(T ) measure the effects of the accu-
mulation of error in the approximation. To give the analysis a quantitative
meaning, we have to give a quantitative bound of this factor. The following
lemma gives an estimate for Sc(T ) and Sd(T ) in the cases a ≤ 0 and the
case a ≥ 0 with possibly vastly different stability factors. We notice that
the solution ϕ(t) of (220.11) is given by the explicit formula

ϕ(t) = e(T ) exp(a(T − t)).

We see that if a ≤ 0, then the solution ϕ(t) decays as t decreases from T ,
and the case a ≤ 0 is thus the “stable case”. If a > 0 then the exponential
factor exp(aT ) enters, and depending on the size of a this case is “unstable”.
More precisely, we conclude directly from the explicit solution formula that

Lemma 161.1 The stability factors Sc(T ) and Sd(T ) satisfy if a > 0,

Sd(T ) ≤ exp(aT ), Sc(T ) ≤ exp(aT ), (161.19)

and if a ≤ 0, then
Sd(T ) ≤ 1, Sc(T ) ≤ 1. (161.20)
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161.7 Analysis of cG(1) for a General IVP

The extension of the a posteriori error analysis to a general IVP u̇ = f(u)
with f : Rd → Rd goes as follows. We recall that the linearized dual problem
takes the form

− ϕ̇(t) = A⊤(t)ϕ(t) for 0 < t < T, ϕ(T ) = e(T ), (161.21)

with

A(t) =

∫ 1

0

f ′(su(t) + (1 − s)U(t)) ds,

where u(t) is the exact solution and U(t) the approximate solution. We
now use the fact that

A(t)e(t) =

∫ 1

0

f ′(su(t) + (1 − s)U(t))e(t) ds

=

∫ 1

0

d

ds
f(su(t) + (1− s)U(t)) ds = f(u(t))− f(U(t)),

(161.22)

where we used the Chain rule and the Fundamental Theorem of Calculus.
We start from the identity

‖e(T )‖2 = ‖e(T )‖2 +
∫ T

0

e · (−ϕ̇−A⊤ϕ) dt,

and integrate by parts to get the error representation,

‖e(T )‖2 =
∫ T

0

(ė −Ae) · ϕdt+ e(0) · ϕ(0),

where we allow U(0) to be different from u(0), corresponding to an error in
the initial value u(0). Since u solves the differential equation u̇− f(u) = 0,
(220.18) implies

ė −Ae = u̇− f(u)− U̇ + f(U) = −U̇ + f(U),

and thus we obtain the following representation of the error ‖e(T )‖2 in
terms of the residual R(U) = U̇ − f(U) and the dual solution ϕ,

‖e(T )‖2 = −
∫ tN

0

R(U)ϕdt+ e(0)ϕ(0). (161.23)

From this point, the proof proceeds just as in the scalar case considered
above and we thus obtain the following a posteriori error estimate

‖e(T )‖ ≤ Sc(T ) max
0≤t≤T

‖k(t)R(U(t))‖+ Sd(T )‖e(0)‖,
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which can be used a basis for adaptive time step control as described above.
The stability factors Sc(T ) and Sd(T ) may be estimated by solving the
dual problem with suitable initial data. The proof of the a posteriori error
estimate shows that the stability factors may be defined by

Sd(T ) =
‖ϕ(0)‖
‖e(T )‖ ,

Sc(T ) =

∫ T
0
‖ϕ̇(s)‖ ds
‖e(T )‖ ,

(161.24)

where ϕ solves the linearized dual problem with initial data ϕ(T ) = e(T ).
As indicated, to compute the stability factors Sd(T ) and Sc(T ), we may
solve the dual problem with some estimation of e(T ) obtained by solving
the initial value problem with two tolerances and approximating e(T ) by
the difference of the corresponding approximate solutions. Alternatively,
choosing ϕ(T ) = ei, we obtain a posteriori error control for error component
ei(T ). If d is not large, we may this way control all components of the error,
and if d is large, we may choose a couple different i at random.
The size of the stability factors indicate the degree of stability of the

solution u(t) being computed. If the stability factors are large, the residuals
R(U(t) and e(0) have to be made correspondingly smaller by choosing
smaller time steps and the computational problem is more demanding.

161.8 Analysis of Backward Euler for a General
IVP

We now derive an a posteriori error estimate for the backward Euler method
for the IVP (219.1):

U(tn) = U(tn−1) + knf(U(tn)), n = 1, 2, ..., N, U(0) = u0.

We associate a function U(t) defined on [0, T ] to the function values U(tn),
n = 0, 1, ..., N, as follows:

U(t) = U(tn) for t ∈ (tn−1, tn].

In other words, U(t) is piecewise constant on [0, T ] and takes the value
U(tn) on (tn−1, tn], and thus takes a jump from the value U(tn−1) to the
value U(tn) at the time level tn−1.
We can now write the backward Euler method as,

U(tn) = U(tn−1) +

∫ tn

tn−1

f(U(t)) dt,
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or equivalently

U(tn) · v = U(tn−1) · v +
∫ tn

tn−1

f(U(t)) · v dt, (161.25)

for all v ∈ Rd. This method os also referred to as dG(0), that is the dis-
continuous Galerkin method of order zero, corresponding to approximating
the exact solution by a piecewise constant function U(t) satisfying the or-
thogonality condition (220.21).
We are now ready to derive an a posteriori error estimate following the

same strategy as for the cG(1) method. We start from the identity

‖e(T )‖2 = ‖e(T )‖2 +
N∑

n=1

∫ tn

tn−1

e · (−ϕ̇−A⊤ϕ) dt,

and integrate by parts on each subinterval (tn−1, tn) to get the following
error representation,

‖e(T )‖2 =
N∑

n=1

∫ tn

tn−1

(ė−Ae) · ϕdt

−
N−1∑

n=2

(U(tn)− U(tn−1))ϕ(tn−1),

where the last term results from the jumps of U(t) at the the nodes t = tn−1

and we assume U(0) = u(0) for simplicity. Since u solves the differential
equation u̇− f(u) = 0, (220.18) and the fact that U̇ on (tn−1, tn) imply

ė−Ae = u̇− f(u)− U̇ + f(U) = −U̇ + f(U) = f(U) on (tn−1, tn),

and thus we obtain

‖e(T )‖2 = −
N−1∑

n=2

(U(tn)− U(tn−1))ϕ(tn−1) +

∫ tN

0

f(U)ϕdt.

Using (220.21) with v = ϕ̄, the mean value of ϕ as above, we get

‖e(T )‖2 = −
N−1∑

n=2

(U(tn)− U(tn−1)) · (ϕ(tn−1)− ϕ̄(tn−1))

+

n∑

n=1

∫ tn

tn−1

f(U)(ϕ− ϕ̄) dt.

We note that ∫ tn

tn−1

f(U)(ϕ− ϕ̄) dt = 0,
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since f(U(t)) is constant on (tn−1, tn], and ϕ̄ is the mean value of ϕ, and
thus the error representation takes the final form

‖e(T )‖2 = −
N−1∑

n=2

(U(tn)− U(tn−1)) · (ϕ(tn−1)− ϕ̄(tn−1)).

Using

‖ϕ(tn−1)− ϕ̄(tn−1)‖ ≤
∫ tn

tn−1

‖ϕ̇(t)‖ dt,

we obtain the following a posteriori error estimate for the backward Euler
method ,

‖e(T )‖ ≤ Sc(T ) max
1≤n≤N

‖U(tn))− U(tn−1))‖. (161.26)

Note the very simple form of this estimate involving the jumps ‖U(tn)) −
U(tn−1))‖ playing the role the residual. The a posteriori error estimate
(220.22) can be used as a basis for an algorithm for adaptive time step
control of the following form: for n = 1, 2, ..., choose kn so that

‖U(tn))− U(tn−1))‖ ≈ TOL

Sc(T )
.

161.9 Stiff Initial Value Problems

A stiff initial value problem u̇ = f(u) may be characterized by the fact
that the stability factors Sd(T ) and Sc(T ) are of moderate size even for
large T , while the norm of the linearized operator f ′(u(t)) is large, that
is the Lipschitz constant Lf is very large. Such initial value problems are
common for example in models of chemical reaction with reactions on a
range of time scales from slow to fast. Typical solutions include so-called
transients where the fast reactions make the solution change quickly over a
short (initial) time interval, after which the fast reactions are ”burned out”
and the slow reactions make the solution change on a longer time scale.
The prototype of a stiff initial value problem has the form

u̇ = f(u) ≡ −Au for t > 0, u(t) = u0 = (u0i ), (161.27)

where A is a constant symmetric positive semidefinite d × d matrix with
non-negative eigenvalues λi ranging from zero to large positive values. Ac-
cordingly, the norm of the matrix A is large and Lf is large. By diago-
nalization, we may reduce to the case when A is a diagonal matrix with
non-negative diagonal elements λi, in which case the solution u(t) = (ui(t))
is given by

ui(t) = exp(−λi t)u0i for t > 0, (161.28)
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with u0 = (u0i ). This explicit solution formula shows that a component
ui(t) corresponding to a large positive eigenvalue λi decays very quickly to
zero, while a component with a small eigenvalue stays almost constant for
a long time and eventually decays to zero. The sign of the eigenvalues is
evidently crucial: if some λi was negative, then the corresponding solution
component would explode exponentially more or less quickly depending on
the size of λi. In particular, (220.24) with the λi non-negative implies

‖u(t)‖ ≤ ‖u0‖ for t > 0, (161.29)

which indicates a form of stability with stability factor equal to 1 in the
sense that the norm of the solution does not increase in time.
The dual problem corresponding to (220.23) takes the form

−ϕ̇+Aϕ = 0 for T > t > 0, ϕ(T ) = ψ,

with ψ given data at time t = T . As a counterpart of (220.25), we conclude
that Sd(T ) ≤ 1. We can similarly show that Sc(T ) grows very slowly with
increasing T . We sum up: (220.23) represents a stiff problem; stability fac-
tors are of moderate size even for large T while the norm of the (linearized)
operator A is large.
From numerical point of view, stiff problems may seem particularly

friendly since the stability factors grow very slowly with time, but there is
one hook that has attracted a lot of attention in the literature on numer-
ical methods for initial value problems, namely the failure of an explicit
method like the forward Euler method. We write this method for the equa-
tion u̇ = −Au in the form

Un = Un−1 − knAU
n−1

with Un an approximation of u(tn) and 0 = t0 < t1 < ... an increasing
sequence of time levels, and kn = tn − tn−1. If A is diagonal with diagonal
elements λi ≥ 0, then

Uni = (1− knλi)U
n−1
i

and if λi is large positive, then |1 − knλi| may be much larger than 1
unless the time step kn is sufficiently small (kn ≤ 2/|λi| for all i) and
the the numerical solution will then quickly explode to infinity, while the
corresponding exact solution quickly decays to zero. The explicit Euler
method will thus give completely wrong results unless sufficiently small
time steps are used. This may lead to very inefficient time-stepping since
after the transients have died out, the solution may vary only slowly and
large time steps would be desirable. We note that the time step limit kn ≤
2/|λi| for all i, is set by the largest eigenvalue maxλi, while the time long-
time scale is set by the smallest eigenvalue min λi, so that if the quotient
maxλi/minλi is large (which signifies a stiff problem), then explicit Euler
would be inefficient outside transients.
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On the other hand, the dG(0), or implicit Euler method,

Un + knAU
n = Un−1

with

Uni = (1 + knλi)
−1Un−1

i

will be stable and work very well without step size limitation because 1 +
knλi ≥ 1 for all λi ≤ 0.
For the cG(1)-method, we will have

Uni =
1− knλi
1 + knλi

Un−1
i

and stability prevails because

|1− knλi
1 + knλi

| ≤ 1

for all λi ≥ 0.
We conclude that both dG(0) and cG(1) may be used for stiff problems,

but both these methods are implicit and require the solution of system of
equations at each time step. More precisely, dG(0) for a problem of the
form u̇ = f(u) takes the form

Un − knf(U
n) = Un−1.

At each time step we have to solve an equation of the form v − knf(v) =
Un−1 with Un−1 given. To this end we may try a damped fixed point
iteration in the form

v(m) = v(m−1) − α(v(m−1) − knf(v
(m−1))− Un−1),

with α some suitable matrix (or constant in the simplest case). Choosing
α = I, and iterating once with v0 = 0 corresponds to the explicit Euler
method. Convergence of the fixed point iteration requires that

‖I + knαf
′(v)‖ < 1

for relevant values of v, which could force α to be small (e.g. in the stiff
case with f ′(v) having large negative eigenvalues) and result in slow con-
vergence. A first try could be to choose α to be a diagonal matrix with
αi = (f ′

ii)(v
m−1))−1 (corresponding to diagonal scaling) and hope that the

number of iterations would not be too large. In some cases more efficient
iterative solvers would have to be used.
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161.10 On Explicit Time-Stepping for Stiff
Problems

We just learned that explicit time-stepping for stiff problems require small
time steps outside transients and thus may be inefficient. We shall now indi-
cate a way to get around this limitation through a process of stabilization,
where a large time step is accompanied by a couple of small time steps.
The resulting method has similarities with the control system of a modern
(unstable) jet fighter like the Swedish JAS Gripen, the flight of which is
controlled by quick small flaps of a pair of small extra wings ahead of the
main wings, or balancing a stick vertically on the finger tips if we want a
more domestic application.
We shall now explain the basic (simple) idea of the stabilization and

present some examples, as illustrations of fundamental aspects of adap-
tive IVP-solvers and stiff problems. Thus to start with, suppose we apply
explicit Euler to the scalar problem

u̇(t) + λu(t) = 0 for t > 0.

u(0) = u0,
(161.30)

with λ > 0 taking first a large time step K satisfying Kλ > 2 and then m
small time steps k satisfying kλ < 2, to get the method

Un = (1 − kλ)m(1−Kλ)Un−1, (161.31)

altogether corresponding to a time step of size kn = K+mk. Here K gives
a large unstable time step with |1−Kλ| > 1 and k is a small time step with
|1 − kλ| < 1. Defining the polynomial function p(x) = (1 − θx)m(1 − x),
where θ = k

K , we can write the method (220.27) in the form

Un = p(Kλ)Un−1.

For stability we need

|p(Kλ)| ≤ 1, that is |1− kλ|m(Kλ− 1) ≤ 1,

or

m ≥ log(Kλ− 1)

− log |1− kλ| ≈ 2 log(Kλ), (161.32)

with c = kλ ≈ 1/2 for definiteness.
We conclude that m may be quite small even if Kλ is large, since the

logarithm grows so slowly, and then only a small fraction of the total time
would be spent on stabilizing time-stepping with the small time steps k.
To measure the efficiency gain we introduce

α =
1 +m

K + km
∈ (1/K, 1/k),
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which is the number of time steps per unit interval with stabilized explicit
Euler method, and by (220.28)) we have

α ≈ 1 + 2 log(Kλ)

K + log(Kλ)/λ
≈ 2λ

log(Kλ)

Kλ
≪ 2λ, (161.33)

for Kλ≫ 1. On the other hand, the number of time steps per unit interval
for the usual explicit Euler is

α0 = 1/k = λ/2, (161.34)

choosing a maximum time step k = 2/λ.
The cost reduction factor using the stabilized explicit Euler method

would thus be

α

α0
≈ 4 log(Kλ)

Kλ

which can be quite significant for large values of Kλ.
We now present some examples using an adaptive cg(1) IVP-solver in

stabilized explicit form with just a few iterations in each time step, which
allows large time steps. In all problems we note the initial transient, where
the solution components change quickly, and the oscillating nature of the
time step sequence outside the transient with large time steps followed by
some small stabilizing time steps.

Example 161.1. We apply the indicated method to the scalar problem
equation (220.26) with u0 = 1 and λ = 1000, and display the result in
Figure 220.1. The cost reduction factor with comparison to a standard
explicit method is large: α/α0 ≈ 1/310.

Example 161.2. We now consider the 2× 2 diagonal system

u̇(t) +

(
100 0
0 1000

)
u(t) = 0 for t > 0,

u(0) = u0,

(161.35)

with u0 = (1, 1). There are now two eigenmodes with large eigenvalues
that have to be stabilized. The cost reduction is α/α0 ≈ 1/104.

Example 161.3. The is the so-called HIRES problem (“High Irradi-
ance RESponse”) from plant physiology which consists of the following
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FIGURE 161.1. Solution and time step sequence for eq. (220.26), α/α0 ≈ 1/310.
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FIGURE 161.2. Solution and time step sequence for eq. (220.31), α/α0 ≈ 1/104.
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eight equations:





u̇1 = −1.71u1 + 0.43u2 + 8.32u3 + 0.0007,
u̇2 = 1.71u1 − 8.75u2,
u̇3 = −10.03u3 + 0.43u4 + 0.035u5,
u̇4 = 8.32u2 + 1.71u3 − 1.12u4,
u̇5 = −1.745u5 + 0.43u6 + 0.43u7,
u̇6 = −280.0u6u8 + 0.69u4 + 1.71u5 − 0.43u6 + 0.69u7,
u̇7 = 280.0u6u8 − 1.81u7,
u̇8 = −280.0u6u8 + 1.81u7,

(161.36)
together with the initial condition u0 = (1.0, 0, 0, 0, 0, 0, 0, 0.0057). We
present the solution and the time step sequence in Figure 220.3. The
cost is now α ≈ 8 and the cost reduction factor is α/α0 ≈ 1/33.
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FIGURE 161.3. Solution and time step sequence for eq. (220.32), α/α0 ≈ 1/33.

Example 161.4. The “Chemical Akzo-Nobel” problem consists of the
following six equations:





u̇1 = −2r1 + r2 − r3 − r4,
u̇2 = −0.5r1 − r4 − 0.5r5 + F,
u̇3 = r1 − r2 + r3,
u̇4 = −r2 + r3 − 2r4,
u̇5 = r2 − r3 + r5,
u̇6 = −r5,

(161.37)
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where F = 3.3 · (0.9/737 − u2) and the reaction rates are given by
r1 = 18.7 ·u41

√
u2, r2 = 0.58 ·u3u4, r3 = 0.58/34.4 ·u1u5, r4 = 0.09 ·u1u24

and r5 = 0.42 ·u26
√
u2. We integrate over the interval [0, 180] with initial

condition u0 = (0.437, 0.00123, 0, 0, 0, 0.367). Allowing a maximum time
step of kmax = 1 (chosen arbitrarily), the cost is only α ≈ 2 and the cost
reduction factor is α/α0 ≈ 1/9. The actual gain in a specific situation
is determined by the quotient between the large time steps and the
small damping time steps, as well as the number of small damping
steps that are needed. In this case the number of small damping steps
is small, but the large time steps are not very large compared to the
small damping steps. The gain is thus determined both by the stiff
nature of the problem and the tolerance (or the size of the maximum
allowed time step).
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FIGURE 161.4. Solution and time step sequence for eq. (220.33), α/α0 ≈ 1/9.

Example 161.5. We consider now Van der Pol’s equation:

ü+ µ(u2 − 1)u̇+ u = 0,

which we write as {
u̇1 = u2,
u̇2 = −µ(u21 − 1)u2 − u1.

(161.38)

We take µ = 1000 and solve on the interval [0, 10] with initial condition
u0 = (2, 0). The time step sequence behaves as desired with only a small
portion of the time spent on taking small damping steps. The cost is
now α ≈ 140 and the cost reduction factor is α/α0 ≈ 1/75.
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FIGURE 161.5. Solution and time step sequence for eq. (220.34), α/α0 ≈ 1/75.

Chapter 161 Problems

161.1. Compute the stability factors Sd(T ) and Sc(T ) for the linear scalar IVP
u̇(t) = −λ(t)u(t) for t > 0, u(0) = u0, where λ(t) depends on time t and (a)
λ(t) ≥ 0, (b) λ(t) < 0.

161.2. Compute Sd(T ) and Sc(T ) for the linear 2×2 system u̇1 = u2, u̇2 = −u1

for t > 0, u(0) = u0.

161.3. Implement adaptive IVP-solvers based on dG(0) and cG(1) and apply
the solvers to different problems.

161.4. Show that the a posteriori error estimate for cG(1) may be written on the
form ‖e(T )‖ ≤ Sc(T )max0≤t≤T ‖k(t)(f(U(t)) − f̄(U(t)))‖+ Sd(T )‖e(0)‖, where
f̄(U(t)) is the mean-value of f(U(t)) over each time interval.

161.5. Show that choosing in the dual problem ϕ(T ) = ei gives control of error
component ei(T ).

161.6. Develop explicit versions of dG(0) and cG(1) based on fixed point itera-
tion at each time step. Show that with diagonal scaling such an explicit method
may work very well for some stiff problems.
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162
General Galerkin G2

All government, indeed every human benefit and enjoyment,
every virtue, and every prudent act, is founded on compromise
and barter. (Edmund Burke)

The art of doing mathematics consists in finding that special
case which contains all the germs of generality. (David Hilbert)

Mathematics as an expression of the human mind reflects the
active will, the contemplative reason, and the desire for aes-
thetic perfection. Its basic elements are logic and intuition, anal-
ysis and construction, generality and individuality. (Richard
Courant)

We have seen that FEM as Galerkin’s method with piecewise polynomials
requires a modification to work well for convection-dominated problems
arising in fluid mechanics. Galerkin’s method for a differential equation on
a domain Ω written as

A(u) = f (162.1)

takes the form: Find u ∈ Vh such that

(A(u)− f, v) = 0 for all v ∈ Vh, (162.2)

where

(v, w) =

∫

Ω

vw ds,
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FIGURE 162.1. General Galerkin.

and we may think of Vh as the linear space of continuous piecewise linear
functions on a triangulation of Ω.
We may compare with a Least-Squares Method of the form: Find u ∈ Vh

such that

‖A(u)− f‖2 ≤ ‖A(v)− f‖2 for all v ∈ Vh, (162.3)

where

‖v‖2 = (v, v),

that is, u ∈ Vh minimizes the residual A(u) − f in the norm ‖ · ‖. If A(u)
is linear in u, then Least Squares minimization is expressed as

(A(u)− f,A(v)) = 0 for all v ∈ Vh. (162.4)

We can say that Galerkin’s method seeks to make the residual R(u) ≡
A(u) − f small in a weak sense of (162.2) asking the residual R(u) to be
orthogonal to Vh, while the Least Squares Method (247.3) seeks to make
R(u) in a strong sense of the norm ‖ · ‖.
It turns out that Galerkin’s method is too weak for some problems and

that Least Squares is too strong in general. Luckily a certain weighted
combination turns out to be just right. If A(u) is linear then this fortunate
combination, which we refer to as General Galerkin or in short G2, takes
the form: Find u ∈ Vh such that

(A(u)− f, v) + δ(A(u)− f,A(v)) = 0 for all v ∈ Vh, (162.5)

where δ ≈ h appears as a weight on the least squares term.

http://en.wikipedia.org/wiki/Boris_Galerkin
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For the basic convection equation u′ = f , choosing δ = h
2 turns the

central difference quotient approximation of u′ of Galerkin’s method, into
a G2 upwind difference quotient:

ui+1 − ui−1

2h
− h

2

ui+1 − 2ui + ui−1

h2
=
ui − ui−1

h
(162.6)

corresponding to applying Galerkin’s method to the modified equation

u′ − h

2
u′′ = f − h

2
f ′ (162.7)

with a stabilizing diffusion term −h
2u

′′ on the left hand side, compensated

by the corresponding force −h
2 f

′.
In short, G2 is compromise beween the too weak Scylla of Galerkin and

the too strong Carybdis of Least Squares. For diffussion-dominated prob-
lems, Galerkin works fine (G2 with δ = 0), while G2 with δ ≈ h works fine
for convection-dominated problems.
To automate mathematical modeling based on differential equations, we

need an efficient method for discretizing the differential equations arising
in applications. G2 fills this need, and serves as a basis of FEniCS.
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FIGURE 162.2. Pooh contemplating variational formulation of FEM.
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163
Error Control by Duality

Light and matter are both single entities, and the apparent
duality arises in the limitations of our language. (Heisenberg)
(Convincing?)

163.1 Galerkin Method

Consider a Galerkin method of the form: Find u ∈ Vh such that

(Au, v) = (f, v) for all v ∈ Vh, (163.1)

where A is a differential operator, f a given forcing and (·, ·) a relevant
scalar product.

163.2 Output Error

Suppose we want to estimate the error in the output (u, ψ), where ψ is a
given weight function, as compared the to the output (ū, ψ) of a fictitious
fine-grid solution
baru with zero residual R(ū) = Aū − f = 0, in terms of the computable
residual R(u) = Au− f .
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163.3 Error Representation by Duality

Let ϕ satisfy A⊤ϕ = ψ and consider the following identity:

(u− ū, ψ) = (u − ū, A⊤ϕ) = (Au−Aū, ϕ) = (Au − f, ϕ) = (R(u), ϕ),
(163.2)

which proves the following error representation

(u− ū, ψ) = (R(u), ϕ), (163.3)

expressing the output error (u− ū, ψ) in terms of the residual R(u) and the
dual solution ϕ.

163.4 Galerkin Orthogonality

The Galerkin equation (163.1) expresses the Galerkin orthogonality

(R(u), v) = 0 for all v ∈ Vh, (163.4)

which we now use to rewrite (163.3) as a refined error representation in the
form

(u− ū, ψ) = (R(u), ϕ− ϕh), (163.5)

where ϕh is an interpolant of ϕ. Assuming that the interpolation error
ϕ− ϕh can be estimated as

‖ϕ− ϕh‖ ≤ Ci‖hDϕ‖, (163.6)

where ‖v‖ =
√
(v, v) and Dϕ measures first-order derivatives of ϕ and Ci

is an interpolation constant, we obtain using Cauchy’s inequality

|(u − ū, ψ)| ≤ Ci‖Dϕ‖‖hR(u)‖. (163.7)

If we now assume that
‖Dϕ‖ ≤ S, (163.8)

where S is referred to as a stability constant, then the a posteriori error
estimate takes the concrete form

|(u− ū, ψ)| ≤ S‖hR(u)‖, (163.9)

where we included the interpolation constant in S.
Finally, by computing S by solving the dual problem (typically on the

same mesh as that underlying Vh) and directly evaluating ‖Dϕ‖ for the
corresponding solution ϕ, we obtain a concrete estimate of the output error
in terms of S‖hR(u)‖, where the presence of the factor h multiplying the
residual R(u) is the payoff of using a Galerkin method.
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164
Tools and Perspective

I want to describe an unrealistic reality in a realistic way. (Fernando Botero)

A painted landscape is always more beautiful than a real one,
because there’s more there. Everything is more sensual, and
one takes refuge in its beauty. And man needs spiritual expres-
sion and nourishing. It’s why even in the prehistoric era, people
would scrawl pictures of bison on the walls of caves. Man needs
music, literature, and painting-all those oases of perfection that
make up art-to compensate for the rudeness and materialism of
life. (Fernando Botero)

In World of Games you have constructed simulations and simulators
mainly based on particle-spring models. We now expand the scope to in-
clude differential equation models using the following basic tools:

• mathematical modeling of physical phenomemna by differential equa-
tions,

• G2 for computational solution of differential equations,

• FEnICS/Unicorn as realization of G2.

Ultimately, all models of physical reality can be seen as different forms of
particle-mass models, because physics ultimately consists of (some form of)
particles interacting by (some form of) forces.
In particular, a differential equation model becomes a discrete particle-

mass model after discretization by FEM. The advantage of using this

http://www.boterosa.org/
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methodology is that the assignment of particle masses and spring con-
stants (related to a given mesh), is automatized by G2 from a differential
equation model with few material parameters.
In direct particle-spring modeling, on the other hand, spring constants

and particle masses have to be specified manually, which can be very time-
consuming.
Differential equation models automatically discretized by G2 thus offer

a very efficient tool for simulation, because differential equations express
basic laws understandable to humans often with few material parameters,
yet allow a very rich output. This is nothing but Leibniz’:

• Best of all Possible Worlds = most complex world governed by most
simple laws.

We shall now illustrate some of the capabilities with focus on phenomena
of fluid and stucture/solid dynamics including fluid-structure interaction.
As illustration we shall consider the following activities:

1. flying (fluid, fluid-structure)

2. sailing (fluid, fluid-structure)

3. jumping (structure)

4. shooting (fluid)

5. speaking (fluid-structure acoustics)

6. predicting weather and climate.

With this inspiration you will be able to construct simulators (and related
games if you want) for a very large variety of applications.



164. Tools and Perspective 801

FIGURE 164.1. Combined digital and mechanical simulator.
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165
Flying

165.1 To Read

• Why It Is Possible to Fly

• Why Paragliding Is Possible

• Why Birds Can Fly

• Why Bumblebees Can Fly

• Why Wingsuit Flying Is Possible

165.2 To Browse

• The Mathematical Secret of Flight

• Mathematical Theory of Flight

165.3 Watch

• Early attempts

• Wingsuit flying

http://knol.google.com/k/why-it-is-possible-to-fly
http://knol.google.com/k/why-paragliding-is-possible
http://knol.google.com/k/why-birds-can-fly
http://knol.google.com/k/why-bumblebees-can-fly
http://knol.google.com/k/claes-johnson/why-wingsuit-flying-is-possible/yvfu3xg7d7wt/43
http://www.nada.kth.se/~cgjoh/ambsflying.pdf
http://www.youtube.com/watch?v=iMhdksPFhCM
http://vimeo.com/moogaloop.swf?clip_id=1778399


804 165. Flying

• First take-off Airbus 380

• Simulated Airbus 380 landing

• Airplane spin

• Crash of JAS Gripen.

165.4 Model: Incompressible NS with Slip

Flight in air at subsonic speeds (up to say 300 km/s) is described by the
incompressible Navier-Stokes equations. G2 for incompressible NS is pre-
sented in Navier-Stokes: Quick and Easy and implemented in Unicorn. It
is natural to start by computing the flow of air around a fixed 3d wing
to find the distribution of forces on the wing surface at different angles of
attack. The results of the computations can be condensed into curves or
tables of lift, drag and pitching moment as functions of the angle of attack
and flight velocity.
The Reynolds number wings of airplanes (and bigger birds) is so large

(> 105) that a slip boundary condition can be used as simple model for a
turbulent boundary layer. Lift, drag and pitching moment can then be
computed on meshes with about 100.000 mesh-points, using e.g. FEn-
iCS/Unicorn.

165.5 Simulator Based on Lift/Drag Curves

A simple flight simulator can be designed from the lift/drag/moment curves
of a single wing.

165.6 Direct Simulation

A more advanced simulator for extreme operations like take-off and land-
ing at maximal angle of attack, and dynamics of spin et cet, requires
real-time solution of the NS-equations. For this purpose you can use FEn-
iCS/Unicorn.

165.7 Flapping Wings

Extend to flapping wing using fluid-structure modeling.

http://www.youtube.com/watch?v=0PVizo6XuEo
http://www.youtube.com/watch?v=kTKm4sYcq_c&feature=related
http://www.youtube.com/watch?v=52bDpVlQ09o
http://www.youtube.com/watch?v=RpJpH57XZ2g&feature=related
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FIGURE 165.1. Forces on an airplane

FIGURE 165.2. In the cockpit.
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FIGURE 165.3. Forces on a glider.

FIGURE 165.4. Hang glider.
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FIGURE 165.5. Forces on bird in flight.

165.8 Bird/Insect Flight

Watch:

• Why Birds Can Fly

• Bird Flight Slow Motion

• Blender Bird Wing Test

Construct a simulator for gliding and flapping flight of small and large
birds and insects, using e.g. FEniCS/Unicorn for fluid-structure interaction.
Determine if a bumble bee can fly.

http://knol.google.com/k/why-birds-can-fly
http://www.youtube.com/watch?v=c4uS7NL4tu8
http://www.youtube.com/watch?v=yNMRP05jK1E&feature=related
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166
Sailing

166.1 To Read

• Why It Is Possible to Sail

166.2 To Browse

• Sailing 1

• sailing 2

166.3 Watch

• Americas Cup 1930 vs 2010

• Alinghi vs Oracle 2010

• Americas Cup start tactics at Turning Torso

• Volvo Ocean Race

http://knol.google.com/k/why-it-is-possible-to-sail
http://www.youtube.com/watch?v=tdfKmzBLB1I
http://www.youtube.com/watch?v=lxcF7utm7zI
http://www.youtube.com/watch?v=b2LfvPuxaHo
http://www.youtube.com/watch?v=4-PpU8MUbHE&feature=related
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FIGURE 166.1. Vasa tipping over. Why?

166.4 Fluid Dynamics of Sailing

The sail and keel of a sailboat both act as wings creating lift which powers a
sailboat to overcome drag from sail, keel and hull, and in particular makes
it possible to sail upwind. Compare Sailing Game.

166.5 Model: Incompressible NS with Slip

Both the flow of air and water can be modeled by the incompressible Navier-
Stokes equations with slip boundary condition on the sail and hull com-
bined. Air and water can be modeled as a variable density fluid with the
free water surface represented by a transition zone from high to low density
(water).

166.6 Stability of Floating Bodies

The motion of the boat through the water is determined by bouyancy forces
connecting to Archimedes Principle and the forward thrust from the sail.
The stability of floating bodies (in 2d say) connects to the relative ho-

risontal motion of the of centers of gravity for the body and its submerged
part under tilting from horisontal forces (e.g. wind).
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The forces (and moments) acting on a floating body may be computed
by direct summation (integration) of gravity forces and fluid forces acting
on little pieces of the body, or from centers of gravity and bouyancy as just
indicated.

166.7 Simulator

Construct a Sailing Simulator using experience from designing a flight sim-
ulator. Start using given lift/drag curves for sail and keel, and take the
heeling into account using Archimedes principle. Follow up with real time
direct fluid-structure simulation e.g. using FEniCS/Unicorn.

166.8 Investigations

• Determine the performance of different designs of sail and hull.

• Why did Vasa tip over? Who was responsible for the design? Was
the instability a surprise? What was the verdict of the judiciary pro-
cess following the catastrophy? Was the ship “well built but badly
designed”?

166.9 BMW ORACLE Americas Cup 2010

The 33rd Americas Cup 2010 was won by the US challenger BMW ORACLE
with rigid wing-sail, see BMW ORCACLE vs ALINGHI. Can you explain
the outcome?

http://bmworacleracing.com/de/yacht/pdf/The_USA.pdf
http://claesjohnson.blogspot.com/2010/03/americas-cup-2010-bmw-oracle-wing-sail.html
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FIGURE 166.2. BMW ORACLE wins Americas Cup 2010.
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167
Jumping and Falling

If there be light, then there is darkness; if cold, heat; if height,
depth; if solid, fluid; if hard, soft; if rough, smooth; if calm,
tempest; if prosperity, adversity; if life, death. (Pythagoras)

167.1 To Watch

• Passive Fall of Cow

• Hexapod Simulator

• Walking Robot

• Walking Humanoid

• Humanoid Assistant

• High Jump Simulation

167.2 Passive Structure Dynamics

Model the passive dynamics of elastic bodies subject to gravity and contact
forces by using a Navier/Lagrange model. Passive dynamics means that no
interior extra forces, like muscle forces, are added.

http://www.csc.kth.se/~jjan/movies/stair1.mpg
http://www.youtube.com/watch?v=yH3_xz9uzP4
http://www.youtube.com/watch?v=ZIvLbvcQUvE
http://www.youtube.com/watch?v=Q94WKdn3uF8
http://www.youtube.com/watch?v=CETUmThm8Rg&feature=related
http://www.youtube.com/watch?v=0lIkekedpt0
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FIGURE 167.1. Gillian Murphy overcoming gravity in grand jete.

167.3 Active Structure Dynamics

Model active dynamics by inserting suitable interior (muscle) forces in the
above model.

167.4 Simulators

Construct a simulator for passive/active structure dynamics, e.g. using
FEniCS/Unicorn.

167.5 Investigation

• simulate ballet jump

• simulate high jump.
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168
Shooting

168.1 Spinning Balls

A spinning ball in flight will be subject to a lift force transversal to the
flight trajectory, which will add to the gravity force and give additional
curvature to the trajectory.
The flight of a spinning ball can be modeled by the (incompressible)

Navier-Stokes equations with a mixture of no-slip and slip boundary con-
ditions resulting in unsymmetric separation and lift.
Spinning balls are important in soccer, baseball, tennis, table-tennis...See

Why A Topspin Tennis Ball Curves Down.

168.2 Bow and Arrow

Model the action of bow and arrrow, with an elastic model of the bow and
a fluid model for the flight of the arrow.

168.3 Read More

• String Theory

http://knol.google.com/k/why-a-topspin-tennis-ball-curves-down


This is page 816
Printer: Opaque this



This is page 817
Printer: Opaque this

169
Racing

169.1 Watch

• Panda ODE Car

169.2 Simulator

Model the dynamics of a (stock-car) vehicle using a Navier/Lagrange elasto-
plastic model.

http://www.youtube.com/watch?v=a5Gy578goIQ&NR=1
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FIGURE 169.1. Cross road racing.
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170
Roulette and Chaos

170.1 To Watch

• Roulette wheel simulation

170.2 Simulator

A roulette is a mechanical system with outcome which is so difficult to pre-
dict that it can be used as a random number generator or chaos machine in
a game of chance. This is an effect of sensitive dependence of initial condi-
tions which means that very small changes in the way the ball is launched
in each play will change the final position of the ball. Over very many plays
we can expect that each of the 37 numbers will come up approximately with
a frequency of 1/37.
Construct a chaos machine e.g. as an elastic ball interacting with a jagged

solid surface.

170.3 Investigation

Is the motion chaotic?

http://www.youtube.com/watch?v=BfSceJEqZsM
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FIGURE 170.1. Roulette: Pointwise unpredictable, mean-value predicatble sys-
tem.
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171
Predicting Weather and Climate

171.1 To Read

• Global Circulation Models

• On Climate Sensitivity 1, 2, 3

171.2 To Watch

• Desktop climate simulation

• Supercomputer climate simulation

• Thermohaline circulation

• Global Circulation

• Atmospheric winds

• Coriolis forces.

171.3 Simulator

Construct a combined ocean-atmosphere simulator based on the Navier-
Stokes equations with the ocean incompressible and the atmosphere com-

http://claesjohnson.blogspot.com/2010/04/on-climate-sensitivity.html
http://claesjohnson.blogspot.com/2010/04/climate-sensitivity-2.html
http://claesjohnson.blogspot.com/2010/04/climate-sensitivity-3.html
http://www.youtube.com/watch?v=izCoiTcsOd8
http://www.youtube.com/watch?v=HTz2YZoRLIs
http://www.youtube.com/watch?v=FuOX23yXhZ8&feature=channel
http://www.youtube.com/watch?v=DHrapzHPCSA&feature=related
http://www.youtube.com/watch?v=HWFDKdxK75E&feature=related
http://www.youtube.com/watch?v=mcPs_OdQOYU&feature=related
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pressible subject to incoming radiative forcing and outgoing blackbody ra-
diation.

171.4 Investigation

Seek to determine climate sensitivity as the increase of global temperature
upon a doubling of CO2 in the atmosphere.
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Technology With

Simulation
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172
Reality of the Virtual

172.1 To Think About

• Reality of the Virtual vs Virtual Reality

http://knol.google.com/k/claes-johnson/reality-of-the-virtual-vs-virtual/yvfu3xg7d7wt/95
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173
Incompressible Navier-Stokes: Quick
and Easy

My attention was drawn to various mechanical phenomena, for the
explanation of which I discovered that a knowledge of mathematics
was essential. (Reynolds)

By this research it is shown that there is one, and only one, con-
ceivable purely mechanical system capable of accounting for all the
physical evidence, as we know it in the Universe. (Reynolds)

173.1 Introduction

The Navier-Stokes equations is the basic model for fluid flow and describe a
variety of phenomena in hydro and aero-dynamics, processing industry, bi-
ology, oceanography, geophysics, meteorology and astrophysics. Fluid flow
in all these applications usually contains features of both turbulent and
laminar flow, with turbulent flow being irregular with rapid fluctuations in
space and time and laminar flow being more organized. The basic question
of Computational Fluid Dynamics CFD is how to efficiently and reliably
solve the Navier-Stokes equations numerically for both laminar and turbu-
lent flow.
The Navier-Stokes equations is a system of nonlinear differential equa-

tions coupling the phenomena of convection and diffusion. Traditionally, the
study of the Navier-Stokes equations is separated into incompressible and
compressible flow, using different dependent variables: primitive variables
(velocity, pressure, temperature) for incompressible flow and conservation
variables (density, momentum, energy) for compressible flow. We focus in
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this chapter on the incompressible Navier-Stokes equations in the case of
constant density, viscosity and temperature, with the velocity and pres-
sure as variables. We present the cG(1)dG(0) finite element method with
cG(1) in space and dG(0) in time, and follow up with the corresponding
cG(1)dG(1) and cG(1)cG(1) methods. In Fig. 173.2 and Fig. 173.3 below
we show results from computations of two time-dependent bench-marks:
flow around a bluff body and flow in a channel with a back-ward facing
step.

173.2 The Incompressible Navier-Stokes Equations

The Navier-Stokes equations for an incompressible Newtonian fluid with
constant kinematic viscosity ν > 0, unit density and constant temperature
enclosed in a volume Ω in R3 with boundary Γ, take the form: find the
velocity/pressure (u, p) such that

∂u
∂t + (u · ∇)u − ν∆u+∇p = f in Ω× I,

∇ · u = 0 in Ω× I,
u = w on Γ× I,

u(·, 0) = u0 in Ω,

(173.1)

where u = (u1, u2, u3) is the velocity and p the pressure of the fluid and f ,
w, u0, I = (0, T ), is a given driving force, boundary data, initial data and
time interval, respectively. Recall that

∂v

∂t
+ (u · ∇)v =

∂v

∂t
+

3∑

i=1

ui
∂v

∂xi
(173.2)

is the particle derivative of a quantity v(x, t) measuring the rate of change
of v(x(t), t) with respect to time, that is the rate of change of v along
a trajectory x(t) of a fluid particle with velocity u(x, t), satisfying dx

dt =

u(x(t), t). In particular, ∂u∂t + (u · ∇)u is the acceleration (rate of change
of velocity) of a fluid particle. The expression ν∆u − ∇p represents the
total force on a fluid particle resulting from of viscous shear force and an
isotropic pressure. The first equation of (174.1), which is a vector equation

∂ui
∂t

+ (u · ∇)ui − ν∆ui +
∂p

∂xi
= fi, i = 1, 2, 3,

is the momentum equation expressing Newton’s second law stating that
the acceleration is proportional to the force, and the second equation ex-
presses the incompressibility condition. We consider here the case of Dirich-
let boundary conditions with the velocity u being prescribed on the bound-
ary Γ. Below we consider Neumann and Robin boundary conditions. Below
we will often write for short (u · ∇)u = u · ∇u.
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The linear Stokes equations are obtained omitting the nonlinear term
u ·∇u, which is possible if the velocity u is small, corresponding to creeping
flow.
The Reynolds number Re is defined by Re = uL

ν , where u represents a
velocity and and L a length scale characteristic of the flow. The size of
the Reynolds number is decisive. If Re ∼ 1, then the flow is very viscous, a
situation met in e.g. polymer flow or forming processes. In most applications
in areo/hydro-dynamics, Re is much larger than 1, often very large up to
106 or even larger. In these cases with small viscosity, the flow may be very
complex or turbulent.
There is a stationary analog of (174.1) assuming the solution to be in-

dependent of time along with the driving force and boundary data. A sta-
tionary solution normally arises as a limit of a time-dependent solution as
time tends to infinity, and this is often reflected in the computation of a
stationary solution through some kind of time-stepping until convergence.
For larger Reynolds numbers, stable stationary solutions in general do not
not exist.

173.3 The Basic Energy Estimate for Navier-Stokes

We now derive a basic stability estimate of energy type for the velocity u
of a (u, p) of Navier-Stokes equation (174.1) assuming for simplicity that
f = 0 and w = 0. Scalar multiplication of the momentum equation by u
and integration with respect to x gives

1

2

d

dt

∫

Ω

|u|2 dx + ν

3∑

i=1

∫

Ω

|∇ui|2 dx = 0,

because by partial integration (with boundary terms vanishing),

∫

Ω

∇p · u dx = −
∫

Ω

p∇ · u dx = 0

and ∫

Ω

(u · ∇)u · u dx = −
∫

Ω

(u · ∇)u · u dx−
∫

Ω

∇ · u|u|2 dx

so that ∫

Ω

(u · ∇)u · u dx = 0.

Integrating next with respect to time, we thus obtain the following basic
stability estimate for any time T > 0:

‖u(·, T )‖2 + 2ν

3∑

i=1

∫ T

0

‖∇ui‖2 dt = ‖u0‖2, (173.3)



830 173. Incompressible Navier-Stokes: Quick and Easy

where ‖ · ‖ denotes the L2(Ω)-norm. This estimate gives a bound on the
velocity with the second term on the left representing the dissipation from
the viscosity of the fluid. We see that the growth of this term over time
corresponds to a decrease of the velocity (momentum) of the flow.
The case of large Reynold’s number corresponding to small ν, with a nor-

malization of velocity and typical length scale to unit size, is of particular
interest with typically turbulent flows occuring. In laminar flow with small
viscosity the dissipation is small because velocity gradients are not large,
while in turbulent flow the dissipation is significant because the velocity
gradients are large corresponding to a decay of velocities in the case of no
driving forces.

FIGURE 173.1. Jacques-Louis Lions (1928-2001), founder of the French School of
Numerical Analysis:”...optimal control problems for distributed parameter sys-
tems modeled by partial differential equations obviously connect to fundamental
aspects of Body & Soul...”

173.4 Lions and his School

Jacques-Louis Lions (1929-2001), see Fig. 173.1, carried the strong French
mathematical tradition coupled to physics and mechanics through the sec-
ond half of the 20th century with important contributions to the theory
and practice of partial differential equations using tools from Functional
Analysis in the spirit of Sobolev. He created the French School of Numer-
ical Analysis, which boomed with the development of the finite element
method starting in the 1960s. Among many other things, Lions proved ex-
istence and uniqueness of solutions to the Navier-Stokes equations with a
regularizing viscosity modification as indicated below.
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173.5 Turbulence: Lipschitz with Exponent 1/3?

The mathematical modeling and simulation of turbulent flow represents
one of the open problems of classical mechanics and physics, where today
computational methods open new possibilities in the form of Large Eddy
Simulation LES with subgrid modeling. Turbulent flow has features (vor-
tices) on a range of scale from largest macroscopic of diameter of order one
to smallest of order ν3/4, with ν the viscosity, assuming normalization to
characteristic macroscopic velocity and length scale of order one, so that
the macroscopic Reynolds number Re equals 1/ν. I typical applications Re
may be of size 108 in which case the smallest length scale may be roughly of
order 10−6 requiring of the order of 1018 degrees of freedom in a Direct Nu-
merical Simulation DNS with resolution of all scales. This is way beyond
the capacity of any computer within sight, with the present limit being
set for DNS with a smallest scale of size 10−3 corresponding to Reynolds
number roughly of order 104. To simulate flows with larger Reynolds num-
ber we may seek a subgrid model with the objective of modeling the effect
on resolvables scales of unresolved scales. This may be possible using fea-
tures of scale similarity of turbulent flow reflecting a certain repetition of
flow features in a cascade from coarser to finer scales down to the smallest
vortices where significant dissipation occurs. In Fig. 173.4 we show a jet
undergoing transition from laminar to turbulent flow on a 128 × 32 × 32
mesh.
Let us give an argument indicating a feature of scale similarity first

presented by the Russian mathematician Kolmogorov 1941: Let then h be
the smallest scale, that is the diameter of the smallest vorticity, and let ū be
the corresponding velocity of the smallest vorticity. We may then argue that
we should have ūh ∼ ν, since the break up of larger vortices into to smaller
should continue until the local Reynolds number becomes small enough (of
size 50-100). Further, turbulent dissipation on the smallest scale of order
one would mean that ν( ūh )

2 ∼ 1. From these two relations, we conclude

that h ∼ ν3/4 as anticipated and also that ū ∼ ν1/4. We conclude that

|u(x)− u(y)| ∼ |x− y|1/3

for y = x + h, and by scale similarity we may expect this relation to hold
for general x and y, that is, that the turbulent velocity should be Lipschitz
(Hölder) continuous with exponent 1/3.
Does the above derivation have any to do with reality? Yes, both physical

experiments and DNS indicate that turbulent flow indeed has features of
scale similarity with Lipschitz (Hölder) continuity with exponent 1/3. This
gives hope that subgrid modeling may be feasible for turbulent flow and
thus that computational simulation of turbulent flow would be possible,
and more and more so as the computational power increases.
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Summing up, it thus appears that computational simulation of turbulent
flow may be possible, and this would in a way settle most questions from a
practical point of view: we would be able to simulate and predict turbulent
flow. However, we would still lack a mathematical model of turbulence more
tractable than simply the Navier-Stokes equations in DNS. So, as human
beings we may not be able to “understand turbulence” in the same way as
we can understand e.g. the fundamental solution of the Laplacian ( 1

4π|x|),
but we would be able to computationally simulate turbulent flow. Maybe
this is the most we can ask for?

173.6 Existence and Uniqueness of Solutions

The question of existence and uniqueness of solutions to the Navier-Stokes
equations is one of the unsolved problems of mathematics. If we change
the viscosity from a Newtonian constant viscosity ν to a non-Newtonian
solution dependent viscosity ν̂ = ν+Ch2|∇u|, where h is a parameter cor-
responding to a smallest scale, then, existence and uniqueness is possible
to prove using standard methods as shown by Lions. Since with h small
the modification will be small, except where ∇u is very large, the mod-
ification may be viewed as a regularization eliminating certain extreme
situations with very large velocity gradients, where at any rate the Newto-
nian property of constant viscosity may be questioned. This directly couples
to subgrid modeling of turbulent flow, where ν̂ corresponds to a so called
turbulent viscosity, with the constant C to be modeled computationally.

173.7 Numerical Methods

Trying to solve the incompressible Navier-Stokes equations numerically, we
meet the following difficulties:

• instabilities from discretization of convection terms,

• pressure instabilities in equal order interpolation of velocity and pres-
sure.

The simplest cure to convection instability is to increase the viscosity ν
in the computation so that ν ≥ uh, where u is the local fluid velocity and
h is the local mesh size. The simplest stabilization of the pressure p, is to
modify the incompressibility equation ∇ · u = 0 to −∇ · (δ∇p) +∇ · u = 0,
with δ ≈ h2 with h(x) the local mesh size.
In Galerkin methods the stabilization can be achieved in higher-order

consistent form by adding least-squares control of residuals. We present
this approach below in the context of the cG(1)dG(0) method with cG(1)
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in space and dG(0) in time. We also present corresponding cG(1)cG(1) and
cG(1)dG(1) methods.

173.8 The Stabilized cG(1)dG(0) Method

We now present the cG(1)dG(0) method for (174.1) starting with the case
of homogeneous Dirichlet boundary conditions. Let 0 = t0 < t1 < ... <
tN = T be a sequence of discrete time levels with associated time steps
kn = tn − tn−1. Let Wh be the usual finite element space of continuous
piecewise linear functions on a triangulation Th = {K} of Ω with mesh
function h(x). Let W 0

h be the space of functions in Wh vanishing on Γ. We
shall seek an approximate velocity U(x, t) such that U(x, t) is continuous
and piecewise linear in x for each t, and U(x, t) is piecewise constant in t
for each x. Similarly, we shall seek an approximate pressure P (x, t) which is
continuous piecewise linear in x and piecewise constant in t. More precisely,
we shall seek Un ∈ V 0

h with V 0
h = W 0

h × W 0
h × W 0

h and Pn ∈ Wh for
n = 1, ..., N , and we shall set

U(x, t) = Un(x) x ∈ Ω, t ∈ (tn−1, tn],

P (x, t) = Pn(x) x ∈ Ω, t ∈ (tn−1, tn].
(173.4)

Further we write for velocities v = (vi) and w = (wi)

(v, w) =

∫

Ω

v · w dx, (∇v,∇w) =
∫

Ω

3∑

i

∇vi · ∇wi dx,

and similarly for scalar functions p and q defined on Ω:

(p, q) =

∫

Ω

pq dx.

We now formulate the cG(1)dG(0) method without stabilization as fol-
lows: For n = 1, ..., N , find (Un, Pn) ∈ V 0

h ×Wh such that

(
Un − Un−1

kn
, v) + (Un · ∇Un +∇Pn, v) + (ν∇Un,∇v) = (fn, v)

∀v ∈ V 0
h ,

(∇ · Un, q) = 0 ∀q ∈Wh,

(173.5)

where U0 = u0, and we set fn(x) = f(x, tn). We see that the discrete
equations result from multiplication of the momentum equation with v ∈
V 0
h and the incompressibility equation by q ∈ Wh, followed by integration

over Ω including integration by parts in the term (−ν∆U, v).
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We can write the cG(1)dG(0) method without stabilization alternatively
as follows: For n = 1, ..., N , find (Un, Pn) ∈ V 0

h ×Wh such that

(
Un − Un−1

kn
, v) + (Un · ∇Un +∇Pn, v) + (∇ · Un, q)

+ (ν∇Un,∇v) = (fn, v) ∀(v, q) ∈ V 0
h ×Wh,

(173.6)

where we simply added the equations in 173.5.
The cG(1)dG(0) method with stabilization takes the form: For n =

1, ..., N , find (Un, Pn) ∈ V 0
h ×Wh such that

(
Un − Un−1

kn
, v) + (Un · ∇Un +∇Pn, v + δ(Un · ∇v +∇q)) + (∇ · Un, q)

+ (ν∇Un,∇v) = (fn, v + δ(Un · ∇v +∇q)) ∀(v, q) ∈ V 0
h ×Wh,

(173.7)

where δ is a stabilization parameter defined as follows: δ(x) = h2(x) in the
case of diffusion-dominated flow with ν ≥ Uh, and

δ = (
1

k
+
U

h
)−1 (173.8)

in the case of convection dominated flow with ν < Uh. Note that if k ≈
h
U , which is a natural choice of time step in the convection-dominated

case, then δ ≈ 1
2
h
U . Note further that the stabilized form (173.7) of the

cG(1)dG(0) method is obtained by replacing v by v + δ(Un · ∇v +∇q) in
the terms (Un · ∇Un +∇Pn, v) and (fn, v). In principle, we should make
the replacement throughout, but in the present case of the cG(1)dG(0),
only the indicated terms get involved because of the low order of the ap-
proximations. The perturbation in the stabilized method is of size δ, and
thus the stabilized method has the same order as the original method (first
order in h if k ∼ h).
Letting v vary in (173.7) while choosing q = 0, we get the following

equation (the discrete momentum equation):

(
Un − Un−1

kn
, v) + (Un · ∇Un +∇Pn, v + δUn · ∇v)

+ (ν∇Un,∇v) = (fn, v + δUn · ∇v) ∀v ∈ V 0
h ,

(173.9)

and letting q vary while setting v = 0, we get the following discrete pressure
equation:

(δ∇Pn,∇q) = −(δUn · ∇Un,∇q)− (∇ · Un, q) + (δfn,∇q) ∀q ∈Wh.
(173.10)

We normally seek to solve the system (173.7) iteratively alternatively
solving the velocity equation (173.9) for Un with Pn given, and the pressure
equation (173.10) for Pn with Un given.
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173.9 The cG(1)cG(1) Method

We present the following cG(1)cG(1) variant of the cG(1)dG(0) method
with cG(1) in time instead of dG(0): For n = 1, ..., N , find (Un, Pn) ∈
V 0
h ×Wh such that

(
Un − Un−1

kn
, v) + (Ûn · ∇Ûn +∇Pn, v + δ(Ûn · ∇v +∇q)) + (∇ · Ûn, q)

+ (ν∇Ûn,∇v) = (fn, v + δ(Ûn · ∇v +∇q)) ∀(v, q) ∈ V 0
h ×Wh,

(173.11)

where Ûn = 1
2 (U

n + Un−1). Evidently, we obtained the cG(1) version

by changing from Un to Ûn in all terms but the first in the cG(1)dG(0)
method.

173.10 The cG(1)dG(1) Method

We shall now formulate the cG(1)dG(1) method obtained by replacing
dG(0) by dG(1) in the cG(1)dG(0) method. In this method the discrete
velocity U(x, t) is piecewise linear linear in time on each time interval In,
with possibly discontinuities at the discrete time levels tn. More precisely,
we make the Ansatz:

Un(x, t) =
tn − t

kn
Un−1
+ (x) +

t− tn−1

kn
Un−(x), for tn−1 < t < tn,

(173.12)
where Un−1

+ and Un− belong to V 0
h . We note that

Un±(x) = lim
s→0+

U(x, tn ± s)

is the limit of U(x, t) as t approaches tn from below (−), or above (+). The
cG(1)dG(1) method takes the form: For n = 1, ..., N , find Un of the form
(173.12) and Pn ∈Wh, such that for all v(x, t) = w1(x, t)+(t−tn−1)w2(x, t)
with w1, w2 ∈ V 0

h and q ∈Wh,

(Un−1
+ −Un−1

− , v) +

∫ tn

tn−1

((U̇n + Un · ∇Un

+∇Pn, v + δ(U̇n + Un · ∇v +∇q)) + (∇ · Un, q)) dt

+

∫ tn

tn−1

(ν∇Un,∇v) dt =
∫ tn

tn−1

(fn, v + δ(U̇ + Un · ∇v +∇q)).

(173.13)

We may similarly let P be piecewise linear discontinuous in time.
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173.11 Neumann Boundary Conditions

To properly model Neumann boundary conditions, we first need to recall
that the components σij of the total stress tensor σ = (σij) acting on a
fluid element, are given by

σij = σ̄ij − pδij , i, j = 1, 2, 3,

where the stress deviatoric σ̄ = (σ̄ij) is coupled to the strain tensor ǫ(u) =
(ǫij(u)) with components

ǫij(u) = (∂ui/∂xj + ∂uj/∂xi)/2, i, j = 1, 2, 3,

through the constitutive relation of a Newtonian fluid:

σ̄ij = 2νǫij(u), i, j = 1, 2, 3,

where ν is the constant viscosity, and δij = 1 if i = j and δij = 0 if i 6= j.
We observe that the trace of the stress deviatoric is zero, that is,

3∑

i=1

σ̄ii = 2ν

3∑

i=1

ǫii(u) = 2ν∇ · u = 0,

and thus the total stress σ is decomposed into a stress deviatoric σ̄ with
zero trace and an isotropic pressure p. Further, a direct computation shows
that

ν∆u−∇p = ∇ · σ, (173.14)

where ∇ · σ is a vector with components (∇ · σ)i given by

(∇ · σ)i =
3∑

j=1

∂σij
∂xj

.

Multiplying 173.14 by v = (vi) with v = 0 on Γ and integrating by parts,
we find that

ν(∇u,∇v) + (∇p, v) = 2ν(ǫ(u), ǫ(v)) + (∇p, v),

where

(ǫ(u), ǫ(v)) =

3∑

i,j=1

∫

Ω

ǫij(u)ǫij(v) dx.

We are thus led to replace the term (ν∇u,∇v) by the term (2νǫ(u), ǫ(v))
in variational formulations of the Navier-Stokes equations. In the case of
Dirichlet boundary conditions for the velocity the two expressions are equal,
since the test velocity v vanishes on Γ, but in the case of Neumann type
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boundary conditions the replacement opens the possibility of enforcing in
variational form a Neumann boundary condition of the form

3∑

j=1

σijnj =

3∑

j=1

σ̄ijnj − pni =

3∑

j=1

2νǫij(u)nj − pni = gi on Γ2, i = 1, 2, 3,

(173.15)
which expresses that the total force on the boundary part Γ2 is equal to the
given force g = (gi). For example, if g = 0, then this condition expresses
that the total force is zero on Γ2, which we may use as an outflow boundary
condition simulating that the fluid freely flows out into a large reservoir.
More precisely, the presence of the terms

−(p,∇ · v) + (2νǫ(u), ǫ(v))

in a variational formulation with v varying freely on Γ2, will enforce a
homogeneous Neumann boundary condition 173.15 upon integration by
parts.
We now consider a typical situation with the boundary Γ decomposed

into two parts Γ1 an Γ2 with the velocity being equal to a given velocity
w on Γ1 and imposing the homogeneous Neumann condition 173.15 on Γ2.
For simplicity, we assume that w is independent of time, the extension to
time dependence of w being evident. Typically, w will be zero on a part of
Γ1 and will be directed into Ω on the remaining part corresponding to a
given inflow.
We let Vh be the space of continuous piecewise linear velocities v on

a triangulation Th = {K} of Ω with mesh function h(x), satisfying the
boundary condition v = w on Γ1, and let V 0

h be the corresponding test
space of functions with v = 0 on Γ1. Let Wh be the space of continuous
piecewise linear pressures p on Th = {K}, and W 0

h the corresponding test
space of pressures q such that q = 0 on Γ2.
The stabilized cG(1)dG(0) method can be formulated as follows: For

n = 1, ..., N seek Un ∈ Vh and Pn ∈ Wh such that

(
Un − Un−1

kn
, v) + (Un · ∇Un, v + δUn · ∇v)− (Pn,∇ · v)

+ (2νǫ(Un), ǫ(v)) = (fn, v + δUn · ∇v) ∀v ∈ V 0
h ,

(173.16)

(δ∇Pn,∇q) = −(δUn · ∇Un,∇q)− (∇ · Un, q) + (δfn,∇q) ∀q ∈W 0
h ,

(173.17)
where we choose Pn on Γ2 according to 173.15 with g = 0 and u replaced
by U . Again we seek to solve the system iteratively alternatively solving the
velocity equation (173.16) for Un with Pn given, and the pressure equation
(173.17) for Pn with Un given.
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173.12 Computational Examples

We now present some computational examples of 3d time dependent flows,
using the stabilized cG(1)cG(1) method on a mesh with meshsize h = 1/32.
In Figure Fig. 173.2 we present the solution of a bluff body problem:

a flow in a channel with 1x1 square cross section and length 4, with a
square obstacle with side length 0.25 centered at (0.5, 0.5, 0.5). We have
used zero Dirichlet boundary condition for the velocity on the side walls
and Neumann outflow boundary conditions on the outflow boundary. On
the inflow a parabolic velocity is prescribed.
In Figure Fig. 173.3 we present the solution of a step down problem in

a similar channel with a step down of height and length 0.5.
Finally in Figure Fig. 173.4 we present computations of transition to

turbulence in a circular jet flow with streamwise velocity 1 in the jet and
zero outside the jet, where we apply a small random perturbation. Here we
have used periodic boundary conditions in all directions.

Chapter 173 Problems

173.1. Prove for that a solution (u, p) of (174.1) with f = 0andw = 0 satisfies
the following energy estimate for t > 0:

∫

Ω

|u(x, t)|2 + 2ν

∫ t

0

∫

Ω

|∇u(x, s)|2dxds =
∫

Ω

|u0(x)|2dx.

Hint: Multiply the momentum equation by u and use that if ∇ · u = 0, then
∫

Ω

(u · ∇)u · u dx = 0,

which follows by integration by parts.

173.2. Prove a basic stability estimate for (173.7) by choosing (v, q) = (U,P ).

Thus the methods of Lagrange and Hamilton are undoubtedly useful
in helping us to carry out the primary task of dynamics - namely,
to find out how systems move. But it would be wrong to think that
this is the sole purpose of these general methods or even their main
purpose. They do much more. In fact, they teach us what dynamics
really is : It is the study of certain types of differential equations.
(Synge and Griffiths, Principles of Mechanics, 1959)

I sing the body electric,
The armies of those I love engirth me and I engirth them,
They will not let me off till I go with them, respond to them,
And discorrupt them, and charge them full
with the charge of the soul.
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FIGURE 173.2. Bluff body flow computations for t = 2, 4, 6, 8, 10, 12.
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FIGURE 173.3. Step down flow computations for t = 1, 2, 3, 4, 5, 6.
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FIGURE 173.4. Streamwise velocity isosurfaces for |u1| = 0.02 in a jet in transi-
tion from laminar to turbulent flow, for t = 5, 7, 10, 15
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Was it doubted that those who corrupt
their own bodies conceal themselves?
And if those who defile the living are as bad as
they who defile the dead?
And if the body does not do fully as much as the soul?
And if the body were not the soul, what is the soul?
(Walt Whitman).
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174
The Mystery of Flight

When you lean back for take-off in a jumbojet, maybe the following question
flashes through your mind: How is it possible that the 400 squaremeter
wings can carry 400 tons at a wingload of 1 ton per squaremeter in sustained
flight in the air? Or maybe you are satisfied with some of the explanations
offered in popular science, like higher velocity and lower pressure on the
upper surface of the wing because it is curved and air there has a longer
path to travel than below? Or maybe you are an aeroplane engineer or pilot
and know very well why an airplane can fly?
In either case, you should get a bit worried by reading that the authority

NASA on its website [43] dismissses all popular science theories for lift,
including your favorite one, as being incorrect, but then refrains from pre-
senting any theory claimed to be correct! NASA surprisingly ends with an
empty out of reach: To truly understand the details of the generation of
lift, one has to have a good working knowledge of the Euler Equations. The
Plane&Pilot Magazine [44] has the same message and New York Times [8]
informs us:

• To those who fear flying, it is probably disconcerting that physicists
and aeronautical engineers still passionately debate the fundamental
issue underlying this endeavor: what keeps planes in the air?
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174.1 Overview

In this arcticle we present a new mathematical and physical explanation of
the generation of lift L and drag D of a wing based on new discoveries of the
dynamics of turbulent airflow around a wing, obtained by computational
solution of the basic mathematical model of fluid dynamics: the Navier-
Stokes/Euler equations. When flying in the air, the downward gravitational
force is balanced by upward wing lift L, while backward wing drag D is
balanced by forward thrust from engine, and wing-beat for birds, or descent
in gliding flight without forward thrust.
We show that a wing creates lift as a reaction force from redirecting air

downwards, referred to as downwash, with less than 1/3 coming from the
lower wing surface pushing air down and the major remaining part from
the upper surface sucking air down, with a resulting lift/drag quotient L

D
of size 10− 20.
The enigma of flight is why the air flow separates from the upper wing

surface at the trailing edge, and not before, with the flow after separation
being redirected downwards according to the tilting of the wing or angle of
attack. We will reveal the secret to be an effect of a fortunate combination of
features of slightly viscous incompressible flow including a crucial instability
mechanism at separation analogous to that seen in the swirling flow down
a bathtub drain, generating both suction on the upper wing surface and
drag.
We show that this mechanism of lift and drag is operational for angles

of attack smaller than a critical value of about 16− 20 degrees depending
on the shape of the wing, for which the flow separates from the upper wing
surface well before the trailing edge with a sudden increase of drag and
decrease of lift referred to as stall.
It is absolutely crucial that L

D is large, of size 10 or bigger, since otherwise
the muscle power of a bird would not suffice, and the fuel consumption of
an airplane would be prohibitive. Flying on a tilted barn door at 45 degrees
angle of attack with L

D ≈ 1, is not an option.
An outline of the article is as follows: We first recall classical theories

for lift and drag and then in pictures describe the new theory. We support
the new theory by computational solutions of the Navier-Stokes equations,
also showing that the classical theories are incorrect. We then present ba-
sic aspects of the mathematics of turbulent solutions of the Navier-Stokes
equations underlying the new theory.
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174.2 Newton, d’Alembert and Kutta-Zhukovsky

The problem of explaining why it is possible to fly in the air using wings has
haunted scientists since the birth of mathematical sciences. The mystery is
how a sufficiently large ratio L

D can be created.
In the gliding flight of birds and airplanes with fixed wings at subsonic

speeds, L
D is typically between 10 and 20, which means that a good glider

can glide up to 20 meters upon loosing 1 meter in altitude, or that Charles
Lindberg could cross the Atlantic in 1927 at a speed of 50 m/s in his
2000 kg Spirit of St Louis at an effective engine thrust of 150 kp (with
L
D = 2000/150 ≈ 13) from 100 horse powers.
By Newton’s 3rd law, lift must be accompanied by downwash with the

wing redirecting air downwards. The enigma of flight is the mechanism of
a wing generating substantial downwash at small drag, which is also the
enigma of sailing against the wind with both sail and keel acting like wings
creating substantial lift [30].
Classical mathematical mechanics could not give an answer to the mys-

tery of gliding flight: Newton computed by elementary mechanics the lift
of a tilted flat plate redirecting a horisontal stream of fluid particles, but
obtained a disappointingly small value proportional to the square of the
angle of attack. To Newton the flight of birds was inexplicable, and human
flight certainly impossible.
D’Alembert followed up in 1752 by formulating his paradox about zero

lift/drag of inviscid incompressible irrotational steady flow referred to as
potential flow, which seemed to describe the airflow around a wing since the
viscosity of air is very small so that it can be viewed as being inviscid (with
zero viscosity). Mathematically, potential flow is given as the gradient of a
harmonic funtion satisfying Laplace’s equation.
At speeds less than say 300 km/h air flow is almost incompressible, and

since a wing moves into still air the flow it could be be expected to be
irrotational without swirling rotating vortices. D’Alembert’s mathematical
potential flow thus seemed to capture physics, but nevertheless had neither
lift nor drag, against all physical experience. The wonderful mathemat-
ics of potential flow and harmonic functions thus showed to be without
physical relevance: This is D’Alembert’s paradox which came to discredit
mathematical fluid mechanics from start [30, 48, 20].
To explain flight d’Alembert’s paradox had to be resolved, but nobody

could figure out how and it was still an open problem when Orwille and
Wilbur Wright in 1903 showed that heavier-than-air human flight in fact
was possible in practice, even if mathematically it was impossible.
Mathematical fluid mechanics was then saved from complete collapse

by the young mathematicians Kutta and Zhukovsky, called the father of
Russian aviation, who explained lift as a result of perturbing potential flow
by a large-scale circulating flow or circulation around the two-dimensional
section of a wing, and by the young physicist Prandtl, called the father of
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modern fluid dynamics, who explained drag as a result of a viscous boundary
layer [45, 46, 47, 21].
This is the basis of state-of-the-art [16, 37, 14, 2, 19, 49, 50], which

essentially is a simplistic theory for lift without drag at small angles of
attack in inviscid flow and for drag without lift in viscous flow. However,
state-of-the-art does not supply a theory for lift-and-drag covering the real
case of 3d slightly viscous turbulent flow of air around a 3d wing of a
jumbojet at the critical phase of take-off at large angle of attack (12 degrees)
and subsonic speed (270 km/hour), as evidenced in e.g. [1, 3, 4, 6, 8, 10,
34, 36, 41]. The simplistic theory allows an aeroplane engineer to roughly
compute the lift of a wing a crusing speed at a small angle of attack,
but not the drag, and not lift-and-drag at the critical phase of take-off
[42, 13]. The lack of mathematics has to be compensated by experiment
and experience. The first take off of the new Airbus 380 must have been a
thrilling experience for the design engineers.

174.3 From Old to New Theory of Flight

A couple of years ago we stumbled upon a resolution of d’Alembert’s para-
dox [4, 30], when computing turbulent solutions of the basic mathematical
model of fluid mechanics, the Navier-Stokes equations. The resolution nat-
urally led us to a new theory of flight, which we will explain below. You
will find that it is quite easy to grasp, because it can be explained using
different levels of mathematics. We start out easy with the basic principle
in concept form and then indicate some of the mathematics with references
to more details. Supporting information is given in the Google knols [32]
and [33].
Before proceeding to work we recall both folklore and state-of-the-art

mathematics explantions of flight as being either correct but trivial, or
nontrivial but incorrect, as follows:

• Downwash generates lift: trivial without explanation of reason for
downwash from suction on upper wing surface.

• Low pressure on upper surface: trivial without explanation why.

• Low pressure on curved upper surface because of higher velocity (by
Bernouilli’s law), because of longer distance: incorrect.

• Coanda effect: The flow sticks to the upper surface by viscosity: in-
correct.

• Kutta-Zhukovsky: Lift comes from circulation: incorrect.

• Prandtl: Drag comes mainly from viscous boundary layer: incorrect.
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174.4 The Principle of Flying

We will find that the secret of flight is revealed in Fig. 174.1: To the left we
see potential flow around a portion of a long wing with zones of high (H)
and low (L) pressure giving no net lift, because the pressure is high on top
of the wing at the trailing edge and low below. This makes the flow leave
the wing in the same direction as it approaches, thus without downwash
and lift.
Potential flow is a mathematical solution without lift/downwash of the

Navier-Stokes equations (with vanishing viscosity), which however is fun-
damenatlly different from the flow observed in reality with lift/downwash.
Potential flow is a fictional mathematical solution without physical rele-
vance, and the reason hides the secret of both d’Alembert’s paradox and
flight: Potential flow is very sensitive to a specific form of perturbation and
thus is unstable and non-physical.
Potential flow is similar to an inverted pendulum in upright equilibrium

or a pen balancing on its tip, which is a mathematical solution of the
equations of motion, but an unstable non-physical solution which under a
small perturbation away from the fully upright position will change into
a different swinging motion. Potential flow without lift/downwash changes
under a specific form of perturbation into a different more stable physical
flow with lift/downwash, with a turbulent fluctuating layer including the
perturbation attaching to the trailing edge, as we will see in computational
simulations below with movies on [31].

FIGURE 174.1. Correct explanation of lift by perturbation of potential flow (left)
at separation from physical low-pressure turbulent counter-rotating rolls (middle)
changing the pressure and velocity at the trailing edge into a flow with downwash
and lift (right).

The specific form of perturbation is illustrated in the middle picture of
Fig.174.1 showing a layer of counter-rotating rolls of swirling flow attaching
to the trailing edge, with each roll similar to the swirling flow in a bathtub
drain. The layer of rolls is distributed all along the trailing edge and is
not related to the wing tip vortex, which often is seen at landing in moist
air, since we assume the wing to be long. The perturbation switches the
pressure distribution of potential flow at the trailing edge since the pressure
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inside the rolls is low, into the flow depicted to the right which has both
lift, downwash and drag.
The specific perturbation thus hides the secret of flight as a flow with

both lift, downwash and drag. By understanding mathematically the ori-
gin and nature of the instability mechanism generating the counter-rotating
rolls at the separation of potential flow, which we do in more detail below,
we will be able to reveal the mathematical secret of flight. In short, the
counterrotating rolls develop when the opposing flows from above and be-
low meet on top of the wing before separation and first are retarded and
then accellerated and stretched in the flow direction, as shown in detail
in [4, 30, 26, 23]. We understand that inside the rolls of swirling flow the
pressure must be low to keep the roll together, and it is this low pressure
that annihilates the high pressure on top to allow the flow to leave the wing
in the direction of the upper surface tangent with substantial downwash as
illustrated in the figure.
We see that the fundamental instability mechanism changes the flow at

the trailing edge to give lift, but does not change the flow at the leading edge
where the flow gives positive lift. Real flow thus shares a very important
property with potential flow, namely to not separate at the crest of the flow
above the leading edge. If it did, downwash and lift would be lost: This is
what happens when a wing stalls at a too large angle of attack.
Summing up we have that lift comes from the instability mechanism at

separation consisting of counter-rotating low-pressure rolls of swirling flow,
which also creates drag by suction from the low pressure. Thus lift comes
along with drag: No lift without drag. Lift without drag is an illusion,
although still a common dream.

174.5 Comparison with Kutta-Zhukovsky

We compare with the classical explanation presented by Kutta-Zhukovsky
illustrated in Fig.174.2, which you find in most books claiming to explain
flight: We see again potential flow, now around a section of the wing, but
combined with a different perturbation consisting of large scale circulating
flow around the wing. This perturbation also changes the pressure dis-
tribution to give lift/downwash as illustrated in the picture to the right.
However, as we will see below, the circulating flow around the wing does
not arise in reality: Kutta-Zhukovsky’s circulating flow is purely fictional
and generates lift/downwash by a non-physical mechanism which does not
occur in reality.
Nevertheless, with no alternative in sight, Kutta-Zhukovsky’s trick to

generate lift/downwash is generally viewed as a mathematically sophisti-
cated way of explaining flight, beyond comprehension for most people. We
shall find that the true reason it cannot be understood, is that it does not



174.6 Effects of Small Viscosity 849

make sense, simply because there is no physical mechanism to generate the
large scale circulation around the wing, nor the associated so-called start-
ing vortex behind the wing supposedly balancing the circulation indicated
in the right picture of Fig.174.2.
We observe that Kutta-Zhulovsky flow is two-dimensional, since both

potential flow and circulation is constant in the wing direction and thus can
be depicted in a plane figure, while the true flow is fully three-dimensional
with the specific perturbation bringing in a variation in the wing direction.
Kutta-Zhukovsky flow is like potential flow a non-physical two-dimensional
stationary flow, while the real flow around a wing is a three-dimensional
partially fluctuating turbulent flow.

FIGURE 174.2. Incorrect Kutta-Zhukovsky explanation of lift by perturbation
of potential flow (left) by unphysical circulation around the section (middle)
resulting in flow with downwash/lift and starting vortex (right).

174.6 Effects of Small Viscosity

We conclude that flying is possible because of a fortunate combination of
the following properties of real slightly viscous incompressible flow:

• non-separation at the crest of a wing because the flow is there similar
to potential flow,

• the instability mechanism of potential flow at separation changes the
pressure distribution at the trailing edge to give lift, and drag.

Slightly viscous flow has small skin friction along the boundary, which
makes it similar to potential flow with zero skin friction satisfying a slip
boundary condition at a solid boundary modeling that fluid particles can
slide along the boundary without friction. Small skin friction can thus be
modeled by zero skin friction requiring the normal velocity to vanish at the
boundray, but imposing no restriction on the tangential velocity.
For a more viscous fluid like syrup with larger skin friction, instead a no-

slip boundary condition is used requiring that both normal and tangential
flow velocities vanish on the boundary modeling that fluid particles close
to the boundary have small speed and connect to the interior flow by a
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boundary layer where the flow speed changes from zero to the free stream
speed. The effect of a no-slip boundary condition causing a boundary layer,
is that the flow separates at the crest with loss of lift as compared to slightly
viscous flow. This is because in a viscous boundary layer the pressure gra-
dient normal to the boundary vanishes and thus cannot contribute to the
normal acceleration required to keep fluid particles following the curvature
of the boundary after the crest, as shown in detail in [27]. It is thus the slip
boundary condition modeling a turbulent boundary layer in slightly viscous
flow, which forces the flow to suck to the upper surface and create down-
wash. Gliding flight in viscous flow is thus not possible, which explains why
small insects do not practice gliding flight because to them air appears to
be viscous.

174.7 Wellposedness vs Clay Millennium Problem

In order to judge the physical relevance of a mathematical solution, stabil-
ity must be assessed. Only wellposed solutions which are suitably stable in
the sense that small perturbations have small effects when properly mea-
sured, have physical significance as observable pheonomena, as made clear
by in particular the mathematician J. Hadamard in 1902 [15]. However,
the completely crucial and fundamental question whether solutions of the
Navier-Stokes equations are wellposed, has not been studied because of
lack mathematical techniques for quantitative analysis, as evidenced in the
formulation of the Clay Millennium Prize Problem on the Navier-Stokes
equations excluding wellposedness [28, 26]. G. Birkhoff was heavily criti-
cized for posing this question in [20], and refrained from further studies.
The first step towards resolution of d’Alembert’s paradox and the math-
ematical secret of flight is thus to pose the question if potential flow is
wellposed, and then to realize that it is not. It took 256 years to take these
steps.

174.8 Computed Lift and Drag

We now a take a closer look at solutions of the Navier-Stokes equations,
computed by the General Galerkin finite element method G2 [4]. These so-
lutions should tell us the truth because the Navier-Stokes equations express
the basic laws of physics of conservation of mass and momentum (Newton’s
2nd law), which cannot be doubted. We focus on the case of slightly viscous
incompressible flow of relevance for airplanes at subsonic speeds and larger
birds. The fact that the fluid has small viscosity is of crucial importance
both for physics and computation: First, the flow is then turbulent with
a turbulent boundary layer allowing the flow to suck to the upper surface
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of the wing and cause downwash and lift. Second, a turbulent boundary
layer can be modeled by a slip or small friction boundary condition which
makes it possible to simulate the flow without computationally resolving
thin boundary layers, which is impossible with any forseeable computer
[42].
We have indicated that the basic mechanism for the generation of lift of a

wing consists of counter-rotating rolls of low-pressure streamwise vorticity
(swirling flow) generated by instability at separation, which reduce the high
pressure on top of the wing before the trailing edge of potential flow and
thus allow downwash, but which also generate drag. At closer examination
of the quantitative distributions of lift and drag forces around the wing, we
discover large lift at the expense of small drag resulting from leading edge
suction, which answers the opening question of of how a wing can generate
a lift/drag ratio larger than 10.
The secret of flight is in concise form uncovered in Fig. 174.3 showing G2

computed lift and and drag coefficients of a Naca 0012 3d wing as functions
of the angle of attack α, as well as the circulation around the wing. We
see that the lift and drag increase roughly linearly up to 16 degrees, with
a lift/drag ratio of about 13 for α > 3 degrees, and that lift peaks at stall
at α = 20 after a quick increase of drag. and flow separation at the leading
edge.
We see that the circulation remains small for α less than 10 degrees

without connection to lift, and conclude that the theory of lift of by Kutta-
Zhukovsky is fictional without physical correspondence: There is lift but
no circulation. Lift does not originate from circulation. The incorrect ex-
planation by Kutta-Zhukovsky is illustrated in Fig. 174.2 which is found in
books on flight aerodynamics.
Inspecting Figs. 174.4-174.6 showing velocity, pressure and vorticity and

Fig. 174.7 showing lift and drag distributions over the upper and lower
surfaces of the wing (allowing also pitching moment to be computed), we
can now, with experience from the above preparatory analysis, identify
the basic mechanisms for the generation of lift and drag in incompressible
slightly viscous flow around a wing at different angles of attack α: We find
two regimes before stall at α = 20 with different, more or less linear growth
in α of both lift and drag, a main phase 0 ≤ α < 16 with the slope of the
lift (coefficient) curve equal to 0.09 and of the drag curve equal to 0.008
with L/D ≈ 14, and a final phase 16 ≤ α < 20 with increased slope of
both lift and drag. The main phase can be divided into an initial phase
0 ≤ α < 4 − 6 and an intermediate phase 4− 6 ≤ α < 16, with somewhat
smaller slope of drag in the initial phase. We now present details of this
general picture.
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FIGURE 174.3. G2 lift coefficient and circulation as functions of the angle of
attack (top), drag coefficient (middle) and lift/drag ratio (bottom) as functions
of the angle of attack.
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174.9 Phase 1: 0 ≤ α ≤ 4− 6

At zero angle of attack with zero lift there is high pressure at the leading
edge and equal low pressures on the upper and lower crests of the wing
because the flow is essentially potential and thus satisfies Bernouilli’s law
of high/low pressure where velocity is low/high. The drag is about 0.01
and results from rolls of low-pressure streamwise vorticity attaching to the
trailing edge. As α increases the low pressure below gets depleted as the
incoming flow becomes parallel to the lower surface at the trailing edge
for α = 6, while the low pressure above intenisfies and moves towards the
leading edge. The streamwise vortices at the trailing edge essentially stay
constant in strength but gradually shift attachement towards the upper
surface. The high pressure at the leading edge moves somewhat down, but
contributes little to lift. Drag increases only slowly because of negative drag
at the leading edge.

174.10 Phase 2: 4− 6 ≤ α ≤ 16

The low pressure on top of the leading edge intensifies to create a normal
gradient preventing separation, and thus creates lift by suction peaking on
top of the leading edge. The slip boundary condition prevents separation
and downwash is created with the help of the low-pressure wake of stream-
wise vorticity at rear separation. The high pressure at the leading edge
moves further down and the pressure below increases slowly, contributing
to the main lift coming from suction above. The net drag from the up-
per surface is close to zero because of the negative drag at the leading
edge, known as leading edge suction, while the drag from the lower surface
increases (linearly) with the angle of the incoming flow, with somewhat
increased but still small drag slope. This explains why the line to a flying
kite can be almost vertical even in strong wind, and that a thick wing can
have less drag than a thin.

174.11 Phase 3: 16 ≤ α ≤ 20

This is the phase creating maximal lift just before stall in which the wing
partly acts as a bluff body with a turbulent low-pressure wake attaching
at the rear upper surface, which contributes extra drag and lift, doubling
the slope of the lift curve to give maximal lift ≈ 2.5 at α = 20 with rapid
loss of lift after stall.
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FIGURE 174.4. G2 computation of velocity magnitude (upper), pressure (mid-
dle), and non-transversal vorticity (lower), for angles of attack 2, 4, and 8◦ (from
left to right). Notice in particular the rolls of streamwise vorticity at separation.



174.11 Phase 3: 16 ≤ α ≤ 20 855

FIGURE 174.5. G2 computation of velocity magnitude (upper), pressure (mid-
dle), and topview of non-transversal vorticity (lower), for angles of attack 10, 14,
and 18◦ (from left to right). Notice in particular the rolls of streamwise vorticity
at separation.
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FIGURE 174.6. G2 computation of velocity magnitude (upper), pressure (mid-
dle), and non-transversal vorticity (lower), for angles of attack 20, 22, and 24◦

(from left to right).



174.11 Phase 3: 16 ≤ α ≤ 20 857

FIGURE 174.7. G2 computation of normalized local lift force (upper) and drag
force (lower) contributions acting along the lower and upper parts of the wing,
for angles of attack 0, 2 ,4 ,10 and 18◦, each curve translated 0.2 to the right and
1.0 up, with the zero force level indicated for each curve.
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174.12 Lift and Drag Distribution Curves

The distributions of lift and drag forces over the wing resulting from pro-
jecting the pressure acting perpendicular to the wing surface onto relevant
directions, are plotted in Fig.174.7. The total lift and drag results from
integrating these distributions around the wing. In potential flow compu-
tations (with circulation according to Kutta-Zhukovsky), only the pressure
distribution or cp-distribution is considered to carry releveant information,
because a potential solution by construction has zero drag. In the perspec-
tive of Kutta-Zhukovsky, it is thus remarkable that the projected cp-curves
carry correct information for both lift and drag.
The lift generation in Phase 1 and 3 can rather easily be envisioned,

while both the lift and drag in Phase 2 results from a (fortunate) intricate
interplay of stability and instability of potential flow: The main lift comes
from upper surface suction arising from a turbulent boundary layer with
small skin friction combined with rear separation instability generating low-
pressure streamwise vorticity, while the drag is kept small by negative drag
from the leading edge.

174.13 Comparing Computation with Experiment

Comparing G2 computations with about 150 000 mesh points with ex-
periments [20, 40], we find good agreement with the main difference that
the boost of the lift coefficient in phase 3 is lacking in experiments. This
is probably an effect of smaller Reynolds numbers in experiments, with a
separation bubble forming on the leading edge reducing lift at high angles
of attack. The oil-film pictures in [20] show surface vorticity generating
streamwise vorticity in accordance with [26, 27, 23].
A jumbojet can only be tested in a wind tunnel as a smaller scale model,

and upscaling test results is cumbersome because boundary layers do not
scale. This means that computations can be closer to reality than wind
tunnel experiments. Of particular importance is the maximal lift coefficient,
which cannot be predicted by Kutta-Zhukovsky nor in model experiments,
which for Boeing 737 is reported to be 2.73 in landing, corresponding to the
maximal lift of 2.5 in computation for a long wing and not a full aircraft.
In take-off the maximal lift is reported to be 1.75 with 1.5 in computation
at a somewhat smaller angle of attack.
We compute turbulent solutions of the Navier-Stokes equations using a

stabilized finite element method with a posteriori error control of lift and
drag, referred to as General Galerkin or G2, available in executable open
source from [25]. The stabilization in G2 acts as an automatic turbulence
model, and thus offers a model for ab initio computational simulation of
the turbulent flow around a wing with the only input being the geometry
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of the wing. The computations performed on a single workstation show
good agreement with experiments. We are now performing computations on
super-computers allowing more precise comparisons and paramater studies.

174.14 Navier-Stokes with Force Boundary
Conditions

For the reader interested in the mathematics we now present the Navier-
Stokes equations along with a stability analysis exhibiting the basic insta-
bility mechanism at separation which is crucial for the generation of lift,
at the expense of some drag.
The Navier-Stokes equations for an incompressible fluid of unit density

with small viscosity ν > 0 and small skin friction β ≥ 0 filling a volume
Ω in R3 surrounding a solid body with boundary Γ over a time interval
I = [0, T ], read as follows: Find the velocity u = (u1, u2, u3) and pressure
p depending on (x, t) ∈ Ω ∪ Γ× I, such that

u̇+ (u · ∇)u+∇p−∇ · σ = f in Ω× I,
∇ · u = 0 in Ω× I,
un = g on Γ× I,
σs = βus on Γ× I,

u(·, 0) = u0 in Ω,

(174.1)

where un is the fluid velocity normal to Γ, us is the tangential velocity, σ =
2νǫ(u) is the viscous (shear) stress with ǫ(u) the usual velocity strain, σs is
the tangential stress, f is a given volume force, g is a given inflow/outflow
velocity with g = 0 on a non-penetrable boundary, and u0 is a given initial
condition. We notice the skin friction boundary condition coupling the
tangential stress σs to the tangential velocity us with the friction coefficient
β with β = 0 for slip, and β >> 1 for no-slip. We note that β is related to
the standard skin friction coeffieient cf = 2τ

U2 with τ the tangential stress

per unit area, by the relation β = U
2 cf . In particular, β tends to zero with

cf (if U stays bounded).
Prandtl insisted on using a no-slip velocity boundary condition with

us = 0 on Γ, because his resolution of d’Alembert’s paradox hinged on
discriminating potential flow by this condition. On the oher hand, with
the new resolution of d’Alembert’s paradox, relying instead on instability
of potential flow, we are free to choose instead a friction force boundary
condition, if data is available. Now, experiments show [47, 22] that the
skin friction coefficient decreases with increasing Reynolds number Re as
cf ∼ Re−0.2, so that cf ≈ 0.0005 for Re = 1010 and cf ≈ 0.007 for
Re = 105. Accordingly we model a turbulent boundary layer by a friction
boundary condition with a friction parameter β ≈ 0.03URe−0.2. For very



860 174. The Mystery of Flight

large Reynolds numbers, we can effectively use β = 0 in G2 computation
corresponding to slip boundary conditions.
As developed in more detail in [27], we make a distinction between lami-

nar (boundary layer) separation modeled by no-slip and turbulent (bound-
ary layer) separation modeled by slip/small friction. Note that laminar sep-
aration cannot be modeled by slip, since a laminar boundary layer needs
to be resolved with no-slip to get correct (early) separation. On the other
hand, as will be seen below, in turbulent (but not in laminar) flow the inte-
rior turbulence dominates the skin friction turbulence indicating that the
effect of a turbulent boundary layer can be modeled by slip/small friction,
which can be justified by an posteriori sensitivity analysis as shown in [27].
We thus assume that the boundary layer is turbulent and is modeled by

slip/small friction, which effectively includes the case of laminar separation
followed by reattachment into a turbulent boundary layer.

174.15 Potential Flow

Potential flow (u, p) with velocity u = ∇ϕ, where ϕ is harmonic in Ω and
satisfies a homogeneous Neumann condition on Γ and suitable conditions
at infinity, can be seen as a solution of the Navier-Stokes equations for
slightly viscous flow with slip boundary condition, subject to

• perturbation of the volume force f = 0 in the form of σ = ∇·(2νǫ(u)),

• perturbation of zero friction in the form of σs = 2νǫ(u)s,

with both perturbations being small because ν is small and a potential
flow velocity u is smooth. Potential flow can thus be seen as a solution of
the Navier-Stokes equations with small force perturbations tending to zero
with the viscosity. We can thus express d’Alembert’s paradox as the zero
lift/drag of a Navier-Stokes solution in the form of a potential solution, and
resolve the paradox by realizing that potential flow is unstable and thus
cannot be observed as a physical flow.
Potential flow is like an inverted pendulum, which cannot be observed in

reality because it is unstable and under infinitesimal perturbations turns
into a swinging motion. A stationary inverted pendulum is a fictious math-
ematical solution without physical correspondence because it is unstable.
You can only observe phenomena which in some sense are stable, and an
inverted pendelum or potential flow is not stable in any sense.
Potential flow has the following crucial property which partly will be

inherited by real turbulent flow, and which explains why a flow over a wing
subject to small skin friction can avoid separating at the crest and thus
generate downwash, unlike viscous flow with no-slip, which separates at
the crest without downwash. We will conclude that gliding flight is possible
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only in slightly viscous incompressible flow. For simplicity we consider two-
dimensional potential flow around a cylindrical body such as a long wing
(or cylinder).

Theorem. Let ϕ be harmonic in the domain Ω in the plane and satisfy a
homogeneous Neumann condition on the smooth boundary Γ of Ω. Then
the streamlines of the corresponding velocity u = ∇ϕ can only separate
from Γ at a point of stagnation with u = ∇ϕ = 0.
Proof. Let ψ be a harmonic conjugate to ϕ with the pair (ϕ, ψ) satisfying
the Cauchy-Riemann equations (locally) in Ω. Then the level lines of ψ are
the streamlines of ϕ and vice versa. This means that as long as ∇ϕ 6= 0, the
boundary curve Γ will be a streamline of u and thus fluid particles cannot
separate from Γ in bounded time.

174.16 Exponential Instability

Subtracting the NS equations with β = 0 for two solutions (u, p, σ) and
(ū, p̄, σ̄) with corresponding (slightly) different data, we obtain the following
linearized equation for the difference (v, q, τ) ≡ (u− ū, p− p̄, σ − σ̄) with :

v̇ + (u · ∇)v + (v · ∇)ū +∇q −∇ · τ = f − f̄ in Ω× I,
∇ · v = 0 in Ω× I,
v · n = g − ḡ on Γ× I,
τs = 0 on Γ× I,

v(·, 0) = u0 − ū0 in Ω,
(174.2)

Formally, with u and ū given, this is a linear convection-reaction-diffusion
problem for (v, q, τ) with the reaction term given by the 3 × 3 matrix ∇ū
being the main term of concern for stability. By the incompressiblity, the
trace of ∇ū is zero, which shows that in general ∇ū has eigenvalues with
real value of both signs, of the size of |∇ū| (with | · | som matrix norm),
thus with at least one exponentially unstable eigenvalue.
Accordingly, we expect local exponential perturbation growth of size

exp(|∇u|t) of a solution (u, p, σ), in particular we expect a potential so-
lution to be illposed. This is seen in G2 solutions with slip initiated as
potential flow, which subject to residual perturbations of mesh size h, in
log(1/h) time develop into turbulent solutions. We give computational evi-
dence that these turbulent solutions are wellposed, which we rationalize by
cancellation effects in the linearized problem, which has rapidly oscillating
coefficients when linearized at a turbulent solution.
Formally applying the curl operator ∇× to the momentum equation of

(174.1), with ν = β = 0 for simplicity, we obtain the vorticity equation

ω̇ + (u · ∇)ω − (ω · ∇)u = ∇× f in Ω, (174.3)
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which is a convection-reaction equation in the vorticity ω = ∇×u with coef-
ficients depending on u, of the same form as the linearized equation (174.2),
with similar properties of exponential perturbation growth exp(|∇u|t) re-
ferred to as vortex stretching. Kelvin’s theorem formally follows from this
equation assuming the initial vorticity is zero and ∇× f = 0 (and g = 0),
but exponential perturbation growth makes this conclusion physically in-
correct: We will see below that large vorticity can develop from irrotational
potential flow even with slip boundary conditions.

174.17 Energy Estimate with Turbulent
Dissipation

The standard energy estimate for (174.1) is obtained by multiplying the
momentum equation

u̇+ (u · ∇)u+∇p−∇ · σ − f = 0,

with u and integrating in space and time, to get in the case f = 0 and
g = 0, ∫ t

0

∫

Ω

Rν(u, p) · u dxdt = Dν(u; t) +Bβ(u; t) (174.4)

where
Rν(u, p) = u̇+ (u · ∇)u +∇p

is the Euler residual for a given solution (u, p) with ν > 0,

Dν(u; t) =

∫ t

0

∫

Ω

ν|ǫ(u(t̄, x))|2dxdt̄

is the internal turbulent viscous dissipation, and

Bβ(u; t) =

∫ t

0

∫

Γ

β|us(t̄, x)|2dxdt̄

is the boundary turbulent viscous dissipation, from which follows by stan-
dard manipulations of the left hand side of (174.4),

Kν(u; t) +Dν(u; t) +Bβ(u; t) = K(u0), t > 0, (174.5)

where

Kν(u; t) =
1

2

∫

Ω

|u(t, x)|2dx.

This estimate shows a balance of the kinetic energy K(u; t) and the turbu-
lent viscous dissipation Dν(u; t) +Bβ(u; t), with any loss in kinetic energy
appearing as viscous dissipation, and vice versa. In particular,

Dν(u; t) +Bβ(u; t) ≤ K(u0),
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and thus the viscous dissipation is bounded (if f = 0 and g = 0).
Turbulent solutions of (174.1) are characterized by substantial internal

turbulent dissipation, that is (for t bounded away from zero),

D(t) ≡ lim
ν→0

D(uν ; t) >> 0, (174.6)

which is Kolmogorov’s conjecture [18]. On the other hand, the skin friction
dissipation decreases with decreasing friction

lim
ν→0

Bβ(u; t) = 0, (174.7)

since β ∼ ν0.2 tends to zero with the viscosity ν and the tangential velocity
us approaches the (bounded) free-stream velocity. We thus find evidence
that the interior turbulent dissipation dominates the skin friction dissipa-
tion, which supports the use of slip as a model of a turbulent boundray
layer, but which is not in accordance with Prandtl’s (unproven) conjec-
ture that substantial drag and turbulent dissipation originates from the
boundary layer.
Kolmogorov’s conjecture (174.6) is consistent with

‖∇u‖0 ∼
1√
ν
, ‖Rν(u, p)‖0 ∼

1√
ν
, (174.8)

where ‖ · ‖0 denotes the L2(Q)-norm with Q = Ω× I. On the other hand,
it follows by standard arguments from (204.4) that

‖Rν(u, p)‖−1 ≤ √
ν, (174.9)

where ‖ · ‖−1 is the norm in L2(I;H
−1(Ω)). Kolmogorov thus conjectures

that the Euler residual Rν(u, p) for small ν is strongly (in L2) large, while
being small weakly (in H−1).
Altogether, we understand that the resolution of d’Alembert’s paradox

of explaining substantial drag from vanishing viscosity, consists of realizing
that the internal turbulent dissipation D can be positive under vanishing
viscosity, while the skin friction dissipation B will vanish. In contradiction
to Prandtl, we conclude that drag does not result from boundary layer
effects, but from internal turbulent dissipation, originating from instability
at separation.

174.18 G2 Computational Solution

We show in [4, 26, 30] that the Navier-Stokes equations (174.1) can be
solved by G2 producing turbulent solutions characterized by substantial
turbulent dissipation from the least squares stabilization acting as an au-
tomatic turbulence model, reflecting that the Euler residual cannot be made
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pointwise small in turbulent regions. G2 has a posteriori error control based
on duality and shows output uniqueness in mean-values such as lift and drag
[4, 23, 24]
We find that G2 with slip is capable of modeling slightly viscous turbu-

lent flow with Re > 106 of relevance in many applications in aero/hydro
dynamics, including flying, sailing, boating and car racing, with hundred
thousands of mesh points in simple geometry and millions in complex geom-
etry, while according to state-of-the-art quadrillions is required [42]. This
is because a friction-force/slip boundary condition can model a turbulent
boundary layer, and interior turbulence does not have to be resolved to
physical scales to capture mean-value outputs [4].
The idea of circumventing boundary layer resolution by relaxing no-slip

boundary conditions introduced in [23, 4], was used in [39, 5] in the form of
weak satisfaction of no-slip, which however misses the main point of using
a force condition instead of a velocity condition in a model of a turbulent
boundary layer.
A G2 solution (U, P ) on a mesh with local mesh size h(x, t) according to

[4], satisfies the following energy estimate (with f = 0, g = 0 and β = 0):

K(U(t)) +Dh(U ; t) = K(u0), (174.10)

where

Dh(U ; t) =

∫ t

0

∫

Ω

h|Rh(U, P )|2 dxdt, (174.11)

is an analog of Dν(u; t) with h ∼ ν, where Rh(U, P ) is the Euler residual
of (U, P ). We see that the G2 turbulent viscosity Dh(U ; t) arises from pe-
nalization of a non-zero Euler residual Rh(U, P ) with the penalty directly
connecting to the violation (according the theory of criminology). A tur-
bulent solution is characterized by substantial dissipation Dh(U ; t) with
‖Rh(U, P )‖0 ∼ h−1/2, and

‖Rh(U, P )‖−1 ≤
√
h (174.12)

in accordance with (174.8) and (174.9).

174.19 Wellposedness of Mean-Value Outputs

Let M(v) =
∫
Q
vψ dxdt be a mean-value output of a velocity v defined

by a smooth weight-function ψ(x, t), and let (u, p) and (U, P ) be two G2-
solutions on two meshes with maximal mesh size h. Let (ϕ, θ) be the solu-
tion to the dual linearized problem

−ϕ̇− (u · ∇)ϕ+∇U⊤ϕ+∇θ = ψ in Ω× I,
∇ · ϕ = 0 in Ω× I,
ϕ · n = g on Γ× I,

ϕ(·, T ) = 0 in Ω,

(174.13)
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where ⊤ denotes transpose. Multiplying the first equation by u − U and
integrating by parts, we obtain the following output error representation
[4]:

M(u)−M(U) =

∫

Q

(Rh(u, p)−Rh(U, P )) · ϕdxdt (174.14)

where for simplicity the dissipative terms are here omitted, from which
follows the a posteriori error estimate:

|M(u)−M(U)| ≤ S(‖Rh(u, p)‖−1 + ‖Rh(U, P )‖−1), (174.15)

where the stability factor

S = S(u, U,M) = S(u, U) = ‖ϕ‖H1(Q). (174.16)

In [4] we present a variety of evidence, obtained by computational solu-
tion of the dual problem, that for global mean-value outputs such as drag
and lift, S << 1/

√
h, while ‖Rh‖−1 ∼

√
h, allowing computation of of

drag/lift with a posteriori error control of the output within a tolerance
of a few percent. In short, mean-value outputs such as lift and drag are
wellposed and thus physically meaningful.
We explain in [4] the crucial fact that S << 1/

√
h, heuristically as an

effect of cancellation of rapidly oscillating reaction coefficients of turbulent
solutions combined with smooth data in the dual problem for mean-value
outputs. In smooth potential flow there is no cancellation, which explains
why zero lift/drag cannot be observed in physical flows.
As an example, we show in Fig.174.8 turbulent G2 flow around a car with

substantial drag in qualitative accordance with wind-tunnel experiments.
We see a pattern of streamwise vorticity forming in the rear wake. We
also see surface vorticity forming on the hood transversal to the main flow
direction. We see similar features in the flow of air around a wing.

174.20 Scenario for Separation without Stagnation

We now present a scenario for transition of potential flow into turbulent
flow, based on identifying perturbations of strong growth in the linearized
equations (174.2) and (174.3) at separation generating rolls of low pressure
streamwise vorticity changing the pressure distribution to give both lift and
drag of a wing.
As a model of potential flow at rear separation, we consider the potential

flow u(x) = (x1,−x2, 0) in the half-plane {x1 > 0}. Assuming x1 and x2
are small, we approximate the v2-equation of (174.2) by

v̇2 − v2 = f2,
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FIGURE 174.8. Velocity of turbulent G2 flow with slip around a car with courtesy
of geometry Volvo Cars and computations by Murtazo Nasarov.

where f2 = f2(x3) is an oscillating mesh residual perturbation depending on
x3 (including also a pressure-gradient), for example f2(x3) = h sin(x3/δ),
with δ > 0. It is natural to assume that the amplitude of f2 decreases with
δ. We conclude, assuming v2(0, x) = 0, that

v2(t, x3) = t exp(t)f2(x3),

and for the discussion, we assume v3 = 0. Next we approximate the ω1-
vorticity equation for x2 small and x1 ≥ x̄1 > 0 with x̄1 small, by

ω̇1 + x1
∂ω1

∂x1
− ω1 = 0,

with the “inflow boundary condition”

ω1(x̄1, x2, x3) =
∂v2
∂x3

= t exp(t)
∂f2
∂x3

.

The equation for ω1 thus exhibits exponential growth, which is combined
with exponential growth of the “inflow condition”. We can see these fea-
tures in Fig. 174.9 showing how opposing flows on the back generate a
pattern of co-rotating surface vortices which act as initial conditions for
vortex stretching into the fluid generating rolls of low-pressure streamwise
vorticity, in the case of a wing attaching to the trailing edge.
Altogether we expect exp(t) perturbation growth of residual perturba-

tions of size h, resulting in a global change of the flow after time T ∼
log(1/h), which can be traced in the computations.
We thus understand that the formation of streamwise streaks as the re-

sult of a force perturbation oscillating in the x3 direction, which in the
retardation of the flow in the x2-direction creates exponentially increasing
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vorticity in the x1-direction, which acts as inflow to the ω1-vorticity equa-
tion with exponential growth by vortex stretching. Thus, we find exponen-
tial growth at rear separation in both the retardation in the x2-direction
and the accelleration in the x1 direction. This scenario is illustrated in
principle and computation in Fig.174.9. Note that since the perturbation is
convected with the base flow, the absolute size of the growth is related to
the length of time the perturbation stays in a zone of exponential growth.
Since the combined exponential growth is independent of δ, it follows that
large-scale perturbations with large amplitude have largest growth, which
is also seen in computations with δ the distance between streamwise rolls
as seen in Fig.174.3 which does not seem to decrease with decreasing h.
Notice that at forward attachment of the flow the retardation does not

come from opposing flows, and the zone of exponential growth of ω2 is short,
resulting in much smaller perturbation growth than at rear separation.
We can view the occurence of the rear surface vorticities as a mechanism

of separation with non-zero tangential speed, by diminishing the normal
pressure gradient of potential flow, which allows separation only at stag-
nation. The surface vorticities thus allow separation without stagnation
but the price is generation of a system of low-pressure tubes of stream-
wise vorticity creating drag in a form of “separation trauma” or “cost of
divorce”.
The scenario for separation can summarized as follows: Velocity insta-

bility in retardation as opposing flows meet in the rear of the cylinder,
generates a zig-zag pattern of surface vorticity shown in Fig.174.9, allow-
ing separation into counter-rotating low-pressure rolls, attaching to the
trailing edge in the case of a wing, as shown in Fig. 174.1.

FIGURE 174.9. Turbulent separation by surface vorticity forming counter-rotat-
ing low-pressure rolls in flow around a circular cylinder, illustrating separation
at the trailing edge of a wing [23].
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174.21 Stability of the Streamwise Vorticity
Perturbed Flow

The rolls of streamwise vorticity swirling flow appearing at separation be-
cause of the instability of potential flow represent a more stable flow pat-
tern. An indication of stability is given by an analysis of the stability of
the rotating flow field u = (0, x3,−x2) with linearized problem of the form

v̇2 + v3 = 0, v̇3 − v2 = 0 (174.17)

which does not have any exponentially unstable solutions. The swirling flow
at separation is similar to the vortex seen at the drain of a bathtub.

174.22 Sailing

Both the sail and keel of a sailing boat under tacking against the wind, act
like wings generating lift and drag, but the action, geometrical shape and
angle of attack of the sail and the keel are different. The effective angle of
attack of a sail is typically 15-20 degrees and that of a keel 5-10 degrees,
for reasons which we now give.
The boat is pulled forward by the sail, assuming for simplicity that the

beam is parallel to the direction of the boat at a minimal tacking angle, by
the component L sin(15) of the lift L, as above assumed to be perpendicular
to the effective wind direction, but also by the following contributions from
the drag assumed to be parallel to the effective wind direction: The negative
drag on the leeeward side at the leading edge close to the mast gives a
positive pull which largely compensates for the positive drag from the rear
leeward side, while there is less positive drag from the windward side of the
sail as compared to a wing profile, because of the difference in shape. The
result is a forward pull ≈ sin(15)L ≈ 0.2L combined with a side (heeling)
force ≈ L cos(15) ≈ L, which tilts the boat and needs to be balanced by lift
from the the keel in the opposite direction. Assuming the lift/drag ratio for
the keel is 13, the forward pull is then reduced to ≈ (0.2− 1/13)L ≈ 0.1L,
which can be used to overcome the drag from the hull minus the keel.
The shape of a sail is different from that of a wing which gives smaller

drag from the windward side and thus improved forward pull, while the
keel has the shape of a symmetrical wing and acts like a wing. A sail with
aoa 15 − 20 degrees gives maximal pull forward at maximal heeling/lift
with contribution also from the rear part of the sail, like for a wing just
before stall, while the drag is smaller than for a wing at 15-20 degrees aoa
(for which the lift/drag ratio is 4-3), with the motivation given above. The
lift/drag curve for a sail is thus different from that of wing with lift/drag
ratio at aoa 15-20 much larger for a sail. On the other hand, a keel with
aoa 5-10 degrees has a lift/drag ratio about 13. A sail at aoa 15-20 thus
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gives maximal pull at strong heeling force and small drag, which together
with a keel at aoa 5-10 with strong lift and small drag, makes an efficient
combination. This explains why modern designs combine a deep narrow
keel acting efficiently for small aoa, with a broader sail acting efficiently at
a larger aoa.
Using a symmetrical wing as a sail would be inefficient, since the lift/drag

ratio is poor at maximal lift at aoa 15-20. On the other hand, using a sail
as a wing can only be efficient at a large angle of attack, and thus is not
suitable for cruising. This material is developed in more detail in [30].
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175
The Secret of Thermodynamics

ABSTRACT We test the functionality of FEniCS on the challenge of com-
putational thermodynamics in the form of the EG2 finite element solver of
the Euler equations expressing conservation of mass, momentum and en-
ergy. We show that computational solutions satisfy a 2nd Law formulated
in terms of kinetic energy, internal (heat) energy, work and shock/turbulent
dissipation, without reference to entropy. We show that the 2nd Law ex-
presses an irreversible transfer of kinetic energy to heat energy in shock/turbulent
dissipation arising because the Euler equations lack pointwise solutions,
and thus explains the occurence of irreversibility in formally reversible sys-
tems as an effect of instability with blow-up of Euler residuals combined
with finite precision computation, without resort to statistical mechanics
or ad hoc viscous regularization. We simulate the classical Joule or Joule-
Thompson experiment of a gas expanding from rest under temperature drop
followed by temperature recovery by turbulent dissipation until rest in the
double volume. We present the FEniCS implementation of EG2 including
applications to bluff body flow.

175.1 FEniCS as Computational Science

The goal of the FEniCS project is to develop software for automated
computational solution of differential equations based on a finite element
methodology combining generality with efficiency. Thermodynamics is a ba-
sic area of continuum mechanics with many important applications, which
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however is feared by both teachers, students and engineers as being diffi-
cult to understand and to apply, principally because of the apperance of
turbulence. In this article we show that turbulent thermodynamics can be
made understandable and useful by automated computational solution, as
a demonstration of the capability of FEniCS.
The biggest mystery of classical thermodynamics is the 2nd Law about

entropy and automation cannot harbor any mystery. Expert systems are
required for mysteries and FEniCS is not an expert system. Automation
requires a continuum mechanics formulation of thermodynamics with a
transparent 2nd Law. We present a formulation of thermodynamics based
on finite precision computation with a 2nd Law without reference to en-
tropy, which we show can serve as a basis for automated computational
simulation of complex turbulent thermodynamics and thus can open to
new insight and design, a main goal of FEniCS. In this setting the digital
finite element model becomes the real model of the physics of thermody-
namics viewed as a form of analog finite precision computation, a model
which is open to inspection and analysis because solutions can be computed
and put on the table. This represents a new kind of science in the spirit
of Dijkstra [6] and Wolfram [29], which can be explored using FEniCS and
which we present in non-technical form in My Book of Knols [32].

175.2 The 1st and 2nd Laws of Thermodynamics

Heat, a quantity which functions to animate, derives from an internal
fire located in the left ventricle. (Hippocrates, 460 B.C.)

Thermodynamics is fundamental in a wide range of phenomena from
macroscopic to microscopic scales. Thermodynamics essentially concerns
the interplay between heat energy and kinetic energy in a gas or fluid.
Kinetic energy, or mechanical energy, may generate heat energy by com-
pression or turbulent dissipation. Heat energy may generate kinetic energy
by expansion, but not through a reverse process of turbulent dissipation.
The industrial society of the 19th century was built on the use of steam
engines, and the initial motivation to understand thermodynamics came
from a need to increase the efficiency of steam engines for conversion of
heat energy to useful mechanical energy. Thermodynamics is closely con-
nected to the dynamics of slightly viscous and compressible gases, since
substantial compression and expansion can occur in a gas, but less in fluids
(and solids).
The development of classical thermodynamics as a rational science based

on logical deduction from a set of axioms, was initiated in the 19th century
by Carnot [4], Clausius [3] and Lord Kelvin [20], who formulated the basic
axioms in the form of the 1st Law and the 2nd Law of thermodynamics.
The 1st Law states (for an isolated system) that the total energy, the sum of



175.3 The Enigma 877

kinetic and heat energy, is conserved. The 1st Law is naturally generalized
to include also conservation of mass and Newton’s law of conservation of
momentum and then can be expressed as the Euler equations for a gas/fluid
with vanishing viscosity.
The 2nd Law has the form of an inequality dS ≥ 0 for a quantity named

entropy denoted by S, with dS denoting change thereof, supposedly ex-
pressing a basic feature of real thermodynamic processes. The classical 2nd
Law states that the entropy cannot decrease; it may stay constant or it
may increase, but it can never decrease (for an isolated system).
The role of the 2nd Law is to give a scientific basis to the many observa-

tions of irreversible processes, that is, processes which cannot be reversed
in time, like running a movie backwards. Time reversal of a process with
strictly increasing entropy, would correspond to a process with strictly de-
creasing entropy, which would violate the 2nd Law and therefore could not
occur. A perpetum mobile would represent a reversible process and so the
role of the 2nd Law is in particular to explain why it is imposssible to con-
struct a perpetum mobile, and why time is moving forward in the direction
an arrow of time, as expressed by Max Planck [10, 27, 28]: Were it not
for the existence of irreversible processes, the entire edifice of the 2nd Law
would crumble.
While the 1st Law in the form of the Euler equations expressing conserva-

tion of mass, momentum and total energy can be understood and motivated
on rational grounds, the nature of the 2nd Law is mysterious. It does not
seem to be a consequence of the 1st Law, since the Euler equations seem to
be time reversible, and the role of the 2nd Law is to explain irreversibility.
Thus questions are lining up: nIf the 2nd Law is a new independent law of
Nature, how can it be justified? What is the physical significance of that
quantity named entropy, which Nature can only get more of and never can
get rid of, like a steadily accumulating heap of waste? What mechanism
prevents Nature from recycling entropy? How can irreversiblity arise in a
reversible system? How can viscous dissipation arise in a system with van-
ishing viscosity? Why is there no Maxwell demon [24]? Why can a gas by
itself expand into a larger volume, but not by itself contract back again, if
the motion of the gas molecules is governed by the reversible Newton’s laws
of motion? Why is there an arrow of time? This article presents answers.

175.3 The Enigma

Those who have talked of “chance” are the inheritors of antique su-
perstition and ignorance...whose minds have never been illuminated
by a ray of scientific thought. (T. H. Huxley)

These were the questions which confronted scientists in the late 19th cen-
tury, after the introduction of the concept of entropy by Clausius in 1865,
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and these showed to be tough questions to answer. After much struggle,
agony and debate, the agreement of the physics community has become
to view statistical mechanics based on an assumption of molecular chaos
as developed by Boltzmann [1], to offer a rationalization of the classical
2nd Law in the form of a tendency of (isolated) physical processes to move
from improbable towards more probable states, or from ordered to less or-
dered states. Boltzmann’s assumption of molecular chaos in a dilute gas
of colliding molecules, is that two molecules about to collide have inde-
pendent velocities, which led to the H-theorem for Boltzmann’s equations
stating that a certain quantity denoted by H could not decrease and thus
could serve as an entropy defining an arrow of time. Increasing disorder
would thus represent increasing entropy, and the classical 2nd Law would
reflect the eternal pessimistists idea that things always get more messy,
and that there is really no limit to this, except when everything is as messy
as it can ever get. Of course, experience could give (some) support this
idea, but the trouble is that it prevents things from ever becoming less
messy or more structured, and thus may seem a bit too pessimistic. No
doubt, it would seem to contradict the many observations of emergence of
ordered non-organic structures (like crystals or waves and cyclons) and or-
ganic structures (like DNA and human beings), seemingly out of disordered
chaos, as evidenced by the physics Nobel Laureate Robert Laughlin [21].
Most trained thermodynamicists would here say that emergence of order

out of chaos, in fact does not contradict the classical 2nd Law, because
it concerns “non-isolated systems”. But they would probably insist that
the Universe as a whole (isolated system) would steadily evolve towards a
“heat-death” with maximal entropy/disorder (and no life), thus fulfilling
the pessimists expectation. The question from where the initial order came
from, would however be left open.
The standard presentation of thermodynamics based on the 1st and

2nd Laws, thus involves a mixture of deterministic models (Boltzmann’s
equations with the H-theorem) based on statistical assumptions (molecular
chaos) making the subject admittedly difficult to both learn, teach and ap-
ply, despite its strong importance. This is primarily because the question
why necessarily dS ≥ 0 and never dS < 0, is not given a convincing under-
standable answer. In fact, statistical mechanics allows dS < 0, although it
is claimed to be very unlikely. The basic objective of statistical mechanics
as the basis of classical thermodynamics, thus is to (i) give the entropy a
physical meaning, and (ii) to motivate its tendency to (usually) increase.
Before statistical mechanics, the 2nd Law was viewed as an experimental
fact, which could not be rationalized theoretically. The classical view on
the 2nd Law is thus either as a statistical law of large numbers or as a an
experimental fact, both without a rational deterministic mechanistic theo-
retical foundation. The problem with thermodynamics in this form is that
it is understood by very few, if any:
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• Every mathematician knows it is impossible to understand an elementary
course in thermodynamics. (V. Arnold)

• ...no one knows what entropy is, so if you in a debate use this concept, you
will always have an advantage. (von Neumann to Shannon)

• As anyone who has taken a course in thermodynamics is well aware, the
mathematics used in proving Clausius’ theorem (the 2nd Law) is of a very
special kind, having only the most tenous relation to that known to mathe-
maticians. (S. Brush [2])

• Where does irreversibility come from? It does not come form Newton’s laws.
Obviously there must be some law, some obscure but fundamental equation.
perhaps in electricty, maybe in neutrino physics, in which it does matter
which way time goes. (Feynman [9])

• For three hundred years science has been dominated by a Newtonian paradigm
presenting the World either as a sterile mechanical clock or in a state of de-
generation and increasing disorder...It has always seemed paradoxical that
a theory based on Newtonian mechanics can lead to chaos just because the
number of particles is large, and it is subjectivly decided that their precise
motion cannot be observed by humans... In the Newtonian world of ne-
cessity, there is no arrow of time. Boltzmann found an arrow hidden in
Nature’s molecular game of roulette. (Paul Davies [5])

• The goal of deriving the law of entropy increase from statistical mechanics
has so far eluded the deepest thinkers. (Lieb [22])

• There are great physicists who have not understood it. (Einstein about
Boltzmann’s statistical mechanics)

175.4 Computational Foundation

In this note we present a foundation of thermodynmaics, further elaborated
in [12, 5], where the basic assumption of statistical mechanics of molecu-
lar chaos, is replaced by deterministic finite precision computation, more
precisely by a least squares stabilized finite element method for the Euler
equations, referred to as Euler General Galerkin or EG2. In the spirit of Di-
jkstra [6], we thus view EG2 as the physical model of thermodynamics, that
is the Euler equations together with a computational solution procedure,
and not just the Euler equations without constructive solution procedure
as in a classical non-computational approach.
Using EG2 as a model of thermodynamics changes the questions and

answers and opens new possibilities of progress together with new chal-
lenges to mathematical analysis and computation. The basic new feature is
that EG2 solutions are computed and thus are available to inspection. This
means that the analysis of solutions shifts from a priori to a posteriori ;
after the solution has been computed it can be inspected.
Inspecting computed EG2 solutions we find that they are turbulent and

have shocks, which is identified by pointwise large Euler residuals, reflecting
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that pointwise solutions to the Euler equations are lacking. The enigma of
thermodynamics is thus the enigma of turbulence (since the basic nature
of shocks is understood). Computational thermodynamics thus essentially
concerns computational turbulence. In this note and [5] we present evidence
that EG2 opens to a resolution of the enigma of turbulence and thus of
thermodynamics.
The fundamental question concerns wellposedness in the sense of Hadamard,

that is what aspects or outputs of turbulent/shock solutions are stable un-
der perturbations in the sense that small perturbations have small effects.
We show that wellposedness of EG2 solutions can be tested a posteriori by
computationally solving a dual linearized problem, through which the out-
put sensitivity of non-zero Euler residuals can be estimated. We find that
mean-value outputs such as drag and lift and total turbulent dissipation
are wellposed, while point-values of turbulent flow are not. We can thus a
posteriori in a case by case manner, assess the quality of EG2 solutions as
solutions of the Euler equations.
We formulate a 2nd Law for EG2 without the concept of entropy, in

terms of the basic physical quantities of kinetic energy K, heat energy E,
rate of work W and shock/turbulent dissipation D > 0. The new 2nd Law
reads

K̇ =W −D, Ė = −W +D, (175.1)

where the dot indicates time differentiation. Slightly viscous flow always
develops turbulence/shocks with D > 0, and the 2nd Law thus expresses
an irreversible transfer of kinetic energy into heat energy, while the total
energy E +K remains constant.
With the 2nd Law in the form (175.1), we avoid the (difficult) main task

of statistical mechanics of specifying the physical significance of entropy and
motivating its tendency to increase by probabilistic considerations based
on (tricky) combinatorics. Thus using Ockham’s razor [25], we rationalize a
scientific theory of major importance making it both more understandable
and more useful. The new 2nd Law is closer to classical Newtonian me-
chanics than the 2nd Law of statistical mechanics, and thus can be viewed
to be more fundamental.
The new 2nd Law is a consequence of the 1st Law in the form of the Eu-

ler equations combined with EG2 finite precision computation effectively
introducing viscosity and viscous dissipation. These effects appear as a con-
sequence of the non-existence of pointwise solutions to the Euler equations
reflecting instablities leading to the development shocks and turbulence in
which large scale kinetic energy is transferred to small scale kinetic energy
in the form of heat energy. The viscous dissipation can be interpreted as
a penalty on pointwise large Euler residuals arising in shocks/turbulence,
with the penalty being directly coupled to the violation following a prin-
ciple of criminal law exposed in [11]. EG2 thus explains the 2nd Law as
a consequence of the non-existence of pointwise solutions with small Eu-
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ler residuals. This offers an understanding to the emergence of irreversible
solutions of the formally reversible Euler equations. If pointwise solutions
had existed, they would have been reversible without dissipation, but they
don’t exist, and the existing computational solutions have dissipation and
thus are irreversible.

175.5 Viscosity Solutions

An EG2 solution can be viewed as particular viscosity solution of the Euler
equations, which is a solution of regularized Euler equations augmented by
additive terms modeling viscosity effects with small viscosity coefficients.
The effective viscosity in an EG2 solution typically may be comparable to
the mesh size.
For incompressible flow the existence of viscosity solutions, with suitable

solution dependent viscosity coefficients, can be proved a priori using stan-
dard techniques of analytical mathematics. Viscosity solutions are point-
wise solutions of the regularized equations. But already the most basic
problem with constant viscosity, the incompressible Navier-Stokes equa-
tions for a Newtonian fluid, presents technical difficulties, and is one of the
open Clay Millennium Problems.
For compressible flow the technical complications are even more severe,

and it is not clear which viscosities would be required for an analytical
proof of the existence of viscosity solutions [8] to the Euler equations. Fur-
thermore, the question of wellposedness is typically left out, as in the for-
mulation of the Navier-Stokes Millennium Problem, with the motivation
that first the existence problem has to be settled. Altogether, analytical
mathematics seems to have little to offer a priori concerning the existence
and wellposedness of solutions of the compressible Euler equations. In con-
trast, EG2 computational solutions of the Euler equations seem to offer a
wealth of information a posteriori, in particular concerning wellposedness
by duality.
An EG2 solution thus can be viewed as a specific viscosity solution with

a specific regularization from the least squares stabilization, in particular
of the momentum equation, which is necessary because pointwise momen-
tum balance is impossible to achieve in the presence of shocks/turbulence.
The EG2 viscosity can be viewed to be the minimal viscosity required to
handle the contradiction behind the non-existence of pointwise solutions.
For a shock EG2 could then be directly interpreted as a certain physical
mechanism preventing a shock wave from turning over, and for turbulence
as a form of automatic computational turbulence model.
EG2 thermodynamics can be viewed as form of deterministic chaos,

where the mechanism is open to inspection and can be used for predic-
tion. On the other hand, the mechanism of statistical mechanics is not
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open to inspection and can only be based on ad hoc assumption, as noted
by e.g. Einstein [7]. If Boltzmann’s assumption of molecular chaos cannot
be justified, and is not needed, why consider it at all, [23]?

FIGURE 175.1. Joule’s 1845 experiment

175.6 Joule’s 1845 Experiment

To illustrate basic aspects of thermodynamics, we recall Joule’s experiment
from 1845 with a gas initially at rest, or in equilibrium, at a certain temper-
ature and density in a certain volume immersed into a container of water,
see Fig. 175.1. At initial time a valve was opened and the gas was allowed to
expand into the double volume while the temperature change in the water
was carefully measured by Joule. To the great surprise of both Joule and
the scientific community, no change of the temperature of the water could
be detected, in contradiction with the expectation that the gas would cool
off under expansion. Moreover, the expansion was impossible to reverse;
the gas had no inclination to contract back to the original volume.
We simulate Joule’s experiment computationally using EG2: At initial

time a valve is opened in a channel connecting two cubical chambers, a left
and a right chamber, filled with gas of the same temperature but different
density/pressure with high density/pressure in the left and low in the right
chamber. Fig. 175.2 and 175.3 displays the time-evolution of mean temper-
ature, density, kinetic energy and pressure in the left and right chambers,
while Fig. 175.4 and 175.5 give snapshots of the distribution of temperature
and speed at an intermediate time.
We see that temperature drop in the left chamber as the gas expands

with heat energy transforming to kinetic energy with a maximal tempera-
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ture drop in the channel. When the cool expanding gas hits the wall oppo-
site to the channel inlet in the right chamber, it is heated in recompression
and returns along the walls into a vortical turbulent flow with additional
heating from turbulent dissipation. The net effect is that the mean tem-
perature in the right chamber increases. The mean temperature thus drops
in the left chamber and increases in the right and after a slight rebounce
settles to a remaining density/temperature gap as the gas comes to rest
with the same pressure in the left and right chambers and the same total
heat energy as before expansion. Joule measured the total heat energy of
the initial and final equilibrium states and found them to be equal. Joule
did not seek to measure the dynamics of the process, nor the remaining
temperature/density gap.
From the 1st Law alone there are many different possible end states with

varying gaps in density/temperature. It is the 2nd Law which determines
the size of the gap, which relates to the amount of turbulent/shock dissipa-
tion in the left and right chambers, which is determined by the dynamics
of the process including the distribution of turbulence/shock dissipation.
Classical thermodynamics focussing on equiblium states does not tell

which from a range of possible equlibrium end states with varying gaps, will
actually be realized, because the true end state depends on the dynamics
of the process. If anything, classical thermodynmics would predict an end
state with zero gap, which we have seen is incorrect. In short, classical
equilibrium thermodynamics excluding dynamics cannot correctly predict
equlibrium end states, and thus has little practical value.
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FIGURE 175.2. Density and temperature in left and right chambers

The 2nd Law states that reversal of the process with the gas contracting
back to the original small volume, is impossible because the only way the
gas can be put into motion without external forcing is by expansion: Self-
expansion is possible, but not self-constraction.
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FIGURE 175.3. Kinetic energy and pressure in left and right chambers

FIGURE 175.4. Distribution of gas temperature at T = 3
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FIGURE 175.5. Distribution of gas speed at T = 3

We are thus able to analyze and understand the dynamics of the Joule
experiment using the 1st and the new form of the 2nd law. The experiment
displays the expansion phase of a compression refrigerator with heat being
moved by expansion from the left chamber in contact with the inside of the
refrigerator, into the right chamber in contact with the outside. The cycle
is closed by recompression under outside cooling. The efficiency connects
to the temperature drop in the left chamber and the gap, with efficiency
suffering from rebounce to small gap.

175.7 The Euler Equations

We consider the Euler equations for an inviscid perfect gas enclosed in a
volume Ω in R3 with boundary Γ over a time interval I = (0, 1] expressing
conservation of mass density ρ, momentum m = (m1,m2,m3) and internal
energy e: Find û = (ρ,m, e) depending on (x, t) ∈ Q ≡ Ω× I such that

Rρ(û) ≡ ρ̇+∇ · (ρu) = 0 in Q,
Rm(û) ≡ ṁ+∇ · (mu+ p) = f in Q,

Re(û) ≡ ė+∇ · (eu) + p∇ · u = g in Q,
u · n = 0 on Γ× I

û(·, 0) = û0 in Ω,

(175.2)
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where u = m
ρ is the velocity, p = (γ − 1)e with γ > 1 a gas constant, f is a

given volume force, g a heat source/sink and û0 a given initial state. We here
express energy conservation in terms of the internal energy e = ρT , with
T the temperature, and not as conservation of the total energy ǫ = e + k

with k = ρv2

2 the kinetic energy, in the form ǫ̇ + ∇ · (ǫu) = 0. Because of
the appearance of shocks/turbulence, the Euler equations lack pointwise
solutions, except possible for short time, and regularization is therefore
necessary. For a mono-atomic gas γ = 5/3 and (179.1) then is a parameter-
free model, the ideal form of mathematical model according to Einstein...

175.8 Energy Estimates for Viscosity Solutions

For the discussion we consider the following regularized version of (179.1)
assuming for simplicity that f = 0 and g = 0: Find ûν,µ ≡ û = (ρ,m, e)
such that

Rρ(û) = 0 in Q,
Rm(û) = −∇ · (ν∇u) +∇(µp∇ · u) in Q,
Re(û) = ν|∇u|2 in Q,

u = 0 on Γ× I,
û(·, 0) = û0 in Ω,

(175.3)

where ν > 0 is a shear viscocity µ >> ν ≥ 0 if ∇·u > 0 in expansion (with
µ = 0 if ∇ · u ≤ 0 in compression), is a small bulk viscosity, and we use
the notation |∇u|2 =

∑
i |∇ui|2. We shall see that the bulk viscosity is a

safety feature putting a limit to the work p∇ · u in expansion appearing in
the energy balance.
We note that only the momentum equation is subject to viscous regu-

lariztion. Further, we note that the shear viscosity term in the momentum
equation multiplied by the velocity u (and formally integrated by parts)
appears as a positive right hand side in the equation for the internal en-
ergy, reflecting that the dissipation from shear viscosity is transformed into
internal heat energy. In contrast, the dissipation from the bulk viscosity
represents another form of internal energy not accounted for as heat en-
ergy, acting only as a safety feature in the sense that its contribution to the
energy balance in general will be small, while that from the shear viscosity
in general will be substantial reflecting shock/turbulent dissipation.
Below we will consider instead regularization by EG2 with the advantage

that the EG2 solution is computed and thus is available to inspection, while
ûν,µ is not. We shall see that EG2 regularization can be interpreted as a
(mesh-dependent) combination of bulk and shear viscosity and thus (175.3)
can be viewed as an analytical model of EG2 open to simple form of analysis
in the form of energy estimates.
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As indicated, the existence of a pointwise solution û = ûν,µ to the reg-
ularized equations (175.3) is an open problem of analytical mathematics,
although with suitable additional regularization it could be possible to set-
tle [8]. Fortunately, we can leave this problem aside, since EG2 solutions
will be shown to exist a posteriori by computation. We thus formally as-
sume that (175.3) admits a pointwise solution, and derive basic energy
estimates which will be paralleled below for EG2. We thus use the regular-
ized problem (175.3) to illustrate basic features of EG2, including the 2nd
Law.
We shall prove now that a regularized solution û is an approximate so-

lution of the Euler equations in the sense that Rρ(û) = 0 and Re(û) ≥ 0
pointwise, Rm(û) is weakly small in the sense that

‖Rm(û)‖−1 ≤
√
ν√
µ
+
√
µ << 1, (175.4)

where ‖ · ‖−1 denotes the L2(I;H
−1(Ω))-norm, and the following 2nd Law

holds:

K̇ ≤W −D, Ė = −W +D, (175.5)

where

K =

∫

Ω

k dx, E =

∫

Ω

e dx, W =

∫

Ω

p∇ · u dx, D =

∫

Ω

ν|∇u|2 dx.

Choosing ν << µ we can assure that ‖Rm(ûν,µ)‖−1 is small. We can view
the 2nd Law as a compensation for the fact that the momentum equation
is only satisfied in a weak sense, and the equation for internal energy with
inequality.
The 2nd Law (179.7) states an irreversible transfer of kinetic energy to

heat energy in the presence of shocks/turbulence with D > 0, which is the
generic case. On the other hand, the sign of W is variable and thus the
corresponding energy transfer may go in either direction.
The basic technical step is to multiply the momentum equation by u,

and use the mass balance equation in the form |u|2
2 (ρ̇ +∇ · (ρu)) = 0, to

get

k̇ +∇ · (ku) + p∇ · u−∇(µp∇ · u) · u−∇ · (ν∇u) · u = 0. (175.6)

By integration in space it follows that K̇ ≤ W − D, and similarly it fol-
lows that Ė = −W + D from the equation for e, which proves the 2nd
Law. Adding next (175.6) to the equation for the internal energy e and
integrating in space, gives

K̇ + Ė +

∫

Ω

µp(∇ · u)2 dx = 0,
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and thus after integration in time

K(1) + E(1) +

∫

Q

µp(∇ · u)2 dxdt = K(0) + E(0). (175.7)

We now need to show that E(1) ≥ 0 (or more generally that E(t) > 0 for
t ∈ I), and to this end we rewrite the equation for the internal energy as
follows:

Due+ γe∇ · u = ν|∇u|2,
where Due = ė + u · ∇e is the material derivative of e following the fluid
particles with velocity u. Assuming that e(x, 0) > 0 for x ∈ Ω, it follows
that e(x, 1) > 0 for x ∈ Ω, and thus E(1) > 0. Assuming K(0) + E(0) = 1
the energy estimate (175.7) thus shows that

∫

Q

µp(∇ · u)2 dxdt ≤ 1, (175.8)

and also that E(t) ≤ 1 for t ∈ I. Next, integrating (175.6) in space and
time gives, assuming for simplicity that K(0) = 0,

K(1)+

∫

Q

ν(∆u)2dxdt =

∫

Q

p∇·udxdt−
∫

Q

µp(∇·u)2dxdt ≤ 1

µ

∫

Q

pdxdt ≤ 1

µ
,

where we used that
∫
Q
pdxdt = (γ− 1)

∫
Q
edxdt ≤

∫
I
E(t)dt ≤ 1. It follows

that ∫

Q

ν|∇u|2dxdt ≤ 1

µ
. (175.9)

By standard estimation (assuming that p is bounded), it follows from
(175.8) and (175.9) that

‖Rm(û)‖−1 ≤ C(
√
µ+

√
ν√
µ
),

with C a constant of moderate size, which completes the proof. As indi-
cated, ‖Rm(û)‖−1 is estimated by computation, as shown below. The role of
the analysis is thus to rationalize computational experience, not to replace
it.

175.9 Compression and Expansion

The 2nd Law (179.7) states that there is a transfer of kinetic energy to
heat energy if W < 0, that is under compression with ∇ · u < 0, and a
transfer from heat to kinetic energy if W > 0, that is under expansion
with ∇ · u > 0. Returning to Joule’s experiment, we see by the 2nd Law
that contraction back to the original volume from the final rest state in the
double volume, is impossible, because the only way the gas can be set into
motion is by expansion. To see this no reference to entropy is needed.
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175.10 A 2nd Law witout Entropy

We note that the 2nd Law (179.7) is expressed in terms of the physical
quantities of kinetic energy K, heat energy E, work W , and dissipation
D and does not involve any concept of entropy. This relieves us from the
task of finding a physical significance of entropy and justification of a clas-
sical 2nd Law stating that entropy cannot decrease. We thus circumvent
the main difficulty of classical thermodynamics based on statistical me-
chanics, while we reach the same goal as statistical mechanics of explaining
irreversibility in formally reversible Newtonian mechanics.
We thus resolve Loschmidt’s paradox [23] asking how irreversibility can

occur in a formally reversible system, which Boltzmann attempted to solve.
But Loschmidt pointed out that Boltzmann’s equations are not formally
reversible, because of the assumption of molecular chaos that velocities are
independent before collision, and thus Boltzmann effectively assumes what
is to be proved. Boltzmann and Loschmidt’s met in heated debates without
conclusion, but after Boltzmann’s tragic death followed by the experimental
verification of the molecular nature of gases, Loschmidt’s paradox evapo-
rated as if it had been resolved, while it had not. Postulating molecular
chaos still amounts to assume what is to be proved.

175.11 Comparison with Classical
Thermodynamics

Classical thermodynamics is based on the relation

Tds = dT + pdv, (175.10)

where ds represents change of entropy s per unit mass, dv change of volume
and dT denotes the change of temperature T per unit mass, combined with
a 2nd Law in the form ds ≥ 0. On the other hand, the new 2nd Law takes
the symbolic form

dT + pdv ≥ 0, (175.11)

effectively expressing that Tds ≥ 0, which is the same as ds ≥ 0 since
T > 0. In symbolic form the new 2nd Law thus expresses the same as the
classical 2nd Law, without referring to entropy.
Integrating the classical 2nd Law (175.10) for a perfect gas with p =

(γ − 1)ρT and dv = d( 1ρ) = − dρ
ρ2 , we get

ds =
dT

T
+
p

T
d(

1

ρ
) =

dT

T
+ (1 − γ)

dρ

ρ
,

and we conclude that with e = ρT ,

s = log(Tρ1−γ) = log(
e

ργ
) = log(e)− γ log(ρ) (175.12)
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up to a constant. Thus, the entropy s = s(ρ, e) for a perfect gas is a
function of the physical quantities ρ and e = ρT , thus a state function,
suggesting that s might have a physical significance, because ρ and e have.
We thus may decide to introduce a quantity s defined this way, but the basic
questions remains: (i) What is the physical significance of s? (ii) Why is
ds ≥ 0? What is the entropy non-perfect gas in which case s may not be a
state function?
To further exhibit the connection between the classical and new forms

of the 2nd Law, we observe that by the chain rule,

ρDus =
ρ

e
Due−γDuρ =

1

T
(Due+γρT∇·u) = 1

T
(Due+e∇·u+(γ−1)ρT∇·u)

since by mass conservation Duρ = −ρ∇ · u. It follows that the entropy
S = ρs satisfies

Ṡ +∇ · (Su) = ρDus =
1

T
(ė +∇ · (eu) + p∇ · u) = 1

T
Re(û). (175.13)

A solution û of the regularized Euler equations (175.3) thus satisfies

Ṡ +∇ · (Su) = ν

T
|∇u|2 ≥ 0 in Q, (175.14)

where S = ρ log(eρ−γ). In particular, in the case of the Joule experiment
with T the same in the initial and final states, we have s = γ log(V ) showing
an increase of entropy in the final state with larger volume.
We sum up by noting that the classical and new form of the second law

effectively express the same inequality ds ≥ 0 or Tds ≥ 0. The new 2nd
law is expressed in terms of the fundamental concepts of of kinetic energy,
heat energy and work without resort to any form of entropy and statistical
mechanics with all its complications. Of course, the new 2nd Law readily
extends to the case of a general gas.

175.12 EG2

EG2 in cG(1)cG(1)-form for the Euler equations (179.1), reads: Find û =
(ρ,m, ǫ) ∈ Vh such that for all (ρ̄, ū, ǭ) ∈ Wh

((Rρ(û), ρ̄)) + ((hu · ∇ρ, u · ∇ρ̄)) = 0,

((Rm(û), ū)) + ((hu · ∇m,u · ∇ū)) + (νsc∇u,∇ū)) = 0,

((Rǫ(û), ē)) + ((hu · ∇ǫ, u · ∇ǭ)) = 0,

(175.15)

where Vh is a trial space of continuous piecewise linear functions on a space-
time mesh of size h satisfying the initial condition û(0) = û0 with u ∈ Vh
defined by nodal interpolation of mρ , and Wh is a corresponding test space
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of function which are continuous piecewise linear in space and piecewise
constant in time, all functions satisfying the boundary condition u · n = 0
at the nodes on Γ. Further, ((·, ·)) denotes relevant L2(Q) scalar products,
and νsc = h2|Rm(û)| is a residual dependent shock-capturing viscosity, see
[5]. We here use the conservation equation for the total energy ǫ rather
than for the internal energy e.
EG2 combines a weak satisfaction of the Euler equations with a weighted

least squares control of the residual R(û) ≡ (Rρ(û), Rm(û), Re(û)) and thus
represents a midway between the Scylla of weak solution and Carybdis of
least squares strong solution.

175.13 The 2nd Law for EG2

Subtracting the mass equation with ρ̄ a nodal interpolant of |u|2
2 from the

momentum equation with ū = u and using the heat energy equation with
ē = 1, we obtain the following 2nd Law for EG2 (up to a

√
h-correction

controled by the shockcapturing viscosity [18]):

K̇ =W −Dh, Ė = −W +Dh, (175.16)

where

Dh = ((hρu · ∇u, u · ∇u)). (175.17)

For solutions with turbulence/shocks, Dh > 0 expressing an irreversible
transfer of kinetic energy into heat energy, just as above for regularized
solutions. We note that in EG2 only the momentum equation is subject to
viscous regularization, since Dh expresses a penalty on u · ∇u appearing in
the momentum residual.

175.14 The Stabilization in EG2

The stabilization in EG2 is expressed by the dissipative term Dh which can
be viewed as a weighted least squares control of the term ρu · ∇u in the
momentum residual. The rationale is that least squares control of a part of
a residual which is large, effectively may give control of the entire residual,
and thus EG2 gives a least squares control of the momentum residual.
But the EG2 stabilization does not correspond to an ad hoc viscosity, as
in classical regularization, but to a form of penalty arsing because Euler
residuals of turbulent/shock solutions are not pointwise small. In particular
the dissipative mecahnism of EG2 does not correspond to a simple shear
viscosity, but rather to a form of “streamline viscosity” preventing fluid
particles from colliding while allowing strong shear.
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175.15 EG2 Implementation in FEniCS

FEniCS code + short info on a posteroiri error control. To be added by
Murtazo.
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Wärmetheorie, Dissertation, Berlin, 1879.

[27] Max Planck, Vorlesungen über Thermodynamik, 1897.

[28] Max Planck, Acht Vorlesungen über Theoretische Physik, Fünfte Vor-
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176
Computational Blackbody Radiation

All these fifty years of conscious brooding have brought me no
nearer to the answer to the question, “What are light quanta?”.
Nowadays every Tom, Dick and Harry thinks he knows it, but
he is mistaken. (Einstein 1954)

176.1 Watch

• Black Bodies

176.2 Wave-Particle Duality and Modern Physics

Maxwell’s equations represent a culmination of classical mathematical physics
by offering a compact mathematical formulation of all of electromagnetics
including the propagation of light and radiation, as electromagnetic waves.
But like in a Greek tragedy, the success of Maxwell’s equations prepared
for the collapse of classical mathematical physics and the rise of modern
physics based on a concept wave-particle duality with a resurrection of
Newton’s old idea of light as a stream of light particles or photons, in its
modern version combined with statistics.
But elevating wave-particle duality to a physical principle is a cover-up of

a contradiction [3, 4, 11]: As a reasonable human being you may sometimes
act like a fool, but duality is here called schizophrenia, and schizophrenic

http://www.youtube.com/watch?v=l_t8dn4c6_g
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science is crazy science. In our time this may be represented by string
theory, quantum loop gravity, multiverse theory, and possibly also CO2

climate alarmism ultimately based on radiation as streams of particles.
The purpose of this note is to show that particle statistics can be replaced
by deterministic finite precision computational wave mechanics. We thus
seek to open a door to restoring rational physics including climate physics,
without any contradictory wave-particle duality.

176.3 Climate Alarmism, Greenhouse Effect and
Backradiation

In particular, the objective is to show that the “greenhouse effect” of cli-
mate alarmism claimed to arise from “backradiation” of particle streams as
depicted by NASA in Fig. 5, cannot have a real physical meaning, as little
as ”backconduction” or ”backdiffusion”. This because such processes are
inherently unstable and thus cannot occur in real physics, only in imagi-
nation. This removes a main source of energy from CO2 climate alarmism,
in the sense that various feedbacks will have to start from zero rather than
an alarming warming from radiation alone. We first give a popular science
description in words and then a mathematical one using formulas.
To express physics in precise terms it is necessary to use the language

of mathematics, but main ideas can be captured also in ordinary language
helping understanding, and so the two forms of expression complement
each other. In particular we shall find that the term “backradiation” which
can be contemplated without mathematics, when expressed mathematically
reveals its true unstable nature, which makes it into a fictitious unphysi-
cal phenomenon without reality. We shall find that it represents the same
form of fiction as a bubble-economy in real economic terms: Fictitious val-
ues without real substance from a circulating selfpropelling flow of paper
money.

176.4 Blackbody Radiation in Words

A blackbody acts like a transformer of radiation which absorbs high-frequency
radiation and emits low-frequency radiation. The temperature of the black-
body determines a cut-off frequency for the emission, which increases lin-
early with the temperature: The warmer the blackbody is, the higher fre-
quencies it can and will emit. Thus only frequencies below cut-off are emit-
ted, while all frequencies are being absorbed.
A blackbody thus can be seen as a system of resonators with different

eigen-frequencies which are excited by incoming radiation and then emit
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radiation. An ideal blackbody absorbs all incoming radiation and remits
all absorbed radiation below cut-off.
Conservation of energy requires absorbed frequencies above cut-off to

be stored in some form, more precisely as heat energy thus increasing the
temperature of the blackbody.
As a transformer of radiation a blackbody thus acts in a very simple way:

it absorbs all radiation, emits absorbed frequencies below cut-off, and uses
absorbed frequencies above cut-off to increase its temperature. A blackbody
thus acts as a semi-conductor transmitting only frequencies below cut-off,
and grinding coherent frequencies above cut-off into heat in the form of
incoherent high-frequency noise.
We here distinguish between coherent organized electromagnetic waves

of different frequencies in the form of radiation or light, and incoherent
high-frequency vibrations or noise, perceived as heat.
A blackbody thus absorbs and emits frequencies below cut-off without

getting warmer, while absorbed frequencies above cut-off are not emitted
but are instead stored as heat energy increasing the temperature.
A blackbody is like an amplifier with a restricted range of frequences,

or high-pass filter, which remits/amplifies frequencies below a cut-off fre-
quency and dampens frequencies above cut-off with the damped wave en-
ergy being turned into heat.
A blackbody acts like a censor which filters out coherent high-frequency

(dangerous) information by transforming it into incoherent (harmless) noise.
The IPCC acts like a blackbody by filtering coherent critical information
transforming it into incoherent nonsense perceived as global warming.
The increase of the cut-off frequency with temperature can be under-

stood as an increasing ability to emit coherent waves with increasing tem-
perature/excitation or wave amplitude. At low temperature waves of small
amplitude cannot carry a sharp signal. It is like speaking at −40C with
very stiff lips.
We can also compare with a common teacher-class situation with an

excited/high temperature teacher emitting information over a range of
frequencies from low (simple stuff) to high (difficult stuff), which by the
class is absorbed and re-emitted/repeated below a certain cut-off frequency,
while the class is unable to emit/repeat frequencies above cut-off, which are
instead used to increase the temperature or frustration/interest of the class.
The temperature of the class can then never exceed the temperature of the
teacher, because all coherent information originates from the teacher. The
teacher and student connect in two-way communication with a one-way
flow of coherent information.
The net result is that a warm blackbody can heat a cold blackbody, but

not the other way around. A teacher can teach a student but not the other
way around. The hot Sun heats the colder Earth, but the Earth does not
heat the Sun. A warm Earth surface can heat a cold atmospheric layer,
but a cold atmosphere cannot heat a warm Earth surface. A blackbody is
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heated only by frequencies which it cannot emit, but has to store as heat
energy.
There is no “backradiation” from the atmosphere to the Earth. There is

no “greenhouse effect” from “backradiation”. Fig. 5 propagated by NASA
thus displays fictional non-physical recirculating radiation with an Earth
surface emitting 117% while absorbing 48% from the Sun.
We shall see that the reason recirculation of energy is non-physical is that

it is unstable. The instability is of the same nature as that of an economy
with income tax approaching 100%, or interest rate 0%, or benefits without
limits from taxes without limits. An economy with fictitious money circling
with increasing velocity creates financial bubbles which burst sooner or
later from inherent instability, as we have been witnessing in recent times.
An atmosphere with circulating radiation would also be unstable and

thus cannot exist over time.
There is no “backradiation” by the same reason as there is no “back-

conduction” or “backdiffusion”, namely instability. “Backdiffusion” would
correspond to restoring a blurred diffuse image using Photoshop, which you
can easily convince yourself is impossible: Take a sharp picture and blurr
it, and then try to restore it by sharpening and discover that this does
not work, because of instability. Blurring or diffusion destroys fine details
which cannot be recovered. Diffusion or blurring is like taking meanvalues
of individual values, and the individual values cannot be recovered from
mean values. Mixing milk into your coffee by stirring/blurring is possible
but unmixing is impossile by unstirring/unblurring.
Radiative heat can be transmitted by electromagnetic waves from a warm

blackbody to a colder blackbody, but not from a cold to a warmer, thus
with a one-way direction of heat energy, while the electromagnetic waves
propagate in both directions. We thus distinguish between two-way propa-
gation of waves and one-way propagation of heat energy by waves.
A cold body can heat up by eating/absorbing high-frequency high tem-

perature coherent waves in a catabolic process of destruction of coherent
waves into incoherent heat energy. A warm body cannot heat up by eat-
ing/absorbing low-frequency low-temperature waves, because catabolism
involves destruction of structure. Anabolism builds structure, but a black-
body is only capable of destructive catabolism (the metabolism of a living
cell consists of destructive catabolism and constructive anabolism).

176.5 Planck’s Law

The particle nature of light of frequency ν as a stream of photons of energy
hν with h Planck’s constant, is supposed to be motivated by Einstein’s
model of the photoelectric effect [2] viewed to be impossible [1, 7] to explain
assuming light is an electromagnetic wave phenomenon satisfying Maxwell’s
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FIGURE 176.1. A blackbody acts like a censor or high-pass filter which trans-
forms coherent high-frequency high-interest information into incoherent noise,
while it lets low-frequency low-interest information pass through.

equations. The idea of light in the form of energy quanta of size hν was
introduced by Planck [10] in “an act of despair” to explain the radiation
energy Rν(T ) emitted by a blackbody as a function of frequency ν and
temperature T , per unit frequency, surface area, viewing solid angle and
time:

Rν(T ) = γTν2θ(ν, T ), γ =
2k

c2
, (176.1)

with the high-frequency cut-off factor

θ(ν, T ) =
hν
kT

e
hν
kT − 1

, (176.2)

where c is the speed of light in vacuum, k is Boltzmann’s constant, with
θ(ν, T ) ≈ 0 for hν

kT > 10 say and θ(ν, T ) ≈ 1 for hν
kT < 1. Since h/k ≈ 10−10,

this effectively means that only frequencies ν ≤ T 1011 will be emitted,
which fits with the common experience that a black surface heated by the
high-frequency light from the Sun, will not itself shine like the Sun, but
radiate only lower frequencies. We refer to kT

h as the cut-off frequency,

in the sense that frequencies ν > kT
h will be radiated subject to strong

damping. We see that the cut-off frequency scales with T , which is Wien’s
Displacement Law.
The term blackbody is conventionally used to describe an idealized object

which absorbs all electromagnetic radiation falling on it, hence appearing
to be black. The analysis to follow will reveal some of the real truth of a
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real blackbody such as the Earth radiating infrared light while absorbing
light mainly in the visible spectrum from the Sun.
It is important to note that the constant γ = 2k

c2 is very small: With
k ≈ 10−23 J/K and c ≈ 3 × 108m/s, we have γ ≈ 10−40. In particular,
γν2 << 1 if ν ≤ 1018 including the ultraviolet spectrum, a condition we
will meet below.

FIGURE 176.2. Radiation energy vs wave length/frequency at different tempera-
tures of a radiating blackbody, per unit frequency. Observe that the cut-off shifts
to higher frequency with higher temperature according to Wien’s Displacement
Law.

By integrating/summing over frequencies in Plancks radiation law (176.1),
one obtains Stefan-Boltmann’s Law stating the the total radiated energy
R(T ) per unit surface area emitted by a black-body is proportional to T 4:

R(T ) = σT 4 (176.3)

where σ = 2π5k4

15c2h3 = 5.67 × 10−8W−1m−2K−4 is Stefan-Boltzmann’s con-
stant.
On the other hand, the classical Rayleigh-Jeans Radiation Law Rν(T ) ∼

γTν2 without the cut-off factor, results in an “ultra-violet catastrophy”
with infinite total radiated energy, since γT

∫ n
1 ν2 dν ∼ γTn3 → ∞ as

n→ ∞.
Stefan-Boltzmann’s Law fits (reasonably well) to observation, while the

Rayleigh-Jeans Law leads to an absurdity and so must somehow be incor-
rect. The Rayleigh-Jeans Law was derived viewing light as electromagnetic
waves governed by Maxwell’s equations, which forced Planck in his “act of
despair” to give up the wave model and replace it by statistics of “quanta”



176.5 Planck’s Law 903

viewing light as a stream of particles or photons. But the scientific cost of
abandoning the wave model is very high, and we now present an alterna-
tive way of avoiding the catastrophy by modifying the wave model by finite
precision computation, instead of resorting to particle statistics.

FIGURE 176.3. Planck on the ultraviolet catastrophy in 1900: ...the whole proce-
dure was an act of despair because a theoretical interpretation had to be found
at any price, no matter how high that might be...Either the quantum of action was
a fictional quantity, then the whole deduction of the radiation law was essentially
an illusion representing only an empty play on formulas of no significance, or the
derivation of the radiation law was based on sound physical conception. Planck in
1909: Mechanically, the task seems impossible, and we will just have to get used
to it (quanta).

We shall see that finite precision computation introduces a high-frequency
cut-off in the spirit of the finite precision computational model for thermo-
dynamics presented in [5].
The scientific price of resorting to statistical mechanics is high, as was

clearly recognized by Planck and Einstein, because the basic assumption
of statistical mechanics of microscopic games of roulette seem both scien-
tifically illogical and impossible to verify experimentally. Thus statistical
mechanics runs the risk of representing pseudo-science because of obvious
difficulties of testability of basic assumptions.
The purpose of this note is to present an alternative to particle statistics

for black-body radiation based on determinsitic finite precision computa-
tion in the form of General Galerkin G2 [4, 5].
To observe individual photons as “particles” without both mass and

charge seems impossible, and so the physical reality of photons has re-
mained hypothetical with the main purpose of explaining black-body ra-
diation and the photoelectric effect. If explanations can be given by wave
mechanics, both the contradiction of wave-particle duality and the mist
of statistical mechanics can be avoided, thus fulfilling a dream of the late
Einstein [3, 4].
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176.6 The Enigma

The basic enigma of blackbody radiation can be given different formula-
tions:

• Why is a blackbody black/invisible, by emitting infrared radiation
when “illuminated” by light in the visible spectrum?

• Why is radiative heat transfer between two bodies always directed
from the warmer body to the colder?

• Why can high frequency radiation transform to heat energy?

• Why can heat energy transform to radiation of a certain frequency
only if the temperature is high enough?

We shall find that the answer is resonance in a system of oscillators (os-
cillating molecules/charges):

• incoming radiation is absorbed by resonance,

• absorbed incoming radiation is emitted as outgoing radiation, or is
stored as internal/heat energy,

• outgoing radiation has a frequency spectrum ∼ Tν2 for ν . T , as-
suming all frequencies ν have the same temperature T , with a cut-off
to zero for ν & T ,

• incoming frequencies below cut-off are emitted,

• incoming frequencies above cut-off are stored as internal heat energy.

176.7 Waves vs Particles in Climate Science

We shall find answers to these questions using a wave model where we can
separate between propagation of waves and propagation of heat energy by
waves, which allows two-way propagation of waves with one-way propaga-
tion of heat energy. In a particle model this separation is impossible since
the heat energy is tied to the particles. Radiation as a stream of parti-
cles thus leads to an idea of “backradiation” with two-way propagation of
heat energy carried by two-way propagation of particles. We argue that
such two-way propagation is unstable because it requires cancellation, and
cancellation in massive two-way flow of heat energy is unstable to small per-
turbations and thus is unphysical. We thus find that the supposed scientific
basis of climate alarmism is unstable and therefore will collapse under per-
turbations, even small ones, with climategate representing a perturbation
which is big rather than small...
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176.8 A Wave Equation with Radiation

There are no quantum jumps, nor are there any particles. (H.D. Zeh
[12])

176.8.1 A Basic Radiation Model

We consider the wave equation with radiation, for simplicity in one space
dimension assuming periodicity: Find u = u(x, t) such that

ü− u′′ − γ
...
u = f, −∞ < x, t <∞ (176.4)

where (x, t) are space-time coordinates, v̇ = ∂v
∂t , v

′ = ∂v
∂x , f(x, t) models

forcing in the form of incoming waves, and the term −γ...u models outgoing
radiation with γ > 0 a small constant.
This models, in the spirit of Planck [10] before collapsing to statistics of

quanta, a continuous string of vibrating charges absorbing energy from the
forcing f of intensity f2 and radiating energy of intensity γü2. The radiation
term has the form −γ...u ∼ Ḟ , where F ∼ ü represents the electrical field
generated by an oscillating charge at position x with accelleration ü(x, t).

176.8.2 Basic Energy Balance

Multiplying (244.12) by u̇ and integrating by parts over a space period, we
obtain ∫

(üu̇+ u̇′u′) dx +

∫
γü2 dx =

∫
fu̇ dx,

which we can write
Ė = A−R (176.5)

where

E(t) ≡ 1

2

∫
(u̇(x, t)2 + u′(x, t)2) dx (176.6)

is the internal energy viewed as heat energy, and

A(t) =

∫
f(x, t)u̇(x, t) dx, R(t) =

∫
γü(x, t)2dx, (176.7)

is the absorbed and radiated energy, respectively, with their difference A−R
driving changes of internal energy E.
If the incoming wave is an emitted wave f = −γ ...U of amplitude U , then

Ė =

∫
(fu̇− γü2)dx =

∫
γ(Ü ü− ü2) dx ≤ 1

2
(Rin −R), (176.8)

with Rin =
∫
γÜ2 dx the incoming radiation energy, and R the outgoing.

We conclude that if Ė ≥ 0, then R ≤ Rin, that is, in order for energy to be
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stored as internal/heat energy, it is required that the incoming radiation
energy is bigger than the outgoing.
Of course, this is what is expected from conservation of energy. It can also

be viewed as a 2nd Law of Radiation stating that radiative heat transfer is
possible only from warmer to cooler. We shall see this basic law expressed
differently more precisely below.

176.9 Computational Rayleigh-Jeans Law

But the conception of localized light-quanta out of which Einstein got
his equation must still be regarded as far from established. Whether
the mechanism of interaction between ether waves and electrons has
its seat in the unknown conditions and laws existing within the
atom, or is to be looked for primarily in the essentially corpuscular
Thomson-Planck-Einstein conception of radiant energy, is the all-
absorbing uncertainty upon the frontiers of modern Physics. (Robert
A. Millikan [8])

176.9.1 Spectral Analysis of Radiation

We shall show that the Rayleigh-Jeans radiation law Rν(T ) = γTν2 is a
direct consequence of the form of the radiation term −γ...u , assuming that
all frequencies have the same temperature T . This is elementary.
We shall also show that if the intensity of the forcing f in the model

(244.12) has a Rayleigh-Jeans spectrum ∼ Tν2, then so has the corre-
sponding radiation energy Rν(T ). More precisely, we show as a main result
that

Rν(T ) ∼ f2
ν (176.9)

with the bar denoting integration in time. This is less elementary and re-
sults from a (quite subtle) phenomenon of near resonance.
The prove this we first make a spectral decomposition in x, assuming

periodicity with period 2π:

üν + ν2uν − γ
...
u ν = fν , −∞ < t <∞, ν = 0,±1,±2, ..., (176.10)

into a set of damped linear oscillators with

u(x, t) =

∞∑

ν=−∞
uν(t)e

iνx.

We then use Fourier transformation in t,

uν(t) =

∫ ∞

−∞
uν,ωe

iωtdω, uν,ω =
1

2π

∫ ∞

−∞
uν(t)e

−iωt dt,
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to get, assuming u
(3)
ν can be replaced by −ν2u̇ν :

(−ω2 + ν2)uν,ω + iωγν2uν,ω = fν,ω.

We have by Parseval’s formula,

u2ν ≡
∫ ∞

−∞
|uν(t)|2 dt = 2π

∫ ∞

−∞
|uν,ω|2 dω = 2π

∫

ω

|fν,ω|2 dω
(ν − ω)2(ν + ω)2 + γ2ν4ω2

∼ 1

ν2

∫ ∞

−∞

|fν,ω|2 dω
(ν − ω)2 + γ2ν4

∼ 1

γν4

∫ ∞

−∞

|fν,ν+γν2ω̄|2 dω̄
ω̄2 + 1

,

where we used the change of integration variable ω = ν + γν2ω̄, and we
hide constants using ∼ to denote proportionality (with constant close to
1).
We now assume that |fν,ν+γν2ω̄|2 ∼ f2

ν for |ω̄| ≤ 1, which means that
frequencies ω with |ν − ω| . γν2 contribute more or less equally to the
excitation of the frequency ν, because the resonance term (ν − ω)2 then
is dominated by the radiation term γ2ν4. This reflects that the radiation
term acts like diffusion effectively blurring the ω-reading of the forcing fν,ω.
With this assumption we get

u2ν ∼ 1

γν4
f2
ν

that is
Rν ≡ γü2ν ≈ γν4u2ν = γTνν

2 ∼ f2
ν , (176.11)

where Rν = Rν(Tν) is the intensity of the radiated wave of frequency ν, and
we view Tν = 1

2 (u̇
2
ν + ν2u2ν) ≈ u̇2ν as the temperature of the corresponding

frequency.
We read from (176.11) that

Rν(Tν) ≈ γTνν
2, (176.12)

which is the Rayleigh-Jeans Law. Further, if f2
ν ∼ Tν2, then also Rν(Tν) ∼

Tν2 with Tν ∼ T . The emitted radiation will thus mimic an incoming
Rayleigh-Jeans spectrum, in temperature equilibrium with Tν ∼ T for all
frequencies ν.
We note that the constant of proportionality in Rν ∼ f2

ν is independent
of γ and ν which reflects that the string has a certain absorbitivity (greater
or equal to its emissivity).
Summing over frequencies we get

R ≡ 1

2π

∫ 2π

0

γü2 dx ∼ 1

2π

∫ 2π

0

f2 dx = ‖f‖2, (176.13)

that is, the intensity of the total outgoing radiation R is proportional to the
intensity of the incoming radiation as measured by ‖f‖2, thus R ∼ ‖f‖2.
We summarize in
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Theorem 176.1 The radiation Rν = γü2ν of the damped oscillator (176.10)
with forcing fν satisfies Rν ∼ f2

ν , or after summation R ∼ ‖f‖2. In partic-
ular, if f2

ν ∼ γTν2 then Rν = Rν(Tν) ∼ γTν2 with Tν = T .

176.9.2 Radiation from Near-Resonance

We have seen radiation resulting from forcing by a phenomeon of near-
resonance in a damped oscillator of the form

üν + ν2uν + γν2u̇ν = fν , (176.14)

where the forcing fν is balanced by the dynamics of the oscillator üν+ν
2uν

and the radiator γν2u̇ν with an effect of dissipative damping (with γν2 ≤
1). In the case of large damping with γν2 ≈ 1, then fν is mainly balanced by
the radiator, that is, γν2u̇ν ≈ u̇ν ≈ fν with the result that Rν = fν u̇ν ≈ f2

ν .
We see that in this case u̇ν is in-phase with the forcing fν, and there is
little resonance with the oscillator.
We next consider the case γν2 << 1 with small damping and thus near-

resonance. The relation Rν = fν u̇ν ∼ f2
ν tells us that in this case fν is

balanced by the dynamics of both oscillator and radiator with uν in-phase
and thus u̇ν out-of-phase. This is because if not, then γν2u̇ν ≈ fν with u̇ν

in-phase, which would give the contradicting Rν = fν u̇ν ∼ f2
ν

γν2 >> f2
ν .

176.9.3 Absorption vs Emission

In the wave model (244.12) we have associated the term −γ...u with ra-
diation, but if we just read the equation, we only see a dissipative term
absorbing energy without information how this energy is dispensed with
e.g. by being radiated away. The model thus describes absorption by the
vibration string under forcing, and as written the process of emission from
the string.
However, if we switch the roles of f and −γ...u and view −γ...u as input,

then we can view f as an emitted wave, which can act as forcing on another
system. For frequencies with γν2 << 1, we will then have

f2
ν ∼ γü2ν >> (γ

...
u )2 ≈ γν2γü2ν

with thus emission boosted by resonance, as in the resonant amplification
of a musical instrument (e.g the body of a guitar).
In both cases, the relation Rν ∼ f2 expresses that the energy of the

incoming absorbed radiation is equal to the outgoing emitted radiation.

176.10 Computational Planck Law

Would it not be possible to replace the hypothesis of light quanta
by another assumption that would also fit the known phenomena?



176.10 Computational Planck Law 909

If it is necessary to modify the elements of the theory, would it not
be possible to retain at least the equations for the propagation of
radiation and conceive only the elementary processes of emission and
absorption differently than they have been until now? (Einstein)

176.10.1 The Gordian Cut-Off by Planck

The Rayleigh-Jeans Law leads to an “ultraviolet catastrophe” because
without some form of high-frequency limitation, the total raditation will be
unbounded. Classical wave mechanics thus appears to lead to an absurdity,
which has to be resolved in one way or the other. In an “act of despair”
Planck escaped the catastrophy by cutting the Gordian Knot simply re-
placing classical wave mechanics with a new statistical mechanics where
high frequencies were assumed to be rare; “a theoretical interpretation had
to be found at any price, no matter how high that might be...”. It is like
kicking out a good old horse which has served fine for many purposes, just
because it has a tendency to “go to infinity” at a certain stimulus, and
replacing it with a completely new wild horse which you don’t understand
and cannot control.
The price of throwing out classical wave mechanics is very high, and it

is thus natural to ask if this is really necessary.Is there a form of classi-
cal mechanics without the ultraviolet catastrophe? Can a cut-off of high
frequencies be performed without an Gordian Cut-off?
We believe this is possible, and it is certainly highly desirable, because

statistical mechanics is difficult to both understand and apply. We shall
thus present a resolution where Planck’s statistical mechanics is replaced
by deterministic mechanics viewing physics as a form of analog computa-
tion with finite precision with a certain dissipative diffusive effect, which
we model by digital computational mechanics associated with a certain
numerical dissipation.
It is natural to model finite precision computation as a dissipative/diffusive

effect, since finite precision means that small details are lost as in smooth-
ing by damping of high frequencies which is the effect of dissipation by
diffusion.
We consider computational mechanics in the form of theGeneral Galerkin

(G2) method for the wave equation, where the dissipative mechanism arises
from a weighted least squares residual stabilization [4]. We shall first con-
sider a simplified form of G2 with least squares stabilization of one of the
residual terms and corresponding simplified diffusion model. We then com-
ment on full G2 residual stabilization.
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176.10.2 Wave Equation with Radiation and Dissipation

We consider the wave equation (244.12) with radiation augmented by (sim-
plified) G2 diffusion:

ü− u′′ − γ
...
u − δ2u̇′′ = f, −∞ < x, t <∞,

Ė =

∫
fu̇ dx−

∫
γü2 dx, −∞ < t <∞,

(176.15)

where −δ2u̇′′ models dissipation/diffusion from velocity gradients, δ = h/T
represents a smallest coordination length with h a precision or smallest
detectable change, and T is temperature related to the internal energy E
by T =

√
E.

The relation δ = h
T takes the form |u̇|δ ∼ h with T ∼ |u̇|. A signal

with |u̇|δ < h cannot be represented in coherent form and thus cannot be
emitted. This is like the “Mexican Wave” around a stadium which cannot
be sustained unless people raise their arms properly; the smaller the “lift”
is (with lift as temperature), the longer is the required coordination length
or wave length.
We see that the wave equation is here augumented by an equation for

the internal energy E, which thus has a contribution from the dissipation∫
δ2(u̇′)2 dx (obtained as above by multiplication by u̇). In particular we

have as above if the incoming wave is an emitted wave f = −γ ...U of ampli-
tude U , then

Ė =

∫
γ(Ü ü− ü2) dx ≤ 1

2

∫
γ(Ü2 − ü2) dx. (176.16)

We assume that incoming frequencies are bounded by a certain maximal
frequency νmax, we choose γ = ν−2

max and assume ν−1
max >> δ2 = ν−2

cut >> γ,
where νcut < νmax is a certain cut-off frequency.
We motivate this set up as follows: If u is a wave of frequency ν in x,

then for ν > νcut =
T
h = 1

δ , we have

δ2u̇′′ ∼ h2ν2

T 2
u̇

which signifies the presence of considerable damping in (176.15) from the

dissipative term since h2ν2

T 2 ≥ 1. Alternatively, we have by a spectral de-
composition as above

δ2ν2u̇2ν ∼ f2
ν

and thus since γ << δ2

Rν =
γ

δ2
δ2ν2u̇2ν << f2

ν .

Thus absorbed waves with ν > νcut are damped and not fully radiated with
the corresponding missing energy contributing to the internal/heat energy
E and increasing temperature T .
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We will also find cut-off for lower frequencies due to the design of the dis-
sipative term δ2u̇′′ corresponding to a simplified form of G2 discretization.
In real G2 computations the cut-off will have little effect on frequencies
smaller than νcut. In the analysis we assume this to be the case, which
corresponds to allowing δ to depend on ν so that effectively δ = 0 for
ν ≤ νcut =

1
δ . We then obtain a Planck Law of the form

Rν(T ) = γTν2θh(ν, T ) = γT min(ν2, ν2cut) (176.17)

with a computational high-frequency cut-off factor θh(ν, T ) = 1 for ν ≤ νcut

and θh(ν, T ) =
ν2
cut

ν2 for νcut < ν < νmax with νcut =
T
h .

Clearly, it is possible to postulate different cut-off functions θh(ν, T ) for
example exponential cut-off functions with the effect that θh(ν, T ) ≈ 0 for
ν >> νcut. In the next section we study the cut-off in G2.
The net result is that absorbed frequencies above cut-off will heat the

string, while absorbed frequencies below cut-off will be radiated without
heating (in the ideal case with the dissipation only acting above cut-off).
If the incoming radiation has a Rayleigh-Jeans spectrum ∼ Tν2, then

so has the outgoing radiated spectrum Rν(Tν) ∼ Tν2 with Tν ∼ T for
ν ≤ νcut. In particular, the outgoing radiated spectrum is equilibrated
with all colors having the same temperature, if the incoming spectrum is
equilibrated.
Another way of expressing this fundamental property of the vibrating

string model is to say that frequencies below cut-off will be absorbed and
radiated as coherent waves, while frequencies above cut-off will be absorbed
transformed into internal energy in the form of incoherent waves. which are
not radiated. High frequencies thus may heat the body and thereby decrease
the coordination length and thereby allow absorption and emission of higher
frequencies.
Note that the internal energy E is the sum over the internal energies

Eν of frequencies ν ≤ νcut ∼ T with Eν ∼ T assuming equilibration in
temperature, and thus E ∼ T 2 motivating the relation T =

√
E.

176.10.3 Cut-Off by Residual Stabilization

The discertization in G2 is accomplished by residual stabilization of a
Galerkin variational method and may take the form: Find u ∈ Vh such
that for all v ∈ Vh

∫
(A(u)− f)v dxdt+ δ2

∫
(A(u) − f)A(V ) dxdt = 0, (176.18)

where A(u) = ü − u′′ − γ
...
u and V is a primitive function to v (with V̇ =

v), and Vh is a space-time finite element space continuous in space and
discontinuous in time over a sequence of discrete time levels.
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Here A(u) − f is the residual and the residual stabilization requires
δ2(A(u)− f)2 to be bounded, which should be compared with the dissipa-
tion δü2 in the analysis with ü2 being one of the terms in the expression
(A(u) − f)2. Full residual stabilization has little effect below cut-off, acts
like simplified stabilization above cut-off, and effectively introduces cut-off

to zero for ν ≥ νmax since then γ|...u | ∼ γν2|u̇| = ν2

ν2
max

|u̇| ≥ |u̇|, which
signifies massive dissipation.

176.10.4 The Sun and the Earth

If an incoming spectrum of temperature Tin is attenuated by a factor
κ << 1 (representing a solid viewing angle << 180◦), so that the in-
coming radiation f2

ν = κγTinν
2 with cut-off for ν > Tin

h (and not for

ν > κTin

h << Tin

h ).
This may represent the incoming radiation from the Sun to the Earth

with κ ≈ (RD )2 ≈ 0.0052 the viewing angle of the Sun seen from the Earth,
R the radius of the Sun and D the distance from the Sun to the Earth.
The amplitude of the incoming radiation is thus reduced by the factor κ,

while the cut-off of the spectrum is still T̂h .
The Earth at temperature T acting like the vibrating string will convert

absorbed radiation into heat for frequencies ν > T
h , that is as long a T < T̂ ,

while radiating ∼ γT 4 while absorbing ∼ κT 4
in thus reaching equilibrium

with T 4

Tin
≈ κ. With Tin = 5778 K and κ = 0.0052, this gives T ≈ 273K

(including a factor 4 from the fact that the the disc area of the Sun is πR2

and the Earth surface area 4πr2 with r the Earth diameter).
The amplitude of the radiation/light emitted from the surface of the Sun

at 5778 K when viewed from the Earth is scaled by the viewing solid angle
(scaling with the square of distance from the Sun to the Earth), while the
light spectrum covering the visible spectrum centered at 0.5µm remains the
same. The Earth emits infrared radiation (outside the visible spectrum) at
an effective blackbody temperature of 255 K (at a height of 5 km), thus
with almost no overlap with the incoming Sunlight spectrum. The Earth
thus absorbs high-frequency reduced-amplitude radiation and emits low-
frequency radiation, and thereby acts as a transformer of radiation from
high to low frequency: Coherent high-frequency radiation is absorbed and
dissipated into incoherent heat energy, which is then emitted as coherent
low-frequency radiation.
The transformation only acts from high-frequency to low-frequency, and

is an irreversible process representing a 2nd Law.

176.10.5 The Temperature of Radiation

The temperature Tin of incoming radiation with an attenuated Planck spec-
trum Rν = κγTinν

2 with cut-off for ν > Tin

h , can be read from the cut-off
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(Wien’s Law), while the amplitude does not carry this information unless
the attenuation factor κ is known. For the outgoing spectrum γTν2, we
noted that T ≤ Tin since heating requires dissipative cut-off after absorp-
tion, which requires that incoming radiation contains higher frequencies
than outgoing and that is only possible if the temperature of the incoming
radiation is bigger than the present temperature of the absorbing body, as
also expressed in the basic energy balance (176.5): Energy is transferred
only from warmer to cooler.

FIGURE 176.4. Blackbody spectrum of the Sun and the Earth.

176.10.6 A Fourier Law of Radiative Heat Transfer

Suppose an incoming radiation has a spectrum κγTinν of temperature Tin
(with κ ≤ 1) is absorbed and then emitted with spectrum γTν2. The
heating effect from frequencies above cut-off at T , assuming h = 1, is then
given by

∫ Tin

T

κγTinν
2 dν ∼ κγTin(T

3
in − T 3) ∼ κγT 3

in(Tin − T ) (176.19)

which can be viewed as a Fourier Law with heating proportional to tem-
perature difference Tin − T ≥ 0. Note that if Tin < T , then there is no
heating since there is no cut-off: all of absorbed radiation is emitted.

176.11 The 2nd Law and Irreversibility

Radiative heating of a blackbody is an irreversible process, because the
heating results from dissipation with coherent high frequency energy above
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cut-off being transformed into internal heat energy. We have shown that
radiative heating requires that the temperature of the incoming radiation
is higher than that of the absorbing body.
We assume that the dissipation is only active above cut-off, while the

radition is active over the whole spectrum. Below cut-off radiation is a
reversible process since the same spectrum is emitted as absorbed. Formally,
the radiation term is dissipative and thus would be expected to transform
the spectrum, and the fact that it does not is a remarkable effect of the
resonance.

176.12 Aspects of Radiative Heat Transfer

We can find aspects of radiative heating in many different settings, as heat
conduction or communicating vessels with the flow always from higher level
(temperature) to lower level. But radiative heat transfer is richer in the
sense that it involves propagation of both waves and energy.
Let us try with a parallel in psychology: We know that trivial messages

radiated from a parent may enter one ear of a child and go out through the
other, while less trivial messages would not be listened to at all. However,
the alertness of the child may be raised as a result of a “high temper-
ature” outburst by the parent which could open the childs mind to ab-
sorbing/radiating less trivial messages. We would here distinguish between
propagation of message and meaning.

176.13 Reflection vs Blackbody
Absorption/Emission

A blackbody emits what it absorbs (f2 → R), and it is thus natural to ask
what makes this process different from simple reflection (e.g. f → −f with
f2 → f2)? The answer is that the mathematics/physics of blackbody radi-
ation f → ü − u′′ − γ

...
u , is fundamenatlly different from simple reflection

f → −f . The string representing a blackbody is brought to vibration in
resonance with forcing and the vibrating string string emits resonant ra-
diation. Incoming waves thus are absorbed into the blackbody/string and
then are emitted depending on the body temperature. In simple reflec-
tion there is no absorbing/emitting body, just a reflective surface without
temperature.



176.14 Blackbody as Transformer of Radiation 915

176.14 Blackbody as Transformer of Radiation

The Earth absorbs incident radiation from the Sun with a Planck frequency
distribution characteristic of the Sun surface temperature of about 5778 K
and an amplitude depending on the ratio of the Sun’s diameter to the
distance of the Earth from the Sun. The Earth as a blackbody transforms
the incoming radiation to a outgoing blackbody radiation of temperature
about 288 K, so that total incoming and outgoing energy balances.
The Earth thus acts as a transformer of radiation and transforms in-

coming high-frequency low-amplitude radiation to outgoing low-frequency
high-amplitude radiation under conservation of energy.
This means that high-frequency incoming radition is transformed into

heat which shows up as low-frequency outgoing infrared radiation, so that
the Earth emits more infrared radiation than it absorbs from the Sun. This
increase of outgoing infrared radiation is not an effect of backradiation,
since it would be present also without an atmosphere.
The spectra of the incoming blackbody radiation from the Sun and the

outgoing infrared blackbody radiation from the Earth have little overlap,
which means that the Earth as a blackbody transformer distributes in-
coming high-frequency energy so that all frequencies below cut-off obtain
the same temperature. This connects to the basic assumption of statistical
mechanics of equidistribution in energy or thermal equilibrium with one
common temperature.
In the above model the absorbing blackbody inherits the equidistribution

of the incoming radition (below cut-off) and thereby also emits an equidis-
tributed spectrum. To ensure that an emitted spectrum is equidistributed
even if the forcing is not, requires a mechanism driving the system towards
equidistribution or thermal equilibrium.

176.15 Connection to Turbulence

The computational dissipation in our radiative model acts like turbulent
dissipation in slightly viscous flow, in which high frequency coherent kinetic
energy is transformed into heat energy in the form of small scale incoherent
kinetic energy. The small coefficient γ in radiation corresponds to a small
viscosity coefficient in fluid flow.
Since γ is small, the emitted wave is in one sense a small perturbation, but

this is compensated by the third order derivate in the radiation term, with
the effect that the radiated energy is not small. Or expressed differently:
temperature involves first derivates (squared) and radiated energy a second
derivative multiplied by a small factor. Without the dissipative radiation
term, the string cannot emit the energy absorbed and the temperature will
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then increase without limit. With radiation, the temperature will be limited
by the temperature of the incoming wave.

176.16 CO2 Climate Alarmism and Backradiation

It is virtually certain that increasing atmospheric concentrations of
carbon dioxide and other greenhouse gases will cause global surface
climate to be warmer. (American Geophysical Union)

We know the science, we see the threat, and we know the time for
action is now (Arnold Schwarzenegger)

There are many who still do not believe that global warming is a
problem at all. And it’s no wonder: because they are the targets
of a massive and well-organized campaign of disinformation lavishly
funded by polluters who are determined to prevent any action to
reduce the greenhouse gas emissions that cause global warming out
of a fear that their profits might be affected if they had to stop
dumping so much pollution into the atmosphere. (Al Gore)

Global climate can be described as a thermodynamic system with gravi-
tation subject to radiative forcing by blackbody radiation. Understanding
climate thus requires understanding blackbody radiation.
We have learned in this chapter that “backradiation” is unphysical be-

cause it is unstable. Since climate alarmism feeds on a “greeenhouse ef-
fect” based on “backradiation” as shown in NASA’s energy budget in Fig.
176.16, removing backradiation removes the main energy source of CO2

climate alarmism.
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FIGURE 176.5. The Earth energy budget according to NASA [9] with incorrect
unphysical 100% backradiation and 117% = 390W/m2 outgoing radiation from
the Earth surface, but with correct physical 30% out of absorbed 48% transported
by convection/evaporation from the Earth surface to the atmosphere.
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FIGURE 176.6. Black body by Mapplethorpe.

http://www.youtube.com/watch?v=NiF3QtuzL_8
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Vorlesung: Wärmestrahlung und Elektrodynamische Theorie, Leipzig,
1910.

[11] Schrodinger, The Interpretation of Quantum Physics. Ox Bow Press,
Woodbridge, CN, 1995: What we observe as material bodies and forces
are nothing but shapes and variations in the structure of space. Particles
are just schaumkommen (appearances). ...Let me say at the outset, that
in this discourse, I am opposing not a few special statements of quantum
physics held today (1950s), I am opposing as it were the whole of it, I
am opposing its basic views that have been shaped 25 years ago, when
Max Born put forward his probability interpretation, which was accepted
by almost everybody.

[12] H.D. Zeh, Physics Letters A 172, 189-192, 1993.



This is page 921
Printer: Opaque this

177
Human Speech

177.1 To Read

• Compressible flow with acoustics

177.2 To Watch

• KTH 3d vocal tract project

• Physical vocal tract model

• Vocal tract simulation

• Vocal folds

• Text to Speech.

177.3 Simulator

Construct a simulator for human speech based on the compressible Navier-
Stokes equations in a variable domain of the vocal tract, mouth, tongue
and lips. Model the generation of tones by fluid-structure interaction in
the flow of air past the vocal folds.
We model the dynamical acoustics of human speech by the Euler equa-

tions for an inviscid perfect gas in a volume Ω(t) in R3 with boundary Γ(t)

http://www.speech.kth.se/multimodal/vocaltract.html
http://www.youtube.com/watch?v=wR41CRbIjV4
http://www.youtube.com/watch?v=SvBzAR5HhKY&feature=related
http://www.youtube.com/watch?v=v9Wdf-RwLcs&feature=related
http://www.youtube.com/watch?v=YX5ZGQuraSE
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changing with time t over a time interval I = (0, 1], expressing conservation
of mass density ρ, momentum m = (m1,m2,m3) and internal energy e:
Find û = (ρ,m, e) depending on (x, t) ∈ ΩI ≡ ∪t∈IΩ(t) such that

ρ̇+∇ · (ρu) = 0 in ΩI ,
ṁ+∇ · (mu+ p) = f in ΩI ,

ė +∇ · (eu) + p∇ · u = 0 in ΩI ,
u · n = 0 on ΓI ≡ ∪t∈IΓ(t)

û(·, 0) = û0 in Ω(0),

(177.1)

where u = m
ρ is the velocity, p = (γ − 1)e = γ̄e is the pressure with

1 > γ̄ = γ − 1 > 0 a gas constant with T = e/ρ temperature, f is a
given volume force and û0 a given initial state. The domain ΩI contains
the time-variation of vocal chords, vocal tract with mouth, teeth and lips
and volumes for air entrance and exit.
The vowels and consonants of human speech are produced by pulmonary

pressure provided by the lungs. The vowels result from interaction of the
glottis in the larynx with the air flow, which generate sound waves which are
modified by the vocal tract. The consonants result from interaction of the
air flow with the tongue, teeth and lips into plosives and fricatives. Human
speech consists of time sequences of vowels in the form of sound waves
of density-momentum variation and consonants in the form of turbulent
aerodynamics.
In this note we report on simulations of human speech by computing

time-dependent solutions of the Euler equations over a domain i space
which varies with time. We focus here on the aerodynamics including sound
waves, and consider fluid-structure interaction of glottis, vocal tract, tongue
and lips in an upcoming report.

177.4 The Compressible Euler Equations with
Acoustics

The sound waves appear as small variations in density-momentum. To
capture this effect in computational simulation we augument the Euler
equations for aerodynamics with a linearized wave equation for density-
momentum into a system of the following form: Find û = (ρ,m, e, ρa,ma)
such that

ρ̇+∇ · (ρu) = 0 in ΩI ,
ṁ+∇ · (mu+ p) = f in ΩI ,

ė+∇ · (eu) + p∇ · u = 0 in ΩI ,
ρ̇a +∇ ·ma = 0 in ΩI ,

ṁa +∇ · (mau) + γ̄T∇ρa = 0 in ΩI ,
u · n = 0 on ΓI

û(·, 0) = û0 in Ω(0),

(177.2)
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with p = γρT , where ρa and ma represent variations of density and mo-
mentum. The acoustic signal is represented by the total pressure given by
p = γ̄(ρ+ρa)T at exit. In the linearized density-momentum wave equation,
we do not here account for variations in u and T .

177.5 Incompressible Aerodynamics with Sound
Waves

Since the Mach number of the airflow of human speech is small it may
be computationally cost effective to replace the compressible aerodynam-
ics by incompressible aerodynamics into the following model: Find û =
(u, p, ρa,ma) such that

u̇+ u · ∇u+∇p = f in ΩI ,
∇ · u = 0 in ΩI ,

ρ̇a +∇ ·ma = 0 in ,
ṁa +∇ · (mau) + γ̄T∇ρa = 0 in ΩI ,

u · n = 0 on ΓI
û(·, 0) = û0 in Ω(0),

(177.3)

where T is given and the acoustic signal is represented by the total pressure
given by p+ γ̄ρaT at exit.
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178
Global Circulation Models

178.1 General Circulation Models and GCMG2

Global climate simulation is based on computational solution of a system
of partial differential equations describing the coupled ocean/atmosphere
circulation of water/air driven by Solar radiation and Coriolis forces from
the rotation of the Earth, in a General Circulation Model GCM [37]. A
main objective is to predict climate sensitivity as the change of global
temperature upon doubling of the concentration of CO2 in the atmosphere
related to Anthropogenic Global Warming AGW by burning of fossil fuels,
but many other aspects of global climate can also be subject to studies by
GCMs.
The International Panel of Climate Change IPCC predicts [33] climate

sensitivities between 1 and 5 degrees Celcius, which without CO2 emission
control cold be reached in 2050. AGW of 5 degrees is viewed to be catas-
tropical, and IPCC has put pressure on global politics to enforce limits on
emissions of CO2. The G-20 group of industrial and developing countries
have agreed to limit AGW to 2 degrees, without however any agreement of
how this could be accomplished in case it would be necessary.
The global climate system is also subject to natural variations of largely

unknown nature and magnitude and the impact of atmospheric CO2 is
also largely unknown. Altogether, reliaable prediction of the global climate
100 years ahead seems as impossible as daily weather prediction 100 days
ahead. In any case assessment of the relibility under different scenarios of
natural variation is necessary, if GCM is going to serve as science and not
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just politics. Of course, the real value of a prediction of climate sensitiv-
ity between 1 and 5 degrees is questionable, but that does not prevent
IPCC from recommending strict emission control, which for some reasons
is embraced by in particular EU politicians.
The basic GCM for the coupled ocean/atmosphere is the Navier-Stokes

equations the flow of water/air viewed as a fluid of variable density which is
incompressible in water and compressible in air, combined with a transport
equation for salinity in the ocean and moisture in the atmosphere. We
assume
We apply the General Galerkin G2 [4] finite element method to this

model to obtain a computational GCM named GCMG2. We show GCMG2
to be a versatile tool allowing efficient simulation of certain aspects of global
climate making use of the following features and capabilities:

• full 3d incompressible Naviers-Stokes equations without Boussinesq
or hydrostatic approximation [39, 40],

• automatic adaptive duality-based a posteriori error control allowing
objective assessment of reliability,

• automatic modeling of interior turbulence by finite element stabiliza-
tion,

• modeling of turbulent boundary layer by skin friction

• automatic seamless coupling of ocean and atmosphere or by skin fric-
tion,

• automatic handling of moving ocean/atmosphere interface allowing
also breaking waves,

• vertically moving meshes for enhanced wave propagation,

• automatized efficient open-source implementation in FEniCS/Unicorn
[25].

We illustate in a sequence of test problems including Rayleigh-Taylor in-
stability, breaking wave, thermohaline circulation and hurricane formation.
Ocean simulation requires input of the density as a function of temper-

ature and salinity, which can be determined experimentally. Atmosphere
simulation requires modeling of cloud formation influencing incoming and
ougoing radiation, which largely is a open problem. GCM with coupled
ocean/circulation thus largely is an open problem. In this note we focus on
reliability with respect to computational discretization and leave out open
modeling problems.
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178.2 State of the Art and Beyond

The state of the art of climate modeling is represented by Atmosphere-
Ocean General CirculationModels or AOGCMs including coupling of ocean-
atmosphere and models for radiation, cloud formation, sea ice, plants, soil
et cet. These codes use finite difference or spectral discretization on uni-
form horisontal grids of mesh size about 250x250 km and 30 vertical layers
possibly following the seafloor and Earth surface using curvilinear coordi-
nates, with a total number of mesh points of about one million. The codes
solve the so called primitive equations, which are simplified Navier-Stokes
equations with approximate vertical momentum balance dominated by hy-
drostatic pressure and Boussinesq approximation with variable density only
in bouyancy terms.
GCMG2 offers the new features listed above not present in existing

GCMs. In coming publications we will further explore the capability of
GCMG2 including extensions to fluid-structure interaction in problems on
human scales such as simulation of a complete sailing boat with hull, sail
and free water surface, breaking dam...

178.3 The Navier-Stokes Equations as GCM

We describe coupled ocean/water circulation by the Navier-Stokes equa-
tions for a slightly viscous fluid of variable density filling the volume Ω in
R3 occupied by water/air with boundary Γ representing the seafloor, over a
time interval I = [0, t̄]. The basic dependent variables of the Navier-Stokes
equation are the water/air fluid density, velocity u, pressure p, total energy
ǫ = ρ|u|2/2 + e with ρ density and e heat energy, and salinity/moisture s
combined with a constitutive law for density ρ = ρ(T, S, p) given as a func-
tion of T = e/ρ temperature and S = s/ρ salinity per unit mass, and also
pressure if the fluid is compressible. We assume water to be incompressible
and air to be a perfect gas with p = ρT modulo dependence on S.
We consider the following system of equations expressing conservation

of mass, momemtum, total energy and salinity/moisture combined with
incompressibility/perfect gas law and boundary/intial values: Find û =
(ρ, u, e, s) depending on (x, t) ∈ Ω∪Γ×I, such that withm = ρumomentum
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and Q ≡ Ω× I

ρ̇+∇ · (ρu) = 0 in Q,
ṁ+∇ · (mu) +∇p−∇ · σ − ρg − f = 0 in Q,

ǫ̇+∇ · (ǫu+ pu)− ρg · u = r in Q,
ṡ+∇ · (su) = 0 in Q,

∇ · u = 0 in water and p = ρT in air in Q
un = 0 on Γ× I,
σs = βus on Γ× I,

û(·, 0) = û0 in Ω,
(178.1)

where u̇ = ∂u
∂t , un is the fluid velocity normal to Γ, us is the tangential

velocity, σ = 2νǫ(u) is viscous stress with ǫ(u) the usual velocity strain
and ν the fluid viscosity, σs is the tangential stress, β is boundary skin
friction, g is gravitational force per unit mass, f is Coriolis force, r is
radiative heat source and û0 is a given initial condition. For simplicity,
we set heat and salinity/moisture diffusivities to zero, motivated by the
fact that these coefficients are small. The skin friction boundary condition
models a turbulent boundary layer [4] and can also be used in explicit
coupling of ocean and atmosphere.
If we assume also air to be incompressible, which can be motivated for

problems on smaller scales, then we can rewrite the system (178.8) using
conservation of mass into: Find û = (u, e, S) and p such that

ρ(u̇+ (u · ∇)u) +∇p−∇ · σ − gρ− f = 0 in Q,
∇ · u = 0 in Q,

ė+ (u · ∇)e− (∇ · σ) · u = r in Q,

Ṡ + (u · ∇)S = 0 in Q,
un = 0 on Γ× I,
σs = βus on Γ× I,

û(·, 0) = û0 in Ω,
(178.2)

where here ρ = ρ(T, S) is a given function. This also models large scale
ocean circulation since water is nearly incompressible also for large pres-
sures.
Without salinity this model is close to the Navier-Stokes equations for

variable density incompressible flow: Find û = (u, ρ) and p such that

ρ̇+ (u · ∇)ρ = 0 in Q,
ρ(u̇+ (u · ∇)u) +∇p−∇ · σ − gρ− f = 0 in Q,

∇ · u = 0 in Q,
un = 0 on Γ× I,
σs = βus on Γ× I,

û(·, 0) = û0 in Ω.
(178.3)
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Here, temperature could be computed a posteriori using the equation for
internal energy in (178.9) with in particular a contribution from turbuent
dissipation included through −(∇ · σ) · u.

178.4 Bouyancy Stability-Instability

A basic problem concerns the stability of an incompressible variable den-
sity fluid at a zero-velocity rest state. We are familiar with the fact that a
heavier fluid on top of a ligther fluid is unstable, referred to as Rayleigh-
Taylor instability, and we now seek a mathematical explanation of this
effect: Linearizing the equations for conservation of mass and momentum
(178.3), assuming σ = 0, we obtain the following equations for perturba-
tions (r, v, q) of (ρ, u = 0, p):

ṙ + v · ∇ρ = 0,

ρv̇ +∇q − gr = 0,

∇ · v = 0.

(178.4)

Simplifying to only dependence on the vertical coordinate, we have

ṙ + v3
∂ρ

∂x3
= 0,

ρv̇3 − g3r = 0,

(178.5)

with x3 the vertical coordinate directed upwards, we find a system which
is unstable if ∂ρ

∂x3
> 0 and marginally stable if ∂ρ

∂x3
≤ 0, which we wanted

to show.

178.5 GCMG2

GCMG2 is obtained by direct application of G2 to (178.9) with automatized
implementation in [25], with trial functions being continuous and piecewise
linear in space-time, and test function being continuous piecewise linear in
space and piecewise constant in time, on a space-time mesh of mesh size
h, assuming velocity trial/test-fuctions v satisfy v · n = 0 on Γ. Denoting
the corresponding finite element spaces by Uh and Vh respectively GCMG2
takes the form: Find û ∈ Uh with û(·, 0) given, such that

B(û, v̂) = 0 for all v̂ ≡ (v, q, τ, s) ∈ Wh, (178.6)

where

B(û, v̂) = (ρ(u̇+ u · ∇u+∇p− ρg − f), v + δ(ρu · ∇v +∇q))Q + (∇ · u, q)Q
+ (Ṫ + u · ∇T, τ + δu · ∇τ)Q + (Ṡ + u · ∇S, s+ δu · ∇s)Q

(178.7)
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with (·, ·)Q appropriate L2(Q) scalar products and δ = h/|u| a stabiliza-
tion parameter. Standard shock-capturing [4] is used at the ocean ocean-
atmosphere interface in the case of breaking waves.
The input to FEniCS is the form B(û, v̂), the function ρ = ρ(T, S), the

Coriolis force f = 2Ω × v with Ω a given rotation, and the intial value
û(·, 0).
With comprressible atmosphere GMCG2 uses the above formulation for

the ocean combined with G2 for compressible flow as presented in [5].

178.6 Thermohaline Circulation

Thermohaline circulation refers to the large-scale circulation of the Ocean
Conveyor Belt driven by density gradients resulting from varying tempera-
ture and salinity as the warm surface water of the Northbound Gulf Stream
cools off and saltifies by evaporation and sinks to form the North Atlantic
Deep Water moving South.
We study here a model of thermohaline circulation driven by a source

and sink of density in the form of variable-density incompressible NS.

178.7 The Salter Sink Model

178.8 General Circulation Models

Global and local climate simulation is based on computational solution of a
system of partial differential equations describing the coupled ocean/atmosphere
circulation of water/air driven by Solar radiation and Coriolis forces from
the rotation of the Earth, in a General Circulation Model GCM [37].
The basic GCM for the coupled ocean/atmosphere is the Navier-Stokes

equations for the turbulent flow of water/air viewed as a fluid of variable
density and small viscosity, which is incompressible in water and compress-
ible in air, combined with a transport equation for salinity in the ocean and
moisture in the atmosphere [39], [40].
We report on computational simulation of a projected device consisting of

a vertical tube immersed in the ocean with top inlet of warm surface water
and bottom outlet in cooler deeper water, driven by incoming waves, for the
purpose of preventing formation of hurricanes by lowering the temperature
of the surface water, referred to as the Salter Sink.
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178.9 The Navier-Stokes Equations as GCM

We describe coupled ocean/water circulation by the Navier-Stokes equa-
tions for a slightly viscous fluid of variable density filling the volume Ω in
R3 occupied by water/air with boundary Γ representing the seafloor, over a
time interval I = [0, t̄]. The basic dependent variables of the Navier-Stokes
equation are the water/air fluid density, velocity u, pressure p, total energy
ǫ = ρ|u|2/2 + e with ρ density and e heat energy, and salinity/moisture s
combined with a constitutive law for density ρ = ρ(T, S, p) given as a func-
tion of T = e/ρ temperature and S = s/ρ salinity per unit mass, and also
pressure if the fluid is compressible. We assume water to be incompressible
and air to be a perfect gas with p = (γ − 1)ρT modulo dependence on S,
with γ a gas constant = 0.4 for air.
We consider the following system of equations expressing conservation

of mass, momentum, total energy and salinity/moisture combined with
incompressibility/perfect gas law and boundary/initial values: Find û =
(ρ, u, ǫ, s) depending on (x, t) ∈ Ω∪Γ×I, such that withm = ρumomentum
and Q ≡ Ω× I

ρ̇+∇ · (ρu) = 0 in Q,
ṁ+∇ · (mu) +∇p−∇ · σ − ρg − f = 0 in Q,

ǫ̇+∇ · (ǫu+ pu)− ρg · u = R in Q,
ṡ+∇ · (su) = 0 in Q,

∇ · u = 0 in water and p = (γ − 1)ρT in air in Q
un = 0 on Γ× I,
σs = βus on Γ× I,

û(·, 0) = û0 in Ω,
(178.8)

where u̇ = ∂u
∂t , un is the fluid velocity normal to Γ, us is the tangential

velocity, σ = 2νǫ(u) is viscous stress with ǫ(u) the usual velocity strain
and ν the fluid viscosity, σs is the tangential stress, β is boundary skin
friction, g is gravitational force per unit mass, f is Coriolis force, R is
radiative heat source and û0 is a given initial condition. For simplicity,
we set heat and salinity/moisture diffusivities to zero, motivated by the
fact that these coefficients are small. The skin friction boundary condition
models a turbulent boundary layer [4] and can also be used in explicit
coupling of ocean and atmosphere.
If we assume also air to be incompressible, which can be motivated for

problems on smaller scales, and here leave out dependence on salinity for
simplicity, then we can rewrite the system (178.8) as the Navier-Stokes
equations for variable density incompressible flow: Find û = (ρ, u, p) such
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that

ρ̇+ (u · ∇)ρ = 0 in Q,
ρ(u̇+ (u · ∇)u) +∇p−∇ · σ − gρ− f = 0 in Q,

∇ · u = 0 in Q,
un = 0 on Γ× I,
σs = βus on Γ× I,

ρ(·, 0) = ρ0, u(·, 0) = u0 in Ω.
(178.9)

In this case the temperature T = e/ρ can be computed a posteriori through
the following equation for the internal energy e

ė+ (u · ∇)e = −(∇ · σ) · u+R in Q, (178.10)

where −(∇·σ) ·u is a source of heat from turbulent dissipation, and T (·, 0)
is coupled to ρ(·, 0) by a relation e.g. determined by experiment.

178.10 G2 for Variable-Density Incompressible
Flow

We apply the G2 finite element method [4] to (178.9) with β = ν = 0
and f = 0 with trial functions being continuous and piecewise linear in
space-time, and test function being continuous piecewise linear in space
and piecewise constant in time, on a space-time mesh of mesh size h, as-
suming velocity trial/test-fuctions v satisfy v · n = 0 on Γ, refereed to as
the cG(1)cG(1) variant of G2. Denoting the corresponding finite element
spaces by Uh and Vh respectively GCMG2 takes the form: Find û ∈ Uh
with u(·, 0) and ρ(·, 0) given, such that

B(û, v̂) = 0 for all v̂ ≡ (r, v, q) ∈Wh, (178.11)

where

B(û, v̂) = (ρ(u̇ + u · ∇u) +∇p− ρg, v)Q + (∇ · u, q)Q + (ρ̇+ u · ∇ρ, r)Q
+(δ(ρu · ∇u+∇p− ρg), ρu · ∇v +∇q))Q + (δu · ∇ρ, u · ∇r)Q

(178.12)

with (·, ·)Q appropriate L2(Q) scalar products and δ = h/|u| a stabilization
parameter.

178.11 Simulations of Sink Circulation

The Salter Sink is a device for cooling an ocean surface by mixing warm
surface water with deeper cooler water for the purpose of preventing the de-
velopment of hurricanes. In this study it consists of a vertical tube of length
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FIGURE 178.1. Simulation snapshot of the Salter Sink, showing a flow of warm
surface water down the tube to get mixed with cooler deeper water, and then
ascending by bouyancy to replace warm surface water with a cooling effect.

FIGURE 178.2. Simulation snapshot of a wave breaking over a wall and elevating
the water surface behind the wall.

200 m and diameter 45 m immersed into an ocean of depth 600 m water in
which light warm water of temperature 28 degrees Celscius is driven down
the tube to get mixed with cooler water at a temperature of 10 degrees
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at the bottom of the ocean, by an elevated water level inside the tube
maintained by incoming water waves. We model the flow computationally
by G2 for variable density incompressible Navier-Stokes equations (178.9)
with a given relation between initial temperature and density determined
experimentally.
We first simulate the circulation in the sink driven by a vertical force in-

side the sink modeling the pressure increase from an elevated water surface
inside the sink of height 0.15 m and 0.3 m. In this simulation the water
surface is fixed and the computation is restricted to the water, as displayed
in Fig. 178.1. The sink is immersed in an ocean current of 0.1 m/s. The
temperature variation was determined from the density variation by the
experimental relation, instead of a posteriori solving the energy equation
as indicated above.
We then simulate the breaking of a water wave as a variable density

air-water system as shown in Fig. 178.2.
The next step is to simulate the complete action of the sink with breaking

waves maintaining an elevated water surface inside the sink, and in a further
step take also fluid-structure interaction into account into a full simulation
including all basic aspects.

178.12 Thermohaline Circulation

178.13 General Circulation Models with G2

Global climate simulation is based on computational solution of a system
of partial differential equations describing the coupled ocean/atmosphere
circulation of water/air driven by Solar radiation and Coriolis forces from
the rotation of the Earth, in a General Circulation Model GCM [37]. A
main objective is to predict climate sensitivity as the change of global
temperature upon doubling of the concentration of CO2 in the atmosphere
related to Anthropogenic Global Warming AGW by burning of fossil fuels,
but many other aspects of global climate can also be subject to studies by
GCMs.
The basic GCM for the coupled ocean/atmosphere is the Navier-Stokes

equations the flow of water/air viewed as a fluid of variable density which is
incompressible in water and compressible in air, combined with a transport
equation for salinity in the ocean and moisture in the atmosphere.
In this note we focus on thermohaline circulation (THC), which is the

large-scale ocean circulation named the Great Ocean Conveyor Belt driven
by density gradients resulting from varying temperature and salinity as the
warm surface water of the Northbound Gulf Stream cools off and saltifies
by evaporation and sinks to form the North Atlantic Deep Water moving
South.
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We simulate THC by computational solution of the Navier-Stokes equa-
tions for variable density turbulent incompressible flow using the General
Galerkin G2 [4] finite element method with following features and capabil-
ities:

• full 3d incompressible Naviers-Stokes equations without Boussinesq
or hydrostatic approximation [39, 40],

• automatic adaptive duality-based a posteriori error control allowing
objective assessment of reliability,

• automatic modeling of interior turbulence by finite element stabiliza-
tion,

• modeling of turbulent boundary layer by skin friction

• automatized efficient open-source implementation in FEniCS/Unicorn
[25].

For simplicity we here simulate variable salinity by sources and sinks of
density.

178.14 The Navier-Stokes Equations for Variable
Density Flow

We consider by the Navier-Stokes equations for a slightly viscous incom-
pressible fluid of variable density filling the volume Ω in R3 with boundary
Γ over a time interval I = [0, t̄]: Find the velocity u, density ρ density and
pressure p such that

ρ̇+ (u · ∇)ρ = d in Q,
ρ(u̇+ (u · ∇)u) +∇p−∇ · σ − gρ− f = 0 in Q,

∇ · u = 0 in Q,
un = 0 on Γ× I,
σs = βus on Γ× I,

u(·, 0) = u0 ρ(·, 0) = ρ0 in Ω,
(178.13)

where u̇ = ∂u
∂t , un is the fluid velocity normal to Γ, us is the tangential

velocity, σ = 2νǫ(u) is viscous stress with ǫ(u) the usual velocity strain and
ν the fluid viscosity, σs is the tangential stress, β is boundary skin friction,
g is gravitational force per unit mass, f is Coriolis force, d is a density
source/sink and u0 and ρ0 are given initial values.
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178.15 Bouyancy Stability-Instability

A basic problem concerns the stability of an incompressible variable density
fluid at a zero-velocity rest state. We are familiar with the fact that a heav-
ier fluid on top of a ligther fluid is unstable, referred to as Rayleigh-Taylor
instability, and we now seek a mathematical explanation of this effect: Lin-
earizing the equations for conservation of mass and momentum (178.13),
assuming σ = 0, we obtain the following equations for perturbations (r, v, q)
of (ρ, u = 0, p):

ṙ + v · ∇ρ = 0,

ρv̇ +∇q + gr = 0,

∇ · v = 0.

(178.14)

Simplifying to only dependence on the vertical coordinate, we have

ṙ + v3
∂rho

∂x3
= 0,

ρv̇3 − g3r = 0,

(178.15)

with x3 the vertical coordinate directed upwards, we find a system which
is stable if ∂ρ

∂x3
< 0 and marginally stable if ∂ρ

∂x3
≥ 0, which we wanted to

show.

178.16 G2 for Variable Density Flow

We apply G2 to (178.13) with automatized implementation in [25], with
trial functions being continuous and piecewise linear in space-time, and test
function being continuous piecewise linear in space and piecewise constant
in time, on a space-time mesh of mesh size h, assuming velocity trial/test-
fuctions v satisfy v ·n = 0 on Γ. Denoting the corresponding finite element
spaces by Uh and Vh respectively G2 takes the form: Find û = (ρ, u, p) ∈ Uh
with u(·, 0) and ρ(·, 0) given, such that

B(û, v̂) = 0 for all v̂ ≡ (v, q, τ, s) ∈ Wh, (178.16)

where

B(û, v̂) = (ρ(u̇+ u · ∇u+∇p− ρg − f), v + δ(ρu · ∇v +∇q))Q + (∇ · u, q)Q
+ (ρ̇+ u · ∇ρ− d, τ + δu · ∇τ)Q

(178.17)

with (·, ·)Q appropriate L2(Q) scalar products and δ = h/|u| a stabilization
parameter. The input to FEniCS is the form B(û, v̂), the Coriolis force
f = 2Ω× v with Ω a given rotation, and the intial values u(·, 0) and ρ(·, 0).
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178.17 An Basic Model Example

As a basic model we consider THC in a flat rectangular box driven by a
density source close to the surface at one end and a density sink close to
the bottom at the other end. We find that a circulating stream is generated
and and study velocity distribution and the turbulent mixing of the stream
into the surrounding fluid.
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179
Climate Thermodynamics

179.1 Global Climate by Navier-Stokes Equations

Thermodynamics is a funny subject. The first time you go through
it, you dont understand it at all. The second time you go through it,
you think you understand it, except for one or two small points. The
third time you go through it, you know you dont understand it, but
by that time you are so used to it, it doesnt bother you any more.
(Physicist Arnold Sommerfeld (1868-1951))

Global climate results from a thermodynamic interaction between the
atmosphere and the ocean with radiative forcing from the Sun, gravita-
tional forcing from the Earth (and the Moon) and dynamic Coriolis forcing
from the rotation of the Earth. The thermodynamics is described by the
Navier-Stokes equations (NSE) of fluid dynamics, for a variable density in-
compressible ocean and compressible atmosphere, expressing conservation
of mass, momentum and energy.
The atmosphere transports heat energy absorbed by the Earth surface

from the Sun to a top of the atmosphere TOA from where it is radiated to
outer space, and thus acts as an air conditioner or heat engine [8] keeping
the surface temperature constant under radiative forcing from the Sun.
A basic question in climate science is the stability of this air conditioner
under varying forcing, more specifically the change of surface temperature
under doubled concentration of atmospheric CO2 (from 0.028% to 0.056%)
, referred to as climate sensitivity.
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FIGURE 179.1. Thermodynamics of the atmosphere (NASA UARS Project).

The heat is transported by the atmosphere in a combination of thermody-
namics (turbulent convection and phase change in evaporation/condensation)
and radiation, roughly 2/3 by thermodynamics and 1/3 by radiation. The
thermodynamics involves positive radiative forcing balanced by evapora-
tion at low latitudes/altitudes from a warm ocean causing warm air to
rise-expand-cool including poleward motion followed by negative radiative
forcing balanced by condensation at high latitudes/altitudes causing cool
air to descend-contract-warm closing a thermodynamic cycle, as indicated
in Fig. 179.1, during polar winter.

179.2 The Illusory Greenhouse Effect

The main message to the World and its leaders from the 2007 IPCC Fourth
Assessment Report (AR4) is a prediction of an alarming climate sensitivity
in the range 1.5− 4.5C, with a “best estimate” of 3C, as a result of a so-
called greenhouse effect.
The physics of this effect is claimed to have been identified and scientif-

ically described by Fourier[3] (1824), Tyndall[10] (1861) and Arrhenius[1]
(1896). An inspection of these sources shows a rudimentary analysis based
a simple model for radiation without any thermodynamics.
The so-called “greenhouse effect” is described with a double-meaning:

It is both the combined total effect of the atmosphere on the Earth sur-
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face temperature including both radiation and thermodynamics, and at the
same time a hypothetical radiative effect of “greenhouse gases” including
CO2 without thermodynamics. In this way the “greenhouse effect” becomes
real, because it is the total effect of the atmopshere and the atmosphere
undeniably has an effect, an “atmosphere effect”, while at the same time it
can be linked to CO2 apparently acting like a powerful “greenhouse gas”
capable of global warming upon a very small increase of 0.028%.
The simplest version of the “greenhouse effect” is described by Stefan-

Boltzmann’s Law Q = σT 4 (SBL), which in differented form

dQ = σ4T 3dT = 4
Q

T
dT ∼ 4dT

with Q ≈ 280W/m2 and T ≈ 288K, gives a climate sensitivty of about
1C by attributing a certain fictitious additional “radiative forcing” dQ =
4W/m2 to doubled CO2.
Since the total radiative forcing from the Sun is not assumed to change,

the additional radiative forcing is supposed to result from a shift of the
“characteristic emission level/altitude” to a higher level at lower temper-
ature caused by less radiation escaping to space from lower levels by in-
creasing absorption by CO2. In this argument the outgoing radiation is
connected to a lapse rate (decrease of temperature with increasing alti-
tude) supposedly being determined by thermodynamics. With lower “char-
acteristic emission temperature” at higher altitude the whole temperature
profile will have to shifted upwards thus causing warming on the ground.
This is the starting point of the CO2 climate alarmism propagated by

IPCC, a basic climate sensitivity of 1C, which then is boosted to 3C by
various so-called (positive) “feed-backs”. The basic argument is that since
Stefan-Botzmann’s Law cannot be disputed as such, and because CO2 has
certain properties of absorption/emission of radiation (light), which can be
tested in a laboratory, the starting value of 1C is an “undeniable physical
fact which cannot be disputed”.
But wait! Science does not work that way, science only obeys facts and

logical mathematical arguments, the essence of the scientific method, and
let us now check if the basic postulate of a “greenhouse effect” with basic
climate sensitivity of 1C can qualify as science.

179.3 Mathematical Climate Simulation

The language and methodology of science, in particular climate science, is
mathematics: Physical laws are expressed as differential equations of the
principal form D(u) = F , where F represents forcing, u represents the
corressponding system state coupled to F through a differential operator
D(u) acting on u. With given forcing F , the corresponding state u can
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be determined by solving the differential equation D(u) = F . This is the
essence of the scientific method. Note that the differential equation D(u) =
F usually describes a cause-effect relation in the sense that the system state
u responds to a known given forcing F in a (stable) forward problem. This
corresponds to putting the horse in front of the wagon, and not the other
way around which is referred to as an (unstable) inverse problem with the
state u given and F the forcing being sought.
Consider now the following approaches to modelling and simulating global

climate:

• (A) Thermodynamics with radiative forcing (NSE with SBL forcing).

• (B) Radiation dQ ∼ 4dT as differentiated form of (SBL).

• (C) Radiation dQ ∼ 4dT combined with thermodynamic lapse rate.

• (D) Radiation dQ ∼ 4dT combined with thermodynamic lapse rate
and feed-back.

Here (A) is the (stable) forward problem described in the first section
and studied below. (B) is self-referential without thermodynamics. (C-D)
represent the IPCC approach as an (unstable) inverse problem of radiation
with thermodynamic forcing with potentially large positive feed-backs and
high climate sensitivity.
Altogether, (A) opens to a rational scientific approach as a stable forward

problem, whereas the (C-D) of IPPC represents an unstable inverse problem
of questionable value.
In its popular form the basic IPCC climate sensitivity of 1C is claimed to

come from a “greenhouse gas” ability of CO2 to “trap heat”, which is sup-
posed to convince the uneducated. In its more elaborate form intended for
the educated, it is connected to a thermodynamic lapse rate and character-
istic emission level, in order to account for an effect of additional radiative
forcing without change of total radiative forcing. Both forms are severely
simplistic and cannot count as science.
To follow (A) we must rid ourselves from the common misconception of

thermodynamics expressed in the quote above by Sommerfeld, that it is
beyond comprehension for mortals, in particular its 2nd Law. This is the
reason why climate scientists have focussed on radiation only, as something
understandable, backing away from thermodynamics as something nobody
can grasp. But it is possible to give thermodynamics and the 2nd Law a fully
understandable meaning as I show in [4, 5] and recall below. This insight
opens to a rational approach to climate dynamics, as (A) thermodynamics
with radiative forcing.
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179.4 Lapse Rate and Global Warming/Cooling

A theory is the more impressive the greater the simplicity of its
premises, the more different kinds of things it relates to, and the
more extended its area of applicability. This was therefore the deep
impression that classical thermodynamics made upon me. It is the
only physical theory of universal content which I am convinced will
never be overthrown, within the framework of applicability of its
basic concepts. (Einstein)

The effective blackbody temperature of the Earth with atmosphere is
−18C, which can be allocated to a TOA at an altitude of 5 km at a lapse
rate of 6.5C/km connecting TOA to an Earth surface at 15C with a total
warming of 5 × 6.5 = 33C. The lapse rate determines the surface tem-
perature since the TOA temperature is determined to balance a basically
constant insolation. What is then the main factor determining the lapse
rate? Is it radiation or thermodynamics, or both?
Climate alarmism as advocated by IPCC is based on the assumption that

radiation alone sets an initial lapse rate of 10C/km, which then in reality
is moderated by thermodynamics to an observed 6.5C/km. Doubled CO2

would then increase the initial lapse rate and with further positive ther-
modynamic feedback it is by IPCC predicted to reach an alarming climate
sensitivity or global warming of 3C. Climate alarmism skeptics like Richard
Lindzen and Roy Spencer buy the argument of an intial rate of 10C/km de-
termined by radiation, but suggest that negative thermodynamic feedback
effectively reduces climate sensitivity to a harmless 0.5C.
We will argue that an initial lapse rate of g = 9.81C/km is instead

determined by thermodynamics (and not by radiation) as an equilibrium
state without heat transfer, which then in reality by thermodynamic heat
transfer (turbulent convection/phase change) is decreased to the observed
6.5C/km, with the heat transfer balancing the radiative heat forcing. More
CO2 would then require more heat transfer by thermodynamics and thus to
a further decrease of the lapse rate rather than an increase. The atmopshere
would then act like a boiling pot of water which under increased heating
would boil more vigorously but not get any warmer.
In short: If thermodynamics is the main mechanism of the atmosphere as

an air conditioner or heat transporter, then CO2 will not cause warming,
and IPCC climate alarmism collapses.
We thus identify a basic difference between atmospheric heat transport

by radiation (similar to conduction) and by thermodynamics of convec-
tion/phase change. In radiation/conduction increased heat transport cou-
ples to increased lapse rate (warming). In convection/phase change in-
creased heat transport couples to decreased lapse rate (cooling).
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FIGURE 179.2. The atmosphere maintains a constant surface temperature un-
der increasing radiative heat forcing by increasing vaporization and turbulent
convection, like a boiling pot of water on a stove.

179.5 Euler Equations for the Atmosphere

Every mathematician knows it is impossible to understand an ele-
mentary course in thermodynamics. (Mathematician V. Arnold)

The viscosity of both water and air is small, while the spatial dimensions
of the ocean and atmopshere are large, which means that the Reynolds
number Re = UL

ν is very large (> 108), where U > 1m/s is a typical
velocity, L > 103 m a length scale and ν < 10−5 a viscosity. Global climate
thus results from turbulent flow at very large Reynolds numbers effectively
in the form of turbulent solutions of the Euler equations as described in
[4].
We focus now on the atmosphere and as a model we consider the Euler

equations for a compressible prefect gas occupying a volume Ω representing
e.g. the troposphere, here for simplicity without Coriolis force from rota-
tion: Find (ρ, u, T ) with ρ density, u velocity and T temperature depending
on x and t > 0, such that for x ∈ Ω and t > 0:

Duρ+ ρ∇ · u = 0,

Dum+m∇ · u+∇p+ gρe3 = 0,

DuT +RT∇ · u = q,

(179.1)

where m = ρu is momentum, p = RρT is pressure, R = cp− cv with cv and
cp specific heats under constant volume and pressure, and Duv = v̇+u ·∇v
is the material time derivative with respect to the velocity u with v̇ = ∂v

∂t
the partial derivative with respect to time t, e3 = (0, 0, 1) is the upward
direction, g gravitational acceleration and q is a heat source. For air cp = 1
and

cp
cv

= 1.4. The Euler equations are complemented by initial values for
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ρ, m and T at t = 0, and the boundary condition u ·n = 0 on the boundary
of Ω where n is normal to the boundary.
We assume that the heat source q adds heat energy at lower latitudes/altitudes

and subtracts heat at higher latitudes/altitudes (radiation to outer space)
including evaporation (subtraction of heat) at low altitudes and condensa-
tion (addition of heat) at higher altitudes.
We thus consider the full 3D (three-dimensional) Euler/Navier-Stokes

equations without any simplification of the vertical flow as in 2D geostrophic
flow or in hydrostatic approximation of vertical momentum balance, as a
required feature of the next generation of climate models [9] not present
in the current generation [2]. This is important because the heat transport
involves both horizontal and vertical flow, roughly speaking ascending air
at low latitudes and descending air at high latitudes, combined with high
altitude poleward flow and low altitude flow towards the Equator.

179.6 The 1st and 2nd Laws of Thermodynamics

...no one knows what entropy is, so if you in a debate use this concept,
you will always have an advantage. (von Neumann to Shannon)

We recall the 2nd Law of Thermodynamics as stated in [5]:

K̇ + Ṗ =W −D, Ė = −W +D +Q, (179.2)

where

K(t) =
1

2

∫

Ω

ρu · u(x, t) dx, P (t) =

∫ t

0

∫

Ω

gρu(x, s) dxds,

E(t) =

∫

Ω

cvρT (x, t) dx, W (t) =

∫

Ω

p∇ · u(x, t) dx,

Q(t) =

∫

Ω

q(x, t) dx,

(179.3)

is momentary total kinetic energy K(t), potential energy P (t), internal
energy E(t) and work rate W (t), and D(t) ≥ 0 is rate of turbulent dissipa-
tion and Q(t) rate of supplied heat or heat forcing. The workW is positive
in expansion with ∇ · u positive, and negative in compression with ∇ · u
negative (since the pressure p is positive).
Adding the two equations of the 2nd Law, we find that the change of

total energy (K + P + E) is balanced by the heat forcing:

d

dt
(K + P + E) = Q, (179.4)

which can be viewed to express the 1st Law of Thermodynamics as conser-
vation of total energy.
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FIGURE 179.3. Temperature profile of the atmosphere, with constant lapse rate
in the troposphere of 6.5C/km (NOAA).

Thermodynamics essentially concerns transformations between heat en-
ergyE and the sumK+P of kinetic and potential energies with the transfer
being ±(W −D): whatever K + P gains is lost by E and vice versa. The
2nd Law sets the following limits for these transformations:

• heat energy E can be transformed to kinetic/potential energy K+P
only under expansion with W > 0,

• turbulent dissipation D can transform kinetic/potential energyK+P
into heat energy E,

• turbulent dissipationD cannot transform heat energy to kinetic/potential
energy, because D ≥ 0.

179.7 Basic Isothermal and Isentropic Solutions

As anyone who has taken a course in thermodynamics is well aware,
the mathematics used in proving Clausius’ theorem (the 2nd Law)
is of a very special kind, having only the most tenuous relation to
that known to mathematicians. (Mathematician S. Brush)

We identify the following hydrostatic equilibrium base solutions, here
fitted to an observed Earth surface temperature of 288K, assuming Q = 0:
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ū = 0, T̄ = 288− gx3, ρ̄ = α(288− gx3)
1
γ , p̄ = Rα(288− gx3)

1
γ
+1,

ū = 0, T̄ = 288(K), ρ̄ = α exp(−gx3), p̄ = R 288α exp(−gx3),
(179.5)

where γ = R
cv

(= 0.4) and thus R( 1γ + 1) = cp = 1, we scale x3 in km and
α denotes a positive constant to be determined by data.
The first solution is non-turbulent (or isentropic) with D = 0 in the 2nd

Law:
Ė +W = 0, (179.6)

or in conventional notation

cv dT + p dV = 0, (179.7)

which combined with hydrostatic balance ∂p
∂x3

= −gρ and the differentiated
form pdV + V dp = RdT of the gas law, gives

(cv +R)
∂T

∂x3
= −g. (179.8)

With cv + R = cp = 1000 J/K kg the heat capacity of dry air we obtain
an isentropic dry adiabatic lapse rate of 10C/km. With the double heat
capacity of saturated moist air we obtain an isentropicmoist adiabatic lapse
of 5C/km.
The second solution has constant temperature and exponential drop of

density and pressure, and can be associated with lots of turbulent dissipa-
tion (with D =W ) effectively equilibrating the temperature.
We summarize the properties of the above base solutions (with Q = 0):

• isothermal: maximal turbulent dissipation: D =W ,

• isentropic: minimal turbulent dissipation: D = 0.

We find real solutions between these extreme cases, with roughly D = W
2

and ρ̄ ∼ (288−gx3)5, p̄ ∼ (288−gx3)6, with a quicker drop with height than
for the isentropic solution with ρ̄ ∼ (288− gx3)

2.5 and p̄ ∼ (288− gx3)
3.5,

or turned the other way, with a smaller lapse rate of 6.5C/km).

179.8 Basic Thermodynamics

...thermodynamics is a dismal swamp of obscurity... a prime exam-
ple to show that physicists are not exempt from the madness of
crowds... Clausius’ verbal statement of the second law makes no
sense...All that remains is a Mosaic prohibition; a century of philoso-
phers and journalists have acclaimed this commandment; a century
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FIGURE 179.4. Earth energy budget (NASA Atmospheric Science Data Center).

of mathematicians have shuddered and averted their eyes from the
unclean...Seven times in the past thirty years have I tried to follow
the argument Clausius offers and seven times has it blanked and
gravelled me. I cannot explain what I cannot understand. (Physicist
C. Truesdell)

We have formulated a basic model of the atmosphere acting as an air
conditioner/refrigerator by transporting heat energy from the Earth sur-
face to the top of the atmosphere in a thermodynamic cyclic process with
radiation/gravitation forcing, consisting of

• ascending/expanding/cooling air heated by low altitude/latitude ra-
diative forcing,

• descending/compressing/warming air cooled by high altitude/latitude
outgoing radiation,

combined with low altitude evaporation and high altitude condensation.
The model is compatible with observation and suggests that the lapse

rate/surface temperature is mainly determined by thermodynamics and
not by radiation.
The thermodynamics of a standard refrigerator requires a compressor,

which in the case of an atmosphere is taken over by gravitation causing
compression of descending air.
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179.9 Basic Data

You can fool all the people some time, and some of the people all
the time, but you cannot fool all the people all the time. (Abraham
Lincoln)

We collect the following observed data, for the first half of the above
cycle:

• average upward velocity = 0.01m/s,

• average density = 0.6 kg/m3,

• average altitude of TOA = 5000m,

• cp = 1000 J/K kg

• Q ≈ 180W/m2 absorbed by the Earth surface with 60W allocated to
radiation, and 120W to thermodynamics with 100W to evaporation
and 20W to convection.

• observed lapse rate ≈ −6.5 C/km,

• evaporation ≈ 4 cm/day,

• heat of vaporization of water 2200 kJ/kg,

• turbulent dissipation rate: 0.002W/kg,

For the upward motion of a column of air over a square meter of surface,
we have :

• Ṗ ≈ 0.01× 0.7× 5000× g = 350W ,

• Ė ≈ −0.01× 0.7× 1000× 5000× 6.5
1000 ≈ −230W ,

• phase change: 2.2× 106 × 102 × 0.04
24×3600 ≈ 100W ,

which is compatible with W −D = Ṗ = 350W and Ė = −W +D +Q =
−230W .
The observed lapse rate of 6.5C/km can be viewed as being obtained

by moderating the dry adiabatic rate of 10C/km by a combined process
of phase change and turbulent dissipation effectively reducing the drop of
temperature with altitude. The energy transfer in this process (≈ 3.5

6.5 ×
230 = 120W with 100 − 110W for evaporation and 20 = 0.002× 5000 ≈
10 − 20W for turbulence) is roughly equal to the heat forcing allocated
to thermodynamics (= 120W ). Increasing heat transfer then corresponds
to non-increasing lapse rate and non warming; the main message of our
analysis.
The observed lapse rate of 6.5C/km is bigger than the moist adiabatic

rate of 5C/km, which causes unstable overturning of rising warm air and
turbulent dissipation.
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179.10 Lapse Rate vs Radiative Forcing

If the lapse rate is L then Ṗ + Ė = Q combined with Ė/Ṗ = L
10 according

to the above computation, gives L = 10(1−Q/Ṗ ). If Q is increased then L
will decrease if Ṗ stays constant, but if Ṗ increases quicker than Q, then L
may increase. Increasing Q may be expected to give an increase of Ṗ by in-
creasing the vertical convection velocity, but a decrease by increasing phase
change evaporation/condensation. Which effect will dominate: convection
or phase change? Computations with an answer are under way... until then
we notice that out of 120W/m2 of radiative heat forcing, a major part of
say 100 can be allocated to phase change, which gives phase change a good
chance to compete with convection...

179.11 Summary: Atmosphere as Air Conditioner

A good many times I have been present at gatherings of people who,
by the standards of the traditional culture, are thought highly ed-
ucated and who have with considerable gusto been expressing their
incredulity at the illiteracy of scientists. Once or twice I have been
provoked and have asked the company how many of them could de-
scribe the Second Law of Thermodynamics. The response was cold:
it was also negative. (C. P. Snow in 1959 Rede Lecture entitled The
Two Cultures and the Scientific Revolution).

Let us now sum up the experience from our analysis. We have seen that
the atmosphere acts as a thermodynamic air conditioner transporting heat
energy from the Earth surface to a TOA under radiative heat forcing. We
start from an isentropic stable equilibrium state with lapse rate 9.8C/km
with zero heat forcing and discover the following scenario for the response
of the air conditioner under increasing heat forcing:

1. increased heat forcing of the Ocean surface at low latitudes is bal-
anced by increased vaporization,

2. increased vaporization increases the heat capacity which decreases
the moist adiabatic lapse rate,

3. if the actual lapse rate is bigger than the actual moist adiabatic rate,
then unstable convective overturning is triggered,

4. unstable overturning causes turbulent convection with increased heat
transfer.

The atmospheric air conditioner thus may respond to increased heat forc-
ing by (i) increased vaporization decreasing the moist adiabatic lapse rate
combined with (ii) increased turbulent convection if the actual lapse rate
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is bigger than the moist adiabatic lapse rate. This is how a boiling pot of
water reacts to increased heating.

If someone points out to you that your pet theory of the universe is in
disagreement with Maxwell’s equations, then so much the worse for
Maxwell’s equations. If it is found to be contradicted by observation,
well, these experimentalists do bungle things sometimes. But if your
theory is found to be against the second law of thermodynamics,
I can give you no hope; there is nothing for it but to collapse in
deepest humiliation (Sir Arthur Stanley Eddington in The Nature of
the Physical World, 1915)
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180
Cosmology

180.1 To Watch

• From 20 million to 14 billion

• The Millennium Simulation

• How the Milky Wave will end

• How large is the Universe?

180.2 Simulator

Simulate the dynamics of a compressible gas subject to gravity forces by
the compressible Navier-Stokes equations.

180.3 Investigation

Study how if fluctuations in an initial smooth mass distribution can develop
into non-smooth mass concentrations representing sparsely distributed galax-
ies.

http://www.youtube.com/watch?v=BKBvojXC6d0
http://www.youtube.com/watch?v=W35SYkfdGtw&feature=related
http://www.youtube.com/watch?v=OxtsUNA1tk8&feature=related
http://www.youtube.com/watch?v=CEQouX5U0fc&feature=SeriesPlayList&p=0A8AD22AB78081D5
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FIGURE 180.1. Big Bang.
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181
Quantum Mechanics

There is a computer disease that anybody who works with com-
puters knows about. It’s a very serious disease and it interferes
completely with the work. The trouble with computers is that
you ’play’ with them! (Richard Feynman)

181.1 To Read

• Many-Minds Quantum Mechanics

181.2 Simulator

Construct a simulator based on Many-Minds solutions of Schrödinger’s
equation.

181.3 Investigation

Determine the ground states of Helium, Lithium and Beryllium, and check
with the literature and experiments.
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182
Digital Photography

182.1 Digital Images

Photography is being revolutionized by digital technology for digital imag-
ing. Digital photography is one of several forms of digital imaging. Digital
images are also created by non-photographic equipment such as computer
tomography scanners and radio telescopes. Digital images can also be made
by scanning conventional photographic images.

182.2 Digital Image Processing

Digital image processing is the use of mathematical computer algorithms
to perform image processing on digital images, such as

• Compression-wavelets

• Linear filtering

• Principal components analysis

• PDE-Anisotropic diffusion: softening, sharpening, despeckling,...

182.3 To Read

• Tutorial for Image Processing

http://en.wikipedia.org/wiki/Digital_photography
http://en.wikipedia.org/wiki/Digital_imaging
http://en.wikipedia.org/wiki/Digital_image_processing
http://en.wikipedia.org/wiki/Wavelet
http://en.wikipedia.org/wiki/Linear_filter
http://en.wikipedia.org/wiki/Principal_components_analysis
http://en.wikipedia.org/wiki/Anisotropic_diffusion
http://www.ph.tn.tudelft.nl/Courses/FIP/frames/fip.html
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FIGURE 182.1. CCD Charge-Coupled Device sensor.

• Video Lectures

• CCD Sensors

http://freevideolectures.com/Course/2316/Digital-Image-Processing-IIT-Kharagpur
http://en.wikipedia.org/wiki/Charge-coupled_device
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FIGURE 182.2. CCD sensor.
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967

(Partly from Applied Mathematics Body and Soul, Vol 1-2, Springer 2003, coau-

thored with Kenneth Eriksson and Don Estep).

|u(xj)− u(xj−1)| ≤ Lu|xj − xj−1|
u(xj)− u(xj−1) ≈ u′(xj−1)(xj − xj−1)

u(xN)− u(x0) =

∫ xN

x0

u′(x) dx

≈
N∑

j=1

u′(xj−1)(xj − xj−1)



This is page 968
Printer: Opaque this



This is page 969
Printer: Opaque this

183
Natural Numbers and Integers

“But”, you might say, “none of this shakes my belief that 2 and
2 are 4”. You are right, except in marginal case...and it is only in
marginal cases that you are doubtful whether a certain animal is a
dog or a certain length is less than a meter. Two must be two of
something, and the proposition “2 and 2 are 4” is useless unless it
can be applied. Two dogs and two dogs are certainly four dogs, but
cases arrive in which you are doubtful whether two of them are dogs.
“Well, at any rate there are four animals” you may say. But there
are microorganisms concerning which it is doubtful whether they
are animals or plants. “Well, then living organisms,” you may say.
But there are things of which it is doubtful whether they are living
organisms or not. You will be driven into saying: “Two entities and
two entities are four entities”. When you have told me what you
mean by “entity” I will resume the argument. (Russell)

183.1 Introduction

In this chapter, we recall how natural numbers and integers may be con-
structively defined, and how to prove the basic rules of computation we
learn in school. The purpose is to give a quick example of developing a
mathematical theory from a set of very basic facts. The idea is to give the
reader the capability of explaining to her/his grandmother why, for exam-
ple, 2 times 3 is equal to 3 times 2. Answering questions of this nature
leads to a deeper understanding of the nature of integers and the rules for
computing with integers, which goes beyond just accepting facts you learn
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in school as something given once and for all. An important aspect of this
process is the very questioning of established facts that follows from posing
the why, which may lead to new insight and new truths replacing the old
ones.

183.2 The Natural Numbers

The natural numbers such as 1, 2, 3, 4, ..., are familiar from our experience
with counting where we repeatedly add 1 starting with 1. So 2 = 1 + 1,
3 = 2+1 = 1+1+1, 4 = 3+1 = 1+1+1+1, 5 = 4+1 = 1+1+1+1+1, and
so on. Counting is a pervasive activity in human society: we count minutes
waiting for the bus to come and the years of our life; the clerk counts change
in the store, the teacher counts exam points, Robinson Crusoe counted the
days by making cuts on a log. In each of these cases, the unit 1 represents
something different; minutes and years, cents, exam points, days; but the
process of counting is the same for all the cases. Children learn to count at
an early age and may count to 10 by the age of say 3. Clever chimpanzees
may also be taught to count to 10. The ability to count to 100 may be
achieved by children of the age of 5.
The sum n+m obtained by adding two natural numbers n and m, is the

natural number resulting from adding 1 first n times and then m times. We
refer to n andm as the terms of the sum n+m. The equality 2+3 = 5 = 3+2
reflects that

(1 + 1) + (1 + 1 + 1) = 1 + 1 + 1 + 1 + 1 = (1 + 1 + 1) + (1 + 1),

which can be explained in words as observing that if we have 5 donuts in a
box, then we can consume them by first eating 2 donuts and then 3 donuts
or equally well by first eating 3 donuts and then 2 donuts. By the same
argument we can prove the commutative rule for addition

m+ n = n+m,

and the associative rule for addition

m+ (n+ p) = (m+ n) + p,

where m, n, and p are natural numbers.
The product m × n = mn obtained by multiplying two natural numbers

m and n, is the natural number resulting by adding n to itself m times.
The numbers m and n of a product m×n are called factors of the product.
The commutative rule for multiplication

m× n = n×m (183.1)
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expresses the fact that adding n to itself m times is equal to adding m to
itself n times. This fact can be established by making a square array of
dots with m rows and n columns and counting the total number of dots
m× n in two ways: first by summing the m dots in each column and then
summing over the n columns and second by summing the n dots in each
row and then summing over the m rows, see Fig. 183.1.

m

n

FIGURE 183.1. Illustration of the commutative rule for multiplication
m × n = n × m. We get the same sum if first add up the dots by counting
across the rows or down the columns.

In a similar way we can prove the associative rule for multiplication

m× (n× p) = (m× n)× p (183.2)

and the distributive rule combining addition and multiplication,

m× (n+ p) = m× n+m× p, (183.3)

for natural numbers m, n, and p. Note that here we use the convention that
multiplications are carried out first, then summations, unless otherwise is
indicated. For example, 2+3×4 means 2+(3×4) = 24, not (2+3)×4 = 20.
To overrule this convention we may use parentheses, as in (2+3)×4 = 5×4.
From (183.3) (and (183.1)) we obtain the useful formula

(m+ n)(p+ q) = (m+ n)p+ (m+ n)q = mp+ np+mq + nq. (183.4)

We define n2 = n× n, n3 = n× n× n, and more generally

np = n× n× · · · × n
( p factors)
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for natural numbers n and p, and refer to np as n to the power p, or the
“p-th power of n”. The basic properties

(
np
)q

= npq

np × nq = np+q

np ×mp = (nm)p,

follow directly from the definition, and from the associative and distributive
laws of multiplication.
We also have a clear idea of ranking natural numbers according to size.

We consider m to be larger than n, written as m > n, if we can obtain m
by adding 1 repeatedly to n. The inequality relation satisfies its own set of
rules including

m < n and n < p implies m < p

m < n implies m+ p < n+ p

m < n implies p×m < p× n

m < n and p < q implies m+ p < n+ q,

which hold for natural numbers n, m, p, and q. Of course, n > m is the
same as m < n, and writing m ≤ n means that m < n or m = n.
A way of representing the natural numbers is to use a horizontal line

extending to the right with the marks 1, 2, 3, spaced at a unit distance
consecutively, see Fig. 183.2. This is called the natural number line. The
line serves like a ruler to keep the points lined up in ascending order to the
right.

1 2 3 4

FIGURE 183.2. The natural number line.

We can interpret all of the arithmetic operations using the number line.
For example, adding 1 to a natural number n means shifting one unit to
the right from the position of n to that of n + 1, and likewise adding p
means shifting p units to the right.
We can also extend the natural number line one unit to the left and mark

that point by 0, which we refer to as zero. We can use 0 as a starting point
from which we get to the point marked 1 by moving one unit to the right,
We can interpret this operation as 0 + 1 = 1, and generally we have

0 + n = n+ 0 = n (183.5)

for n a natural number. We further define n× 0 = 0× n = 0 and n0 = 1.
Representing natural numbers as sums of ones like 1 + 1 + 1 + 1 + 1 or

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1, that is, as cuts on a log or as beads on
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0 1 2 3 4

FIGURE 183.3. The extended natural number line, including 0.

a thread, quickly becomes impractical as the size of the number increases.
To be able to express natural numbers of any size, it is convenient to use a
positional system. In a positional system with base 10 we use the digits 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, and express each natural number uniquely as a sum
of terms of the form

d× 10p (183.6)

where d is one of the digits 0, 1, 2, ..., 9, and p is a natural number or 0. For
example

4711 = 4× 103 + 7× 102 + 1× 101 + 1× 100.

We normally use the positional system with base 10, where the choice of
base is of course connected to counting using our fingers.
One can use any natural number as the base in a positional system. The

computer normally uses the binary system with base 2, where a natural
number is expressed as a string of 0s and 1s. For example

1001 = 1× 23 + 0× 22 + 0× 21 + 1× 20, (183.7)

which equals the usual number 9. We will return to this topic below.

183.3 Is There a Largest Natural Number?

The insight that counting always can be continued by adding 1 yet another
time, that is the insight that if n is a natural number, then n+1 is a natural
number, is an important step in the development of a child usually taken in
early school years. Whatever natural number I would assign as the largest
natural number, you could argue that the next natural number obtained by
adding 1 is bigger, and I would probably have to admit that there cannot
be a largest natural number. The line of natural numbers extends for ever
to the right.
Of course, this is related to some kind of unlimited thought experiment.

In reality, time or space could set limits. Eventually, Robinson’s log would
be filled with cuts, and a natural number with say 1050 digits would seem
impossible to store in a computer since the number of atoms in the Universe
is estimated to be of this order. The number of stars in the Universe is
probably finite although we tend to think of this number as being without
bound.
We may thus say that in principle there is no largest natural number,

while in practice we will most likely never deal with natural numbers bigger
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than 10100. Mathematicians are interested in principles and thus would like
to first get across what is true in principle, and then at a later stage what
may be true in practice. Other people may prefer to go to realities directly.
Of course, principles may be very important and useful, but one should not
forget that there is a difference between what is true in principle and what
is really true.
The idea that, in principle, there cannot be a largest natural number,

is intimately connected to the concept of infinity. We may say that there
are infinitely many natural numbers, or that the set of natural numbers is
infinite, in the sense that we can keep on counting or making cuts without
ever stopping; there is always possible to make another cut and add 1
another time. With this view, the concept of infinity is not so difficult to
grasp; it just means that we never come to an end. Infinitely many steps
means a potential to take yet another step independent of the number of
steps we have taken. There is no limit or bound. To have infinitely many
donuts means that we can always take yet another donut whenever we want
independent of how many we have already eaten. This potential seems more
realistic (and pleasant) than actually eating infinitely many donuts.

183.4 The Set N of All Natural Numbers

We may easily grasp the set {1, 2, 3, 4, 5} of the first 5 natural numbers
1, 2, 3, 4, 5. This may be done by writing down the numbers 1, 2, 3, 4 and 5
on a piece of paper and viewing the numbers as constituting one entity, like
a telephone number. We may even grasp the set {1, 2, ..., 100} of the first
100 natural numbers 1, 2, 3, ..., 99, 100 in the same way. We may also grasp
individual very large numbers; for instance we might grasp the number
1 000 000 000 by imagining what we could buy for 1 000 000 000 dollars. We
also feel quite comfortable with the principle of being able to add 1 to any
given natural number. We could even agree to denote by N all the natural
numbers that we potentially could reach by repeatedly adding 1.
We can think of N as the set of possible natural numbers and it is clear

that this set is always under construction and can never actually be com-
pleted. It is like a high rise, where continuously new stores can be added
on top without any limit set by city regulations or construction technique.
We understand that N embodies a potential rather than an existing reality,
as we discussed above.
The definition of N as the set of possible natural numbers is a bit vague

because the term “possible” is a bit vague. We are used to the fact that
what is possible for you may be impossible for me and vice versa. Whose
“possible” should we use? With this perspective we leave the door a bit
open to everyone to have his own idea of N depending on the meaning of
“possible natural number” for each individual.
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If we are not happy with this idea of N as “the set of all possible natural
numbers”, with its admitted vagueness, we may instead seek a definition of
“the set of all natural numbers” which would be more universal. Of course
any attempt to display this set by writing down all natural numbers on
a piece of paper, would be rudely interrupted by reality. Deprived of this
possibility, even in principle, it appears that we must seek guidelines from
some Big Brother concerning the meaning of N as “the set of all natural
numbers”.
The idea of a universal Big Brother definition of difficult mathematical

concepts connected to infinity one way or the other, like N, grew strong dur-
ing the late 19th century. The leader of this school was Cantor, who created
a whole new theory dealing with infinite sets and infinite numbers. Cantor
believed he could grasp the set of natural numbers as one completed entity
and use this as a stepping stone to construct sets of even higher degrees
of infinity. Cantors work had profound influence on the view of infinity in
mathematics, but his theories about infinite sets were understood by few
and used by even fewer. What remains of Cantors work today is a firm
belief by a majority of mathematicians that the set of all natural num-
bers may be viewed as a uniquely defined completed entity which may be
denoted by N. A minority of mathematicians, the so-called constructivists
led by Kronecker, have opposed Cantors ideas and would rather think of N
somewhat more vaguely defined as the set of possible natural numbers, as
we proposed above.
The net result appears to be that there is no consensus on the definition

of N. Whatever interpretation of N you prefer, and this is now open to
your individual choice just as religion is, there will always remain some
ambiguity to this notion. Of course, this reflects that we can give names
to things that we cannot fully grasp, like the world, soul, love, jazz music,
ego, happiness et cetera. We all have individual ideas of what these words
mean.
Personally, we tend to favor the idea of using N to denote the “set of

possible natural numbers”. Admittedly this is a bit vague (but honest),
and the vagueness does not appear to create any problems in our work.

183.5 Integers

If we associate addition by the natural number p as moving p units to
the right on the natural number line, we can introduce the operation of
subtraction by p as moving p units to the left. In the setting of donuts in a
box, we can think of addition as putting donuts into the box and subtraction
as taking them out. For example, if we have 12 donuts in the box and eat
7 of them, we know there will be 5 left. We originally got the 12 donuts
by adding individual donuts into a box, and we may take away donuts, or
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subtract them, by taking them back out of the box. Mathematically, we
write this as 12− 7 = 5 which is just another way of saying 5 + 7 = 12.
We immediately run into a complication with subtraction that we did

not meet with addition. While the sum n +m of two natural numbers is
always a natural number, the difference n−m is a natural number only if
m < n. Moving m units to the left from n will take us outside the natural
number line if m > n. For example, the difference 12− 15 would arise if we
wanted to take 15 donuts out of a box with 12 donuts. Similar situations
arise frequently. If we want to buy a titanium bike frame for $2500, while
we only have $1500 in the bank, we know we have to borrow $1000. This
$1000 is a debt and does not represent a positive amount in our savings
account, and thus does not correspond to a natural number.
To handle such situations, we extend the natural numbers {1, 2, 3, · · · }

by adjoining the negative numbers −1, −2, −3, · · · together with 0. The
result is the set of integers

Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · ·} = {0,±1,±2,±3, · · ·}.

We say that 1, 2, 3, · · · , are the positive integers while −1, −2, −3, · · · , are
the negative integers. Graphically, we think of extending the natural num-
ber line to the left and then marking the point that is one unit distance to
the left of 0 as −1, and so on, to get the integer number line, see Fig. 183.4.

− −− 0 11 22 33

FIGURE 183.4. The integer number line.

We may define the sum n +m of two integers n and m as the result of
adding m to n as follows. If n and m are both natural numbers, or positive
integers, then n+m is obtained the usual way by starting at 0, moving n
units to the right followed by m more units to the right. If n is positive
and m is negative, then n+m is obtained starting at 0, moving n units to
the right, and then m units back to the left. Likewise if n is negative and
m is positive, then we obtain n+m by starting at 0, moving n units to the
left and then m units to the right. Finally, if both n and m are negative,
then we obtain n+m by starting at 0, moving n units to the left and then
m more units to the left. Adding 0, we move neither right nor left, and
thus n + 0 = n for all integers n. We have now extended the operation of
addition from the natural numbers to the integers.
Next, to define the operation of subtraction, we first agree to denote by

−n the integer with the opposite sign to the integer n. We then have for
any integer n that −(−n) = n, reflecting that taking the opposite sign
twice gives the original sign, and n+ (−n) = (−n) + n = 0, reflecting that
moving n units back and forth starting at 0 will end up at 0. We now define
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n−m = −m+ n = n+ (−m), which we refer to as subtracting m from n.
We see that subtracting m from n is the same as adding −m to n.
Finally, we need to extend multiplication to integers. To see how to do

this, we seek guidance by formally multiplying the equality n+ (−n) = 0,
where n a natural number, by the natural number m. We then obtain
m × n +m × (−n) = 0, which suggest that m × (−n) = −(m × n), since
m× n+ (−(m× n)) = 0. We are thus led to define m× (−n) = −(m× n)
for positive integers m and n, and likewise (−n) ×m = −(n × m). Note
that by this definition, −n×m may be interpreted both as (−n)×m and
as −(n ×m). In particular we have that (−1) × n = −n for n a positive
integer. Finally, to see how to define (−n) × (−m) for n and m positive
integers, we multiply the equalities n+(−n) = 0 and m+(−m) = 0 to get
formally n×m+n× (−m)+(−n)×m+(−n)× (−m) = 0, which indicates
that −n×m+ (−n)× (−m) = 0, that is (−n)× (−m) = n×m, which we
now take as a definition of the product of two negative numbers (−n) and
(−m). In particular we have (−1) × (−1) = 1. We have now defined the
product of two arbitrary integers (of course we set n × 0 = 0 × n = 0 for
any integer n).
To sum up, we have defined the operations of addition and multiplica-

tion of integers and we can now verify all the familiar rules for computing
with integers including the commutative, associative and distributive rules
stated above for natural numbers.
Note that we may say that we have constructed the negative integers

{−1,−2, ...} from the given natural numbers {1, 2, ...} through a process
of reflection around 0, where each natural number n gets its mirror image
−n. We thus may say that we construct the integer line from the natural
number line through a process of reflection around 0. Kronecker said that
the natural numbers were given by God and that all other numbers, like
the negative integers, are invented or constructed by man.
Another way to define or construct −n for a natural number n is to think

of −n as the solution x = −n of the equation n+x = 0 since n+(−n) = 0,
or equally well as the solution of x+n = 0 since (−n)+n = 0. This idea is
easily extended from n to −n, i.e. to the negative integers, by considering
−(−n) to be the solution of x+(−n) = 0. Since n+(−n) = 0, we conclude
the familiar formula −(−n) = n. To sum up, we may view −n to be the
solution of the equation x+ n = 0 for any integer n.
We further extend the ordering of the natural numbers to all of Z by

defining m < n if m is to the left of n on the integer line, that is, if m is
negative and n positive, or zero, or if also n is negative but −m > −n. This
ordering is a little bit confusing, because we like to think of for example
−1000 as a lot bigger number than −10. Yet we write −1000 < −10 saying
that −1000 is smaller than −10. What we need is a measure of the size of
a number, disregarding its sign. This will be the topic next.
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183.6 Absolute Value and the Distance Between
Numbers

As just indicated, it is convenient to be able to discuss the size of numbers
independent of the sign of the number. For this purpose we define the
absolute value |p| of the number p by

|p| =
{
p, p ≥ 0

−p, p < 0.

For example, |3| = 3 and | − 3| = 3. Thus |p| measures the size of the
number p, disregarding its sign, as desired. For example |− 1000| > |− 10|.
Often we are interested in the difference between two numbers p and q,

but are concerned primarily with the size of the difference and care less
about its sign, that is we are interested in |p − q| corresponding to the
distance between the two numbers on the number line.
For example suppose we have to buy a piece of molding for a doorway

and when using a tape measure we position one side of the doorframe at
2 inches and the opposite side at 32 inches. We would not go to the store
and ask the person for a piece of molding that begins at 2 inches and ends
at 32 inches. Instead, we would only tell the clerk that we need 32− 2 = 30
inches. In this case, 30 is the distance between 32 and 2. We define the
distance between two integers p and q as |p− q|.
By using the absolute value, we insure that the distance between p and q

is the same as the distance between q and p. For example, |5− 2| = |2− 5|.
In this book, we will be dealing with inequalities combined with the

absolute value frequently. We give an example close to every student’s heart.

Example 183.1. Suppose the scores on an exam that are within 5 of
79 out of 100 get a grade of B and we want to write down the list of
scores that get a B. This includes all scores x that are a distance of at
most 5 from 79, which can be written

|x− 79| ≤ 5. (183.8)

There are two possible cases: x < 79 and x ≥ 79. If x ≥ 79 then
|x− 79| = x− 79 and (183.8) becomes x− 79 ≤ 5 or x ≤ 84. If x < 79
then |x − 79| = −(x − 79) and (183.8) means that −(x − 79) ≤ 5 or
(x− 79) ≥ −5 or x ≥ 74. Combining these results we have 79 ≤ x ≤ 84
as one possibility or 74 ≤ x < 79 as another possibility, or in other
words, 74 ≤ x ≤ 84.

In general if |x| < b, then we have the two possibilities −b < x < 0 or
0 ≤ x < b which means that −b < x < b. We can actually solve both cases
at one time.
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Example 183.2. |x− 79| ≤ 5 means that

−5 ≤ x− 79 ≤ 5
74 ≤ x ≤ 84

To solve |4− x| ≤ 18, we write

−18 ≤ 4− x ≤ 18
18 ≥ x− 4 ≥ −18 (Note the changes!)

22 ≥ x ≥ −14

Example 183.3. To solve the following inequality in x:

|x− 79| ≥ 5. (183.9)

we first assume that x ≥ 79, in which case (183.9) becomes x− 79 ≥ 5
or x ≥ 84. Next, if x ≤ 79 then (183.9) becomes −(x − 79) ≥ 5 or
(x − 79) ≤ −5 or x ≤ −74. The answer is thus all x with x ≥ 84 or
x ≤ −74.

Finally we recall that multiplying an inequality by a negative number
like (−1) reverses the inequality:

m < n implies −m > −n.

183.7 Division with Remainder

We define division with remainder of a natural number n by another natural
number m, as the process of computing nonnegative integers p and r < m
such that n = pm+r. The existence of unique p and r follows by considering
the sequence of natural numbers m, 2m, 3m,..., and noting that there must
be a unique p such that pm ≤ n < (p+ 1)m, see Fig. 183.5.

(p− 1)m pm (p+ 1)mn

m = 5 and n = pm+ r with r = 2 < m

FIGURE 183.5. Illustration of pm ≤ n < (p+ 1)m.

Setting r = n − pm, we obtain the desired representation n = pm + r
with 0 ≤ r < m. We call r the remainder in division of n by m. When
the remainder r is zero, then we obtain a factorization n = pm of n as a
product of the factors p and m.
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We can find the proper p in division with remainder of n bym by repeated
subtraction of m. For example, if n = 63 and m = 15, then we may write

63 = 15 + 48

63 = 15 + 15 + 34 = 2× 15 + 33

63 = 3× 15 + 18

63 = 4× 15 + 3,

and thus find that in this case p = 4 and r = 3.
A more systematic procedure for division with remainder is the long

division algorithm, which is taught in school. We give two examples (63 =
4× 15 + 3 again, and 2418610 = 19044× 127 + 22) in Fig. 183.5.

15 63

4

60
3

127 2418610
127

1148
1143

561
508

530
508

22

19044

1×127

9×127

4×127

4×127

4×15

FIGURE 183.6. Two examples of long division.

183.8 Factorization into Prime Factors

A factor of a natural number n is a natural number m that divides into n
without leaving a remainder, that is, n = pm for some natural number p.
For example, 2 and 3 are both factors of 6. A natural number n always has
factors 1 and n since 1×n = n. A natural number n is called a prime number
if the only factors of n are 1 and n. The first few prime numbers (excluding
1 since such factors are not of much interest) are {2, 3, 5, 7, 11, · · ·}. The
only even prime number is 2. Suppose that we take the natural number
n and try to find two factors n = pq. Now there are two possibilities:
either the only two factors are 1 and n, i.e. n is prime, or we find two
factors p and q, neither of which are 1 or n. By the way, it is easy to write
a program to search for all the factors of a given natural number n by
systematically dividing by all the natural numbers up to n. Now in the
second case, both p and q must be less than n. In fact p ≤ n/2 and q ≤ n/2
since the smallest possible factor not equal to 1 is 2. Now we repeat by
factoring p and q separately. In each case, we either find the number is
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prime or we factor it into a product of smaller natural numbers. Then we
continue with the smaller factors. Eventually this process must stop since
n is finite and the factors at any stage are no larger than half the size of
the factors of the previous stage. When the process has stopped, we have
factored n into a product of prime numbers. This factorization is unique
except for order. One consequence of the factorization into prime numbers
is the following fact. Suppose that we know that 2 is a factor of n. If n = pq
is any factorization of n, it follows that at least one of the factors p and q
must have a factor of 2. The same is true for prime number factors 3, 5, 7
etc., that is for any prime number factor.

183.9 Computer Representation of Integers

Since we will be using the computer throughout this course, we have to
point out some properties of computer arithmetic. We are distinguishing
arithmetic carried out on a computer from the “theoretical” arithmetic we
learn about in school.
The fundamental issue that arises when using a computer stems from the

physical limitation on memory. A computer must store numbers on a physi-
cal device which cannot be “infinite”. Hence, a computer can only represent
a finite number of numbers. Every computer language has a finite limit on
the numbers it can represent. It is quite common for a computer language
to have INTEGER and LONG INTEGER types of variables, where an IN-
TEGER variable is an integer in the range of {−32768,−32767, ..., 32767},
which are the numbers that take two bytes of storage, and a long inte-
ger variable is an integer in the range {−2147483648, −2147483647, ...,
2147483647}, which are the integers requiring four bytes of storage (where
a “byte” of memory consists of 8 “bit-cells”, each capable of storing either
a zero or a one). This can have some serious consequences, as anyone who
programs a loop using an integer index that goes above the appropriate
limit finds out. In particular, we cannot check whether some fact is true
for all integers using a computer to test each case.

Chapter 183 Problems

183.1. Identify five ways in your life in which you count and the unit “1” for
each case.

183.2. Use the natural number line representation to interpret and verify the
equalities: (a) x+ y = y + x and (b) x+ (y + z) = (x+ y) + z: that hold for any
natural numbers x, y, and z:
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183.3. Use (two and three dimensional) arrays of dots to interpret and verify a)
the distributive rule for multiplication m× (n+ p) = m× n+m× p and b) the
associative rule (m× n)× p = m× (n× p)..

183.4. Use the definition of np for natural numbers n and p to verify that (a)(
np
)q

= npq and (b) np × nq = np+q for natural numbers n, p, q.

183.5. Prove that m × n = 0 if and only if m = 0 or n = 0, for integers m and
n. What does or mean here? Prove that for p 6= 0, p ×m = p × n if and only if
m = n. What can be said if p = 0?

183.6. Verify using (183.4) that for integers n and m,

(n+m)2 = n2 + 2nm +m2

(n+m)3 = n3 + 3n2m+ 3nm2 +m3

(n+m)(n−m) = n2 −m2.

(183.10)

183.7. Use the integer number line to illustrate the four possible cases in the
definition of n+m for integers n and m.

183.8. Divide (a) 102 by 18, (b) −4301 by 63, and (c) 650912 by 309 using long
division.

183.9. (a) Find all the natural numbers that divide into 40 with zero remainder.
(b) Do the same for 80.

183.10. (Abstract) Use long division to show that

a3 + 3a2b+ 3ab2 + b3

a+ b
= a2 + 2ab+ b2.

183.11. (a) Write a MATLAB c© routine that tests a given natural number
n to see if it is prime. Hint: systematically divide n by the smaller natural
numbers from 2 to n/2 to check whether there are factors. Explain why it
suffices to check up to n/2. (b) Use this routine to write aMATLAB c© routine
that finds all the prime numbers less than a given number n. (c) List all
the prime numbers less than 1000.

183.12. Factor the following integers into a product of prime numbers; (a) 60,
(b) 96, (c) 112, (d) 129.

183.13. Find two natural numbers p and q such that pq contains a factor of 4
but neither p nor q contains a factor of 4. This means that the fact that some
natural number m is factor of a product n = pq does not imply that m must be
a factor of either p or q. Why doesn’t this contradict the fact that if pq contains
a factor of 2 then at least one of p or q contains a factor of 2?
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183.14. Pick out the invalid rules from the following list

a < b implies a− c < b− c

(a+ b)2 = a2 + b2

(
c(a+ b)

)2
= c2(a+ b)2

ac < bc implies a < b

a− b < c implies a < c+ b

a+ bc = (a+ b)c

In each case, find numbers that show the rule is invalid.

183.15. Solve the following inequalities:

(a) |2x− 18| ≤ 22 (b) |14− x| < 6

(c) |x− 6| > 19 (d) |2− x| ≥ 1

183.16. Verify that the following is true for arbitrary integers a, b and c: (a)
|a2| = a2 (b) |a|2 = a2 (c) |ab| = |a| |b| (d) |a + b| ≤ |a| + |b| (e) |a − b| ≤
|a|+ |b| (f) |a+b−c| ≤ |a|+ |b|+ |c| (g) |a| ≤ |a−b|+ |b| (h) ||a|−|b|| ≤ |a−b|

183.17. Show that the inequalities (e)-(h) of Problem 183.17 follow once you
have (d) and the fact that |a| = | − a| for any integer a.

183.18. Write a little program in the computer language of your choice that
finds the largest integer that the language can represent. Hint: usually one of two
things happen if you try to set an integer variable to a value that is too large:
either you get an error message or the computer gives the variable a negative
value.
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184
Rational Numbers

The chief aim of all investigations of the external world should be
to discover the rational order and harmony which has been imposed
on it by God and which He revealed to us in the language of math-
ematics. (Kepler)

184.1 Introduction

We learn in school that a rational number r is a number of the form r =
p
q = p/q, where p and q are integers with q 6= 0. Such numbers are also
refereed to as fractions or ratios or quotients. We call p the numerator and q
the denominator of the fraction or ratio. We know that p1 = p, and thus the
rational numbers include the integers. A basic motivation for the invention
of rational numbers is that with them we can solve equations of the form

qx = p

with p and q 6= 0 integers. The solution is x = p
q . In the Dinner Soup model

we met the equation 15x = 10 of this form with solution x = 10
15 = 2

3 .
Clearly, we could not solve the equation 15x = 10 if x was restricted to
be a natural number, so you and your roommate should be happy to have
access to the rational numbers.
If the natural number m is a factor of the natural number n so that

n = pm with p a natural number, then p = n
m , in which case thus n

m is
a natural number. If division of n by m leaves a non-zero remainder r, so
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that n = pm+ r with 0 < r < m, then n
m = p+ r

m , which is not a natural
number.

184.2 How to Construct the Rational Numbers

Suppose now that your roommate has an unusual background and has never
heard about rational numbers, but fortunately is very familiar with integers
and is more than willing to learn new things. How could you quickly explain
to her/him what rational numbers are and how to compute with them? In
other words, how could you convey how to construct rational numbers from
integers, and how to add, subtract, multiply and divide rational numbers?
One possibility would be to simply say that x = p

q is “that thing” which
solves the equation qx = p, with p and q 6= 0 integers. For example, a quick
way to convey the meaning of 1

2 would be to say that it is the solution
of the equation 2x = 1, that is 1

2 is the quantity which when multiplied
by 2 gives 1. We would then use the notation x = p

q to indicate that the
numerator p is the right hand side and the denominator q is the factor on
the left hand side in the equation qx = p. We could equally well think of
x = p

q as a pair, or more precisely as an ordered pair x = (p, q) with a first
component p and a second component q representing the right hand side
and the left hand side factor of the equation qx = p respectively. Note that
the notation p

q is nothing but an alternative way of ordering the pair of
integers p and q with an “upper” p and a “lower” q; the horizontal bar in
p
q separating p and q is just a counterpart of the comma separating p and

q in (p, q).
We could now directly identify some of these pairs (p, q) or “new things”

with already known objects. Namely, a pair (p, q) with q = 1 would be
identified with the integer p since in this case the equation is 1x = p with
solution x = p. We could thus write (p, 1) = p corresponding to writing
p
1 = p, as we are used to do.
Suppose now you would like to teach your roommate how to operate with

rational numbers using the rules that are familiar to us who know about
rational numbers, once you have conveyed the idea that a rational number
is an ordered pair (p, q) with p and q 6= 0 integers. We could seek inspiration
from the construction of the rational number (p, q) = p

q as that thing which
solves the equation qx = p with p and q 6= 0 integers. For example, suppose
we want to figure out how to multiply the rational number x = (p, q) = p

q

with the rational number y = (r, s) = r
s . We then start from the defining

equations qx = p and sy = r. Multiplying both sides, using the fact that
xs = sx so that qxsy = qsxy = qs(xy), we find that

qs(xy) = pr,
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from which we conclude that

xy = (pr, qs) =
pr

qs
,

since z = xy visibly solves the equation qsz = pr. We thus conclude the
familiar rule

xy =
p

q
× r

s
=
pr

qs
or (p, q)× (r, s) = (pr, qs), (184.1)

which says that numerators and denominators are multiplied separately.
Similarly to get a clue how to add two rational numbers x = (p, q) = p

q

and y = (r, s) = r
s , we again start from the defining equations qx = p and

sy = r. Multiplying both sides of qx = p by s, and both sides of sy = r by
q, we find qsx = ps and qsy = qr. From these equations and the fact that
for integers qs(x+ y) = qsx+ qsy, we find that

qs(x+ y) = ps+ qr,

which suggests that

x+ y =
p

q
+
r

s
=
ps+ qr

qs
or (p, q) + (r, s) = (ps+ qr, qs). (184.2)

This gives the familiar way of adding rational numbers by using a common
denominator.
We further note that for s 6= 0, qx = p if and only if sqx = sp, (see

Problem 183.5). Since the two equations qx = p and sqx = sp have the
same solution x,

p

q
= x =

sp

sq
or (p, q) = (sp, sq). (184.3)

This says that a common nonzero factor s in the numerator and the de-
nominator may be cancelled out or, vice versa introduced.
With inspiration from the above calculations, we may now define the ra-

tional numbers to be the ordered pairs (p, q) with p and q 6= 0 integers, and
we decide to write (p, q) = p

q . Inspired by (184.3), we define (p, q) = (sp, sq)

for s 6= 0, thus considering (p, q) and (sp, sq) to be (two representatives of)
one and the same rational number. For example, 6

4 = 3
2 .

We next define the operations of multiplication × and addition + of ra-
tional numbers by (184.1) and (184.2). We may further identify the rational
number (p, 1) with the integer p, since p solves the equation 1x = p. We can
thus view the rational numbers as an extension of the integers, in the same
way that the integers are an extension of the natural numbers. We note that
p+r = (p, 1)+(r, 1) = (p+r, 1) = p+r and pr = (p, 1)×(r, 1) = (pr, 1) = pr,
and thus addition and multiplication of the rational numbers that can be
identified with integers is performed as before.
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We can also define division (p, q)/(r, s) of the rational number (p, q) by
the rational number (r, s) with r 6= 0, as the solution x of the equation
(r, s)x = (p, q). Since (r, s)(ps, qr) = (rps, sqr) = (p, q),

x = (p, q)/(r, s) =
(p, q)

(r, s)
= (ps, qr),

which we can also write as
p
q
r
s

=
ps

qr
.

Finally, we may order the rational numbers as follows. We define the ratio-
nal number (p, q) (with q 6= 0) to be positive, writing (p, q) > 0 whenever
p and q have the same sign, and for two rational numbers (p, q) and (r, s)
we write (p, q) < (r, s) whenever (r, s) − (p, q) > 0. Note the difference
can be computed as (r, s) − (p, q) = (qr − sp, sq) because −(p, q) is just a
convenient notation for (−p, q). Note also that −(p, q) = (−p, q) = (p,−q),
which we recognize as

−p
q
=

−p
q

=
p

−q .

The absolute value |r| of a rational number r = (p, q) = p
q is defined as

for natural numbers by

|r| =
{
r if r ≥ 0,
−r if r < 0.

(184.4)

where as above −r = −(p, q) = − p
q = −p

q = p
−q .

We can now verify all the familiar rules for computing with rational
numbers by using the rules for integers already established.
Of course we use xn with x rational and n a natural number to denote

the product of n factors x. We also write

x−n =
1

xn

for natural numbers n and x 6= 0. Defining x0 = 1 for x rational, we have
defined xn for x rational n integer, with x 6= 0 if n < 0.
We finally check that we can indeed solve equations of the form qx = p,

or (q, 1)x = (p, 1), with q 6= 0 and p integers. The solution is x = (p, q)
since (q, 1)(p, q) = (qp, q) = (p, 1).
So we have constructed the rational numbers from the integers in the

sense that we view each rational number p
q as an ordered pair (p, q) of

integers p and q 6= 0 and we have specified how to compute with rational
numbers using the rules for computing with integers.
We note that any quantity computed using addition, subtraction, mul-

tiplication, and division of rational numbers (avoiding division by zero)
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always produces another rational number. In the language of mathemati-
cians, the set of rational numbers is “closed” under arithmetic operations,
since these operations do not lead out of the set. Hopefully, your (receptive)
roommate will now be satisfied.

184.3 On the Need for Rational Numbers

The need of using rational numbers is made clear in early school years. The
integers alone are too crude an instrument and we need fractions to reach
a satisfactory precision. One motivation comes from our daily experience
with measuring quantities of various sorts. When creating a set of standards
for measuring quantities, such as the English foot-pound system or the
metric system, we choose some arbitrary quantities to mark as the unit
measurement. For example, the meter or the yard for distance, the pound
or the kilogram for weight, the minute or second for time. We measure
everything in reference to these units. But rarely does a quantity measure
out to be an even number of units and so we are forced to deal with fractions
of the units. The only possible way to avoid this would be to pick extremely
small units (like the Italian lire), but this is impractical. We even give
names to some particular units of fractions; centimeters are 1/100 of meters,
millimeters are 1/1000 of a meter, inches are 1/12 of foot, ounces are 1/16
of a pound, and so on.
Consider the problem of adding 76 cm to 5 m. We do this by changing

the meters into centimeters, 5 m = 500 cm, then adding to get 576 cm.
But this is the same thing as finding a common denominator for the two
distances in terms of a centimeter, i.e. 1/100 of a meter, and adding the
result.

184.4 Decimal Expansions of Rational Numbers

The most useful way to represent a rational number is in the form of a
decimal expansion, such as 1/2 = 0.5, 5/2 = 2.5, and 5/4 = 1.25. In
general, a finite decimal expansion is a number of the form

± pmpm−1 · · · p2p1p0.q1q2 · · · qn, (184.5)

where the digits pm, pm−1, .., p0, q0, .., qn are each equal to one of the
natural numbers {0, 1, · · · , 9} while m and n are natural numbers. The
decimal expansion (184.5) is a shorthand notation for the number

± pm10m + pm−110
m−1 + · · ·+ p110

1 + p010
0

+ q110
−1 + · · ·+ qn−110

−(n−1) + qn10
−n.
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For example

432.576 = 4× 102 + 3× 101 + 2× 100 + 5× 10−1 + 7× 10−2 + 6× 10−3.

The integer part of the decimal number (184.5) is pmpm−1 · · · p1p0, while
the decimal or fractional part is 0.q1q2 · · · qn. For example, 432.576 = 432+
0.576.
The decimal expansion is computed by continuing the long division algo-

rithm “past” the decimal point rather than stopping when the remainder
is found. We illustrate in Fig. 184.1.

40 1902.000
160

302
280

22.0
20.0

2.00
2.00

.00

47.55

FIGURE 184.1. Using long division to obtain a decimal expansion.

A finite decimal expansion is necessarily a rational number because it
is a sum of rational numbers. This can also be understood by writing
pmpm−1 · · · p1p0.q1q2 · · · qn as the quotient of the integers:

pmpm−1 · · · p1p0.q1q2 · · · qn =
pmpm−1 · · · p1p0.q1q2 · · · qn

10n
,

like 432.576 = 432576/103.

184.5 Periodic Decimal Expansions of Rational
Numbers

Computing decimal expansions of rational numbers using long division
leads immediately to an interesting observation: some decimal expansions
do not “stop”. In other words, some decimal expansions are never-ending,
that is contain an infinite number of nonzero decimal digits. For exam-
ple, the solution to the equation 15x = 10 in the Dinner Soup model is
x = 2/3 = .666 · · · . Further, 10/9 = 1.11111 · · · , as displayed in Fig. 184.2.
The word “infinite” is here to indicate that the decimal expansion contin-
ues without ever stopping. We can find many examples of infinite decimal
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9 10.0000...
9
1.0

.9

.10

.09

.010

.009

.0010

1.1111...

FIGURE 184.2. The decimal expansion of 10/9 never stops.

expansions:

1

3
= .3333333333 · · ·

2

11
= .18181818181818 · · ·

4

7
= .571428571428571428571428 · · ·

We conclude that the system of rational numbers p
q with p and q 6= 0

integers, and the decimal system, don’t fit completely. To express certain
rational numbers decimally is impossible with only a finite number of dec-
imals, unless we are prepared to accept some imprecision.
We note that in all the above examples of infinite decimal expansions,

the digits in the decimal expansion begin to repeat after some point. The
digits in 10/9 and 1/3 repeat in each entry, the digits in 2/11 repeat after
every two entries, and the digits in 4/7 repeat after every six entries. We
say that these decimal expansions are periodic.
In fact, if we consider the process of long division in computing the

decimal expansion of p/q, then we realize that the decimal expansion of any
rational number must either be finite (if the remainder eventually becomes
zero), or periodic (if the remainder is never zero). To see that these are the
only alternatives, we assume that the expansion is not finite. At every stage
in the division process the remainder will then be nonzero, and disregarding
the decimal point, the remainder will correspond to a natural number r
satisfying 0 < r < q. In other words, remainders can take at most q − 1
different forms. Continuing long division at most q steps must thus leave a
remainder, whose digits have come up at least once before. But after that
first repetition of remainder, the subsequent remainders will repeat in the
same way and thus the decimal expansion will eventually be periodic.
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The periodic pattern of a rational number may take a long time to begin
repeating. We give an example:

1043

439
= 2.37585421412300683371298405466970387243735763097

94988610478359908883826879271070615034168564920

27334851936218678815489749430523917995444191343

96355353075170842824601366742596810933940774487

4715261958997722095671981776765 37585421412300

68337129840546697038724373576309794988610478359

90888382687927107061503416856492027334851936218

67881548974943052391799544419134396355353075170

84282460136674259681093394077448747152619589977

22095671981776765 · · ·

Once a periodic pattern of the decimal expansion of a rational number
has developed, then we may consider the complete decimal expansion to
be known in the sense that we can give the value of any decimal of the
expansion without having to continue the long division algorithm to that
decimal. For example, we are sure that the 231th digit of 10/9 = 1.111 · · ·
is 1, and the 103th digit of .56565656 · · · is 5.
A rational number with an infinite decimal expansion cannot be exactly

represented using a finite decimal expansion. We now seek to consider the
error committed by truncating an infinite periodic expansion to a finite
one. Of course, the error must be equal to the number corresponding to
the decimals left out by truncating to a finite expansion. For example,
truncating after 3 decimals, we would have

10

9
= 1.111 + 0.0001111 · · · ,

with the error equal to 0.0001111 · · · , which certainly must be less than
10−3. Similarly, truncating after n decimals, the error would be less than
10−n.
However, since this discussion directly involves the infinite decimal ex-

pansion left out by truncation, and since we have so far not specified how
to operate with infinite decimal expansions, let us approach the problem
from a somewhat different angle. Denoting the decimal expansion of 10/9
truncated after n decimals by 1.1 · · · 1n (that is with n decimals equal to 1
after the point), we have

1.11 · · · 11n = 1+ 10−1 + 10−2 + · · ·+ 10−n+1 + 10−n.
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Computing the sum on the right hand side using the formula (??) for a
geometric sum, we have

1.11 · · ·11n =
1− 10−n−1

1− 0.1
=

10

9
(1− 10−n−1), (184.6)

and thus
10

9
= 1.11 · · ·11n +

10−n

9
. (184.7)

The error committed by truncation is thus 10−n/9, which we can bound by
10−n to simplify. The error 10−n/9 will get as small as we please by taking
n large enough, and thus we can make 1.11 · · ·11n as close as we like to
10/9 by taking n large enough. This leads us to interpreting

10

9
= 1.11111111 · · ·

as meaning that we can make the numbers 1.111 · · ·1n as close as we like
to 10/9 by taking n large. In particular, we would have

|10
9

− 1.11 · · ·11n| ≤ 10−n.

Taking sufficiently many decimals in the never ending decimal expansion
of 10

9 makes the error smaller than any given positive number.
We give another example before considering the general case. Computing

we find that 2/11 = .1818181818 · · · . Taking the first m pairs of the digits
18, we get

.1818 · · ·18m =
18

100
+

18

10000
+

18

1000000
+ · · ·+ 18

102m

=
18

100

(
1 +

1

100
+

1

1002
+ · · ·+ 1

100m−1

)

=
18

100

1− (100−1)m

1− 100−1
=

18

100

100

99
(1 − 100−m)

=
2

11
(1− 100−m).

that is
2

11
= 0.1818 · · ·18m +

2

11
100−m,

so that

| 2
11

− 0.1818 · · ·18m| ≤ 100−m.

We thus interpret 2/11 = .1818181818 · · · as meaning that we can make the
numbers .1818 · · ·18m as close as we like to 2/11 by taking m sufficiently
large.
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We now consider the general case of an infinite periodic decimal expan-
sion of the form

p = .q1q2 · · · qnq1q2 · · · qnq1q2 · · · qn · · · ,

where each period consists of the n digits q1 · · · qn. Truncating the decimal
expansion after m periods, we get using (??), as

pm =
q1q2 · · · qn

10n
+
q1q2 · · · qn

10n2
+ · · ·+ q1q2 · · · qn

10nm

=
q1q2 · · · qn

10n

(
1 +

1

10n
+

1

(10n)2
+ · · ·+ 1

(10n)m−1

)

=
q1q2 · · · qn

10n
1− (10−n)m

1− 10−n
=
q1q2 · · · qn
10n − 1

(
1− (10−n)m

)
,

that is
q1q2 · · · qn
10n − 1

= pm +
q1q2 · · · qn
10n − 1

10−nm,

so that
|q1q2 · · · qn
10n − 1

− pm| ≤ 10−nm.

We conclude that we may interpret

p =
q1q2 · · · qn
10n − 1

to mean that the difference between the truncated decimal expansion pm of
p and q1q2 · · · qn/(10n − 1) can be made smaller than any positive number
by taking the number of periods m large enough, that is by taking more
digits of p into account. Thus, we may view p to be equal to a rational
number, namely p = q1q2 · · · qn/(10n − 1).

Example 184.1. 0.123123123 · · · is the same as the rational number
123
99 , and 4.121212 · · · is the same as 4 + 12

9 = 4×9+12
9 = 48

9 .

We conclude that each infinite periodic decimal expansion may be con-
sidered to be equal to a rational number, and vice versa. We may thus
summarize the discussion in this section as the following fundamental the-
orem.

Theorem 184.1 The decimal expansion of a rational number is periodic.
A periodic decimal expansion is equal to a rational number.

184.6 Set Notation

We have already encountered several examples of sets, for example the
set {1, 2, 3, 4, 5} of the first 5 natural numbers, and the (infinite) set N =
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{1, 2, 3, 4, · · · } of all (possible) natural numbers. A set is defined by its
elements. For example, the set A = {1, 2, 3, 4, 5} consists of the elements
1, 2, 3, 4 and 5. To denote that an object is an element of a set we use the
symbol ∈, for example 4 ∈ A. We further have that 7 ∈ N but 7 /∈ A.
To define a set we have to somehow specify its elements. In the two given
examples we could accomplish this by simply listing its elements within
the embracing set indicators { and }. As we encounter more complicated
sets we have to somewhat develop our notation. One convenient way is to
specify the elements of a set through some relevant property. For example
A = {n ∈ N : n ≤ 5}, to be interpreted as “the set of natural numbers
n such that n ≤ 5”. For another example, the set of odd natural numbers
could be specified as {n ∈ N : n odd} or {n ∈ N : n = 2j − 1 for some j ∈
N}. The colon : is here interpreted as “such as”.
Given sets A and B, we may construct several new sets. In particular,

we denote by A∪B the union of A and B consisting of all elements which
belong to at least one of the sets A and B, and by A∩B the intersection of
A and B consisting of all elements which belong to both A and B. Further
A\B denotes the set of elements in A which do not belong to B, which may
be interpreted as “subtracting” B (or rather B ∪A) from A, see Fig. 184.3

FIGURE 184.3. The sets A ∪B, A ∩B and A\B.

We further denote by A×B the product set of A and B which is the set
of all possible ordered pairs (a, b) where a ∈ A and b ∈ B.

Example 184.2. If A = {1, 2, 3} and B = {3, 4}, then A ∪ B =
{1, 2, 3, 4},A∩B = {3},A\B = {1, 2} andA×B = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3),
(3, 4)}.

184.7 The Set Q of All Rational Numbers

It is common to use Q to denote the set of all possible rational numbers,
that is, the set of numbers x of the form x = p/q = (p, q), where p and q 6= 0
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are integers. We often omit the “possible” and just say that Q denotes the
set of rational numbers, which we can write as

Q =

{
x =

p

q
: p, q ∈ Z, q 6= 0

}
.

We can also describe Q as the set of finite or periodic decimal expansions.

184.8 The Rational Number Line and Intervals

Recall that we represent the integers using the integer number line, which
consists of a line on which we mark regularly spaced points. We can also use
a line to represent the rational numbers. We begin with the integer number
line and then add the rational numbers that have one decimal place:

− · · · ,−1,−.9,−.8, · · · ,−.1, 0, .1, .2, · · · , .9, 1, · · · .

Then we add the rational numbers that have two decimal places:

− · · · ,−.99,−.98, · · · ,−.01, 0, .01, .02, · · · , 98, .99, 1, · · · .

Then onto the rational numbers with 3, 4, · · · decimal places. We illustrate
in Fig. 184.4.

 

 

 

 

 

 

−4

−4

−4

−3

−3

−3

−2

−2

−2

−1

−1

−1

−0

−0

−0

1

1

1

2

2

2

3

3

3

4

4

4

FIGURE 184.4. Filling in the rational number line between −4 and 4 starting
with integers, rationals with one digit, and rationals with two digits, and so on.

We see that there are quickly so many points to plot that the number
line looks completely solid. A solid line would mean that every number
is rational, something we discuss later. But in any case, a drawing of a
number line appears solid. We call this the rational number line.
For given rational numbers a and b with a ≤ b we say that the rational

numbers x such that a ≤ x ≤ b is a closed interval and we denote the
interval by [a, b]. We also write

[a, b] = {x ∈ Q : a ≤ x ≤ b}
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The points a and b are called the endpoints of the interval. Similarly we
define open (a, b) and half-open intervals [a, b) and (a, b] by

(a, b) = {x ∈ Q : a < x < b},

[a, b) = {x ∈ Q : a ≤ x < b}, and (a, b] = {x ∈ Q : a < x ≤ b}.
In an analogous way, we write all the rational numbers larger than a number
a as

(a,∞) = {x ∈ Q : a < x} and [a,∞) = {x ∈ Q : a ≤ x}.
We write the set of numbers less than a in a similar way. We also represent
intervals graphically by marking the points on the rational line segment,
as we show in Fig. 184.5. Note how we use an open circle or a closed circle
to mark the endpoints of open and closed intervals.

.5 2

.5 < x < 2

.3 .4

.3 £ x < .4

-8 4

-8 < x £ 4

.45 3

.45 £ x £ 3

FIGURE 184.5. Various rational line intervals.

184.9 Growth of Bacteria

We now present a model from biology related to population dynamics re-
quiring the use of rational numbers.
Certain bacteria cannot produce some of the amino acids they need for

the production of protein and cell reproduction. When such bacteria are
cultured in growth media containing sufficient amino acids, then the popu-
lation doubles in size at a regular time interval, say on the order of an hour.
If P0 is the initial population at the current time and Pn is the population
after n hours, then we have

Pn = 2Pn−1 (184.8)

for n ≥ 1. This model is similar to the model (??) we used to describe
the insect population in Model ??. If the bacteria can keep growing in this
way, then we know from that model that Pn = 2nP0. However if there is
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a limited amount of amino acid, then the bacteria begin to compete for
the resource. As a result, the population will no longer double every hour.
The question is what happens to the bacteria population as time increases?
Does it keep increasing, does it decrease to zero (die out), or does it tend
to some constant value for example?
To model this, we allow the proportionality factor 2 in (184.8) to vary

with the population in such a way that it decreases as the population
increases. For example, we assume there is a constant K > 0 such that the
population at hour n satisfies

Pn =
2

1 + Pn−1/K
Pn−1. (184.9)

With this choice, the proportionality factor 2/(1 + Pn−1/K) is always less
than 2 and clearly decreases as Pn−1 increases. We emphasize that there
are many other functions that have this behavior. The right choice is the
one that gives results that match experimental data from the laboratory.
It turns out that the choice we have made does fit experimental data well
and (184.9) has been used as a model not only for bacteria but also for
certain human populations as well as for fisheries.
We now seek a formula expressing how Pn depends on n. We define

Qn = 1/Pn, then (184.9) implies (check this!) that

Qn =
Qn−1

2
+

1

2K
.

Now we use induction as we did for the insect model:

Qn =
1

2
Qn−1 +

1

2K

=
1

22
Qn−2 +

1

2K
+

1

4K

=
1

23
Qn−3 +

1

2K
+

1

4K

1

8K
...

=
1

2n
Q0 +

1

2K

(
1 +

1

2
+ · · ·+ 1

2n−1

)

With each hour that passes, we add another term onto the sum giving Qn
while we want to figure out what happens to Qn as n increases. Using the
formula for the sum of the geometric series (??), which turns out to hold
for the sum of rational numbers as well as for integers, we find

Pn =
1

Qn
=

1
1
2nQ0 +

1
K

(
1− 1

2n

) . (184.10)
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184.10 Chemical Equilibrium

The solubility of ionic precipitates is an important issue in analytical chem-
istry. For the equilibrium

A x B y ⇋ xA y+ + yB x− (184.11)

for a saturated solution of slightly soluble strong electrolytes, the solubility
product constant is given by

Ksp = [A y+]x[ B x−]y. (184.12)

The solubility product constant is useful for predicting whether or not a
precipitate can form in a given set of conditions and the solubility of an
electrolyte for example.
We will use it to determine the solubility of Ba(IO 3 ) 2 in a .020 mole/liter

solution of KIO 3 :

Ba(IO 3 ) 2 ⇋ Ba 2+ + 2 IO−
3

given that the Ksp for Ba(IO 3 ) 2 is 1.57 × 10−9. We let S denote the
solubility of Ba(IO 3 ) 2. By a mass law, we know that S = [Ba 2+] while
iodate ions come from both the KIO 3 and the Ba(IO 3 ) 2. The total iodate
concentration is the sum of these contributions,

[ IO−
3 ] = (.02 + 2S).

Substituting these into (184.12), we get the equation

S (.02 + 2S)2 = 1.57× 10−9. (184.13)

Chapter 184 Problems

184.1. Explain to your roommate what rational numbers are and how to ma-
nipulate them. Change roles in this game.

184.2. Prove the commutative, associative and distributive law for rational
numbers.

184.3. Verify the commutative and distributive rules for addition and multiplica-
tion of rational numbers from the given definitions of addition and multiplication.

184.4. Using the usual definitions for multiplication and additions of rational
numbers show that if r, s and t are rational numbers, then r(s+ t) = rs+ rt.
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184.5. Determine the set of x satisfying the following inequalities:

(a) |3x − 4| ≤ 1 (b) |2− 5x| < 6

(c) |14x − 6| > 7 (d) |2− 8x| ≥ 3

184.6. Verify that for rational numbers r, s, and t

|s − t| ≤ |s|+ |t|, (184.14)

|s − t| ≤ |s− u|+ |t− u|, (184.15)

and
|st| = |s| |t|. (184.16)

184.7. A person running on a large ship runs 8.8 feet/second while heading
toward the bow while the ship is moving at 16 miles/hour. What is the speed
of the runner relative to a stationary observer? Interpret the computation giving
the solution as finding a common denominator.

184.8. Compute decimal expansions for (a) 3/7, (b) 2/13, and (c) 5/17.

184.9. Compute decimal expansions for (a) 432/125 and (b) 47.8/80.

184.10. Find rational numbers corresponding to the decimal expansions

(a) 42424242 · · · , (b) .881188118811 · · · , and (c) .4290542905 · · · .

184.11. Represent the following sets as parts of the rational number line:

(a) {x ∈ Q : −3 < x}
(b) {x ∈ Q : −1 < x ≤ 2 and 0 < x < 4}
(c) {x ∈ Q : −1 ≤ x ≤ 3 or − 2 < x < 2}
(d) {x ∈ Q : x ≤ 1 or x > 2}.

184.12. Find an equation for the number of milligrams of Ba(IO 3)2 that can
be dissolved in 150 ml of water at 25◦ C with Ksp = 1.57 × 10−9 moles2/liter3.
The reaction is

Ba(IO 3 ) 2 ⇋ Ba 2+ + 2 IO−
3

184.13. You invest some money in a bond that yields 9% interest each year.

Assuming that you invest any money you make from interest in more bonds for

an initial investment of $C0, write down a model giving the amount of money you

have after n years. View the growth of your capital with n using MATLAB c© for
example.



This is page 1001
Printer: Opaque this

185
What is a Function?

He who loves practice without theory is like the sailor who boards
ship without rudder and compass and never knows where he may
cast. (Leonardo da Vinci)

All Bibles or sacred codes have been the causes of the following
Errors:
1. That Man has two real existing principles, Viz: a Body & a Soul.
2. That Energy, call’d Evil, is alone from the Body; & that Reason,
call’d Good, is alone from the Soul.
3. That God will torment Man in Eternity for following his Energies.
But the following Contraries to these are True:
1. Man has no Body distinct from his Soul; for that call’d Body is a
portion of Soul discern’d by the five Senses, the chief inlets of Soul
in this age.
2. Energy is the only life and is from the Body: and Reason is the
bound or outward circumference of Energy.
3. Energy is Eternal Delight. (William Blake 1757-1827)

185.1 Introduction

The concept of a function is fundamental in mathematics. We already met
this concept in the context of the Dinner Soup model, where the total cost
was 15x (dollars) if the amount of beef was x (pounds). For every amount
of beef x, there is a corresponding total cost 15x. We say that the total
cost 15x is a function of, or depends on, the amount of beef x.
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The term function and the mathematical notation we use today was
introduced by Leibniz (1646-1716), who said that f(x), which reads “f of
x”, is a function of x if for each value of x in some prescribed set of values
over which x can vary, there is assigned a unique value f(x). In the Dinner
Soup model f(x) = 15x. It is helpful to think of x as the input, while f(x)
is the corresponding output, so that as the value of x varies, the value of
f(x) varies according to the assignment. Correspondingly, we often write
x → f(x) to signify that x is mapped onto f(x). We also think of the
function f as a “machine” that transforms x into f(x):

x
f
→ f(x),

see also Fig. 185.1.

f

x
f(x)

Df Rf

FIGURE 185.1. Illustration of f : Df → Rf .

We refer to x as a variable since x can take different values, and x is
also called the argument of the function. The prescribed set of values over
which x can vary is called the domain of the function f and is denoted by
D(f). The set of values f(x) corresponding to the values of x in the domain
D(f), is called the range R(f) of f(x). As x varies over the domain D(f),
the corresponding function value f(x) varies over R(f). We often write this
symbolically as f : D(f) → R(f) indicating that for each x ∈ D(f) there
is a value f(x) ∈ R(f) assigned.
In the context of the Dinner Soup model with f(x) = 15x, we may choose

D(f) = [0, 1], if we decide that the amount of beef x can vary in the interval
[0, 1], in which case R(f) = [0, 15]. For each amount x of beef in the interval
[0, 1], there is a corresponding total cost f(x) = 15x in the interval [0, 15].
Again: the total cost 15x is a function of the amount of beef x. We may
also choose the domain D(f) to be some other set of possible values of the
amount of beef x such as D(f) = [a, b], where a and b are positive rational
numbers, with the corresponding range R(f) = [15a, 15b], or D(f) = Q+

with the corresponding range R(f) = Q+, where Q+ is the set of positive
rational numbers. We may even consider the function x → f(x) = 15x
with D(f) = Q and the corresponding range R(f) = Q, which would lead
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outside the Dinner Soup model since there x is non-negative. For a given
assignment x→ f(x), that is, a given function f(x), we may thus associate
different domains D(f) and corresponding ranges R(f) depending on the
setting.
It is common to assign a variable name to the output of a function,

for example we may write y = f(x). Thus, the value of the variable y
is given by the value f(x) assigned to the variable x. We therefore call
x the independent variable and y the dependent variable. The independent
variable x takes on values in the domainD(f), while the dependent variable
y takes on values in the range R(f).
Note that the names we use for the independent variable and the depen-

dent variable for a given function f can be changed. The names x and y
are common, but there is nothing special about these letters. For example,
z = f(u) denotes the same function if we do not change f , i.e. the function
y = 15x can just as well be written z = 15u. In both cases, to a given
number x or u the function f assigns that number multiplied by 15, that
is 15x or 15u. Thus we refer to “the function f(x)” while in fact it would
be more correct to just say “the function f”, because f is the “name” of
the function, while f(x) is more like a description or definition of the func-
tion. Nevertheless we will often use the somewhat sloppy language “the
function f(x)” because it identifies both the name of the function and its
definition/description.

Example 185.1. The function x→ f(x) = x2, or in short the function
f(x) = x2, may be considered with domain D(f) = Q+ and range
R(f) = Q+, but also with domain D(f) = Q and again R(f) = Q+,
or with D(f) = Z, and R(f) = {0,±1,±2,±4, ...}. We illustrate in
Fig. 185.2.

−1 0 1 2 3 4 5 −1 0 1 2 3 4 5

Df Rf

f(x) = x2

FIGURE 185.2. Illustration of f : Q → Q+ with f(x) = x2.

Example 185.2. For the function f(z) = z + 3 we may choose, for
example, D(f) = N and R(f) = {4, 5, 6, ...}, or D(f) = Z and R(f) =
Z.

Example 185.3. We may consider the function f(n) = 2−n with
D(f) = N and R(f) = { 1

2 ,
1
4 ,

1
8 , ...}.
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Example 185.4. For the function x → f(x) = 1/x we may choose
D(f) = Q+ and R(f) = Q+. For any given x in Q+, the value f(x) =
1/x is in Q+, and thus R(f) is a subset of Q+. Correspondingly, for any
given y in Q+ there is an x in Q+ with y = 1/x, and thus R(f) = Q+,
that is R(f) fills up the whole of Q+.

While the domain D(f) of a function f(x) often is given by the context
or the nature of f(x), it is often difficult to exactly determine the corre-
sponding range R(f). We therefore often interpret f : D(f) → B to mean
that for each x in D(f) there is an assigned value f(x) that belongs to
the set B. The range R(f) is thus included in B, but the set B may be
bigger than R(f). This relieves us from figuring out exactly what set R(f)
is, which would be required to give f : D(f) → R(f) substance. We say
that f maps D(f) onto R(f) since every element of the set R(f) is of the
form f(x) for some x ∈ D(f), and writing f : D(f) → B we say that f
maps D(f) into the set B.
The notation f : D(f) → B then rather serves the purpose of describing

the nature or type of the function values f(x), than more precisely what
function values are assumed as x varies over D(f) For example, writing
f : D(f) → N indicates that the function values f(x) are natural numbers.
Below we will meet functions x → f(x), where the variable x does not
represent just a single number, but something more general like a pair of
numbers, and likewise f(x) may be a pair of numbers. Writing f : D(f) →
B with the proper sets D(f) and B, may contain the information that
x is a number and f(x) is pair of numbers. We will meet many concrete
examples below.

Example 185.5. The function f(x) = x2 satisfies f : Q → [0,∞)
with D(f) = Q and R(f) = [0,∞), but we can also write f : Q → Q,
indicating that x2 is a rational number if x is, see Fig. 185.2.

Example 185.6. The function

f(x) =
x3 − 4x2 + 1

(x − 4)(x− 2)(x+ 3)

is defined for all rational numbers x 6= 4, 2,−3, so it is natural to
define D(f) = {x ∈ Q, x 6= 4, x 6= 2, x 6= −3}. It is often the case
that we take the domain to be the largest set of numbers for which
a function is defined. The range is hard to compute, but certainly we
have f : D(f) → Q.

185.2 Functions in Daily Life

In daily life, we stumble over functions right and left. A car dealer assigns
a price f(x), which is a number, to each car x in his lot. Here D(f) may
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be a set of numbers if each car is identified by a number, or D(f) may be
some other listing of the cars such as {Chevy85blue, Olds93pink,...}, and
the range R(f) is the set of all different prices of the cars in D(f). When
the government makes out our tax bill, it is assigning one number f(x),
representing the amount we owe, to another number x, representing our
salary. Both the domain D(f) and the range R(f) in this example change
a lot depending on the political winds.
Any quantity which varies over time may be viewed as a function of time.

The daily maximum temperature in degrees Celsius in Stockholm during
1999 is a certain function f(x) of the day x of the year, with D(f) =
{1, 2, ...., 365} and R(f) normally a subset of [−30, 30]. The price f(x) of
a stock during one day of trade at the Stockholm Stock Exchange is a
function of the time x of the day, with D(f) = [10.00, 17.00] and R(f) the
range of variation of the stock price during the day. The length of women’s
skirts varies over the years around the level of the knee, and is supposed to
be a good indicator of the variation of the economical climate. The length
of a human being varies over the life time, and the thickness of the ozone
layer over years.
We may also simultaneously consider several quantities depending on

time, like for example the temperature t(x) in degrees Celsius and wind
velocity w(x) in meter per second in Chicago as functions of time x, where
x ranges over the month of January, and we may combine the two values
t(x) and w(x) into a pair of numbers “t(x) and w(x)”, which we may write
as f(x) = “t(x) and w(x)” or in short-hand f(x) = (t(x), w(x)) with the
parenthesis enclosing the pair. For example writing, f(10) = (−30, 20),
would give the information that the 10th of January was a tough day with
temperature −30◦C and wind 20 meter per second. From this information
we could compute the adjusted temperature -50◦C that day taking the
wind factor into account.
Likewise the input variable x could represent a pair of numbers, like

a temperature and a wind speed and the output could be the adjusted
temperature with the wind factor taken into account (Find the formula!).
We conclude that the input x of a function f(x) may be of many different

types, single numbers, pairs of numbers, triples of numbers, et cetera, as
well as the output f(x).

Example 185.7. A book may consist of a set of pages numbered from 1
to N . We may introduce the function f(n) defined on D(f) = {1, 2, · · · ,
N}, with f(n) representing the physical page with number n. In this
case the range R(f) is the collection of pages of the book.

Example 185.8. A movie consists of a sequence of pictures that are
displayed at the rate of 16 pictures per second. We usually watch a
movie from the first to the last picture. Afterwards we might talk about
different scenes in the movie, which corresponds to subsets of the to-
tality of pictures. A very few people, like the film editor and director,
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might consider the movie on the level of the individual elements in the
domain, that is the pictures on the film. When editing the movie, they
number the picture frames 1, 2, 3, · · · , N where 1, 2, ...16 are the num-
bers of the pictures displayed sequentially during the first second, and
N is the number of the last picture. We may then consider the movie
as a function f(n) with D(f) = {1, 2, · · · , N}, which to each number n
in D(f) associates the picture frame with number n.

Example 185.9. A telephone directory of the people living in a city
like Göteborg is simply a printed version of the function f(x) that to
each person x in Göteborg with a listed number, assigns a telephone
number. For example, if x =Anders Andersson then f(x) = 4631123456
which is the telephone number of Anders Andersson. If we have to find
a telephone listing, our thought is first to get the telephone book, that
is the printed representation of the entire domain and range of the
function f , and then to determine the image, i.e. telephone number, of
an individual in the domain. In this example, we arrange the domain
of individual names of people living in Göteborg in such a way that
it is easy to search for a particular input. That is we list the individ-
uals alphabetically. We could use another arrangement, say by listing
individuals in order of their social security numbers.

Example 185.10. The 1890 census (population count) in the US was
performed using Herman Hollerith’s (1860-1829) punched card system,
where the data for each person (sex, age, address, et cetera) was en-
tered in the form of holes in certain positions on a dollar bill size card,
which could then be read automatically by a machine using a system
of pins connecting electrical circuits through the holes, see Fig. 185.3.
The total population was found to be 62.622.250 after a processing time
of three months with the Hollerith system instead of the projected 2
years. Evidently, we may view the Hollerith system as a function from
the set of all 1890 US citizens to the deck of punched cards. To further
exploit his system Hollerith founded the Tabulating Machine Company,
which was renamed International Business Machines Corporation IBM
in 1924.

There is one important aspect of all the three above examples, book,
movie and directory, not captured viewing these objects as certain func-
tions x → f(x) with a certain domain D(f) and range R(f), namely, the
ordering of D(f). The pages of a book, and pictures of a film are numbered
consecutively, and the domain of a directory is also ordered alphabetically.
In the case of a book or film the ordering helps to make sense out of the
material, and a dictionary without any order is almost useless. Of course,
swapping through films has become a part of the life-style of to-day, but
the risk of a loss of understanding is obvious. To be able to catch the main
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FIGURE 185.3. Hermann Hollerith, inventor of the punched card machine: “My
friend Dr. Billings one night at the pub suggested to me that there ought to
be some mechanical way of doing the census, something on the principle of the
Jacquard loom, whereby holes in a card regulate the pattern to be woven”.

idea or plot of a book or film as a whole it is necessary to read the pages or
view the pictures in order. The ordering helps us to get an overall meaning.
Similarly, it is useful to be able to catch the main properties of a func-

tion f(x), and this can sometimes be done by graphing or visualizing the
function using some suitable ordering of D(f). We now go into the topic of
graphing functions f(x) with D(f) and R(f) subsets of Q, of course with
the usual ordering of Q, and with the purpose of trying to grasp the nature
of a given function “as a whole”.

185.3 Graphing Functions of Integers

So far we have described a function both by listing all its values in a table
like the phone book and by giving a formula like f(n) = n2 and indicating
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the domain. It is also useful to have a picture of the behavior of a function,
or in other words, to represent a function geometrically. Graphing functions
is a way of visualizing a function so that we can grasp the nature of the
function “in one shot” or as one object. For example, we can describe the
function as increasing in this region and decreasing in this other region,
giving an idea of how it behaves without being specific.
We begin by describing the graphing of functions f : Z → Z. Recall that

integers are represented geometrically using the integer line. To describe
the input and output to a function f : Z → Z, we therefore need two
number lines so that we can mark the points in D(f) on one and the points
in R(f) on the other. A convenient way to arrange these two number lines
is to place them orthogonal to each other as in Fig. 185.4. If we mark
the points obtained by intersecting vertical lines through integer points on
the horizontal axis with the horizontal lines through integer points on the
vertical axis, we get a grid of points like that shown in Fig. 185.4. This is
called the integer coordinate plane. Each number line is called an axis of

0

FIGURE 185.4. The integer coordinate plane.

the coordinate plane while the intersection point of the two number lines
is called the origin and is denoted by 0.
As we saw, a function f : Z → Z can be represented by making a list with

the inputs placed side-by-side with the corresponding outputs. We show
such a table for f(n) = n2 in Fig. 185.5. We can represent such a table also
in the integer coordinate plane by marking only those points corresponding
to an entry in the table, i.e. marking each intersection point of the line
rising vertically from the input and the line extending horizontally from
the corresponding output. We draw the plot corresponding to f(n) = n2

in Fig. 185.5.

Example 185.11. In Fig. 185.6, we plot n, n2, and 2n along the
vertical axis with n = 1, 2, 3, .., 6 along the horizontal axis. The plot
suggests 2n grows more quickly than both n and n2 as n increases. In
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n f(n)

0
1

-1
2
-2

3
-3

0
1

1
4
4

9
9

4
-4

5
-5

16
16

25
25

6
-6

36
36 2 4-2-4

5

10

15

FIGURE 185.5. A tabular listing of f(n) = n2 and a graph of the points associ-
ated with the function f(n) = n2 with domain equal to the integers.

2 4 6

20

40

60

20

40

60

0

10

30

50

FIGURE 185.6. Plots of the functions N f(n) = n, �f(n) = n2, and •
f(n) = 2n with D(f) = N.
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Fig. 185.7, we plot n−1, n−2, and 2−n with n = 1, 2, .., 6, and we see
that 2−n decreases most rapidly and n−1 least rapidly. Compare these
results to Fig. 185.6.

2 4 6

.5

1

0

.25

.75

1 3 5

FIGURE 185.7. Plots of the functions N f(n) = n−1, � f(n) = n−2, and •
f(n) = 2−n with D(f) = N.

Instead of using a table to list the points for a function, we can represent
a point on the integer plane mathematically by means of an ordered pair of
numbers. To the point in the plane located at the intersection of the vertical
line passing through n on the horizontal axis and the horizontal line passing
through m on the vertical axis, we associate the pair of numbers (n,m).
These are the coordinates of the point. Using this notation, we can describe
the function f(n) = n2 as the set of ordered pairs

{(0, 0), (1, 1), (−1, 1), (2, 4), (−2, 4), (3, 9), (−3, 9), · · · }.

Note that we always associate the first number in the ordered pair with the
horizontal location of the point and the second number with the vertical
location. This is an arbitrary choice.
We can illustrate the idea of a function giving a transformation of its

domain into its range nicely using its graph. Consider Fig. 185.5. We start
at a point in the domain on the horizontal axis and follow a line straight
up to the point on the graph of the function. From this point, we follow
a line horizontally to the vertical axis. In other words, we can find the
output associated to a given input by tracing first a vertical line and then
a horizontal line.
Note also that for functions with D(f) = N or D(f) = Q it is only

possible to graph part of the function, simply because we cannot in practice
extend the natural or integer number line all the way to “infinity”. Of
course, a table representation of such a function must also be limited to
a finite range of argument values. Only a defining formula of the function
values, like f(n) = n2 (together with a specification of D(f)), can give the
full picture in this case.
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185.4 Graphing Functions of Rational Numbers

Now we consider plotting a function f : Q → Q. Following the lead of
functions of integers, we plot functions of rational numbers on the rational
coordinate plane which we construct by placing two rational number lines
called the axes at right angles and meeting at the origins and then marking
every point that has rational number coordinates. Of course considering
Fig. 184.4, such a plane will appear to be solid even if it is not solid. We
avoid plotting an example!
If we begin the plot of a function of rational numbers as above by writing

down a list of values, we realize immediately that graphing a function of
rational numbers is more complicated than graphing a function of integers.
When we compute values of a function of integers, we cannot compute all
the values because there are infinitely many integers. Instead we choose a
smallest and largest integer and compute the values of the functions for
those integers in between. For the same reason, we can not compute all
the values of a function defined on the rational numbers. But now we have
to cut off the list also in another way: we have to choose a smallest and
largest number for making the list as before, but we also have to decide
how many points to use in between the low and high values. In other
words, we cannot compute the values of the function at all the rational
numbers in between two rational numbers. This means that a list of values
of a function of rational numbers always has “gaps” in between the points
where we evaluate the function. We give an example to make this clear.

Example 185.12. We list some values of the function f(x) = 1
2x+ 1

2
defined on the rational numbers:

x 1
2x+ 1

2

−5 −2
−2.8 −.9
−2 −.5
−1.2 −.1
−1 0

x 1
2x+ 1

2

−.6 .2
.2 .6
1 1
3 2
5 3

and then plot the function values in Fig. 185.8.

The values we list for this example suggest strongly that we should draw
a straight line through the indicated points in order to plot the function.
However, we cannot be sure that this is the correct graph because there
are many functions that agree with 1

2x + 1
2 at the points we computed,

for example we show two of them in Fig. 185.8. Therefore, to graph a
function accurately, we would need to evaluate it at many more points
than we have used in Fig. 185.8 in general. On the other hand we cannot
possibly compute the values f(x) for all possible rational numbers x, so
that in the end we still have to guess the values of the function in between
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-3 -2 1 2 3

1

2

3

-2

-1

4 5-4-5 -1

FIGURE 185.8. A plot of the function values of f(x) = 1
2
x + 1

2
, and several

functions taking on the same values at the sample points.

the points we compute, assuming that the function does not do anything
strange there. Matlab for example fills the gaps between the computed
points with straight line segments when plotting.
Deciding whether or not we have evaluated a function defined on the

rational numbers enough times to be able to guess its behavior is an in-
teresting and important problem. This is not just a theoretical problem
by the way: if we have to measure some quantities during an experiment
that should theoretically lie on a line, we are very likely to get a plot of
a function that is close to a line, but that has little wiggles because of
experimental error.
In fact we are able to use Calculus to help with this decision. For now, we

will assume that the functions we plot vary smoothly between the sample
points, which is largely true for the functions we consider in this book.
We finish this chapter by giving another example of a plot. In the next

chapter, we spend a lot more time on plotting.

Example 185.13. We list some values of the function f(x) = x2

defined on the rational numbers:

x x2

−4 16
−3.5 12.25
−3.1 9.618
−2 4

−1.8 3.24
−1.4 1.96
−1 1

x x2

−.8 .64
−.4 .16

0 0
.2 .04
1.2 1.44
1.5 2.25

2.21 4.8841

x x2

2.3 5.29
2.4 5.76
3 9

3.1 9.61
3.6 12.96
3.7 13.69
4 16

and then plot the function values in Fig. 185.9.
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−4

−2

−2 2 4

7

16

FIGURE 185.9. A plot of some of the points given by f(x) = x2 and a smooth
curve that passes through the points.

185.5 A Function of Two Variables

We give an example of a function of two variables. The total cost in the
Dinner Soup/Ice Cream model was

15x+ 3y,

where x was the amount of beef and y that of ice cream. We may view the
total cost 15x + 3y as a function f(x, y) = 15x + 3y of the two variables
x and y. For each value of x and y there is a corresponding function value
f(x, y) = 15x+3y representing the total cost. We think here of both x and
y as independent variables which may vary freely, corresponding to any
combination of beef and ice cream, and the function value z = f(x, y) as a
dependent variable. For each pair of values of x and y there is assigned a
value of z = f(x, y) = 15x+3y. We may write (x, y) → f(x, y) = 15x+3y,
denoting the pair of x and y by (x, y).
This represents a very natural and very important extension of the con-

cept of a function considered so far: a function may depend on two indepen-
dent variables. Assuming that for the function f(x, y) = 15x+3y we allow
both x and y to vary over [0,∞), we will write f : [0,∞)× [0,∞) → [0,∞)
to denote that for each x ∈ [0,∞) and y ∈ [0,∞), that is for each pair
(x, y) ∈ [0,∞)× [0,∞), there is a unique value f(x, y) = 15x+3y ∈ [0,∞)
assigned.

Example 185.14. The prize your roommate has to pay for the x
pounds of beef and y pounds of ice cream is p = 15x + 3y, that is
p = f(x, y) where f(x, y) = 15x+ 3y.
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Example 185.15. The time t required for a certain bike trip depends
on the distance s of the trip, and on the (mean) speed v as s

v , that is
t = f(s, v) = s

v .

Example 185.16. The pressure p in an ideal (thin) gas mixture de-
pends on the temperature T and volume V occupied of the gas as
p = f(T, V ) = nRT

V , where n is the number of moles of gas molecules
and R is the universal gas constant.

185.6 Functions of Several Variables

Of course we may go further and consider functions depending on several
independent variables.

Example 185.17. Letting your roommate decide the amount of beef
x, carrots y and potatoes z in the Dinner Soup, the cost k of the soup
will be k = 8x + 2y + z depending on the three variables x, y and z.
The cost is thus given by k = f(x, y, z) where f(x, y, z) = 8x+ 2y + z.

Example 185.18. The temperature u at a certain position depends
on the three space coordinates x, y and z, as well as on time t, that is
u = u(x, y, z, t).

As we come to consider situations with more than just a few indepen-
dent variables, it soon becomes necessary to change notation and use some
kind of indexation of the variables like for example denoting the spacial
coordinates x, y and z instead by x1, x2 and x3. For example, we may then
write the function u in the last example as u(x, t) where x = (x1, x2, x3)
contains the three space coordinates.

Chapter 185 Problems

185.1. Identify four functions you encounter in your daily life and determine
the domain and range for each.

185.2. For the function f(x) = 4x − 2, determine the range corresponding to:
(a) D(f) = (−2, 4], (b) D(f) = (3,∞), (c) D(f) = {−3, 2, 6, 8}.

185.3. Given that f(x) = 2 − 13x, find the domain D(f) corresponding to the
range R(f) = [−1, 1] ∪ (2,∞).

185.4. Determine the domain and range of f(x) = x3/100 + 75 where f(x) is a
function giving the temperature inside an elevator holding x people and with a
maximum capacity of 9 people.
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185.5. Determine the domain and range of H(t) = 50 − t2 where H(t) is a
function giving the height in meters of a ball dropped at time t = 0.

185.6. Find the range of the function f(n) = 1/n2 defined on D(f) = {n ∈ N :
n ≥ 1}.

185.7. Find the domain and a set B containing the range of the function f(x) =
1/(1 + x2).

185.8. Find the domain of the functions

(a)
2− x

(x+ 2)x(x− 4)(x− 5)
(b)

x

4− x2
(c)

1

2x+ 1
+

x2

x− 8

185.9. (Harder) Consider the function f(n) defined on the natural numbers
where f(n) is the remainder obtained by dividing n by 5 using long division. So
for example, f(1) = 1, f(6) = 1, f(12) = 2, etc. Determine R(f).

185.10. Illustrate the map f : N → Q using two intervals where f(n) = 2−n.

185.11. Plot the following functions f : Z → Z after making a list of at least 5
values: (a) f(n) = 4− n, (b) f(n) = 2n− n2, (c) f(n) = (n+ 1)3.

185.12. Draw three different curves that pass through the points

(−2,−1), (−1,−.5), (0, .25), (1, 1.5), (3, 4).

185.13. Plot the functions; (a) 2−n, (b) 5−n, and (c) 10−n; defined on the
natural numbers n. Compare the plots.

185.14. Plot the function f(n) = 10
9
(1−10−n−1) defined on the natural numbers.

185.15. Plot the function f : Q → Q with f(x) = x3 after making a table of
values.

185.16. Write a MATLAB c© function that takes two rational arguments x
and y and returns their sum x+ y.

185.17. Write a MATLAB c© function that takes two arguments x and y
representing two velocities, and returns the time gained per kilometer by
raising the velocity from x to y.
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186
Polynomial functions

Sometimes he thought to himself, “Why?” and sometimes he
thought, “Wherefore?”, and sometimes he thought, “Inasmuch as
which?”. (Winnie-the Pooh)

He was one of the most original and independent of men and never
did anything or expressed himself like anybody else. The result was
that it was very difficult to take notes at his lectures so that we
had to trust mainly to Rankine’s text books. Occasionally in the
higher classes he would forget all about having to lecture and, after
waiting for ten minutes or so, we sent the janitor to tell him that
the class was waiting. He would come rushing into the door, taking
a volume of Rankine from the table, open it apparently at random,
see some formula or other and say it was wrong. He then went up to
the blackboard to prove this. He wrote on the board with his back
to us, talking to himself, and every now and then rubbed it all out
and said it was wrong. He would then start afresh on a new line, and
so on. Generally, towards the end of the lecture he would finish one
which he did not rub out and say that this proved Rankine was right
after all. (Rayleigh about Reynolds)

186.1 Introduction

We now proceed to study polynomial functions, which are fundamental in
Calculus and Linear Algebra. A polynomial function, or polynomial, f(x)
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has the form

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n, (186.1)

where a0, a1, · · · , an, are given rational numbers called the coefficients
and the variable x varies over some set of rational numbers. The value
of a polynomial function f(x) can be directly computed by adding and
multiplying rational numbers. The Dinner Soup function f(x) = 15x is an
example of a linear polynomial with n = 1, a0 = 0 and a1 = 15, and the
Muddy Yard function f(x) = x2 is an example of a quadratic function with
n = 2, a0 = a1 = 0, and a2 = 1.
If all the coefficients ai are zero, then f(x) = 0 for all x and we say that

f(x) is the zero polynomial. If n denotes the largest subscript with an 6= 0,
we say that the degree of f(x) is n. The simplest polynomials besides the
zero polynomial are the constant polynomials f(x) = a0 of degree 0. The
next simplest cases are the linear polynomials f(x) = a0 + a1x of degree 1
and quadratic polynomials f(x) = a0 + a1x + a2x

2 of degree 2 (assuming
a1 6= 0 respectively a2 6= 0), which we just gave examples of, and we
met a polynomial of degree 3 in the model of solubility of Ba(IO 3 ) 2 in
Proposition 184.10.
The polynomials are basic “building blocks” in the mathematics of func-

tions, and spending some effort understanding polynomials and learning
some facts about them will be very useful to us later on. Below we will meet
other functions such as the elementary functions including trigonometric
functions like sin(x) and the exponential function exp(x). The elementary
functions are all solutions of certain fundamental differential equations,
and evaluation of these functions requires solution of the corresponding
differential equation. Thus, these functions are not called elementary be-
cause they are elementary to evaluate, like a polynomial, but because they
satisfy fundamental “elementary” differential equations.
In the history of mathematics, there has been two grand attempts to

describe “general functions” in terms of (i) polynomial functions (power
series) or (ii) trigonometric functions (Fourier series). In the finite element
method of our time, general functions are described using piecewise polyno-
mials.
We start with linear and quadratic functions, before considering general

polynomial functions.

186.2 Linear Polynomials

We start with the linear polynomial y = f(x) = mx, where m is a rational
number. We write here m instead of a1 because this notation is often used.
We may choose D(f) = Q and if m 6= 0 then R(f) = Q because if y is any
rational number, then x = y/m inserted into f(x) = mx gives the value of
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f(x) = y. In other words the function f(x) = mx with m 6= 0 maps Q onto
Q.
One way to view the set of (x, y) that satisfy y = mx is to realize that

such (x, y) also satisfy y/x = m. Suppose that (x0, y0) and (x1, y1) are two
points satisfying y/x = m. If we draw a triangle with one corner at the
origin and with one side parallel to the x axis of length x0 and another
side parallel to the y axis of length y0 then draw the corresponding triangle
for the other point with sides of length x1 and y1, see Fig. 186.1, then the
condition

y0
x0

= m =
y1
x1

means that these two triangles are similar. In fact any point (x, y) satisfying
y/x = m must form a triangle similar to the triangle made by (x0, y0), see
Fig. 186.1. This means that such points lie on a line that passes through
the origin as indicated.

(x1,y1)

(x2,y2)

(x0,y0)

FIGURE 186.1. Points satisfying y = mx form similar triangles. In this figure,
m = 3/2.

In the language of architecture,m, or the ratio of y to x, is called the rise
over the run while mathematicians callm the slope of the line. If we imagine
standing on a straight road going up hill, then the slope tells how much
we have to climb for any horizontal distance we travel. In other words, the
larger the slope m, the steeper the line. By the way, if the slope is negative
then the line slopes downwards. We show some different lines in Fig. 186.2.
When the slope m = 0, then we get a horizontal line sitting on top of the
x axis. A vertical line on the other hand is the set of points (x, y) where
x = a for some constant a. Vertical lines do not have a well defined slope.
Using the slope to describe how a line increases or decreases does not

depend on the line passing through the origin. We can start at any point on
a line and ask how much the line rises or lowers if we move horizontally a
distance x, see Fig. 186.3. If the points are (x0, y0) and (x1, y1), then y1−y0
is the amount of “rise” corresponding to the “run” of x1 − x0. Hence the
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-2  2

y=2x

-4

-2

 

2

4

y=x/2

y=-x/3

y=-x

FIGURE 186.2. Examples of lines.

slope of the line through the points (x0, y0) and (x1, y1) is

m =
y1 − y0
x1 − x0

.

If (x, y) is any other point on the line, then we know that

y − y0
x− x0

= m =
y1 − y0
x1 − x0

or

(y − y0) = m(x− x0). (186.2)

This is called the point-slope equation for a line.

(x
0
,y

0
)

(x
1
,y

1
)

x
1

 - x
0

y
1

 - y
0

FIGURE 186.3. The slope of any line is determined by the amount of rise over
the amount of run between any two points on the line.
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Example 186.1. We find the equation of the line through (4,−5) and
(2, 3). The slope is

m =
3− (−5)

2− 4
= 4

and the line is y − 3 = 4(x− 2).

We can rewrite (186.2) to resemble (186.1) by multiplying out the terms
in (186.2) and solving for y. This yields the slope-intercept form:

y = mx+ b, (186.3)

with b = y1 −mx1. b is called the y-intercept of the line because the line
crosses the y axis at the point (0, b), i.e. at a height of b. The difference
between the graphs of y = mx and y = mx + b is simply that every point
on y = mx+b is translated vertically a distance of b from the corresponding
point on y = mx. In other words, we can graph y = mx+b by first graphing
y = mx and the moving the line vertically by an amount of b. We illustrate
in Fig. 186.4. When b > 0 we move the line up and when b < 0 we move

y=mx

y=mx+b

b

b

b

b

FIGURE 186.4. The graph of y = mx + b is found by translating the graph of
y = mx vertically by an amount b. In this case b > 0.

the
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line down. Evidently, we can find the slope-intercept form directly from
knowing two points.

Example 186.2. We find the slope-intercept form of the line through
(−3, 5) and (4, 1). The slope is

m =
5− 1

−3− 4
= −4

7
.

To compute the y-intercept, we substitute either point into the equation
y = − 4

7x+ b, for example,

5 = −4

7
×−3 + b

so b = 23/7 and y = − 4
7x+

23
7 .

The technique of translating a known graph can be very useful when
graphing. For example once we have plotted y = 4x, we can quickly plot
y = 4x− 12, y = 4x− 1

5 , y = 4x+ 1, and y = 4x+ 113.45 by translation.

186.3 Parallel Lines

We now draw a connection to the parallel axiom of Euclidean geometry,
which we discussed in chapter Euclid and Pythagoras. First, let y = mx+b1
and y = mx+ b2 be two lines with same slope m, but different y-intercepts
b1 and b2, so that the lines are not identical. These two lines cannot ever
cross, since there is no x for which mx + b1 = mx + b2, because b1 6= b2.
We conclude that two lines with the same slope are parallel in the sense of
Euclidean geometry.
On the other hand, if y = m1x+ b1 and y = m2x+ b2 are two lines with

different slopes m1 6= m2, then the two lines will cross, since we can solve
the equation m1x+b1 = m2x+b2 uniquely, to get x = (b1−b2)/(m2−m1).
We conclude that two lines corresponding to two linear polynomials y =
m1x+ b1 and y = m2x+ b2 are parallel if and only if m1 = m2.

Example 186.3. We find the equation of the line that is parallel to
the line through (2, 5) and (−11, 6) and passing through (1, 1). The
slope of the line must be m = (6 − 5)/(−11− 2) = −1/13. Therefore,
1 = −1/13× 1 + b or b = 14/13 and y = − 1

13x+ 14
13 .

Example 186.4. We can find the point of intersection between the line
y = 2x+3 and y = −7x−4 by setting 2x+3 = −7x−4. Adding 7x and
subtracting 3 from both sides 2x+3+ 7x− 3 = −7x− 4+ 7x− 3 gives
9x = −7 or x = −7/9. We can get the value of y from either equation,
y = 2x+ 3 = 2(−7

9 ) + 3 = 13
9 or y = −7x− 4 = −7(−7

9 )− 4 = 13
9 .
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186.4 Orthogonal Lines

Lets us next show that two lines corresponding to two linear polynomials
y = m1x + b1 and y = m2x + b2 are orthogonal, that is make an angle of
90◦ or 270◦, if and only if m1m2 = −1.
Since the values of b1 and b2 can be changed without changing the direc-

tions of the lines, it is sufficient to show that the statement is true for two
lines that pass through the origin. Assume now that the lines are orthogo-
nal. Then m1 and m2 must have different signs, since otherwise either both
of the lines are increasing or both are decreasing and then they cannot be
perpendicular. Now consider the triangles drawn in Fig. 186.5. The lines

θ1

θ2

m1

m2

Line 1

Line 2

FIGURE 186.5. Similar triangles defined by perpendicular lines with slope m1

and m2. The angles θ1 and θ2 add up to 90◦.

are perpendicular only if the angles θ1 and θ2 that the lines make with
the x axis add up to 90◦. This can happen only if the triangles drawn are
similar. This means that 1/|m1| = 1/|m2| or |m1| |m2| = 1. This shows the
result since m1 and m2 have opposite signs or m1m2 < 0.
Finally, assuming that m1m2 = −1 shows that the two triangles are

similar and the orthogonality follows.

Example 186.5. We find the equation of the line that is perpendicular
to the line through (2, 5) and (−11, 6) and passing through (1, 1). The
slope of the first line is m = (6 − 5)/(−11− 2) = −1/13, so the slope
of the line we compute is −1/(−1/13) = 13. Therefore, 1 = 13× 1 + b
or b = −12 and y = 13x− 12.

We will return to the topic of parallel and orthogonal lines in a little
wider setting in chapter Analytic geometry in Q2. In particular, the so far
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excluded cases with vertical or horizontal lines, will then be included in a
natural way.

186.5 Quadratic Polynomials

The general quadratic polynomial has the form

f(x) = a2x
2 + a1x+ a0

for constants a2, a1, and a0, where we assume a2 6= 0 (otherwise we go
back to the linear case).
We show how to plot such a function by using the idea of plotting lines

in the previous section starting with the simplest example of a quadratic
function

y = f(x) = x2.

The domain of f is the set of rational numbers while the range contains
some of the nonnegative rational numbers. We list some of the values here:

x x2

−2 4
−1 1
−.5 .25

x x2

−.25 .125
−.1 .01

0 0

x x2

.1 .01

.5 .25
1 1

x x2

2 4
3 9
4 16

-4 -3 -2 -1  1 2 3 4

-2

1

4

7

10

FIGURE 186.6. Plot of f(x) = x2. The function is decreasing for x < 0 and
increasing for x > 0.

We also observe that f(x) = x2 is increasing for x > 0, which means that
if 0 < x1 < x2 then f(x1) < f(x2). This follows because x1 < x2 means
that x1 × x1 < x2 × x1 < x2 × x2. Likewise, we can show that f(x) = x2 is
decreasing for x < 0, which means that if x1 < x2 < 0 then f(x1) > f(x2).
This means that the function at least cannot wiggle very much in between
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the values we compute. We plot the values of f(x) = x2 in Fig. 186.6 for
601 equally spaced points between x = −3 and x = 3.
To draw the graph of a general quadratic function, we follow the idea

behind computing the graphs of lines by using translation. We start with
f(x) = x2 and then change that graph to get the graph of any other
quadratic. There are two kinds of changes we make.
The first change is called scaling. Consider the plots of the quadratic

functions in Fig. 186.7. Each of these functions has the form y = f(x) =
a2x

2 for a constant a2. Their plots all have the same basic shape as y = x2.
However the heights of the points on y = a2x

2 are a factor of |a2| higher
or lower than the height of the corresponding point on y = x2: higher if
|a2| > 1 and lower if |a2| < 1. If a2 < 0 then the plot is also “flipped” or
reflected through the x-axis.

-2 -1  1 2

-12

-8

-4

  

4

8
y=2x

2

y=x
2
/2

y=-x
2

y=-3x
2

FIGURE 186.7. Plots of y = x2 scaled four different ways.

The second change we consider is translation. The two possibilities are
to translate horizontally, or sideways, and vertically. We show examples
of both in Fig. 186.8. Graphs of quadratic functions of the form f(x) =
(x + x0)

2 can be drawn by moving the graph of y = x2 sideways to the
right a distance of |x0| if x0 < 0 and to the left a distance of x0 if x0 > 0.
The easiest way to remember which direction to translate is to figure out
the new position of the vertex, which is the lowest or highest point of the
quadratic. For y = (x − 1)2, the lowest point is x = 1 and the graph is
obtained by moving the graph of y = x2 so the vertex is now at x = 1. For
y = (x+ .5)2, the vertex is at x = −.5 and we get the graph by moving the
graph of y = x2 to the left a distance of .5. On the other hand, the graph
of a function y = x2+d can be obtained by translating the graph of y = x2

vertically, in a fashion similar to what we did for lines. Recall that d > 0
translates the graph upwards and d < 0 downwards.
Now it is possible to put all of this together to plot the graph of the

function y = f(x) = a(x− x0)
2 + d by scaling and translating the graph of
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-2 -1   1 2 

-2

 

2

4

6

8

10

y=(x-1)2

y=(x+.5)2

y=x2-1

y=x2+.5

FIGURE 186.8. Plots of y = x2 translated four different ways.

y = x2. We perform each operation in the same order that we would use to
do the arithmetic in computing values of f(x); first translate horizontally
by x0, then scale by a, and finally translate vertically by d.

Example 186.6. We plot y = −2(x+1)2+3 in Fig. 186.9 by starting
with y = x2 in (a), translating horizontally to get y = (x + 1)2 in (b),
scaling vertically to get y = −2(x + 1)2 in (c), and finally translating
vertically to get y = −2(x+ 1)2 + 3 in (d).

-3 -1  1 2

-15

-9

-3

 

3

9 y=(x+1)
2

y=x
2

y=-2(x+1)
2

y=-2(x+1)
2
+3

FIGURE 186.9. Plotting y = −2(x+ 1)2 + 3 in a systematic way.

The last step is to consider the plot of the quadratic y = ax2 + bx + c.
The idea is to first rewrite this in the form y = a(x− x0)

2 + d for some x0
and d, then we can draw the graph easily. To explain how to do this, we
work backwards using the example y = −2(x + 1)2 + 3. Multiplying out,
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we get

y = −2(x2 + 2x+ 1) + 3 = −2x2 − 4x− 2 + 3 = −2x2 − 4x+ 1.

Now if we are given y = −2x2 − 4x+ 1, we can do the following steps

y = −2x2 − 4x+ 1

= −2(x2 + 2x) + 1

= −2(x2 + 2x+ 1− 1) + 1

= −2(x2 + 2x+ 1) + 2 + 1

= −2(x+ 1)2 + 3.

This procedure is called completing the square. Given x2 + bx, the idea to
add the number m so that x2 + bx +m is the square (x − x0)

2 for some
appropriate x0. Of course we also have to subtract m so we don’t change
the function. Note that we added and subtracted 1 inside the parenthesis in
the example above! If we multiply out, we get

(x− x0)
2 = x2 − 2x0x+ x20

which is supposed to match

x2 + bx+m.

This means that x0 = −b/2 while m = x20 = b2/4. In the example above,
b = 2, x0 = −1, and m = 1.

Example 186.7. We complete the square on y2−3x+7. Here b = −3,
x0 = 3/2, and m = 9/4. So we write

y2 − 3x+ 7 = y2 − 3x+
9

4
− 9

4
+ 7

=

(
y − 3

2

)2

+
19

4
.

Example 186.8. We complete the square on 6y2 + 4y − 2. We first
have to write

6y2 + 4y − 2 = 6

(
y2 +

2

3
y

)
− 2.

Now b = 2/3, x0 = −1/3, and m = 1/9. So we write

6y2 + 4y − 2 = 6

(
y2 +

2

3
y +

1

9
− 1

9

)
− 2

= 6

(
y +

1

3

)2

− 6

9
− 2

= 6

(
y +

1

3

)2

− 8

3
.
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Example 186.9. We complete the square on y = 1
2x

2 − 2x+ 3.

1

2
x2 − 2x+ 3 =

1

2
(x2 − 4x) + 3

=
1

2
(x2 − 4x+ 4− 4) + 3

=
1

2
(x− 2)2 − 2 + 3

=
1

2
(x− 2)2 + 1.

186.6 Arithmetic with Polynomials

We turn now to investigating properties of polynomials of general degree,
beginning with arithmetic properties. Recall that if we add, subtract, or
multiply two rational numbers, then the result is another rational number.
In this section, we show that the analogous property holds for polynomials.

The Σ Notation for Finite Sums

Before exploring arithmetic with polynomials, we introduce a convenient
notation for dealing with long finite sums using the Greek letter sigma Σ.
Given any n + 1 quantities {a0, a1, · · · , an} indexed with subscripts, we
write the sum

a0 + a1 + · · ·+ an =
n∑

i=0

ai.

The index of the sum is i and it is assumed that it takes on all the integers
between the lower limit, which is 0 here, and the upper limit, which is n
here, of the sum.

Example 186.10. The finite harmonic series of order n is

n∑

i=1

1

i
= 1 +

1

2
+

1

3
+ · · · 1

n

while the finite geometric series of order n with factor r is

1 + r + r2 + · · ·+ rn =
n∑

i=0

ri.

Notice that the index i is a dummy variable in the sense that it can be
renamed or the sum can be rewritten to start at another integer.
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Example 186.11. The following sums are all the same:

n∑

i=1

1

i
=

n∑

z=1

1

z
=

n−1∑

i=0

1

i+ 1
=

n+3∑

i=4

1

i− 3
.

Using the Σ notation, we can write the general polynomial (186.1) in the
more condensed form:

f(x) =

n∑

i=0

aix
i = a0 + a1x

1 + · · ·+ anx
n.

Example 186.12. We can write

1 + 2x+ 4x2 + 8x3 + · · ·+ 220x20 =

20∑

i=0

2ixi

and

1− x+ x2 − x3 − · · · − x99 =
99∑

i=0

(−1)ixi.

since (−1)i = 1 if i is even and (−1)i = −1 if i is odd.

Addition of Polynomials

Given two polynomials

f(x) = a0 + a1x
1 + a2x

2 + · · ·+ anx
n

and
g(x) = b0 + b1x

1 + b2x
2 + · · ·+ bnx

n

we may define a new polynomial denoted by (f + g)(x), and referred to as
the sum of f(x) and g(x), by termwise addition of f(x) and g(x) as follows:

(f + g)(x) = (b0 + a0) + (b1 + a1)x
1 + (b2 + a2)x

2 + · · · (bn + an)x
n.

Changing the order of summation, we see that

(f + g)(x) =
n∑

i=0

(ai + bi)x
i =

n∑

i=0

aix
i +

n∑

i=0

bix
i = f(x) + g(x).

We can thus define the polynomial (f + g)(x) being the sum of f(x) and
g(x) by the formula

(f + g)(x) = f(x) + g(x).

We will below extend this definition to general functions.
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Example 186.13. If f(x) = 1+x2−x4+2x5 and g(x) = 33x+7x2+2x5,
then

(f + g)(x) = 1 + 33x+ 8x2 − x4 + 4x5,

where of course we “fill in” the “missing” monomials, i.e. those with
coefficients equal to zero in order to use the definition.

In general, to add the polynomials

f(x) =

n∑

i=0

aix
i

of degree n (assuming that an 6= 0) and the polynomial

g(x) =

m∑

i=0

bix
i

of degree m, where we assume that m ≤ n, we just fill in the “missing”
coefficients in g by setting bm+1 = bm+2 = · · · bn = 0, and add using the
definition.

Example 186.14.

15∑

i=0

(i + 1)xi +

30∑

i=0

xi =

30∑

i=0

aix
i

with

ai =

{
i+ 2, 0 ≤ i ≤ 15

i, 16 ≤ i ≤ 30

Multiplication of a Polynomial by a Number

Given a polynomial

f(x) =
n∑

i=0

aix
i,

and a number c ∈ Q we define a new polynomial denoted by (cf)(x), and
referred to as the product of f(x) by the number c, as follows:

(cf)(x) =

n∑

i=0

caix
i.

We note that we can equivalently define (cf)(x) by

(cf)(x) = cf(x) = c× f(x).

Example 186.15.

2.3(1 + 6x− x7) = 2.3 + 13.8x− 2.3x7.
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Equality of Polynomials

Following these definitions, we say that two polynomials f(x) and g(x) are
equal if (f − g)(x) is the zero polynomial with all coefficients equal to zero,
that is the coefficients of f(x) and g(x) are the same. Two polynomials are
not necessarily equal because they happen to have the same value at just
one point!

Example 186.16. f(x) = x2 − 4 and g(x) = 3x − 6 are both zero at
x = 2 but are not equal.

Linear Combinations of Polynomials

We may now combine polynomials by adding them and multiplying them
by rational numbers, and thereby obtain new polynomials. Thus, if f1(x),
f2(x), · · · , fn(x) are n given polynomials and c1, · · · , cn are n given num-
bers, then

f(x) =
n∑

m=1

cmfm(x)

is a new polynomial called the linear combination of the polynomials f1,
· · · , fn with coefficients c1, · · · , cn.
Example 186.17. The linear combination of 2x2 and 4x − 5 with
coefficients 1 and 2 is

1
(
2x2
)
+ 2
(
4x− 5

)
= 2x2 + 8x− 10.

A general polynomial

f(x) =

n∑

i=0

aix
i

can be described as a linear combination of the particular polynomials 1,
x, x2, · · · , xn, which are called the monomials, see Fig. 186.11 below, with
the coefficients a0, a1,...,an. To make the notation consistent, we set x0 = 1
for all x.
We sum up:

Theorem 186.1 A linear combination of polynomials is a polynomial. A
general polynomial is a linear combination of monomials.

As a consequence of the definitions made, we get a number of rules for
linear combinations of polynomials that reflect the corresponding rules for
rational numbers. For example, if f , g and h are polynomials and c is
rational number, then

f + g = g + f, (186.4)

(f + g) + h = f + (g + h), (186.5)

c(f + g) = cf + cg, (186.6)
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where the variable x was omitted for simplicity.

Multiplication of Polynomials

We now go into multiplication of polynomials. Given two polynomials f(x)
=
∑n

i=0 aix
i and g(x) =

∑m
j=0 bjx

j , we define a new polynomial denoted
by (fg)(x), and referred to as the product of f(x) and g(x), as follows

(fg)(x) = f(x)g(x).

To see that this is indeed a polynomial we consider first the product of two
monomials f(x) = xj and g(x) = xi:

(fg)(x) = f(x)g(x) = xjxi = xj × xi = xj+i.

We see that the degree of the product is the sum of the degrees of the
monomials.
Next, if f(x) = xj and a polynomial g(x) =

∑n
i=0 aix

i, then by dis-
tributing xj , we get

(fg)(x) = xjg(x) = a0x
j + a1x

j × x+ a2x
j × x2 + · · ·+ anx

j × xn

= a0x
j + a1x

1+j + a2x
2+j + · · ·+ anx

n+j

=

n∑

i=0

aix
i+j ,

which is a polynomial of degree n+ j.

Example 186.18.

x3(2− 3x+ x4 + 19x8) = 2x3 − 3x4 + x7 + 19x11.

Finally, for two general polynomials f(x) =
∑n

i=0 aix
i and g(x)

=
∑m

j=0 bjx
j , we have

(fg)(x) = f(x)g(x) = (

n∑

i=0

aix
i)(

m∑

i=0

bix
i)

=

n∑

i=0


 aix

i
m∑

j=0

bjx
j


 =

n∑

i=0


ai

m∑

j=0

bjx
i+j




=

n∑

i=0

m∑

j=0

aibjx
i+j .

which is a polynomial of degree n+m. We consider an example
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Example 186.19.

(1 + 2x+ 3x2)(x− x5) = 1(x− x5) + 2x(x− x5) + 3x2(x− x5)

= x− x5 + 2x2 − 2x6 + 3x3 − 3x7

= x+ 2x2 + 3x3 − x5 − 2x6 − 3x7

We sum up:

Theorem 186.2 The product of a polynomial of degree n and a polynomial
of degree m is a polynomial of degree n+m.

The usual commutative, associative, and distributive laws hold for mul-
tiplication of polynomials f , g, and h:

fg = gf, (186.7)

(fg)h = f(gh), (186.8)

(f + g)h = fh+ gh, (186.9)

where we again left out the variable x.
Products are tedious to compute but luckily it is not necessary very often

and if the polynomials are complicated, we can use MAPLE c© to compute
them for example. There are a couple of examples that are good to keep in
mind:

(x+ a)2 = (x+ a)(x+ a) = x2 + 2ax+ a2

(x + a)(x− a) = x2 − a2

(x+ a)3 = x3 + 3ax2 + 3a2x+ a3

186.7 Graphs of General Polynomials

A general polynomial of degree greater than 2 or 3 can be a quite compli-
cated function and it is difficult to say much specific about their plots. We
show an example in Fig. 186.10. When the degree of a polynomial is large,
the tendency is for the plot to have large “wiggles” which makes it difficult
to plot the function. The value of the polynomial shown in Fig. 186.10 is
987940.8 at x = 3.
On the other hand, we can plot the monomials rather easily. It turns

out that once the degree n ≥ 2, the plots of the monomials with even
degree n all have a similar shape, as do the plots of all the monomials
with odd degree. We show some samples in Fig. 186.11. One of the most
obvious feature of the graphs of the monomials are the symmetry in the
plots. When the degree is even, the plots are symmetric across the y-axis,
see Fig. 186.12. This means that the value of the monomial is the same for
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FIGURE 186.10. A plot of y = 1.296+1.296x− 35.496x2 − 57.384x3 +177.457x4
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FIGURE 186.11. Plots of some monomials.
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x and −x, or in other words xm = (−x)m for m even. When the degree is
odd, the plots are symmetric through the origin. In other words, the value
of the function for x is the negative of the value of the function for −x or
(−x)m = −xm for m odd.

x

y x
even

-x

x

y

-x

xodd

FIGURE 186.12. The symmetries of the monomial functions of even and odd
degree.

We can use the ideas of scaling and translation to graph functions of the
form y = a(x− x0)

m + d.

Example 186.20. We plot y = −.5(x − 1)3 − 6 in Fig. 186.13 by
systematically using translations and scaling. Luckily, however, there is
no procedure like completing the square for monomials of higher degree.

-1

 

1 2

-27

-13.5

 

13.5

27

x3

(x-1)3

-.5(x-1)3

-.5(x-1)3-6

FIGURE 186.13. The procedure for plotting y = −.5(x− 1)3 − 6.



1036 186. Polynomial functions

186.8 Piecewise Polynomial Functions

We started this chapter by declaring that polynomials are building blocks
for the mathematics of functions. An important class of functions con-
structed using polynomials are the piecewise polynomials. These are func-
tions that are equal to polynomials on intervals contained in the domain.
We have already met one example, namely

|x| =
{
x, x ≥ 0

−x, x < 0

The function |x| looks like y = x for x ≥ 0 and y = −x for x < 0. We plot
it in Fig. 186.14. The most interesting thing to note about the graph of |x|

-3 -1

-1

 

1

2

3

1 3

FIGURE 186.14. Plot of y = |x|.

is the sharp corner at x = 0, which occurs right at the transition point of
this piecewise polynomial.

FIGURE 186.15. Plot of a piecewise (quadratic) polynomial function.
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Chapter 186 Problems

186.1. Find the point-slope equations of the lines passing through the following
pairs of points. Plot the line in each case.

(a) (1, 3) & (2, 7) (b) (−4, 2) & (−6, 3)

(c) (3, 7) & (5, 7) (d) (3.5, 1.5) & (2.1, 11.8)

(e) (−3, 2) & (−3, 3) (f) (2,−1) & (4,−7).

186.2. Find the slope-intercept equations of the lines passing through the fol-
lowing pairs of points. Plot the line in each case.

(a) (4,−6) & (14, 2) (b) (3,−2) & (−1, 4)

(c) (13, 4) & (13, 89) (d) (4, 4) & (6, 4)

(e) (−.2, 9) & (−.4, 7) (f) (−1,−1) & (−4, 7).

186.3. Find a formula for the x-intercept of a line given in the form y = mx+ b
in terms of m and b.

186.4. Plot the lines y = 1
2
x, y = 1

2
x − 2, y = 1

2
x + 4, y = 1

2
x + 1 using

translation.

186.5. Are the lines 2− y = 7(4− x) and y = 7x− 13 parallel?

186.6. Are the lines y = 3
11
x− 4 and y = 13− 11

3
x perpendicular?

186.7. Find the point of intersection of the following pairs of lines:

(a) y = 3x+ 2 and y = −4x− 2,

(b) y − 5 = 7(x− 1) and y + 3 = −4(x− 9).

186.8. Find the lines that are (a) parallel and (b) perpendicular to the line
through (9, 4) and (−1, 3) and passing through the point (3, 0).

186.9. Find the lines that are (a) parallel and (b) perpendicular to the line
through (−2, 7) and (8, 8) and passing through the point (1, 2).

186.10. Show that f(x) = x2 is decreasing for x < 0.

186.11. Plot the following quadratic functions for −2 ≤ x ≤ 2: (a) 6x2, (b)
− 1

4
x2, (c) 4

3
x2.

186.12. Plot the following quadratic functions for −3 ≤ x ≤ 3: (a) (x− 2)2, (b)
(x+ 1.5)2, (c) (x+ .5)2.
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186.13. Plot the following quadratic functions for −2 ≤ x ≤ 2: (a) x2 − 3, (b)
x2 + 2, (c) x2 − .5.

186.14. Plot the following quadratic functions for −3 ≤ x ≤ 3: (a) − 1
2
(x−1)2+2,

(b) 2(x+ 2)2 − 5, (c) 1
3
(x− 3)2 − 1.

186.15. Complete the square on the following quadratic functions then plot
them for −3 ≤ x ≤ 3: (a) x2 + 4x+ 5, (b) 2x2 − 2x− 1

2
, (c) − 1

3
x2 + 2x− 1.

186.16. Write the following finite sums using the summation notation. Be sure
to get the starting and ending values for the index correct!

(a) 1 + 1
4
+ 1

9
+ 1

16
+ · · ·+ 1

n2 (b) −1 + 1
4
− 1

9
+ 1

16
− · · · ± 1

n2

(c) 1 + 1
2×3

+ 1
3×4

+ · · ·+ 1
n×(n+1)

(d) 1 + 3 + 5 + 7 + · · ·+ 2n+ 1

(e) x4 + x5 + · · ·+ xn (f) 1 + x2 + x4 + x6 + · · ·+ x2n.

186.17. Write the finite sum
n∑

i=1

i2 so that: (a) i starts with −1, (b) i starts

with 15, (c) the coefficent has the form (i+ 4)2, (d) i ends with n+ 7.

186.18. Given f1(x) = −4+6x+7x3, f2(x) = 2x2−x3+4x5 and f3(x) = 2−x4,
compute the following polynomials: (a) f1 − 4f2, (b) 3f2 − 12f1, (c) f2 + f1 + f3,
(d) f2f1, (e) f1f3, (f) f2f3, (g) f1f3 − f2, (h) (f1 + f2)f3, (i) f1f2f3.

186.19. For a equal to a constant, compute (a) (x+a)2, (b) (x+a)3, (c) (x−a)3,
(d) (x+ a)4.

186.20. Compute f1f2 where f1(x) =
8∑

i=0

i2xi and f2(x) =
11∑

j=0

1

j + 1
xj .

186.21. Plot the function

f(x) = 360x − 942x2 + 949x3 − 480x4 + 130x5 − 18x6 + x7

using Matlab or Maple. This takes some trial and error in choosing a good interval
on which to plot. You should make plots on several different intervals, starting
with −.5 ≤ x ≤ .5 then increasing the size.

186.22. (a) Show that the monomial x3 is increasing for all x. (b) Show the
monomial x4 is decreasing for x < 0 and increasing for x > 0.

186.23. Plot the following monomial functions for −3 ≤ x ≤ 3: (a) x3, (b) x4,
(c) x5.

186.24. Plot the following polynomials for −3 ≤ x ≤ 3:

(a) 1
3
(x+ 2)3 − 2 (b) 2(x− 1)4 − 13 (c) (x+ 1)5 − 1.



186.8 Piecewise Polynomial Functions 1039

186.25. Plot the following piecewise polynomials for −2 ≤ x ≤ 2

(a) f(x) =






1, −2 ≤ x ≤ −1,

x2, −1 < x < 1,

x, 1 ≤ x ≤ 2.

(b) f(x) =






−1− x, −2 ≤ x ≤ −1,

1 + x, −1 < x ≤ 0,

1− x, 0 < x ≤ 1,

−1 + x, 1 < x ≤ 2.
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187
Combinations of functions

And he gave a deep sigh, and tried very hard to listen to what Owl
was saying. (Winnie-the Pooh)

187.1 Introduction

In this chapter we consider different ways of creating new functions by com-
bining old ones. We often seek to describe complicated functions as combi-
nations of simpler functions that we know. In the last chapter, we saw how
a general polynomials can be created adding up multiples of monomials,
that is, as linear combinations of monomials. In this chapter, we consider
first linear combinations of arbitrary functions, then multiplication and
division, and finally composition of functions.
The idea of combining simple things to get complex ones is fundamental

in many different settings. Music is a good example: chords or harmonies
are formed by combining single tones, complex rhythmic patterns may be
formed by overlaying simple basic rhythmic patterns, single instruments
are combined to form an orchestra. Another example is a fancy dinner that
is made up of an entree, main dish, dessert, coffee, together with aperitif,
wines and cognac, in endless combinations. Moreover, each dish is formed
by combining ingredients like beef, carrots and potatoes.
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187.2 Sum of Two Functions and Product of a
Function with a Number

Given two functions f1 : Df1 → Q and f2 : Df2 → Q, we define a new
function denoted by (f1 + f2)(x), and referred to as the sum of f1(x) and
f2(x), as follows

(f1 + f2)(x) = f1(x) + f2(x), for x ∈ Df1 ∩Df2 .

Of course, we have to assume that x belongs to both Df1 and Df2 for both
f1(x) and f2(x) to be defined. We can thus write Df1+f2 = Df1 ∩Df2 .
Further, given a function f : Df → Q and a number c ∈ Q, we define

a new function denoted by (cf)(x), and referred to as the product of f(x)
with c, as follows

(cf)(x) = cf(x) for x ∈ Df .

The domain of cf is equal to the domain of f , that is, Dcf = Df .
The definitions of sum of functions and product of a function with a

number are consistent with the corresponding definitions for polynomials
made above.

Example 187.1. The function f(x) = x3 +1/x defined on Df = {x ∈
Q : x 6= 0} is the sum of the functions f1(x) = x3 with domain Df1 = Q
and f2(x) = 1/x with domain Df2 = {x in Q : x 6= 0}. The function
f(x) = x2 + 2x defined on Z is the sum of x2 defined on Q and 2x

defined on Z.

187.3 Linear Combinations of Functions

Given n functions f1 : Df1 → Q, ..., fn : Dfn → Q, and numbers c1,...,cn,
we define the linear combination of f1, ..., fn with coefficients c1, ...., cn,
denoted by (c1f + · · ·+ cnfn)(x), as follows

(c1f + · · ·+ cnfn)(x) = c1f1(x) + · · ·+ cnfn(x)

The domain Dc1f+···+cnfn of the linear combination c1f + · · ·+ cnfn is the
intersection of the domains Df1 , · · · , Dfn .

Example 187.2. The domain of the linear combination of
{

1
x ,

x
1+x ,

1+x
2+x

}

given by

− 1

x
+ 2

x

1 + x
+ 6

1 + x

2 + x

is {x in Q : x 6= 0, x 6= −1, x 6= −2}.

The sigma notation is useful for writing general linear combinations.
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Example 187.3. The linear combination of
{

1
x , · · · , 1

xn

}
given by

2

x
+

4

x
+

8

x
+ · · ·+ 2n

xn
=

n∑

i=1

2i

xi

has domain {x in Q : x 6= 0}.

187.4 Multiplication and Division of Functions

We multiply functions using the same idea used to multiply polynomials.
Given two functions f1 : Df1 → Q and f2 : Df2 → Q we define the product
function (f1f2)(x) by

(f1f2)(x) = f1(x)f2(x) for x ∈ Df1 ∩Df2 ,

and quotient function by

(f1/f2)(x) =
f1
f2

(x) =
f1(x)

f2(x)
for x ∈ Df1 ∩Df2 ,

where we of course also assume that f2(x) 6= 0.

Example 187.4. The function

f(x) = (x2 − 3)3
(
x6 − 1

x
− 3
)

with Df = {x ∈ Q : x 6= 0} is the product of the functions f1(x) =
(x2 − 3)3 and f2(x) = x6 − 1/x − 3. The function f(x) = x2 2x is the
product of x2 and 2x.

Example 187.5. The domain of

1 + 1/(x+ 3)

2x− 5

is the intersection of {x in Q : x 6= −3} and {x in Q} excepting x = 5/2
or {x in Q : x 6= −3, 5/2}.

187.5 Rational Functions

The quotient f1/f2 of two polynomials f1(x) and f2(x) is called a rational
function. This is the analog of a rational number which is the quotient of
two integers.
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Example 187.6. The function f(x) = 1/x is a rational function de-
fined for {x in Q : x 6= 0}. The function

f(x) =
(x3 − 6x+ 1)(x11 − 5x6)

(x4 − 1)(x+ 2)(x− 5)

is a rational function defined on {x in Q : x 6= 1,−1,−2, 5}.

In an example above, we saw that x− 3 divides into x2 − 2x− 3 exactly
because x2 − 2x− 3 = (x− 3)(x+ 1) so

x2 − 2x− 3

x− 3
= x+ 1.

In the same way, a rational number p/q sometimes simplifies to an inte-
ger, in other words q divides into p exactly without a remainder. We can
determine if this is true by using long division. It turns out that long divi-
sion also works for polynomials. Recall that in long division, we match the
leading digit of the denominator with the remainder at each stage. When
dividing polynomials, we write them as a linear combination of monomials
starting with the monomial of highest degree and then match coefficients
of the monomials one by one.

Example 187.7. We show a couple of examples of polynomial division.
In Fig. 187.1, we give an example where the remainder is zero. We

x3 + 4x2 - 2x - 3

x2 + 5x+ 3

x-1
x3 -    x2

5x2 - 2x

5x2 - 5x

3x2 - 3x
3x2 - 3x

0

FIGURE 187.1. An example of polynomial division with no remainder.

conclude that
x3 + 4x2 − 2x+ 3

x− 1
= x2 + 5x+ 3.

In Fig. 187.2, we give an example in which there is a non-zero remain-
der, i.e. we carry out the division to the point where the remaining
numerator has lower degree than the denominator. Note that in this
example, the numerator is “missing” a term so we fill in the missing
term with a zero coefficient to make the division easier. We conclude
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2x4 + 0x3 + 7x2 - 8x + 3

2x2 - 2x +15

x2+x-3
2x4 + 2x3  - 6x2

- 2x3+13x2 - 8x

15x2 - 14x + 3

-29x +48

- 2x3-  2x2 + 6x

15x2 + 15x -45

FIGURE 187.2. An example of polynomial division with a remainder.

that
2x4 + 7x2 − 8x+ 3

x2 + x− 3
= 2x2 − 2x+ 15 +

−29x+ 48

x2 + x− 3
.

We shall now consider polynomial division in the special case of a de-
nominator of the form x − x̄ of degree one, where x̄ is considered fixed,
resulting in

f(x) = (x− x̄) g(x) + r(x), (187.1)

where the reminder polynomial r(x) now must be of degree zero, that is a
constant.
The following result is of particular interest. If f(x) is a polynomial of

degree n with f(x̄) = 0, then x − x̄ is a factor of f(x), that is, division of
f(x) with x− x̄ gives

f(x) = (x− x̄) g(x) + r(x) (187.2)

with r(x) ≡ 0. Conversely, if r(x) ≡ 0, then obviously f(x̄) = 0. For the
proof of this we note that the degree of r(x) is less than the degree of x− x̄,
that is r(x) is in fact a constant. Further r(x̄) = 0 because f(x̄) = 0. That
is r(x) is a constant which is zero, that is r(x) ≡ 0. We have thus proved

Theorem 187.1 If x̄ is a root of a polynomial f(x), that is if f(x̄) = 0,
then f(x) factors as f(x) = (x− x̄)g(x) for some polynomial g(x) of degree
one less than the degree of f(x). The factor g(x) can be found by polynomial
division of f(x) by x− x̄.

187.6 The Composition of Functions

Given two functions f1 and f2, we can define a new function f by first
applying f1 to an input and then applying f2 to the result, i.e.

f(x) = f2(f1(x))
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We say that f is the composition of f2 and f1 and we write f = f2 ◦ f1,
that is

(f2 ◦ f1)(x) = f2(f1(x)).

We illustrate this operation in Fig. 187.3.

x

f1 f2

Df1
Df2

f1(x) f2(f1(x))

FIGURE 187.3. Illustration of the composition f2 ◦ f1.

Example 187.8. If f1(x) = x2 and f2(x) = x + 1 then f1 ◦ f2(x) =
f1(f2(x)) = (x+ 1)2 while f2 ◦ f1 = f2(f1(x)) = x2 + 1.

This example illustrates the general fact that f2◦f1 6= f1◦f2 in most cases.
Determining the domain of the composition of f2 ◦ f1 can be compli-

cated. Certainly to compute f2(f1(x)), we have to make certain that x is
in the domain of f1 otherwise f1(x) will be undefined. Next we apply f2 to
the result, therefore f1(x) must have a value that is in the domain of f2.
Therefore the domain of f2 ◦f1 is the set of points x in Df1 such that f1(x)
is in Df2 .

Example 187.9. Let f1(x) = 3 + 1/x2 and f2(x) = 1/(x − 4). Then
Df1 = {x in Q : x 6= 0} while Df2 = {x in Q : x 6= 4}. Therefore
to compute f2 ◦ f1, we must avoid any points where 3 + 1/x2 = 4 or
1/x2 = 1 or x = 1 and x = −1. We conclude that Df2◦f1 = {x in Q :
x 6= 0, 1,−1}.

Chapter 187 Problems

187.1. Determine the domains of the following functions

(a) 3(x− 4)3 + 2x2 +
4x

3x− 1
+

6

(x− 1)2
(d)

(2x− 3) 2
x

4x+ 6

(b) 2 +
4

x
− 6x+ 4

(x− 2)(2x+ 1)
(e)

6x− 1

(2− 3x)(4 + x)

(c) x3

(
1 +

1

x

)
(f)

4

x+ 2
+

6

x2 + 3x+ 2



187.6 The Composition of Functions 1047

187.2. Write the following linear combinations using the sigma notation and
determine the domain of the result.

(a) 2x(x− 1) + 3x2(x− 1)2 + 4x3(x− 1)3 + · · ·+ 100x101(x− 1)101

(b)
2

x− 1
+

4

x− 2
+

8

x− 3
+ · · ·+ 8192

x− 13

187.3. (a) Let f(x) = ax + b, where a and b are numbers and show that f(x +
y) = f(x) + f(y) for all numbers x and y. (b) Let g(x) = x2 and show that
g(x+ y) 6= g(x) + g(y) unless x and y have special values.

187.4. Use polynomial division on the following rational functions to show that
the denominator divides the numerate exactly or to compute the remainder if
not.

(a)
x2 + 2x− 3

x− 1
(b)

2x2 − 7x− 4

2x+ 1

(c)
4x2 + 2x− 1

x+ 6
(d)

x3 + 3x2 + 3x+ 2

x+ 2

(e)
5x3 + 6x2 − 4

2x2 + 4x+ 1
(f)

x4 − 4x2 − 5x− 4

x2 + x+ 1

(g)
x8 − 1

x3 − 1
(h)

xn − 1

x− 1
, n in N

187.5. Given f1(x) = 3x − 5, f2(x) = 2x2 + 1, and f3(x) = 4/x, write out
formulas for the following functions

(a) f1 ◦ f2 (b) f2 ◦ f3 (c) f3 ◦ f1 (d) f1 ◦ f2 ◦ f3

187.6. With f1(x) = 4x+ 2 and f2(x) = x/x2, show that f1 ◦ f2 6= f2 ◦ f1.

187.7. Let f1(x) = ax+ b and f2(x) = cx + d where a, b, c, and d are rational
numbers. Find a condition on the numbers a, b, c, and d that implies that f1◦f2 =
f2 ◦ f1 and produce an example that satisfies the condition.

187.8. For the given functions f1 and f2, determine the domain of f2 ◦ f1

(a) f1(x) = 4− 1

x
and f2(x) =

1

x2

(b) f1(x) =
1

(x− 1)2
− 4 and f2(x) =

x+ 1

x
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188
Lipschitz continuity

Calculus required continuity, and continuity was supposed to require
the infinitely little, but nobody could discover what the infinitely
little might be. (Russell)

188.1 Introduction

When we graph a function f(x) of a rational variable x, we make a leap of
faith and assume that the function values f(x) vary “smoothly” or “contin-
uously” between the sample points x, so that we can draw the graph of the
function without lifting the pen. In particular, we assume that the function
value f(x) does not make unknown sudden jumps for some values of x. We
thus assume that the function value f(x) changes by a small amount if we
change x by a small amount. A basic problem in Calculus is to measure
how much the function values f(x) may change when x changes, that is,
to measure the “degree of continuity” of a function. In this chapter, we ap-
proach this basic problem using the concept of Lipschitz continuity, which
plays a basic role in the version of Calculus presented in this book.
There will be a lot of inequalities (< and ≤) and absolute values (| · |)

in this chapter, so it might be a good idea before you start to review the
rules for operating with these symbols from Chapter Rational numbers.
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FIGURE 188.1. Rudolph Lipschitz (1832-1903), Inventor of Lipschitz continuity:
“Indeed, I have found a very nice way of expressing continuity....”.

188.2 The Lipschitz Continuity of a Linear
Function

To start with we consider the behavior of a linear polynomial. The value
of a constant polynomial doesn’t change when we change the input, so the
linear polynomial is the first interesting example to consider. Suppose the
linear function is f(x) = mx + b, with m ∈ Q and b ∈ Q given, and let
f(x1) = mx1 + b and f(x2) = mx2 + b to be the function values values
for x = x1 and x = x2. The change in the input is |x2 − x1| and for the
corresponding change in the output |f(x1)− f(x2)|, we have

|f(x2)− f(x1)| = |(mx2 + b)− (mx1 + b)| = |m(x2 − x1)| = |m||x2 − x1|.
(188.1)

In other words, the absolute value of the change in the function values
|f(x2) − f(x1)| is proportional to the absolute value of the change in the
input values |x2 − x1| with constant of proportionality equal to the slope
|m|. In particular, this means that we can make the change in the output
arbitrarily small by making the change in the input small, which certainly
fits our intuition that a linear function varies continuously.

Example 188.1. Let f(x) = 2x give the total number of miles for an
“out and back” bicycle ride that is x miles one way. To increase a given
ride by a total of 4 miles, we increase the one way distance x by 4/2 = 2
miles while to increase a ride by a total of .01 miles, we increase the
one way distance x by .005 miles.

We now make an important observation: the slope m of the linear func-
tion f(x) = mx + b determines how much the function values change as
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the input value x changes. The larger |m| is, the steeper the line is, and
the more the function changes for a given change in input. We illustrate in
Fig. 188.2.

y = 3x

y = 1/2x

FIGURE 188.2. These two linear functions which change a different amount for
a given change in input.

Example 188.2. Suppose that f1(x) = 4x+1 while f2(x) = 100x− 5.
To increase the value of f1(x) at x by an amount of .01, we change
the value of x by .01/4 = .0025. On the other hand, to change the
value of f2(x) at x by an amount of .01, we change the value of x by
.01/100 = .0001.

188.3 The Definition of Lipschitz Continuity

We are now prepared to introduce the concept of Lipschitz continuity,
designed to measure change of function values versus change in the in-
dependent variable for a general function f : I → Q where I is a set
of rational numbers. Typically, I may be an interval of rational numbers
{x ∈ Q : a ≤ x ≤ b} for some rational numbers a and b. If x1 and x2 are two
numbers in I, then |x2−x1| is the change in the input and |f(x2)−f(x1)| is
the corresponding change in the output. We say that f is Lipschitz contin-
uous with Lipschitz constant Lf on I, if there is a (necessarily nonnegative)
constant Lf such that

|f(x1)− f(x2)| ≤ Lf |x1 − x2| for all x1, x2 ∈ I. (188.2)

As indicated by the notation, the Lipschitz constant Lf depends on the
function f , and thus may vary from being small for one function to be
large for another function. If Lf is small, then f(x) may change only a
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little with a small change of x, while if Lf is large, then f(x) may change
a lot under only a small change of x. Again: Lf may vary from small to
large depending on the function f .

Example 188.3. A linear function f(x) = mx + b is Lipschitz con-
tinuous with Lipschitz constant Lf = |m| on the entire set of rational
numbers Q.

Example 188.4. We show that f(x) = x2 is Lipschitz continuous on
the interval I = [−2, 2] with Lipschitz constant Lf = 4. We choose two
rational numbers x1 and x2 in [−2, 2]. The corresponding change in the
function values is

|f(x2)− f(x1)| = |x22 − x21|.

The goal is to estimate this in terms of the difference in the input
values |x2 − x1|. Using the identity for products of polynomials derived
in Section 186.6, we get

|f(x2)− f(x1)| = |x2 + x1| |x2 − x1|. (188.3)

We have the desired difference on the right, but it is multiplied by a
factor that depends on x1 and x2. In contrast, the analogous relation-
ship (188.1) for the linear function has a factor that is constant, namely
|m|. At this point, we have to use the fact that x1 and x2 are in the
interval [−2, 2], which means that

|x2 + x1| ≤ |x2|+ |x1| ≤ 2 + 2 = 4,

by the triangle inequality. We conclude that

|f(x2)− f(x1)| ≤ 4|x2 − x1|

for all x1 and x2 in [−2, 2].

Lipschitz continuity quantifies the idea of continuous behavior of a func-
tion f(x) using the Lipschitz constant Lf . We repeat: If Lf is moderately
sized then small changes in input x yield small changes in the function’s
output f(x), but a large Lipschitz constant means that the function’s val-
ues f(x) may make a large change when the input values x change by only
a small amount.
However it is important to note that there is a certain amount of impre-

cision inherit to the definition of Lipschitz continuity (188.2) and we have
to be circumspect about drawing conclusions when the Lipschitz constant
is large. The reason is that (188.2) is only an upper estimate on how
much the function changes and the actual change might be much smaller
than indicated by the constant.
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Example 188.5. From Example 188.4, we know that f(x) = x2 is
Lipschitz continuous on I = [−2, 2] with Lipschitz constant Lf = 4. It
is also Lipschitz constant on I with Lipschitz constant Lf = 121 since

|f(x2)− f(x1)| ≤ 4|x2 − x1| ≤ 121|x2 − x1|.

But the second value of Lf greatly overestimates the change in f ,
whereas the value Lf = 4 is just about right when x1 and x2 are near
2 since 22 − 1.92 = .39 = 3.9× (2 − 1.9) and 3.9 ≈ 4.

To determine the Lipschitz constant, we have to make some estimates and
the result can vary greatly depending on how difficult the estimates are to
compute and our skill at making estimates.
It is also important to note that the size and location of the interval in

the definition is important and if we change the interval then we expect to
get a different Lipschitz constant Lf .

Example 188.6. We show that f(x) = x2 is Lipschitz continuous on
the interval I = [2, 4], with Lipschitz constant Lf = 8. Starting with
(188.3), for x1 and x2 in [2, 4] we have

|x2 + x1| ≤ |x2|+ |x1| ≤ 4 + 4 = 8

so
|f(x2)− f(x1)| ≤ 8|x2 − x1|

for all x1 and x2 in [2, 4].

The reason that the Lipschitz constant is bigger in the second example
is clear from the graph, see Fig. 188.3, where we show the change in f
corresponding to equal changes in x near x = 2 and x = 4. Because f(x) =
x2 is steeper near x = 4, f changes more near x = 4 for a given change in
input.

Example 188.7. f(x) = x2 is Lipschitz continuous on I = [−8, 8] with
Lipschitz constant Lf = 16 and on I = [−400, 200] with Lf = 800.

In all of the examples involving f(x) = x2, we use the fact that the
interval under consideration is of finite size. A set of rational numbers I
is bounded with size a if |x| ≤ a for all x in I, for some (finite) rational
number a.

Example 188.8. The set of rational numbers I = [−1, 500] is bounded
but the set of even integers is not bounded.

While linear functions are Lipschitz continuous on the unbounded set Q,
functions that are not linear are usually only Lipschitz continuous on
bounded sets.
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−4 −2 0 2 4

16

FIGURE 188.3. The change in f(x) = x2 for equal changes in x near x = 2 and
x = 4.

Example 188.9. The function f(x) = x2 is not Lipschitz continuous
on the set Q of rational numbers. This follows from (188.3) because
|x1 + x2| can be made arbitrarily large by choosing x1 and x2 freely in
Q, so it is not possible to find a constant Lf such that

|f(x2)− f(x1)| = |x2 + x1||x2 − x1| ≤ Lf |x2 − x1|

for all x1 and x2 in Q.

The definition of Lipschitz continuity is due to the German mathemati-
cian Rudolph Lipschitz (1832-1903), who used his concept of continuity to
prove existence of solutions to some important differential equations. This
is not the usual definition of continuity used in Calculus courses, which
is purely qualitative, while Lipschitz continuity is quantitative. Of course
there is a strong connection, and a function which is Lipschitz continuous
is also continuous according to the usual definition of continuity, while the
opposite may not be true: Lipschitz continuity is a somewhat more de-
manding property. However, quantifying continuous behavior in terms of
Lipschitz continuity simplifies many aspects of mathematical analysis and
the use of Lipschitz continuity has become ubiquitous in engineering and
applied mathematics. It also has the benefit of eliminating some rather
technical issues in defining continuity that are tricky yet unimportant in
practice.
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188.4 Monomials

Continuing the investigation of continuous functions, we next show that
the monomials are Lipschitz continuous on bounded intervals, as we expect
based on their graphs.

Example 188.10. We show that the function f(x) = x4 is Lipschitz
continuous on I = [−2, 2] with Lipschitz constant Lf = 32. We choose
x1 and x2 in I and we want to estimate

|f(x2)− f(x1)| = |x42 − x41|

in terms of |x2 − x1|.
To do this we first show that

x42 − x41 = (x2 − x1)(x
3
2 + x22x1 + x2x

2
1 + x31)

by multiplying out

(x2 − x1)(x
3
2 + x22x1 + x2x

2
1 + x31)

= x42 + x32x1 + x22x
2
1 + x2x

3
1 − x32x1 − x22x

2
1 − x2x

3
1 − x41

and then cancelling the terms in the middle to get x42 − x41.

This means that

|f(x2)− f(x1)| = |x32 + x22x1 + x2x
2
1 + x31| |x2 − x1|.

We have the desired difference |x2 − x1| on the right and we just have
to bound the factor |x32 + x22x1 + x2x

2
1 + x31|. By the triangle inequality

|x32 + x22x1 + x2x
2
1 + x31| ≤ |x2|3 + |x2|2|x1|+ |x2||x1|2 + |x1|3.

Now because x1 and x2 are in I, |x1| ≤ 2 and |x2| ≤ 2, so

|x32 + x22x1 + x2x
2
1 + x31| ≤ 23 + 22 2 + 2 22 + 23 = 32

and

|f(x2)− f(x1)| ≤ 32|x2 − x1|.

Recall that the Lipschitz constant of f(x) = x2 on I is Lf = 4. The fact
that the Lipschitz constant of x4 is larger than the constant for x2 on [−2, 2]
is not surprising considering the plots of the two functions, see Fig. 186.12.
We can use the same technique to show that the function f(x) = xm is

Lipschitz continuous where m is any natural number.
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Example 188.11. The function f(x) = xm is Lipschitz continuous on
any interval I = [−a, a], where a is a positive rational number, with
Lipschitz constant Lf = mam−1. Given x1 and x2 in I, we want to
estimate

|f(x2)− f(x1)| = |xm2 − xm1 |
in terms of |x2 − x1|. We can do this using the fact that

xm2 − xm1 = (x2 − x1)(x
m−1
2 + xm−2

2 x1 + · · ·+ x2x
m−2
1 + xm−1

1 )

= (x2 − x1)

m−1∑

i=0

xm−1−i
2 xi1.

We show this by first multiplying out

(x2 − x1)

m−1∑

i=0

xm−1−i
2 xi1 =

m−1∑

i=0

xm−i
2 xi1 −

m−1∑

i=0

xm−1−i
2 xi+1

1

To see that there is a lot of cancellation among the terms in the middle
in the two sums on the right, we separate the first term out of the first
sum and the last term in the second sum

(x2 − x1)

m−1∑

i=0

xm−1−i
2 xi1 = xm2 +

m−1∑

i=1

xm−i
2 xi1 −

m−2∑

i=0

xm−1−i
2 xi+1

1 − xm1

and then changing the index in the second sum to get

(x2 − x1)

m−1∑

i=0

xm−1−i
2 xi1

= xm2 +

m−1∑

i=1

xm−i
2 xi1 −

m−1∑

i=1

xm−i
2 xi1 − xm1 = xm2 − xm1 .

This is tedious, but it is good practice to go through the details and
make sure this argument is correct.

This means that

|f(x2)− f(x1)| =
∣∣∣∣∣
m−1∑

i=0

xm−1−i
2 xi1

∣∣∣∣∣ |x2 − x1|.

We have the desired difference |x2 − x1| on the right and we just have
to bound the factor ∣∣∣∣∣

m−1∑

i=0

xm−1−i
2 xi1

∣∣∣∣∣ .
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By the triangle inequality

∣∣∣∣∣
m−1∑

i=0

xm−1−i
2 xi1

∣∣∣∣∣ ≤
m−1∑

i=0

|x2|m−1−i|x1|i.

Now because x1 and x2 are in [−a, a], |x1| ≤ a and |x2| ≤ a. So

∣∣∣∣∣
m−1∑

i=0

xm−1−i
2 xi1

∣∣∣∣∣ ≤
m−1∑

i=0

am−1−iai =
m−1∑

i=0

am−1 = mam−1.

and
|f(x2)− f(x1)| ≤ mam−1|x2 − x1|.

188.5 Linear Combinations of Functions

Now that we have seen that the monomials are Lipschitz continuous on
a given bounded interval, it is a short step to show that any polynomial
is Lipschitz continuous on a given bounded interval. But rather than just
do this for polynomials, we show that a linear combination of arbitrary
Lipschitz continuous functions is Lipschitz continuous
Suppose that f1 is Lipschitz continuous with constant L1 and f2 is Lip-

schitz continuous with constant L2 on the interval I. Note that here (and
below) we condense the notation and write e.g. L1 instead of Lf1 . Then
f1 + f2 is Lipschitz continuous with constant L1 + L2 on I, because if we
choose two points x and y in I, then

|(f1 + f2)(y)− (f1 + f2)(x)| = |(f1(y)− f1(x)) + (f2(y)− f2(x))|
≤ |f1(y)− f1(x)| + |f2(y)− f2(x)|
≤ L1|y − x|+ L2|y − x|
= (L1 + L2)|y − x|

by the triangle inequality. The same argument shows that f2−f1 is Lipschitz
continuous with constant L1+L2 as well (not L1−L2 of course!). It is even
easier to show that if f(x) is Lipschitz continuous on an interval I with
Lipschitz constant L then cf(x) is Lipschitz continuous on I with Lipschitz
constant |c|L.
From these two facts, it is a short step to extend the result to any linear

combination of Lipschitz continuous functions. Suppose that f1, · · · , fn are
Lipschitz continuous on I with Lipschitz constants L1, · · · , Ln respectively.
We use induction, so we begin by considering the linear combination of two
functions. From the remarks above, it follows that c1f1 + c2f2 is Lipschitz
continuous with constant |c1|L1+ |c2|L2. Next given i ≤ n, we assume that
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c1f1 + · · · + ci−1fi−1 is Lipschitz continuous with constant |c1|L1 + · · · +
|ci−1|Li−1. To prove the result for i, we write

c1f1 + · · ·+ cifi =
(
c1f1 + · · ·+ ci−1fi−1

)
+ cnfn.

But the assumption on
(
c1f1 + · · ·+ ci−1fi−1

)
means that we have written

c1f1 + · · ·+ cifi as the sum of two Lipschitz continuous functions, namely(
c1f1 + · · · + ci−1fi−1

)
and cnfn. The result follows by the result for the

linear combination of two functions. By induction, we have proved

Theorem 188.1 Suppose that f1, · · · , fn are Lipschitz continuous on I
with Lipschitz constants L1, · · · , Ln respectively. Then the linear combina-
tion c1f1 + · · ·+ cnfn is Lipschitz continuous on I with Lipschitz constant
|c1|L1 + · · ·+ |cn|Ln.
Corollary 188.2 A polynomial is Lipschitz continuous on any bounded
interval.

Example 188.12. We show that the function f(x) = x4 − 3x2 is Lip-
schitz continuous on [−2, 2], with constant Lf = 44. For x1 and x2 in
[−2, 2], we have to estimate

|f(x2)− f(x1)| = |(x42 − 3x22)− (x41 − 3x21)|
= |(x42 − x41)− (3x22 − 3x21)|
≤ |x42 − x41|+ 3|x22 − x21|.

From Example 188.11, we know that x4 is Lipschitz continuous on
[−2, 2] with constant 32 while x2 is Lipschitz continuous on [−2, 2] with
Lipschitz constant 4. Therefore

|f(x2)− f(x1)| ≤ 32|x2 − x1|+ 3× 4|x2 − x1| = 44|x2 − x1|.

188.6 Bounded Functions

Lipschitz continuity is related to another important property of a function
called boundedness. A function f is bounded on a set of rational numbers
I if there is a constant M such that, see Fig. 188.4

|f(x)| ≤M for all x in I.

In fact if we think about the estimates we have made to verify the definition
of Lipschitz continuity (188.2), we see that in every case these involved
showing that some function is bounded on the given interval.

Example 188.13. To show that f(x) = x2 is Lipschitz continuous on
[−2, 2] in Example 188.4, we proved that |x1 + x2| ≤ 4 for x1 and x2 in
[−2, 2].
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x

y

y = f(x)

y =M

y = −M

FIGURE 188.4. A bounded function on I .

It turns out that a function that is Lipschitz continuous on a bounded
domain is automatically bounded on that domain. To be more precise,
suppose that a function f is Lipschitz continuous with Lipschitz constant
Lf on a bounded set I with size a and choose a point y in I. Then for any
other point x in I

|f(x)− f(y)| ≤ Lf |x− y|.

First we know that |x− y| ≤ |x|+ |y| ≤ 2a. Also, since |b+ c| ≤ |d| means
that |b| ≤ |d|+ |c| for any numbers a, b, c, we get

|f(x)| ≤ |f(y)|+ Lf |x− y| ≤ |f(y)|+ 2Lfa.

Even though we don’t know |f(y)|, we do know that it is finite. This shows
that |f(x)| is bounded by the constant M = |f(y)|+ 2Lfa for any x in Q.
We express this by saying that f(x) is bounded on I. We have thus proved

Theorem 188.3 A Lipschitz continuous function on a bounded set I is
bounded on I.

Example 188.14. In Example 188.12, we showed that f(x) = x4+3x2

is Lipschitz continuous on [−2, 2] with Lipschitz constant Lf = 44.
Using this argument, we find that

|f(x)| ≤ |f(0)|+ 44|x− 0| ≤ 0 + 44× 2 = 88

for any x in [−2, 2]. Since x4 is increasing for 0 ≤ x, in fact we know
that |f(x)| ≤ |f(2)| = 16 for any x in [−2, 2]. So the estimate on the
size of |f | using the Lipschitz constant is not very accurate.
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188.7 The Product of Functions

The next step in investigating which functions are Lipschitz continuous is
to consider the product of two Lipschitz continuous functions on a bounded
interval I. We show that the product is also Lipschitz continuous on I. More
precisely, if f1 is Lipschitz continuous with constant L1 and f2 is Lipschitz
continuous with constant L2 on a bounded interval I then f1f2 is Lipschitz
continuous on I. We choose two points x and y in I and estimate by using
the old trick of adding and subtracting the same quantity

|f1(y)f2(y)− f1(x)f2(x)|
= |f1(y)f2(y)− f1(y)f2(x) + f1(y)f2(x)− f1(x)f2(x)|
≤ |f1(y)f2(y)− f1(y)f2(x)| + |f1(y)f2(x)− f1(x)f2(x)|
= |f1(y)| |f2(y)− ff2(x)| + |f2(x)| |f1(y)− f1(x)|

Now Theorem 188.3, which says that Lipschitz continuous functions are
bounded, implies there is some constant M such that |f1(y)| ≤ M and
|f2(x)| ≤ M for x, y ∈ I. Using the Lipschitz continuity of f1 and f2 in I,
we find

|f1(y)f2(y)− f1(x)f2(x)| ≤ML1|y − x|+ML2|y − x|
=M(L1 + L2)|y − x|.

We summarize

Theorem 188.4 If f1 and f2 are Lipschitz continuous on a bounded in-
terval I then f1f2 is Lipschitz continuous on I.

Example 188.15. The function f(x) = (x2 +5)10 is Lipschitz contin-
uous on the set I = [−10, 10] because x2 +5 is Lipschitz continuous on
I and therefore (x2 + 5)10 = (x2 + 5)(x2 + 5) · · · (x2 + 5) is as well by
Theorem 188.4.

188.8 The Quotient of Functions

Continuing our investigation, we now consider the ratio of two Lipschitz
continuous functions. In this case however, we require more information
about the function in the denominator than just that it is Lipschitz con-
tinuous. We also have to know that it does not become too small. To
understand this, we first consider an example.

Example 188.16. We show that f(x) = 1/x2 is Lipschitz continuous
on the interval [1/2, 2], with Lipschitz constant L = 64. We choose two
points x1 and x2 in Q and we estimate the change

|f(x2)− f(x1)| =
∣∣∣∣
1

x22
− 1

x21

∣∣∣∣
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by first doing some algebra

1

x22
− 1

x21
=

x21
x21x

2
2

− x22
x21x

2
2

=
x21 − x22
x21x

2
2

=
(x1 + x2)(x1 − x2)

x21x
2
2

.

This means that

|f(x2)− f(x1)| =
∣∣∣∣
x1 + x2
x21x

2
2

∣∣∣∣ |x2 − x1|.

Now we have the good difference on the right, we just have to bound
the factor. The numerator of the factor is the same as in Example 188.4,
and we know that

|x1 + x2| ≤ 4.

We also know that

x1 ≥ 1

2
implies

1

x1
≤ 2 implies

1

x21
≤ 4

and likewise 1
x2
2
≤ 4. So we get

|f(x2)− f(x1)| ≤ 4× 4× 4 |x2 − x1| = 64|x2 − x1|.

In this example, we have to use the fact that the left-hand endpoint of the
interval I is 1/2. The closer the left-hand endpoint is to zero, the larger
the Lipschitz constant will be. In fact, 1/x2 is not Lipschitz continuous on
[0, 2].
We mimic this example in the general case f1/f2 by assuming that the

denominator f2 is bounded below by a positive constant. We give the proof
of the following theorem as an exercise.

Theorem 188.5 Assume that f1 and f2 are Lipschitz continuous func-
tions on a bounded set I with constants L1 and L2 and moreover assume
there is a constant m > 0 such that |f2(x)| ≥ m for all x in I. Then f1/f2
is Lipschitz continuous on I.

Example 188.17. The function 1/x2 does not satisfy the assumptions
of Theorem 188.5 on the interval [0, 2] and we know that it is not
Lipschitz continuous on that interval.

188.9 The Composition of Functions

We conclude the investigation into Lipschitz continuity by considering the
composition of Lipschitz continuous functions. This is actually easier than
either products or ratios of functions. The only complication is that we
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have to be careful about the domains and ranges of the functions. Consider
the composition f2(f1(x)). Presumably, we have to restrict x to an interval
on which f1 is Lipschitz continuous and we also have to make sure that the
values of f1 are in a set on which f2 is Lipschitz continuous.
So we assume that f1 is Lipschitz continuous on I1 with constant L1 and

that f2 is Lipschitz continuous on I2 with constant L2. If x and y are points
in I1 then as long as f1(x) and f1(y) are in I2 then

|f2(f1(y))− f2(f1(x))| ≤ L2|f1(y)− f1(x)| ≤ L1L2|y − x|.

We summarize as a theorem.

Theorem 188.6 Let f1 be Lipschitz continuous on a set I1 with Lipschitz
constant L1 and f2 be Lipschitz continuous on I2 with Lipschitz constant
L2 such that f1(I1) ⊂ I2. Then the composite function = f2◦f1 is Lipschitz
continuous on I1 with Lipschitz constant L1L2.

Example 188.18. The function f(x) = (2x − 1)4 is Lipschitz con-
tinuous on any bounded interval since f1(x) = 2x − 1 and f2(x) = x4

are Lipschitz continuous on any bounded interval. If we consider the
interval [−.5, 1.5] then f1(I) ⊂ [−2, 2]. From Example 188.10, we know
that x4 is Lipschitz continuous on [−2, 2] with Lipschitz constant 32
while the Lipschitz constant of 2x − 1 is 2. Therefore, f is Lipschitz
continuous on [−.5, 1.5] with constant 64.

Example 188.19. The function 1/(x2 − 4) is Lipschitz continuous on
any closed interval that does not contain either 2 or −2. This follows
because f1(x) = x2−4 is Lipschitz continuous on any bounded interval
while f2(x) = 1/x is Lipschitz continuous on any closed interval that
does not contain 0. To avoid zero, we must avoid x2 = 4 or x = ±2.

188.10 Functions of Two Rational Variables

Until now, we have considered functions f(x) of one rational variable x.
But of course, there are functions that depend on more than one input.
Consider for example the function

f(x1, x2) = x1 + x2,

which to each pair of rational numbers x1 and x2 associates the sum x1+x2.
We may write this as f : Q × Q → Q, meaning that to each x1 ∈ Q and
x2 ∈ Q we associate a value f(x1, x2) ∈ Q. For example, f(x1, x2) = x1+x2.
We say that f(x1, x2) is a function of two independent rational variables x1
and x2. Here, we think of Q×Q as the set of all pairs (x1, x2) with x1 ∈ Q
and x2 ∈ Q.
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We shall write Q2 = Q×Q and consider f(x1, x2) = x1+x2 as a function
f : Q2 → Q. We will also consider functions f : I × J → Q, where I and
J are subsets such as intervals, of Q. This just means that for each x1 ∈ I
and x2 ∈ J , we associate a value f(x1, x2) ∈ Q.
We may naturally extend the concept of Lipschitz continuity to functions

of two rational variables. We say that f : I×J → Q is Lipschitz continuous
with Lipschitz constant Lf if

|f(x1, y1)− f(x2, y2)| ≤ Lf(|x1 − x2|+ |y1 − y2|)

for x1, x2 ∈ I and y1, y2 ∈ J .

Example 188.20. The function f : Q2 → Q defined by f(x1, x2) =
x1 + x2 is Lipschitz continuous with Lipschitz constant Lf = 1.

Example 188.21. The function f : [0, 2] × [0, 2] → Q defined by
f(x1, x2) = x1x2 is Lipschitz continuous with Lipschitz constant Lf =
2, since for x1, x2 ∈ [0, 1]

|x1x2 − y1y2| = |x1x2 − y1x2 + y1x2 − y1y2|
≤ |x1 − y1|x2 + y1|x2 − y2| ≤ 2(|x1 − y1|+ |x2 − y2|).

188.11 Functions of Several Rational Variables

The concept of a function also extends to several variables, i.e. we con-
sider functions f(x1, ...., xd) of d rational variables. We write f : Rd → Q
if for given rational numbers x1, · · · , xd, a rational number denoted by
f(x1, ...., xd) is given.
The definition of Lipschitz continuity also directly extends. We say that

f : Qd → Q is Lipschitz continuous with Lipschitz constant Lf if for all
x1, · · · , xd ∈ Q and y1, · · · , yd ∈ Q ,

|f(x1, ..., xd)− f(y1, ..., yd)| ≤ Lf(|x1 − y1|+ · · ·+ |xd − yd|).

Example 188.22. The function f : Rd → Q defined by f(x1, ..., xd) =
x1+x2+ · · ·xd is Lipschitz continuous with Lipschitz constant Lf = 1.
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Chapter 188 Problems

188.1. Verify the claims in Example 188.7.

188.2. Show that f(x) = x2 is Lipschitz continuous on [10, 13] directly and
compute a Lipschitz constant.

188.3. Show that f(x) = 4x − 2x2 is Lipschitz continuous on [−2, 2] directly
and compute a Lipschitz constant.

188.4. Show that f(x) = x3 is Lipschitz continuous on [−2, 2] directly and
compute a Lipschitz constant.

188.5. Show that f(x) = |x| is Lipschitz continuous on Q directly and compute
a Lipschitz constant.

188.6. In Example 188.10, we show that x4 is Lipschitz continuous on [−2, 2]
with Lipschitz constant L = 32. Explain why this is a reasonable value for the
Lipschitz constant.

188.7. Show that f(x) = 1/x2 is Lipschitz continuous on [1, 2] directly and
compute the Lipschitz constant.

188.8. Show that f(x) = 1/(x2 + 1) is Lipschitz continuous on [−2, 2] directly
and compute a Lipschitz constant.

188.9. Compute the Lipschitz constant of f(x) = 1/x on the intervals (a) [.1, 1],
(b) [.01, 1], and [.001, 1].

188.10. Find the Lipschitz constant of the function f(x) =
√
x with D(f) =

(δ,∞) for given δ > 0.

188.11. Explain why f(x) = 1/x is not Lipschitz continuous on (0, 1].

188.12. (a) Explain why the function

f(x) =

{
1, x < 0

x2, x ≥ 0

is not Lipschitz continuous on [−1, 1]. (b) Is f Lipschitz continuous on [1, 4]?

188.13. Suppose the Lipschitz constant L of a function f is equal to L = 10100.
Discuss the continuity properties of f(x) and in particular decide if f continuous
from a practical point of view.

188.14. Assume that f1 is Lipschitz continuous with constant L1, f2 is Lipschitz
continuous with constant L2 on a set I , and c is a number. Show that f1 − f2 is
Lipschitz continuous with constant L1 +L2 on I and cf1 is Lipschitz continuous
with constant cL1 on I .
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188.15. Show that the Lipschitz constant of a polynomial f(x) =
∑n
i=0 aix

i on
the interval [−c, c] is

L =
n∑

i=1

|ai|ici−1 = |a1|+ 2c|a2|+ · · ·+ ncn−1|an|.

188.16. Explain why f(x) = 1/x is not bounded on [−1, 0].

188.17. Prove Theorem 188.5.

188.18. Use the theorems in this chapter to show that the following functions
are Lipschitz continuous on the given intervals and try to estimate a Lipschitz
constant or prove they are not Lipschitz continuous.

(a) f(x) = 2x4 − 16x2 + 5x on [−2, 2] (b)
1

x2 − 1
on

[
−1

2
,
1

2

]

(c)
1

x2 − 2x− 3
on [2, 3) (d)

(
1 +

1

x

)4

on [1, 2]

188.19. Show the function

f(x) =
1

c1x+ c2(1− x)

where c1 > 0 and c2 > 0 is Lipschitz continuous on [0, 1].
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189
Sequences and limits

He sat down and thought, in the most thoughtful way he could think.
(Winnie-the-Pooh)

189.1 A First Encounter with Sequences and
Limits

The decimal expansions of rational numbers discussed in chapter Rational
Numbers leads into the concepts sequence, converging sequence and limit of
a sequence, which play a fundamental role in mathematics. The develop-
ment of calculus has largely been a struggle to come to grips with certain
evasive aspects of these concepts. We will try to uncover the mysteries by
being as concrete and down-to-earth as possible.
We begin recalling the decimal expansion 1.11... of 10

9 , and that by
(184.7)

10

9
= 1.11 · · ·11n +

1

9
10−n. (189.1)

Rewriting this equation and replacing for simplicity 1
910

−n by the up-
per bound 10−n, we get the following estimate for the difference between
1.111 · · ·11n and 10/9,

∣∣∣∣
10

9
− 1.11 · · ·11n

∣∣∣∣ ≤ 10−n. (189.2)
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This estimate shows that we may consider 1.11 · · ·11n as an approximation
of 10/9, which becomes increasingly accurate as the number of decimal
places n increases. In other words, the error |10/9 − 1.11 · · ·11n| can be
made as small as we please by taking n sufficiently large. If we want the
error to be smaller than or equal to 10−10, then we simply choose n ≥ 10.
We may view the successive approximations 1.1, 1.11, 1.111, 1.11...11n,

and so on, as a sequence of numbers an, with n = 1, 2, 3, ..., where a1 = 1.1,
a2 = 1.11,..., an = 1.11...11n,..., are called the elements of the sequence.
More generally, a sequence a1, a2, a3,..., is a never-ending list of elements
a1, a2, a3,..., where the index takes successively the values of the natural
numbers 1, 2, 3, .... A sequence of rational numbers is a list a1, a2, a3,...,
where each element an is a rational number. We will denote a sequence by

{an}∞n=1

which thus means the never ending list a1, a2, a3,..., of elements an, with
the index n going through the natural numbers n = 1, 2, 3, .... The symbol
∞, called “infinity”, indicates that the list continues for ever in the same
sense that the natural numbers 1, 2, 3, ..., continues for ever without coming
to an end.
We now return to the sequence of rational numbers {an}∞n=1, where

an = 1.11..11n, that is the sequence {1.11..11n}∞n=1. The accuracy of ele-
ment an = 1.11...11n, as an approximation of 10

9 , increases as the number
of decimals n increases. Each number in the sequence in turn is a bet-
ter approximation to 10/9 than the preceding number and as we move
from left to right the numbers become ever closer to 10/9. An advantage
of considering the sequence {1.11..11n}∞n=1 or never ending list 1.1, 1.11,
1.111,..., is that we are ready to meet any accuracy requirement that could
be posed. If we just consider one element, say 1.11..1110, then we could
not meet an accuracy requirement in the approximation of 10

9 of say 10−15.
But if we have the whole sequence at hand, then we can pick the element
1.11..1116 or 1.11..1117 or more generally any 1.11..11n with n ≥ 15, as a
decimal approximation of 10

9 with an error less than 10−15. The sequence
thus gives us a whole “bag” of numbers, or a collection of approximations
with which we can meet any accuracy requirement in the approximation of
10
9 . The sequence 1.1, ..., 1.11..11n, ..., thus can be viewed as a collection of
successively more accurate approximations of 10

9 , where we can satisfy any
desired accuracy.
We say that the sequence {1.11..11n}∞n=1 converges to the value 10

9 , since
the difference between 10

9 and 1.11..11n becomes smaller than any given
positive number if only we take n large enough, as follows from (189.2).
We say that 10

9 is the limit of the sequence {an}∞n=1={1, 11..11n}∞n=1. We
will express the convergence of the sequence {an}∞n=1 with elements an =
1.11...11n, as follows:

lim
n→∞

an =
10

9
or lim

n→∞
1.11..11n =

10

9
.
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The limit 10
9 does not have a finite decimal expansion. The elements

1.11..11n of the converging sequence {1.11..11n}∞n=1 are finite decimal ap-
proximations of the limit 10

9 , with an error which is smaller than any given
positive number if we only take n large enough.
Suppose that we restrict ourselves to work with finite decimal expansions,

which is what a computer usually does. In this case we cannot exactly
express the value 10

9 with the available resources, because 10
9 does not have

a finite decimal expansion. As a substitute or approximation we may choose
for example 1.11..1110, but there is limit to the accuracy with this single
element. It would not be entirely correct to say that 10

9 = 1.11..1110. If
we instead have the whole sequence {1.11..11n}∞n=1 at hand, then we can
meet any accuracy by choosing the element 1.11..11n with n large enough.
Choosing more and more decimals, we could increase the accuracy to any
desired degree.
The sequence {1.11..11n}∞n=1 includes finite decimal approximations of

10
9 satisfying any given positive tolerance or accuracy requirement. This is
sometimes expressed as

1.111... =
10

9
,

where the three little dots are there to indicate that any precision could
be attained by taking sufficiently many decimals (all equal to 1). Another
way of writing this, would be

lim
n→∞

1.11..11n =
10

9
,

avoiding the possible ambiguity using the three little dots.

189.2 Socket Wrench Sets

To tighten or loosen a hex bolt with head diameter 2/3, a mechanic needs to
use a socket wrench of a slightly bigger size. The tolerance on the difference
between the sizes of the bolt and the wrench depend on the tightness, the
material of the bolt and the wrench, and conditions such as whether the
bolt threads are lubricated and whether the bolt is rusty or not. If the
wrench is too large then the head of the bolt will simply be stripped before
the bolt is tightened or loosened. We show two wrenches with different
tolerances in Fig. 189.1.
An amateur mechanic would have one socket, of say dimension 0.7.

A pro mechanic would perhaps have 10 sockets of dimensions 0.7, 0.67,
0.667,....,0.66 · · ·66710. Both the amateur and pro would get stuck under
sufficiently tough conditions because the socket would be too large to do
the job.
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FIGURE 189.1. Two socket wrenches with different tolerances.

A ideal expert mechanic would have the whole sequence {0.66 · · ·67n}∞n=1

at his/her disposal with the error of wrench number n being estimated by

|0.66 · · ·67n − 2

3
| ≤ 10−n.

The ideal expert can thus reach into the tool chest and pull out a wrench
that meets any accuracy requirement, and would thus be able to turn the
bolt under arbitrarily tough conditions, or meet any crank torque specified
by a bicycle manufacturer. More precisely, the ideal expert could be thought
of as being able to construct a socket himself to meet any given tolerance or
accuracy. If necessary, the ideal mechanic could construct a wrench of for
example the dimension 0.66 · · ·6720, unless he already has such a wrench
in his (big) tool chest. The amateur and pro mechanic would not have this
capability of constructing their own wrenches, but would have to be content
with their ready-made wrench sets (which they could buy in the hard-ware
store). We expect the cost to construct a wrench of dimension 0.6 · · ·67n
to increase (rapidly) with n, since the precision in the construction process
has to improve.
As a general point, computing the numbers 0.66 · · ·67n by long division

of 2
3 , requires more work as n increases. What we gain from doing more

work is better accuracy in using 0.66 · · ·67n as an approximation to 2
3 .

Trading work for accuracy is the central idea behind solving equations
using computation, especially on a computer. An estimate like (189.2) gives
a quantitative measurement of how much accuracy we gain for each increase
in work and so such estimates are useful not only to mathematicians but
to engineers and scientists.
The need of approximating better and better in this case may be seen as

an incompatibility of two systems: the bolt has dimension 2
3 in the system

of rational numbers, and the wrenches come in the decimal system 0.7,
0.67, 0.667,... and there is no wrench of size exactly 2

3 .
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189.3 J.P. Johansson’s Adjustable Wrenches

The adjustable wrench is a Swedish invention created 1891 by the ge-
nius J.P. Johansson (1839-1924) see Fig. 189.2. In principle the adjustable
wrench is an analog device which fits a bolt of any size within a certain
range. Every mechanic knows that an adjustable wrench may fail in cases
when a properly chosen fixed size wrench does not, because the size of the
adjustable wrench is not completely stable under increasing torque. .

FIGURE 189.2. The Swedish inventor J.P.Johansson with two adjustable
wrenches of different design.

189.4 The Power of Language: From Infinitely
Many to One

The decimal expansion 0.6666.... of 2
3 contains infinitely many decimals.

The sequence {0.66 · · ·667n}∞n=1 contains infinitely many elements, which
are increasingly accurate approximations of 2

3 . Talking or thinking of in-
finitely many decimals or infinitely many elements, presents a serious dif-
ficulty, which is handled by introducing the concept of a sequence. A se-
quence has infinitely many elements, but the sequence itself is just one
entity. We thus group the infinitely many elements together to form one
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sequence, and thus pass from infinity to one. After this semantic construc-
tion, we are thus able to speak about one sequence and may momentarily
forget that the sequence in fact has infinitely many elements.
This would be like speaking about the expert mechanics tool chest con-

taining the sequence {0.66 · · ·667n}∞n=1 of infinitely many wrenches as one
entity. One tool chest with infinitely many wrenches. To call a tool chest
a wrench seems strange initially, but we could get there by first calling
the tool chest something like a “super-wrench”, and then later omit the
“super”.
Analogously, we could say that 0.6666.... is a “super-number” because

it has infinitely many decimals, and then forget the “super” and say that
0.6666...., is a number. In fact, this makes complete sense since we identify
0.6666.... with 2

3 , which is a number. Below, we shall meet non-periodic
infinite decimal expansions that do not correspond to rational numbers.
Initially, we may think of these as some kind of “super-number”, and then
later will refer such numbers as “real numbers”.
The discussion illustrates the usefulness of the concept of one set or

sequence with infinitely many elements. Of course, we should be aware of
the risk involved using the language to hide real facts. Political language
is often used this way, which is one reason for the eroding credibility of
politicians. As mathematicians, there is no reason that we should try to be
as honest as possible, and use the language as clearly as possible.

189.5 The ǫ−N Definition of a Limit

The mathematical formulation of the idea of a limit says that the terms an
of a convergent sequence {an}∞n=1 differ from the limit A with as little as
we please if only the index n is large enough, and we decided to write this
as

lim
n→∞

an = A,

There is a mathematical jargon to express this fact that has become ex-
tremely popular. It was developed by Karl Weierstrass (1815-97), see
Fig. 189.3 and takes the following form: The limit of the sequence {an}∞n=1

equals A, which we write as

lim
n→∞

an = A,

if for any (rational) ǫ > 0 there is a natural number N such that

|an −A| ≤ ǫ for all n ≥ N

For example, we know that the value of 10/9 is approximated by the element
1.11 · · ·1n from the sequence {1.11 · · ·1n} to any specified accuracy (bigger
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than zero) by taking n sufficiently large. We know from (189.2) that

|10
9

− 1.11 · · ·1n| ≤ 10−n,

and thus

|10
9

− 1.11 · · ·1n| ≤ ǫ

if 10−n ≤ ǫ. We can phrase this as

|10
9

− 1.11 · · ·1n| ≤ ǫ

if n ≥ N , where 10−N ≤ ǫ. If ǫ = .p1p2 · · · , where p1 = p2 = · · · = pm = 0,
while pm+1 6= 0, then we may choose any N such that N ≥ m. We see that
choosing ǫ smaller, requires N to be bigger, and thus N depends on ǫ.
We emphasize that the ǫ − N definition of convergence is a fancy way

of saying that the difference |A− an| can be made smaller than any given
positive number if only n is taken large enough.
There is a risk (and temptation) in using the ǫ−N definition of conver-

gence, instead of the more pedestrian “as small as we please if only n is
large enough”. The statement “|A−an| can be made smaller than any given
positive number if only n is large enough” is a very qualitative statement.
Nothing is said about how large n has to be to reach a certain accuracy. A
very qualitative statement is necessarily a bit vague. On the other hand,
the statement “for any ǫ > 0 there is an N such that |A − an| ≤ ǫ if
n ≥ N” has the form of a very exact and precise statement, while in fact
it may be as qualitative as the first statement, unless the dependence of N
on ǫ is made clear. The risk is thus that using the ǫ − N -jargon, we may
get confused and believe that something vague, in fact is very precise. Of
course there is also a temptation in this, which relates to the general idea
of mathematics as something being extremely precise. So be cautious and
don’t get fooled by simple tricks: the ǫ−N limit definition is vague to the
extent the dependence of N on ǫ is vague.
The concept of a limit of a sequence of numbers is central to calculus.

It is closely connected to never-ending decimal expansions, that is decimal
expansions with infinitely many non-zero decimals. The elements in the
sequence with this connection are obtained by successively taking more and
more decimals into account. In fact, the fundamental reason for looking
at sequences comes form this connection. However, as happens, the idea
of a sequence and limit has taken on a life of its own, which has been
plaguing many students of calculus. We will try to refrain from excesses
in this direction and keep a strong connection with the original motivation
for introducing the concepts of sequences and limits, namely describing
successively better and better approximations of solutions of equations.
We shall now practice the ǫ−N jargon in a couple of examples to show

that certain sequences have limits. The sequences we present are “artifi-
cial”, that is given by cooked-up formulas, but we use them to illustrate
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FIGURE 189.3. Weierstrass to Sonya Kovalevskaya: “...dreamed and been enrap-
tured of so many riddles that remain for us to solve, on finite and infinite spaces,
on the stability of the world system, and on all the other major problems of the
mathematics and the physics of the future. ... you have been close ...throughout
my entire life ... and never have I found anyone who could bring me such under-
standing of the highest aims of science and such joyful accord with my intentions
and basic principles as you”.

basic aspects. After going through these examples, the reader should be
able to look through the apparent mystery of the ǫ − N definition, and
understand that it expresses something intuitively quite simple. But re-
member: the ǫ − N definition of a limit is vague to the extent that the
dependence of N on ǫ is vague.

Example 189.1. The limit of the sequence { 1
n}∞n=1 equals 0, i.e.

lim
n→∞

1

n
= 0.

Note that this is obvious simply because 1
n can be made as close to

0 as we please by taking n large enough. We shall now phrase this
obvious (and trivial fact) using the ǫ − N jargon. We thus have to
satisfy the devious mathematician who gives an ǫ > 0 and asks for a
natural number N such that

∣∣∣∣
1

n
− 0

∣∣∣∣ ≤ ǫ (189.3)

for all n ≥ N . Well, to satisfy this request we chooseN to be any natural
number larger than (or equal to) 1/ǫ, for instance the smallest natural
number larger than or equal to 1/ǫ. Then (189.3) holds for n ≥ N , and
we have satisfied the devious demand, which shows that limn→∞ 1

n = 0.
In this example, the connection between ǫ and N is very clear: we can
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take N to be the smallest natural number larger than or equal to 1/ǫ.
For example, if ǫ = 1/100, then N = 100. We hope the reader can make
the connection of the simple idea that 1/n gets as close to 0 as we please
by taking n sufficiently large, and the more pompous phrasing of this
idea in the ǫ−N -jargon.

Example 189.2. We next show that the limit of the sequence { n
n+1}∞n=1

= { 1
2 ,

2
3 , · · · } equals 1, that is

lim
n→∞

n

n+ 1
= 1. (189.4)

We compute ∣∣∣∣1−
n

n+ 1

∣∣∣∣ =
∣∣∣∣
n+ 1− n

n+ 1

∣∣∣∣ =
1

n+ 1
,

which shows that n
n+1 is arbitrarily close to 1 if n is large enough, and

thus proves the claim. We now phrase this using the ǫ−N jargon. Let
thus ǫ > 0 be given. Now 1

n+1 ≤ ǫ provided that n ≥ 1/ǫ − 1. Hence∣∣∣1− n
n+1

∣∣∣ ≤ ǫ for all n ≥ N provided N is chosen so that N ≥ 1/ǫ− 1.

Again this proves the claim.

Example 189.3. The sum

1 + r + r2 + · · ·+ rn =

n∑

i=0

ri = sn

is said to be a finite geometric series of order n with factor r, including
the powers ri of the factor r up to i = n. We considered this series
above with r = 0.1 and sn = 1.11 · · · 11n. We now consider an arbitrary
value of the factor r in the range |r| < 1. We recall the formula

sn =

n∑

i=0

ri =
1− rn+1

1− r

valid for any r 6= 1. What happens as the number n of terms get
bigger and bigger? To answer this it is natural to consider the sequence
{sn}∞n=1. We shall prove that if |r| < 1, then

lim
n→∞

sn = lim
n→∞

(1 + r + r2 + · · ·+ rn) =
1

1− r
, (189.5)

which we will write as

∞∑

i=0

ri =
1

1− r
if |r| < 1.
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Intuitively, we feel that this is correct, because rn+1 gets as small as we
please by taking n large enough (remember that |r| < 1). We say that∑∞

i=0 r
i is an infinite geometric series with factor r.

We now give an ǫ −N proof of (189.5). We need to show that for any
ǫ > 0, there is an N such that

∣∣∣∣
1− rn+1

1− r
− 1

1− r

∣∣∣∣ =
∣∣∣∣
rn+1

1− r

∣∣∣∣ ≤ ǫ

for all n ≥ N . To this end it is sufficient, since |r| < 1, to find N such
that

|r|N+1 ≤ ǫ |1− r| (189.6)

Since |r| < 1, we can make |r|N+1 as small as we please by taking N
sufficiently large, and thus we can also satisfy the inequality (189.6) by
taking N sufficiently large. Below, we will define a function called the
logarithm that we can use to get a precise value for N as a function of
ǫ from (189.6).

189.6 A Converging Sequence Has a Unique Limit

The limit of a converging sequence is uniquely defined. This should be
self-evident from the fact that it is impossible to be arbitrarily close to
two different numbers at the same time. Try! We now also give a more
lengthy proof using a type of argument often found in math books. The
reader could profit from going through this argument and understanding
that something seemingly difficult, in fact can hide a very simple idea.
We start from the following variation of the triangle inequality, see Prob-

lem 184.15,
|a− b| ≤ |a− c|+ |c− b| (189.7)

which holds for all a, b, and c. Suppose that the sequence {an}∞n=1 converges
to two possibly different numbers A1 and A2. Using (189.7) with a = A1,
b = A2, and c = an, we get

|A1 −A2| ≤ |an −A1|+ |an −A2|

for any n. Now because an converges to A1, we can make |an − A1| as
small as we like, and in particular smaller than 1

4 |A1 −A2| if A1 6= A2, by
taking n large enough. Likewise we can make |an − A2| ≤ 1

4 |A1 − A2| by
taking n large enough. By (189.7), this means that |A1 −A2| ≤ 1

2 |A1 −A2|
for n large, which can only hold if A1 = A2, and thus contradicts the
obstructional assumption A1 6= A2, which therefore must be rejected.
We note that if limn→∞ an = A then also, for example, limn→∞ an+1 =

A, and limn→∞ an+7 = A. In other word, only the “very tail” of a sequence
{an} matters to the limit limn→∞ an.
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189.7 Lipschitz Continuous Functions and
Sequences

A basic reason for introducing the concept of a Lipschitz continuous func-
tion f : Q → Q is its relation to sequences of rational numbers. The
fundamental issue is the following. Let {an} be a converging sequence with
rational limit limn→∞ an and let f : Q → Q be a Lipschitz continuous
function with Lipschitz constant L. What can be said about the sequence
{f(an)}? Does it converge and if so, to what?
The answer is easy to state: the sequence {f(an)} converges and

lim
n→∞

f(an) = f( lim
n→∞

an).

The proof is also easy. By the Lipschitz continuity of f : Q → Q, we have

|f(am)− f( lim
n→∞

an)| ≤ L|am − lim
n→∞

an|.

Since {an} converges to A, the right-hand side can be made smaller than
any given positive number by taking m large enough, and thus we can also
make the left hand side smaller than any positive number by choosing m
large enough, which shows the desired result.
Note that since limn→∞ an is a rational number, the function value

f(limn→∞ an) is well defined since we assume that f : Q → Q.
We see that it is sufficient that f(x) is Lipschitz continuous on an interval

I containing all the elements an as well as limn→∞ an. We have thus proved
the following fundamental result.

Theorem 189.1 Let {an} be a sequence with rational limit limn→∞ an.
Let f : I → Q be a Lipschitz continuous function, and assume that an ∈ I
for all n and limn→∞ an ∈ I. Then,

lim
n→∞

f(an) = f
(
lim
n→∞

an

)
. (189.8)

Note that choosing I to be a closed interval guarantees that limn→∞ an ∈
I if an ∈ I for all n.
We now look at some examples.

Example 189.4. In the growth of bacteria model of Chapter Rational
Numbers, we need to compute

lim
n→∞

Pn = lim
n→∞

1

1

2n
Q0 +

1

K

(
1− 1

2n

) .

The sequence {Pn} is obtained by applying the function

f(x) =
1

Q0x+ 1
K (1− x)
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to the terms in the sequence
{

1
2n

}
. Since limn→∞ 1/2n = 0, we have

limn→∞ Pn = f(0) = K, since f is Lipschitz continuous on for example
[0, 1/2]. The Lipschitz continuity follows from the fact that f(x) is the
composition of the function f2(x) = Q0x + 1

K (1 − x) and the function
f2(y) = 1/y.

Example 189.5. The function f(x) = x2 is Lipschitz continuous on
bounded intervals. We conclude that if {an}∞n=1 converges to a rational
limit A, then

lim
n→∞

(
an
)2

= A2.

In the next chapter, we will be interested in computing limn→∞
(
an
)2

for a certain sequence {an}∞n=1 arising in connection with the Muddy
Yard model, which will bring a surprise. Can you guess what it is?

Example 189.6. By Theorem 189.1, with appropriate choices (which?)
of the function f(x):

lim
n→∞

(
3 + 1

n

4 + 2
n

)9

=

(
lim
n→∞

3 + 1
n

4 + 2
n

)9

=

(
limn→∞(3 + 1

n )

limn→∞(4 + 2
n )

)9

=

(
3

4

)9

.

Example 189.7. By Theorem 189.1,

lim
n→∞

(2−n)7 + 14(2−n)4 − 3(2−n) + 2

= 07 + 14× 04 − 3× 0 + 2 = 2.

189.8 Generalization to Functions of Two Variables

We recall that a function f : I × J → Q of two rational variables, where I
and J are closed intervals of Q, is said to be Lipschitz continuous if there
is constant L such that

|f(x1, x2)− f(x̄1, x̄2)| ≤ L(|x1 − x̄1|+ |x2 − x̄2|)

for x1, x̄1 ∈ I and x2, x̄2 ∈ J .
Let now {an} and {bn} be two converging sequences of rational numbers

with an ∈ I and bn ∈ J . Then

f( lim
n→∞

an, lim
n→∞

bn)) = lim
n→∞

f(an, bn). (189.9)

The proof is immediate:

|f( lim
n→∞

an, lim
n→∞

bn))− f(am, bm)| ≤ L(| lim
n→∞

an − am|+ | lim
n→∞

bn − bm|)
(189.10)
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where the right hand side can be made arbitrarily small by choosing m
large enough.
We give a first application of this result with f(x1, x2) = x1+x2, which is

Lipschitz continuous on Q×Q with Lipschitz constant L = 1. We conclude
from (189.9) the natural formula

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn (189.11)

stating that the limit of the sum is the sum of the limits.
Similarly we have, of course, using the function f(x1, x2) = x1 − x2,

lim
n→∞

(an − bn) = lim
n→∞

an − lim
n→∞

bn.

As a special case choosing an = a for all n,

lim
n→∞

(a+ bn) = a+ lim
n→∞

bn.

Next, we consider the function f(x1, x2) = x1x2, which is Lipschitz con-
tinuous on I×J , if I and J are closed bounded intervals of Q. Using (189.9)
we find that if {an} and {bn} are two converging sequences of rational num-
bers, then

lim
n→∞

(an × bn) = lim
n→∞

an × lim
n→∞

bn,

stating that the limit of the products is the product of the limits.
As a special case choosing an = a for all n, we have

lim
n→∞

(a× bn) = a lim
n→∞

bn.

We now consider the function f(x1, x2) = x1/x2, which is Lipschitz con-
tinuous on I × J , if I and J are closed intervals of Q with J not including
0. If bn ∈ J for all n and limn→∞ bn 6= 0, then

lim
n→∞

(an/bn) =
limn→∞ an
limn→∞ bn

,

stating that the limit of the quotient is the quotient of the limits if the
limit of the denominator is not zero.

189.9 Computing Limits

We now apply the above rules to compute some limits.

Example 189.8. Consider {2 + 3n−4 + (−1)nn−1}∞n=1.

lim
n→∞

(2 + 3n−4 + (−1)nn−1)

= lim
n→∞

2 + 3 lim
n→∞

n−4 + lim
n→∞

(−1)nn−1

= 2 + 3× 0 + 0 = 2.
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To do this example, we use (189.11) and the fact that

lim
n→∞

n−p =
(
lim
n→∞

n−1
)p

= 0p = 0

for any natural number p.

Another useful fact is

lim
n→∞

rn =





0 if |r| < 1,

1 if r = 1,

diverges to ∞ if r > 1,

diverges otherwise.

We showed the case when r = 1/2 in Example 189.4 and you will show
the general result later as an exercise.

Example 189.9. Using 189.3, we can solve for the limiting behavior of
the population of bacteria described in Example 189.4. We have

lim
n→∞

Pn =
1

lim
n→∞

1

2n
Q0 + lim

n→∞
1

K

(
1− 1

2n

)

=
1

0 +
1

K
(1 − 0)

= K.

In words, the population of the bacteria growing under the limited
resources as modeled by the Verhulst model tends to a constant popu-
lation.

Example 189.10. Consider
{
4
1 + n−3

3 + n−2

}∞

n=1

.

We compute the limit using the different rules:

lim
n→∞

4
1 + n−3

3 + n−2
= 4

limn→∞
(
1 + n−3

)

limn→∞
(
3 + n−2

)

= 4
1 + limn→∞ n−3

3 + limn→∞ n−2

= 4
1 + 0

3 + 0
=

4

3
.

Example 189.11. Consider
{

6n2 + 2

4n2 − n+ 1000

}∞

n=1

.
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Before computing the limit, think about what is going on as n becomes
large. In the numerator, 6n2 is much larger than 2 when n is large and
likewise in the denominator, 4n2 becomes much larger than −n+ 1000
in size when n is large. So we might guess that for n large,

6n2 + 2

4n2 − n+ 1000
≈ 6n2

4n2
=

6

4
.

This would be a good guess for the limit. To see that this is true, we
use a trick to put the sequence in a better form to compute the limit:

lim
n→∞

6n2 + 2

4n2 − n+ 1000
= lim
n→∞

(6n2 + 2)n−2

(4n2 − n+ 1000)n−2

= lim
n→∞

6 + 2n−2

4− n−1 + 1000n−2

=
6

4

where we finished the computation as in the previous example.

The trick of multiplying top and bottom of a ratio by a power can also be
used to figure out when a sequence converges to zero or diverges to infinity.

Example 189.12.

lim
n→∞

n3 − 20n2 + 1

n8 + 2n
= lim
n→∞

(n3 − 20n2 + 1)n−3

(n8 + 2n)n−3

= lim
n→∞

1− 20n−1 + n−3

n5 + 2n−2
.

From this we see that the numerator converges to 1 while the denomi-
nator increases without bound. Therefore

lim
n→∞

n3 − 20n2 + 1

n8 + 2n
= 0.

Example 189.13.

lim
n→∞

−n6 + n+ 10

80n4 + 7
= lim
n→∞

(−n6 + n+ 10)n−4

(80n4 + 7)n−4

= lim
n→∞

−n2 + n−3 + 10n−4

80 + 7n−4
.

From this we see that the numerator grows in the negative direction
without bound while the denominator tends towards 80. Therefore

{−n6 + n+ 10

80n4 + 7

}∞

n=1

diverges to −∞.
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189.10 Computer Representation of Rational
Numbers

The decimal expansion ±pmpm−1 · · · p1p0.q1q2 · · · qn uses the base 10 and
consequently each of the digits pi and qj may take on one of the 10 values
0, 1, 2, ...9. Of course, it is possible to use bases other than ten. For example,
the Babylonians used the base sixty and thus their digits range between 0
and 59. The computer operates with the base 2 and the two digits 0 and
1. A base 2 number has the form

± pm2m + pm−12
m−1 + ...+ p22

2 + p12
1 + p02

0 + q12
−1 + q22

−2

+ ...+ qn−12
−(n−1) + qn2

−n,

which we again may write in short hand

±pmpm−1...p1p0.q1q2....qn = pmpm−1...p1p0 + 0.q1q2....qn

where again n and m are natural numbers, and now each pi and qj take
the value 0 or 1. For example, in the base two

11.101 = 1 · 21 + 1 · 20 + 1 · 2−1 + 1 · 2−3.

In the floating point arithmetic of a computer using the standard 32 bits,
numbers are represented in the form

±r2N ,

where 1 ≤ r ≤ 2 is the mantissa and the exponent N is an integer. Out of
the 32 bits, 23 bits are used to store the mantissa, 8 bits are used to store the
exponent and finally one bit is used to store the sign. Since 210 ≈ 10−3 this
gives 6 to 7 decimal digits for the mantissa while the exponent N may range
from−126 to 127, implying that the absolute value of numbers stored on the
computer may range from approximately 10−40 to 1040. Numbers outside
these ranges cannot be stored by a computer using 32 bits. Some languages
permit the use of double precision variables using 64 bits for storage with
11 bits used to store the exponent, giving a range of −1022 ≤ n ≤ 1023,
52 bits used to store the the mantissa, giving about 15 decimal places.
We point out that the finite storage capability of a computer has two

effects when storing rational numbers. The first effect is similar to the effect
of finite storage on integers, namely only rational numbers within a finite
range can be stored. The second effect is more subtle but actually has more
serious consequences. This is the fact that numbers are stored only up to a
specified number of digits. Any rational number that requires more than the
finite number of digits in its decimal expansions, which included all rational
numbers with infinite periodic expansions for example, are therefore stored
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on a computer with an error. So for example 2/11 is stored as .1818181 or
.1818182 depending on whether the computer rounds or not.
But this is not the end of the story. Introduction of an error in the 7’th

or 15’th digit would not be so serious except for the fact that such round-
off errors accumulate when arithmetic operations are performed. In other
words, if we add two numbers with a small error, the result may have a
larger error being the sum of the individual errors (unless the errors have
opposite sign or even cancel).
We give below in Chapter Series an example showing a startling conse-

quence of working with finite decimal representations with round off errors.

189.11 Sonya Kovalevskaya: The First Woman
With a Chair in Mathematics

Sonya Kovalevskaya (1850-91) was a student of Weierstrass and as the first
woman ever got a position 1889 as Professor in Mathematics at the Uni-
versity of Stockholm, see Fig. 189.4. Her mentor was Gösta Mittag-Leffler
(1846-1927), famous Swedish mathematician and founder of the prestigous
journal Acta Mathematica, see Fig. 90.34.
Kovalevskaya was 1886 awarded the 5,000 francs Prix Bordin for her

paper Mèmoire sur un cas particulier du problème de le rotation d’un corps
pesant autour d’un point fixe, ou l’intgration s’effectue l’aide des fonctions
ultraelliptiques du temps. At the height of her career, Kovalevskaya died of
influenza complicated by pneumonia, only 41 years old.

FIGURE 189.4. Sonya Kovalevskaya, first woman as a Professor of Mathemat-
ics:“I began to feel an attraction for my mathematics so intense that I started to
neglect my other studies” (at age 11).
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Chapter 189 Problems

189.1. Plot the functions; (a) 2−n, (b) 5−n, and (c) 10−n; defined on the natural
numbers n. Compare the plots.

189.2. Plot the function f(n) = 10
9
(1−10−n−1) defined on the natural numbers.

189.3. Write the following sequences using the index notation:

(a) {1, 3, 9, 27, · · · } (b) {16, 64, 256, · · · }

(c) {1,−1, 1,−1, 1, · · · } (d) {4, 7, 10, 13, · · · }

(e) {2, 5, 8, 11, · · · } (f) {125, 25, 5, 1, 1
5
,
1

25
,

1

125
, · · · }.

189.4. Show the following limits hold using the formal definition of the limit:

(a) lim
n→∞

8

3n+ 1
= 0 (b) lim

n→∞

4n+ 3

7n− 1
=

4

7
(c) lim

n→∞

n2

n2 + 1
= 1.

189.5. Show that lim
n→∞

rn = 0 for any r with |r| ≤ 1/2.

189.6. One of the classic paradoxes posed by the Greek philosophers can be
solved using the geometric series. Suppose you are in Paulding county on your
bike, 32 miles from home. You break a spoke, you have no more food and you
drank the last of your water, you forgot to bring money and it starts to rain.
While riding home, as wont to do, you begin to think about how far you have to
ride. Then you have a depressing thought: you can never get home! You think to
yourself: first I have to ride 16 miles, then 8 miles after that, then 4 miles, then
2, then 1, then 1/2, then 1/4, and so on. Apparently you always have a little way
to go, no matter how close you are, and you have to add up an infinite number
of distances to get anywhere! The Greek philosophers did not understand how
to interpret a limit of a sequence, so this caused them a great deal of trouble.
Explain why there is no paradox involved here using the sum of a geometric
series.

189.7. Show the following hold using the formal definition for divergence to
infinity:

(a) lim
n→∞

−4n+ 1 = −∞ (b) lim
n→∞

n3 + n2 = ∞.

189.8. Show that lim
n→∞

rn = ∞ for any r with |r| ≥ 2.

189.9. Find the values of

(a) 1− .5 + .25− .125 + · · ·

(b) 3 +
3

4
+

3

16
+ · · ·

(c) 5−2 + 5−3 + 5−4 + · · ·
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189.10. Find formulas for the sums of the following series by using the formula
for the sum of the geometric series assuming |r| < 1:

(a) 1 + r2 + r4 + · · ·

(b) 1− r + r2 − r3 + r4 − r5 + · · ·

189.11. Determine the number of different sequences there are in the following
list and identify the sequences that are equal.

(a)

{
4n/2

4 + (−1)n

}∞

n=1

(b)

{
2n

4 + (−1)n

}∞

n=1

(c)

{
2 car

4 + (−1) car

}∞

car =1

(d)

{
2n−1

4 + (−1)n−1

}∞

n=2

(e)

{
2n+2

4 + (−1)n+2

}∞

n=0

(f)

{
8

2n

4 + (−1)n+3

}∞

n=−2

.

189.12. Rewrite the sequence

{
2 + n2

9n

}∞

n=1

so that: (a) the index n runs from

−4 to ∞, (b) the index n runs from 3 to ∞, (c) the index n runs from 2 to −∞.

189.13. Show that (184.14) holds by considering the different cases: a < 0, b < 0,
a < 0, b > 0, a > 0, b < 0, a > 0, b > 0. Show that (189.7) holds using (184.14)
and the fact that a− c+ c− b = a− b.

189.14. Suppose that {an}∞n=1 converges to A and {bn}∞n=1 converges to B.
Show that {an − bn}∞n=1 converges to A−B.

189.15. (Harder) Suppose that {an}∞n=1 converges to A and {bn}∞n=1 converges
to B. Show that if bn 6= 0 for all n and B 6= 0, then {an/bn}∞n=1 converges to
A/B. Hint: write

an
bn

− A

B
=
an
bn

− an
B

+
an
B

− A

B

and the fact that for n large enough, |bn| ≥ B/2. Be sure to say why the last fact
is true!

189.16. Compute the limits of the sequences {an}∞n=1 with the indicated terms
or show they diverge.
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(a) an = 1 +
7

n
(b) an = 4n2 − 6n

(c) an =
(−1)n

n2
(d) an =

2n2 + 9n+ 3

6n2 + 2

(e) an =
(−1)nn2

7n2 + 1
(f) an =

(
2

3

)n
+ 2

(g) an =
(n− 1)2 − (n+ 1)2

n
(h) an =

1− 5n8

4 + 51n3 + 8n8

(i) an =
2n3 + n+ 1

6n2 − 5
(j) an =

(
7
8

)n − 1
(
7
8

)n
+ 1

.

189.17. Compute the following limits

(a) lim
n→∞

(
n+ 3

2n+ 8

)37

(b) lim
n→∞

(
31

n2
+

2

n
+ 7

)4

(c) lim
n→∞

1
(
2 + 1

n

)8 (d) lim
n→∞




(((

1 +
2

n

)2
)3)4




5

.

189.18. Rewrite the following sequences as a function applied to another se-
quence three different ways:

(a)

{(
n2 + 2

n2 + 1

)3
}∞

n=1

. (b)
{(
n2
)4

+
(
n2
)2

+ 1
}∞

n=1

189.19. Show that the infinite decimal expansion 0.9999.... is equal to 1. In
other words, show that

lim
n→∞

0.99 · · · 99n = 1,

where 0.99 · · · 99n contains n decimals all equal to 9.

189.20. Determine the number of digits used to store rational numbers in
the programming language that you use and whether the language truncates
or rounds.

189.21. The machine number u is the smallest positive number u stored in a
computer that satisfies 1+u > 1. Note that u is not zero! For example in a single
precision language 1+ .00000000001 = 1, explain why. Write a little program that
computes the u for your computer and programming language. Hint: 1 + .5 > 1
in any programming language. Also 1 + .25 > 1. Continue...
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190
The Square Root of Two

He is unworthy of the name man who is ignorant of the fact that the
diagonal of a square is incommensurable with its side. (Plato)

Just as the introduction of the irrational number is a convenient
myth which simplifies the laws of arithmetics...so physical objects
are postulated entities which round out and simplify our account of
the flux of existence... The conceptual scheme of physical objects is
likewise a convenient myth, simpler than the literal truth and yet
containing that literal truth as a scattered part. (Quine)

190.1 Introduction

We met the equation x2 = 2 in the context of the Muddy Yard model,
trying to determine the length of the diagonal of a square with side length
1. We have learned in school that the (positive) solution of the equation
x2 = 2 is x =

√
2. But, honestly speaking, what is in fact

√
2? To simply

say that it is the solution of the equation x2 = 2, or “that number which
when squared is equal to 2”, leads to circular reasoning, and would not
help much when trying to by a pipe of length

√
2.

We then may recall again from school that
√
2 ≈ 1.41, but computing

1.412 = 1.9881, we see that
√
2 is not exactly equal to 1.41. A better guess

is 1.414, but then we get 1.4142 = 1.999386. We use MAPLE c© to compute
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the decimal expansion of
√
2 to 415 places:

x = 1.4142135623730950488016887242096980785696718753

7694807317667973799073247846210703885038753432

7641572735013846230912297024924836055850737212

6441214970999358314132226659275055927557999505

0115278206057147010955997160597027453459686201

4728517418640889198609552329230484308714321450

8397626036279952514079896872533965463318088296

4062061525835239505474575028775996172983557522

0337531857011354374603408498847160386899970699

Computing x2 again using MAPLE c© , we find that

x2 = 1.999999999999999999999999999999999999999999999

999999999999999999999999999999999999999999999

999999999999999999999999999999999999999999999

999999999999999999999999999999999999999999999

999999999999999999999999999999999999999999999

999999999999999999999999999999999999999999999

999999999999999999999999999999999999999999999

999999999999999999999999999999999999999999999

999999999999999999999999999999999999999999999

999999999986381037002790393547544921481567520

719364336722392248627179189098787015809960232

640597261312640760405691299950309295747831888

596950070887405605833650165227157380944559332

069004581726422217393596953324251515876023360

427299488914180359897103820495618481233332162

516016097283137123064499497943653479698629776

683334066577024031851330600242723212517527304

354776748660808998780793579777475964587708250

3170068870585486010

The number x = 1.4142 · · ·699 satisfies the equation x2 = 2 to a high
degree of precision but not exactly. In fact, it turns out that no matter how
many digits we take in a guess of

√
2 with a finite decimal expansion, we

never get a number which squared gives exactly 2. So it seems that we have
not yet really caught the exact value of

√
2. So what is it?
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To get a clue, we may try to examine the decimal expansion of
√
2, but

we will not find any pattern. In particular, the first 415 places show no
periodic pattern.

190.2
√
2 Is Not a Rational Number!

In this section, we show that
√
2 cannot be a rational number of the form

p/q with p and q natural numbers, and thus the decimal expansion of
√
2

cannot be periodic. In the proof we use the fact that a natural number can
be uniquely factored into prime factors. We showed this in chapter Natural
Numbers and Integers. One consequence of the factorization into prime
numbers is the following fact: Suppose that we know that 2 is a factor of
n. If n = pq is a factorization of n into integers p and q, if follows that at
least one of the factors p and q must have a factor of 2.
We argue by contradiction. Thus we shall show that assuming that

√
2 is

rational leads to a contradiction, and thus
√
2 cannot be rational. We thus

assume that
√
2 = p/q, where all common factors in the natural numbers p

and q have been divided out. For example if p and q both have the factor 3,
then we replace p by p/3 and q by q/3, which does not change the quotient
p/q. We write this as

√
2q = p where p and q have no common factors, or

squaring both sides, 2q2 = p2. Since the left hand side contains the factor
2, the right hand side p2 must contain the factor 2, which means that p
must contain the factor 2. Thus we can write p = 2 × p̄ with p̄ a natural
number. We conclude that 2q2 = 4× p̄2, that is q2 = 2× p̄2. But the same
argument implies that q must also contain a factor of 2. Thus both p and q
contain the factor 2 which contradicts the original assumption that p and
q had no common factors. Assuming

√
2 to be rational number thus leads

to a contradiction and therefore
√
2 cannot be a rational number.

The argument just given was known to the Pythagoreans, who thus knew
that

√
2 is not a rational number. This knowledge caused a lot of trouble.

On one hand,
√
2 represents the diagonal of a square of side one, so it

seemed that
√
2 had to exist. On the other hand, the Pythagorean school of

philosophy was based on the principle that everything could be described
in terms of natural numbers. The discovery that

√
2 was not a rational

number, that is that
√
2 could not be viewed as a pair of natural numbers,

came as a shock! Legend says that the person who discovered the proof
was punished by the gods for revealing an imperfection in the universe.
The Pythagoreans tried to keep the discovery secret by teaching it only
to a select few, but eventually the discovery was revealed and after that
the Pythagorean school quickly fell apart. At the same time, the Euclidean
school, which was based on geometry instead of numbers, became more
influential. Considered from the point of view of geometry, the difficulty
with

√
2 seems to “disappear”, because no one would question that a square
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of side length 1 will have a diagonal of a certain length, and we could then
simply define

√
2 to be that length. The Euclidean geometric school took

over and ruled all through the Dark Ages until the time of Descartes in the
17th century who resurrected the Pythagorean school based on numbers,
in the form of analytical geometry. Since the digital computer of today
is based on natural numbers, or rather sequences of 0s and 1s, we may
say that Pythagoras ideas are very much alive today: everything can be
described in terms of natural numbers. Other Pythagorean dogmas like
“never eat beans” and “never pick up anything that has fallen down” have
not survived equally well.

190.3 Computing
√
2 by the Bisection Algorithm

We now present an algorithm for computing a sequence of rational numbers
that satisfy the equation x2 = 2 more and more accurately. That is, we
construct a sequence of rational number approximations of a solution of
the equation

f(x) = 0 (190.1)

with f(x) = x2 − 2. The algorithm uses a trial and error strategy that
checks whether a given number r satisfies f(r) < 0 or f(r) > 0, i.e. if
r2 < 2 or r2 > 2. All of the numbers r constructed during this process are
rational, so none of them can ever actually equal

√
2.

We begin by noting that f(1) < 0 since 12 < 2 and f(2) > 0 since 22 > 2.
Now since 0 < x < y means that x2 < xy < y2, we know that f(x) < 0 for
all 0 < x ≤ 1 and f(x) > 0 for all x ≥ 2. So any solution of (190.1) must lie
between 1 and 2. Hence we choose a point between 1 and 2 and check the
sign of f at that point. For the sake of symmetry, we choose the halfway
point 1.5 = (1 + 2)/2 of 1 and 2. We find that f(1.5) > 0. Remembering
that f(1) < 0, we conclude that a (positive) solution of (190.1) must lie
between 1 and 1.5.
We continue, next checking the mean value 1.25 of 1 and 1.5 to find that

f(1.25) < 0. This means that a solution of (190.1) must lie between 1.25
and 1.5. Next we choose the point halfway between these two, 1.375, and
find that f(1.375) < 0, implying that any solution of (190.1) lies between
1.375 and 1.5. We can continue to search in this way as long as we like,
each time determining two rational numbers that “trap” any solution of
(190.1). This process is called the Bisection algorithm.

1. Choose the initial values x0 and X0 so that f(x0) < 0 and f(X0) > 0.
Set i = 1.

2. Given two rational numbers xi−1 and Xi−1 with the property that
f(xi−1) < 0 and f(Xi−1) > 0, set x̄i = (xi−1 +Xi−1)/2.
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• If f(x̄i) = 0, then stop.

• If f(x̄i) < 0, then set xi = x̄i and Xi = Xi−1.

• If f(x̄i) > 0, then set xi = xi−1 and Xi = x̄i.

3. Increase i by 1 and go back to step 2.

We list the output for 20 steps from a MATLAB c© m-file implementing
this algorithm in Fig. 190.1 with x0 = 1 and X0 = 2.

i xi Xi

0 1.00000000000000 2.00000000000000
1 1.00000000000000 1.50000000000000
2 1.25000000000000 1.50000000000000
3 1.37500000000000 1.50000000000000
4 1.37500000000000 1.43750000000000
5 1.40625000000000 1.43750000000000
6 1.40625000000000 1.42187500000000
7 1.41406250000000 1.42187500000000
8 1.41406250000000 1.41796875000000
9 1.41406250000000 1.41601562500000
10 1.41406250000000 1.41503906250000
11 1.41406250000000 1.41455078125000
12 1.41406250000000 1.41430664062500
13 1.41418457031250 1.41430664062500
14 1.41418457031250 1.41424560546875
15 1.41418457031250 1.41421508789062
16 1.41419982910156 1.41421508789062
17 1.41420745849609 1.41421508789062
18 1.41421127319336 1.41421508789062
19 1.41421318054199 1.41421508789062
20 1.41421318054199 1.41421413421631

FIGURE 190.1. 20 steps of the Bisection algorithm.

190.4 The Bisection Algorithm Converges!

By continuing the Bisection algorithm without stopping, we generate two
sequences of rational numbers {xi}∞i=0 and {Xi}∞i=0. By construction,

x0 ≤ x1 ≤ x2 ≤ · · · and X0 ≥ X1 ≥ X2 ≥ · · ·
xi < Xj for all i, j = 0, 1, 2, ...



1092 190. The Square Root of Two

In other words, the terms xi either increase or stay constant while the
Xi always decrease or remain constant as i increases, and any xi is smaller
than any Xj. Moreover, the choice of the midpoint means that the distance
between Xi and xi is always strictly decreasing as i increases. In fact,

0 ≤ Xi − xi ≤ 2−i for i = 0, 1, 2, · · · , (190.2)

i.e. the difference between the value xi for which f(xi) < 0 and the value
Xi for which f(Xi) > 0 is halved for each step increase i by 1. This means
that as i increases, more and more digits in the decimal expansions of xi
and Xi agree. Since 2−10 ≈ 10−3, we gain approximately 3 decimal places
for every 10 successive steps of the bisection algorithm. We can see this in
Fig. 190.1.
The estimate (190.2) on the difference of Xi − xi also implies that the

terms in the sequence {xi}∞i=0 become closer as the index increase. This
follows because xi ≤ xj < Xj ≤ Xi if j > i so (190.2) implies

|xi − xj | ≤ |xi −Xi| ≤ 2−i if j ≥ i.

that is
|xi − xj | ≤ 2−i if j ≥ i. (190.3)

We illustrate in Fig. 190.2. In particular, this means that when 2−i ≤

xi Xixj Xj

|xi − xj |

|xi −Xi|

FIGURE 190.2. |xi − xj | ≤ |Xi − xi|.

10−N−1, the first N decimals of xj are the same as the first N decimals in
xi for any j ≥ i.
In other words, as we compute more and more numbers xi, more and

more leading decimals of the numbers xi agree. We conclude that the se-
quence {xi}∞i=0 determines a specific (infinite) decimal expansion. To get
the first N digits of this expansion, we simply take the first N digits of any
number xj in the sequence with 2−j ≤ 10−N−1. By the inequality (190.3),
all such xj agree in the first N digits.
If this infinite decimal expansion was the decimal expansion of a rational

number x̄, then we would of course have

x̄ = lim
i→∞

xi.
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However, we showed above that the decimal expansion defined by the se-
quence {xi}∞i=0 cannot be periodic. So there is no rational number x̄ that
can be the limit of the sequence {xi}.
We have now come to the point where the Pythagoreans got stuck 2.500

years ago. The sequence {xi} “tries to converge” to a limit, but the limit
is not a number of the type we already know, that is a rational number.
To avoid the fate of the Pythagoreans, we have to find a way out of this
dilemma. The limit appears to be a number of a new kind and thus it ap-
pears that we have to somehow extend the rational numbers. The extension
will be accomplished by viewing any infinite decimal expansion, periodic
or not, as some kind of number, more precisely as a real number. In this
way, we will clearly get an extension of the set of rational numbers since
the rational numbers correspond to periodic decimal expansions. We will
refer to non-periodic decimal expansions as irrational numbers.
For the extension from rational to real numbers to make sense, we must

show that we can compute with irrational numbers in pretty much the same
way as with rational numbers. We shall see this is indeed possible and we
shall see that the basic idea when computing with irrational numbers is
the natural one: compute with truncated decimal expansions! We give the
details in the next chapter devoted to a study of real numbers.
Let us now summarize and see where we stand: the Bisection algorithm

applied to the equation x2 − 2 = 0 generates a sequence {xi}∞i=1 satisfying

|xi − xj | ≤ 2−i if j ≥ i. (190.4)

The sequence {xi}∞i=1 defines an infinite non-periodic decimal expansion,
which we will view as an irrational number. We will give this irrational
number the name

√
2. We thus use

√
2 as a symbol to denote a certain

infinite decimal expansion determined by the Bisection algorithm applied
to the equation x2 − 2 = 0.
We now need to specify how to compute with irrational numbers. Once

we have done this, it remains to show that the particular irrational number
named

√
2 constructed above indeed does satisfy the equation x2 = 2. That

is after defining multiplication of irrational numbers like
√
2, we need to

show that √
2
√
2 = 2. (190.5)

Note that this equality does not follow directly by definition, as it would
if we had defined

√
2 as “that thing” which multiplied with itself equals 2

(which doesn’t make sense since we don’t know that “that thing” exists).
Instead, we have now defined

√
2 as the infinite decimal expansion defined

by the Bisection algorithm applied to x2−2 = 0, and it is a non-trivial step
to first define what we mean by multiplying

√
2 by

√
2, and then to show

that indeed
√
2
√
2 = 2. This is what the Pythagoreans could not manage

to do, which had devastating effects on their society.
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We return to verifying (190.5) after showing in the next chapter how to
compute with real numbers, so that in particular we know how to multiply
the irrational number

√
2 with itself!

190.5 First Encounters with Cauchy Sequences

We recall that the sequence {xi} defined by the Bisection algorithm for
solving the equation x2 = 2, satisfies

|xi − xj | ≤ 2−i if j ≥ i, (190.6)

from which we concluded that the sequence {xi}∞i=1 specifies a certain infi-
nite decimal expansion. To get the firstN decimals of the expansion we take
the first N decimals of any number xj in the sequence with 2−j ≤ 10−N−1.
Any two such xj will agree to N decimals in the sense that their difference
is a most 1 in decimal place N + 1.
The sequence {xi} satisfying (190.6) is an example of a Cauchy sequence

of rational numbers. More generally, a sequence {yi} of rational numbers
is said to be a Cauchy sequence if for any ǫ > 0 there is a natural number
N such that

|yi − yj | ≤ ǫ if i, j ≥ N.

To show that the sequence {xi} satisfying (190.6) is indeed a Cauchy se-
quence, we first choose ǫ > 0 and then we choose N so that 2−N ≤ ǫ.
As a basic example let us prove that the sequence {xi}∞i=1 with xi =

i−1
i

is a Cauchy sequence. We have for j > i
∣∣∣∣
i− 1

i
− j − 1

j

∣∣∣∣ =
∣∣∣∣
(i − 1)j − i(j − 1)

ij

∣∣∣∣ =
∣∣∣∣
i− j

ij

∣∣∣∣ ≤
1

i
.

For a given ǫ > 0, we now choose the natural number N ≥ 1/ǫ, so that
1

N+1 ≤ ǫ, in which case we have

∣∣∣∣
i− 1

i
− j − 1

j

∣∣∣∣ ≤ ǫ if i, j ≥ N.

This shows that {xi} with xi =
i−1
i is a Cauchy sequence, and thus con-

verges to a limit limi→∞ xi. We proved above that limi→∞ xi = 1.

190.6 Computing
√
2 by the Deca-section

Algorithm

We now describe a variation of the Bisection algorithm for x2−2 = 0 called
the Deca-section algorithm. Like the Bisection algorithm, the Deca-section
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algorithm produces a sequence of numbers {xi}∞i=0 that converges to
√
2.

In the Deca-section algorithm, the element xi agrees with
√
2 to i decimal

places, and thus the rate of convergence is easy to grip.
The Deca-section algorithm looks the same as the Bisection algorithm

except that at each step the current interval is divided into 10 subintervals
instead of 2. We start again with f(x) = x2 − 2 and x0 = 1 and X0 =
2 so that f(x0) < 0 and f(X0) > 0. Now we compute the value of f
at the intermediate rational points 1.1, 1.2, · · · , 1.9 and then choose two
consecutive numbers x1 and X1 with f(x1) < 0 and f(X1) > 0. There has
to be two such consecutive points because we know that f(x0) = f(1) < 0
and then either f(y) < 0 for all y = 1.1, 1.2, · · · , 1.9 at which point
f(2) > 0, so we set x1 = 1.9 and X1 = 2, or f(y) > 0 at some intermediate
point. We find that this gives x1 = 1.4 and X1 = 1.5. Now we continue
the process by evaluating f at the rational numbers 1.41, 1.42, · · · , 1.49,
and then choosing two consecutive numbers x2 and X2 with f(x2) < 0 and
f(X2) > 0. This gives x2 = 1.41 andX2 = 1.42. Then we work on the third,
fourth, fifth, · · · decimal places in order, obtaining two sequences {xi}∞i=0

and {Xi}∞i=0 both converging to
√
2. We show the first 14 steps computed

using a MATLAB c© m-file implementation of this algorithm in Fig. 190.3.

i xi Xi

0 1.00000000000000 2.00000000000000
1 1.40000000000000 1.50000000000000
2 1.41000000000000 1.42000000000000
3 1.41400000000000 1.41500000000000
4 1.41420000000000 1.41430000000000
5 1.41421000000000 1.41422000000000
6 1.41421300000000 1.41421400000000
7 1.41421350000000 1.41421360000000
8 1.41421356000000 1.41421357000000
9 1.41421356200000 1.41421356300000
10 1.41421356230000 1.41421356240000
11 1.41421356237000 1.41421356238000
12 1.41421356237300 1.41421356237400
13 1.41421356237300 1.41421356237310
14 1.41421356237309 1.41421356237310

FIGURE 190.3. 14 steps of the deca-section algorithm.

By construction

|xi −Xi| ≤ 10−i,

and also

|xi − xj | ≤ 10−i for j ≥ i. (190.7)
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The inequality (190.7) implies that {xi} is a Cauchy sequence and thus
determines an infinite decimal expansion. Since in the Deca-section algo-
rithm, we gain one decimal per step, we may identify element xi of the
sequence with the truncated decimal expansion with i decimals. In this
case there is thus a very simple connection between the Cauchy sequence
and the decimal expansion.

Chapter 190 Problems

190.1. Use the evalf function in MAPLE c© to compute
√
2 to 1000 places and

then square the result and compare to 2.

190.2. (a) Show that
√
3 (see Problem ??) is irrational. Hint: use a powerful

mathematical technique: try to copy a proof you already know. (b) Do the same
for

√
a where a is any prime number.

190.3. Specify three different irrational numbers using the digits 3 and 4.

190.4. Program the Bisection algorithm. Write down the output for 30 steps
starting with: (a) x0 = 1 and X0 = 2, (b) x0 = 0 and X0 = 2, (c) x0 = 1 and
X0 = 3, (d) x0 = 1 and X0 = 20. Compare the accuracy of the methods at each
step by comparing the values of xi versus the decimal expansion of

√
2 given

above. Explain why there is a difference in accuracy resulting from the different
initial values.

190.5. (a) Use the program in Problem 190.4 and write down the output for
40 steps using x0 = 1 and X0 = 2. (b) Describe anything you notice about the
last 10 values xi and Xi. (c) Explain what you see. (Hint: consider floating point
representation on the computer you use.)

190.6. Using the results in Problem 190.4(a), make plots of: (a) |Xi−xi| versus
i (b) |xi − xi−1| versus i; and (c) |f(xi)| versus i. In each case, determine if the
quantity decreases by a factor of 1/2 after each step.

190.7. Solve the equations x2 = 3 and x3 = 2 using the Bisection algorithm.
Also, make the algorithm find the negative root of x2 = 3.

190.8. Show that if a < 0 and b > 0 then b− a < c implies |b| < c and |a| < c.

190.9. (a) Write down an algorithm for Deca-section. (b) Program the algorithm
in (a) and then compute 16 steps using x0 = 0 and X0 = 2.

190.10. (a) Construct a “trisection” algorithm; (b) implement the trisection
algorithm and compute 30 steps using x0 = 0 and X0 = 2; (c) show that the
tridiagonal algorithm determines a decimal expansion and call this x̄; (d) Show
that x̄ =

√
2; (e) get an estimate on |xi − x̄|.
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190.11. Compute the cost of the tridiagonal algorithm from Problem 190.10
and compare to the costs of the Bisection and Deca-section methods.

190.12. Use the Bisection code from Problem 190.4 to compute
√
3 (recall

Problem ??). Hint: 1 <
√
3 < 2.
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191
Real numbers

I often say that when you can measure what you are speaking about,
and express it in numbers, you know something about it; but when
you cannot express it in numbers, your knowledge is of a meagre
and unsatisfactory kind: it may be the beginning of knowledge, but
you have scarcely, in your thoughts, advanced to the stage of science,
whatever the matter may be. (Kelvin 1889)

Vattnet drar sig tillbaka
stenarna blir synliga.

Det var länge sen sist.
De har egentligen inte förändrats.

De gamla stenarna.

(Brunnen, Lars Gustafsson, 1977)

191.1 Introduction

We are now ready to introduce the concept of a real number. We shall view
a real number as being specified by an infinite decimal expansion of the
form

±pm · · · p0.q1q2q3 · · ·
with a never ending list of decimals q1, q2, ...., where each one of the pi
and qj are one of the 10 digits 0, 1, ..., 9. We met the decimal expansion
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1.4142135623.... of
√
2 above. The corresponding sequence {xi}∞i=1 of trun-

cated decimal expansions is given by the rational numbers

xi = ±pm · · · p0.q1 · · · qi = ±(pm10
m + · · ·+ qi10

−i).

We have for j > i,

|xi − xj | = |0.0 · · ·0qi+1 · · · qj | ≤ 10−i. (191.1)

We conclude that the sequence {xi}∞i=1 of truncated decimal expansions of
the infinite decimal expansion ±pm · · · p0.q1q2q3 · · · , is a Cauchy sequence
of rational numbers.
More generally, we know from the discussion in Chapter Sequences and

Limits, that any Cauchy sequence of rational numbers specifies an infinite
decimal expansion and thus a Cauchy sequence of rational numbers specifies
a real number. We may thus view a real number as being specified by an
infinite decimal expansion, or by a Cauchy sequence of rational numbers.
Note that we use the semantic trick of referring to an infinite decimal
expansion as one real number.
We divide real numbers into two types: rational numbers with periodic

decimal expansions and irrational numbers with non-periodic decimal ex-
pansions. Note that we may naturally include rational numbers with finitely
many nonzero decimals, like 0.25, as particular periodic infinite decimal ex-
pansions with all the decimals qi = 0 for i sufficiently large.
We say that the infinite decimal expansion ±pm · · · p0.q1q2q3 · · · specifies

the real number x = ±pm · · · p0.q1q2q3 · · · , and we agree to write

lim
i→∞

xi = x, (191.2)

where {xi}∞i=1 is the corresponding sequence of truncated decimal expan-
sions of x. If x = ±pm · · · p0.q1q2q3 · · · is a periodic expansion, that is if
x is a rational number, this agrees with our earlier definition from Chap-
ter Sequences and Limits of the limit of the sequence {xi}∞i=1 of truncated
decimal expansions of x. For example, we recall that

10

9
= lim

i→∞
xi, where xi = 1.11 · · ·1i.

If x = ±pm · · · p0.q1q2q3 · · · is non-periodic, that is, if x is an irrational
number, then (191.2) serves as a definition, where the real number is spec-
ified by the decimal expansion x = ±pm · · · p0.q1q2q3 · · · , that is the real
number x specified by the Cauchy sequence {xi}∞i=1 of truncated decimal
expansions of x, is denoted by limi→∞ xi. Alternatively, (191.2) serves to
denote the limit limi→∞ xi by ±pm · · · p0.q1q2q3 · · · .
For the sequence {xi}∞i=1 generated by the Bisection algorithm applied

to the equation x2 − 2 = 0, we decided to write
√
2 = limi→∞ xi, and thus
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we may write
√
2 = 1.412..., with 1.412..., denoting the infinite decimal

expansion given by the Bisection algorithm.
We shall now specify how to compute with real numbers defined in this

way. In particular, we shall specify how to add, subtract, multiply and
divide real numbers. Of course we will do this so that it extends our expe-
rience in computing with rational numbers. This will complete our process
of extending the natural numbers to obtain first the integers and then the
rational numbers, and finally the real numbers.
We denote by R the set of all possible real numbers, that is the set of all

possible infinite decimal expansions. We discuss this definition in Chapter
Do Mathematicians Quarrel? below.

191.2 Adding and Subtracting Real Numbers

To exhibit the main concern, consider the problem of adding two real num-
bers x and x̄ specified by the decimal expansions

x = ±pm · · · p0.q1q2q3 · · · = lim
i→∞

xi,

x̄ = ±p̄m · · · p̄0.q̄1q̄2q̄3 · · · = lim
i→∞

x̄i,

with corresponding truncated decimal expansions

xi = ±pm · · · p0.q1 · · · qi,
x̄i = ±p̄m · · · p̄0.q̄1 · · · q̄i.

We know how to add xi and x̄i: we then start from the right and add the
decimals qi and q̄i, and get a new ith decimal and possibly a carry-over
digit to be added to the sum of the next digits qi−1 and q̄i−1, and so on.
The important thing to notice is that we start from the right (smallest
decimal) and move to the left (larger decimals).
Now, trying to add the two infinite sequences x = ±pm · · · p0.q1q2q3 · · ·

and x̄ = ±p̄m · · · p̄0.q̄1q̄2q̄3 · · · in the same way by starting from the right,
we run into a difficulty because there is no far right decimal to start with.
So, what can we do?
Well, the natural way out is of course to consider the sequence {yi}

generated by yi = xi+ x̄i. Since both {xi} and {x̄i} are Cauchy sequences,
it follows that {yi} is also a Cauchy sequence, and thus defines a decimal
expansion and thus defines a real number. Of course, the right thing is then
to define

x+ x̄ = lim
i→∞

yi = lim
i→∞

(xi + x̄i).

This corresponds to the formula

lim
i→∞

xi + lim
i→∞

x̄i = lim
i→∞

(xi + x̄i).
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We give a concrete example: To compute the sum of

x =
√
2 = 1.4142135623730950488 · · ·

and

x̄ =
1043

439
= 2.3758542141230068337 · · · ,

we compute yi = xi+x̄i for i = 1, 2, ..., which defines the decimal expansion
of x+ x̄, see Fig. 191.1. We may notice that occasionally adding two digits

i xi + x̄i
1 3
2 3.7
3 3.78
4 3.789
5 3.7900∗

6 3.79006
7 3.790067
8 3.7900677
9 3.79006777

10 3.790067776
11 3.7900677764
12 3.79006777649
13 3.790067776496
14 3.7900677764960
15 3.79006777649609
16 3.790067776496101∗

17 3.7900677764961018
18 3.79006777649610187
19 3.790067776496101881∗

20 3.7900677764961018825∗

...
...

FIGURE 191.1. Computing the decimal expansion of
√
2 + 1043/439 by using

the truncated decimal sequences. Note the changes in the digits marked by the
∗ where adding the new digits affects previous digits.

affects the digits to the left, as in 0.9999 + 0.0001 = 1.000.
Similarly, the difference x − x̄ of two real numbers x = limi→∞ xi and

x̄ = limi→∞ x̄i is of course defined by

x− x̄ = lim
i→∞

(xi − x̄i).
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191.3 Generalization to f(x, x̄) with f Lipschitz

We now generalize to other combinations of real numbers than addition.
Suppose we want to combine x and x̄ to a certain quantity f(x, x̄) depend-
ing on x and x̄, where x and x̄ are real numbers. For example, we may
choose f(x, x̄) = x+ x̄, corresponding to determining the sum x+ x̄ of two
real numbers x and x̄ or f(x, x̄) = xx̄ corresponding to multiplying x and
x̄.
To be able to define f(x, x̄) following the idea used in the case f(x, x̄) =

x+x̄, we suppose that f : Q×Q → Q is Lipschitz continuous. This is a very
crucial assumption and our focus on the concept of Lipschitz continuity is
largely motivated by its use in the present context.
We know from Chapter Sequences and Limits that if x = limi→∞ xi and

x̄ = limi→∞ x̄i are rational, then

f(x, x̄) = f( lim
i→∞

xi, lim
i→∞

x̄i) = lim
i→∞

f(xi, x̄i)

If x = limi→∞ xi and x̄ = limi→∞ x̄i are irrational, we simply decide to
use this formula to define the real number f(x, x̄). This is possible, be-
cause {f(xi, x̄i)} is a Cauchy sequence and thus defines a real number.
Note that {f(xi, x̄i)} is a Cauchy sequence because {xi} and {x̄i} are both
Cauchy sequences and f : Q×Q → Q is Lipschitz continuous. The formula
containing this crucial information is

|f(xi, x̄i)− f(xj , x̄j)| ≤ L(|xi − xj |+ |x̄i − x̄j |)

where L is the Lipschitz constant of f .
Applying this reasoning to the case f : Q×Q → Q with f(x, x̄) = x+ x̄,

which is Lipschitz continuous with Lipschitz constant L = 1, we define the
sum x+ x̄ of two real numbers x = limi→∞ xi and x̄ = limi→∞ x̄i by

x+ x̄ = lim
i→∞

(xi + x̄i),

that is
lim
i→∞

xi + lim
i→∞

x̄i = lim
i→∞

(xi + x̄i). (191.3)

This is exactly what we did above.
We repeat, the important formula is

f( lim
i→∞

xi, lim
i→∞

x̄i) = lim
i→∞

f(xi, x̄i),

which we already know for x = limi→∞ xi and x̄ = limi→∞ x̄i rational and
which defines f(x, x̄) for x or x̄ irrational. We also repeat that the Lipschitz
continuity of f is crucial.
We may directly extend to Lipschitz functions f : I × J → Q, where I

and J are intervals of Q, under the assumption that xi ∈ I and x̄i ∈ J for
i = 1, 2, ...
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191.4 Multiplying and Dividing Real Numbers

The function f(x, x̄) = xx̄ is Lipschitz continuous for x ∈ I and x̄ ∈ J ,
where I and J are bounded intervals of Q. We may thus define the product
xx̄ of two real numbers x = limi→∞ xi and x̄ = limi→∞ x̄i as follows:

xx̄ = lim
i→∞

xix̄i.

The function f(x, x̄) = x
x̄ is Lipschitz continuous for x ∈ I and x̄ ∈ J ,

if I and J are bounded intervals of Q and J is bounded away from 0. We
may thus define the quotient x

x̄ of two real numbers x = limi→∞ xi and
x̄ = limi→∞ x̄i with x̄ 6= 0 by

x

x̄
= lim

i→∞
xi
x̄i
.

191.5 The Absolute Value

The function f(x) = |x| is Lipschitz continuous on Q. We may thus define
the absolute value |x| of a real number x = limi→∞ xi by

|x| = lim
i→∞

|xi|.

If {xi} is the sequence of truncated decimal expansions of x = limi→∞ xi,
then by (191.1) we have |xj − xi| ≤ 10−i for j > i, and thus taking the
limit as j tends to infinity,

|x− xi| ≤ 10−i for i = 1, 2, ... (191.4)

191.6 Comparing Two Real Numbers

Let x = limi→∞ xi and x̄ = limi→∞ x̄i be two real numbers with corre-
sponding sequences of truncated decimal expansions {xi}∞i=1 and {x̄i}∞i=1.
How can we tell if x = x̄? Is it necessary that xi = x̄i for all i? Not quite.
For example, consider the two numbers x = 0.99999 · · · and x̄ = 1.0000 · · · .
In fact, it is natural to give a little more freedom and say that x = x̄ if and
only if

|xi − x̄i| ≤ 10−i for i = 1, 2, ... (191.5)
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This condition is clearly sufficient to motivate to write x = x̄, since the
difference |xi− x̄i| becomes as small as we please by taking i large enough.
In other words, we have

|x− x̄| = lim
i→∞

|xi − x̄i| = 0,

so x = x̄.
Conversely if (191.5) does not hold, then there is a positive ǫ and i such

that
xi − x̄i > 10−i + ǫ or xi − x̄i < 10−i − ǫ.

Since |xi − xj | ≤ 10−i for j > i, we must then have

xj − x̄j > ǫ or xj − x̄j < −ǫ for j > i

and thus taking the limit as j tends to infinity

x− x̄ ≥ ǫ or x− x̄ ≤ −ǫ.
We conclude that two real numbers x and x̄ either satisfy x = x̄, or x > x̄
or x < x̄.
This conclusion, however, hides a subtle point. To know if two real num-

bers are equal or not, may require a complete knowledge of the decimal ex-
pansions, which may not be realistic. For example, suppose we set x = 10−p,
where p is the decimal position of the start of the first sequence of 59 dec-
imals all equal to 1 in the decimal expansion of

√
2. To complete the defi-

nition of x, we set x = 0 if there is no such p. How are we to know if x > 0
or x = 0, unless we happen to find that sequence of 59 decimals all equal
to 1 among say the first 1050 decimals, or whatever number of decimals of√
2 we can think of possibly computing. In a case like this, it seems more

reasonable to say that we cannot know if x = 0 or x > 0.

191.7 Summary of Arithmetic with Real Numbers

With these definitions, we can easily show that the usual commutative,
distributive, and associative rules for rational numbers all hold for real
numbers. For example, addition is commutative since

x+ x̄ = lim
i→∞

(xi + x̄i) = lim
i→∞

(x̄i + xi) = x̄+ x.

191.8 Why
√
2
√
2 Equals 2

Let {xi} and {Xi} be the sequences given by the Bisection algorithm ap-
plied to the equation x2 = 2 constructed above. We have defined

√
2 = lim

i→∞
xi, (191.6)
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that is, we denote by
√
2 the infinite non-periodic decimal expansion given

by the Bisection algorithm applied to the equation x2 = 2.
We now verify that

√
2
√
2 = 2, which we left open above. By the defini-

tion of multiplication of real numbers, we have

√
2
√
2 = lim

i→∞
x2i , (191.7)

and we thus need to show that

lim
i→∞

x2i = 2 (191.8)

To prove this fact, we use the Lipschitz continuity of the function x → x2

on [0, 2] with Lipschitz constant L = 4, to see that

|(xi)2 − (Xi)
2| ≤ 4|xi −Xi| ≤ 2−i+2.

where we use the inequality |xi−Xi| ≤ 2−i. By construction x2i < 2 < X2
i ,

and thus in fact
|x2i − 2| ≤ 2−i+2

which shows that
lim
i→∞

(xi)
2 = 2

and (191.8) follows.
We summarize the approach used to compute and define

√
2 as follows:

• We use the Bisection Algorithm applied to the equation x2 = 2 to
define a sequence of rational numbers {xi}∞i=0 that converges to a
limit, which we denote by

√
2 = limi→∞ xi.

• We define
√
2
√
2 = limi→∞(xi)

2.

• We show that limi→∞(xi)
2 = 2.

• We conclude that
√
2
√
2 = 2 which means that

√
2 solves the equation

x2 = 2.

191.9 A Reflection on the Nature of
√
2

We may now return to comparing the following two definitions of
√
2:

1.
√
2 is “that thing” which when squared is equal to 2

2.
√
2 is the name of the decimal expansion given by the sequence

{xi}∞i=1 generated by the Bisection algorithm for the equation x2 = 2,
which with a suitable definition of multiplication satisfies

√
2
√
2 = 2.
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This is analogous to the following two definitions of 1
2 :

1. 1
2 is “that thing” which when multiplied by 2 equals 1

2. 1
2 is the ordered pair (1, 2) which with a suitable definition of multi-
plication satisfies the equation (2, 1)× (1, 2) = (1, 1).

We conclude that in both cases the meaning 1. could be criticized for
being unclear in the sense that no clue is given to what “that thing” is
in terms of already known things, and that the definition appears circular
and eventually seems to be just a play with words. We conclude that only
the definition 2. has a solid constructive basis, although we may intuitively
use 1. when we think.
Occasionally, we can do computations including

√
2, where we only need

to use that (
√
2)2 = 2, and we do not need the decimal expansion of

√
2.

For example, we can verify that (
√
2)4 = 4 by only using that (

√
2)2 = 2

without knowing a single decimal of
√
2. In this case we just use

√
2 as a

symbol for “that thing which squared equals 2”. It is rare that this kind of
symbolic manipulation only, leads to the end and gives a definite answer.
We note that the fact that

√
2 solves the equation x2 = 2 includes some

kind of convention or agreement or definition. What we actually did was
to show that the truncated decimal expansions of

√
2 when squared could

be made arbitrarily close to 2. We took this as a definition, or agreement,
that (

√
2)2 = 2. Doing this, solved the dilemma of the Pythagoreans, and

thus we may (almost) say that we solved the problem by agreeing that the
problem did not exist. This may be the only way out in some (difficult)
cases.
In fact, the standpoint of the famous philosopher Wittgenstein was that

the only way to solve philosophical problems was to show (after much work)
that in fact the problem at hand does not exist. The net result of this kind of
reasoning would appear to be zero: first posing a problem and then showing
that the problem does not exist. However, the process itself of coming to this
conclusion would be considered as important by giving added insight, not
so much the result. This approach also could be fruitful outside philosophy
or mathematics.

191.10 Cauchy Sequences of Real Numbers

We may extend the notion of sequence and Cauchy sequence to real num-
bers. We say that {xi}∞i=1 is a sequence of real numbers if the elements xi
are real numbers. The definition of convergence is the same as for sequences
of rational numbers. A sequence {xi}∞i=1 of real numbers converges to a real
number x if for any ǫ > 0 there is a natural number N such that |xi−x| < ǫ
for i ≥ N and we write x = limi→∞ xi.
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We say that a sequence {xi}∞i=1 of real numbers is a Cauchy sequence if
for all ǫ > 0 there is a natural number N such that

|xi − xj | ≤ ǫ for i, j ≥ N. (191.9)

If {xi}∞i=1 is a converging sequence of real numbers with limit x =
limi→∞ xi, then by the Triangle Inequality,

|xi − xj | ≤ |x− xi|+ |x− xj |,

where we wrote xi − xj = xi − x + x − xj . This proves that {xi}∞i=1 is a
Cauchy sequence. We state this (obvious) result as a theorem.

Theorem 191.1 A converging sequence of real numbers is a Cauchy se-
quence of real numbers.

A Cauchy sequence of real numbers determines a decimal expansion just
in the same way as a sequence of rational numbers does. We may assume,
possibly by deleting elements and changing the indexing, that a Cauchy
sequence of real numbers satisfies |xi − xj | ≤ 2−i for j ≥ i.
We conclude that a Cauchy sequence of real numbers converges to a real

number. This is a fundamental result about real numbers which we state
as a theorem.

Theorem 191.2 A Cauchy sequence of real numbers converges to a unique
real number.

The use of Cauchy sequences has been popular in mathematics since
the days of the great mathematician Cauchy in the first half of the 19th
century. Cauchy was a teacher at Ecole Polytechnique in Paris, which was
created by Napoleon and became a model for technical universities all over
Europe (Chalmers 1829, Helsinki 1849,....). Cauchy’s reform of the engi-
neering Calculus course including his famous Cours d’Analyse also became
a model, which permeates much of the Calculus teaching still today.

191.11 Extension from f : Q → Q to f : R → R

In this section, we show how to extend a given Lipschitz continuous function
f : Q → Q, to a function f : R → R. We thus assume that f(x) is defined for
x rational, and that f(x) is a rational number, and we shall now show how
to define f(x) for x irrational. We shall see that the Lipschitz continuity
is crucial in this extension process. In fact, much of the motivation for
introducing the concept of Lipschitz continuity, comes from its use in this
context.
We have already met the basic issues when defining how to compute with

real numbers, and we follow the same idea for a general function f : Q → Q.
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If x = limi→∞ xi is an irrational real number, with the sequence {xi}∞i=1

being the truncated decimal expansions of x, we define f(x) to be the real
number defined by

f(x) = lim
i→∞

f(xi). (191.10)

Note that by the Lipschitz continuity of f(x) with Lipschitz constant L,
we have

|f(xi)− f(xj)| ≤ L|xi − xj |,
which shows that the sequence {f(xi)}∞i=1 is a Cauchy sequence, because
{xi}∞i=1 is a Cauchy sequence Thus limi→∞ f(xi) exists and defines a real
number f(x). This defines f : R → R, and we say that this function is the
extension of f : Q → Q, from the rational numbers Q to the real numbers
R.
Similarly, we can generalize and extend a Lipschitz continuous function

f : I → Q, where I = {x ∈ Q : a ≤ x ≤ b} is an interval of rational
numbers, to a function f : J → R, where J = {x ∈ R : a ≤ x ≤ b} is the
corresponding interval of real numbers. Evidently, the extended function
f : J → R satisfies:

f( lim
i→∞

xi) = lim
i→∞

f(xi), (191.11)

for any convergent sequence {xi} in J (with automatically limi→∞ xi ∈ J
because J is closed).

191.12 Lipschitz Continuity of Extended Functions

If f : Q → Q is Lipschitz continuous with Lipschitz constant Lf , then its
extension f : R → R is also Lipschitz continuous with the same Lipschitz
constant Lf . This is because if x = limi→∞ xi and y = limi→∞ yi, then

|f(x)− f(y)| =
∣∣∣ lim
i→∞

(f(xi)− f(yi))
∣∣∣ ≤ L lim

i→∞
|xi − yi| = L|x− y|.

It is now straightforward to show that the properties of Lipschitz contin-
uous functions f : Q → Q stated above hold for the corresponding extended
functions f : R → R. We summarize in the following theorem

Theorem 191.3 A Lipschitz continuous function f : I → R, where I =
[a, b] is an interval of real numbers, satisfies:

f( lim
i→∞

xi) = lim
i→∞

f(xi), (191.12)

for any convergent sequence {xi} in I. If f : I → R and g : I → R
are Lipschitz continuous, and α and β are real numbers, then the linear
combination αf(x) + βg(x) is Lipschitz continuous on I. If the interval
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I is bounded, then f(x) and g(x) are bounded and f(x)g(x) is Lipschitz
continuous on I. If I is bounded and moreover |g(x)| ≥ c > 0 for all x in
I, where c is some constant, then f(x)/g(x) is Lipschitz continuous on I.

Example 191.1. We can extend any polynomial to be defined on the
real numbers. This is possible because a polynomial is Lipschitz con-
tinuous on any bounded interval of rational numbers.

Example 191.2. The previous example means that we can extend
f(x) = xn to the real numbers for any integer n. We can also show that
f(x) = x−n is Lipschitz continuous on any closed interval of rational
numbers that does not contain 0. Therefore f(x) = xn can be extended
to the real numbers, where n is any integer provided that when n < 0,
x 6= 0.

191.13 Graphing Functions f : R → R

Graphing a function f : R → R follows the same principles as graphing a
function f : Q → Q.

191.14 Extending a Lipschitz Continuous Function

Suppose f : (a, b] → R is Lipschitz continuous with Lipschitz constant
Lf on the half-open interval (a, b], but that the value of f(a) has not
been defined. Is there a way to define f(a) so that the extended function
f : [a, b] → R is Lipschitz continuous? Yes, there is. To see this we let
{xi}∞i=1 be a sequence of real numbers in (a, b] converging to a, that is
limi→∞ xi = a. The sequence {xi}∞i=1 is a Cauchy sequence, and because
f(x) is Lipschitz continuous on (a, b], so is the sequence {f(xi)}∞i=1, and
thus limi→∞ f(xi) exists and we may then define f(a) = limi→∞ f(xi).
It follows readily that the extended function f : [a, b] → R is Lipschitz
continuous with the same Lipschitz constant.
We give an application of this idea arising when considering quotients

of two functions. Clearly, we must avoid points at which the denominator
is zero and the numerator is nonzero. However, if both the numerator and
denominator are zero at a point, the function can be extended to that point
if the quotient function is Lipschitz continuous off the point. We give first
a “trivial” example.

Example 191.3. Consider the quotient

x− 1

x− 1
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with domain {x ∈ R : x 6= 1}. Since

x− 1 = 1× (x− 1) (191.13)

for all x, it is natural to “divide” the polynomials to get

x− 1

x− 1
= 1. (191.14)

However, the domain of the constant function 1 is R so the left- and
right-hand sides of (191.14) have different domains and therefore must
represent different functions. We plot the two functions in Fig. 191.2.
We see that the two functions agree at every point except for the “miss-

11

FIGURE 191.2. Plots of (x− 1)/(x − 1) on the left and 1 on the right.

ing” point x = 1.

Example 191.4. Since x2 − 2x− 3 = (x− 3)(x+1), we have for x 6= 3
that

x2 − 2x− 3

x− 3
= x+ 1.

The function (x2 − 2x− 3)/(x− 3) defined for {x ∈ R : x 6= 3} may be
extended to the function x+ 1 defined for all x in R.

Note that the fact that two functions f1 and f2 are zero at the same points
does not mean that we can automatically replace their quotient by a func-
tion defined at all points.

Example 191.5. The function

x− 1

(x− 1)2
,

defined for {x ∈ R : x 6= 1}, is equal to the function 1/(x − 1) also
defined on {x ∈ R : x 6= 1}, which cannot be extended to x = 1.
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191.15 Intervals of Real Numbers

Let a and b be two real numbers with a < b. The set of real numbers
x such that x > a and x < b, that is {x ∈ R : a < x < b}, is called
the open interval between a and b and is denoted by (a, b). Graphically
we draw a thick line on the number line connecting little circles drawn at
positions a and b. We illustrate in Fig. 191.3. The word “open” refers to

a b

a < x < b

a b

a ≤ x < b

a b

a < x ≤ b

a b

a ≤ x ≤ b

FIGURE 191.3. Intervals corresponding to the real numbers between two real
numbers a and b. Note the use of a solid and closed circles in the four cases.

the strict inequality defining (a, b) and we use the curved parentheses “(”
and the open circle on the number line to mark this. a and b are called the
endpoints of the interval. An open interval does not contain its endpoints.
The closed interval [a, b] is the set {x : a ≤ x ≤ b} and is denoted on the
number line using solid circles. Note the use of square parentheses “[” when
the inequalities are not strict. A closed interval does contain its endpoints.
Finally, we can have half-open intervals with one end open and the other
closed, such as (a, b] = {x : a < x ≤ b}. See Fig. 191.3.
We also have “infinite” intervals such as (−∞, a) = {x : x < a} and

[b,∞) = {x : b ≤ x}. We illustrate these in Fig. 191.4. With this notation,

a

x < a

b

b ≤ x 

FIGURE 191.4. Infinite intervals (−∞, a) and [b,∞).

we denote the set of real numbers by R = (−∞,∞).
Clearly, we can now consider Lipschitz continuous functions f : I → R

defined on intervals I of R.
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191.16 What Is f(x) if x Is Irrational?

Note that if x is irrational, then the process of determining the sequence of
truncated decimal expansions of x and f(x) is carried out in parallel. The
more decimals we have of x, the more decimals we get of f(x). This is sim-
ply because f(x) = limi→∞ f(xi) with {xi}∞i=1 the sequence of truncated
decimal expansions of x. This is obvious from Fig. 191.5. This means that
the conventional idea of viewing f(x) as a function of x comes into a new
light. In the traditional way of thinking of a function f(x), we think of x
as given and then associating the value f(x) to x. We may even write this
as x→ f(x) indicating that we go from x to f(x).
However, we just noticed that when x is irrational, we cannot start from

knowing all the decimals of x, and then determine f(x). Instead, we deter-
mine successively the decimal expansions xi and the corresponding function
values f(xi), that is, we may write xi → f(xi) for i = 1, 2, ..., but not really
x→ f(x). We rather jump back and forth between approximations xi of x
and approximations f(xi) of f(x). This means that we do not have exact
knowledge of x when we compute f(x). In order to make this process to be
meaningful, we need the function f(x) to be Lipschitz continuous. In this
case, small changes in x cause small changes in f(x), and the extension
process is possible.

Example 191.6. We evaluate f(x) = .4x3 − x for x =
√
2 using the

truncated decimal sequence {xi} in Fig. 191.5.

i xi .4x3i − xi
1 1 −.6
2 1.4 .0976
3 1.41 .1212884
4 1.414 .1308583776
5 1.4142 .1313383005152
6 1.41421 .1313623002245844
7 1.414213 .1313695002035846388
8 1.4142135 .13137070020305452415
9 1.41421356 .1313708442030479314744064
10 1.414213562 .1313708490030479221535281312
...

...
...

FIGURE 191.5. Computing the decimal expansion of f(
√
2) for f(x) = .4x3 − x

by using the truncated decimal sequence.

This leads to the idea that we can only talk about Lipschitz continuous
functions. If some association of x-values to values f(x) is not Lipschitz
continuous, this association should not deserve to be called a function. We
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are thus led to the conclusion that all functions are Lipschitz continuous
(more or less).
This statement would be shocking to many mathematicians, who are

used to work with discontinuous functions day and night. In fact, in large
parts of mathematics (e.g. integration theory), a lot of attention is payed
to extremely discontinuous “functions”, like the following popular one

f(x) = 0 if x is rational,

f(x) = 1 if x is irrational.

Whatever this is, it is not a Lipschitz function, and thus from our perspec-
tive, we would not consider it to be a function at all. This is because for
some arguments x it may be extremely difficult to know if x is rational
or irrational, and then we would not know which of the vastly different
function values f(x) = 0 or f(x) = 1 to choose. To be able to determine if
x is rational or not, we may have to know the infinite decimal expansion
of x, which may be impossible to us as human beings. For example, if we
didn’t know the smart argument showing that x =

√
2 cant be rational,

we would not be able to tell from any truncated decimal expansion of
√
2

whether f(x) = 0 or f(x) = 1.
We would even get into trouble trying to define the following “function”

f(x)

f(x) = a if x < x̄,

f(x) = b if x ≥ x̄,

with a “jump” at x̄ from a value a to a different value b. If x̄ is irrational,
we may lack complete knowledge of all the decimals of x̄, and it may be
virtually impossible to determine for a given x if x < x̄ or x ≥ x̄. It would be
more natural to view the “function with a jump” as two functions composed
of one Lipschitz function

f(x) = a if x ≤ x̄,

and another Lipschitz function

f(x) = b if x ≥ x̄,

with two possible values a 6= b for x = x̄: the value a from the left (x ≤ x̄
), and the value b from the right (x ≥ x̄), see Fig. 191.6.
It thus seems that we have to reject the very idea that a function f(x) can

be discontinuous. This is because we cannot assume that we know x exactly,
and thus we can only handle a situation where small changes in x causes
small changes in f(x), which is the essence of Lipschitz continuity. Instead
we are led to handle functions with jumps as combinations of Lipschitz
continuous functions with two possible values at the jumps, one value from
the right and another value from the left.
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"+" "="

x̄x̄x̄

FIGURE 191.6. A “jump function” viewed as two functions

191.17 Continuity Versus Lipschitz Continuity

As indicated, we use a definition of continuity (Lipschitz continuity), which
differs from the usual definition met in most Calculus texts. We recall the
basic property of a Lipschitz continuous function f : I → R:

f( lim
i→∞

xi) = lim
i→∞

f(xi), (191.15)

for any convergent sequence {xi} in I with limi→∞ xi ∈ I. Now, the stan-
dard definition of continuity of a function f : I → R starts at the relation
(191.15), and reads as follows: The function f : I → R is said to be con-
tinuous on I (according to the standard definition) if (191.15) holds for
any convergent sequence {xi} in I with limi→∞ xi ∈ I. Apparently, a Lips-
chitz continuous function is continuous according to the standard definition,
while the opposite implication does not have to be true. In other words, we
use a somewhat more stringent definition than the standard one.
The standard definition satisfies a condition of maximality (attractive to

many pure mathematicians), but suffers from an (often confusing) use of
limits. In fact, the intuitive idea of “continuous dependence” of function
values f(x) of a real variable x, can be expressed as “f(x) is close to f(y)
whenever x is close to y”, of which Lipschitz continuity gives a quantitative
precise formulation, while the connection in the standard definition is more
farfetched. Right?

Chapter 191 Problems

191.1. Define a “sentence” to be any combination of 500 characters consisting
of 26 letters and spaces lined up in a row. Compute (approximately) the number
of possible sentences.

191.2. Suppose that x and y are two real numbers and {xi} and {yi} are the
sequences generated by truncating their decimal expansions. Using (184.14) and
(191.4), obtain estimates on (a) |(x+ y)− (xi+ yi)| and (b) |xy−xiyi|. Hint: for
(b), use that xy − xiyi = (x− xi)y + xi(y− yi), and explain why (191.4) implies
that for i sufficiently big, |xi| ≤ |x|+ 1.

191.3. Find i as small as possible such that |xy − xiyi| ≤ 10−6 if x ≈ 100 and
y ≈ 1. Find i and j as small as possible such that |xy − xiyj | ≤ 10−6
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191.4. Let x = .37373737 · · · and y =
√
2 and {xi} and {yi} be the sequences

generated by truncating their decimal expansions. Compute the first 10 terms of
the sequences defining x + y and y − x and the first 5 terms of the sequences
defining xy and x/y. Hint: follow the example in Fig. 191.1.

191.5. Let x be the limit of the sequence

{
i

i+ 1

}
. Is x < 1?. Give a reason for

your answer.

191.6. Let x be the limit of the sequence of rational numbers {xi} where the
first i− 1 decimal places of xi agree with the first i− 1 decimal places of

√
2, the

i’th decimal place is equal to 3, and the rest of the decimal places are zero. Is
x =

√
2? Give a reason for your answer.

191.7. Let x, y, and z be real numbers. Show the following properties hold.

(a) x < y and y < z implies x < z.

(b) x < y implies x+ z < y + z.

(c) x < y implies −x > −y.

191.8. Find the set of x that satisfies (a) |
√
2x− 3| ≤ 7 and (b) |3x− 6

√
2| > 2.

191.9. Verify that the triangle inequality (184.14) extends to real numbers s
and t.

191.10. (Harder) (a) If p is a rational number, x is a real number, and {xi} is
any sequence of rational numbers that converges to x, show that p < x implies
that p < xi for all i sufficiently large. (b) If x and y are real numbers and {yi}
is any sequence that converges to y, show that x < y implies x < yi for all i
sufficiently large.

191.11. Show that the following sequences are Cauchy sequences.

(a)

{
1

(i+ 1)2

}
(b)

{
4− 1

2i

}
(c)

{
i

3i+ 1

}

191.12. Show that the sequence {i2} is not a Cauchy sequence.

191.13. Let {xi} denote the sequence of real numbers defined by

x1 = .373373337 · · ·
x2 = .337733377333377 · · ·
x3 = .333777333377733333777 · · ·
x4 = .333377773333377773333337777 · · ·

...

(a) Show that the sequence is a Cauchy sequence and (b) find lim
i→∞

xi. This shows

that a sequence of irrational numbers can converge to a rational number.
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191.14. Can a number of the form sx+ t, with s and t rational and x irrational,
be rational?

191.15. Let {xi} and {yi} be Cauchy sequences with limits x and y respectively.
(a) Show that {xi−yi} is a Cauchy sequence and compute its limit. (b) Assuming

there is a constant c such that yi ≥ c > 0 for all i, show that

{
xi
yi

}
is a Cauchy

sequence and compute its limit.

191.16. Show that a sequence that converges is a Cauchy sequence. Hint: if {xi}
converges to x, write xi−xj = (xi−x)+ (x−xj) and use the triangle inequality.

191.17. (Harder) Let {xi} be an increasing sequence, xi−1 ≤ xi, which is
bounded above, i.e. there is a number c such that xi ≤ c for all i. Prove that
{xi} converges. Hint: Use a variation of the argument for the convergence of the
bisection algorithm

191.18. Compute the first 5 terms of the sequence that defines the value of

the function f(x) =
x

x+ 2
at x =

√
2. Hint: follow Fig. 191.5 and use the evalf

function of MAPLE c© in order to determine all the digits.

191.19. Let {xi} be the sequence with xi = 3− 2

i
and f(x) = x2 − x. What is

the limit of the sequence {f(xi)}?

191.20. Show that |x| is Lipschitz continuous on the real numbers R.

191.21. Let n be a natural number. Show that
1

xn
is Lipschitz continuous on

the set of rational numbers Q = {x : .01 ≤ x ≤ 1} and find a Lipschitz constant
without using Theorem 191.3. Hint: Use the identity

xn2 − xn1 = (x2 − x1)
(
xn−1
2 + xn−2

2 x1 + xn−3
2 x2

1

+ · · ·+ x2
2x
n−3
1 + x2x

n−2
1 + xn−1

1

)

= (x2 − x1)

n−1∑

j=0

xn−1−j
2 xj1

after showing that it is true. Note there are n terms in the last sum, the Lipschitz
constant definitely depends on n.

191.22. Show Theorem 191.3 is true.

191.23. Write each of the following sets using the interval notation and then
mark the sets on a number line.

(a) {x : −2 < x ≤ 4} (b) {x : −3 < x < −1} ∪ {x : −1 < x ≤ 2}
(c) {x : x = −2, 0 ≤ x} (b) {x : x < 0} ∪ {x : x > 1}

191.24. Produce an interval that contains all the points 3− 10−j for j ≥ 0 but
does not contain 3.
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191.25. UsingMATLAB c© orMAPLE c© , graph the following functions on one
graph: y = 1× x, y = 1.4× x, y = 1.41× x, y = 1.414× x, y = 1.4142× x,
y = 1.41421 × x. Use your results to explain how you could graph the
function y =

√
2× x.

191.26. (a) Give a definition of an interval (a, b) where a and b are real numbers
in terms of intervals with rational endpoints. (b) Do the same for [a, b].

191.27. Explain why there are infinitely many real numbers between any two
distinct real numbers by giving a systematic way to write them down. Hint: first
consider the case when the two distinct numbers are integers and work one digit
at a time.

191.28. Find the Lipschitz constant of the function f(x) =
√
x with D(f) =

(δ,∞) for given δ > 0.

The aim of Book X of Euclid’s treatise on the ”Elements” is to in-
vestigate the commensurable and the incommensurable, the rational
and irrational continuous quantities. This science has its origin in
the school of Pythagoras, but underwent an important development
in the hands of the Athenian, Theaetetus, who is justly admired for
his natural aptitude in this as in other branches of mathematics.
One of the most gifted of men, he patiently pursued the investiga-
tion of truth contained in these branches of science ... and was in
my opinion the chief means of establishing exact distinctions and
irrefutable proofs with respect to the above mentioned quantities.
(Pappus 290-350 (about))
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192
The Bisection Algorithm for f(x) = 0

Divide ut regnes (divide and conquer). (Machiavelli 1469-1527)

192.1 Bisection

We now generalize the Bisection algorithm used above to compute the
positive root of the equation x2 − 2 = 0, to compute roots of the equation

f(x) = 0 (192.1)

where f : R → R is a Lipschitz continuous function. The Bisection algo-
rithm reads as follows, where TOL is a given positive tolerance:

1. Choose initial values x0 and X0 with x0 < X0 so that f(x0)f(X0) <
0. Set i = 1.

2. Given two rational numbers xi−1 < Xi−1 with the property that
f(xi−1)f(Xi−1) < 0, set x̄i = (xi−1 +Xi−1)/2.

• If f(x̄i) = 0, then stop.

• If f(x̄i)f(Xi−1) < 0, then set xi = x̄i and Xi = Xi.

• If f(x̄i)f(xi−1) < 0, then set xi = xi and Xi = x̄i.

3. Stop if Xi − xi ≤ TOL.

4. Increase i by 1 and go back to step 2.



1120 192. The Bisection Algorithm for f(x) = 0

The equation f(x) = 0 may have many roots, and the choice of initial
approximations x0 and X0 such that f(x0)f(X0) ≤ 0 restricts the search
for one or more roots to the interval [x0, X0]. To find all roots of an equation
f(x) it may be necessary to systematically search for all the possible start
intervals [x0, X0].
The proof that the Bisection algorithm converges is the same as that

given above in the special case when f(x) = x2 − 0. By construction, we
have after i steps, assuming that we don’t stop because f(x̄i) = 0 and
X0 − x0 = 1, that

0 ≤ Xi − xi ≤ 2−i,

and as before that
|xi − xj | ≤ 2−i if j ≥ i.

Again, {xi}∞i=1 is a Cauchy sequence and thus converges to a unique real
number x̄, and by construction

|xi − x̄| ≤ 2−i and |Xi − x̄| ≤ 2−i.

It remains to show that x̄ is a root of f(x) = 0, that is, we have to show
that f(x̄) = 0. By definition f(x̄) = f(limi→∞ xi) = limi→∞ f(xi) and thus
we need to show that limi→∞ f(xi) = 0. To this end we use the Lipschitz
continuity to see that

|f(xi)− f(Xi)| ≤ L|xi −Xi| ≤ L2−i.

Since f(xi)f(Xi) < 0, that is the signs of f(xi) and f(Xi) are different,
this proves that in fact

|f(xi)| ≤ L2−i (and also |f(Xi)| ≤ L2−i),

which proves that limi→∞ f(xi) = 0, and thus f(x̄) = limi→∞ f(xi) = 0 as
we wanted to show.
We summarize this as a theorem, which is known as Bolzano’s Theorem

after the Catholic priest B. Bolzano (1781-1848), who was one of the first
people to work out analytic proofs of properties of continuous functions.

Theorem 192.1 (Bolzano’s Theorem) If f : [a, b] → R is Lipschitz
continuous and f(a)f(b) < 0, then there is a real number x̄ ∈ [a, b] such
that f(x̄) = 0.

One consequence of this theorem is called the Intermediate Value The-
orem, which states that if g(x) is Lipschitz continuous on an interval [a, b]
then g(x) takes on every value between g(a) and g(b) at least once as x
varies over [a, b]. This follows applying Bolzanos theorem to the function
f(x) = g(x)− y = 0, where y lies between f(a) and f(b).

Theorem 192.2 (The Intermediate Value Theorem) If f : [a, b] →
R is Lipschitz continuous then for any real number y in the interval between
f(a) and f(b), there is a real number x ∈ [a, b] such that f(x) = y.
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FIGURE 192.1. Bernard Placidus Johann Nepomuk Bolzano 1781-1848, Czech
mathematician, philosopher and catholic priest: “My special pleasure in mathe-
matics rested therefore particularly on its purely speculative parts, in other words
I prized only that part of mathematics which was at the same time philosophy”.

192.2 An Example

As an application of the Bisection algorithm, we compute the roots of the
chemical equilibrium equation (184.13) in Chapter Rational Numbers,

S (.02 + 2S)2 − 1.57× 10−9 = 0. (192.2)

We show a plot of the function involved in Fig. 192.2. Apparently there

-.02  .02

-0.000008

0.000032

0.000072

FIGURE 192.2. A plot of the function S (.02 + 2S)2 − 1.57 × 10−9

are roots near −.01 and 0, but to compute them it seems advisable to first
rescale the equation. We then first multiply both sides of (192.2) by 109 to
get

109 × S (.02 + 2S)2 − 1.57 = 0,
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and write

109 × S (.02 + 2S)2 = 103 × S × 106 × (.02 + 2S)2

= 103 × S ×
(
103
)2 × (.02 + 2S)2 = 103 × S ×

(
103 × (.02 + 2S)

)2

= 103 × S ×
(
20 + 2× 103 × S

)2
.

If we name a new variable x = 103S, then we obtain the following equation
to solve

f(x) = x(20 + 2x)2 − 1.57 = 0. (192.3)

The polynomial f(x) has more reasonable coefficients and the roots are
not nearly as small as in the original formulation. If we find a root x of
f(x) = 0, then we can find the physical variable S = 10−3x. We note that
only positive roots can have any meaning in this model, since we cannot
have “negative” solubility.
The function f(x) is a polynomial and thus is Lipschitz continuous on

any bounded interval, and thus the Bisection algorithm can be used to
compute its roots. We plot f(x) in Fig. 192.3. It appears that f(x) = 0

-11 -5.3 .4
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FIGURE 192.3. A plot of the function f(x) = x(20 + 2x)2 − 1.57

might have one root near 0 and another root near −10.
To compute a positive root, we now choose x0 = −.1 and X0 = .1

and apply the Bisection algorithm for 20 steps. We show the results in
Fig. 192.4. This suggests that the root of (192.3) is x ≈ .00392 or S ≈
3.92× 10−6.

192.3 Computational Cost

We applied the Deca-section to compute
√
2 above. Of course we can use

this method also for computing the root of a general equation. Once we
have more than one method to compute a root of a equation, it is natural to
ask which method is “best”. We have to decide what we mean by “best” of
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course. For this problem, best might mean “most accurate” or “cheapest”
for example. The exact criteria depends on our needs.
The criteria may depend on many things, such as the the level of accu-

racy to try to achieve. Of course, this depends on the application and the
computational cost. In the Muddy Yard Model, a couple of decimal places
is certainly sufficient from a practical point of view. If we actually tried to
measure the diagonal using a tape measure for example, we would only get
to within a few centimeters of the true value even neglecting the difficulty
of measuring along a straight line. For more accuracy, we could use a laser
and measure the distance to within a couple of wavelengths, and thus we
might want to compute with a corresponding precision of many decimals.
This would of course be overkill in the present case, but could be neces-
sary in applications to e.g. astronomy or geodesic (for instance continental
drift). In physics there is a strong need to compute certain quantities with
many digits. For example one would like to know the mass of the electron
very accurately. In applications of mechanics, a couple of decimals in the
final answer may often be enough.
For the Deca-section and Bisection algorithms, accuracy is apparently

not an issue, since both algorithms can be executed until we get 16 places or
whatever number of digits is used for floating point representation. There-
fore the way to compare the methods is by the amount of computing time
it takes to achieve a given level of accuracy. This computing time is often
called the cost of the computation, a left-over from the days when computer
time was actually purchased by the second.
The cost involved in one of these algorithms can be determined by fig-

uring out the cost per iteration step and then multiplying by the total
number of steps we need to reach the desired accuracy. In one step of the
Bisection Algorithm, the computer must compute the midpoint between
two points, evaluate the function f at that point and store the value tem-
porarily, check the sign of the function value, and then store the new xi
and Xi. We assume that the time it takes for the computer to do each of
these operations can be measured and we define

Cm = cost of computing the midpoint
Cf = cost of evaluating f at a point

C± = cost of checking the sign of a variable
Cs = cost of storing a variable.

The total cost of one step of the bisection algorithm is Cm+Cf+C±+4Cs,
and the cost after Nb steps is

Nb(Cm + Cf + C± + 4Cs). (192.4)

One step of the Deca-section algorithm has a considerably higher cost be-
cause there are 9 intermediate points to check. The total cost after Nd steps
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of the Deca-section algorithm is

Nd(9Cm + 9Cf + 9C± + 20Cs). (192.5)
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On the other hand, the difference |xi − x̄| decreases by a factor of 1/10
after each step of the Deca-section algorithm as compared to a factor of
1/2 after each step of the Bisection algorithm. Since 1/23 > 1/10 > 1/24,
this means that the Bisection algorithm requires between 3 and 4 times as
many steps as the Deca-section algorithm in order to reduce the initial size
|x0− x̄| by a given factor. So Nb ≈ 4Nd. This gives the cost of the Bisection
Algorithm as

4Nd(Cm + Cf + C± + 4Cs) = Nd(4Cm + 4Cf + 4C± + 16Cs)

as compared to (192.5). This means that the Bisection algorithm is cheaper
to use than the Deca-section algorithm.

i xi Xi

0 -0.10000000000000 0.10000000000000
1 0.00000000000000 0.10000000000000
2 0.00000000000000 0.05000000000000
3 0.00000000000000 0.02500000000000
4 0.00000000000000 0.01250000000000
5 0.00000000000000 0.00625000000000
6 0.00312500000000 0.00625000000000
7 0.00312500000000 0.00468750000000
8 0.00390625000000 0.00468750000000
9 0.00390625000000 0.00429687500000
10 0.00390625000000 0.00410156250000
11 0.00390625000000 0.00400390625000
12 0.00390625000000 0.00395507812500
13 0.00390625000000 0.00393066406250
14 0.00391845703125 0.00393066406250
15 0.00391845703125 0.00392456054688
16 0.00392150878906 0.00392456054688
17 0.00392150878906 0.00392303466797
18 0.00392150878906 0.00392227172852
19 0.00392189025879 0.00392227172852
20 0.00392189025879 0.00392208099365

FIGURE 192.4. 20 steps of the Bisection algorithm applied to (192.3) using
x0 = −.1 and X0 = .1.
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193
Do Mathematicians Quarrel?*

The proofs of Bolzano’s and Weierstrass theorems have a decidedly
non-constructive character. They do not provide a method for actu-
ally finding the location of a zero or the greatest or smallest value of
a function with a prescribed degree of precision in a finite number of
steps. Only the mere existence, or rather the absurdity of the non-
existence, of the desired value is proved. This is another important
instance where the ”intuitionists” have raised objections; some have
even insisted that such theorems be eliminated from mathematics.
The student of mathematics should take this no more seriously than
did most of the critics. (Courant)

I know that the great Hilbert said “We will not be driven out from
the paradise Cantor has created for us”, and I reply “I see no reason
to walking in”. (R. Hamming)

There is a concept which corrupts and upsets all others. I refer not to
the Evil, whose limited realm is that of ethics; I refer to the infinite.
(Borges).

Either mathematics is too big for the human mind or the human
mind is more than a machine. (Gödel)

193.1 Introduction

Mathematics is often taught as an “absolute science” where there is a
clear distinction between true and false or right and wrong, which should
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be universally accepted by all professional mathematicians and every en-
lightened layman. This is true to a large extent, but there are important
aspects of mathematics where agreement has been lacking and still is lack-
ing. The development of mathematics in fact includes as fierce quarrels
as any other science. In the beginning of the 20th century, the very foun-
dations of mathematics were under intense discussion. In parallel, a split
between “pure” and “applied” mathematics developed, which had never
existed before. Traditionally, mathematicians were generalists combining
theoretical mathematical work with applications of mathematics and even
work in mechanics, physics and other disciplines. Leibniz, Lagrange, Gauss,
Poincaré and von Neumann all worked with concrete problems from me-
chanics, physics and a variety of applications, as well as with theoretical
mathematical questions.
In terms of the foundations of mathematics, there are different “math-

ematical schools” that view the basic concepts and axioms somewhat dif-
ferently and that use somewhat different types of arguments in their work.
The three principal schools are the formalists, the logicists and finally the
intuitionists, also known as the constructivists.
As we explain below, we group both the formalists and the logicists to-

gether under an idealistic tradition and the the constructivists under a
realistic tradition. It is possible to associate the idealistic tradition to an
“aristocratic” standpoint and the realistic tradition to a “democratic” one.
The history of the Western World can largely be be viewed as a battle be-
tween an idealistic/aristochratic and a realistic/democratic tradition. The
Greek philosopher Plato is the portal figure of the idealistic/aristocratic
tradition, while along with the scientific revolution initiated in the 16th
century, the realistic/democratic tradition has taken a leading role in our
society.
The debate between the formalists/logicists and the constructivists cul-

minated in the 1930s, when the program put forward by the formalists and
logicists suffered a strong blow from the logician Kurt Gödel. Gödel showed,
to the surprise of world including great mathematicians like Hilbert, that
in any axiomatic mathematical theory containing the axioms for the natu-
ral numbers, there are true facts which cannot be proved from the axioms.
This is Gödel’s famous incompleteness theorem.
Alan Turing (1912-54, dissertation at Kings College, Cambridge 1935)

took up a similar line of thought in the form of computability of real num-
bers in his famous 1936 article On Computable Numbers, with an appli-
cation to the Entscheidungsproblem. In this paper Turing introduced an
abstract machine, now called a Turing machine, which became the proto-
type of the modern programmable computer. Turing defined a computable
number as real number whose decimal expansion could be produced by a
Turing machine. He showed that π was computable, but claimed that most
real numbers are not computable. He gave gave examples of “undecidable
problems” formulated as the problem if the Turing machine would come to a
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halt or not, see Fig. 193.2. Turing laid out plans for an electronic computer
named Analytical Computing Engine ACE, with reference to Babbages’
Analytical Engine, at the same time as the ENIAC was designed in the
US.

FIGURE 193.1. Kurt Gödel (with Einstein 1950): “Every formal system is in-
complete”

Gödel’s and Turing’s work signified a clear defeat for the formalists/
logicists and a corresponding victory for the constructivists. Paradoxically,
soon after the defeat the formalists/logicists gained control of the mathe-
matics departments and the constructivists left to create new departments
of computer science and numerical analysis based on constructive mathe-
matics. It appears that the trauma generated by Gödel’s and Turing’s find-
ings on the incompleteness of axiomatic methods and un-computability,
was so strong that the earlier co-existence of the formalists/logicists and
constructivists was no longer possible. Even today, the world of mathemat-
ics is heavily influenced by this split.
We will come back to the dispute between the formalists/logicists and

constructivists below, and use it to illustrate fundamental aspects of math-
ematics which hopefully can help us to understand our subject better.
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FIGURE 193.2. Alan Turing: “I wonder if my machine will come to a halt?”.

193.2 The Formalists

The formalist school says that it does not matter what the basic concepts
actually mean, because in mathematics we are just concerned with relations
between the basic concepts whatever the meaning may be. Thus, we do
not have to (and cannot) explain or define the basic concepts and can view
mathematics as some kind of ”game”. However, a formalist would be very
anxious to demonstrate that in his formal system it would not be possible
to arrive at contradictions, in which case his game would be at risk of
breaking down. A formalist would thus like to be absolutely sure about the
consistency of his formal system. Further, a formalist would like to know
that, at least in principle, he would be able to understand his own game
fully, that is that he would in principle be able to give a mathematical
explanation or proof of any true property of his game. The mathematician
Hilbert was the leader of the formalist school. Hilbert was shocked by the
results by Gödel.

193.3 The Logicists and Set Theory

The logicists try to base mathematics on logic and set theory. Set theory
was developed during the second half of the 19th century and the language
of set theory has become a part of our every day language and is very
much appreciated by both the formalist and logicist schools, while the
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FIGURE 193.3. Bertrand Russell: “I am protesting”

constructivists have a more reserved attitude. A set is a collection of items,
which are the elements of the set. An element of the set is said to belong to
the set. For example, a dinner may be viewed as a set consisting of various
dishes (entree, main course, dessert, coffee). A family (the Wilsons) may be
viewed as a set consisting of a father (Mr. Wilson), a mother (Mrs. Wilson)
and two kids (Tom and Mary). A soccer team (IFK Göteborg for example)
consists of the set of players of the team. Humanity may be said to be set
of all human beings.
Set theory makes it possible to speak about collections of objects as

if they were single objects. This is very attractive in both science and
politics, since it gives the possibility of forming new concepts and groups
in hierarchical structures. Out of old sets, one may form new sets whose
elements are the old sets. Mathematicians like to speak about the set of all
real numbers, denoted by R, the set of all positive real numbers, the set of all
prime numbers, et cetera, and a politician planning a campaign may think
of the set of democratic voters, the set of auto workers, the set of female
first time voters, or the set of all poor, jobless, male criminals. Further,
a workers union may be thought of as a set of workers in a particular
factory or field, and workers unions may come together into unions or sets
of workers unions.
A set may be described by listing all the elements of the set. This may

be very demanding if the set contains many elements (for example if the
set is humanity). An alternative is to describe the set through a property
shared by all the elements of the set, e.g. the set of all people who have the
properties of being poor, jobless, male, and criminal at the same time. To
describe humanity as the set of beings which share the property of being
human, however seems to more of a play with words than something very
useful.
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The leader of the logicist school was the philosopher and peace activist
Bertrand Russell (1872-1970). Russell discovered that building sets freely
can lead into contradictions that threaten the credibility of the whole logi-
cist system. Russell created variants of the old liars paradox and barbers
paradox, which we now recall. Gödel’s theorem may be viewed to a variant
of this paradox.

The Liars Paradox

The liars paradox goes as follows: A person says ”I am lying”. How should
you interpret this sentence? If you assume that what the person says is
indeed true, then it means that he is lying and then what he says is not
true. On the other hand, if you assume that what he says is not true, this
means that he is not lying and thus telling the truth, which means that
what he says is true. In either case, you seem to be led to a contradiction,
right? Compare Fig. 193.4.

FIGURE 193.4. “I am (not) lying”

The Barbers Paradox

The barbers paradox goes as follows: The barber in the village has decided
to cut the hair of everyone in the village who does not cut his own hair.
What shall the barber do himself? If he decides to cut his own hair, he will
belong to the group of people who cut their own hair and then according to
his decision, he should not cut his own hair, which leads to a contradiction.
On the other hand, if he decides not to cut his own hair, then he would
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belong to the group of people not cutting their own hair and then accord-
ing to his decision, he should cut his hair, which is again a contradiction.
Compare Fig. ??.

193.4 The Constructivists

The intuitionist/constructivist view is to consider the basic concepts to
have a meaning which may be directly ”intuitively” understood by our
brains and bodies through experience, without any further explanation.
Furthermore, the intuitionists would like to use as concrete or “construc-
tive” arguments as possible, in order for their mathematics always to have
an intuitive “real” meaning and not just be a formality like a game.
An intuitionist may say that the natural numbers 1, 2, 3,...., are obtained

by repeatedly adding 1 starting at 1. We took this standpoint when intro-
ducing the natural numbers. We know that from the constructivist point of
view, the natural numbers are something in the state of being created in a
process without end. Given a natural number n, there is always a next nat-
ural number n+1 and the process never stops. A constructivist would not
speak of the set of all natural numbers as something having been completed
and constituting an entity in itself, like the set of all natural numbers as
a formalist or logicist would be willing to do. Gauss pointed out that “the
set of natural numbers” rather would reflect a “mode of speaking” than
existence as a set.
An intuitionist would not feel a need of “justification” or a proof of con-

sistency through some extra arguments, but would say that the justification
is built into the very process of developing mathematics using constructive
processes. A constructivist would so to speak build a machine that could
fly (an airplane) and that very constructive process would itself be a proof
of the claim that building an airplane would be possible. A constructivist is
thus in spirit close to a practicing engineer. A formalist would not actually
build an airplane, rather make some model of an airplane, and would then
need some type of argument to convince investors and passengers that his
airplane would actually be able to fly, at least in principle. The leader of the
intuitionist school was Brouwer (1881-1967),see Fig. 193.5. Hard-core con-
structivism makes life very difficult (like strong vegetarianism), and because
the Brouwer school of constructivists were rather fundamentalist in their
spirit, they were quickly marginalized and lost influence in the 1930s. The
quote by Courant given above shows the strong feelings involved related to
the fact that very fundamental dogmas were at stake, and the general lack
of rational arguments to meet the criticism from the intuitionists, which
was often replaced by ridicule and oppression.
Van der Waerden, mathematician who studied at Amsterdam from 1919

to 1923 wrote: “Brouwer came [to the university] to give his courses but



1134 193. Do Mathematicians Quarrel?*

FIGURE 193.5. Luitzen Egbertus Jan Brouwer 1881-1966: :“One cannot inquire
into the foundations and nature of mathematics without delving into the question
of the operations by which mathematical activity of the mind is conducted. If one
failed to take that into account, then one would be left studying only the language
in which mathematics is represented rather than the essence of mathematics”.

lived in Laren. He came only once a week. In general that would have
not been permitted - he should have lived in Amsterdam - but for him an
exception was made. ... I once interrupted him during a lecture to ask a
question. Before the next week’s lesson, his assistant came to me to say
that Brouwer did not want questions put to him in class. He just did not
want them, he was always looking at the blackboard, never towards the
students. ... Even though his most important research contributions were
in topology, Brouwer never gave courses on topology, but always on - and
only on - the foundations of intuitionism . It seemed that he was no longer
convinced of his results in topology because they were not correct from
the point of view of intuitionism, and he judged everything he had done
before, his greatest output, false according to his philosophy. He was a very
strange person, crazy in love with his philosophy”.

193.5 The Peano Axiom System for Natural
Numbers

The Italian mathematician Peano (1858-1932) set up an axiom system for
the natural numbers using as undefined concepts “natural number”, “suc-
cessor”, “belong to”, “set” and “equal to”. His five axioms are

1. 1 is a natural number
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2. 1 is not the successor of any other natural number

3. Each natural number n has a successor

4. If the successors of n and m are equal then so are n and m

There is a fifth axiom which is the axiom of mathematical induction stating
that if a property holds for any natural number n, whenever it holds for
the natural number preceding n and it holds for n = 1, then it holds for
all natural numbers. Starting with these five axioms, one can derive all the
basic properties of real numbers indicated above.
We see that the Peano axiom system tries to catch the essence of our

intuitive feeling of natural numbers as resulting from successively adding
1 without ever stopping. The question is if we get a more clear idea of the
natural numbers from the Peano axiom system than from our intuitive feel-
ing. Maybe the Peano axiom system helps to identify the basic properties
of natural numbers, but it is not so clear what the improved insight really
consists of.
The logicist Russell proposed in Principia Mathematica to define the

natural numbers using set theory and logic. For instance, the number 1
would be defined roughly speaking as the set of all singletons, the number
two the set of all dyads or pairs, the number three as the set of all triples,
et cetera. Again the question is if this adds insight to our conception of
natural numbers?

193.6 Real Numbers

Many textbooks in calculus start with the assumption that the reader is
already familiar with real numbers and quickly introduce the notation R
to denote the set of all real numbers. The reader is usually reminded that
the real numbers may be represented as points on the real line depicted
as a horizontal (thin straight black) line with marks indicating 1, 2, and
maybe numbers like 1.1, 1.2,

√
2, π et cetera. This idea of basing arith-

metic, that is numbers, on geometry goes back to Euclid, who took this
route to get around the difficulties of irrational numbers discovered by the
Pythagoreans. However, relying solely on arguments from geometry is very
impractical and Descartes turned the picture around in the 17th century by
basing geometry on arithmetic, which opened the way to the revolution of
Calculus. The difficulties related to the evasive nature of irrational numbers
encountered by the Pythagoreans, then of course reappeared, and the re-
lated questions concerning the very foundations of mathematics gradually
developed into a quarrel with fierce participation of many of the greatest
mathematicians which culminated in the 1930s, and which has shaped the
mathematical world of today.
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We have come to the standpoint above that a real number may be de-
fined through its decimal expansion. A rational real number has a decimal
expansion that eventually becomes periodic. An irrational real number has
an expansion which is infinite and is not periodic. We have defined R as
the set of all possible infinite decimal expansions, with the agreement that
this definition is a bit vague because the meaning of “possible” is vague.
We may say that we use a constructivist/intuitionist definition of R.
The formalist/logicist would rather like to define R as the set of all infinite

decimal expansions, or set of all Cauchy sequences of rational numbers, in
what we called a universal Big Brother style above.
The set of real numbers is often referred to as the “continuum” of real

numbers. The idea of a “continuum” is basic in classical mechanics where
both space and time is supposed to be “continuous” rather than “discrete”.
On the other hand, in quantum mechanics, which is the modern version
of mechanics on the scales of atoms and molecules, matter starts to show
features of being discrete rather than continuous. This reflects the famous
particle-wave duality in quantum mechanics with the particle being dis-
crete and the wave being continuous. Depending on what glasses we use,
phenomena may appear to be more or less discrete or continuous and no
single mode of description seems to suffice. The discussions on the nature of
real numbers may be rooted in this dilemma, which may never be resolved.

193.7 Cantor Versus Kronecker

Let us give a glimpse of the discussion on the nature of real numbers
through two of the key personalities, namely Cantor (1845-1918) in the for-
malist corner and Kronecker (1823-91), in the constructivist corner. These
two mathematicians were during the late half of the 19th century involved
in a bitter academic fight through their professional lives (which eventually
led Cantor into a tragic mental disorder). Cantor created set theory and in
particular a theory about sets with infinitelymany elements, such as the set
of natural numbers or the set of real numbers. Cantors theory was criticized
by Kronecker, and many others, who simply could not believe in Cantors
mental constructions or consider them to be really interesting. Kronecker
took a down-to-earth approach and said that only sets with finitely many
elements can be properly understood by human brains (“God created the
integers, all else is the work of man”). Alternatively, Kronecker said that
only mathematical objects that can be ”constructed” in a finite number of
steps actually “exist”, while Cantor allowed infinitely many steps in a “con-
struction”. Cantor would say that the set of all natural numbers that is the
set with the elements 1, 2, 3, 4, ..., would “exist” as an object in itself as the
set of all natural numbers which could be grasped by human brains, while
Kronecker would deny such a possibility and reserve it to a higher being. Of
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course, Kronecker did not claim that there are only finitely many natural
numbers or that there is a largest natural number, but he would (following
Aristotle) say that the existence of arbitrarily large natural numbers is like
a “potential” rather than an actual reality.

FIGURE 193.6. Cantor (left): “I realize that in this undertaking I place myself
in a certain opposition to views widely held concerning the mathematical infinite
and to opinions frequently defended on the nature of numbers”. Kronecker (right):
“God created the integers, all else is the work of man”.

In the first round, Kronecker won since Cantor’s theories about the infi-
nite was rejected by many mathematicians in the late 19th and beginning
20th century. But in the next round, the influential mathematician Hilbert,
the leader of the formalist school, joined on the side of Cantor. Bertrand
Russell and Norbert Whitehead tried to give mathematics a foundation
based on logic and set theory in their monumental Principia Mathematica
(1910-13) and may also be viewed as supporters of Cantor. Thus, despite
the strong blow from Gödel in the 1930’s, the formalist/logicist schools
took over the scene and have been dominating mathematics education into
our time. Today, the development of the computer as is again starting to
shift the weight to the side of the constructivists, simply because no com-
puter is able to perform infinitely many operations nor store infinitely many
numbers, and so the old battle may come alive again.
Cantor’s theories about infinite numbers have mostly been forgotten, but

there is one reminiscence in most presentations of the basics of Calculus,
namely Cantors’s argument that the degree of infinity of the real numbers
is strictly larger than that of the rational or natural numbers. Cantor ar-
gued as follows: suppose we try to enumerate the real numbers in a list
with a first real number r1, a second real number r2 and so on. Cantor
claimed that in any such list there must be some real numbers missing, for
example any real number that differs from r1 in the first decimal, from r2
in the second decimal and so on. Right? Kronecker would argue against
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this construction simply by asking full information about for example r1,
that is, full information about all the digits of r1. OK, if r1 was rational
then this could be given, but if r1 was irrational, then the mere listing of
all the decimals of r1 would never come to an end, and so the idea of a
list of real numbers would not be very convincing. So what do you think?
Cantor or Kronecker?
Cantor not only speculated about different degrees of infinities, but also

cleared out more concrete questions about e.g. convergence of trigonometric
series viewing real numbers as limits of of Cauchy sequences of rational
numbers in pretty much the same we have presented.

193.8 Deciding Whether a Number is Rational or
Irrational

We dwell a bit more on the nature of real numbers. Suppose x is a real
number, the decimals of which can be determined one by one by using a
certain algorithm. How can we tell if x is rational or irrational? Theoreti-
cally, if the decimal expansion is periodic then x is rational otherwise it is
irrational. There is a practical problem with this answer however because
we can only compute a finite number of digits, say never more than 10100.
How can we be sure that the decimal expansion does not start repeating af-
ter that? To be honest, this question seems very difficult to answer. Indeed
it appears to be impossible to tell what happens in the complete decimal
expansion by looking at a finite number of decimals. The only way to de-
cide if a number x is rational or irrational is figure out a clever argument
like the one the Pythagoreans used to show that

√
2 is irrational. Figuring

out such arguments for different specific numbers like π and e is an activity
that has interested a lot of mathematicians over the years.
On the other hand, the computer can only compute rational numbers and

moreover only rational numbers with finite decimal expansions. If irrational
numbers do not exist in practical computations, it is reasonable to wonder if
they truly exist. Constructive mathematicians like Kronecker and Brouwer
would not claim that irrational numbers really exist.

193.9 The Set of All Possible Books

We suggest it is reasonable to define the set of all real numbers R as the
set of all possible decimal expansions or equivalently the set of all pos-
sible Cauchy sequences of rational numbers. Periodic decimal expansions
correspond to rational numbers and non-periodic expansions to irrational
numbers. The set R thus consists of the set of all rational numbers together
with the set of all irrational numbers. We know that it is common to omit
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the word “possible” in the suggested definition of R and define R as “the
set of all real numbers”, or “the set of all infinite decimal expansions”.
Let’s see if this hides some tricky point by way of an analogy. Suppose

we define a “book” to be any finite sequence of letters. There are specific
books such as “The Old Man and the Sea” by Hemingway, “The Author
as a Young Dog” by Thomas, “Alice in Wonderland” by Lewis Carrol, and
“1984” by Orwell, that we could talk about. We could then introduce B as
“the set of all possible books”, which would consist of all the books that
have been and will be written purposely, together with many more “books”
that consist of random sequences of letters. These would include those fa-
mous books that are written or could be written by chimpanzees playing
with typewriters. We could probably handle this kind of terminology with-
out too much difficulty, and we would agree that 1984 is an element of B.
More generally, we would be able to say that any given book is a member
of B. Although this statement is difficult to deny, it is also hard to say that
this ability is very useful.
Suppose now we omit the word possible and start to speak of B as “the

set of all books”. This could give the impression that in some sense B is an
existing reality, rather than some kind of potential as when we speak about
“possible books”. The set B could then be viewed as a library containing
all books. This library would have to be enormously large and most of the
“books” would be of no interest to anyone. Believing that the set of all
books “exists” as a reality would not be very natural for most people.
The set of real numbers R has the same flavor as the set of all books

B. It must be a very large set of numbers of which only a relative few,
such as the rational numbers and a few specific irrational numbers, are
ever encountered in practice. Yet, it is traditional to define R as the set
of real numbers, rather than as “set of all possible real numbers”. The
reader may choose the interpretation of R according to his own taste. A
true idealist would claim that the set of all real numbers “exists”, while
a down-to-earth person would more likely speak about the set of possible
real numbers. Eventually, this may come down a personal religious feeling;
some people appear to believe that Heaven actually exists, and while others
might view as a potential or as a poetic way of describing something which
is difficult to grasp.
Whatever interpretation you choose, you will certainly agree that some

real numbers are more clearly specified than others, and that to specify a
real number, you need to give some algorithm allowing you to determine
as many digits of the real number as would be possible (or reasonable) to
ask for.



1140 193. Do Mathematicians Quarrel?*

193.10 Recipes and Good Food

Using the Bisection algorithm, we can compute any number of decimals of√
2 if we have enough computational power. Using an algorithm to specify

a number is analogous to using a recipe to specify for example Grandpa’s
Chocolate Cake. By following the recipe, we can bake a cake that is a more
or less accurate approximation of the ideal cake (which only Grandpa can
make) depending on our skill, energy, equipment and ingredients. There is
a clear difference between the recipe and cakes made from the recipe, since
after all we can eat a cake with pleasure but not a recipe. The recipe is like
an algorithm or scheme telling us how to proceed, how many eggs to use
for example, while cakes are the result of actually applying the algorithm
with real eggs.
Of course, there are people who seem to enjoy reading recipes, or even

just looking at pictures of food in magazines and talking about it. But if
they never actually do cook anything, their friends are likely to lose interest
in this activity. Similarly, you may enjoy looking at the symbols π,

√
2 et

cetera, and talking about them, or writing them on pieces of paper, but if
you you never actually compute them, you may come to wonder what you
are actually doing.
In this book, we will see that there are many mathematical quantities

that can only be determined approximately using a computational algo-
rithm. Examples of such quantities are

√
2, π, and the base e of the natural

logarithm. Later we will find that there are also functions, even elementary
functions like sin(x) and exp(x) that need to be computed for different
values of x. Just as we first need to bake a cake in order to enjoy it, we
may need to compute such ideal mathematical quantities using certain al-
gorithms before using them for other purposes.

193.11 The “New Math” in Elementary Education

After the defeat of formalists in the 1930s by the arguments of Gödel, para-
doxically the formalist school took over and set theory got a new chance.
A wave generated by this development struck the elementary mathematics
education in the 1960s in the form of the “new math”. The idea was to
explain numbers using set theory, just as Russell and Whitehead had tried
to do 60 years earlier in their Principia. Thus a kid would learn that a set
consisting of one cow, two cups, a piece of chocolate and an orange, would
have five elements. The idea was to explain the nature of the number 5
this way rather than counting to five on the fingers or pick out 5 oranges
from a heap of oranges. This type of “new math” confused the kids, and
the parents and teachers even more, and was abandoned after some years
of turbulence.
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193.12 The Search for Rigor in Mathematics

The formalists tried to give mathematics a rigorous basis. The search for
rigor was started by Cauchy and Weierstrass who tried to give precise def-
initions of the concepts of limit, derivative and integral, and was continued
by Cantor and Dedekind who tried to clarify the precise meaning of con-
cepts such as continuum, real number, the set of real numbers et cetera.
Eventually this effort of giving mathematics a fully rational basis collapsed,
as we have indicated above.
We may identify two types of rigor:

• constructive rigor

• formal rigor.

Constructive rigor is necessary to accomplish difficult tasks like carrying
out a heart operation, sending a man to the moon, building a tall suspension
bridge, climbing Mount Everest, or writing a long computer program that
works properly. In each case, every little detail may count and if the whole
enterprize is not characterized by extreme rigor, it will most likely fail.
Eventually this is a rigor that concerns material things, or real events.
Formal rigor is of a different nature and does not have a direct concrete

objective like the ones suggested above. Formal rigor may be exercised at a
royal court or in diplomacy, for example. It is a rigor that concerns language
(words), or manners. The Scholastic philosophers during the Medieval time,
were formalists who loved formal rigor and could discuss through very com-
plicated arguments for example the question how many Angels could fit
onto the edge of a knife. Some people use a very educated formally correct
language which may be viewed as expressing a formal rigor. Authors pay
a lot of attention to the formalities of language, and may spend hour after
hour polishing on just one sentence until it gets just the right form. More
generally, formal aspects may be very important in Arts and Aesthetics.
Formal rigor may be thus very important, but serves a different purpose
than constructive rigor. Constructive rigor is there to guarantee that some-
thing will actually function as desired. Formal rigor may serve the purpose
of controlling people or impressing people, or just make people feel good,
or to carry out a diplomatic negotiation. Formal rigor may be exercised in
a game or play with certain very specific rules, that may be very strict, but
do not serve a direct practical purpose outside the game.
Also in mathematics, one may distinguish between concrete and formal

error. A computation, like multiplication of two natural numbers, is a con-
crete task and rigor simply means that the computation is carried out in
a correct way. This may be very important in economics or engineering. It
is not difficult to explain the usefulness of this type of constructive rigor,
and the student has no difficulty in formulating himself what the criteria
of constructive rigor might be in different contexts.
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Formal rigor in calculus was promoted by Weierstrass with the objective
of making basic concepts and arguments like the continuum of real num-
bers or limit processes more “formally correct”. The idea of formal rigor is
still alive very much in mathematics education dominated by the formalist
school. Usually, students cannot understand the meaning of this type of
“formally rigorous reasoning”, and very seldom can exercise this type of
rigor without much direction from the teacher.
We shall follow an approach where we try to reach constructive rigor to

a degree which can be clearly motivated, and we shall seek to make the
concept of formal rigor somewhat understandable and explain some of its
virtues.

193.13 A Non-Constructive Proof

We now give an example of a proof with non-constructive aspects that
plays an important role in many Calculus books. Although because of the
non-constructive aspects, the proof is considered to be so difficult that it
can only by appreciated by selected math majors.
The setting is the following: We consider a bounded increasing sequence

{an}∞1 of real numbers, that is an ≤ an+1 for n = 1, 2, ..., and there is s
constant C such that an ≤ C for n = 1, 2, .... The claim is that the sequence
{an}∞1 converges to a limit A. The proof goes as follows: all the numbers
an clearly belong to the interval I = [a1, C]. For simplicity suppose a1 = 0
and C = 1. Divide now the interval [0, 1] into the two intervals [0, 1/2] and
[1/2, 1]. and make the following choice: if there is a real number an such
that an ∈ [1/2, 1], then choose the right interval [1/2, 1] and if not choose
the left interval [0, 1/2]. Then repeat the subdivision into a left and a right
interval, choose one of the intervals following the same principle: if there is
a real number an in the right interval, then choose this interval, and if not
choose the left interval. We then get a nested sequence of intervals with
length tending to zero defining a unique real number that is easily seen to
be the limit of the sequence {an}∞1 . Are you convinced? If not, you must
be a constructivist.
So where is the hook of non-constructiveness in this proof? Of course,

it concerns the choice of interval: in order to choose the correct interval
you must be able to check if there is some an that belongs to the right
interval, that is you must check if an belongs to the right interval for all
sufficiently large n. The question from a constructivist point of view is if we
can perform each check in a finite number of steps. Well, this may depend on
the particular sequence an ≤ an+1 under consideration. Let’s first consider
a sequence which is so simple that we may say that we know everything
of interest: for example the sequence {an}∞1 with an = 1 − 2−n, that is
the sequence 1/2, 3/4, 7/8, 15/16, 31/32, ..., which is a bounded increasing
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sequence clearly converging to 1. For this sequence, we would be able to
always choose the correct interval (the right one) because of its simplicity.
We now consider the sequence {an}∞1 with an =

∑n
1

1
k2 , which is clearly

an increasing sequence, and one can also quite easily show that the se-
quence is bounded. In this case the choice of interval is much more tricky,
and it is not clear how to make the choice constructively without actually
constructing the limit. So there we stand, and we may question the value
of the non-constructive proof of existence of a limit, if we anyway have to
construct the limit.
At any rate we sum up in the following result that we will use a a couple

of times below.

Theorem 193.1 (non-constructive!) A bounded increasing sequence con-
verges.

193.14 Summary

The viewpoint of Plato was to say that ideal points and lines exist in some
Heaven above, while the points and lines which we as human beings can
deal with, are some more or less incomplete copies or shades or images
of the ideals. This is Plato’s idealistic approach, which is related to the
formalistic school. An intuitionist would say that we can never be sure of
the existence of the ideals, and that we should concentrate on the more
or less incomplete copies we can construct ourselves as human beings. The
question of the actual existence of the ideals thus becomes a question of
metaphysics or religion, to which there probably is no definite answer. Fol-
lowing our own feelings, we may choose to be either a idealist/formalist or
an intuitionist/contructivist, or something in between.
The authors of this book have chosen such a middle way between the

constructivist and formalist schools, trying always to be as constructive as is
possible from a practical point of view, but often using a formalist language
for reasons of convenience. The constructive approach puts emphasis on the
concrete aspects of mathematics and brings it close to engineering and
“body”. This reduces the mystical character of mathematics and helps
understanding. On the other hand, mathematics is not equal to engineering
or only “body”, and also the less concrete aspects or “soul” are useful for
our thinking and in modeling the world around us. We thus seek a good
synthesis of constructive and formalistic mathematics, or a synthesis of
Body & Soul.
Going back to the start of our little discussion, we thus associate the logi-

cist and formalistic schools with the idealistic/aristochratic tradition and
the constructivists with the constructive/democratic tradition. As students,
we would probably appreciate a constructive/democratic approach, since it
aids the understanding and gives the student an active role. On the other
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hand, certain things indeed are very difficult to understand or construct,
and then the idealistic/arisochratic approach opens a possible attitude to
handle this dilemma.
The constructivist approach, whenever feasible, is appealing from educa-

tional point of view, since it gives the student an active role. The student
is invited to construct himself, and not just watch an omnipotent teacher
pick ready-made examples from Heaven.
Of course, the development of the modern computer has meant a tremen-

dous boost of constructive mathematics, because what the computer does
is constructive. Mathematics education is still dominated by the formalist
school, and the most of the problems today afflicting mathematics educa-
tion can be related to the over-emphasis of the idealistic school in times
when constructive mathematics is dominating in applications.
Turing’s principle of a “universal computing machine” directly connects

the work on the foundations of mathematics in the 1930s (with Computable
numbers as a key article), with the development of the modern computer in
the 1940s (with ACE as a key example), and thus very concretely illustrates
the power of (constructive!) mathematics.
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Chapter 193 Problems

193.1. Can you figure out how the barber’s paradox is constructed? Suppose
the barber comes from another village. Does this resolve the paradox?

193.2. Another paradox of a similar kind goes as follows: Consider all the natural
numbers which you can describe using at most 100 words or letters. For instance,
you can describe the number 10 000 by the words ”ten thousand” or ”a one
followed by four zeros”. Describe now a number by specifying it as the smallest
natural number which can not be described in at most one hundred words. But
the sentence ”the smallest natural number which can not be described in at most
one hundred words” is a description of a certain number with fewer than 100
words (15 to be exact), which contradicts the very definition of the number as
the number which could not be described with less than 100 words. Can you
figure out how the paradox arises?

193.3. Describe as closely as you can what you mean by a point or line. Ask a
friend to do the same, and try to figure out if your concepts are the same.

193.4. Study how the concept of real numbers is introduced by browsing through
the first pages of some calculus books in your nearest library or on your book
shelf.

193.5. Define the number ω ∈ (0, 1) as follows: let the first digit of ω be equal to
one if there are exactly 10 digits in a row equal to one in the decimal expansion
of

√
2 and zero else, let the second be equal to one if there are exactly 20 digits in

a row equal to one in the decimal expansion of
√
2 and zero else, and so on. Is ω

a well defined real number? How many digits of ω could you think to be possible
to compute?

193.6. Make a poll about what people think a real number is, from friends,
relatives, politicians, rock musicians, to physics and mathematics professors.

Some distinguished mathematicians have recently advocated the more
or less complete banishment from mathematics of all non-constructive
proofs. Even if such a program were desirable, it would involve tremen-
dous complications and even the partial destruction of the body of
living mathematics. For this reason it is no wonder that the school of
“intuitionism”, which has adopted this program, has met with strong
resistance, and that even the most thoroughgoing intuitionists can-
not always live up to their convictions. (Courant)

The composition of vast books is a laborious and impoverishing
extravagance. To go on for five hundred pages developing an idea
whose perfect oral exposition is possible in a few minutes! A better
course of procedure is to pretend that these books already exist, and
then to offer a resume, a commentary...More reasonable, more inept,
more indolent, I have preferred to write notes upon imaginary books.
(Borges, 1941)
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I have always imagined that Paradise will be kind of a library. (Borges)

My prize book at Sherbourne School (von Neumann’s Mathematische
Grundlagen der Quantenmechanik) is turning out very interesting,
and not at all difficult reading, although the applied mathematicians
seem to find it rather strong. (Turing, age 21)

FIGURE 193.7. View of the river Cam at Cambridge 2003 with ACE in the
fore-ground (and “UNTHINKABLE” in the background to the right)
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194
The Function y = xr

With equal passion I have sought knowledge. I have wished to under-
stand the secrets of men. I have wished to know why the stars shine.
And I have tried to apprehend the Pythagorean power by which
numbers hold sway about the flux. A little of this, but not much, I
have achieved. (Bertrand Russell 1872-1970).

194.1 The Function
√
x

We showed above that we can solve the equation x2 = a for any positive
rational number a using the Bisection algorithm. The unique positive so-
lution is a real number denoted by

√
a. We can view

√
a as a function of

a defined for a ∈ Q+. Of course, we can extend the function
√
a to [0,∞)

since 02 = 0 or
√
0 = 0.

Changing names from a to x, we now consider the function f(x) =
√
x

with D(f) = Q+ and f : Q+ → R+. As explained in the Chapter Real
numbers, we can extend this into a function f : R+ → R+ with f(x) =

√
x,

using the Lipschitz continuity of
√
x on intervals (δ,∞) with δ > 0 as

discussed below. Since by definition
√
x is the solution to the equation

y2 = x with y as unknown, we have for x ∈ R+,

(
√
x)2 = x. (194.1)

We plot the function
√
x in Fig. 194.1.

The function y =
√
x is increasing: if x > x̄, then

√
x >

√
x̄. Further,

if {xi} is a sequence of positive real numbers with limi→∞ xi = 0, then
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FIGURE 194.1. The function
√
x of x.

obviously limi→∞
√
xi = 0, that is

lim
x→0+

√
x = 0. (194.2)

194.2 Computing with the Function
√
x

If x2 = a and y2 = b, then (xy)2 = ab. This gives the following property of
the square root function, √

a
√
b =

√
ab. (194.3)

We find similarly that √
a√
b
=

√
a

b
. (194.4)

194.3 Is
√
x Lipschitz Continuous on R+?

To check if the function f(x) =
√
x is Lipschitz continuous on R+, we note

that since (
√
x−

√
x̄)(

√
x+

√
x̄) = x− x̄, we have

f(x)− f(x̄) =
√
x−

√
x̄ =

1√
x+

√
x̄
(x − x̄).

Since
1√

x+
√
x̄
,
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can be arbitrarily large by making x and x̄ small positive, the function
f(x) =

√
x does not have a bounded Lipschitz constant on R+ and f(x) =√

x is not Lipschitz continuous on R+. This reflects the observation that
the “slope” of

√
x seems to increase without bound as x approaches zero.

However, f(x) =
√
x is Lipschitz continuous on any interval (δ,∞) where δ

is a fixed positive number, since we may then choose the Lipschitz constant
Lf equal to 1

2δ .

194.4 The Function xr for Rational r = p
q

Consider the equation yq = xp in the unknown y, where p and q are given
integers and x is a given positive real number. Using the Bisection algo-
rithm, we can prove that this equation has a unique solution y for any given
positive x. We call the solution y = x

p
q = xr, where r = p

q . In this way, we

define a function f(x) = xr on R+ known as “x to the power r”. Unique-
ness follows from realizing that y = xr is increasing with x. Apparently,√
x = x

1
2 .

194.5 Computing with the Function xr

Using the defining equation yq = xp as above, we find that for x ∈ R+ and
r, s ∈ Q,

xrxs = xr+s,
xr

xs
= xr−s. (194.5)

194.6 Generalizing the Concept of Lipschitz
Continuity

There is a natural generalization of the concept of Lipschitz continuity that
goes as follows. Let 0 < θ ≤ 1 be a given number and L a positive constant,
and suppose the function f : R → R satisfies

|f(x) − f(y)| ≤ L|x− y|θ for all x, y ∈ R.

We say that f : R → R is Lipschitz continuous with exponent θ and
Lipschitz constant L (or Hölder continuous with exponent θ and constant
L with a common terminology).
This generalizes the previous notion of Lipschitz continuity that corre-

sponds to θ = 1. Since θ can be smaller than one, we thus consider a larger
class of functions. For example, we show that the function f(x) =

√
x is
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Lipschitz continuous on (0,∞) with exponent θ = 1/2 and Lipschitz con-
stant L = 1, that is

|√x−
√
x̄| ≤ |x− x̄|1/2. (194.6)

To prove this estimate, we assume that x > x̄ and compute backwards,
starting with x̄ ≤ √

x
√
x̄ to get x+ x̄− 2

√
x
√
x̄ ≤ x− x̄ = |x − x̄| , which

can be written
(
√
x−

√
x̄)2 ≤ (|x− x̄|1/2)2

from which the desired estimate follows by taking the square root. The case
x̄ > x is the same.
Functions that are Lipschitz continuous with Lipschitz exponent θ < 1

may be quite “wild”. In the “worst case”, they may behave “everywhere” as
“badly” as

√
x does at x = 0. An example is given by Weierstrass function

presented in the Chapter Fourier series. Take a look!

194.7 Turbulent Flow is Hölder (Lipschitz)
Continuous with Exponent 1

3

In Chapter Navier-Stokes, Quick and Easy we give an argument indicating
that turbulent flow is Hölder (Lipschitz) continuous with exponent 1

3 so
that a turbulent velocity u(x) would satisfy

|u(x)− u(y)| ∼ L|x− y| 13 .

Such a turbulent velocity is a quite “wild” function which varies very
quickly. Thus, Nature is not unfamiliar with Hölder (Lipschitz) continu-
ity with exponent θ < 1.

Chapter 194 Problems

194.1. Let x, y ∈ R and r, s ∈ Q. Verify the following computing rules: (a)
xr+s = xrxs (b) xr−s = xr/xs (c) xrs = (xr)s (d) (xy)r = xrys

194.2. Is f(x) = 3
√
x, Lipschitz continuous on (0,∞) in the generalized sense?

If yes give then the Lipschitz constant and exponent.

194.3. A Lipschitz continuous function with a Lipschitz constant L with 0 ≤
L < 1 is also called a contraction mapping. Which of the following functions
are contraction mappings on R? (a) f(x) = sin x (b) f(x) = 1

1+x2
(c)

f(x) = (1 + x2)−1/2 (d) f(x) = x3

194.4. Let f(x) = 1, for x ≤ 0, and f(x) =
√
1 + x2, for x > 0. Is f a contraction

mapping?
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195
Fixed Points and Contraction
Mappings

Give me one fixed point on which to stand, and I will move the Earth.
(Archimedes)

195.1 Introduction

A special case of the basic problem of solving an algebraic equation f(x) = 0
takes the form: find x̄ such that

x̄ = g(x̄), (195.1)

where g : R → R is a given Lipschitz continuous function. The equation
(195.1) says that x̄ is a fixed point of the function y = g(x), that is the
output value g(x̄) is the same as the input value x̄. Graphically, we seek
the intersection of the graphs of the line y = x and the curve y = g(x), see
Fig. 195.1.
To solve the equation x = g(x), we could rewrite it as f(x) = 0 with

(for example) f(x) = x − g(x) and then apply the Bisection (or Deca-
section) algorithm to f(x) = 0. Note that the two equations f(x) = 0 with
f(x) = x − g(x) and x = g(x) have exactly the same solutions, that is the
two equations are equivalent.
In this chapter we consider a different algorithm for solving the equation

(195.1) that is of central importance in mathematics. This is the Fixed
Point Iteration algorithm, which takes the following form: Starting with
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y = x

y = g(x)

x

x = g(x)

FIGURE 195.1. Illustration of a fixed point problem g(x̄) = x̄.

some x0, for i = 1, 2, ..., compute

xi = g(xi−1) for i = 1, 2, 3, .... (195.2)

In words, we start with an initial approximation x0 then compute x1 =
g(x0), x2 = g(x1), x3 = g(x2), and so on. Stepwise, given a current value
xi−1, we compute the corresponding output g(xi−1), and then choose as
new input xi = g(xi−1). Repeating this procedure, we will generate a se-
quence {xi}∞i=1.
We shall below study the following basic questions related to the sequence

{xi}∞i=1 generated by Fixed Point Iteration:

• Does {xi}∞i=1 converge, that is does x̄ = limi→∞ xi exist?

• Is x̄ = limi→∞ xi a fixed point of y = g(x), that is x̄ = g(x̄)?

We shall also investigate whether or not a fixed point x̄ is uniquely deter-
mined.

195.2 Contraction Mappings

We shall prove in this chapter that both the above questions have affirma-
tive answers if g(x) is Lipschitz continuous with Lipschitz constant L < 1,
i.e.

|g(x)− g(y)| ≤ L|x− y| for all x, y ∈ R, (195.3)

with L < 1. We shall also see that the smaller L is, the quicker the con-
vergence of the sequence {xi} to a fixed point, and the happier we will
be.
A function g : R → R satisfying (195.3) with L < 1 is said to be a

contraction mapping. We may summarize the basic result of this chapter as
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follows: A contraction mapping has a unique fixed point that is the limit of
a sequence generated by Fixed Point Iteration. This is a most fundamental
result of mathematics with a large number of applications. Sometimes it
is referred to as Banach’s contraction mapping theorem. Banach was a
famous Polish mathematician, who created much of the field of Functional
Analysis, which is a generalization of Calculus and Linear Algebra.

195.3 Rewriting f(x) = 0 as x = g(x)

Fixed Point Iteration is an algorithm for computing roots of equations of
the form x = g(x). If we are given an equation of the form f(x) = 0, we
may want to rewrite this equation in the form of a fixed point equation
x = g(x). This can be done in many ways, for example by setting

g(x) = x+ αf(x),

where α is a nonzero real number to be chosen. Clearly, we have x̄ = g(x̄)
if and only if f(x̄) = 0. To obtain quick convergence, one would try to
choose α so that the Lipschitz constant of the corresponding function g(x)
is small. We shall see that trying to find such values of α leads to the
wonderful world of Newton methods for solving equations, which is a very
important part of mathematics.
A preliminary computation to find a good value of α to make g(x) =

x + αf(x) have a small Lipschitz constant could go as follows. Assuming
x > y,

g(x)− g(y) = x+ αf(x) − (y + αf(y)) = x− y + α(f(x)− f(y))

= (1 + α
f(x)− f(y)

x− y
)|x− y|,

which suggests choosing α to satisfy

− 1

α
=
f(x)− f(y)

x− y
.

We arrive at the same formula for x < y. We will return to this formula
below. We note in particular the appearance of the quotient

f(x)− f(y)

x− y
,

which represents the slope of the corda or secant connecting the points
(x, f(x)) and (y, f(y)) in R2, see Fig. 195.2.
We now consider two models from everyday life leading to fixed point

problems and apply the Fixed Point Iteration to solve them. In each case,
the fixed point represents a balance or break-even of income and spend-
ing, with input equal to output. We then prove the contraction mapping
theorem.
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(x, f(x))

(y, f(y))

FIGURE 195.2. Corda connecting the points (x, f(x)) and (y, f(y)) in R2.

195.4 Card Sales Model

A door-to-door salesman selling greeting cards has a franchise with a greet-
ing card company with the following price arrangement. For each shipment
of cards, she pays a flat delivery fee of $25 dollars and on top of this for
sales of x, where x is measured in units of a hundred dollars, she pays an
additional fee of 25% to the company. In mathematical terms, for sales of
x hundreds of dollars, she pays

g(x) =
1

4
+

1

4
x (195.4)

where g is also given in units of a hundred dollars. The problem is to find
the “break-even point”, i.e. the amount of sales x̄ where the money that
she takes in (= x̄) exactly balances the money she has to pay out (g(x̄)),
that is, her problem is to find the fixed point x̄ satisfying x̄ = g(x̄). Of
course, she hopes to see that she clears a profit with each additional sale
after this point.
We display the problem graphically in Fig. 195.3 in terms of two lines.

The first line y = x represents the amount of money collected for sales of
x. In this problem, we measure sales in units of dollars, rather than say
in numbers of cards sold, so we just get y = x for this curve. The second
line y = g(x) = 1

4x + 1
4 represents the amount of money that has to be

paid to the greeting card company. Because of the initial flat fee of $25,
the salesman starts with a loss. Then as sales increase, she reaches the
break-even point x̄ and finally begins to see a profit.
In this problem, it is easy to analytically compute the break-even point,

that is, the fixed point x̄ because we can solve the equation

x̄ = g(x̄) =
1

4
x̄+

1

4

to get x̄ = 1/3.
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money collected

money paid 
to company

x

profitloss

sales

y = ¼ x + ¼

y = x

¼

FIGURE 195.3. Illustration of the problem of determining the break-even point
for selling greeting cards door-to-door. Sales above the break-even point x̄ give a
profit to the salesman, but sales below this point mean a loss.

195.5 Private Economy Model

Your roommate has formulated the following model for her/his private
economy: denote the net income by x that is variable including contri-
butions from family, fellowship and a temporary job at McDonalds. The
spending consists a fixed amount of 1 unit (of say 500 dollars per month) for
rent and insurance, the variable amount of x/2 units for good food, good
books and intellectual movies, and a variable amount of 1/x units for junk
food, cigarettes and bad movies. This model is based on the observation
that the more money your roommate has, the more educated a life she/he
will live. The total spending is thus

g(x) =
x

2
+ 1 +

1

x

and the pertinent question is to find a balance of income and spending,
that is to find the income x̄ such that x̄ = g(x̄) where the spending is the
same as the income. If the income is bigger than x̄, then your roommate
will not use up all the money, which is against her/his nature, and if the
income is less than x̄, then your roommate’s father will get upset, because
he will have to pay the resulting debt.
Also in this case, we can directly find the fixed point x̄ by solving the

equation

x̄ =
x̄

2
+ 1 +

1

x̄

analytically and we then find that x̄ = 1 +
√
3 ≈ 2.73.

If we don’t have enough motivation to go through the details of this
calculation, we could instead try the Fixed Point Iteration. We would then
start with an income x0 = 1 say and compute the spending g(1) = 2.5,
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then choose the new income x1 = 2.5, and compute the spending g(x1) =
g(2.5) = 2.65, and then set x2 = 2.65 and compute the spending g(x2) = ...
and so on. Of course, we expect that limi xi = x̄ = 1 +

√
3. Below, we will

prove that this is indeed true!

195.6 Fixed Point Iteration in the Card Sales
Model

We now apply Fixed Point Iteration to the Card Sales Model. In Fig. 195.4,
we plot the function g(x) = 1

4x + 1
4 along with y = x and the fixed point

x̄. We also plot the value of x1 = g(x0) for some initial approximation x0.

xx

g(x)

x

x

y=x

y=g(x)

FIGURE 195.4. The first step of Fixed Point Iteration in Card Sales model: g(x)
is closer to x̄ than x.

We choose x0 < x̄ because the sales start at zero and then increase. From
the plot, we can see that x1 = g(x0) is closer to x̄ than x0, i.e.

|g(x0)− x̄| < |x0 − x̄|.

In fact, we can compute the difference exactly since x̄ = 1/3,

|g(x0)− x̄| =
∣∣∣∣
1

4
x0 +

1

4
− 1

3

∣∣∣∣ =
∣∣∣∣
1

4

(
x0 −

1

3

)∣∣∣∣ =
1

4
|x0 − x̄|.

So the distance from x1 = g(x0) to x̄ is exactly 1/4 times the distance from
x0 to x̄. The same argument shows that the distance from x2 = g(x1) to x̄
will be 1/4 of the distance from x1 to x̄ and thus 1/16 of the distance from
x0 to x̄. In other words,

|x2 − x̄| = 1

4
|x1 − x̄| = 1

16
|x0 − x̄|
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xx

g(x)

g(x)

g(g(x))

x
g(g(x))

y=x

y=g(x)

FIGURE 195.5. Two steps of the contraction map algorithm applied to the fixed
point problem in Model 195.4. The distance of g(g(x)) to x̄ is 1/4 the distance
from g(x) to x̄ and 1/16 the distance from x to x̄.

We illustrate this in Fig. 195.5. Generally, we have

|xi − x̄| = 1

4
|xi−1 − x̄|,

and thus for i = 1, 2, ...,

|xi − x̄| = 4−i|x0 − x̄|.

Since 4−i gets as small as we please if i is sufficiently large, this estimate
shows that Fixed Point Iteration applied to the Card Sales model converges,
that is limi→∞ xi = x̄.
We consider some more examples before getting into the question of

convergence of Fixed Point Iteration in a more general case.

Example 195.1. For the sake of comparison, we show the results for
the fixed point problem in Model 195.4 computed by applying the fixed
point iteration to g(x) = 1

4x + 1
4 and the bisection algorithm to the

equivalent root problem for f(x) = − 3
4x+ 1

4 . To make the comparison
fair, we use the initial value x0 = 1 for the fixed point iteration and
x0 = 0 and X0 = 1 for the bisection algorithm and compare the values
of Xi from the bisection algorithm to xi from the fixed point iteration
in Fig. 195.6. The error of the fixed point iteration decreases by a factor
of 1/4 for each iteration as opposed to the error of the bisection algo-
rithm which decreases by a factor of 1/2. This is clear in the table of
results. Moreover, since both methods require one function evaluation
and one storage per iteration but the bisection algorithm requires an
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Bisection Algorithm Fixed Point Iteration
i Xi xi
0 1.00000000000000 1.00000000000000
1 0.50000000000000 0.50000000000000
2 0.50000000000000 0.37500000000000
3 0.37500000000000 0.34375000000000
4 0.37500000000000 0.33593750000000
5 0.34375000000000 0.33398437500000
6 0.34375000000000 0.33349609375000
7 0.33593750000000 0.33337402343750
8 0.33593750000000
9 0.33398437500000
10 0.33398437500000
11 0.33349609375000
12 0.33349609375000
13 0.33337402343750

FIGURE 195.6. Results of the bisection algorithm and the fixed point iteration
used to solve the fixed point problem in Model 195.4. The error of the fixed point
iteration decreases more for each iteration.

additional sign check, the fixed point iteration costs less per iteration.
We conclude that the fixed point iteration is truly “faster” than the
bisection algorithm for this problem.

Example 195.2. In solving for the solubility of Ba(IO 3 ) 2 in Model 184.10,
we solved the root problem (192.3)

x(20 + 2x)2 − 1.57 = 0

using the bisection algorithm. The results are in Fig. 192.4. In this
example, we use the fixed point iteration to solve the equivalent fixed
point problem

g(x) =
1.57

(20 + 2x)2
= x. (195.5)

We know that g is Lipschitz continuous on any interval that avoids
x = 10 (and we also know that the fixed point/root is close to 0). We
start off the iteration with x0 = 1 and show the results in Fig. 195.7

Example 195.3. In the case of the fixed point iteration applied to the
Card Sales model, we can compute the iterates explicitly:

x1 =
1

4
x0 +

1

4
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i xi
0 1.00000000000000
1 0.00484567901235
2 0.00392880662465
3 0.00392808593169
4 0.00392808536527
5 0.00392808536483

FIGURE 195.7. Results of the fixed point iteration applied to (195.5).

and

x2 =
1

4
x1 +

1

4
=

1

4

(
1

4
x0 +

1

4

)
+

1

4

=
1

42
x0 +

1

42
+

1

4

Likewise, we find

x3 =
1

43
x0 +

1

43
+

1

42
+

1

4

and after n steps

xn =
1

4n
x0 +

n∑

i=1

1

4i
. (195.6)

The first term on the right-hand side of (195.6), 1
4n x0 converges to 0 as

n increases to infinity. The second term is equal to

n∑

i=1

1

4i
=

1

4
×
n−1∑

i=0

1

4i
=

1

4
× 1− 1

4n

1− 1
4

=
1− 1

4n

3

using the formula for the geometric sum. The second term therefore
converges to 1/3, which is precisely the fixed point for (195.4), as n
increases to infinity.

An important observation about the last example is that the iteration
converges because the slope of g(x) = 1

4x + 1
4 is 1/4 < 1. This produces a

factor of 1/4 for each iteration, forcing the right-hand side of (195.6) to have
a limit as n tends to infinity. Recalling that the slope of a linear function is
the same thing as its Lipschitz constant, we can say this example worked
because the Lipschitz constant of g is L = 1/4 < 1.
In contrast if the Lipschitz constant, or slope, of g is larger than 1 then

the analog of (195.6) will not converge. We demonstrate this graphically
in Fig. 195.8 using the function g(x) = 2x + 1

4 . The difference between
successive iterates increases with each iteration and the fixed point iteration
does not converge. It is clear from the plot that there is no positive fixed
point. On the other hand, the fixed point iteration will converge when
applied to any linear function with Lipschitz constant L < 1. We illustrate
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y = x

y = x

x1x0 x2 x3

g(x) = 2 x + ¼

g(x) = ¾ x + ¼

x0 x1 x2 x3 x

FIGURE 195.8. On the left, we plot the first three fixed point iterates for
g(x) = 2x + 1

4
. The iterates increase without bound as the iteration proceeds.

On the right, we plot the first three fixed point iterates for g(x) = 3
4
x + 1

4
. The

iteration converges to the fixed point in this case.

the convergence for g(x) = 3
4x + 1

4 in Fig. 195.8. Thinking about (195.6),
the reason is simply that the geometric series with factor L converges when
L < 1.

195.7 A Contraction Mapping Has a Unique Fixed
Point

We now go back to the general case presented in the introductory overview.
We shall prove that a contraction mapping g : R → R has a unique fixed
point x̄ ∈ R given as the limit of a sequence generated by Fixed Point
Iteration. We recall that a contraction mapping g : R → R is a Lipschitz
continuous function on R with Lipschitz constant L < 1. We organize the
proof as follows:

1. Proof that {xi}∞i=1 is a Cauchy sequence.

2. Proof that x̄ = limi→∞ xi is a fixed point.

3. Proof that x̄ is unique.

Proof that {xi}∞i=1 is a Cauchy Sequence

To estimate |xi − xj | for j > i, we shall first prove an estimate for two
consecutive indices, that is an estimate for |xk+1 − xk|. To this end, we
subtract the equation xk = g(xk−1) from xk+1 = g(xk) to get

xk+1 − xk = g(xk)− g(xk−1).
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Using the Lipschitz continuity of g(x), we thus have

|xk+1 − xk| ≤ L|xk − xk−1|. (195.7)

Similarly,

|xk − xk−1| ≤ L|xk−1 − xk−2|,
and thus

|xk+1 − xk| ≤ L2|xk−1 − xk−2|.
Repeating the argument, we find that

|xk+1 − xk| ≤ Lk|x1 − x0|. (195.8)

We now proceed to use this estimate to estimate |xi − xj | for j > i. We
have

|xi − xj | = |xi − xi+1 + xi+1 − xi+2 + xi+2 − · · ·+ xj−1 − xj |,

so that by the triangle inequality,

|xi − xj | ≤ |xi − xi+1|+ |xi+1 − xi+2|+ · · ·+ |xj−1 − xj | =
j−1∑

k=i

|xk − xk+1|.

We now use (195.8) on each term |xk − xk+1| in the sum to get

|xi − xj | ≤
j−1∑

k=i

Lk |x1 − x0| = |x1 − x0|
j−1∑

k=i

Lk.

We compute

j−1∑

k=i

Lk = Li(1 + L+ L2 + · · ·+ Lj−i−1) = Li
1− Lj−i

1− L
,

using the formula for the sum of a geometric series. We now use the as-
sumption that L < 1, to conclude that 0 ≤ 1− Lj−i ≤ 1 and therefore for
j > i,

|xi − xj | ≤
Li

1− L
|x1 − x0|.

Since L < 1, the factor Li can be made as small as we please by tak-
ing i large enough, and thus {xi}∞i=1 is a Cauchy sequence and therefore
converges to a limit x̄ = limi→∞ xi.
Note that the idea of estimating |xi − xj | for j > i by estimating |xk −

xk+1| and using the formula for a geometric sum is fundamental and will
be used repeatedly below.



1162 195. Fixed Points and Contraction Mappings

Proof that x̄ = limi xi is a Fixed Point

Since g(x) is Lipschitz continuous, we have

g(x̄) = g( lim
i→∞

xi) = lim
i→∞

g(xi).

By the nature of the Fixed Point Iteration with xi = g(xi−1), we have

lim
i→∞

g(xi−1) = lim
i→∞

xi = x̄.

Since of course
lim
i→∞

g(xi−1) = lim
i→∞

g(xi),

we thus see that g(x̄) = x̄ as desired. We conclude that the limit limi xi = x̄
is a fixed point.

Proof of Uniqueness

Suppose that x and y are two fixed points, that is x = g(x) and y = g(y).
Since g : R → R is a contraction mapping,

|x− y| = |g(x)− g(y)| ≤ L|x− y|
which is possible only if x = y since L < 1. This completes the proof.
We have now proved that a contraction mapping g : R → R has a unique

fixed point given by Fixed Point Iteration. We summarize in the following
basic theorem.

Theorem 195.1 A contraction mapping g : R → R has a unique fixed
point x̄ ∈ R, and any sequence {xi}∞i=1 generated by Fixed Point Iteration
converges to x̄.

195.8 Generalization to g : [a, b] → [a, b]

We may directly generalize this result by replacing R by any closed interval
[a, b] of R. Taking the interval [a, b] to be closed guarantees that limi xi ∈
[a, b] if xi ∈ [a, b]. It is critical that g maps the interval [a, b] into itself.

Theorem 195.2 A contraction mapping g : [a, b] → [a, b] has a unique
fixed point x̄ ∈ [a, b] and a sequence {xi}∞i=1 generated by Fixed Point Iter-
ation starting with a point x0 in [a, b] converges to x̄.

Example 195.4. We apply this theorem to g(x) = x4/(10 − x)2. We
can show that g is Lipschitz continuous on [−1, 1] with L = .053 and the
fixed point iteration started with any x0 in [−1, 1] converges rapidly to
the fixed point x̄ = 0. However, the Lipschitz constant of g on [−9.9, 9.9]
is about 20× 106 and the fixed point iteration diverges rapidly if x0 =
9.9.
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195.9 Linear Convergence in Fixed Point Iteration

Let x̄ = g(x̄) be the fixed point of a contraction mapping g : R → R and
{xi}∞i=1 a sequence generated by Fixed Point Iteration. We can easily get
an estimate on how quickly the error of the fixed point iterate xi decreases
as i increases, that is the speed of convergence, as follows. Since x̄ = g(x̄),
we have

|xi − x̄| = |g(xi−1)− g(x̄)| ≤ L|xi−1 − x̄|, (195.9)

which shows that the error decreases by at least a factor of L < 1 during
each iteration. The smaller L is the faster the convergence!
The error may actually decrease by exactly a factor of L, as in the Card

Sales model with g(x) = 1
4x + 1

4 , where the error decreases by exactly a
factor of L = 1/4 in each iteration.
When the error decreases by (at least) a constant factor θ < 1 in each

step, we say that the convergence is linear with convergence factor θ. The
Fixed Point Iteration applied to a contraction mapping g(x) with Lipschitz
constant L < 1 converges linearly with convergence factor L.
We compare in Fig. 195.9. the speed of convergence of Fixed Point Iter-

ation applied to g(x) = 1
9x+

3
4 and g(x) = 1

5x+2. The iteration for 1
9x+

3
4

i xi for
1
9x+ 3

4 xi for
1
5x+ 2

0 1.00000000000000 1.00000000000000
1 0.86111111111111 2.20000000000000
2 0.84567901234568 2.44000000000000
3 0.84396433470508 2.48800000000000
4 0.84377381496723 2.49760000000000
5 0.84375264610747 2.49952000000000
6 0.84375029401194 2.49990400000000
7 0.84375003266799 2.49998080000000
8 0.84375000362978 2.49999616000000
9 0.84375000040331 2.49999923200000
10 0.84375000004481 2.49999984640000
11 0.84375000000498 2.49999996928000
12 0.84375000000055 2.49999999385600
13 0.84375000000006 2.49999999877120
14 0.84375000000001 2.49999999975424
15 0.84375000000000 2.49999999995085
16 0.84375000000000 2.49999999999017
17 0.84375000000000 2.49999999999803
18 0.84375000000000 2.49999999999961
19 0.84375000000000 2.49999999999992
20 0.84375000000000 2.49999999999998

FIGURE 195.9. Results of the fixed point iterations for 1
9
x+ 3

4
and 1

5
x+ 2.
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reaches 15 places of accuracy within 15 iterations while the iteration for
1
5x+ 2 has only 14 places of accuracy after 20 iterations.

195.10 Quicker Convergence

The functions 1
2x and 1

2x
2 are both Lipschitz continuous on [−1/2, 1/2]

with Lipschitz constant L = 1/2, and have a unique fixed point x̄ = 0. The
estimate (195.9) suggests the fixed point iteration for both should converge
to x̄ = 0 at the same rate. We show the results of the fixed point iteration
applied to both in Fig. 195.10. We see that Fixed Point Iteration converges

i xi for
1
2x xi for

1
2x

2

0 0.50000000000000 0.50000000000000
1 0.25000000000000 0.25000000000000
2 0.12500000000000 0.06250000000000
3 0.06250000000000 0.00390625000000
4 0.03125000000000 0.00001525878906
5 0.01562500000000 0.00000000023283
6 0.00781250000000 0.00000000000000

FIGURE 195.10. Results of the fixed point iterations for 1
2
x and 1

2
x2.

much more quickly for 1
2x

2, reaching 15 places of accuracy after 7 iterations.
The estimate (195.9) thus does not give the full picture.
We now take a closer look into the argument behind (195.9) for the

particular function g(x) = 1
2x

2. As above we have with x̄ = 0,

xi − 0 =
1

2
x2i−1 −

1

2
02 =

1

2
(xi−1 + 0)(xi−1 − 0),

and thus

|xi − 0| = 1

2
|xi−1| |xi−1 − 0|.

We conclude that the error of Fixed Point Iteration for 1
2x

2 decreases by a
factor of 1

2 |xi−1| during the i’th iteration. In other words,

for i = 1 the factor is 1
2 |x0|,

for i = 2 the factor is 1
2 |x1|,

for i = 3 the factor is 1
2 |x2|,

and so on. We see that the reduction factor depends on the value of the
current iterate.
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Now consider what happens as the iteration proceeds and the iterates
xi−1 become closer to zero. The factor by which the error in each step
decreases becomes smaller as i increases! In other words, the closer the
iterates get to zero, the faster they get close to zero. The estimate in (195.9)
significantly overestimates the error of the fixed point iteration for 1

2x
2

because it treats the error as if it decreases by a fixed factor each time.
Thus it cannot be used to predict the rapid convergence for this function.
For a function g, the first part of (195.9) tells the same story:

|xi − x̄| = |g(xi−1)− g(x̄)|.

The error of xi is determined by the change in g in going from x̄ to the
previous iterate xi−1. This change can depend on xi−1 and when it does,
the fixed point iteration does not converge linearly.

195.11 Quadratic Convergence

We now consider a second basic example, where we establish quadratic
convergence. We know that the Bisection algorithm for computing the root
of f(x) = x2 − 2 converges linearly with convergence factor 1/2: the error
gets reduced by the factor 1

2 after each step. We can write the equation
x2 − 2 = 0 as the following fixed point equation

x = g(x) =
1

x
+
x

2
. (195.10)

To see this, it suffices to multiply the equation (195.10) by x. We now apply
Fixed Point Iteration to (195.10) to compute

√
2 and show the result in

Fig. 195.11. We note that it only takes 5 iterations to reach 15 places of

i xi
0 1.00000000000000
1 1.50000000000000
2 1.41666666666667
3 1.41421568627451
4 1.41421356237469
5 1.41421356237310
6 1.41421356237310

FIGURE 195.11. The fixed point iteration for (195.10).

accuracy. The convergence appears to be very quick.
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To see how quick the convergence in fact is, we seek a relation between
the error in two consecutive steps. Computing as in (195.9), we find that

|xi −
√
2| = |g(xi−1)− g(

√
2)|

=

∣∣∣∣∣
xi−1

2
+

1

xi−1
−
(√2

2
+

1√
2

)
∣∣∣∣∣

=

∣∣∣∣
x2i−1 + 2

2xi−1
−
√
2

∣∣∣∣ .

Now we find a common denominator for the fractions on the right and then
use the fact that

(xi−1 −
√
2)2 = x2i−1 − 2

√
2xi−1 + 2

to get

|xi −
√
2| = (xi−1 −

√
2)2

2xi−1
≈ 1

2
√
2
(xi−1 −

√
2)2. (195.11)

We conclude that the error in xi is the square of the error of xi−1 up to
the factor 1

2
√
2
. This is quadratic convergence, which is very quick. In each

step of the iteration, the number of correct decimals doubles!

FIGURE 195.12. Archimedes moving the Earth with a lever and a fixed point.
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Chapter 195 Problems

195.1. A salesman selling vacuum cleaners door-to-door has a franchise with the
following payment scheme. For each delivery of vacuum cleaners, the salesman
pays a fee of $100 and then a percentage of the sales, measured in units of
hundreds of dollars, that increases as the sales increases. For sales of x, the
percentage is 20x%. Show that this model gives a fixed point problem and make
a plot of the fixed point problem that shows the location of the fixed point.

195.2. Rewrite the following fixed point problems as root problems three different
ways each.

(a)
x3 − 1

x+ 2
= x (b) x5 − x3 + 4 = x

195.3. Rewrite the following root problems as fixed point problems three different
ways each.

(a) 7x5 − 4x3 + 2 = 0 (b) x3 − 2

x
= 0

195.4. (a) Draw a Lipschitz continuous function g on the interval [0, 1] that
has three fixed points such that g(0) > 0 and g(1) < 1. (b) Draw a Lipschitz
continuous function g on the interval [0, 1] that has three fixed points such that
g(0) > 0 and g(1) > 1.

195.5. Write a program that implements Algorithm 195.2. The program should

employ two methods for stopping the iteration: (1) when the number of iterations

is larger than a user-input number and (2) when the difference between successive

iterates |xi − xi−1| is smaller than a user-input tolerance. Test the program by

reproducing the results in Fig. 195.9 that were computed using MATLAB c© .

195.6. In Section 184.10, suppose that Ksp for Ba(IO 3 ) 2 is 1.8×10−5. Find the
solubility S to 10 decimal places using the program from Proposition 195.5 after
writing the problem as a suitable fixed point problem. Hint: 1.8×10−5 = 18×10−6

and 10−6 = 10−2 × 10−4.

195.7. In Section 184.10, determine the solubility of Ba(IO 3 ) 2 in a .037 mole/liter
solution of KIO 3 to 10 decimal places using the program from Proposition 195.5
after writing the problem as a suitable fixed point problem.

195.8. The power P delivered into a load R of a simple class A amplifier of
output resistance Q and output voltage E is

P =
E2R

(Q+R)2
.

Find all possible solutions R for P = 1, Q = 3, and E = 4 to 10 decimal places
using the program from Proposition 195.5 after writing the problem as a fixed
point problem.
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195.9. Van der Waal’s model for one mole of an ideal gas including the effects
of the size of the molecules and the mutual attractive forces is

(
P +

a

V 2

)
(V − b) = RT,

where P is the pressure, V is the volume of the gas, T is the temperature, R
is the ideal gas constant, a is a constant depending on the size of the molecules
and the attractive forces, and b is a constant depending on the volume of all
the molecules in one mole. Find all possible volumes V of the gas corresponding
to P = 2, T = 15, R = 3, a = 50, and b = .011 to 10 decimal places using
the program from Proposition 195.5 after writing the problem as a fixed point
problem.

195.10. Verify that (195.6) is true.

195.11. (a) Find an explicit formula (similar to (195.6)) for the n’th fixed point
iterate xn for the function g(x) = 2x + 1

4
. (b) Prove that xn diverges to ∞ as n

increases to ∞.

195.12. (a) Find an explicit formula (similar to (195.6)) for the n’th fixed point
iterate xn for the function g(x) = 3

4
x + 1

4
. (b) Prove that xn converges as n

increases to ∞ and compute the limit.

195.13. (a) Find an explicit formula (similar to (195.6)) for the n’th fixed point
iterate xn for the function g(x) = mx + b. (b) Prove that xn converges as n
increases to ∞ provided that L = |m| < 1 and compute the limit.

195.14. Draw a Lipschitz continuous function g that does not have the property
that x in [0, 1] means that g(x) is in [0, 1].

195.15. (a) If possible, find intervals suitable for application of the fixed point
iteration to each of the three fixed point problems found in Problem 195.3(a). (b)
If possible, find intervals suitable for application of the fixed point iteration to
each of the three fixed point problems found in Problem 195.3(b). In each case,
a suitable interval is one on which the function is a contraction map.

195.16. Harder Apply Theorem 195.2 to the function g(x) = 1/(1 + x2) to
show that the fixed point iteration converges on any interval [a, b].

195.17. Given the following results of the fixed point iteration applied to a
function g(x),

i xi
0 14.00000000000000
1 14.25000000000000
2 14.46875000000000
3 14.66015625000000
4 14.82763671875000
5 14.97418212890625

compute the Lipschitz constant L for g. Hint: consider (195.8).
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195.18. Verify the details of Example 195.4.

195.19. (a) Show that g(x) = 2
3
x3 is Lipschitz continuous on [−1/2, 1/2] with

Lipschitz constant L = 1/2. (b) Use the program from Problem 195.5 to compute
6 fixed point iterations starting with x0 = .5 and compare to the results in
Fig. 195.10. (c) Show that the error of xi is approximately the cube of the error
of xi−1 for any i.

195.20. Verify that (195.11) is true.

195.21. (a) Show the root problem f(x) = x2+x−6 can be written as the fixed

point problem g(x) = x with g(x) =
6

x+ 1
. Show that the error of xi decreases

at a linear rate to the fixed point x̄ = 2 when the fixed point iteration converges
to 2 and estimate the convergence factor for xi close to 2. (b) Show the root
problem f(x) = x2 + x − 6 can be written as the fixed point problem g(x) = x

with g(x) =
x2 + 6

2x+ 1
. Show that the error of xi decreases at a quadratic rate to

the fixed point x̄ = 2 when the fixed point iteration converges to 2.

195.22. Given the following results of the fixed point iteration applied to a
function g(x),

i xi
0 0.50000000000000
1 0.70710678118655
2 0.84089641525371
3 0.91700404320467
4 0.95760328069857
5 0.97857206208770

decide if the convergence rate is linear or not.

195.23. The Regula Falsi Method is a variation of the bisection method for com-
puting a root of f(x) = 0. For i ≥ 1, assuming f(xi−1) and f(xi) have the oppo-
site signs, define xi+1 as the point where the straight line through (xi−1, f(xi−1))
and (xi, f(xi)) intersects the x-axis. Write this method as fixed point iteration by
giving an appropriate g(x) and estimate the corresponding convergence factor.
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196
The Derivative

I’ll teach you differences. (Shakespeare: King Lear)

An object with zero velocity will not change position. (Einstein)

... and therefore I offer this work as the mathematical principles of
philosophy, for the whole burden in philosophy seems to consist in
this: from the phenomena of motions to investigate the forces of na-
ture, and then from these forces to demonstrate the other phenomena
...(Galileo)

196.1 Rates of Change

Life is change. The newborn changes every day and acquires new skills,
the teen-ager develops into an adult in a couple of years, the middle-aged
wants to see the family, the house and career expand every year. Only the
retired wants to stop the world and play golf for ever, but realizes that this
is impossible and understands that there is an end, after which there is no
change at all any more.
When something changes, we may speak of the total change and we may

speak of the change per unit or the rate of change. If our salary increases, we
expect an increase in tax and we may speak of the total change in tax (for
one year). We may also speak of the change in tax per extra dollar we earn,
which is a rate of change of tax commonly referred to as marginal income
tax. The marginal income tax usually changes with our total income, so
that we pay a higher marginal tax if we have a higher income. If our total
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income is 10 000 dollars, then we may have to pay 30 cents tax out of an
extra dollar we earn, and if our total income is 50 000 dollars, we may have
to pay 50 cents tax out of an extra dollar. The marginal tax, or rate of
change of tax, in this example is 0.3 if our income is 10 000 dollars and 0.5
if our income is 50 000 dollars.
Business people speak of marginal cost of a certain item, which is the

increase in total cost if we buy one more item, that is the cost increase per
item or rate of change of total cost. Normally the marginal cost depends on
the the total amount and in fact normally the marginal cost decreases with
the total amount of items we buy. The marginal cost of producing some
item also varies with the total amount produced. At a certain production
level, the cost of producing one more item may be very small, while if we
have to build a whole new factory to produce that single additional item,
the marginal cost would be very large. Thus the marginal cost in production
may vary with the total production.
The concept of a function f : D(f) → R(f) is also intimately connected

to change. For each x ∈ D(f) there is a f(x) ∈ R(f), and usually f(x)
changes with x. If f(x) is the same for all x, then the function f(x) is a
constant function, which is easy to grasp and does not require much further
study. If f(x) does vary with x, then it is natural to seek ways of describing
qualitatively and quantitatively how f(x) varies with x. The rate of change
enters again if we seek to describe how f(x) changes per unit of x.
The derivative of a function f(x) with respect to x measures the rate of

change of f(x) as x varies. The derivative of our tax with respect to income
is the marginal tax. The derivative of the total production cost with respect
to total production is the marginal cost.
The basic modeling tool in Calculus is the derivative. Indeed, the start

of the modern scientific age coincides with the invention of the concept of
derivative. The derivative is a measure of rate of change.
In this chapter, we introduce the wonderful mathematical concept of the

derivative, figure out some of its properties, and start to use derivatives in
mathematical modeling.

196.2 Paying Taxes

We return to the above example of describing our income tax as a function
of income. Suppose we let x denote our total income next year and let f(x)
be the corresponding total income tax we would have to pay. The function
f(x) describes how our total income tax changes with our income x. For
each given income x, there is a corresponding income tax f(x) to pay. We
plot a possible function f(x) in the following figure:
The function f(x) in this example is piecewise linear and Lipschitz con-

tinuous. The slope of f(x) is zero up to the total income 5, the slope is 0.2
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FIGURE 196.1. Income tax f(x) varying with income x.

in the interval [5 000, 10 000], 0.3 in [10 000, 20 000], 0.4 in [20 000, 30 000]
and 0.5 in [30 000,∞).
For a given x̄, the slope of the straight line representing f(x) close to x̄, is

the marginal tax. We denote the slope of f(x) at x̄ bym(x̄). We see that the
slope m(x̄) varies with x̄. For example, m(x̄) = 0.3 for x̄ ∈ (10 000, 20 000).
If we add one extra dollar at the income x̄ ∈ (10 000, 20 000), then our
income tax will increase by 0.3 dollars.
The marginal tax is the same as the slope of the straight line representing

the income tax f(x) as a function of income x. Thus the marginal tax is
m(x̄) at the income x̄. The marginal income tax is zero up to the total
income 5 000, the marginal tax is 0.2 in the income bracket [5 000, 10 000],
0.3 in the bracket [10 000, 20 000], 0.4 in the bracket [20 000, 30 000] and 0.5
for incomes in the bracket [30 000,∞).
We can describe how f(x) varies in each income tax bracket through the

following formula

f(x) = 0 for x ∈ [0, 5 000]

f(x) = 0.2(x− 5 000) for x ∈ [5 000, 10 000]

f(x) = f(10 000) + 0.3(x− 10 000) for x ∈ [10 000, 20 000]

f(x) = f(20 000) + 0.4(x− 20 000) for x ∈ [20 000, 30 000]

f(x) = f(30 000) + 0.5(x− 30 000) for x ∈ [30 000,∞)

We can condense these formulas into

f(x) = f(x̄) +m(x̄)(x− x̄), (196.1)

where x̄ represents a given income with corresponding tax f(x̄), and we
are interested in the tax f(x) for an income x in some interval containing
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x̄. For example, the formula

f(x) = f(15 000) +m(15 000)(x− 15 000) for x ∈ [10 000, 20 000]

where m(15 000) = 0.3 is the marginal tax, describes how the tax varies
with the income x around the income x̄ = 15 000, see Fig. 196.2.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

x 10
4

1000

1500

2000

2500

3000

3500

4000

income

ta
x

FIGURE 196.2. Income tax f(x) for income x in the interval [10 000, 20 000].

The derivative of the function f(x) = f(x̄) +m(x̄)(x − x̄) for x = x̄, is
the marginal tax m(x̄). The formula f(x) = f(x̄) +m(x̄)(x − x̄) describes
how f(x) varies if x varies in an interval around x̄. The formula states that
f(x) is a straight line with slope m(x̄) close to x̄.
More generally, if f(x) = mx+ b is a linear function, then we can write

f(x) = f(x̄) +m (x− x̄),

since f(x̄) = b + mx̄. The coefficient m multiplying the change x − x̄ is
equal to the derivative of f(x) at x̄. In this case, the derivative is constant
equal to m for all x̄. The change in f(x) is proportional to the change in x
with factor of proportionality equal to m:

f(x)− f(x̄) = m (x− x̄), (196.2)

that is if x 6= x̄, then the slope m is given by

m =
f(x)− f(x̄)

x− x̄
(196.3)

We may view the slope m as the change of f(x) per unit change of x, or as
the rate of change of f(x) with respect to x.
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196.3 Hiking

We now give the above example a different interpretation. Suppose now that
x represents time in seconds and f(x) is the distance in meters travelled
by a hiker along a hiking path measured from the start at time x = 0.
According to the above formula, we have f(x) = 0 for x ∈ [0, 5 000], which
means that the trip starts with the hiker at rest at x = 0 for 5 000 seconds
(maybe to fix some malfunctioning equipment). For x ∈ [5 000, 10 000], we
have f(x) = 0.2(x − 5 000) which means that the hiker advances with 0.2
meter per second, that is with the velocity 0.2 meters per second. In the
time interval [10 000, 20 000], we have f(x) = f(10 000) + 0.3(x − 10 000),
which means that the hiker’s velocity is now 0.3 meters per second, and so
on.
We note that the slopem(x̄) of the straight line f(x) = f(x̄)+m(x̄)(x−x̄)

represents the velocity at x̄. We may thus say that the derivative of the
distance f(x) with respect to time x, which is the slope m(x̄), is equal to
the velocity. We will meet the interpretation of the derivative as a velocity
again below.

196.4 Definition of the Derivative

We shall now seek to define the derivative of a given function f : R → R at
a given point x̄. We shall then follow the idea that if f(x) is particularly
well approximated by the linear function f(x̄) + m (x − x̄) for x close to
x̄, then the derivative of f(x) at x̄ will be equal to m. In other words, the
derivative of f(x) at x̄ will be equal to the slope m of the approximating
linear function f(x̄) +m (x− x̄). Of course, a key point is to describe how
to interpret that the linear function f(x̄) + m (x − x̄) approximates f(x)
“particularly well”. We shall see that the natural requirement is to ask
that the error is proportional to |x− x̄|2, that is that the error is quadratic
in the difference x − x̄. Geometrically, this will be the same as asking the
straight line y = f(x̄)+m (x− x̄) to be tangent to the graph of y = f(x) at
(x̄, f(x̄)). We will see that asking the error to be quadratic in x− x̄ is just
about right. In particular, asking the error to be even smaller, for example
proportional to |x− x̄|3, would be to ask for too much.
Before defining the derivative, we back off a little to prepare ourselves

and consider different linear approximations b+m (x− x̄) of the given func-
tion f(x) for x close to x̄. There are many straight lines that approximate
f(x) close to x̄. We show some bad approximations and a number of good
approximations in Fig. 196.3. On the left, we show some bad linear “ap-
proximations” to the function f(x) near x̄. On the right, we show some
better linear approximations.
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x̄x̄

y = f(x)y = f(x)

FIGURE 196.3. Linear approximations of f(x) close to x̄

The question is whether one of the many possible approximate lines is a
particularly good choice or not.
We have one piece of information we should use, namely, we know that

the value of f(x) at x = x̄ is f(x̄). So first of all, we only consider lines
b + m (x − x̄) that take on the value f(x̄) for x = x̄, that is we choose
b = f(x̄). Such lines are said to interpolate f(x) at x̄ and thus have an
equation of the form

y = f(x̄) +m(x− x̄). (196.4)

We started this section considering approximations of f(x) of this form.
We plot several examples in Fig. 196.4 with different slopes m.

x̄

f(x̄)

y = f(x)

FIGURE 196.4. Linear approximations to a function that pass through the point
(x̄, f(x̄)). The region near (x̄, f(x̄)) has been blown-up on the right.

We now would like to choose the slope m so that f(x) is particularly well
approximated by the linear function f(x̄) +m (x− x̄) for x close to x̄. We
expect the slope m to depend on x̄ and thus we will have m = m(x̄).
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Out of the three lines plotted in Fig. 196.4 near (x̄, f(x̄)), the line in the
middle seems to be the best by far. This line is tangent to the graph of f(x)
at the point x̄. The slope of the tangent is characterized by the fact that
the error between f(x) and the approximation f(x̄) +m(x̄)(x− x̄), that is
the quantity

Ef (x, x̄) = f(x)−
(
f(x̄) +m(x̄)(x− x̄)

)
, (196.5)

is particularly small. Since f(x̄) +m(x̄)(x− x̄) interpolates f(x) at x = x̄,
we have E(x̄, x̄) = 0 . Rewriting (196.5) as

f(x) = f(x̄) +m(x̄)(x − x̄) + Ef (x, x̄),

we may view Ef (x, x̄) as a correction to the linear approximation f(x̄) +
m(x̄)(x− x̄) of f(x), see Fig. 196.5. It is natural to say that the correction
Ef (x, x̄) is particularly small if it is much smaller than the term m(x −
x̄), which represents a linear correction of the constant value f(x̄). Thus,
f(x̄) +m(x̄)(x − x̄) is a linear approximation of f(x) close to x̄ with zero
error for x = x̄, and we seek m(x̄) so that the correction Ef (x, x̄) is small
compared to m(x− x̄) for x close to x̄.

x̄ x

y = f(x)

y = f(x̄) +m(x̄)(x− x̄)
Ef (x, x̄)

FIGURE 196.5. Graph y = f(x), tangent y = f(x̄) + m(x̄)(x − x̄) and error
Ef (x, x̄).

The natural requirement is then to ask that Ef (x, x̄) can be bounded by
a term which is quadratic in x− x̄, that is

|Ef (x, x̄)| ≤ Kf(x̄)|x− x̄|2 for x close to x̄, (196.6)

where Kf(x̄) is a constant. The term Kf(x̄)|x − x̄|2 is much smaller than
m(x̄)|x − x̄|, if x is sufficiently close to x̄, that is, if the factor |x − x̄| is
small enough.
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We will say, for short, that an error term Ef (x, x̄) is quadratic in x− x̄ if
Ef (x, x̄) satisfies the estimate (196.6) for some constant Kf (x̄) for x close
to x̄. We thus seek to choose the slope m = m(x̄) so that the error Ef (x, x̄)
is quadratic in x− x̄. The linear function f(x̄) +m(x̄)(x− x̄) will then be
tangent to f(x) at x̄. We expect the slope of the tangent at x̄ to depend on
x̄, which we indicate by denoting the slope by m(x̄).
Now we are in position to define the derivative of f(x) at x̄. The function

f(x) is said to be differentiable at x̄ if there are constants m(x̄) and Kf (x̄)
such that for x close to x̄,

f(x) = f(x̄) +m(x̄)(x− x̄) + Ef (x, x̄),

with |Ef (x, x̄)| ≤ Kf(x̄)|x− x̄|2. (196.7)

We then say that the derivative of f(x) at x̄ is equal tom(x̄), and we denote
the derivative by f ′(x̄) = m(x̄). The derivative f ′(x̄) of f(x) at x̄ is equal
to the slope m(x̄) of the tangent y = f(x̄) +m(x̄)(x− x̄) to f(x) at x̄. The
dependence of x̄ is kept in f ′(x̄).
Recapping our discussion, the equation (196.7) defining the derivative of

f at x̄ can be thought of as defining a linear approximation

f(x̄) + f ′(x̄)(x− x̄) ≈ f(x)

for x close to x̄ with an error Ef (x, x̄) which is quadratic in x−x̄. The linear
approximation f(x̄) + f ′(x̄)(x− x̄) of f(x) with quadratic error in x− x̄, is
called the linearization of f(x) at x̄, and the corresponding Ef (x, x̄) is the
linearization error.
We now compute the derivative of some basic polynomial functions f(x)

from the definition of the derivative.

196.5 The Derivative of a Linear Function Is
Constant

If f(x) = b+mx is a linear function with b and m real constants, then

f(x) = b+mx = b+mx̄+m(x− x̄) = f(x̄) +m(x− x̄),

with the corresponding error function Ef (x, x̄) = 0 for all x. We conclude
that if f(x) = b + mx, then f ′(x̄) = m. Thus the derivative of a linear
function b +mx is constant equal to the slope m. We note that if m > 0,
then f(x) = b +mx is increasing (with increasing x), that is f(x) > f(x̄)
if x > x̄ and f(x) < f(x̄) if x < x̄. Conversely, if m < 0, then f(x) is
decreasing (with increasing x), that is f(x) < f(x̄) if x > x̄ and f(x) > f(x̄)
if x < x̄. In particular, for b = 0 and m = 1 we have

if f(x) = x, then f ′(x) = 1. (196.8)
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196.6 The Derivative of x2 Is 2x

We now compute the derivative of the quadratic function f(x) = x2 at
a point x̄. The strategy is to first “extract” the constant value f(x̄) from
f(x), and a factor x− x̄ from the reminder term, to obtain f(x) = f(x̄) +
g(x, x̄)(x − x̄) for some quantity g(x, x̄), then to replace g(x, x̄) by g(x̄, x̄)
and verify that the resulting error term E = (g(x, x̄)− g(x̄, x̄))(x − x̄) has
the desired property |E| ≤ K|x− x̄|2. In the considered case of f(x) = x2

we have

x2 = x̄2 + (x2 − x̄2) = x̄2 + (x+ x̄)(x− x̄) = x̄2 + 2x̄(x− x̄) + (x− x̄)2,

that is,
f(x) = f(x̄) + 2x̄(x− x̄) + Ef (x, x̄),

where Ef (x, x̄) = (x− x̄)2, which shows that f(x) = x2 is differentiable for
all x̄ with f ′(x̄) = 2x̄, that is, f ′(x) = 2x for x ∈ R. We conclude that, see
Fig. 196.6,

if f(x) = x2, then f ′(x) = 2x. (196.9)

An alternative, shorter route to the linearization formula (196.6) in this
case is

x2 = (x̄+ (x− x̄))2 = x̄2 + 2x̄(x− x̄) + (x− x̄)2,

−2−2 22

−4−4

44

f(x) f ′(x)

FIGURE 196.6. f(x) = x2 and f ′(x) = 2x.

We see that x2 is decreasing for x < 0 and increasing for x > 0 following
the sign of the derivative f ′(x) = 2x.
Repeating the above calculation with the particular value x̄ = 1, to get

familiar with the argument, we get

x2 = 1 + 2(x− 1) + (x− 1)2,
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and thus the derivative of f(x) = x2 at x̄ = 1 is f ′(1) = 2. We plot x2 and
1 + 2(x − 1) in Fig. 196.7. We compare some values of the given function

y = x2

y = 1 + 2(x− 1)

0

1

1

2

2

3

4

x

FIGURE 196.7. The linearization 1 + 2(x− 1) of x2 at x̄ = 1.

x2 to the linear approximation 1 + 2(x − 1) along with the error (x − 1)2

in Fig. 196.8

x f(x) f(1) + f ′(2)(x − 1) Ef (x, 1)
.7 .49 .4 .09
.8 .64 .6 .04
.9 .81 .8 .01
1.0 1.0 1.0 0.0
1.1 1.21 1.2 .01
1.2 1.44 1.4 .04
1.3 1.69 1.6 .09

FIGURE 196.8. Some values of f(x) = x2, f(1) + f ′(1)(x − 1) = 1 + 2(x − 1),
and Ef (x, 1) = (x− 1)2.

196.7 The Derivative of xn Is nxn−1

We now compute the derivative of the monomial f(x) = xn at a point x̄,
where n ≥ 2 is a natural number. By the Binomial Theorem, generalizing
(196.6), we have

xn = (x̄+ x− x̄)n = x̄n + nx̄n−1(x− x̄) + Ef (x, x̄),

where all the terms of the error

Ef (x, x̄) =
n(n− 1)

2
x̄n−2(x− x̄)2 + · · ·+ (x− x̄)n,
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contain at least two factors of (x− x̄), and thus

|Ef (x, x̄)| ≤ Kf (x̄)(x − x̄)2,

with Kf(x̄) depending on x̄, x and n. Clearly, Kf(x̄) is bounded by some
constant if x and x̄ belong to some bounded interval. We conclude that
f ′(x̄) = nx̄n−1 for all x̄, that is, f ′(x) = nx̄n−1 for all x. We summarize:

if f(x) = xn, then f ′(x) = nxn−1. (196.10)

For n = 2, we recover the formula f ′(x) = 2x if f(x) = x2.

196.8 The Derivative of 1
x Is − 1

x2 for x 6= 0

We now compute the derivative of the function f(x) = 1
x for x 6= 0. We

have for x close to x̄ 6= 0,

1

x
=

1

x̄
+ (

1

x
− 1

x̄
) =

1

x̄
+ (− 1

xx̄
)(x− x̄) =

1

x̄
+ (− 1

x̄2
)(x− x̄) + E

where

E = (
1

x̄2
− 1

xx̄
)(x − x̄) =

1

xx̄2
(x− x̄)2,

and thus |E| ≤ K|x− x̄|2 as desired. We conclude that f(x) = 1
x is differ-

entiable at x̄ with derivative f ′(x̄) = − 1
x̄2 for x̄ 6= 0, that is

if f(x) =
1

x
, then f ′(x̄) = − 1

x̄2
for x̄ 6= 0. (196.11)

196.9 The Derivative as a Function

If a function f(x) is differentiable for all points x̄ in an open interval I, then
f(x) is said to be differentiable on I. The derivative f ′(x̄) in general varies
with x̄. We may thus view the derivative f ′(x̄) of a function f(x), which
is differentiable on some interval I, as a function of x̄ for x̄ ∈ I. We may
change the name of the variable x̄ and speak about the derivative f ′(x) as
a function of x. We already took this step above. To a function f(x) that is
differentiable on an interval I, we may thus associate the function f ′(x) for
x ∈ I that gives the derivative of f(x). We may thus speak of the derivative
f ′(x) of a differentiable function f(x). For example, the derivative of x2 is
2x and the derivative of x3 is 3x2.
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FIGURE 196.9. The function f(x) = 1/x and its derivative f ′(x) = −1/x2 for
x > 0.

196.10 Denoting the Derivative of f(x) by Df(x)

We also denote the derivative f ′(x) of f(x) by Df(x), that is

f ′(x) = Df(x).

Observe that D(f) denotes the domain of f , while Df(x) denotes the
derivative of f(x) at x.
We may write the basic formula (196.10) as

if f(x) = xn, then f ′(x) = Df(x) = nxn−1, (196.12)

or
Dxn = nxn−1 for n = 1, 2, ... (196.13)

This is one of the most important results of Calculus. We here assume that
n is a natural number (including the particular case n = 0 if we agree to
define x0 = 1 for all x). Below we will extend this formula to n rational
(and finally to n real). We recall that we proved above that for x 6= 0

if f(x) =
1

x
, then f ′(x) = Df(x) = − 1

x2
,

corresponding to setting n = −1 in (196.12).
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Example 196.1. Suppose you drive a car along the x-axis and your
position at time t measured from the starting point at t = 0 is s(t) =
3×(2t−t2) miles, where t is measured in hours and the positive direction
for s is to the right. Your speed is s′(t) = 6− 6t = 6(1− t) miles/hour
at time t. Since the derivative is positive for 0 ≤ t < 1, which means
that the tangent lines to s(t) have positive slope for 0 ≤ t < 1, the car
moves to the right up to t = 1. At exactly t = 1, you stop the car. If
t > 1, then the car moves to the left again, because the slopes of the
tangents are negative.

196.11 Denoting the Derivative of f(x) by df
dx

We will also denote the derivative f ′(x) of a differentiable function f(x) by

df

dx
= f ′(x) (196.14)

We here usually omit the variable x using the notation df
dx and thus write

df
dx instead of df

dx(x). Of course the notation df
dx is inspired from (196.22)

below, with df corresponding to the f -difference f(xi)− f(x̄) in f(x), and
dx corresponding to the x-difference xi − x̄ in x. One may also denote
the differentiation operator D in Df(x) alternatively by d

dx , and write for
example

d

dx
(xn) = nxn−1 (196.15)

We now have three ways of denoting the derivative of a function f(x) with
respect to x, namely f ′(x), Df(x), and df

dx .
Note that using the notation f ′(x) and Df(x) for the derivative of a

function f(x), it is understood that the derivative is taken with respect
to the independent variable x occurring in f(x). This convention is made
explicit in the notation df

dx . Thus if f = f(y), that is f is a function of the

variable y, then Df = df
dy , while if f = f(x) then Df = df

dx .

196.12 The Derivative as a Limit of Difference
Quotients

We recall that the function f(x) is differentiable at x̄ with derivative f ′(x̄),
if for x in some open interval I containing x̄,

f(x) = f(x̄) + f ′(x̄)(x − x̄) + Ef (x, x̄), (196.16)

where
|Ef (x, x̄)| ≤ Kf (x̄)|x− x̄|2, (196.17)



1184 196. The Derivative

and Kf(x̄) is a constant. Dividing by x − x̄ assuming x 6= x̄, we get for
x ∈ I,

f(x)− f(x̄)

x− x̄
= f ′(x̄) +Rf (x, x̄), (196.18)

where

Rf (x, x̄) =
Ef (x, x̄)

x− x̄
, (196.19)

satisfies
|Rf (x, x̄)| ≤ Kf(x̄)|x− x̄| for x ∈ I. (196.20)

Let now {xi}∞i=1 be a sequence with limi→∞ xi = x̄ with xi ∈ I and xi 6= x̄
for all i. There are many such sequences. For example, we may choose
xi = x̄+ i−1, or xi = x̄+ 10−i. From (196.20) it follows that

lim
i→∞

Rf (xi, x̄) = 0, (196.21)

and thus by (196.18) we have

f ′(x̄) = lim
i→∞

mi(x̄), (196.22)

where

mi(x̄) =
f(xi)− f(x̄)

xi − x̄
(196.23)

is the difference quotient based on the two distinct points x̄ and xi. The
difference quotient mi(x̄) defined by (196.23) is the slope of the secant line
connecting the points (x̄, f(x̄)) and (xi, f(xi)), see Fig. 196.10, and can be
viewed as the average rate of change of f(x) between the points x̄ and xi.

x̄ x

f(x̄)

f(x)

FIGURE 196.10. The secant line joining (x̄, f(x̄)) and (xi, f(xi)).

The formula

f ′(x̄) = lim
i→∞

f(xi)− f(x̄)

xi − x̄
, (196.24)
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expresses the derivative f ′(x̄) as the limit of the average rate of change of
f(x) over intervals xi − x̄, the length of which tend to zero as i tends to
infinity. We may thus view f ′(x̄) as the local rate of change of f(x) at x̄.
If f(x) is tax at income x, then f ′(x̄) is the marginal tax at x̄. If f(x) is a
distance and x time, then f ′(x̄) is the instantaneous velocity at time x̄.
Alternatively, we may view f ′(x̄) being the slope of the tangent to f(x)

at x = x̄ as the limit of the sequence {mi(x̄)} of slopes of secants through
the points (x̄, f(x̄)) and (xi, f(xi)), where {xi}∞i=1 is a sequence with limit
x̄. We illustrate in Fig. 196.11.

x̄ x1x2x3x4

y = f(x)

tangent line

secant lines

FIGURE 196.11. A sequence of secant lines approaching the tangent line at x̄.

Example 196.2. Let us now compute the derivative of f(x) = x2 at x̄
by using (196.22). Let xi = x̄+1/i. The slope of the secant line through
(x̄, x̄2) and (xi, f(xi)) = (xi, x

2
i ) is

mi(x̄) =
x2i − x̄2

xi − x̄
=

(xi − x̄)(xi + x̄)

xi − x̄
= (xi + x̄).

By (196.22), we have

f ′(x̄) = lim
i→∞

mi(x̄) = lim
i→∞

(2x̄+
1

i
) = 2x̄,

and we recover the well known formula Dx2 = 2x.

196.13 How to Compute a Derivative?

Suppose f(x) is a given function for which we are not able to analytically
compute the derivative f ′(x̄) for a given x̄. Note that we were able to
carry out the analytical computation above for polynomials, but we gave
no strategy to determine the derivative f ′(x̄) for more general functions
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f(x). The function f(x) may not be given by any formula at all, and could
just be given as a value f(x) for each x determined in some way.
The same problem arises if we want to determine a physical velocity by

doing some measurement. For example, if the speed meter of our car is
out of function, how can we measure the velocity of the car at some given
time x̄? Of course the natural thing would be to measure the increment of
distance f(x)− f(x̄) over some time interval x− x̄, where f(x) is the total

distance, and then use the quotient f(x)−f(x̄)x−x̄ , the average velocity over the
time interval (x̄, x), as an approximation of the momentary velocity at time
x̄. But how to choose the length of the time interval x − x̄? If we choose
x − x̄ way too small, then we will not be able to measure any change in
position at all, that is we will have f(x) = f(x̄), and then conclude zero
velocity, while if we take x − x̄ too large, the computed average velocity
may differ very much from the desired momentary velocity at x̄.
We now use analysis to find the right increment x − x̄ to use to deter-

mine the derivative f ′(x̄) of a given function f(x) at x̄, assuming that the
function values f(x) are given with a certain precision. From the definition
of f ′(x̄), we have for x close to x̄, x 6= x̄,

f ′(x̄) =
f(x)− f(x̄)

x− x̄
− Ef (x, x̄)

x− x̄
,

where

|Ef (x, x̄)
x− x̄

| ≤ Kf(x̄)|x− x̄|.

The difference quotient
f(x)− f(x̄)

x− x̄
,

may thus be used as an approximation of f ′(x̄) up to a linearization error
of size Kf(x̄)|x− x̄|.
Suppose now that we know the quantity f(x) − f(x̄) up to an error

of size δf . We thus assume that we know x and x̄ exactly, but there is
an error of size δf in the quantity f(x)− f(x̄) resulting from errors in the
function values f(x) and f(x̄) from computation or measurement. We know
that frequently the value f(x) for a given x, is known only approximately
through computation.
The error δf in f(x)−f(x̄) causes an error of size | δfx−x̄ | in the difference

quotient f(x)−f(x̄)
x−x̄ . We thus have a total error in f ′(x̄) of size

| δf

x− x̄
|+Kf (x̄)|x − x̄|, (196.25)

resulting from the error in f(x)− f(x̄) and the linearization error. Making
the two error contributions equal, which should give the right balance, we
get the equation

| δf

x− x̄
| = Kf |x− x̄|,



196.14 Uniform Differentiability on an Interval 1187

where we write Kf = Kf(x̄), from which we compute the “optimal incre-
ment”

|x− x̄| =
√
δf

Kf
. (196.26)

If we take |x− x̄| smaller, then the error contribution | δfx−x̄ | will dominate
and we take |x − x̄| bigger, then the linearization error Kf(x̄)|x − x̄| will
dominate.
Inserting the optimal increment into (196.25), we get a corresponding

“best” error estimate

|f ′(x̄)− f(x)− f(x̄)

x− x̄
| ≤ 2

√
δf
√
Kf . (196.27)

Contemplating the two resulting formulas (196.26) and (196.27) for the
optimal increment and corresponding minimal error in f ′(x̄), we see that
some a priori knowledge of δf and Kf is needed here. If we have no idea of
the size of these quantities, we will not know how to choose the increment
x − x̄ and we will not know anything about the error in the computed
derivative. Of course it is in many cases realistic to have an idea of the
size of δf , being an error from computation or measurement, but it may
be less obvious how to get an idea of the size of Kf . We will return to this
question below.
We sum up: Computing an approximation of f ′(x̄) by using the difference

quotient f(x)−f(x̄)x−x̄ , we should not choose x− x̄ too small if there is an error
in the quantity f(x)− f(x̄). The formula

f ′(x̄) = lim
i→∞

f(xi)− f(x̄)

xi − x̄
,

where {xi}∞i=1 is a sequence with limit x̄ and xi 6= x̄, thus must be used
with caution. If we examine the cases above where we could compute the
derivative analytically, like the case f(x) = x2, we will see that in fact we

could divide through by xi − x̄ in the quotient f(xi)−f(x̄)
xi−x̄ and avoid the

dangerous appearance of xi − x̄ in the denominator. For example, when
computing Dx2 analytically, we used that

x2i − x̄2

xi − x̄
=

(xi + x̄)(xi − x̄)

(xi − x̄)
= xi + x̄,

from which we could conclude that Dx2 = 2x.

196.14 Uniform Differentiability on an Interval

We say that the function f(x) is differentiable on the interval I if f(x) is
differentiable for each x̄ ∈ I, that is for x̄ ∈ I there are constants m(x̄) and
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Kf(x̄) such that for x close to x̄,

f(x) = (f(x̄) +m(x̄)(x− x̄)) + Ef (x, x̄)

|Ef (x, x̄)| ≤ Kf (x̄)|x− x̄|2.

In many cases we can choose one and the same constantKf (x̄) = Kf for all
x̄ ∈ I. We may express this by saying the f(x) is uniformly differentiable
on I. Allowing also x to vary in I we are led to the following definition,
which we will find very useful below: We say that the function f : I → R
is uniformly differentiable on the interval I with derivative f ′(x̄) at x̄, if
there is a constant Kf such that for x, x̄ ∈ I,

f(x) = (f(x̄) + f ′(x̄)(x− x̄)) + Ef (x, x̄)

|Ef (x, x̄)| ≤ Kf |x− x̄|2.

Observe that the important thing is that Kf here does not depend on x̄,
but may of course depend on the function f and the interval I.

196.15 A Bounded Derivative Implies Lipschitz
Continuity

Suppose that f(x) is uniformly differentiable on the interval I = (a, b) and
suppose there is a constant L such that for x ∈ I,

|f ′(x)| ≤ L. (196.28)

We shall now show that f(x) is Lipschitz continuous on I with Lipschitz
constant L, that is we shall show that

|f(x)− f(y)| ≤ L|x− y| for x, y ∈ I. (196.29)

This result states something completely obvious: if the absolute value of
the maximal rate of change of a function f(x) is bounded by L, then the
absolute value of the total change |f(x) − f(y)| is bounded by L|x− y|.
If f(x) represents distance, and thus f ′(x) velocity, the statement is that

if the absolute value of the instantaneous velocity is bounded by L then
the absolute value of the change of distance |f(x)− f(y)| is bounded by L
times the total time change |x− y|. Elementary, my dear Watson!
We shall give a short proof of this result below, when we have some

additional machinery available (the Mean Value theorem). We present here
a somewhat longer proof.
By assumption we have for x, y ∈ I

f(x) = f(y) + f ′(y)(x − y) + Ef (x, y),
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where
|Ef (x, y)| ≤ Kf |x− y|2,

with Kf a certain constant. We conclude that for x, y ∈ I

|f(x)− f(y)| ≤ (L+Kf |x− y|)|x− y|,

so that for x, y ∈ I,
|f(x)− f(y)| ≤ L̄|x− y|,

where L̄ = L + K(b − a). This is almost what we want; the difference is
that L is replaced with the somewhat larger Lipschitz constant L̄.
If we restrict x and y to a subinterval Iδ of I of length δ, we have

|f(x)− f(y)| ≤ (L+Kδ)|x− y|

By making δ small enough, we can get L +Kδ as close to L as we would
like. Let now x and y in I be given and let x = x0 < x1 < · · · < xN = y,
where xi − xi−1 ≤ δ, see Fig. 196.12.

x y

x0 x1 x2 xi−1 xi xN

δ

FIGURE 196.12. Subdivision of interval [x, y] into subintervals of length < δ.

We have by the triangle inequality

|f(x)− f(y)| = |
N∑

i=1

(f(xi)− f(xi−1)|

≤
N∑

i=1

|f(xi)− f(xi−1)| ≤ (L+Kδ)
N∑

i=1

|xi − xi−1|

= (L+Kδ)|x− y|.

Since this inequality holds for any δ > 0, we conclude that indeed

|f(x)− f(y)| ≤ L|x− y|, for x, y ∈ I,

which proves the desired result. We summarize in the following theorem
which we will use extensively below:

Theorem 196.1 Suppose that f(x) is uniformly differentiable on the in-
terval I = (a, b) and suppose there is a constant L such that

|f ′(x)| ≤ L, for x ∈ I.

Then f(x) is Lipschitz continuous on I with Lipschitz constant L.
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196.16 A Slightly Different Viewpoint

In many Calculus books the derivative of a function f : R → R at a point
x̄ is defined as follows. If the limit

lim
i→∞

f(xi)− f(x̄)

xi − x̄
, (196.30)

does exist for any sequence {xi} with limi→∞ xi = x̄ (assuming xi 6= x),
then we call the (unique) limit the derivative of f(x) at x = x̄ and we denote
it by f ′(x̄). We proved in (196.22) that if f(x) is differentiable according
to our definition with derivative f ′(x̄), then

f ′(x̄) = lim
i→∞

f(xi)− f(x̄)

xi − x̄
,

because we assume that

|f ′(x̄)− f(xi)− f(x̄)

xi − x̄
| ≤ Kf (x̄)|xi − x̄|. (196.31)

This means that our definition of derivative is somewhat more demanding
than that used in many Calculus books. We assume that the limiting pro-
cess occurs at a linear rate expressed by (196.31), whereas the definition
(196.30) just asks the limit to exist with no rate required (which pleases
many mathematicians because of its maximal generality). In most cases,
the two concepts agree, but in some very special cases the derivative would
exist according to the standard Calculus book definition, but not according
to the definition we use. We could naturally relax our definition by relax-
ing the right hand side bound in (196.31) to Kf (x̄)|xi − x̄|θ, with some
positive constant θ < 1, but the corresponding definition would still be a
little stronger than just asking the limit to exist. Using a more demanding
definition we focus on normality rather than the extreme or degenerate,
which we believe will help the student to approach the new topic. Once
the normal situation is understood it may be easier to come to grips with
extreme cases.

196.17 Swedenborg

A Swedish counterpart of the Universal Genius Leibniz, together with New-
ton the Inventor of Calculus, was Emanuel Swedenborg (1688-1772). Swe-
denborg introduced Calculus to Sweden with independent contributions.
Swedenborg produced 150 works on seventeen sciences, was a musician,
mining engineer, member of the Swedish parliament, invented a glider, an
undersea boat, an ear trumpet for the deaf, a mathematician who wrote the
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first books in Swedish on algebra and calculus, a physiologist who discov-
ered the function of several areas of the brain and ductless glands, creator
of the (at the time) world’s largest dry-dock, and suggested the nebula
theory of the formation of the planets.

FIGURE 196.13. Emanuel Swedenborg, Swedish Universal Genius, as a young
man: ”The Intercourse of Soul and Body is thus not effected by any physica
influx or by any action of the Body upon the Mind or Soul; for the lower cannot
affect the higher, and the nature cannot inflow into the spiritual. Yet the Soul can
accomodate itself to the changes of the sensories of the brain and form mental
percepts and concepts. It can also time the release of the energy there stored and
from an intelligent conatus direct it into motivated or living actions”
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Chapter 196 Problems

196.1. Prove directly from the definition that the derivative of x3 is 3x2, and
that the derivative of x4 is 4x3.

196.2. Prove directly from the definition that the derivative of the function

f(x) =
√
x = x

1
2 is equal to f ′(x) = 1

2
x− 1

2 for x > 0. Hint: use that (
√
x −√

x̄)(
√
x+

√
x̄) = x− x̄.

196.3. Compute the derivative of
√
x numerically for different values of x and

study how the error depends on the increment used, and the precision of the
computation of

√
x.

196.4. Study the symmetric difference quotient approximation

f ′(x̄) ≈ f(x̄+ h) − f(x̄− h)

h
h > 0.

What is an optimal choice of the increment h, assuming f(x̄ ± h) is not known
exactly. Hint: You may find it useful to look ahead into the next chapter (Taylor’s
formula of order 2).

196.5. Compute the derivative of xn numerically for different values of x and n
and study how the error depends on the increment used.

196.6. Can you compute the derivative of sin(x) and cos(x) from the definition?

196.7. Determine the smallest possible Lipschitz constant for the function
f(x) = x3 with D(f) = [1, 4].

196.8. (l’Hopitals rule). Let f : R → R and g : R → R be differentiable on an
open interval I containing 0, and suppose f(0) = g(0) = 0. Prove that

lim
i→∞

f(xi)

g(xi)
=
f ′(0)

g′(0)

if g′(0) 6= 0, where {xi}∞i=1 is a sequence with limi→∞ xi = 0 and xi 6= 0 for
all i. This is the famous l’Hopitals rule, presented in l’Hopitals book Analyse de
infiment petit (1713), the first Calculus book! Note that f(0)

g(0)
= 0

0
is not well

defined. Hint: Write f(xi) = f(0) + f ′(xi)xi +Ef (xi, 0) et cet.

196.9. Determine limi→∞
f(xi)
g(xi)

, where f(x) =
√
x − 1 and g(x) = x − 1, and

{xi}∞i=1 is a sequence with limi→∞ xi = 1 and xi 6= 1 for all i. Extend to the case
f(x) = xr − 1 with r rational.
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197
Differentiation Rules

Calculemus. (Leibniz)

When I have followed a line of thought to the end, it often seems
so simple that I start to wonder if I have stolen it from someone.
(Horace Engdahl)

197.1 Introduction

We now state and prove some rules for computing derivatives of combi-
nations of functions in terms of the derivatives of the functions in the
combination. These rules of differentiation form a part of Calculus that
can be automated in terms of symbolic manipulation software. In contrast,
we will see below that integration, the other basic operation of Calculus,
is not open to automatic symbolic manipulation to the same extent. It
makes sense that a popular software for symbolic manipulation in Calculus
is called Derive and not Integrate.
The following rules of differentiation are of basic importance and will be

used frequently below. They form the very back-bone of symbolic Calculus.
Plunging into the proofs we get familiar with different basic aspects of the
concept of derivative, and prepare ourselves to write our own version of
Derive.
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197.2 The Linear Combination Rule

Suppose that f(x) and g(x) are two functions that are differentiable on
an open interval I and let x̄ ∈ I. By definition, there are error functions
Ef (x, x̄) and Eg(x, x̄) satisfying for x close to x̄,

f(x) = f(x̄) + f ′(x̄)(x − x̄) + Ef (x, x̄),

g(x) = g(x̄) + g′(x̄)(x − x̄) + Eg(x, x̄),
(197.1)

and
|Ef (x, x̄)| ≤ Kf |x− x̄|2, |Eg(x, x̄)| ≤ Kg|x− x̄|2, (197.2)

where Kf and Kg are constants. Addition gives

f(x) + g(x) = f(x̄) + g(x̄) + (f ′(x̄) + g′(x̄))(x − x̄)

+Ef (x, x̄) + Eg(x, x̄),

which can be written

(f + g)(x) = (f + g)(x̄) + (f ′(x̄) + g′(x̄))(x− x̄) + Ef+g(x, x̄) (197.3)

where
Ef+g(x, x̄) = Ef (x, x̄) + Eg(x, x̄).

By (197.2), we have

|Ef+g(x, x̄)| ≤ (Kf +Kg)|x− x̄|2.

The formula (197.3) shows that (f + g)(x) is differentiable at x̄ and

(f + g)′(x̄) = f ′(x̄) + g′(x̄). (197.4)

Next, multiplying the first line in (197.1) by a constant c, we get

(cf)(x) = (cf)(x̄) + cf ′(x̄)(x − x̄) + cEf (x, x̄) (197.5)

This proves that if f(x) is differentiable at x̄, then (cf)(x) is differentiable
at x̄ and

(cf)′(x̄) = cf ′(x̄). (197.6)

We summarize in

Theorem 197.1 (The Linear Combination rule) If f(x) and g(x)
are differentiable functions on an open interval I and c is a constant, then
(f + g)(x) and (cf)(x) are differentiable on I, and for x ∈ I,

(f + g)′(x) = f ′(x) + g′(x), or D(f + g)(x) = Df(x) +Dg(x), (197.7)

and
(cf)′(x) = cf ′(x), or D(cf)(x) = cDf(x). (197.8)
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Example 197.1.

D
(
2x3 + 4x5 +

7

x

)
= 6x2 + 20x4 − 7

x2
.

Example 197.2. Using the above theorem and the fact that Dxi =
ixi−1, we find that the derivative of

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n =

n∑

i=0

aix
i

is

f ′(x) = a1 + 2a2x
2 + · · ·+ nanx

n−1 =

n∑

i=1

iaix
i−1.

197.3 The Product Rule

Multiplying the left and right-hand sides, respectively, of the two equations
in (197.1), we obtain

(fg)(x) = f(x)g(x) = f(x̄)g(x̄)

+ f ′(x̄)g(x̄)(x− x̄) + f(x̄)g′(x̄)(x − x̄) + f ′(x̄)g′(x̄)(x− x̄)2

+ (g(x̄) + g′(x̄)(x − x̄))Ef (x, x̄) + (f(x̄)

+ f ′(x̄)(x − x̄))Eg(x, x̄) + Ef (x, x̄)Eg(x, x̄).

We conclude that

(fg)(x) = (fg)(x̄) +
(
f ′(x̄)g(x̄) + f(x̄)g′(x̄)

)
(x − x̄) + Efg(x, x̄),

where Efg(x, x̄) is quadratic in x− x̄. We have now proved:

Theorem 197.2 (The Product rule) If f(x) and g(x) are differen-
tiable on I, then (fg)(x) is differentiable on I and

(fg)′(x) = f(x)g′(x) + f ′(x)g(x), (197.9)

that is,

D(fg)(x) = Df(x)g(x) + f(x)Dg(x), (197.10)

Example 197.3.

D
(
(10 + 3x2 − x6)(x − 7x4)

)

= (6x− 6x5)(x− 7x4) + (10 + 3x2 − x6)(1− 28x3).
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197.4 The Chain Rule

We shall now compute the derivative of the composite function (f ◦g)(x) =
f(g(x)) in terms of the derivatives f ′(y) = df

dy and g′(x) = dg
dx . Suppose then

that g(x) is uniformly differentiable on an open interval I, and suppose
further that g(x) is Lipschitz continuous on I with Lipschitz constant Lg.
Let x̄ ∈ I. Suppose next that f(y) is uniformly differentiable on an open
interval J containing ȳ = g(x̄). By definition, there are error functions
Ef (y, ȳ) and Eg(x, x̄) satisfying for y close to ȳ and x close to x̄,

f(y) = f(ȳ) + f ′(ȳ)(y − ȳ) + Ef (y, ȳ),

g(x) = g(x̄) + g′(x̄)(x− x̄) + Eg(x, x̄),
(197.11)

and

|Ef (y, ȳ)| ≤ Kf |y − ȳ|2, |Eg(x, x̄)| ≤ Kg|x− x̄|2, (197.12)

where Kf and Kg are certain constants, independent of y and x, respec-
tively. Further, by assumption

|g(x)− g(x̄)| ≤ Lg|x− x̄|. (197.13)

Setting y = g(x) and recalling that ȳ = g(x̄), we have

f(g(x)) = f(y) = f(ȳ) + f ′(ȳ)(y − ȳ) + Ef (y, ȳ)

= f(g(x̄)) + f ′(g(x̄))(g(x) − g(x̄)) + Ef (g(x), g(x̄)).

Substituting g(x)− g(x̄) = g′(x̄)(x − x̄) + Eg(x, x̄), we thus have

f(g(x)) = f(g(x̄)) + f ′(g(x̄)) g′(x̄)(x− x̄)

+ f ′(g(x̄))Eg(x, x̄) + Ef (g(x), g(x̄)).

Since (197.12) and (197.13) imply

|Ef (g(x), g(x̄))| ≤ Kf |g(x)− g(x̄)|2 ≤ KfL
2
g|x− x̄|2,

|f ′(g(x̄))Eg(x, x̄)| ≤ |f ′(g(x̄))|Kg|x− x̄|2,

we see that

(f ◦ g)(x) = (f ◦ g)(x̄) + f ′(g(x̄))g′(x̄)(x − x̄) + Ef◦g(x, x̄),

where Ef◦g(x, x̄) is quadratic in x− x̄. We have now proved:

Theorem 197.3 (The Chain rule) Assume that g(x) is uniformly dif-
ferentiable in an open interval I and g(x) is Lipschitz continuous on I.
Suppose further that f is uniformly differentiable in an open interval J
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containing g(x) for x in I. Then the composite function f(g(x)) is differ-
entiable on I, and

(f ◦ g)′(x) = f ′(g(x))g′(x), for x ∈ I, (197.14)

or
dh

dx
=
df

dy

dy

dx
, (197.15)

where h(x) = f(y) and y = g(x), that is h(x) = f(g(x)) = (f ◦ g)(x). An
alternative formulation si

D(f(g(x)) = Df(g(x))Dg(x), (197.16)

where Df = df
dy .

Example 197.4. Let f(y) = y5 and y = g(x) = 9 − 8x, so that
f(g(x)) = (f ◦ g)(x) = (9− 8x)5. We have f ′(y) = 5y4 and g′(x) = −8,
and thus

D((9− 8x)5) = 5y4 g′(x) = 5(9− 8x)4 (−8) = −40(9− 8x)4.

Example 197.5.

D
(
7x3 + 4x+ 6

)18
= 18

(
7x3 + 4x+ 6

)17
D(7x3 + 4x+ 6)

= 18
(
7x3 + 4x+ 6

)17
(21x2 + 4).

Example 197.6. Consider the composite function f(g(x)) with f(y) =
1/y, that is the function h(x) = 1

g(x) , where g(x) is a given function

with g(x) 6= 0. Since Df(y) = − 1
y2 we have using the Chain rule

Dh(x) = D
1

g(x)
=

−1

(g(x))2
g′(x) =

−g′(x)
g(x)2

, (197.17)

as long as g(x) is differentiable and g(x) 6= 0.

Example 197.7. Using Example 197.6 and the Chain Rule, we get for
n ≥ 1

d

dx
x−n =

d

dx

(
1

xn

)
=

−1

(xn)2
d

dx
xn

=
−1

x2n
× nxn−1 = −nx−n−1.

This extends the formula Dxm = mxm−1 to negative integers m =
−1,−2, ...
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197.5 The Quotient Rule

Let f(x) and g(x) be differentiable on I and consider the problem of com-

puting the derivative of ( fg )(x) =
f(x)
g(x) at x̄. Applying the Product rule to

f(x) 1
g(x) =

f(x)
g(x) , and using (197.17), we find that

(
f

g

)′
(x̄) = f ′(x̄)

1

g(x̄)
+ f(x̄)

−g′(x̄)
g(x̄)2

=
f ′(x̄)g(x̄)− f(x̄)g′(x̄)

g(x̄)2
,

if g(x̄) 6= 0, and we have thus proved:

Theorem 197.4 (The Quotient rule) Assume that f(x) and g(x) are
differentiable functions on the open interval I. Then for x ∈ I, we have

(
f

g

)′
(x) =

f ′(x)g(x) − f(x)g′(x)
g(x)2

,

provided g(x) 6= 0.

Example 197.8.

D

(
3x+ 4

x2 − 1

)
=

3× (x2 − 1)− (3x+ 4)× 2x

(x2 − 1)2
.

Example 197.9.

d

dx

(
x3 + x

(8− x)6

)9

= 9

(
x3 + x

(8 − x)6

)8
d

dx

(
x3 + x

(8− x)6

)

= 9

(
x3 + x

(8 − x)6

)8
(8− x)6 d

dx(x
3 + x) − (x3 + x) ddx(8− x)6
(
(8− x)6

)2

= 9

(
x3 + x

(8 − x)6

)8
(8− x)6(3x2 + 1)− (x3 + x)6(8− x)5 ×−1

(8 − x)12
.

Example 197.10. The Chain rule can also be used recursively:

d

dx
((((1 − x)2 + 1)3 + 2)4 + 3)5

= 5((((1− x)2 + 1)3 + 2)4 + 3)4 × 4(((1 − x)2 + 1)3 + 2)3

× 3((1 − x)2 + 1)2 × 2(1− x)× (−1).
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Let f(x) be a function with derivative f ′(x). Since f ′(x) is a function,
it may also be differentiable with a derivative which would describe how
quickly the rate of change of f is changing at each point x. The derivative
of the derivative f ′(x) of f(x) is called the second derivative of f(x) and is
denoted by

f ′′(x) = D2f(x) =
d2f

dx2
= (f ′)′(x).

Example 197.11. For f(x) = x2, f ′(x) = 2x and f ′′(x) = 2.

Example 197.12. For f(x) = 1/x, f ′(x) = −1/x2 = −x−2 and
f ′′(x) = −(−2)x−3 = 2/x3.

We can continue taking the derivative of the second derivative and get a
third derivative:

f ′′′(x) = D3f(x) =
d3f

dx3
= (f ′′)′(x)

as long as the functions are differentiable. We can recursively define the
derivative f (n) = Dnf of f order n by

f (n)(x) = Dnf(x) =
dnf

dxn
= (f (n−1))′(x) = D(Dn−1f)(x),

where f ′(x) = f (1)(x) = Df(x), f ′′(x) = f (2)(x) = D2f(x), and so on.
The derivative of distance with respect to time is velocity. The derivative

of velocity with respect to time is called acceleration. Velocity indicates how
quickly the position of an object is changing with time and acceleration
indicates how quickly the object is speeding up or slowing down (changing
velocity) with respect to time.

Example 197.13. If f(x) = x4, then Df(x) = 4x3, D2f(x) = 12x2,
D3f(x) = 24x, D4f(x) = 24 and D5f(x) ≡ 0.

Example 197.14. The n+1’st derivative of a polynomial of degree n
is zero.

Example 197.15. If f(x) = 1/x, then

f(x) = x−1, Df(x) = −1× x−2, D2f(x) = 2× x−3, D3f(x) = −6× x−4

...

Dnf(x) = (−1)n × 1× 2× 3× · · · × nx−n−1 = (−1)nn!x−n−1.
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197.7 One-Sided Derivatives

We can also define differentiability from the right at a point x̄ of a function
f(x). The definition is the same as that used above with the restriction
that x ≥ x̄. More precisely, the function f : J → R, where J = [x̄, b) and
b > x̄, is said to be differentiable from the right at x̄ if there are constants
m(x̄) and Kf(x̄) such that for x ∈ [x̄, b)

|f(x)− (f(x̄) +m(x̄)(x − x̄))| ≤ Kf(x̄)|x− x̄|2. (197.18)

We then say that the right-hand derivative of f(x) at x̄ is equal to m(x̄),
and we denote the right-hand derivative by f ′

+(x̄) = m(x̄).
We define the left-hand derivative f ′

−(x̄) = m(x̄), analogously restricting
x ≤ x̄. In both cases, we are simply requiring that the linearization estimate
holds for x on one side of x̄.

Example 197.16. The function f(x) = |x| is differentiable for x̄ 6= 0
with derivative f ′(x̄) = 1 if x̄ > 0 and f ′(x̄) = −1 if x̄ < 0. The function
f(x) = |x| is differentiable from the right at x̄ = 0 with derivative
f ′
+(0) = 1, and differentiable form the left at x̄ = 0 with derivative
f ′
−(0) = −1.

We say that f : [a, b] → R is differentiable on the closed interval [a, b], if
f(x) is differentiable on the open interval (a, b), and is differentiable from
the right at a, and differentiable from the left at b. The definition extends
in the obvious way to half-open/half-closed intervals (a, b] and [a, b). If f
is either differentiable or is differentiable from the right and/or the left at
every point in an interval, then we say that f is piecewise differentiable on
the interval.

Example 197.17. The function |x| is piecewise differentiable on R.
The function 1/x is differentiable on (0,∞) but not differentiable on
[0,∞).

197.8 Quadratic Approximation: Taylor’s Formula
of Order Two

For a differentiable function f(x), we figured out how to compute a best
linear approximation for x close to x̄, namely

f(x) ≈ f(x̄) + f ′(x̄)(x − x̄)

with an error quadratic in x − x̄. In some situations, we might require
more accuracy from an approximation than is possible to get using a lin-
ear function. The natural generalization is to look for a “best” quadratic
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approximation of the form

f(x) = f(x̄) +m1(x̄)(x− x̄) +m2(x̄)(x − x̄)2 + Ef (x, x̄), (197.19)

for x close to x̄, where m1(x̄) and m2(x̄) are constants and now the error
function Ef (x, x̄) is cubic in x− x̄, that is

|Ef (x, x̄)| ≤ Kf (x̄)|x− x̄|3, (197.20)

with Kf(x̄) a constant. Of course, for |x− x̄| small, Kf(x̄)|x− x̄|3 is much
smaller than both m1(x̄)(x− x̄) or m2(x̄)(x− x̄)2, unless m1(x̄) and m2(x̄)
happen to be zero, of course.
Now, if (197.19) holds for x close to x̄, then m1(x̄) = f ′(x̄), since m2(x−

x̄)2 + Ef (x, x̄) is quadratic in x− x̄. If (197.19) holds, we thus have

f(x) = f(x̄) + f ′(x̄)(x− x̄) +m2(x̄)(x− x̄)2 + Ef (x, x̄). (197.21)

Let us next try to determine the constant m2(x̄). To this end we differen-
tiate the relation (197.19) with respect to x to get

f ′(x) = f ′(x̄) + 2m2(x̄)(x − x̄) +
d

dx
Ef (x, x̄). (197.22)

Let us now assume that for x close to x̄

| d
dx
Ef (x, x̄)| ≤Mf(x̄)|x− x̄|2, (197.23)

for some constantMf(x̄). The principle is that taking the derivative brings
down the power of |x − x̄| one step from 3 to 2. We shall meet this phe-
nomenon many times below. From (197.23) it would then follow by the
definition of f ′′(x̄), that f ′′(x̄) = (f ′)′(x̄) = 2m2(x̄), that is

m2(x̄) =
1

2
f ′′(x̄).

We would thus arrive at an approximation formula of the form

f(x) = f(x̄) + f ′(x̄)(x − x̄) +
1

2
f ′′(x̄)(x − x̄)2 + Ef (x, x̄), (197.24)

for x close to x̄, where |Ef (x, x̄)| ≤ Kf (x̄)|x− x̄|3 with Kf (x̄) a constant.

Example 197.18. Consider the function f(x) = 1
x for x close to x̄ = 1.

We shall use the fact that if y 6= −1, then

1

1 + y
= 1− y

1

1 + y

which is readily verified by multiplying by 1 + y, and thus

1

1 + y
= 1− y

1

1 + y
= 1− y(1− y

1

1 + y
)
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= 1− y + y2
1

1 + y
= 1− y + y2 − y3

1

1 + y
.

Choosing y = x− 1, we get

1

x
=

1

1 + (x− 1)
= 1− (x − 1) + (x− 1)2 − (x − 1)3

1 + (x − 1)
, (197.25)

and we see that the quadratic polynomial

1− (x− 1) + (x− 1)2,

approximates 1
x for x close to x̄ = 1 with an error, which is cubic in

x − x̄. As a consequence of the expansion, we have that f(1) = 1,
f ′(1) = −1 and f ′′(1) = 2. We plot the approximation in Fig. 197.1
and list some values of the approximation in Fig. 197.2.

0.5 1.0 1.5 2.0
0

1

2

3

4 y = 1
x

x

y = 1− (x− 1) + (x− 1)2

FIGURE 197.1. The quadratic approximation 1− (x− 1) + (x− 1)2 of 1/x near
x̄ = 1

x 1/x 1− (x− 1) + (x− 1)2 Ef (x, 1)

.7 1.428571 1.39 .038571

.8 1.25 1.22 .03

.9 1.111111 1.11 .00111
1.0 1.0 1.0 0.0
1.1 .909090 .91 .000909
1.2 .833333 .84 .00666
1.3 .769230 .79 .02077

FIGURE 197.2. Some values of f(x) = 1/x, the quadratic approximation
1− (x− 1) + (x− 1)2, and the error Ef (x, 1).
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Below we will prove under the name of Taylor’s theorem, that if the
function f(x) is three times differentiable with |f (3)(x)| ≤ 6Kf(x̄) for x
close to x̄, where Kf (x̄) is a constant, then for x close to x̄,

f(x) = f(x̄) + f ′(x̄)(x − x̄) +
1

2
f ′′(x̄)(x − x̄)2 + Ef (x, x̄), (197.26)

where the error function Ef (x, x̄) is cubic in x− x̄, more precisely,

|Ef (x, x̄)| ≤ Kf(x̄)|x− x̄|3, for x close to x̄. (197.27)

Further, d
dxEf (x, x̄) is quadratic in x − x̄. Taylor’s theorem thus gives an

answer to the problem of quadratic approximation formulated in (197.19).

197.9 The Derivative of an Inverse Function

Let f : (a, b) → R be differentiable at x̄ ∈ (a, b), so that for x close to x̄

f(x) = f(x̄) + f ′(x̄)(x − x̄) + Ef (x, x̄), (197.28)

where |Ef (x, x̄)| ≤ Kf (x̄)(x − x̄)2 with Kf (x̄) a constant. Suppose that
f ′(x̄) 6= 0 so that f(x) is strictly increasing or decreasing for x close to
x̄, and thus the equation y = f(x) has a unique solution x for y close to
ȳ = f(x̄). This defines x as a function of y, and this function is said to be
the inverse of the function y = f(x) and is denoted by x = f−1(y), see
(197.3).

x
x x

y

y

y
y = f(x) y = f(x)

y = f(x)

x = f−1(y)

FIGURE 197.3. The function y = f(x) and its inverse x = f−1(y)

Can we compute the derivative of the function x = f−1(y) with respect
to y close to ȳ = f(x̄)? Rewriting (197.28), we have

y = ȳ + f ′(x̄)(f−1(y)− f−1(ȳ)) + Ef (f
−1(y), f−1(ȳ)),
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that is

f−1(y) = f−1(ȳ) +
1

f ′(x̄)
(y − ȳ)− 1

f ′(x̄)
Ef (f

−1(y), f−1(ȳ)), (197.29)

Suppose now that f−1 is Lipschitz continuous in an open interval J around
ȳ, so that

|f−1(y)− f−1(ȳ)| ≤ Lf−1 |y − ȳ| for y ∈ J.

Then for y close to ȳ,

| 1

f ′(x̄)
Ef (f

−1(y), f−1(ȳ))| ≤ 1

|f ′(x̄)|Kf (x̄)(Lf−1)2|y − ȳ|2,

which proves by (197.29) that the derivative Df−1(ȳ) of f−1(y) with re-
spect to y at ȳ is equal to 1

f ′(x̄) , that is

Df−1(ȳ) =
1

f ′(x̄)
, (197.30)

where ȳ = f(x̄). We summarize:

Theorem 197.5 If y = f(x) is differentiable at x̄ with respect to x with
f ′(x̄) 6= 0, then the inverse function x = f−1(y) is differentiable with
respect to y at ȳ = f(x̄) with derivative Df−1(ȳ) = 1

f ′(x̄) .

Example 197.19. The inverse of the function y = f(x) = x2 for
x > 0 is the function x = f−1(y) =

√
y defined for y > 0. It follows

that D
√
y = 1

f ′(x) =
1
2x = 1

2
√
y . Changing notation from y to x, we thus

have for x > 0,

d

dx

√
x = D

√
x =

1

2
√
x
, or Dx

1
2 =

1

2
x−

1
2 . (197.31)

197.10 Implicit Differentiation

We give an example of a technique called implicit differentiation to compute
the derivative of the function x

p
q , where p and q are integers with q 6= 0,

and x > 0. We know that the function y = x
p
q is the unique solution of the

equation yq = xp in y for a given x > 0. We can thus view y as a function
of x and write y(x) = x

p
q , and we have

(y(x))q = xp for x > 0. (197.32)

Assuming y(x) to be differentiable with respect to x with derivative y′(x),
we would get differentiating both sides of (197.32) with respect to x, and
using the Chain Rule on the left hand side:

q(y(x))q−1y′(x) = pxp−1
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from which we deduce inserting that y(x) = x
p
q ,

y′(x) =
p

q
x−

p
q
(q−1)xp−1 =

p

q
x

p
q
−1.

We conclude that

Dxr = rxr−1 for r rational, and x > 0, (197.33)

using the computation as an indication that the derivative indeed exists.
To connect with the previous section, note that if y = f(x) has an inverse

function x = f−1(y), then differentiating both sides of x = f−1(y) with
respect to x, considering y = y(x) = f(x) as a function of x, we get with
D = d

dy

1 = Df−1(y)f ′(x)

which gives the formula (197.30).

197.11 Partial Derivatives

We now have gained some experience of the concept of derivative of a
real-valued function f : R → R of one real variable x. Below we shall
consider real-valued functions several real variables, and we are then led to
the concept of partial derivative. We give here a first glimpse, and consider
a real-valued function f : R×R → R of two real variables, that is for each
x1 ∈ R and x2 ∈ R, we are given a real number f(x1, x2). For example,

f(x1, x2) = 15x1 + 3x2, (197.34)

represents the total cost in the Dinner Soup/Ice Cream model, with x1 rep-
resenting the amount of meat and x2 the amount of ice-cream. To compute
the partial derivative of the function f(x1, x2) = 15x1 + 3x2 with respect
to x1, we keep the variable x2 constant and compute the derivative of the
function f1(x1) = f(x1, x2) as a function of x1, and obtain df1

dx1
= 15, and

we write
∂f

∂x1
= 15

which is the partial derivative of f(x1, x2) with respect to x1. Similarly, to
compute the partial derivative of the function f(x1, x2) = 15x1 + 3x2 with
respect to x2, we keep the variable x1 constant and compute the derivative
of the function f2(x2) = f(x1, x2) as a function of x2, and obtain df2

dx2
= 3,

and we write
∂f

∂x2
= 3.

Obviously, ∂f
∂x1

represents the cost of increasing the amount of meat one

unit, and ∂f
∂x2

= 3 represents the cost of increasing the amount of ice cream
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one unit. The marginal cost of meat is thus ∂f
∂x1

= 15 and that of ice cream
∂f
∂x2

= 3.

Example 197.20. Suppose f : R × R → R is given by f(x1, x2) =
x21 + x32 + x1x2. We compute

∂f

∂x1
(x1, x2) = 2x1 + x2,

∂f

∂x2
(x1, x2) = 3x22 + x1,

where we follow the principle just explained: to compute ∂f
∂x1

, keep x2

constant and differentiate with respect to x1, and to compute ∂f
∂x2

, keep
x1 constant and differentiate with respect to x2.

More generally, we may in a natural way extend the concept of differ-
entiability of a real-valued function f(x) of one real variable x to differen-
tiability of a real valued function f(x1, x2) of two real variables x1 and x2
as follows: We say that function f(x1, x2) is differentiable at x̄ = (x̄1, x̄2)
if there are constants m1(x̄1, x̄2), m2(x̄1, x̄2) and Kf (x̄1, x̄2), such that for
(x1, x2) close to (x̄1, x̄2),

f(x1, x2) = f(x̄1, x̄2)+m1(x̄1, x̄2)(x1−x̄1)+m2(x̄1, x̄2)(x2−x̄2)+Ef (x, x̄),

where
|Ef (x, x̄)| ≤ Kf (x̄1, x̄2)((x1 − x̄1)

2 + (x2 − x̄2)
2).

Note that

f(x̄1, x̄2) +m1(x̄1, x̄2)(x1 − x̄1) +m2(x̄1, x̄2)(x2 − x̄2)

is a linear approximation to f(x) with quadratic error, the graph of which
represents the tangent plane to f(x) at x̄.
Letting x2 be constant equal to x̄2, we see that the partial derivative

of f(x1, x2) at (x̄1, x̄2) with respect to x1 is equal to m1(x̄1, x̄2), and we
denote this derivative by

∂f

∂x1
(x̄1, x̄2) = m1(x̄1, x̄2).

Similarly, we say that the partial derivative of f(x) at x̄ with respect to x2 is
equal to m2(x̄1, x̄2) and denote this derivative by ∂f

∂x2
(x̄1, x̄2) = m2(x̄1, x̄2).

These ideas extend in a natural way to real-valued functions f(x1, ...xd)
of d real variables x1,...,xd, and we can speak about (and compute) partial
derivatives of f(x1, ...xd) with respect to x1,...,xd following the same basic
idea. To compute the partial derivative ∂f

∂xj
with respect to xj for some

j = 1, ..., d, we keep all variables but xj constant and compute the usual
derivative with respect to xj . We shall return below to the concept of partial
derivative below, and through massive experience learn that it plays a basic
role in mathematical modeling.
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197.12 A Sum Up So Far

We have proved above that

Dxn =
d

dx
xn = nxn−1 for n integer and x 6= 0,

Dxr =
d

dx
xr = rxr−1 for r rational and x > 0.

We have also proved rules for how to differentiate linear combinations,
products, quotients, compositions, and inverses of differentiable functions.
This is just about all so far. We lack in particular answers to the following
questions:

• What function u(x) satisfies u′(x) = 1
x?

• What is the derivative of the function ax, where a > 0 is a constant?

Chapter 197 Problems

197.1. Construct and differentiate functions obtained by combining functions
of the form xr using linear combinations, products, quotients, compositions, and
taking inverses. For example, functions like

√

x11 +

√
x111

x−1.1 + x1.1
.

197.2. Compute the partial derivatives of the function f : R × R → R defined
by f(x1, x2) = x2

1 + x4
2.

197.3. We have defined 2x for x rational. Let us try to compute the derivative
D2x = d

dx
2x with respect to x at x = 0. We are then led to study the quotient

qn =
2

1
n − 1

1
n

as n tends to infinity. (a) Do this experimentally using the computer. Note that

2
1
n = 1 + qn

n
, and thus we seek qn so that (1 + qn

n
)n = 2. Compare with the

experience concerning (1 + 1
n
)n in Chapter A Very Short Course in Calculus.

197.4. Suppose you know how to compute the derivative of 2x at x = 0. What

is the derivative then at x 6= 0? Hint: 2x+
1
n = 2x2

1
n .

197.5. Consider the function f : (0, 2) → R defined by f(x) = (1 + x4)−1 for
0 < x < 1, f(x) = ax + b for 1 ≤ x < 2, where a, b ∈ R are constants. For
what values of a and b is this function (i) Lipschitz continuous on (0, 2), (ii)
differentiable on (0, 2)?

197.6. Compute the partial derivatives of the function f : R3 → R given by
f(x1, x2, x3) = 2x2

1x3 + 5x3
2x

4
3.
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198
Newton’s Method

Brains first and then Hard Work. (The House at Pooh Corner, Milne)

198.1 Introduction

As a basic application of the derivative, we study Newton’s method for
computing roots of an equation f(x) = 0. Newton’s method is one of the
corner-stones of constructive mathematics. As a preparation we start out
using the concept of derivative to analyze the convergence of Fixed Point
Iteration.

198.2 Convergence of Fixed Point Iteration

Let g : I → I be uniformly differentiable on an interval I = (a, b) with
derivative g′(x) satisfying |g′(x)| ≤ L for x ∈ I, where we assume that
L < 1. By Theorem 196.1 we know that g(x) is Lipschitz continuous on I
with Lipschitz constant L, and since L < 1, the function g(x) has a unique
fixed point x̄ ∈ I satisfying x̄ = g(x̄).
We know that x̄ = limi→∞ xi, where {xi}∞i=1 is a sequence generated

using Fixed Point Iteration: xi+1 = g(xi) for i = 1, 2, .... To analyze the
convergence of Fixed Point Iteration, we assume that g(x) admits the fol-
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lowing quadratic approximation close to x̄ following the pattern of (197.26),

g(x) = g(x̄) + g′(x̄)(x − x̄) +
1

2
g′′(x̄)(x − x̄)2 + Eg(x, x̄), (198.1)

where |Eg(x, x̄)| ≤ Kg(x̄)|x− x̄|3. Choosing x = xi, setting ei = xi− x̄ and
using x̄ = g(x̄), we have for i large enough,

ei+1 = xi+1 − x̄ = g(xi)− g(x̄) = g′(x̄)ei +
1

2
g′′(x̄)e2i +Eg(xi, x̄), (198.2)

where |Eg(xi, x̄)| ≤ Kg(x̄)|ei|3. This formula gives an expansion of the error
ei+1 at step i+ 1 in terms of the different powers of ei.
If g′(x̄) 6= 0, then the linear term g′(x̄)ei dominates and

|ei+1| ≈ |g′(x̄)||ei|, (198.3)

which says that the error decreases with (approximately) the factor |g′(x̄)|
at each step, and we then say that the convergence is linear. If g′(x̄) = 0.1,
then we gain one decimal of accuracy in each step of Fixed Point Iteration.
As |g′(x̄)| decreases, the convergence becomes faster. An extreme case

arises when g′(x̄) = 0. In this case, (198.2) implies

ei+1 =
1

2
g′′(x̄)e2i + Eg(xi, x̄),

so that neglecting the cubic term Eg(xi, x̄), we have

|ei+1| ≈
1

2
|g′′(x̄)|e2i . (198.4)

In this case the convergence is said to be quadratic, because the error |ei+1|
is, up to the factor |g′′(x̄)/2|, the square of the error |ei|. If the convergence
is quadratic, then the number of correct decimals roughly doubles in each
step.

198.3 Newton’s Method

In Chapter Fixed Point Iteration, we saw that the problem of finding a root
of an equation f(x) = 0, where f(x) is a given function, can be reformulated
as a fixed point equation x = g(x), with g(x) = x − αf(x) and α a non-
zero constant to choose. In fact, one may choose α(x) to depend in x and
reformulate f(x) = 0 as

g(x) = x− α(x)f(x),

if only α(x̄) 6= 0, where x̄ is the root being computed. From above, we
understand that a natural strategy is to choose α so as to make g′(x̄) as
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small as possible. The ideal would be g′(x̄) = 0. Differentiating the equation
g(x) = x− α(x)f(x) with respect to x, we get

g′(x) = 1− α′(x)f(x) − α(x)f ′(x).

Assuming that f ′(x̄) 6= 0, and using f(x̄) = 0,

α(x̄) =
1

f ′(x̄)
.

Setting α(x) = 1
f ′(x) leads to Newton’s method for computing a root of

f(x) = 0: for i = 0, 1, 2, ...

xi+1 = xi −
f(xi)

f ′(xi)
, (198.5)

where x0 is a given initial root approximation. Newton’s method corre-
sponds to Fixed Point Iteration with

g(x) = x− f(x)

f ′(x)
. (198.6)

Using Newton’s method, it is natural to assume that f ′(x̄) 6= 0, which
guarantees that f ′(xi) 6= 0 for i large if f ′(x) is Lipschitz continuous.

Example 198.1. We apply Newton’s method to compute the roots
x̄ = 2, 1, 0,−0.5,−1.5 of the polynomial equation f(x) = (x − 2)(x −
1)x(x + .5)(x + 1.5) = 0. We have that f ′(x̄) 6= 0 for all roots x̄. We
compute 21 Newton iterations for f(x) = 0 starting with 400 equally
spaced initial values in [−3, 3] and indicate the corresponding roots that
are found in Fig. 198.1. Each of the roots is contained in an interval
in which all initial values produce convergence to the root. But outside
these intervals the behavior of the iteration is unpredictable with near-
by initial values converging to different roots.

198.4 Newton’s Method Converges Quadratically

We shall now prove that Newton’s method converges quadratically if the
initial approximation is good enough. We do this by computing the deriva-
tive of the corresponding fixed point function defined by (198.6):

g′(x̄) = 1− f ′(x̄)2 − f(x̄)f ′′(x̄)

f ′(x̄)2
=
f(x̄)f ′′(x̄)

f ′(x̄)2
= 0,

where we used that f(x̄) = 0 and the assumption that f ′(x̄) 6= 0. We
conclude that Newton’s method converges quadratically if f ′(x̄) 6= 0. This
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-3 1 2 3-1.5 -.5 0

Converges to -1.5

Converges to -.5

Converges to 0

Converges to 2

Converges to 1

FIGURE 198.1. This plot shows the roots of f(x) = (x−2)(x−1)x(x+.5)(x+1.5)
found by Newton’s method for 5000 equally spaced initial guesses in [−3, 3]. The
horizontal position of the points shows the location of the initial guess and the
vertical position indicates the twenty first Newton iterate.

result holds if we start sufficiently close to x̄, so that in particular f ′(xi) 6= 0
for all i.
A more direct way to see that Newton’s method converges quadratically,

goes as follows. Subtract x̄ from each side of (198.5) and use the fact that
f(xi) = −f ′(xi)(x̄−xi)−Ef(x̄, xi), obtained from the linearization formula
f(x̄) = f(xi) + f ′(xi)(x̄− xi) + Ef (x̄, xi) because f(x̄) = 0, to obtain

xi+1 − x̄ = xi −
f(xi)

f ′(xi)
− x̄ =

Ef (x̄, xi)

f ′(xi)
.

We conclude that

|xi+1 − x̄| = |Ef (x̄, xi
f ′(xi)

| ≤ Kf

|f ′(xi)|
|xi − x̄|2,

which gives quadratic convergence if f ′(x) is bounded away from zero for
x close to x̄.

198.5 A Geometric Interpretation of Newton’s
Method

There is an appealing geometric interpretation of Newton’s method. Let xi
be an approximation of a root x̄ of f(x) = 0 satisfying f(x̄) = 0. Consider
the tangent line to y = f(x) at x = xi,

y = f(xi) + f ′(xi)(x − xi).

Let xi+1 be the x-value where the tangent line crosses the x-axis, see
Fig. 198.2, that is let xi+1 satisfy f(xi) + f ′(xi)(xi+1 − xi) = 0, so that

xi+1 = xi −
f(xi)

f ′(xi)
, (198.7)
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which is Newton’s method. We conclude that the iterate xi+1 in Newton’s
method is the intersection of the tangent line to f(x) at xi with the x-axis.
In words: trying to find x̄, so that f(x̄) = 0, we replace f(x) by the linear
approximation

f̂(x) = f(xi) + f ′(xi)(x − xi),

that is by the tangent line at x = xi, and then compute xi+1 as the solu-
tion of the equation f̂(x) = 0. We shall find that this approach to Newton’s
method is easy to generalize to systems of equations corresponding to find-
ing roots of f(x) where f : Rn → Rn.

xi x̄ xi+1

y = f(x)

y = f(xi) + f ′(xi)(x− xi)

FIGURE 198.2. An illustration of one step of Newton’s method from xi to xi+1.

198.6 What Is the Error of an Approximate Root?

Suppose xi is an approximation of a root x̄ of a given equation f(x) = 0.
Can we say something about the error xi− x̄ from the knowledge of f(xi)?
We will meet this question over and over again and we will refer to f(xi)
as the residual of the approximation xi. For the exact root x̄, the residual
is zero since f(x̄) = 0, and for the approximation xi, the residual f(xi) is
not zero (unless by some miracle xi = x̄, or xi is some root of f(x) = 0
different from x̄).
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Now, there is a very basic connection between the residual f(xi) and the
error xi− x̄ that may be expressed as follows. Using the fact that f(x̄) = 0
and assuming that f(x) is differentiable at x̄,

f(xi) = f(xi)− f(x̄) = f ′(x̄)(xi − x̄) + Ef (xi, x̄),

where |Ef (xi, x̄)| ≤ Kf(x̄)|xi − x̄|2. Assuming that f ′(x̄) 6= 0, we conclude
that

xi − x̄ ≈ f(xi)

f ′(x̄)
, (198.8)

up to the error term (f ′(x̄))−1Ef (xi, x̄), which is quadratic in xi − x̄ and
thus much smaller than |xi − x̄| if xi is close to x̄, see Fig. 198.3.

x

y

x̄ xi

y = f(x)

y = f(xi)

root error

residual
f ′(x̄)(xi − x̄)

FIGURE 198.3. The root error and the residual

The relation (198.8) shows that the root error x̄i − x̄ is roughly propor-
tional to the residual with the proportionality factor (f ′(x̄))−1, if xi is close
to x̄ and f ′(x) is Lipschitz continuous near x = x̄. We summarize in the
following basic theorem (the full proof of which will be given below using
the Mean Value theorem).

Theorem 198.1 If f(x) is differentiable in an interval I containing a root
x̄ of f(x) = 0, and |f ′(x)|−1 ≤ M for x ∈ I, then an approximate root
xi ∈ I, satisfies |xi − x̄| ≤M |f(xi)|.

In particular, if f ′(x̄) is very small, then the root error may be large
although the residual is very small. In this case the process of computing
the root x̄ is said to be ill-conditioned.

Example 198.2. We apply Newton’s method to f(x) = (x − 1)2 −
10−15x with root x̄ ≈ 1.00000003162278. Here f ′(1) = −10−15 and
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f ′(x̄) ≈ 0.0000000316, so that f ′(xn) is very small for all xn close to
x̄, and the problem seems to be very ill-conditioned. We plot the errors
and residuals versus iteration in Fig. 198.4. We see that the residuals
become small quite a bit faster than the errors.

0 5 10 15 20 25
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

|xn − x̄|

|f(xn)|

FIGURE 198.4. Plots of the residuals • and errors � versus iteration number
for Newton’s method applied to f(x) = (x−1)2−10−15x with initial value
x0 = 1

Introducing the approximation (198.8) into the definition of Newton’s
method,

xi+1 = xi − f(xi)/f
′(xi),

we get the relation
|xi − x̄| ≈ |xi+1 − xi|. (198.9)

In other words, as an estimate of the error of xi − x̄, we can compute an
extra step of Newton’s method to get xi+1 and then use |xi+1 − xi| as an
estimate of |xi − x̄|. This is an alternative way of estimating the root error
xi − x̄, where the derivative f ′(x) does not enter explicitly.

Example 198.3. We apply Newton’s method to f(x) = x2 − 2 and
show the error and error estimate (198.9) in Fig. 198.5. The error esti-
mate does a pretty good job.

198.7 Stopping Criterion

Suppose we want to compute an approximation of a root x̄ of a given
equation f(x) = 0 with a certain accuracy, or error tolerance TOL > 0. In
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i |xi − x̄| |xi+1 − xi|
0 .586 .5
1 .086 .083
2 2.453× 10−3 2.451× 10−3

3 2.124× 10−6 2.124× 10−6

4 1.595× 10−12 1.595× 10−12

5 0 0

FIGURE 198.5. The error and error estimate for Newton’s method for
f(x) = x2 − 2 with x0 = 2.

other words, suppose we want to guarantee that

|xi − x̄| ≤ TOL, (198.10)

where xi is a computed approximation of the root x̄. For example, we may
choose TOL = 10−m corresponding to seeking an approximate root xi with
m correct decimals. Can we find some stopping criterion that tells us when
to stop an iterative process with an approximation x̄i satisfying (198.10)?
The following criteria based on (198.8) presents itself: stop the iterative
process at step i if

|(f ′(x̄i))
−1f(x̄i)| ≤ TOL. (198.11)

Up to the change of argument from x̄ to x̄i, this criterion guarantees the
desired error control (198.10).
As an alternative stopping criterion for Newton’s method, we may use

(198.9), that is accept the approximation xi with tolerance TOL if

|xi+1 − xi| ≤ TOL. (198.12)

198.8 Globally Convergent Newton Methods

In this chapter, we have proved quadratic convergence of Newton’s method
under the assumption that we start close enough to the root of interest,
that is we have prove local convergence of Newton’s method. To get a suf-
ficiently good initial approximation we may use the Bisection algorithm.
Thus, by using the Bisection algorithm in an initial search of roots and then
Newton’s method for each individual root, we may obtain a globally conver-
gent method combining efficiency (quadratic convergence) with reliability
(guaranteed convergence).
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Chapter 198 Problems

198.1. (a) Verify theoretically that the fixed point iteration for

g(x) =
1

2

(
x+

a

x

)

with x̄ =
√
a converges quadratically. (b) Try to say something about which

initial values guarantee convergence for a = 3 by computing some fixed point
iterations.

198.2. (a) Show analytically that Fixed Point Iteration for

g(x) =
x(x2 + 3a)

3x2 + a

is third order convergent for computing x̄ =
√
a. (b) Compute a few iterations for

a = 2 and x0 = 1. How many digits of accuracy are gained with each iteration?

198.3. (a) Consider Newton’s method applied to a differentiable function f(x)
with f(x̄) = f ′(x̄) = 0, but f ′′(x̄) 6= 0, that is x̄ is a double-root of f(x) = 0. Prove
that Newton’s method in this case converges linearly, by proving that g′(x̄) = 1/2,
where g(x) = x−f(x)/f ′(x). (b) What is the rate of convergence of the following
variant of Newton’s method in the case of a double root: g(x) = x−2f(x)/f ′(x)?
Hint: you may find it convenient to use l’Hopital’s rule.

198.4. Use Newton’s method to compute all the roots of f(x) = x5+3x4−3x3−
5x2 + 5x− 1.

198.5. Use Newton’s method to compute the smallest positive root of f(x) =
cos(x) + sin(x)2(50x).

198.6. Use Newton’s method to compute the root x̄ = 0 of the function

f(x) =

{√
x x ≥ 0

−
√
−x x < 0

Does the method converge? If so, is it converging at second order? Explain your
answer.

198.7. Apply Newton’s method to f(x) = x3 − x starting with x0 = 1/
√
5. Is

the method converging? Explain your answer using a plot of f(x).

198.8. (a) Derive an approximate relation between the residual g(x) − x of a
fixed point problem for g and the error of the fixed point iterate xn−x̄. (b) Devise
two stopping criteria for a fixed point iteration. (c) Revise your fixed point code
to make use of (a) and (b).

198.9. Use Newton’s method to compute the root x̄ = 1 of f(x) = x4 − 3x2 +
2x. Is the method converging quadratically? Hint: you can test this by plotting
|xn − 1|/|xn−1 − 1| for n = 1, 2, · · · .
198.10. Assume that f(x) has the form f(x) = (x − x̄)2h(x) where h is a
differentiable function with h(x̄) 6= 0. (a) Verify that f ′(x̄) = 0 but f ′′(x̄) 6= 0.
(b) Show that Newton’s method applied to f(x) converges to x̄ at a linear rate
and compute the convergence factor.
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199
The Integral

The two questions, the first that of finding the description of the
curve from its elements, the second that of finding the figure from
the given differences, both reduce to the same thing. From this it
can be taken that the whole of the theory of the inverse method of
the tangents is reducible to quadratures. (Leibniz 1673)

Utile erit scribit
∫

pro omnia. (Leibniz, October 29 1675)

199.1 Primitive Functions and Integrals

In this chapter, we begin the study of the subject of differential equations,
which is one of the common ties binding together all areas of science and
engineering, and it would be hard to overstate its importance. We have been
preparing for this chapter for a long time, starting from the beginning with
Chapter A very short course in Calculus, through all of the chapters on
functions, sequences, limits, real numbers, derivatives and basic differential
equation models. So we hope the gentle reader is both excited and ready
to embark on this new exploration.
We begin our study with the simplest kind of differential equation, which

is of fundamental importance:

Given the function f : I → R defined on the interval I = [a, b],
find a function u(x) on I, such that the derivative u′(x) of u(x)
is equal to f(x) for x ∈ I.
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We can formulate this problem more concisely as: given f : I → R find
u : I → R such that

u′(x) = f(x) (199.1)

for all x ∈ I. We call the solution u(x) of the differential equation u′(x) =
f(x) for x ∈ I, a primitive function of f(x), or an integral of f(x). Some-
times the term antiderivative is also used.
To understand what we mean by “solving” (199.1), we consider two

simple examples. If f(x)=1 for x ∈ R, then u(x) = x is a solution of
u′(x) = f(x) for x ∈ R, since Dx = 1 for all x ∈ R. Likewise if f(x) = x,
then u(x) = x2/2 is a solution of u′(x) = f(x) for x ∈ R, since Dx2/2 = x
for x ∈ R. Thus the function x is a primitive function of the constant
function 1, and x2/2 is a primitive function of the function x.

x x

xx

y

yy

y
y = x

y = x

y = 1

y = 1
2
x2

Dx = 1 D 1
2
x2 = x

FIGURE 199.1. Dx = 1 and D(x2/2) = x.

We emphasize that the solution of (199.1) is a function defined on an
interval. We can interpret the problem in physical terms if we suppose
that u(x) represents some accumulated quantity like a sum of money in a
bank, or an amount of rain, or the height of a tree, while x represents some
changing quantity like time. Then solving (199.1) amounts to computing
the total accumulated quantity u(x) from knowledge of the rate of growth
u′(x) = f(x) at each instant x. This interpretation suggests that finding
the total accumulated quantity u(x) amounts to adding little pieces of
momentary increments or changes of the quantity u(x). Thus we expect
that finding the integral u(x) of a function f(x) satisfying u′(x) = f(x)
will amount to some kind of summation.
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A familiar example of this problem occurs when f(x) is a velocity and
x represents time so that the solution u(x) of u′(x) = f(x), represents the
distance traveled by a body moving with instantaneous velocity u′(x) =
f(x). As the examples above show, we can solve this problem in simple
cases, for example when the velocity f(x) is equal to a constant v for all
x and therefore the distance traveled during a time x is u(x) = vx. If we
travel with constant velocity 4 miles/hour for two hours, then the distance
traveled is 8 miles. We reach these 8 miles by accumulating distance foot-
by-foot, which would be very apparent if we are walking!
An important observation is that the differential equation (199.1) alone

is not sufficient information to determine the solution u(x). Consider the
interpretation when f represents velocity and u distance traveled by a
body. If we want to know the position of the body, we need to know only
the distance traveled but also the starting position. In general, a solution
u(x) to (199.1) is determined only up to a constant, because the derivative
of a constant is zero. If u′(x) = f(x), then also (u(x) + c)′ = f(x) for
any constant c. For example, both u(x) = x2 and u(x) = x2 + 1 satisfy
u′(x) = 2x. Graphically, we can see that there are many “parallel” functions
that have the same slope at every point. The constant may be specified by

x
x

y

c u(x)

u(x) + c

slope f(x)

FIGURE 199.2. Two functions that have the same slope at every point.

specifying the value of the function u(x) at some point. For example, the
solution of u′(x) = x is u(x) = x2 + c with c a constant, and specifying
u(0) = 1 gives that c = 1.
More generally, we now formulate our basic problem as follows: Given

f : [a, b] → R and ua, find u : [a, b] → R such that

{
u′(x) = f(x) for a < x ≤ b,

u(a) = ua,
(199.2)
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where ua is a given initial value. The problem (199.2) is the simplest ex-
ample of an initial value problem involving a differential equation and an
initial value. The terminology naturally couples to situations in which x
represents time and u(a) = ua amounts to specifying u(x) at the initial
time x = a. Note that we often keep the initial value terminology even
if x represents a quantity different from time, and in case x represents a
space coordinate we may alternatively refer to (199.2) as a boundary value
problem with now u(a) = ua representing a given boundary value
We shall now prove that the initial value problem (199.2) has a unique

solution u(x) if the given function f(x) is Lipschitz continuous on [a, b]. This
is the Fundamental Theorem of Calculus, which stated in words says that
a Lipschitz continuous function has a (unique) primitive function. Leibniz
referred to the Fundamental Theorem as the “inverse method of tangents”
because he thought of the problem as trying to find a curve y = u(x) given
the slope u′(x) of its tangent at every point x.
We shall give a constructive proof of the Fundamental Theorem, which

not only proves that u : I → R exists, but also gives a way to compute
u(x) for any given x ∈ [a, b] to any desired accuracy by computing a sum
involving values of f(x). Thus the version of the Fundamental Theorem we
prove contains two results: (i) the existence of a primitive function and (ii)
a way to compute a primitive function. Of course, (i) is really a consequence
of (ii) since if we know how to compute a primitive function, we also know
that it exists. These results are analogous to defining

√
2 by constructing

a Cauchy sequence of approximate solutions of the equation x2 = 2 by
the Bisection algorithm. In the proof of the Fundamental Theorem we
shall also construct a Cauchy sequence of approximate solutions of the
differential equation (199.2) and show that the limit of the sequence is an
exact solution of (199.2).
We shall express the solution u(x) of (199.2) given by the Fundamental

Theorem in terms of the data f(x) and ua as follows:

u(x) =

∫ x

a

f(y) dy + ua for a ≤ x ≤ b, (199.3)

where we refer to ∫ x

a

f(y) dy

as the integral of f over the interval [a, x], a and x as the lower and upper
limits of integration respectively, f(y) as the integrand and y the integration
variable. This notation was introduced on October 29 1675 by Leibniz, who
thought of the integral sign

∫
as representing “summation” and dy as the

“increment” in the variable y. The notation of Leibniz is part of the big
success of Calculus in science and education, and (like a good cover of a
record) it gives a direct visual expression of the mathematical content of
the integral in very suggestive form that indicates both the construction of
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the integral and how to operate with integrals. Leibniz choice of notation
plays an important role in making Calculus into a “machine” which “works
by itself”.
We recapitulate: There are two basic problems in Calculus. The first

problem is to determine the derivative u′(x) of a given function u(x). We
have met this problem above and we know a set of rules that we can use to
attack this problem. The other problem is to find a function u(x) given its
derivative u′(x). In the first problem we assume knowledge of u(x) and we
want to find u′(x). In the second problem we assume knowledge of u′(x)
and we want to find u(x).
As an interesting aside, the proof of the Fundamental Theorem also shows

that the integral of a function over an interval may be interpreted as the
area underneath the graph of the function over the interval. This couples the
problem of finding a primitive function, or computing an integral, to that
of computing an area, that is to quadrature. We expand on this geometric
interpretation below.
Note that in (199.2), we require the differential equation u′(x) = f(x)

to be satisfied for x in the half-open interval (a, b] excluding the left end-
point x = a, where the differential equation is replaced by the specification
u(a) = ua. The proper motivation for this will become clear as we develop
the proof of the Fundamental Theorem. Of course, the derivative u′(b) at
the right end-point x = b, is taken to be the left-hand derivative of u. By
continuity, we will in fact have also u′(a) = f(a), with u′(a) the right-hand
derivative.

199.2 Primitive Function of f(x) = xm for
m = 0, 1, 2, ...

For some special functions f(x), we can immediately find primitive func-
tions u(x) satisfying u′(x) = f(x) for x in some interval. For example, if
f(x) = 1, then u(x) = x + c, with c a constant, for x ∈ R. Further, if
f(x) = x, then u(x) = x2/2 + c for x ∈ R. More generally, if f(x) = xm,
where m = 0, 1, 2, 3, .., then u(x) = xm+1/(m+ 1) + c. Using the notation
(199.3) for x ∈ R we write

∫ x

0

1 dy = x,

∫ x

0

y dy =
x2

2
, (199.4)

and more generally for m = 0, 1, 2, ...,

∫ x

0

ym dy =
xm+1

m+ 1
, (199.5)

because both right and left hand sides vanish for x = 0.
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199.3 Primitive Function of f(x) = xm for
m = −2,−3, ...

We recall that if v(x) = x−n, where n = 1, 2, 3, .., then v′(x) = −nx−(n+1),
where now x 6= 0. Thus a primitive function of f(x) = xm form = −2,−3, ..
is given by u(x) = xm+1/(m+1) for x > 0. We can state this fact as follows:
For m = −2,−3, ...,

∫ x

1

ym dy =
xm+1

m+ 1
− 1

m+ 1
for x > 1, (199.6)

where we start the integration arbitrarily at x = 1. The starting point
really does not matter as long as we avoid 0. We have to avoid 0 because
the function xm with m = −2,−3, ..,, tends to infinity as x tends to zero.
To compensate for starting at x = 1, we subtract the corresponding value
of xm+1/(m+1) at x = 1 from the right hand side. We can write analogous
formulas for 0 < x < 1 and x < 0.
Summing up, we see that the polynomials xm with m = 0, 1, 2, ..., have

the primitive functions xm+1/(m + 1), which again are polynomials. Fur-
ther, the rational functions xm for m = −2,−3, ..., have the primitive
functions xm+1/(m+ 1), which again are rational functions.

199.4 Primitive Function of f(x) = xr for r 6= −1

Given our success so far, it would be easy to get overconfident. But we
encounter a serious difficulty even with these early examples. Extending
the previous arguments to rational powers of x, since Dxs = sxs−1 for
s 6= 0 and x > 0, we have for r = s− 1 6= −1,

∫ x

1

yr dy =
xr+1

r + 1
− 1

r + 1
for x > 1. (199.7)

This formula breaks down for r = −1 and therefore we do not know a
primitive function of f(x) = xr with r = −1 and moreover we don’t even
know that one exists. In fact, it turns out that most of the time we cannot
solve the differential equation (199.2) in the sense of writing out u(x) in
terms of known functions. Being able to integrate simple rational functions
is special. The Fundamental Theorem of Calculus will give us a way past
this difficulty by providing the means to approximate the unknown solution
to any desired accuracy.
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199.5 A Quick Overview of the Progress So Far

Any function obtained by linear combinations, products, quotients and
compositions of functions of the form xr with rational power r 6= 0 and
x > 0, can be differentiated analytically. If u(x) is such a function, we thus
obtain an analytical formula for u′(x). If we now choose f(x) = u′(x), then
of course u(x) satisfies the differential equation u′(x) = f(x), so that we
can write recalling Leibniz notation:

u(x) =

∫ x

0

f(y) dy + u(0) for x ≥ 0,

which apparently states that the function u(x) is a primitive function of
its derivative f(x) = u′(x) (assuming that u(x) is defined for all x ≥ 0 so
that no denominator vanishes for x ≥ 0).

We give an example: Since D(1+x3)
1
3 = (1+x3)−

2
3x2 for x ∈ R, we can

write

(1 + x3)
1
3 =

∫ x

0

y2

(1 + y3)
2
3

dy + 1 for x ∈ R.

In other words, we know primitive functions u(x) satisfying the differ-
ential equation u′(x) = f(x) for x ∈ I, for any function f(x), which itself
is a derivative of some function v(x) so that f(x) = v′(x) for x ∈ I. The
relation between u(x) and v(x) is then

u(x) = v(x) + c for x ∈ I,

for some constant c.
On the other hand, if f(x) is an arbitrary function of another from, then

we may not be able to produce an analytical formula for the corresponding
primitive function u(x) very easily or not at all. The Fundamental The-
orem now tells us how to compute a primitive function of an arbitrary
Lipschitz continuous function f(x). We shall see that in particular, the
function f(x) = x−1 has a primitive function for x > 0 which is the famous
logarithm function log(x). The Fundamental Theorem therefore gives in
particular a constructive procedure for computing log(x) for x > 0.

199.6 A “Very Quick Proof” of the Fundamental
Theorem

We shall now enter into the proof of the Fundamental Theorem. It is a good
idea at this point to review the Chapter A very short course in Calculus. We
shall give a sequence of successively more complete versions of the proof of
the Fundamental Theorem with increasing precision and generality in each
step.
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The problem we are setting out to solve has the following form: given
a function f(x), find a function u(x) such that u′(x) = f(x) for all x
in an interval. In this problem, we start with f(x) and seek a function
u(x) such that u′(x) = f(x). However in the early “quick” versions of
the proofs, it will appear that we have turned the problem around by
starting with a given function u(x), differentiating u to get f(x) = u′(x),
and then recovering u(x) as a primitive function of f(x) = u′(x). This
naturally appears to be quite meaningless circular reasoning, and some
Calculus books completely fall into this trap. But we are doing this to
make some points clear. In the final proof, we will in fact start with f(x)
and construct a function u(x) that satisfies u′(x) = f(x) as desired!
Let now u(x) be differentiable on [a, b], let x ∈ [a, b], and let a = y0 <

y1 < ... < ym = x be a subdivision of [a, x] into subintervals [a, y1),
[y1, y2),...,[ym−1, x). By repeatedly subtracting and adding u(yj), we ob-
tain the following identity which we refer to as a telescoping sum with the
terms cancelling two by two:

u(x)− u(a) = u(ym)− u(y0)

= u(ym)− u(ym−1) + u(ym−1)− u(ym−2) + u(ym−2)

− · · ·+ u(y2)− u(y1) + u(y1)− u(y0). (199.8)

We can write this identity in the form

u(x)− u(a) =

m∑

i=1

u(yi)− u(yi−1)

yi − yi−1
(yi − yi−1), (199.9)

or as

u(x)− u(a) =

m∑

i=1

f(yi−1)(yi − yi−1), (199.10)

if we set

f(yi−1) =
u(yi)− u(yi−1)

yi − yi−1
for i = 1, ...,m. (199.11)

Recalling the interpretation of the derivative as the ratio of the change
in a function to a change in its input, we obtain our first version of the
Fundamental Theorem as the following analog of (199.10) and (199.11):

u(x)− u(a) =

∫ x

a

f(y) dy where f(y) = u′(y) for a < y < x.

In the integral notation, the sum
∑

corresponds to the integral sign
∫
, the

increments yi − yi−1 correspond to dy, the yi−1 to the integration variable

y, and the difference quotient u(yi)−u(yi−1)
yi−yi−1

corresponds to the derivative

u′(yi−1).
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This is the way that Leibniz was first led to the Fundamental Theorem
at the age of 20 (without having studied any Calculus at all) as presented
in his Art of Combinations from 1666.
Note that (199.8) expresses the idea that “the whole is equal to the sum of

the parts” with “the whole” being equal to u(x)−u(a) and the “parts” being
the differences (u(ym)− u(ym−1)), (u(ym−1)− u(ym−2)),...,(u(y2)− u(y1))
and (u(y1) − u(y0)). Compare to the discussion in Chapter A very short
Calculus course including Leibniz’ teen-age dream.

199.7 A “Quick Proof” of the Fundamental
Theorem

We now present a more precise version of the above “proof”. To exercise
flexibility in the notation, which is a useful ability, we change notation
slightly. Let u(x) be uniformly differentiable on [a, b], let x̄ ∈ [a, b], and let
a = x0 < x1 < ... < xm = x̄ be a partition of [a, x̄]. We thus change from
y to x and from x to x̄. With this notation x serves the role of a variable
and x̄ is a particular value of x. We recall the identity (199.9) in its new
dress:

u(x̄)− u(a) =
m∑

i=1

u(xi)− u(xi−1)

xi − xi−1
(xi − xi−1). (199.12)

By the uniform differentiability of u:

u(xi)− u(xi−1) = u′(xi−1)(xi − xi−1) + Eu(xi, xi−1),

where
|Eu(xi, xi−1)| ≤ Ku(xi − xi−1)

2, (199.13)

with Ku a constant, we can write the identity as follows:

u(x̄)− u(a) =
m∑

i=1

u′(xi−1)(xi − xi−1) +
m∑

i=1

Eu(xi, xi−1). (199.14)

Setting h equal to the largest increment xi − xi−1, so that xi − xi−1 ≤ h
for all i, we find

m∑

i=1

|Eu(xi, xi−1)| ≤
m∑

i=1

Ku(xi − xi−1)h = Ku(x̄− a)h.

The formula (199.14) can thus be written

u(x̄)− u(a) =

m∑

i=1

u′(xi−1)(xi − xi−1) + Eh, (199.15)
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where
|Eh| ≤ Ku(x̄− a)h. (199.16)

The Fundamental Theorem is the following analog of this formula:

u(x̄)− u(a) =

∫ x̄

a

u′(x) dx, (199.17)

with the sum
∑

corresponding to the integral sign
∫
, the increments xi −

xi−1 corresponding to dx, and xi corresponding to the integration variable
x. We see by (199.16) that the additional term Eh in (199.15) tends to zero
as the maximal increment h tends to zero. We thus expect (199.17) to be
a limit form of (199.15) as h tends to zero.

199.8 A Proof of the Fundamental Theorem of
Calculus

We now give a full proof of the Fundamental theorem. We assume for
simplicity that [a, b] = [0, 1] and the initial value u(0) = 0. We comment on
the general problem at the end of the proof. So the problem we consider is:
Given a Lipschitz continuous function f : [0, 1] → R, find a solution u(x)
of the initial value problem,

{
u′(x) = f(x) for 0 < x ≤ 1,

u(0) = 0.
(199.18)

We shall now construct an approximation to the solution u(x) and give
a meaning to the solution formula

u(x̄) =

∫ x̄

0

f(x) dx for 0 ≤ x̄ ≤ 1.

To this end, let n be a natural number and let 0 = x0 < x1 < ... < xN = 1
be the subdivision of the interval [0, 1] with nodes xni = ihn, i = 0, ..., N ,
where hn = 2−n and N = 2n. We thus divide the given interval [0, 1] into
subintervals Ini = (xni−1, x

n
i ] of equal lengths hn = 2−n, see Fig. 199.3.

0 1Ini
x

xn0 xn1 xn2 xni−1 xni xnN

FIGURE 199.3. Subintervals Ini of lengths hn = 2−n

The approximation to u(x) is a continuous piecewise linear function
Un(x) defined by the formula

Un(xnj ) =

j∑

i=1

f(xni−1)hn for j = 1, ..., N, (199.19)
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where Un(0) = 0. This formula gives the values of Un(x) at the nodes
x = xnj and we extend Un(x) linearly between the nodes to get the rest of
the values, see Fig. 199.4.

0 1Ini
x

xn0 xn1 xn2 xni−1 xni xnN

Un(x)

FIGURE 199.4. Piecewise linear function Un(x)

We see that Un(xnj ) is a sum of contributions f(xni−1)hn for all intervals
Ini with i ≤ j. By construction,

Un(xni ) = Un(xni−1) + f(xni−1)hn for i = 1, ..., N, (199.20)

so given the function f(x), we can compute the function Un(x) by using the
formula (199.20) successively with i = 1, 2, ..., N , where we first compute
Un(xn1 ) using the value Un(xn0 ) = Un(0) = 0, then Un(xn2 ) using the value
Un(xn1 ) and so on. We may alternatively use the resulting formula (199.19)
involving summation, which of course just amounts to computing the sum
by successively adding the terms of the sum.
The function Un(x) defined by (199.19) is thus a continuous piecewise

linear function, which is computable from the nodal values f(xni ), and we
shall now motivate why Un(x) should have a good chance of being an
approximation of a function u(x) satisfying (199.18). If u(x) is uniformly
differentiable on [0, 1], then

u(xni ) = u(xni−1) + u′(xni−1)hn + Eu(x
n
i , x

n
i−1) for i = 1, ..., N, (199.21)

where |Eu(xni , xni−1)| ≤ Ku(x
n
i − xni−1)

2 = Kuh
2
n, and consequently

u(xnj ) =

j∑

i=1

u′(xni−1)hn + Eh for j = 1, ..., N, (199.22)

where |Eh| ≤ Kuhn, since
∑j
i=1 hn = jhn ≤ 1. Assuming that u′(x) = f(x)

for 0 < x ≤ 1, the connection between (199.20) and (199.21) and (199.19)
and (199.22) becomes clear considering that the terms Eu(x

n
i , x

n
i−1) and

Eh are small. We thus expect Un(xnj ) to be an approximation of u(xnj )
at the nodes xnj , and therefore Un(x) should be an increasingly accurate
approximation of u(x) as n increases and hn = 2−n decreases.
To make this approximation idea precise, we first study the convergence

of the functions Un(x) as n tends to infinity. To do this, we fix x̄ ∈ [0, 1]
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and consider the sequence of numbers {Un(x̄)}∞n=1. We want to prove that
this is a Cauchy sequence and thus we want to estimate |Un(x̄) − Um(x̄)|
for m > n.
We begin by estimating the difference |Un(x̄)−Un+1(x̄)| for two consec-

utive indices n and m = n + 1. Recall that we used this approach in the
proof of the Contraction Mapping theorem. We have

x

x2i−2n+1

y = f(x)

xni−1 xni

xn+1
2i−1 xn+1

2i

area |f(xni−1)− f(xn+1
2i−1|hn+1

FIGURE 199.5. The difference between Un+1(x) and Un(x)

Un(xni ) = Un(xni−1) + f(xni−1)hn,

and since xn+1
2i = xni and xn+1

2i−2 = xni−1,

Un+1(xni ) = Un+1(xn+1
2i ) = Un+1(xn+1

2i−1) + f(xn+1
2i−1)hn+1

= Un+1(xni−1) + f(xn+1
2i−2)hn+1 + f(xn+1

2i−1)hn+1.

Subtracting and setting eni = Un(xni )− Un+1(xni ), we have

eni = eni−1 + (f(xni−1)hn − f(xn+1
2i−2)hn+1 − f(xn+1

2i−1)hn+1),

that is, since hn+1 = 1
2hn,

eni − eni−1 = (f(xni−1)− f(xn+1
2i−1))hn+1. (199.23)

Assuming that x̄ = xnj and using (199.23) and the facts that en0 = 0 and

|f(xni−1)− f(xn+1
2i−1)| ≤ Lfhn+1, we get

|Un(x̄)− Un+1(x̄)| = |enj | = |
j∑

i=1

(eni − eni−1)|

≤
j∑

i=1

|eni − eni−1| =
j∑

i=1

|f(xni−1)− f(xn+1
2i−1)|hn+1

≤
j∑

i=1

Lfh
2
n+1 =

1

4
Lfhn

j∑

i=1

hn =
1

4
Lf x̄hn,

(199.24)
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where we also used the fact that
∑j

i=1 hn = x̄. Iterating this estimate and
using the formula for a geometric sum, we get

|Un(x̄)− Um(x̄)| ≤ 1

4
Lf x̄

m−1∑

k=n

hk =
1

4
Lf x̄(2

−n + ...+ 2−m+1)

=
1

4
Lf x̄2

−n 1− 2−m+n

1− 2−1
≤ 1

4
Lf x̄2

−n2 =
1

2
Lf x̄hn,

that is

|Un(x̄)− Um(x̄)| ≤ 1

2
Lf x̄hn. (199.25)

This estimate shows that {Un(x̄)}∞n=1 is a Cauchy sequence and thus
converges to a real number. We decide, following Leibniz, to denote this
real number by ∫ x̄

0

f(x) dx,

which thus is the limit of

Un(x̄) =

j∑

i=1

f(xni−1)hn

as n tends to infinity, where x̄ = xnj . In other words,

∫ x̄

0

f(x) dx = lim
n→∞

j∑

i=1

f(xni−1)hn.

Letting m tend to infinity in (199.25), we can express this relation in quan-
titative form as follows:

∣∣∣
∫ x̄

0

f(x) dx −
j∑

i=1

f(xni−1)hn

∣∣∣ ≤ 1

2
Lf x̄hn.

At this point, we have defined the integral
∫ x̄
0
f(x) dx for a given Lipschitz

continuous function f(x) on [0, 1] and a given x̄ ∈ [0, 1], as the limit of the
sequence {Un(x̄)}∞n=1 as n tends to infinity. We can thus define a function
u : [0, 1] → R by the formula

u(x̄) =

∫ x̄

0

f(x) dx for x̄ ∈ [0, 1]. (199.26)

We now proceed to check that the function u(x) defined in this way
indeed satisfies the differential equation u′(x) = f(x). We proceed in two
steps. First we show that the function u(x) is Lipschitz continuous on [0, 1]
and then we show that u′(x) = f(x).
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Before plunging into these proofs, we need to address a subtle point.
Looking back at the construction of u(x), we see that we have defined u(x̄)
for x̄ of the form x̄ = xnj , where j = 0, 1, ..., 2n, n = 1, 2, ...,. These are the
rational numbers with finite decimal expansion in the base of 2, and they
are dense in the sense that for any real number x ∈ [0, 1] and any ǫ > 0,
there is a point of the form xnj so that |x− xnj | ≤ ǫ. Recalling the Chapter
Real numbers, we understand that if we can show that u(x) is Lipschitz
continuous on the dense set of numbers of the form xnj , then we can extend
u(x) as a Lipschitz function to the set of real numbers [0, 1].
We thus assume that x̄ = xnj and ȳ = xnk with j > k, and we note that

Un(x̄)− Un(ȳ) =

j∑

i=1

f(xni−1)hn −
k∑

i=1

f(xni−1)hn =

j∑

i=k+1

f(xni−1)hn

and using the triangle inequality

|Un(x̄)− Un(ȳ)| ≤
j∑

i=k+1

|f(xni−1)|hn ≤Mf

j∑

i=k+1

hn =Mf |x̄− ȳ|,

where Mf is a positive constant such that |f(x)| ≤ Mf for all x ∈ [0, 1].
Letting n tend to infinity, we see that

u(x̄)− u(ȳ) =

∫ x̄

0

f(x) dx−
∫ ȳ

0

f(x) dx =

∫ x̄

ȳ

f(x) dx, (199.27)

where of course,

∫ x̄

ȳ

f(x) dx = lim
n→∞

j∑

i=k+1

f(xni−1)hn,

and also

|u(x̄)− u(ȳ)| ≤ |
∫ x̄

ȳ

f(x) dx| ≤
∫ x̄

ȳ

|f(x)| dx ≤Mf |x̄− ȳ|, (199.28)

where the second inequality is the so-called triangle inequality for integrals
to be proved in the next section. We thus have

|u(x̄)− u(ȳ)| ≤Mf |x̄− ȳ|, (199.29)

which proves the Lipschitz continuity of u(x).
We now prove that the function u(x) defined for x ∈ [0, 1] by the formula

u(x) =

∫ x

a

f(y) dy,
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where f : [0, 1] → R is Lipschitz continuous, satisfies the differential equa-
tion

u′(x) = f(x) for x ∈ [0, 1],

that is
d

dx

∫ x

0

f(y) dy = f(x). (199.30)

To this end, we choose x, x̄ ∈ [0, 1] with x ≥ x̄ and use (199.27) and (199.28)
to see that

u(x)− u(x̄) =

∫ x

0

f(z)dz −
∫ x̄

0

f(y)dy =

∫ x

x̄

f(y)dy,

and

|u(x)− u(x̄)− f(x̄)(x − x̄)| =
∣∣∣
∫ x

x̄

f(y) dy − f(x̄)(x− x̄)
∣∣∣

=
∣∣∣
∫ x

x̄

(f(y)− f(x̄)) dy
∣∣∣ ≤

∫ x

x̄

|f(y)− f(x̄)| dy

≤
∫ x

x̄

Lf |y − x̄| dy =
1

2
Lf (x− x̄)2,

where we again used the triangle inequality for integrals. This proves that
u is uniformly differentiable on [0, 1], and that Ku ≤ 1

2Lf .
Finally to prove uniqueness, we recall from (199.15) and (199.16) that

a function u : [0, 1] → R with Lipschitz continuous derivative u′(x) and
u(0) = 0, can be represented as

u(x̄) =

m∑

i=1

u′(xi−1)(xi − xi−1) + Eh,

where
|Eh| ≤ Ku(x̄− a)h.

Letting n tend to infinity, we find that

u(x̄) =

∫ x̄

0

u′(x) dx for x̄ ∈ [0, 1], (199.31)

which expresses the fact that a uniformly differentiable function with Lip-
schitz continuous derivative is the integral of its derivative. Suppose now
that u(x) and v(x) are two uniformly differentiable functions on [0, 1] sat-
isfying u′(x) = f(x), and v′(x) = f(x) for 0 < x ≤ 1, and u(0) = u0,
v(0) = u0, where f : [0, 1] → R is Lipschitz continuous. Then the difference
w(x) = u(x)−v(x) is a uniformly differentiable function on [0, 1] satisfying
w′(x) = 0 for a < x ≤ b and w(0) = 0. But we just showed that

w(x) =

∫ x

a

w′(y) dy,
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and thus w(x) = 0 for x ∈ [0, 1]. This proves that u(x) = v(x) for x ∈ [0, 1]
and the uniqueness follows.
Recall that we proved the Fundamental Theorem for special circum-

stances, namely on the interval [0, 1] with initial value 0. We can directly
generalize the construction above by replacing [0, 1] by an arbitrary bound-
ed interval [a, b], replacing hn by hn = 2−n(b − a), and assuming instead
of u(0) = 0 that u(a) = ua, where ua is a given real number. We have now
proved the formidable Fundamental Theorem of Calculus.

Theorem 199.1 (Fundamental Theorem of Calculus) If f : [a, b] →
R is Lipschitz continuous, then there is a unique uniformly differentiable
function u : [a, b] → R, which solves the initial value problem

{
u′(x) = f(x) for x ∈ (a, b],

u(a) = ua,
(199.32)

where ua ∈ R is given. The function u : [a, b] → R can be expressed as

u(x̄) = ua +

∫ x̄

a

f(x) dx for x̄ ∈ [a, b],

where ∫ x̄

0

f(x) dx = lim
n→∞

j∑

i=1

f(xni−1)hn,

with x̄ = xnj , x
n
i = a+ihn, hn = 2−n(b−a). More precisely, if the Lipschitz

constant of f : [a, b] → R is Lf , then for n = 1, 2, ...,

∣∣∣
∫ x̄

a

f(x) dx −
j∑

i=1

f(xni−1)hn

∣∣∣ ≤ 1

2
(x̄− a)Lfhn. (199.33)

Furthermore if |f(x)| ≤Mf for x ∈ [a, b], then u(x) is Lipschitz continuous
with Lipschitz constant Mf and Ku ≤ 1

2Lf , where Ku is the constant of
uniform differentiability of u : [a, b] → R.

199.9 Comments on the Notation

We can change the names of the variables and rewrite (199.26) as

u(x) =

∫ x

0

f(y) dy. (199.34)

We will often use the Fundamental Theorem in the form
∫ b

a

u′(x) dx = u(b)− u(a), (199.35)
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which states that the integral
∫ b
a f(x) dx is equal to the difference u(b) −

u(a), where u(x) is a primitive function of f(x). We will sometimes use the
notation [u(x)]x=bx=a = u(b)−u(a) or shorter [u(x)]ba = u(b)−u(a), and write

∫ b

a

u′(x) dx =
[
u(x)

]x=b
x=a

=
[
u(x)

]b
a
.

Sometimes the notation ∫
f(x) dx,

without limits of integration, is used to denote a primitive function of f(x).
With this notation we would have for example

∫
dx = x+ C,

∫
x dx =

x2

2
+ C,

∫
x2 dx =

x3

3
+ C,

where C is a constant. We will not use this notation in this book. Note that
the formula x =

∫
dx may be viewed to express that “the whole is equal to

the sum of the parts”.

199.10 Alternative Computational Methods

Note that we might as well compute Un(xni ) from knowledge of Un(xni−1),
using the formula

Un(xni ) = Un(xni−1) + f(xni )hn, (199.36)

obtained by replacing f(xni−1) by f(x
n
i ), or

Un(xni ) = Un(xni−1) +
1

2
(f(xni−1) + f(xni ))hn (199.37)

using the mean value 1
2 (f(x

n
i−1)+f(x

n
i )). These alternatives may bring cer-

tain advantages, and we will return to them in Chapter Numerical quadra-
ture. The proof of the Fundamental Theorem is basically the same with
these variants and by uniqueness all the alternative constructions give the
same result.

199.11 The Cyclist’s Speedometer

An example of a physical situation modeled by the initial value problem
(199.2) is a cyclist biking along a straight line with u(x) representing the
position at time x, u′(x) being the speed at time x and specifying the po-
sition u(a) = ua at the initial time x = a. Solving the differential equation
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(199.2) amounts to determining the position u(x) of the cyclist at time
a < x ≤ b, after specifying the position at the initial time x = a and
knowing the speed f(x) at each time x. A standard bicycle speedometer
may be viewed to solve this problem, viewing the speedometer as a device
which measures the instantaneous speed f(x), and then outputs the total
traveled distance u(x). Or is this a good example? Isn’t it rather so that
the speedometer measures the traveled distance and then reports the mo-
mentary (average) speed? To answer this question would seem to require a
more precise study of how a speedometer actually works, and we urge the
reader to investigate this problem.

199.12 Geometrical Interpretation of the Integral

In this section, we interpret the proof of the Fundamental Theorem as
saying that the integral of a function is the area underneath the graph of
the function. More precisely, the solution u(x̄) given by (199.3) is equal to
the area under the graph of the function f(x) on the interval [a, x̄], see
Fig. 199.6. For the purpose of this discussion, it is natural to assume that
f(x) ≥ 0.

u(x)−
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x

y

x̄

y = f(x)

FIGURE 199.6. Area under y = f(x).

Of course, we also have to explain what we mean by the area under
the graph of the function f(x) on the interval [a, x̄]. To do this, we first
interpret the approximation Un(x̄) of u(x̄) as an area. We recall from the
previous section that

Un(xnj ) =

j∑

i=1

f(xni−1)hn,
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where xnj = x̄. Now, we can view f(xni−1)hn as the area of a rectangle with
base hn and height f(xni−1), see Fig. 199.7.

x

xn0 xn1 xn2 xni−1 xni xnj

y = f(x)

area f(xni−1)hn

FIGURE 199.7. Area f(xni−1)hn of rectangle.

We can thus interpret the sum

j∑

i=1

f(xni−1)hn

as the area of a collection of rectangles which form a staircase approxima-
tion of f(x), as displayed in Fig. 199.8. The sum is also referred to as a
Riemann sum.

x

xn0 xn1 xn2 xni−1 xni xnj

y = f(x)

area
∑j
i=1 f(x

n
i−1)hn

FIGURE 199.8. Area
∑j
i=1 f(x

n
i−1)hn under a staircase approximation of f(x).

Intuitively, the area under the staircase approximation of f(x) on [a, x̄],
which is Un(x̄), will approach the area under the graph of f(x) on [a, x̄] as n
tends to infinity and hn = 2−n(b−a) tends to zero. Since limn→∞ Un(x̄) =
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u(x̄), this leads us to define the area under f(x) on the interval [0, x̄] as
the limit u(x̄).
Note the logic used here: The value Un(x̄) represents the area under a

staircase approximation of f(x) on [a, x̄]. We know that Un(x̄) tends to
u(x̄) as n tends to infinity, and on intuitive grounds we feel that the limit
of the area under the staircase should be equal to the area under the graph
of f(x) on [a, x̄]. We then simply define the area under f(x) on [a, x̄] to
be u(x̄). By definition we thus interpret the integral of f(x) on [0, x̄] as
the area under the graph of the function f(x) on [a, x̄]. Note that this is
an interpretation. It is not a good idea to say the integral is an area. This
is because the integral can represent many things, such as a distance, a
quantity of money, a weight, or some thing else. If we interpret the integral
as an area, then we also interpret a distance, a quantity of money, a weight,
or some thing else, as an area. We understand that we cannot take this
interpretation to be literally true, because a distance cannot be equal to
an area, but it can be interpreted as an area. We hope the reader gets the
(subtle) difference.
As an example, we compute the area A under the graph of the function

f(x) = x2 between x = 0 and x = 1 as follows

A =

∫ 1

0

x2 dx = [
x3

3
]x=1
x=0 =

1

3
.

This is an example of the magic of Calculus, behind its enormous success.
We were able to compute an area, which in principle is the sum of very
many very small pieces, without actually having to do the tedious and
laborious computation of the sum. We just found a primitive function u(x)
of x2 and computed A = u(3)−u(0) without any effort at all. Of course we
understand the telescoping sum behind this illusion, but if you don’t see
this, you must be impressed, right? To get a perspective and close a circle,
we recall the material in Leibniz’ teen-age dream in Chapter A very short
course in Calculus.

199.13 The Integral as a Limit of Riemann Sums

The Fundamental Theorem of Calculus states that the integral of f(x) over
the interval [a, b] is equal to a limit of Riemann sums:

∫ b

a

f(x) dx = lim
n→∞

2n∑

i=1

f(xni−1)hn,

where xni = a+ ihn, hn = 2−n(b − a), or more precisely, for n = 1, 2, ...,

∣∣∣
∫ b

a

f(x) dx−
2n∑

i=1

f(xni−1)hn

∣∣∣ ≤ 1

2
(b − a)Lfhn,
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where Lf is the Lipschitz constant of f . We can thus define the integral∫ b
a f(x) dx as a limit of Riemann sums without invoking the underlying dif-
ferential equation u′(x) = f(x). This approach is useful in defining integrals
of functions of several variables (so-called multiple integrals like double in-
tegrals and triple integrals), because in these generalizations there is no
underlying differential equation.
In our formulation of the Fundamental Theorem of Calculus, we em-

phasized the coupling of the integral
∫ x
a f(y) dy to the related differential

equation u′(x) = f(x), but as we just said, we could put this coupling in
the back-ground, and define the integral as a limit of Riemann sums with-
out invoking the underlying differential equation. This connects with the
idea that the integral of a function can be interpreted as the area under
the graph of the function, and will find a natural extension to multiple
integrals in Chapters Double integrals and Multiple integrals.
Defining the integral as a limit of Riemann sums poses a question of

uniqueness: since there are different ways of constructing Riemann sums
one may ask if all limits will be the same. We will return to this question in
Chapter Numerical quadrature and (of course) give an affirmative answer.

199.14 An Analog Integrator

James Thompson, brother of Lord Kelvin, constructed in 1876 an ana-
log mechanical integrator based on a rotating disc coupled to a cylinder
through another orthogonal disc adjustable along the radius of the first
disc, see Fig. 199.9. The idea was to get around the difficulties of realiz-
ing the Analytical Engine, the mechanical digital computer envisioned by
Babbage in the 1830s. Lord Kelvin tried to use a system of such analog in-
tegrators to compute different problems of practical interest including that
of tide prediction, but met serious problems to reach sufficient accuracy.
Similar ideas ideas were taken up by Vannevar Bush at MIT Massachus-
setts Institute of Technology in the 1930s, who constructed a Differential
Analyzer consisting of a collection of analog integrators, which was pro-
grammable to solve differential equations, and was used during the Second
World War for computing trajectories of projectiles. A decade later the dig-
ital computer took over the scene, and the battle between arithmetic and
geometry initiated between the Pythagorean and Euclidean schools more
than 2000 years ago, had finally come an end.
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FIGURE 199.9. The principle of an Analog Integrator

Chapter 199 Problems

199.1. Determine primitive functions on R to (a) (1 + x2)−22x, (b) (1 + x)−99,
(c) (1 + (1 + x3)2)−22(1 + x3)3x2.

199.2. Compute the area under the graph of the function (1 + x)−2 between
x = 1 and x = 2.

199.3. A car travels along the x-axis with speed v(t) = t
3
2 starting at x = 0 for

t = 0. Compute the position of the car for t = 10.

199.4. Carry out the proof of the Fundamental Theorem for the variations
(199.36) and (199.37).

199.5. Construct amechanical integrator solving the differential equation u′(x) =
f(x) for x > 0, u(0) = 0 through an analog mechanical devise. Hint: Get hold of
a rotating cone and a string.

199.6. Explain the principle behind Thompson’s analog integrator.

199.7. Construct a mechanical speedometer reporting the speed and traveled
distance. Hint: Check the construction of the speedometer of your bike.

199.8. Find the solutions of the initial value problem u′(x) = f(x) for x > 0,
u(0) = 1, in the following cases: (a) f(x) = 0, (b) f(x) = 1, (c) f(x) = xr, r > 0.

199.9. Find the solution to the second order initial value problem u′′(x) = f(x)
for x > 0, u(0) = u′(0) = 1, in the following cases: (a) f(x) = 0, (b) f(x) = 1,
(c) f(x) = xr, r > 0. Explain why two initial conditions are specified.
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199.10. Solve initial value problem u′(x) = f(x) for x ∈ (0, 2], u(0) = 1, where
f(x) = 1 for x ∈ [0, 1) and f(x) = 2 for x ∈ [1, 2]. Draw a graph of the solution
and calculate u(3/2). Show that f(x) is not Lipschitz continuous on [0, 2] and
determine if u(x) is Lipschitz continuous on [0, 2].

199.11. The time it takes for a light beam to travel through an object is t = d
c/n

,
where c is the speed of light in vacuum, n is the refractive index of the object and
d is its thickness. How long does it take for a light beam to travel the shortest
way through the center of a glass of water, if the refractive index of the water
varies as a certain function nw(r) with the distance r from the center of glass,
the radius of the glass is R and the thickness and that the walls have constant
thickness h and constant refractive index equal to ng .

199.12. Assume that f and g are Lipschitz continuous on [0, 1]. Show that∫ 1

0
|f(x) − g(x)|dx = 0 if and only if f = g on [0, 1]. Does this also hold if∫ 1

0
|f(x)− g(x)|dx is replaced by

∫ 1

0
(f(x)− g(x))dx?

FIGURE 199.10. David Hilbert (1862-1943) at the age of 24: “A mathematical
theory is not to be considered complete until you have made it so clear that you
can explain it to the first man whom you meet on the street”.
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200
Properties of the Integral

For more than two thousand years some familiarity with mathemat-
ics has been regarded as an indispensable part of the intellectual
equipment of every cultured person. Today the traditional place of
mathematics in education is in great danger. Unfortunately, profes-
sional representatives of mathematics share the responsibility. The
teaching of mathematics has sometimes degenerated into empty drill
in problem solving, which may develop formal ability but does not
lead to real understanding or to greater intellectual independence.....
Teachers, students and the general public demand constructive re-
form, not resignation along the lines of least resistance. (Richard
Courant, in Preface to What is Mathematics?, 1941)

200.1 Introduction

In this chapter, we gather together various useful properties of the integral.
We may prove these properties in two ways: (i) by using the connection be-
tween the integral and the derivative and using properties of the derivative,
or (ii) using that the integral is the limit of Riemann sum approximations,
that is, using the area interpretation of the integral. We indicate both types
of proofs to help the reader getting familiar with different aspects of the
integral, and leave some of the work to the problem section.
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Throughout the chapter we assume that f(x) and g(x) are Lipschitz
continuous on the interval [a, b], and we assume that

N∑

i=1

f(xni−1)hn and

N∑

i=1

g(xni−1)hn

are Riemann sum approximations of
∫ b
a f(x) dx and

∫ b
a g(x) dx with step

length hn = 2−n(b − a) and xni = a + ihn, i = 0, 1, ..., N = 2n, as in the
previous chapter.

200.2 Reversing the Order of Upper and Lower
Limits

So far we have defined the integral
∫ b
a f(x) dx assuming that a ≤ b, that is

that the upper limit of integration b is larger than (or equal to) the lower
limit a. It is useful to extend the definition to cases with a > b by defining

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx. (200.1)

In other words, we decide that switching the limits of integration should
change the sign of an integral. As a motivation we may consider the case
f(x) = 1 and a > b, and recall that

∫ a
b
1 dx = a − b > 0. Using the

same formula with a and b interchanged, we would have
∫ b
a 1 dx = b− a =

−(a − b) = −
∫ a
b 1 dx, which motivates the sign change under the switch

of upper and lower limits. The motivation carries over to the general case
using the Riemann sum approximation. Notice that here we do not prove
anything, we simply introduce a definition. Of course we seek a definition
which is natural, easy to remember and which allows efficient symbolic
computation. The definition we chose fulfills these conditions.

Example 200.1. We have

∫ 1

2

2x dx = −
∫ 2

1

2x dx = −
[
x2
]2
1
= −(4− 1) = −3.

200.3 The Whole Is Equal to the Sum of the Parts

We shall now prove that if a ≤ c ≤ b, then

∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx. (200.2)
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One way to do this is to use the area interpretation of the integral and
simply notice that the area under f(x) from a to b should be equal to the
sum of the area under f(x) from a to c and the area under f(x) from c to
b.
We can also give an alternative proof using that that

∫ b
a f(x) dx = u(b),

where u(x) satisfies u′(x) = f(x) for a ≤ x ≤ b, and u(a) = 0. Letting
now w(x) satisfy w′(x) = f(x) for c ≤ x ≤ b, and w(c) = u(c), we have by
uniqueness that w(x) = u(x) for c ≤ x ≤ b, and thus

u(b) = w(b) = u(c) +

∫ b

c

f(y) dy =

∫ c

a

f(y) dy +

∫ b

c

f(y) dy,

which is the desired result.

Example 200.2. We have
∫ 2

0

x dx =

∫ 1

0

x dx+

∫ 2

1

x dx,

which expresses the identity

2 =

(
1

2

)
+

(
2− 1

2

)
.

Note that by the definition (200.1), (200.2) actually holds for any a, b
and c.

200.4 Integrating Piecewise Lipschitz Continuous
Functions

A functions is said to be piecewise Lipschitz continuous on a finite interval
[a, b] if [a, b] can be divided up into a finite number of sub-intervals on
which the function is Lipschitz continuous, allowing the function to have
jumps at the ends of the subintervals, see Fig. 200.1.
We now extend (in the obvious way) the definition of the integral∫ b

a f(x) dx to a piecewise Lipschitz continuous function f(x) on an interval
[a, b] starting with the case of two subintervals with thus f(x) Lipschitz
continuous separately on two adjoining intervals [a, c] and [c, b], where a ≤
c ≤ b. We define

∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx,

which obviously fits with (200.2). The extension is analogous for several
subintervals with the integral over the whole interval being the sum of the
integrals over the subintervals.
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x

y

y = f(x)

FIGURE 200.1. A piecewise Lipschitz continuous function.

200.5 Linearity

We shall now prove the following property of linearity of the integral: If α
and β are real numbers then,

∫ b

a

(αf(x) + βg(x)) dx = α

∫ b

a

f(x) dx + β

∫ b

a

g(x) dx. (200.3)

With α = β = 1 this property expresses that the area (from a to b) under-
neath the sum of two functions is equal to the sum of the areas underneath
each function. Further, with g(x) = 0 and α = 2 say, the property expresses
that the area under the function 2f(x) is equal to 2 times the area under
the function f(x).
More generally, the linearity of the integral is inherited from the linearity

of the Riemann sum approximation, which we may express as

N∑

i=1

(αf(xni−1)+ βg(xni−1)hn = α

N∑

i=1

f(xni−1)hn+ β

N∑

i=1

g(xni−1)hn, (200.4)

and which follows from basic rules for computing with real numbers.
A differential equation proof goes as follows: Define

u(x) =

∫ x

a

f(y) dy and v(x) =

∫ x

a

g(y) dy, (200.5)

that is, u(x) is a primitive function of f(x) satisfying u′(x) = f(x) for
a < x ≤ b and u(a) = 0, and v(x) is a primitive function of g(x) satisfying
v′(x) = g(x) for a < x ≤ b and v(a) = 0. Now, the function w(x) =
αu(x) + βv(x) is a primitive function of the function αf(x) + βg(x), since
by the linearity of the derivative, w′(x) = αu′(x)+βv′(x) = αf(x)+βg(x),
and w(a) = αu(a) + βv(a) = 0. Thus, the left hand side of (200.3) is equal
to w(b), and since w(b) = αu(b) + βv(b), the desired equality follows from
setting x = b in (200.5).
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Example 200.3. We have

∫ b

0

(2x+ 3x2) dx = 2

∫ b

0

x dx+ 3

∫ b

0

x2 dx = 2
b2

2
+ 3

b3

3
= b2 + b3.

200.6 Monotonicity

The monotonicity property of the integral states that if f(x) ≥ g(x) for
a ≤ x ≤ b, then ∫ b

a

f(x) dx ≥
∫ b

a

g(x) dx. (200.6)

This is the same as stating that if f(x) ≥ 0 for x ∈ [a, b], then

∫ b

a

f(x) dx ≥ 0, (200.7)

which follows from the fact that all Riemann sum approximations∑j
i=1 f(x

n
i−1)hn of

∫ b
a
f(x) dx are all non-negative if f(x) ≥ 0 for x ∈ [a, b].

200.7 The Triangle Inequality for Integrals

We shall now prove the following triangle inequality for integrals:

∣∣∣
∫ b

a

f(x) dx
∣∣∣ ≤

∫ b

a

|f(x)| dx, (200.8)

stating that moving the absolute value inside the integral increases the
value (or leaves the value unchanged). This property follows from applying
the usual triangle inequality to Riemann sum approximations to get

∣∣∣
N∑

i=1

f(xni−1)hn

∣∣∣ ≤
N∑

i=1

∣∣∣f(xni−1)
∣∣∣hn

and then passing to the limit. Evidently there may be cancellations on the
left hand side if f(x) has changes sign, while on the right hand side we
always add nonnegative contributions, making the right hand side at least
as big as the left hand side.
Another proof uses the monotonicity as follows: Apply (200.7) to the

function |f | − f ≥ 0 to obtain

∫ x̄

a

f(x) dx ≤
∫ x̄

a

|f(x)| dx.
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Replacing f by the function −f we obtain

−
∫ x̄

a

f(x) dx =

∫ x̄

a

(−f(x)) dx ≤
∫ x̄

a

| − f(x)| dx =

∫ x̄

a

|f(x)| dx,

which proves the desired result.

200.8 Differentiation and Integration Are Inverse
Operations

The Fundamental Theorem says that integration and differentiation are in-
verse operations in the sense that first integrating and then differentiating,
or first differentiating and then integrating, gives the net result of doing
nothing! We make this clear by repeating a part of the proof of the Funda-
mental Theorem to prove that if f : [a, b] → R is Lipschitz continuous then
for x ∈ [a, b],

d

dx

∫ x

a

f(y) dy = f(x). (200.9)

In other words, integrating a function f(x) and then differentiating the
primitive function, gives back the function f(x). Surprise? We illustrate in
Fig. 200.2. To properly understand the equality (200.9), it is important to

y

x
x

x̄

u(x̄)

y = f(x)

u(x)− u(x̄) = f(x̄)(x− x̄) + E

FIGURE 200.2. The derivative of
∫ x
0
f(y) dy at x = x̄ is f(x̄): |E| ≤ 1

2
Lf |x− x̄|2.

realize that
∫ x
a
f(y) dy is a function of x and thus depends on x. The area

under the function f from a to x, of course depends on the upper limit x.
We may express (200.9) in words as follows: Differentiating an integral

with respect to the upper limit of integration gives the value of the inte-
grand at the upper limit of integration.
To prove (200.9) we now choose x and x̄ in [a, b] with x ≥ x̄, and use

(200.2) to see that

u(x)− u(x̄) =

∫ x

a

f(z) dz −
∫ x̄

a

f(y)dy =

∫ x

x̄

f(y) dy
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so that

|u(x)− u(x̄)− f(x̄)(x − x̄)| =
∣∣∣
∫ x

x̄

f(y) dy − f(x̄)(x− x̄)
∣∣∣

=
∣∣∣
∫ x

x̄

(f(y)− f(x̄)) dy
∣∣∣

≤
∫ x

x̄

|f(y)− f(x̄)| dy

≤
∫ x

x̄

Lf |y − x̄| dy =
1

2
Lf(x − x̄)2.

This proves that u(x) is uniformly differentiable on [a, b] with derivative
u′(x) = f(x) and constant Ku ≤ 1

2Lf .
We also note that (200.1) implies

d

dx

∫ a

x

f(y) dy = −f(x). (200.10)

which we may express in words as: Differentiating an integral with respect
to the lower limit of integration gives minus the value of the integrand at
the lower limit of integration.

Example 200.4. We have

d

dx

∫ x

0

1

1 + y2
dy =

1

1 + x2
.

Example 200.5. Note that we can combine (199.30) with the Chain
Rule:

d

dx

∫ x3

0

1

1 + y2
dy =

1

1 + (x3)2
d

dx

(
x3
)
=

3x2

1 + x6
.

200.9 Change of Variables or Substitution

We recall that the Chain rule tells us how to differentiate the composition
of two functions. The analogous property of the integral is known as the
change of variables, or substitution formula and plays an important role.
For example, it can be used to compute many integrals analytically. The
idea is that an integral may be easier to compute analytically if we change
scales in the independent variable.
Let now g : [a, b] → I, be uniformly differentiable on an interval [a, b],

where I is an interval, and let f : I → R be Lipschitz continuous. Typically,
g is strictly increasing (or decreasing) and maps [a, b] onto I, so that g :
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[a, b] → I corresponds to a change of scale, but more general situations are
allowed. The change of variables formula reads

∫ x

a

f(g(y))g′(y) dy =

∫ g(x)

g(a)

f(z) dz for x ∈ [a, b]. (200.11)

This is also called substitution since the left hand side L(x) is formally
obtained by in the right hand hand sideH(x) setting z = g(y) and replacing
dz by g′(y) dy motivated by the relation

dz

dy
= g′(y),

and noting that as y runs from a to x then z runs from g(a) to g(x).
To verify (200.11), we now prove that H ′(x) = L′(x) and use the fact

that H(a) = L(a) = 0 and the uniqueness of the integral. The Chain rule
and (199.30) imply that

H ′(x) = f(g(x)) g′(x).

Further,
L′(x) = f(g(x)) g′(x),

which thus proves the desired equality.
We now give a two examples. We will meet many more examples below.

Example 200.6. To integrate

∫ 2

0

(1 + y2)−22y dy

we make the observation that

d

dy
(1 + y2) = 2y.

Thus, if we set z = g(y) = 1 + y2, then applying (200.11) noting that
g(0) = 1 and g(2) = 5 and formally dz = 2ydy, we have that

∫ 2

0

(1 + y2)−22y dy =

∫ 2

0

(g(y))−2g′(y) dy =

∫ 5

1

z−2 dz.

Now, the right hand integral can easily be evaluated:

∫ 5

1

z−2 dz = [−z−1]z=5
z=1 = −

(1
5
− 1
)
,

and thus ∫ 2

0

(1 + y2)−22y dy =
4

5
.
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Example 200.7. We have setting y = g(x) = 1 + x4 noting that then
formally dy = g′(x)dx = 4x3dx and g(0) = 1 and g(1) = 2, to get

∫ 1

0

(1 + x4)−1/2x3 dx =
1

4

∫ 1

0

(g(x))−1/2g′(x) dx =
1

4

∫ 2

1

y−1/2 dy

=
1

2
[y1/2]21 =

√
2− 1

2
.

200.10 Integration by Parts

We recall that the Product rule is a basic property of the derivative, showing
how to compute the derivative of a product of two functions. The corre-
sponding formula for integration is called integration by parts. The formula
is

∫ b

a

u′(x)v(x) dx = u(b)v(b)− u(a)v(a)−
∫ b

a

u(x)v′(x) dx. (200.12)

The formula follows by applying the Fundamental Theorem to the function
w(x) = u(x)v(x), in the form

∫ b

a

w′(x) dx = u(b)v(b)− u(a)v(a),

together with the product formula w′(x) = u′(x)v(x) + u(x)v′(x) and
(200.3). Below we often write

u(b)v(b)− u(a)v(a) =
[
u(x)v(x)

]x=b
x=a

,

and we can thus state the formula for integration by parts as

∫ b

a

u′(x)v(x) dx =
[
u(x)v(x)

]x=b
x=a

−
∫ b

a

u(x)v′(x) dx. (200.13)

This formula is very useful and we will use many times below.

Example 200.8. Computing

∫ 1

0

4x3(1 + x2)−3 dx

by guessing at a primitive function for the integrand would be a pretty
daunting task. However we can use integration by parts to compute the
integral. The trick here is to realize that

d

dx
(1 + x2)−2 = −4x(1 + x2)−3.
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If we rewrite the integral as

∫ 1

0

x2 × 4x(1 + x2)−3 dx

then we can apply integration by parts with u(x) = x2 and v′(x) =
4x(1 + x2)−3, so u′(x) = 2x and v(x) = −(1 + x2)−2, to get

∫ 1

0

4x3(1 + x2)−3 dx =

∫ 1

0

u(x)v′(x) dx

= [x2(−(1 + x2)−2)]x=1
x=0 −

∫ 1

0

2x(−(1 + x2)−2) dx

= −1

4
−
∫ 1

0

(−(1 + x2)−2)2x dx.

To do the remaining integral, we use the substitution z = 1 + x2 with
dz = 2x dx to get

∫ 1

0

4x3(1 + x2)−3 dx = −1

4
+

∫ 2

1

z−2 dz

= −1

4
+
[
− z−1

]z=2

z=1
= −1

4
− 1

2
+ 1 =

1

4
.

200.11 The Mean Value Theorem

The Mean Value theorem states that if u(x) is a differentiable function on
[a, b] then there is a point x̄ in (a, b) such that the slope u′(x̄) of the tangent
of the graph of u(x) at x̄ is equal to the slope of the secant line, or chord,
connecting the points (a, u(a)) and (b, u(b)). In other words,

u(b)− u(a)

b− a
= u′(x̄). (200.14)

This is geometrically intuitive, see Fig. 200.3, and expresses that the aver-
age velocity over [a, b] is equal to momentary velocity u′(x̄) at some inter-
mediate point x̄ ∈ [a, b].
To get from the point (a, u(a)) to the point (b, u(b)), f has to “bend”

around in such a way that the tangent becomes parallel to the secant line
at least at one point.
Assuming that u′(x) is Lipschitz continuous on [a, b], we shall now prove

that there is a real number x̄ ∈ [a, b] such that

u(b)− u(a) = (b − a)u′(x̄)
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y = u(x)

slope u′(x̄)

slope u(b)−u(a)
b−a

x
x̄a b

y

FIGURE 200.3. Illustration of the Mean Value theorem.

which is equivalent to (200.14). The proof is based on the formula

u(b) = u(a) +

∫ b

a

u′(x) dx (200.15)

which holds if u(x) is uniformly differentiable on [a, b]. If for all x ∈ [a, b],
we would have

u(b)− u(a)

b− a
> u′(x),

then we would have (explain why)

u(b)− u(a) =

∫ a

b

u(b)− u(a)

b− a
dx >

∫ a

b

u′(x) dx = u(b)− u(a),

which is a contradiction. Arguing in the same way, we conclude it is also
impossible that

u(b)− u(a)

b − a
< u′(x)

for all x ∈ [a, b]. So there must be numbers c and d in [a, b] such that

u′(c) ≤ u(b)− u(a)

b− a
≤ u′(d).

Since u′(x) is Lipschitz continuous for x ∈ [a, b], it follows by the Interme-
diate Value theorem that there is a number x̄ ∈ [a, b] such that

u′(x̄) =
u(b)− u(a)

b − a
.

We have now proved:
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Theorem 200.1 (Mean Value theorem) If u(x) is uniformly differen-
tiable on [a, b] with Lipschitz continuous derivative u′(x), then there is a
(at least one) x̄ ∈ [a, b], such that

u(b)− u(a) = (b− a)u′(x̄). (200.16)

The Mean Value Theorem is often written in terms of an integral by
setting f(x) = u′(x) in (200.16), which gives

Theorem 200.2 (Mean Value theorem for integrals) If f(x) is Lip-
schitz continuous on [a, b], then there is some x̄ ∈ [a, b] such that

∫ b

a

f(x) dx = (b− a)f(x̄). (200.17)

The Mean Value theorem turns out to be very useful in several ways. To
illustrate, we discuss two results that can be proved easily using the Mean
Value Theorem.

200.12 Monotone Functions and the Sign of the
Derivative

The first result says that the sign of the derivative of a function indicates
whether the function is increasing or decreasing in value as the input in-
creases. More precisely, the Mean Value theorem implies that if f ′(x) ≥ 0
for all x ∈ [a, b] then f(b) ≥ f(a). Moreover if x1 ≤ x2 are in [a, b], then
f(x1) ≤ f(x2). A function with this property is said to be non-decreasing
on [a, b]. If in fact f ′(x) > 0 for all x ∈ (a, b), then f(x1) < f(x2) for
x1 < x2 in [a, b] (with strict inequalities), and we say that f(x) is (strictly)
increasing on the interval [a, b]. Corresponding statements hold if f ′(x) ≤ 0
and f ′(x) < 0, with non-decreasing and (strictly) increasing replaced with
non-increasing and (strictly) decreasing, respectively. Functions that are
either (strictly) increasing or (strictly) decreasing on an interval [a, b] are
said to be (strictly) monotone on [a, b].

200.13 A Function with Zero Derivative Is
Constant

As a particular consequence of the preceding section, we conclude that if
f ′(x) = 0 for all x ∈ [a, b], so that f(x) is both non-increasing and non-
decreasing on [a, b], then f(x) is constant on [a, b]. Thus, a function with
derivative vanishing everywhere is a constant function.
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200.14 A Bounded Derivative Implies Lipschitz
Continuity

As a second consequence of the Mean Value Theorem, we give an alternate,
and shorter, proof that a function with a Lipschitz continuous derivative is
Lipschitz continuous. Assume that u : [a, b] → R has a Lipschitz continuous
derivative u′(x) on [a, b] satisfying |u′(x)| ≤M for x ∈ [a, b]. By the Mean
Value theorem, we have

|u(x) − u(x̄)| ≤M |x− x̄| for x, x̄ ∈ [a, b].

We conclude that u(x) is Lipschitz continuous on [a, b] with Lipschitz con-
stant M = maxx∈[a,b] |u′(x)|.

200.15 Taylor’s Theorem

In earlier chapters, we analyzed a linear approximation to a function u,

u(x) ≈ u(x̄) + u′(x̄)(x − x̄), (200.18)

as well as a quadratic approximation

u(x) ≈ u(x̄) + u′(x̄)(x − x̄) +
u′′(x̄)
2

(x− x̄)2. (200.19)

These approximations are very useful tools for dealing with nonlinear func-
tions. Taylor’s theorem, invented by Brook Taylor (1685-1731), see Fig. 200.4,
generalizes these approximations to any degree.Taylor sided up with New-
ton in a long scientific fight with associates of Leibniz about “who’s best
in Calculus?”.

Theorem 200.3 (Taylor’s theorem) If u(x) is n+1 times differentiable
on the interval I with u(n+1) Lipschitz continuous, then for x, x̄ ∈ I, we
have

u(x) = u(x̄) + u′(x̄)(x− x̄) + · · ·+ u(n)(x̄)

n!
(x− x̄)n

+

∫ x

x̄

(x− y)n

n!
u(n+1)(y) dy. (200.20)

The polynomial

Pn(x) = u(x̄) + u′(x̄)(x − x̄) + · · ·+ u(n)(x̄)

n!
(x− x̄)n

is called the Taylor polynomial, or Taylor expansion, of u(x) at x̄ of degree
n,
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FIGURE 200.4. Brook Taylor, inventor of the Taylor expansion: “I am the best”.

The term

Rn(x) =

∫ x

x̄

(x− y)n

n!
u(n+1)(y) dy

is called the remainder term of order n. We have for x ∈ I,

u(x) = Pn(x) +Rn(x).

It follows directly that

(
dk

dxk

)
Pn(x̄) =

(
dk

dxk

)
u(x̄) for k = 0, 1 · · · , n.

Thus Taylor’s theorem gives a polynomial approximation Pn(x) of degree
n of a given function u(x), such that the derivatives of order ≤ n of Pn(x)
and u(x) agree at x = x̄.

Example 200.9. The Taylor polynomial of order 2 at x = 0 for u(x) =√
1 + x is given by

P2(x) = 1 +
1

2
− 1

8
x2,

since u(0) = 1, u′(0) = 1
2 , and u

′′(0) = − 1
4 .

The proof of Taylor’s theorem is a wonderful application of integration
by parts, discovered by Taylor. We start by noting that Taylor’s theorem
with n = 0 is just the Fundamental Theorem

u(x) = u(x̄) +

∫ x

x̄

u′(y) dy,
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Using that d
dy (y − x) = 1, we get integrating by parts

u(x) = u(x̄) +

∫ x

x̄

u′(y) dy

= u(x̄) +

∫ x

x̄

d

dy
(y − x)u′(y) dy

= u(x̄) + [(y − x)u′(y)]y=xy=x̄ −
∫ x

x̄

(y − x)u′′(y) dy

= u(x̄) + (x− x̄)u′(x̄) +
∫ x

x̄

(x− y)u′′(y) dy,

which is Taylor’s theorem with n = 1. Continuing in this manner, integrat-
ing by parts, using the notation kn(y) = (y − x)n/n!, and noting that for
n ≥ 1

d

dy
kn(y) = kn−1(y),

we get

∫ x

x̄

(x− y)n−1

(n− 1)!
u(n)(y) dy = (−1)n−1

∫ x

x̄

kn−1(y)u
(n)(y) dy

= (−1)n−1

∫ x

x̄

d

dy
kn(y)u

(n)(y) dy

= [(−1)n−1kn(y)u
(n)(y)]y=xy=x̄ − (−1)n−1

∫ x

x̄

kn(y)u
(n+1)(y) dy

=
u(n)(x̄)

n!
(x− x̄)n +

∫ x

x̄

(x− y)n

n!
u(n+1)(y) dy.

This proves Taylor’s theorem.

Example 200.10. We compute a fourth order polynomial approxima-
tion to f(x) = 1

1−x near x = 0. We have

f(x) =
1

1− x
=⇒ f(0) = 1,

f ′(x) =
1

(1− x)2
=⇒ f ′(0) = 1,

f ′′(x) =
2

(1− x)3
=⇒ f ′′(0) = 2,

f ′′′(x) =
6

(1− x)4
=⇒ f ′′′(0) = 6,

f ′′′′(x) =
24

(1− x)5
=⇒ f ′′′′(0) = 24,
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and therefore

P4(x) = 1 + 1(x− 0)1 +
2

2
(x− 0)2 +

6

6
(x− 0)3 +

24

24
(x− 0)4

= 1 + x+ x2 + x3 + x4.

We plot the function and the polynomial in Fig. 200.5. Characteristically,

−0.5# −0.3# −0.1# 0.1# 0.3# 0.5#
0.5#

0.9#

1.3#

1.7#

2.1#

x

1
1−x

1 + x+ x2 + x3 + x4

FIGURE 200.5. Plots of f(x) = 1/(1 − x) and its Taylor polynomial
1 + x+ x2 + x3 + x4.

the Taylor polynomial is a very accurate approximation near the x̄ but
the error becomes larger as x moves further away from x̄.

200.16 October 29, 1675

On October 29, 1675, Leibniz got a bright idea while sitting at his desk
in Paris. He wrote “Utile erit scribit

∫
pro omnia”, which translates to

“It is useful to write
∫

instead of omnia”. This is the moment when the
modern notation of calculus was created. Earlier than this date, Leibniz had
been working with a notation based on a, l and “omnia” which represented
in modern notation dx, dy and

∫
respectively. This notation resulted in

formulas like

omn.l = y, omn.yl =
y2

2
, omn.xl = xomn.l − omn.omn.la,

where “omn.”, short for omnia, indicated a discrete sum and l and a de-
noted increments of finite size (often a = 1). In the new notation, these
formulas became

∫
dy = y,

∫
y dy =

y2

2
,

∫
x dy = xy −

∫
y dx. (200.21)
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This opened up the possibility of dx and dy being arbitrarily small and the
sum being replaced by the “integral”.

200.17 The Hodometer

The Romans constructed many roads to keep the Empire together and the
need of measuring distances between cities and traveled distance on the
road, became very evident. For this purpose the Hodometer was constructed
by Vitruvius, see Fig. 200.6. For each turn of the wagon wheel, the vertical
gear is shifted one step, and for each turn of the vertical gear the horizontal
gear is shifted one step. The horizontal gear has a set of holes with one stone
in each, and for each shift one stone drops down to a box under the wagon;
at the end of the day one computes the number of stones in the box, and the
device is so calibrated that this number is equal to the number of traveled
miles. Evidently, one may view the hodometer as a kind of simple analog
integrator.

FIGURE 200.6. The principle of the Hodometer
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Chapter 200 Problems

200.1. Compute the following integrals: a)
∫ 1

0
(ax + bx2)dx, b)

∫ 1

−1
|x|dx, c)

∫ 1

−1
|x− 1|dx, d)

∫ 1

−1
|x+ a|dx, e)

∫ 1

−1
(x− a)10dx.

200.2. Compute the following integrals by integration by parts. Verify that
you get the same result by directly finding the primitive function. a)

∫ 1

0
x2dx =∫ 1

0
x·xdx, b)

∫ 1

0
x3dx =

∫ 1

0
x·x2dx, c)

∫ 1

0
x3dx =

∫ 1

0
x3/2·x3/2dx, d)

∫ 1

0
(x2−1)dx =∫ 1

0
(x+ 1) · (x− 1)dx.

200.3. For computing the integral
∫ 1

0
x(x−1)1000dx, what would you rather do;

find the primitive function directly or integrate by parts?

200.4. Compute the following integrals: a)
∫ 2

−1
(2x − 1)7dx, b)

∫ 1

0
f ′(7x)dx, c)

∫ −7

−10
f ′(17x+ 5)dx.

200.5. Compute the integral
∫ 1

0
x(x2 − 1)10dx in two ways, first by integration

by parts, then by a clever substitution using the chain rule.

200.6. Find Taylor polynomials at x of the following functions: a) f(x) = x,

x = 0, b) f(x) = x+ x2 + x3, x = 1, c) f(x) =
√√

x+ 1 + 1, x = 0.

200.7. Find a Taylor expansion of the function f(x) = xr − 1 around a suitable
choice of x, and use the result to compute the limit limx→1

xr−1
x−1

. Compare this to
using l’Hopital’s rule to compute the limit. Can you see the connection between
the two methods?

200.8. Motivate the basic properties of linearity and subinterval additivity of
the integral using the area interpretation of the integral.

200.9. Prove the basic properties of linearity and subinterval additivity of the
integral using that the integral is a limit of discrete sums together with basic
properties of discrete sums.

200.10. Make sense out of Leibniz formulas (200.21). Prove, as did Leibniz,
the second from a geometrical argument based on computing the area of a right-
angled triangle by summing thin slices of variable height y and thickness dy, and
the third from computing similarly the area of a rectangle as the sum of the two
parts below and above a curve joining two opposite corners of the rectangle.

200.11. Prove the following variant of Taylor’s theorem: If u(x) is n + 1 times
differentiable on the interval I , with u(n+1)(x) Lipschitz continuous, then for
x̄ ∈ I , we have

u(x) = u(x̄) + u′(x̄)(x− x̄) + · · ·+ u(n)(x̄)

n!
(x− x̄)n

+
u(n+1)(x̂)

(n+ 1)!
(x− x̄)n+1

where x̂ ∈ [x̄, x]. Hint: Use the Mean Value theorem for integrals.
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200.12. Prove that if x = f(y) with inverse function y = f−1(x), and f(0) = 0,
then ∫ ȳ

0

f(y) dy = ȳx̄−
∫ x̄

0

f−1(x) dx.

Compare with (200.21) Hint: use integration by parts.

200.13. Show that x 7→ F (x) =
∫ x
0
f(x)dx is Lipschitz continuous on [0, a] with

Lipschitz constant LF if |f(x)| ≤ LF for x ∈ [0, a].

200.14. Why can we think of the primitive function as being “nicer” than the
function itself?

200.15. Under what conditions is the following generalized integration by parts
formula valid

∫

I

dnf

dxn
ϕdx = (−1)n

∫

I

f
dnϕ

dxn
dx, n = 0, 1, 2, . . .?

200.16. Show the following inequality:

|
∫

I

u(x)v(x) dx| ≤
√∫

I

u2(x) dx

√∫

I

v2(x) dx,

which is referred to as Cauchy’s inequality. Hint: Let u = u/
√∫

I
u2(x) dx,

v = v/
√∫

I
v2(x) dx, and show that |

∫
I
u(x)v(x) dx| ≤ 1 by considering the

expression
∫
I
(u(x) −

∫
I
u(y)v(y) dy v(x)) dx. Would it be helpful to use the

notation (u, v) =
∫
I
u(x)v(x) dx, and ‖u‖ =

√∫
I
u2(x) dx?

200.17. Show that if v is Lipschitz continuous on the bounded interval I and
v = 0 at one of the endpoints of the interval, then

‖v‖L2(I) ≤ CI‖v′‖L2(I),

for some constant CI , where the so-called L2(I) norm of a function v is defined

as ‖v‖L2(I) =
√∫

I
v2(x)dx. What is the value of the constant? Hint: Express v

in terms of v′ and use the result from the previous problem.

200.18. Check that the inequality from the previous problem holds for the
following functions on I = [0, 1]: a) v(x) = x(1 − x), b) v(x) = x2(1 − x), c)
v(x) = x(1− x)2.

200.19. Prove quadratic convergence of Newton’s method (198.5) for computing
a root x̄ of the equation f(x) = 0 using Taylor’s theorem. Hint: Use the fact that

xi+1 − x̄ = xi − x̄+ f(xi)−f(x̄)
f ′(xi)

and Taylor’s theorem to see that f(xi) − f(x̄) =

f ′(xi)(xi − x̄) + 1
2
f ′′(x̃i)(xi − x̄)2 for some x̃i ≈ xi.

200.20. Prove (200.3) from (200.4).
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201
The Logarithm log(x)

Nevertheless technicalities and detours should be avoided, and the
presentation of mathematics should be just as free from emphasis
on routine as from forbidding dogmatism, which refuses to disclose
motive or goal and which is an unfair obstacle to honest effort. (R.
Courant)

201.1 The Definition of log(x)

We return to the question of the existence of a primitive function of f(x) =
1/x for x > 0 posed above. Since the function f(x) = 1/x is Lipschitz
continuous on any given interval [a, b] with 0 < a < b, we know by the
Fundamental Theorem that there is a unique function u(x) which satisfies
u′(x) = 1/x for a ≤ x ≤ b and takes on a specific value at some point in
[a, b], for example u(1) = 0. Since a > 0 may be chosen as small as we
please and b as large as we please, we may consider the function u(x) to
be defined for x > 0. We now define the natural logarithm log(x) (or ln(x))
for x > 0 as the primitive function u(x) of 1/x vanishing for x = 1, i.e.,
log(x) satisfies

d

dx
(log(x)) =

1

x
for x > 0, log(1) = 0. (201.1)

Using the definition of the integral, we may express log(x) as an integral:

log(x) =

∫ x

1

1

y
dy for x > 0. (201.2)
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In the next chapter we shall use this formula to compute approximations of
log(x) for a given x > 0 by computing approximations of the corresponding
integral. We plot log(x) in Fig. 201.1.
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y = log(x)
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FIGURE 201.1. Plot of log(x).

201.2 The Importance of the Logarithm

The logarithm function log(x) is a basic function in science, simply because
it solves a basic differential equation, and thus occurs in many applications.
More concretely, the logarithm has some special properties that made pre-
vious generations of scientists and engineers use the logarithm intensely,
including memorizing long tables of its values. The reason is that one can
compute products of real numbers by adding logarithms of real numbers,
and thus the operation of multiplication can be replaced by the simpler
operation of addition. The slide rule is an analog computing device built
on this principle, that used to be sign of the engineer visible in the waist-
pocket, recall Fig. ??. Today the modern computer has replaced the slide
rule and does not use logarithms to multiply real numbers. However, the
first computer, the mechanical Difference Machine by Babbage from the
1830s, see Fig. ??, was used for computing accurate tables of values of the
logarithm. The logarithm was discovered by John Napier and presented in
Mirifici logarithmorum canonis descriptio in 1614. A illuminating citation
from the foreword is given in Fig. 201.2.
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FIGURE 201.2. Napier, Inventor of the Logarithm: “Seeing there is nothing (right
well-beloved Students of the Mathematics) that is so troublesome to mathemati-
cal practice, nor that doth more molest and hinder calculators, than the multipli-
cations, divisions, square and cubical extractions of great numbers, which besides
the tedious expense of time are for the most part subject to many slippery errors,
I began therefore to consider in my mind by what certain and ready art I might
remove those hindrances. And having thought upon many things to this purpose,
I found at length some excellent brief rules to be treated of (perhaps) hereafter.
But amongst all, none more profitable than this which together with the hard and
tedious multiplications, divisions, and extractions of roots, doth also cast away
from the work itself even the very numbers themselves that are to be multiplied,
divided and resolved into roots, and putteth other numbers in their place which
perform as much as they can do, only by addition and subtraction, division by
two or division by three”.

201.3 Important Properties of log(x)

We now derive the basic properties of the logarithm function log(x) using
(201.1) or (201.2). We first note that u(x) = log(x) is strictly increasing
for x > 0, because u′(x) = 1/x is positive for x > 0. This can be seen in
Fig. 201.1. Recalling (201.1), we conclude that for a, b > 0,

∫ b

a

dy

y
= log(b)− log(a).

Next we note that the Chain rule implies that for any constant a > 0

d

dx
(log(ax) − log(x)) =

1

ax
· a− 1

x
= 0,

and consequently log(ax) − log(x) is constant for x > 0. Since log(1) = 0,
we see by setting x = 1 that the constant value is equal to log(a), and so

log(ax) − log(x) = log(a) for x > 0.
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Choosing x = b > 0, we thus obtain the following fundamental relation
satisfied by the logarithm log(x):

log(ab) = log(a) + log(b) for a, b > 0 (201.3)

We can thus compute the logarithm of the product of two numbers by
adding the logarithms of the two numbers. We already indicated that this
is the principle of the slide rule or using a table of logarithms for multiplying
two numbers. More precisely (as first proposed by Napier), to multiply two
numbers a and b we first find their logarithms log(a) and log(b) from the
table, then add them to get log(ab) using the formula (201.3), and finally we
find from the table which real number has the logarithm equal to log(ab),
which is equal to the desired product ab. Clever, right?
The formula (201.3) implies many things. For example, choosing b = 1/a,

we get
log(a−1) = − log(a) for a > 0. (201.4)

Choosing b = an−1 with n = 1, 2, 3, .., we get

log(an) = log(a) + log(an−1),

so that by repeating this argument

log(an) = n log(a) for n = 1, 2, 3, ... (201.5)

By (201.4) the last equality holds also for n = −1,−2, ...
More generally, we have for any r ∈ R and a > 0,

log(ar) = r log(a). (201.6)

We prove this using the change of variables x = yr with dx = ryr−1dy:

log(ar) =

∫ ar

1

1

x
dx =

∫ a

1

ryr−1

yr
dy = r

∫ a

1

1

y
dy = r log(a).

Finally, we note that 1/x also has a primitive function for x < 0 and for
a, b > 0, setting y = −x,

∫ −b

−a

dy

y
=

∫ b

a

−dx
−x =

∫ b

a

dx

x
= log(b)− log(a)

= log(−(−b))− log(−(−a)).

Accordingly, we may write for any a 6= 0 and b 6= 0 that have the same
sign, ∫ b

a

dx

x
= log(|b|)− log(|a|). (201.7)

It is important to understand that (201.7) does not hold if a and b have
opposite signs.
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Chapter 201 Problems

201.1. Prove that log(4) > 1 and log(2) ≥ 1/2.

201.2. Prove that

log(x) → ∞ as x→ ∞,

log(x) → −∞ as x→ 0+.

Hint: Using that log(2) ≥ 1/2 it follows from (201.5) that log(2n) tends to infinity
as n tends to infinity.

201.3. Give an alternative proof of (201.3) using that

log(ab) =

∫ ab

1

1

y
dy =

∫ a

1

1

y
dy +

∫ ab

a

1

y
dy = log(a) +

∫ ab

a

1

y
dy,

and changing the variable y in the last integral to z = ay.

201.4. Prove that log(1 + x) ≤ x for x > 0, and that log(1 + x) < x for x 6= 0
and x > −1. Hint: Differentiate.

201.5. Show using the Mean Value theorem, that log(1 + x) ≤ x for x > −1.
Can prove this directly from the definition of the logarithm by sketching the area
under the graph?

201.6. Prove that log(a)− log(b) = log( a
b
) for a, b > 0.

201.7. Write down the Taylor polynomial of order n for log(x) at x = 1.

201.8. Find a primitive function of 1
x2−1

. Hint: use that 1
x2−1

= 1
(x−1)(x+1)

=
1
2
( 1
x−1

− 1
x+1

).

201.9. Prove that log(xr) = r log(x) for r = p
q
rational by using (201.5) cleverly.

201.10. Solve the initial value problem u′(x) = 1/xa for x > 0, u(1) = 0, for
values of the exponent a close to 1. Plot the solutions. Study for which values of
a the solution u(x) tends to infinity when x tends to infinity.

201.11. Solve the following equations: (a) log(x2) + log(3) = log(
√
x) + log(5),

(b) log(7x)− 2 log(x) = log(3), (c) log(x3)− log(x) = log(7)− log(x2).

201.12. Compute the derivatives of the following functions: a) f(x) = log(x3 +
6x), b) f(x) = log(log(x)), c) f(x) = log(x+ x2), d) f(x) = log(1/x), e) f(x) =
x log(x)− x.
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202
Numerical Quadrature

”And I know it seems easy”, said Piglet to himself, ”but it isn’t
everyone who could do it”. (House at the Pooh Corner, Milne)

Errare humanum est.

202.1 Computing Integrals

In some cases, we can compute a primitive function (or antiderivative or
integral) of a given function analytically, that is we can give give a formula
for the primitive function in terms of known functions. For example we can
give a formula for a primitive function of a polynomial as another polyno-
mial. We will return in Chapter Techniques of integration to the question
of finding analytical formulas for primitive functions of certain classes of
functions. The Fundamental Theorem states that any given Lipschitz con-
tinuous function has a primitive function, but does not give any analytical
formula for the primitive function. The logarithm,

log(x) =

∫ x

1

dy

y
, where x > 0,

is the first example of this case we have encountered. We know that the
logarithm function log(x) exists for x > 0, and we have derived some of
its properties indirectly through its defining differential equation, but the
question remains how to determine the value of log(x) for a given x > 0.
Once we have solved this problem, we may add log(x) to a list of “elemen-
tary” functions that we can play with. Below we will add to this list the
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exponential function, the trigonometric functions, and other more exotic
functions.
This situation is completely analogous to solving algebraic equations for

numbers. Some equations have rational roots and in that case, we feel that
we can solve the equation “exactly” by analytic (symbolic) computation.
We have a good understanding of rational numbers, even when they have in-
finite decimal expansions, and we can determine their values, or the pattern
in the decimal expansion, with a finite number of arithmetic operations.
But most equations have irrational roots with infinite, non-repeating deci-
mal expansions that we can only approximate to a desired level of accuracy
in practice. Likewise in a situation in which a function is known only as
a primitive function of a given function, the best we can do is to seek to
compute its values approximately to a desired level of accuracy. One way to
compute values of such a function is through the definition of the integral
as a Riemann sum. This is known as numerical quadrature or numerical
integration, and we now explore this possibility.
Suppose thus that we want to compute the integral

∫ b

a

f(x) dx, (202.1)

where f : [a, b] → R is Lipschitz continuous with Lipschitz constant Lf .
If we can give a formula for the primitive function F (x) of f(x), then the
integral is simply F (b)− F (a). If we cannot give a formula for F (x), then
we turn to the Fundamental Theorem and compute an approximate the
value of the integral using a Riemann sum approximation

∫ b

a

f(x) dx ≈
N∑

i=1

f(xni−1)hn, (202.2)

where xni = a + ihn, hn = 2−n(b − a), and N = 2n describes a uniform
partition of [a, b], with the quadrature error

Qn =
∣∣∣
∫ b

a

f(x) dx−
N∑

i=1

f(xni−1)hn

∣∣∣ ≤ b− a

2
Lfhn, (202.3)

which tends to zero as we increase the number of steps and hn → 0. Put
another way, if we desire the value of the integral to within a tolerance
TOL > 0 and we know the Lipschitz constant Lf , then we will have Qn ≤
TOL if the mesh size hn satisfies the stopping criterion

hn ≤ 2TOL

(b − a)Lf
. (202.4)

We refer to the Riemann sum approximation (202.2), compare also with
Fig. 202.1, as the rectangle rule, which is the simplest method for approx-
imating an integral among many possible methods. The search for more
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sophisticated methods for approximating an integral is driven by consider-
ation of the computational cost associated to computing the approximation.
The cost is typically measured in terms of time because there is a limit on
the time we are willing to wait for a solution. In the rectangle rule, the
computer spends most of the time evaluating the function f and since each
step requires one evaluation of f , the cost is determined ultimately by the
number of steps. Considering the cost leads to the optimization problem
of trying to compute an approximation of a given accuracy at a relatively
low cost.
To reduce the cost, we may construct more sophisticated methods for

approximating integrals. But even if we restrict ourselves to the rectangle
rule, we can introduce variations that can lower the computational cost of
computing an approximation. There are two quantities that we can vary:
the point at which we evaluate the function on each interval and the size
of the intervals. To understand how these changes could help, consider the
illustration of the rectangle rule in Fig. 202.1. Here f varies quite a bit

a b

f(x)

large error small error

FIGURE 202.1. An illustration of the rectangle rule.

on part of [a, b] and is fairly constant on another part. Consider the ap-
proximation to the area under f on the first subinterval on the left. By
evaluating f at the left-hand point on the subinterval, we clearly overesti-
mate the area to the maximum degree possible. Choosing to evaluate f at
some point inside the subinterval would likely give a better approximation.
The same is true of the second subinterval, where choosing the left-hand
point clearly leads to an underestimate of the area. On the other hand,
consider the approximations to the area in the last four subintervals on the
right. Here f is nearly constant and the approximation is very accurate.
In fact, we could approximate the area underneath f on this part of [a, b]
using one rectangle rather than four. In other words, we would get just as
accurate an approximation by using one large subinterval instead of four
subintervals. This would cost four times less.
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So we generalize the rectangle rule to allow non-uniform partitions and
different points at which to evaluate f . We choose a partition a = x0 <
x1 < x2 · · · < xN = b of [a, b] into N subintervals Ij = [xj−1, xj ] of lengths
hj = xj − xj−1 for j = 1, ..., N . Note that N can be any integer and the
subintervals may vary in size. By the Mean Value theorem for integrals
there is x̄j ∈ Ij such that

∫ xj

xj−1

f(x) dx = f(x̄j)hj , (202.5)

and thus we have

∫ b

a

f(x) dx =

N∑

i=1

∫ xj

xj−1

f(x) dx =

N∑

j=1

f(x̄j)hj .

Since the x̄j are not known in general, we replace x̄j by a given point
x̂j ∈ Ij . For example, in the original method we use the left end-point
x̂j = xj−1, but we could choose the right end-point x̂j = xj or the mid-
point x̂j =

1
2 (xj−1 + xj). We then get the approximation

∫ b

a

f(x) dx ≈
N∑

j=1

f(x̂j)hj . (202.6)

We call
N∑

j=1

f(x̂j)hj (202.7)

a quadrature formula for computing the integral
∫ b
a f(x) dx. We recall that

we refer to (202.7) as a Riemann sum. The quadrature formula is char-
acterized by the quadrature points x̂j and the weights hj . Note that if
f(x) = 1 for all x then the quadrature formula is exact and we conclude

that
∑N
j=1 hj = b− a.

We now estimate the quadrature error

Qh =
∣∣∣
∫ b

a

f(x) dx −
N∑

j=1

f(x̂j)hj

∣∣∣,

where the subscript h refers to the sequence of step sizes hj. Recalling
(202.5), we can do this by estimating the error over each subinterval and
then summing. We have

∣∣∣
∫ xj

xj−1

f(x) dx− f(x̂j)hj

∣∣∣ = |f(x̄j)hj − f(x̂j)hj | = hj |f(x̄j)− f(x̂j)|.
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We assume that f ′(x) is Lipschitz continuous on [a, b]. The Mean Value
theorem implies that for x ∈ [xj−1, xj ],

f(x) = f(x̂j) + f ′(y)(x− x̂j),

for some y ∈ [xj−1, xj ]. Integrating over [xj−1, xj ] we obtain

∣∣∣
∫ xj

xj−1

f(x) dx− f(x̂j)hj

∣∣∣ ≤ max
y∈Ij

|f ′(y)|
∫ xj

xj−1

|x− x̂j | dx.

To simplify the sum on the right, we use the fact that

∫ xj

xj−1

|x− x̂j | dx

is maximized if x̂j is the left (or right) endpoint, in which case

∫ xj

xj−1

(x− xj−1) dx =
1

2
h2j .

We find that

∣∣∣
∫ xj

xj−1

f(x) dx − f(x̂j)hj

∣∣∣ ≤ 1

2
max
y∈Ij

|f ′(y)|h2j .

Summing, we conclude

Qh =

∣∣∣∣∣∣

∫ b

a

f(x) dx −
N∑

j=1

f(x̂j)hj

∣∣∣∣∣∣
≤ 1

2

N∑

j=1

(
max
y∈Ij

|f ′(y)|hj
)
hj. (202.8)

This generalizes the estimate of the Fundamental Theorem to non-uniform
partitions. We can see that (202.8) implies that Qh tends to zero as the
maximal step size tends to zero by estimating further:

Qh ≤ 1

2
max
[a,b]

|f ′|
N∑

j=1

hj max
1≤j≤N

hj =
1

2
(b− a)max

[a,b]
|f ′| max

1≤j≤N
hj . (202.9)

So Qh tends to zero at the same rate that maxhj tends to zero.

202.2 The integral as a Limit of Riemann Sums

We now return to the (subtle) question posed at the end of the Chapter The
Integral: Will all limits of Riemann sum approximations (as the maximal
subinterval tends to zero) of a certain integral be the same? We recall that
we defined the integral using a particular uniform partition and we now
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ask if any limit of non-uniform partitions will be the same. The affirmative
answer follows from the last statement of the previous section: The quadra-
ture error Qh tends to zero as maxhj tends to zero, under the assumption
that max[a,b] |f ′| is finite, that is |f ′(x)| is bounded on [a, b]. This proves the
uniqueness of limits of Riemann sum approximations of a certain integral
as the maximal subinterval tends to zero, under the assumption that the
derivative of the integrand is bounded. This assumption can naturally be
relaxed to assuming that the integrand is Lipschitz continuous. We sum
up:

Theorem 202.1 The limit (as the maximal subinterval tends to zero) of
Riemann sum approximations of an integral of a Lipschitz continuous func-
tion, is unique.

202.3 The Midpoint Rule

We now analyze the quadrature formula in which the quadrature point
is chosen to be the midpoint of each subinterval, x̂j = 1

2 (xj−1 + xj). It
turns out that this choice gives a formula that is more accurate than any
other rectangle rule on a given mesh provided f has a Lipschitz continuous
second derivative. Taylor’s theorem implies that for x ∈ [xj−1, xj ],

f(x) = f(x̂j) + f ′(x̂j)(x− x̂j) +
1

2
f ′′(y)(x− x̂j)

2,

for some y ∈ [xj−1, xj ] if we assume that f ′′ is Lipschitz continuous. We
argue as above by integrating over [xj−1, xj ]. Now however we use the fact
that ∫ xj

xj−1

(x− x̂j) dx =

∫ xj

xj−1

(x− (xj + xj−1)/2) dx = 0

which holds only when x̂j is the midpoint of [xj−1, xj ]. This gives
∣∣∣
∫ xj

xj−1

f(x) dx− f(x̂j)hj

∣∣∣ ≤ 1

2
max
y∈Ij

|f ′′(y)|
∫ xj

xj−1

(x− x̂j)
2 dx

≤ 1

24
max
y∈Ij

|f ′′(y)|h3j .

Now summing the errors on each subinterval, we obtain the following
estimate on the total error

Qh ≤ 1

24

N∑

j=1

(
max
y∈Ij

|f ′′(y)|h2j
)
hj . (202.10)

To understand the claim that this formula is more accurate than any other
rectangle rule, we estimate further

Qh ≤ 1

24
(b − a)max

[a,b]
|f ′′| maxh2j
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which says that the error decreases as maxhj decreases like maxh2j . Com-
pare this to the general result (202.9), which says that the error decreases
like maxhj for general rectangle rules. If we halve the step size maxhj
then in a general rectangle rule the error decreases by a factor of two but
in the midpoint rule the error decreases by a factor of four. We say that
the midpoint rule converges at a quadratic rate while the general rectangle
rule converges at a linear rate.
We illustrate the accuracy of these methods and the error bounds by

approximating

log(4) =

∫ 4

1

dx

x
≈

N∑

j=1

hj
x̂j

both with the original rectangle rule with x̂j equal to the left-hand endpoint
xj−1 of each subinterval and the midpoint rule. In both cases, we use a
constant stepsize hi = (4 − 1)/N for i = 1, 2, · · · , N . It is straightforward
to evaluate (202.8) and (202.10) because |f ′(x)| = 1/x2 and |f ′′(x)| = 2/x3

are both decreasing functions. We show the results for four different values
of N .

Rectangle rule Midpoint rule
N
25
50
100
200

True error Error bound
.046 .049
.023 .023
.011 .011
.0056 .0057

True error Error bound
.00056 .00056
.00014 .00014
.000035 .000035
.0000088 .0000088

These results show that the error bounds (202.8) and (202.10) can give
quite accurate estimates of the true error. Also note that the midpoint rule
is much more accurate than the general rectangle rule on a given mesh and
moreover the error in the midpoint rule goes to zero quadratically with the
error decreasing by a factor of 4 each time the number of steps is doubled.

202.4 Adaptive Quadrature

In this section, we consider the optimization problem of trying to compute
an approximation of an integral to within a given accuracy at a relatively
low cost. To simplify the discussion, we use the original rectangle rule with
x̂j equal to the left-hand endpoint xj−1 of each subinterval to compute
the approximation. The optimization problem becomes to compute an ap-
proximation with error smaller than a given tolerance TOL using the least
number of steps. Since we do not know the error of the approximation, we
use the quadrature estimate (202.8) to estimate the error. The optimization
problem is therefore to find a partition {xj}Nj=0 using the smallest number
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of points N that satisfies the stopping criterion

N∑

j=1

(
max
y∈Ij

|f ′(y)|hj
)
hj ≤ TOL. (202.11)

This equation suggests that we should adjust or adapt the stepsizes hj
depending on the size of maxIj |f ′|. If maxIj |f ′| is large, then hj should
be small, and vice versa. Trying to find such an optimized partition is
referred to as adaptive quadrature, because we seek a partition suitably
adapted to the nature of the integrand f(x).
There are several possible strategies for finding such a partition and we

consider two here.
In the first strategy, or adaptive algorithm, we estimate the sum in

(202.11) as follows

N∑

j=1

(
max
Ij

|f ′|hj
)
hj ≤ (b− a) max

1≤j≤N

(
max
Ij

|f ′|hj
)
,

where we use the fact that
∑N

j=1 hj = b − a. It follows that (202.11) is
satisfied if the steps are chosen by

hj =
TOL

(b− a) max
Ij

|f ′| for j = 1, ..., N. (202.12)

In general, this corresponds to a nonlinear equation for hj since maxIj |f ′|
depends on hj .
We apply this adaptive algorithm to the computation of log(b) and obtain

the following results

TOL b Steps Approximate Area Error
.05 4.077 24 1.36 .046
.005 3.98 226 1.376 .0049
.0005 3.998 2251 1.38528 .0005
.00005 3.9998 22501 1.3861928 .00005

The reason b varies slightly in these results is due to the strategy we use to
implement (202.12). Namely, we specify the tolerance and then search for
the value of N that gives the closest b to 4.
We plot the sequence of mesh sizes for TOL = .01 in Fig. 202.2, where

the adaptivity is plainly visible. In contrast, if we compute with a uniform
mesh, we find using (202.11) that we need N = 9/TOL points to guarantee
an accuracy of TOL. For example, this means using 900 points to guarantee
an accuracy of .01, which is significantly more than needed for the adapted
mesh.
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The second adaptive algorithm is based on an equidistribution of error
in which the steps hj are chosen so that the contribution to the error
from each sub-interval is roughly equal. Intuitively, this should lead to the
least number of intervals since the largest error reduction is gained if we
subdivide the interval with largest contribution to the error. In this case,
we estimate the sum on the left-hand side of (202.11) by

N∑

j=1

(
max
Ij

|f ′|hj
)
hj ≤ N max

1≤j≤N

(
max
Ij

|f ′|h2j
)

and determine the steps hj by

h2j =
TOL

N max
Ij

|f ′| for j = 1, ..., N. (202.13)

As above, we have to solve a nonlinear equation for hj , now with the
additional complication of the explicit presence of the total number of steps
N .
We implement (202.13) to compute of log(b) with b ≈ 4 and obtain the

following results:

TOL b Steps Appr. Area Error
.05 4.061 21 1.36 .046
.005 4.0063 194 1.383 .005
.0005 3.9997 1923 1.3857 .0005
.00005 4.00007 19220 1.38626 .00005

We plot the sequence of step sizes for TOL = .01 in (202.2). We see that at

1 1.5 2 2.5 3 3.5 4
0

0.01

0.02

0.03

0.04

0.05

0.06

xj

h
j

1’st algorithm
2’nd algorithm

1 1.5 2 2.5 3 3.5 4
0

0.001

0.002

0.003

0.004

0.005

xj

er
ro
r

1’st algorithm
2’nd algorithm

FIGURE 202.2. On the left, we plot the step sizes generated by two adaptive
algorithms for the integration of log(4) using TOL = .01. On the right, we plot
the errors of the same computations versus x.

every tolerance level, the second adaptive strategy (202.13) gives the same
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accuracy at xN ≈ 4 as (202.12) while using fewer steps. It thus seems that
the second algorithm is more efficient.
We compare the efficiency of the two adaptive algorithms by estimating

the number of steps N required to compute log(x) to a given tolerance
TOL in each case. We begin by noting that the equality

N =
h1
h1

+
h2
h2

+ · · ·+ hN
hN

,

implies that, assuming xN > 1,

N =

∫ xN

1

dy

h(y)
,

where h(y) is the piecewise constantmesh function with the value h(s) = hj
for xj−1 < s ≤ xj . In the case of the second algorithm, we substitute
the value of h given by (202.13) into the integral to get, recalling that
f(y) = 1/y so that f ′(y) = −1/y2,

N ≈
√
N√

TOL

∫ xN

1

dy

y
,

or

N ≈ 1

TOL
(log(xN ))

2
. (202.14)

Making a similar analysis of the first adaptive algorithm, we get

N ≈ xN−1

TOL

(
1− 1

xN

)
. (202.15)

We see that in both cases, N is inversely proportional to TOL. However,
the number of steps needed to reach the desired accuracy using the first
adaptive algorithm increases much more quickly as xN increases than the
number needed by the second algorithm, i.e. at a linear rate as opposed to
a logarithmic rate. Note that the case 0 < xN < 1 may be reduced to the
case xN > 1 by replacing xN by 1/xN since log(x) = − log(1/x).
If we use (202.12) or (202.13) to choose the steps hj over the interval

[a, xN ], then of course the quadrature error over any smaller interval [a, xi]
with i ≤ N , is also smaller than TOL. For the first algorithm (202.12), we
can actually show the stronger estimate

∣∣∣∣∣∣

∫ xi

a

f(y) dy −
i∑

j=1

f(xj)hj

∣∣∣∣∣∣
≤ xi − a

xN − a
TOL, 1 ≤ i ≤ N, (202.16)

i.e., the error grows at most linearly with xi as i increases. However, this
does not hold in general for the second adaptive algorithm. In Fig. 202.2,
we plot the errors versus xi for xi ≤ xN resulting from the two adaptive
algorithms with TOL = .01. We see the linear growth predicted for the
first algorithm (202.12) while the error from the second algorithm (202.13)
is larger for 1 < xi < xN .
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Chapter 202 Problems

202.1. Estimate the error using endpoint and midpoint quadrature for the fol-
lowing integrals: (a)

∫ 2

0
2s ds, (b)

∫ 2

0
s3 ds, and (c)

∫ 2

0
exp(−s) ds using h = .1,

.01, .001 and .0001. Discuss the results.

202.2. Compute approximations of the following integrals using adaptive quadra-
ture (a)

∫ 2

0
2s ds, (b)

∫ 2

0
s3 ds, and (c)

∫ 2

0
exp(−s) ds. Discuss the results.

202.3. Compare theoretically and experimentally the number of steps of (202.12)
and (202.13) for the computation of integrals of the form

∫ 1

x
f(y) dy for x > 0,

where f(y) ∼ y−α with α > 1.

202.4. The trapezoidal rule takes the form

∫ xj

xj−1

f(x)dx ≈ (xj − xj−1)(f(xj−1) + f(xj))/2. (202.17)

Show that the quadrature is exact if f(x) is a first order polynomial, and give an
estimate of the quadrature error analogous to that of the midpoint rule. Compare
the the midpoint and the trapezoidal method.

202.5. Design different adaptive quadrature algorithms based on the midpoint
rule and make comparisons.

202.6. Consider a quadrature formula of the form

∫ b

a

f(x)dx ≈ (b− a)(f(x̂1) + f(x̂2))/2. (202.18)

Determine the quadrature points x̂1 and x̂2, so that the quadrature formula is
exact for f(x) a second order polynomial. This quadrature rule is called the two-
point Gauss rule. Check for which order of polynomials the resulting quadrature
formula is exact.

202.7. Compute the value of
∫ 1

0
1

1+x2
dx by quadrature. Multiply the result by

4. Do you recognize this number?



This is page 1280
Printer: Opaque this



This is page 1281
Printer: Opaque this

203
The Exponential Function exp(x) = ex

The need for mathematical skills is greater than ever, but it is widely
recognized that, as a consequence of computer developments, there
is a need for a shift in emphasis in the teaching of mathematics
to students studying engineering. This shift is away from the simple
mastery of solution techniques and towards development of a greater
understanding of mathematical ideas and processes together with ef-
ficiency in applying this understanding to the formulation and anal-
ysis of physical phenomena and engineering systems. (Glyn James,
in Preface to Modern Engineering Mathematics, 1992)

Because of the limitations of human imagination, one ought to say:
everything is possible - and a bit more. (Horace Engdahl)

203.1 Introduction

In this chapter we return to study of the exponential function exp(x), which
we have met above in Chapter A very short course in Calculus and Chapter
Galileo, Newton, Hooke, Malthus and Fourier, and which is one of the basic
functions of Calculus, see Fig. 203.1. We have said that exp(x) for x > 0
is the solution to the following initial value problem: Find a function u(x)
such that

u′(x) = u(x) for x > 0,
u(0) = 1.

(203.1)

Evidently, the equation u′(x) = u(x) states that the rate of growth u′(x) is
equal to the quantity u(x) itself, that is, the exponential function exp(x) =
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ex is characterized by the property that its derivative is equal to itself:
D exp(x) = exp(x). What a wonderful almost divine property! We also
denote the exponential function by ex, that is, ex = exp(x) and Dex = ex.
In this chapter, we give a constructive proof of the existence of a unique

solution to the initial value problem (203.1), that is, we prove the existence
of the exponential function exp(x) = ex for x > 0. Note that above, we
just claimed the existence of solutions. As always, a constructive proof also
shows how we may compute exp(x) for different values of x.
Below we extend exp(x) to x < 0 by setting exp(x) = (exp(−x))−1 for

x < 0, and show that exp(−x) solves the initial value problem u′(x) =
−u(x) for x > 0, u(0) = 1. We plot the functions exp(x) and exp(−x) for
x ≥ 0 in Fig. 203.1. We notice that exp(x) is increasing and exp(−x) is de-
creasing with increasing x, and that exp(x) is positive for all x. Combining
exp(x) and exp(−x) for x ≥ 0 defines exp(x) for −∞ < x < ∞. Below we
show that D exp(x) = exp(x) for −∞ < x <∞.
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FIGURE 203.1. The exponential functions exp(x) and exp(−x) for x ≥ 0.

The problem (203.1) is a special case of the Malthus population model
(??), which also models a large variety of phenomena in e.g. physics and
economy: {

u′(x) = λu(x) for x > 0,

u(0) = u0.
(203.2)

where λ is a constant and u0 is a given initial value. The solution of this
problem can be expressed in terms of the exponential function as

u(x) = exp(λx)u0 for x ≥ 0. (203.3)

This follows directly from the fact that by the Chain rule, D exp(λx) =
exp(λx)λ, where we used that D exp(x) = exp(x). Assuming u0 > 0 so
that u(x) > 0, evidently the sign of λ determines if u decreases (λ < 0) or
increases (λ > 0). In Fig. 203.1, we plotted the solutions of (203.2) with
λ = ±1 and u0 = 1.
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Before going into the construction of the exponential function exp(x),
we recall two of the key applications of (203.2): population dynamics and
banking. Here x represents time and we change notation, replacing x by t.

Example 203.1. We consider a population with constant birth and
death rates β and δ, which are the numbers of births and deaths per
individual creature per unit time. With u(t) denoting the population at
time t, there will be during the time interval from t to t+∆t with ∆t
a small increment, approximately βu(t)∆t births and δu(t)∆t deaths.
Hence the change in population over the time interval is approximately

u(t+∆t)− u(t) ≈ βu(t)∆t− δu(t)∆t

and therefore
u(t+∆t)− u(t)

∆t
≈ (β − δ)u(t),

where the approximation improves as we decrease ∆t. Taking the limit
as ∆t → 0, assuming u(t) is a differentiable function, we obtain the
model u′(t) = (β − δ)u(t). Assuming the initial population at t = 0 is
equal to u0, leads to the model (203.2) with λ = β − δ, with solution
u(x) = exp(λx)u0.

Example 203.2. An investment u in a saving account earning 5%
interest compounded continuously and beginning with $2000 at time
t = 0, satisfies {

u′ = 1.05u, t > 0,

u(0) = 2000,

and thus u(t) = exp(1.05t)2000 for t ≥ 0.

203.2 Construction of the Exponential exp(x) for
x ≥ 0

In the proof of the Fundamental Theorem, we constructed the solution u(x)
of the initial value problem

{
u′(x) = f(u(x), x) for 0 < x ≤ 1,

u(0) = u0,
(203.4)

in the case that f(u(x), x) = f(x) depends only on x and not on u(x).
We constructed the solution u(x) as the limit of a sequence of functions
{Un(x)}∞n=1, where U

n(x) is a piecewise linear function defined at a set of
nodes xni = ihn, i = 0, 1, 2, ..., N = 2n, hn = 2−n, by the relations

Un(xni ) = Un(xni−1) + hnf(x
n
i−1) for i = 1, 2, ..., N, Un(0) = u0.

(203.5)
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We shall now apply the same technique to construct the solution of
(203.1), which has the form (203.4) with f(u(x), x) = u(x) and u0 = 1.
We carry out the proof in a form which generalizes in a straight-forward
way to any system of equations of the form (203.4), which really includes
a very wide range of problems. We hope this will motivate the reader to
carefully follow every step of the proof, to get properly prepared for the
highlight Chapter The general initial value problem.
We construct the solution u(x) of (203.1) for x ∈ [0, 1] as the limit of a

sequence of piecewise linear functions {Un(x)}∞n=1 defined at the nodes by
the formula

Un(xni ) = Un(xni−1) + hnU
n(xni−1) for i = 1, 2, ..., N, (203.6)

with Un(0) = 1, which is an analog of (203.5) obtained by replacing f(xni−1)
by Un(xni−1) corresponding to replacing f(x) by f(x, u(x)) = u(x). Using
the formula we can compute the values Un(xni ) one after the other for
i = 1, 2, 3, ..., starting from the initial value Un(0) = 1, that is marching
forward in time with x representing time.
We can write (203.6) in the form

Un(xni ) = (1 + hn)U
n(xni−1) for i = 1, 2, ..., N, (203.7)

and conclude since Un(xni ) = (1 + hn)U
n(xni−1) = (1 + hn)

2Un(xni−2) =
(1 + hn)

3Un(xni−3) and so on, that the nodal values of Un(x) are given by
the formula

Un(xni ) = (1 + hn)
i, for i = 0, 1, 2, ..., N, (203.8)

where we also used that Un(0) = 1. We illustrate in Fig. 203.2. We may

x
0 1

xn0 xn1 xn2 xni−1 xni xnN

Un(x)

Un(xni ) = (1 + hn)
i

FIGURE 203.2. The piecewise linear approximate solution Un(x) = (1 + hn)
i.

view Un(xni ) as the capital obtained at time xni = ihn starting with a unit
capital at time zero, if the interest rate at each capitalization is equal to
hn.
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To analyze the convergence of Un(x) as n → ∞, we first prove a bound
on the nodal values Un(xni ), by taking the logarithm of (203.8) and using
the inequality log(1 + x) ≤ x for x > 0 from Problem 201.4, to obtain

log(Un(xni ) = i log(1 + hn) ≤ ihn = xni ≤ 1 for i = 1, 2, .., N.

It follows that

Un(xni ) = (1 + hn)
i ≤ 4 for i = 1, 2, .., N, (203.9)

since log(4) > 1 according to Problem 201.1, and log(x) is increasing. Since
Un(x) is linear between the nodes, and obviously Un(x) ≥ 1, we find that
1 ≤ Un(x) ≤ 4 for all x ∈ [0, 1].
We now show that {Un(x)}∞n=1 is a Cauchy sequence for each fixed x ∈

[0, 1]. To see this, we first estimate |Un(x) − Un+1(x)| at the node points
x = xni = ihn = 2ihn+1 = xn+1

2i for i = 0, 1, ..., N , see Fig. 203.3. Notice
that hn+1 = hn/2 so that two steps with mesh size hn+1 corresponds to
one step with mesh size hn. We start by subtracting

x
xni−2 xni−1 xni

xn+1
2i−4 xn+1

2i−3 xn+1
2i−2 xn+1

2i−1 xn+1
2i

Un(x)

Un+1(x)
eni

FIGURE 203.3. Un(x) and Un+1(x).

Un+1(xn+1
2i ) = (1 + hn+1)U

n+1(xn+1
2i−1) = (1 + hn+1)

2Un+1(xn+1
2i−2),

from (203.6), using that xni = xn+1
2i , and setting eni = Un(xni )−Un+1(xni ),

to get
eni = (1 + hn)U

n(xni−1)− (1 + hn+1)
2Un+1(xni−1),

which we may rewrite using that (1 + hn+1)
2 = 1 + 2hn+1 + h2n+1 and

2hn+1 = hn, as

eni = (1 + hn)e
n
i−1 − h2n+1U

n+1(xni−1).

It follows using the bound 1 ≤ Un+1(x) ≤ 4 for x ∈ [0, 1], that

|eni | ≤ (1 + hn)|eni−1|+ 4h2n+1.
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Inserting the corresponding estimate for eni−1, we get

|eni | ≤ (1 + hn)((1 + hn)|eni−2|+ 4h2n+1) + 4h2n+1

= (1 + hn)
2|eni−2|+ 4h2n+1(1 + (1 + hn)).

Continuing this way and using that en0 = 0, we obtain for i = 1, ..., N ,

|eni | ≤ 4h2n+1

i−1∑

k=0

(1 + hn)
k = h2n

i−1∑

k=0

(1 + hn)
k.

Using now the fact that
i−1∑

k=0

zk =
zi − 1

z − 1
(203.10)

with z = 1 + hn, we thus obtain for i = 1, ..., N ,

|eni | ≤ h2n
(1 + hn)

i − 1

hn
= hn((1 + hn)

i − 1) ≤ 3hn,

where we again used that (1 + hn)
i = Un(xni ) ≤ 4. We have thus proved

that for x̄ = xnj , j = 1, ..., N ,

|Un(x̄)− Un+1(x̄)| = |enj | ≤ 3hn,

which is analogous to the central estimate (199.24) in the proof of the
Fundamental Theorem.
Iterating this estimate over n as in the proof of (199.25), we get for

m > n,
|Un(x̄)− Um(x̄)| ≤ 6hn, (203.11)

which shows that {Un(x̄)}∞n=1 is a Cauchy sequence and thus converges
to a real number u(x̄), which we choose to denote by exp(x̄) = ex̄. As
in the proof of the Fundamental Theorem we can extend to a function
u(x) = exp(x) = ex defined for x ∈ [0, 1]. Letting m tend to infinity in
(203.11), we see that

|Un(x) − exp(x)| ≤ 6hn for x ∈ [0, 1]. (203.12)

By the construction, we have if x̄ = jhn so that hn = x̄
j , noting that

j → ∞ as n→ ∞:

exp(x̄) = lim
n→∞

(1 + hn)
j = lim

j→∞
(1 +

x̄

j
)j ,

that is,

exp(x) = lim
j→∞

(1 +
x

j
)j for x ∈ [0, 1]. (203.13)
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In particular, we define the number e by

e ≡ exp(1) = lim
j→∞

(1 +
1

j
)j . (203.14)

We refer to e as the base of the exponential function. We will prove below
that log(e) = 1.
It remains to verify that the function u(x) = exp(x) = ex constructed

above, indeed satisfies (203.1) for 0 < x ≤ 1. We note that choosing x̄ = jhn
and summing over i in (203.6), we get

Un(x̄) =

j∑

i=1

Un(xni−1)hn + 1,

which we can write as

Un(x̄) =

j∑

i=1

u(xni−1)hn + 1 + En,

where u(x) = exp(x), and using (203.12),

|En| = |
j∑

i=1

(Un(xni−1)− u(xni−1))hn| ≤ 6hn

j∑

i=1

hn ≤ 6hn,

since obviously
∑j

i=1 hn ≤ 1. Letting n tend to infinity and using
limn→∞En = 0, we see that u(x̄) = exp(x̄) satisfies

u(x̄) =

∫ x̄

0

u(x) dx + 1.

Differentiating this equality with respect to x̄, we get u′(x̄) = u(x̄) for
x̄ ∈ [0, 1], and we have now proved that the constructed function u(x)
indeed solves the given initial value problem.
We conclude the proof by showing uniqueness. Thus, assume that we have

two uniformly differentiable functions u(x) and v(x) such that u′(x) = u(x)
and v′(x) = v(x) for x ∈ (0, 1], and u(0) = v(0) = 1. The w = u−v satisfies
w′(x) = w(x) and w(0) = 0, and thus by the Fundamental Theorem,

w(x) =

∫ x

0

w′(y) dy =

∫ x

0

w(y) dy for x ∈ [0, 1].

Setting a = max0≤x≤0.5 |w(x)|, we thus have

a ≤
∫ 0.5

0

a dy = 0.5a
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which is possible only if a = 0 showing uniqueness for 0 ≤ x ≤ 0.5. Re-
peating the argument on [0.5, 1] proves that w(x) = 0 for x ∈ [0, 1] and the
uniqueness follows.
The proof immediately generalizes to x ∈ [0, b] where b is any positive

real number. We now summarize:

Theorem 203.1 The initial value problem u′(x) = u(x) for x > 0, and
u(0) = 1, has a unique solution u(x) = exp(x) given by (203.13).

203.3 Extension of the Exponential exp(x) to
x < 0

If we define

exp(−x) = 1

exp(x)
for x ≥ 0,

then we find that

D exp(−x) = D
1

exp(x)
= −D exp(x)

(exp(x))2
= − 1

exp(x)
= − exp(−x).

(203.15)
We conclude that exp(−x) solves the initial value problem

u′(x) = −u(x) for x > 0, u(0) = 1.

203.4 The Exponential Function exp(x) for x ∈ R

Piecing together the functions exp(x) and exp(−x) with x ≥ 0, we obtain
the function u(x) = exp(x) defined for x ∈ R, which satisfies u′(x) = u(x)
for x ∈ R and u(0) = 1, see Fig. 203.4 and Fig. 203.5.
To see that d

dx exp(x) for x < 0, we set y = −x > 0 and compute
d
dx exp(x) = d

dy exp(−y)
dy
dx = − exp(−y)(−1) = exp(x), where we used

(203.15).

203.5 An Important Property of exp(x)

We now prove the basic property of the exponential function exp(x) using
the fact that exp(x) satisfies the differential equation D exp(x) = exp(x).
We start considering the initial value problem

u′(x) = u(x) for x > a, u(a) = ua, (203.16)



203.5 An Important Property of exp(x) 1289

−8 −6 −4 −2 0 2 4 6 8
0

500

1000

1500

2000

2500

3000

FIGURE 203.4. The exponential exp(x) for x ∈ [−2.5, 2.5]
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FIGURE 203.5. The exponential exp(x) for x ∈ [−8, 8]

with initial value at some point a other than zero. Setting x = y + a and
v(y) = u(y + a) = u(x), we obtain by the Chain rule

v′(y) =
d

dy
u(y + a) = u′(y + a)

d

dy
(y + a) = u′(x),

and thus v(y) satisfies the differential equation

v′(y) = v(y) for y > 0, v(0) = ua.

This means that
v(y) = exp(y)ua for y > 0.

Going back to the original variables, using that y = x− a, we find that the
solution of (203.16) is given by

u(x) = exp(x− a)ua for x ≥ a. (203.17)

We now prove that for a, b ∈ R,

exp(a+ b) = exp(a) exp(b) or ea+b = eaeb, (203.18)
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which is the basic property of the exponential function. We do this by using
the fact that u(x) = exp(x) satisfies the differential equation u′(x) = u(x)
and exp(0) = 1. We have on the one hand that u(a+ b) = exp(a+ b) is the
value of the solution u(x) for x = a+b. We may reach to x = a+b, assuming
0 < a, b to start with, by first computing the solution u(x) = exp(x) from
x = 0 up to x = a, which gives u(a) = exp(a). We next consider the
following problem

v′(x) = v(x) for x > a, v(a) = exp(a)

with solution v(x) = exp(x − a) exp(a) for x ≥ a. We have v(x) = u(x)
for x ≥ a, since u(x) also solves u′(x) = u(x) for x > a, and u(a) =
exp(a). Thus v(b+a) = u(a+ b), which translates into the desired equality
exp(b) exp(a) = exp(a+ b). The proof extends to any a, b ∈ R.

203.6 The Inverse of the Exponential Is the
Logarithm

We shall now prove that

log(exp(x)) = x for x ∈ R, (203.19)

and conclude that

y = exp(x) if and only if x = log(y), (203.20)

which states that the inverse of the exponential is the logarithm.
We prove (203.19) by differentiation to get by the Chain rule for x ∈ R,

d

dx
(log(exp(x)) =

1

exp(x)

d

dx
(exp(x)) =

1

exp(x)
exp(x) = 1,

and noting that log(exp(0)) = log(1) = 0, which gives (203.19). Setting
x = log(y) in (203.19), we have log(exp(log(y))) = log(y), that is

exp(log(y)) = y for y > 0. (203.21)

We note in particular that

exp(0) = 1 and log(e) = 1 (203.22)

since 0 = log(1) and e = exp(1) respectively.
In many Calculus books the exponential function exp(x) is defined as the

inverse of the logarithm log(x) (which is defined as an integral). However,
we prefer to directly prove the existence of exp(x) through its defining
initial value problem, since this prepares the construction of solutions to
general initial value problems.
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203.7 The Function ax with a > 0 and x ∈ R

We recall that in Chapter The function y = xr we defined the function xr

for r = p/q rational with p and q 6= 0 integers, and x is a positive real
number, as the solution y to the equation yq = xp.
We thus are familiar with ax with a > 0 and x rational, and we may

extend to x ∈ R by defining:

ax = exp(x log(a)). (203.23)

We now prove the basic properties of ax with x ∈ R, that is, the positive
number a raised to the power x ∈ R, extending our previous experience
with x rational. We note that by the Chain rule the function u(x) = ax

satisfies the differential equation

u′(x) = log(a)u(x)

and u(0) = 1. In particular, choosing a = e = exp(1), we find that ax =
ex = exp(x), and we thus conclude that the exponential function exp(x)
indeed equals the number e raised to the power x. Note that before we just
used ex just as a another notation for exp(x).
Using now the exponential law (203.18) for exp(x), we obtain with a

direct computation using the definition (203.23) the following analog for
ax:

ax+y = axay. (203.24)

The other basic rule for ax reads:

(ax)y = axy, (203.25)

which follows from the following computation:

(ax)y = exp(y log(ax)) = exp(y log(exp(x log(a)))) = exp(yx log(a)) = axy.

As indicated, the rules (203.24) and (203.25) generalize the corresponding
rules with x and y rational proved above.
We conclude computing the derivative of the function ax from the defi-

nition (203.23) using the Chain rule:

d

dx
ax = log(a)ax. (203.26)

Chapter 203 Problems

203.1. Define Un(xni ) alternatively by Un(xni ) = Un(xni−1) ± hnU
n(xni ), and

prove that the corresponding sequence {Un(x)} converges to exp(±x).
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FIGURE 203.6. Examples of functions xr and ax.

203.2. Prove that for x > 0

(1 +
x

n
)n < exp(x) for n = 1, 2, 3 . . . . (203.27)

Hint: Take logarithm and use that log(1+x) < x for x > 0, and that the logarithm
is increasing.

203.3. Prove directly the existence of a unique solution of u′(x) = −u(x) for
x > 0, u(0) = 1, that is construct exp(−x) for x ≥ 0.

203.4. Show that the more often the bank capitalizes your interest, the better
off you are, that is verify that

(1 +
a

n
)n ≤ (1 +

a

n+ 1
)n+1. (203.28)

Hint: Use the Binomial theorem.

203.5. Assume a bank offers “continuous capitalization” of the interest, cor-
responding to the (annual) interest rate a. What is then the “effective annual
interest rate”?

203.6. Prove the differentiation formula d
dx
xr = rxr−1 for r ∈ R.

203.7. Prove the basic properties of the exponential function using that it is the
inverse of the logarithm and use properties of the logarithm.

203.8. Given that the equation u′(x) = u(x) has a solution for x ∈ [0, 1] with
u(0) = 1, construct a solution for all x ≥ 0. Hint: use that if u(x) satisfies
u′(x) = u(x) for 0 < x ≤ 1, then v(x) = u(x − 1) satisfies v′(x) = v(x) for
1 < x ≤ 2 and v(1) = u(0).

203.9. Give the Taylor polynomial of order n with error term for exp(x) at
x = 0.

203.10. Find a primitive function to (a) x exp(−x2), (b) x3 exp(−x2).
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203.11. Compute the derivatives of the following functions: a) f(x) = ax, a > 0,
b) f(x) = exp(x + 1), c) f(x) = x exp(x2), d) f(x) = x3 exp(x2), e) f(x) =
exp(−x2).

203.12. Compute the integrals
∫ 1

0
f(x)dx of the functions in the previous exer-

cise, except for the one in e), f(x) = exp(−x2). Why do you think we left this
one out?

203.13. Try to find the value of
∫∞
−∞ exp(−x2)dx numerically by quadrature.

Square the result. Do you recognize this number?

203.14. Show that exp(x) ≥ 1 + x for all x, not just for x > −1.

203.15. Show, by induction, that

dn

dxn
(exf(x)) = ex

(
1 +

d

dx

)n
f(x).

203.16. Prove (203.24) using the basic property (203.18) of the exponential and
the definition (203.23).

203.17. Construct directly, without using the exponential function, the solution
to the initial value problem u′(x) = au(x) for x ≥ 0 with u(0) = 1, where a is a
real constant. Call the solution aexp(x). Prove that the function aexp(x) satisfies
aexp(x+ y) = aexp(x)aexp(y) for x, y ≥ 0.

203.18. Define with a > 0 given, the function y = loga(x) for x > 0 as the
solution y to the equation ay = x. With a = e we get loge(x) = log(x), the
natural logarithm. With a = 10 we get the so-called 10-logarithm. Prove that (i)
loga(xy) = loga(x) + loga(y) for x, y > 0, (ii) loga(x

r) = rloga(x) for x > 0 and
r ∈ R, and (iii) loga(x) log(a) = log(x) for x > 0.

203.19. Give the details of the proof of (203.26).
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204
Trigonometric Functions

When I get to the bottom, I go back to the top of the slide where I
stop and I turn and I go for a ride ’til I get to the bottom and I see
you again. (Helter Skelter, Lennon-McCartney, 1968)

204.1 The Defining Differential Equation

In this chapter, we shall study the following initial value problem for a
second order differential equation: Find a function u(x) defined for x ≥ 0
satisfying

u′′(x) = −u(x) for x > 0, u(0) = u0, u
′(0) = u1, (204.1)

where u0 and u1 are given initial data. We here require two initial conditions
because the problem involves a second order derivative. We may compare
with the first order initial value problem: u′(x) = −u(x) for x > 0, u(0) =
u0, with the solution u(x) = exp(−x), which we studied in the previous
chapter.
We shall demonstrate below, in Chapter The general initial value prob-

lem, that (204.1) has a unique solution for any given values of u0 and u1,
and we shall in this chapter show that the solution with initial data u0 = 0
and u1 = 1 is an old friend, namely, u(x) = sin(x), and the solution with
u0 = 1 and u1 = 0 is u(x) = cos(x). Here sin(x) and cos(x) are the usual
trigonometric functions defined geometrically in Chapter Pythagoras and
Euclid, with the change that we measure the angle x in the unit of radians
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instead of degrees, with one radian being equal to 180
π degrees. In particular,

we shall explain why one radian equals 180
π degrees.

We may thus define the trigonometric functions sin(x) and cos(x) as the
solutions of (204.1) with certain initial data if we measure angles in the
unit of radian. This opens a fresh route to understanding properties of the
trigonometric functions by studying properties of solutions the differential
equation (204.1), and we shall now explore this possibility.
We start by rewriting (204.1) changing the independent variable from

x to t, since to aid our intuition we will use a mechanical interpretation
of (204.1), where the independent variable represents time. We denote the

derivative with respect to t with a dot, so that u̇ = du
dt , and ü = d2u

dt2 . We
thus rewrite (204.1) as

ü(t) = −u(t) for t > 0, u(0) = 0, u̇(0) = 1, (204.2)

where we chose u0 = 0 and u1 = 1 anticipating that we are looking for
sin(t).
We now recall that (204.2) is a model of the motion of unit mass along

a friction-less horizontal x-axis with the mass connected to one end of a
Hookean spring with spring constant equal to 1 and with the other end
connected to the origin, see Fig. ??. We let u(t) denotes the position
(x−coordinate) of the mass at time t, and we assume that the mass is
started at time t = 0 at the origin with speed u̇(0) = 1, that is, u0 = 0
and u1 = 1. The spring exerts a force on the mass directed towards the
origin, which is proportional to the length of the spring, since the spring
constant is equal to 1, and the equation (204.2) expresses Newton’s law:
the acceleration ü(t) is equal to the spring force −u(t). Because there is no
friction, we would expect the mass to oscillate back and forth across the
equilibrium position at the origin. We plot the solution u(t) to (204.2) in
Fig. 204.1, which clearly resembles the plot of the sin(t) function.
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FIGURE 204.1. The solution of (204.2). Is it the function sin(t)?
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Let’s now prove that our intuitive feeling indeed is correct, that is, let us
prove that the solution of (204.2) indeed is our old friend sin(t). The key
step then turns out to be to multiply our equation ü+ u = 0 by u̇, to get

d

dt
(u̇2 + u2) = 2u̇ü+ 2uu̇ = 2u̇(ü + u) = 0.

We conclude that u̇2(t)+u2(t) is constant for all t, and since u̇2(0)+u2(0) =
1 + 0 = 1, we have found that the solution u(t) of (204.2) satisfies the
conservation property

u̇2(t) + u2(t) = 1 for t > 0, (204.3)

which states that the point (u̇(t), u(t)) ∈ R2 lies on the unit circle in R2,
see Fig. 204.2.
We remark that in mechanical terms, the relation (204.3) expresses that

the total energy

E(t) ≡ 1

2
u̇2(t)) +

1

2
u2(t), (204.4)

is preserved (= 1/2) during the motion. The total energy at time t is the
sum of the kinetic energy u̇2(t)/2, and the potential energy u2(t)/2. The
potential energy is the energy stored in the spring, which is equal to the
work W (u(t)) to stretch the spring the distance u(t):

W (u(t)) =

∫ u(t)

0

v dv =
1

2
u2(t),

where we used the principle that to stretch the spring from v to v+∆v, the
work is v∆v since the spring force is v. At the extreme points with u̇(t) = 0,
the kinetic energy is zero and all energy occurs as potential energy, while
all energy occurs as kinetic energy when the body passes the origin with
u(t) = 0. During the motion of the body, the energy is thus periodically
transferred from kinetic energy to potential energy an back again.
Going now back to (204.3), we thus see that the point (u̇(t), u(t)) ∈

R2 moves on the unit circle and the velocity of the motion is given by
(ü(t), u̇(t)), which we obtain by differentiating each coordinate function
with respect to t. We will return to this issue in Chapter Curves below.
Using the differential equation ü+ u = 0, we see that

(ü(t), u̇(t)) = (−u(t), u̇(t)),

and conclude recalling (204.3) that the modulus of the velocity is equal
to 1 for all t. We conclude that the point (u̇(t), u(t)) moves around the
unit circle with unit velocity and at time t = 0 the point is at position
(1, 0). But this directly connects with the usual geometrical definition of
(cos(t), sin(t)) as the coordinates of a point on the unit circle at the angle
t, see Fig. 204.2, so that we should have (u̇(t), u(t)) = (cos(t), sin(t)). To
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make this connection straight, we of course need to measure angles properly,
and the proper measure is radians with 2π radians corresponding to 360
degrees. This is because the time for one revolution with speed 1 should be
equal to 2π, that is the length of the circumference of the unit circle.
In fact, we can use the solution sin(t) of the initial value problem (204.2)

to define the number π as the smallest positive root t̄ of sin(t), correspond-
ing to one half revolution with u(t̄) = 0 and u̇(t̄) = −1.

t x

y

x2+y2=1

(cos(t), sin(t))

(− sin(t), cos(t))

FIGURE 204.2. Energy conservation.

Wemay now conclude that the solution u(t) of (204.2) satisfies (u̇(t), u(t))
= (cos(t), sin(t)), so that in particular u(t) = sin(t) and d

dt sin(t) = cos(t),
where (cos(t), sin(t)) is defined geometrically as the point on the unit circle
of angle t radians.
We can now turn the argument around, and simply define sin(t) as the

solution u(t) to (204.2) with u0 = 0 and u1 = 1, and then define cos(t) =
d
dt sin(t). Alternatively, we can define cos(t) as the solution of the problem

v̈(t) = −v(t) for t > 0, v(0) = 1, v̇(0) = 0, (204.5)

which we obtain by differentiation of (204.2) with respect to t and us-
ing the initial conditions for sin(t). Differentiating once more, we see that
d
dt cos(t) = − sin(t).
Both sin(t) and cos(t) will be periodic with period 2π, because the point

(u̇(t), u(t)) moves around the unit circle with velocity one and comes back
the same point after a time period of 2π. As we said, we may in particular
define π as the first value of t > 0 for which sin(t) = 0, which corresponds
the point (u̇, u) = (−1, 0), and 2π will then be time it takes for the point
(u̇, u) to make one complete revolution starting at (1, 0), moving to (−1, 0)
following the upper semi-circle and then returning to (1, 0) following the
lower semi-circle. The periodicity of u(t) with period 2π is expressed as

u(t+ 2nπ) = u(t) for t ∈ R, n = 0,±1,±2, ... (204.6)
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The energy conservation (204.3) translates into the most well known of
all trigonometric formulas:

sin2(t) + cos2(t) = 1 for t > 0. (204.7)
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t

y

y = cos(t)

FIGURE 204.3. The function cos(t)!

To compute the values of sin(t) and cos(t) for a given t, we may compute
the solution to the corresponding defining differential initial value problem.
We return to this topic below.
We summarize:

Theorem 204.1 The initial value problem u′′(x)+u(x) = 0 for x > 0 with
u0 = 0 and u1 = 1, has a unique solution, which is denoted by sin(x). The
initial value problem u′′(x) + u(x) = 0 for x > 0 with u0 = 1 and u1 = 0,
has a unique solution, which is denoted by cos(x). The functions sin(x) and
cos(x) extend to x < 0 as solutions of u′′(x) + u(x) = 0 and are periodic
with period 2π, and sin(π) = 0, cos(π2 ) = 0. We have d

dx sin(x) = cos(x)

and d
dx cos(x) = − sin(x). Further cos(−x) = cos(x), cos(π−x) = − cos(x),

sin(π − x) = sin(x), sin(−x) = − sin(x), cos(x) = sin(π2 − x), sin(x) =
cos(π2 − x), sin(π2 + x) = cos(x), and cos(π2 + x) = − sin(x).

204.2 Trigonometric Identities

Using the defining differential equation u′′(x)+u(x) = 0, we can verify the
following basic trigonometric identities for x, y ∈ R:

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y) (204.8)

sin(x− y) = sin(x) cos(y)− cos(x) sin(y) (204.9)

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y) (204.10)

cos(x− y) = cos(x) cos(y) + sin(x) sin(y). (204.11)
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For example, to prove (204.8), we note that both the right hand and left
hand side satisfy the equation u′′(x) + u(x) = 0, and the initial conditions
u(0) = sin(y), u′(0) = cos(y), with y acting as a parameter, and thus are
equal.
We note the particular special cases:

sin(2x) = 2 sin(x) cos(x) (204.12)

cos(2x) = cos2(x) − sin2(x) = 2 cos2(x) − 1 = 1− 2 sin2(x). (204.13)

Adding (204.8) and (204.9), we obtain

sin(x+ y) + sin(x− y) = 2 sin(x) cos(y).

Setting x̄ = x+ y and ȳ = x− y we obtain the first of the following set of
formulas, all proved similarly,

sin(x̄) + sin(ȳ) = 2 sin(
x̄+ ȳ

2
) cos(

x̄− ȳ

2
) (204.14)

sin(x̄)− sin(ȳ) = 2 cos(
x̄+ ȳ

2
) sin(

x̄− ȳ

2
) (204.15)

cos(x̄) + cos(ȳ) = 2 cos(
x̄+ ȳ

2
) cos(

x̄− ȳ

2
) (204.16)

cos(x̄)− cos(ȳ) = −2 sin(
x̄+ ȳ

2
) sin(

x̄− ȳ

2
). (204.17)

204.3 The Functions tan(x) and cot(x) and Their
Derivatives

We define

tan(x) =
sin(x)

cos(x)
, cot(x) =

cos(x)

sin(x)
, (204.18)

for values of x such that the denominator is different from zero. We compute
the derivatives

d

dx
tan(x) =

cos(x) cos(x) − sin(x)(− sin(x))

cos2(x)
=

1

cos2(x)
, (204.19)

and similarly
d

dx
cot(x) = − 1

sin2(x)
. (204.20)

Dividing (204.8) by (204.10), and dividing both numerator and denomina-
tor by cos(x) cos(y), we obtain

tan(x+ y) =
tan(x) + tan(y)

1− tan(x) tan(y)
, (204.21)
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and similarly,

tan(x− y) =
tan(x) − tan(y)

1 + tan(x) tan(y)
. (204.22)

204.4 Inverses of Trigonometric Functions

Inverses of the basic trigonometric functions sin(x), cos(x), tan(x) and
cot(x), are useful in applications. We now introduce and give names to
these inverses and derive their basic properties.
The function f(x) = sin(x) is strictly increasing from −1 to 1 on [−π2 ,

π
2 ],

because the derivative f ′(x) = cos(x) is positive on (−π2 ,
π
2 ). Thus the

function y = f(x) = sin(x) with D(f) = [−π2 ,
π
2 ] and R(f) = [−1, 1],

therefore has an inverse x = f−1(y), which we denote by

x = f−1(y) = arcsin(y), (204.23)

and D(f−1) = D(arcsin) = [−1, 1] and R(f−1) = R(arcsin) = [−π2 ,
π
2 ], see

Fig. 204.4.

x

y

y

−1

1

−π/2
π/2

y = sin(x)

x = arcsin(y)

FIGURE 204.4. The function x = arcsin(y)

We thus have

sin(arcsin(y)) = y arcsin(sin(x)) = x for x ∈ [
−π
2
,
π

2
], y ∈ [−1, 1].

(204.24)
We next compute the derivative of arcsin(y) with respect to y:

d

dy
arcsin(y) =

1
d
dx sin(x)

=
1

cos(x)
=

1√
1− sin2(x)

=
1√

1− y2
.

Similarly, the function y = f(x) = tan(x) is strictly increasing onD(f) =
(−π2 ,

π
2 ) and R(f) = R, and thus has an inverse, which we denote by

x = f−1(y) = arctan(y),
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x

y

y

−π/2
π/2

y = tan(x)

x = arctan(y)

FIGURE 204.5. The function x = arctan(y)

with D(arctan) = R and R(arctan) = (−π2 ,
π
2 ), see Fig. 204.5.

We compute the derivative of arctan(y):

d

dy
arctan(y) =

1
d
dx tan(x)

= cos2(x)

=
cos2(x)

cos2(x) + sin2(x)
=

1

1 + tan2(x)
=

1

1 + y2
.

We define similarly the inverse of y = f(x) = cos(x) with D(f) = [0, π]
and denote the inverse by x = f−1(y) = arccos(y) with D(arccos) = [−1, 1]
and R(arccos) = [0, π]. We have

d

dy
arccos(y) =

1
d
dx cos(x)

= − 1

sin(x)
= − 1√

1− cos2(x)
= − 1√

1− y2
.

Finally, we define the inverse of y = f(x) = cot(x) with D(f) = (0, π)
and denote the inverse by x = f−1(y) = arccot(y) with D(arccot) = R and
R(arccot) = (0, π). We have

d

dy
arccot(y) =

1
d
dx cot(x)

= − sin2(x) = − sin2(x)

cos2(x) + sin2(x)

= − 1

1 + cot2(x)
= − 1

1 + y2
.
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We summarize:

d

dx
arcsin(x) =

1√
1− x2

for x ∈ (−1, 1)

d

dx
arccos(x) = − 1√

1− x2
for x ∈ (−1, 1)

d

dx
arctan(x) =

1

1 + x2
for x ∈ R

d

dx
arccot(x) = − 1

1 + x2
for x ∈ R.

(204.25)

In other words,

arcsin(x) =

∫ x

0

1√
1− y2

dy for x ∈ (−1, 1)

arccos(x) =
π

2
−
∫ x

0

1√
1− y2

dy for x ∈ (−1, 1)

arctan(x) =

∫ x

0

1

1 + y2
dy for x ∈ R

arccot(x) =
π

2
−
∫ x

0

1

1 + y2
dy for x ∈ R.

(204.26)

We also note the following analog of (204.21) obtained by setting x =
arctan(u) and y = arctan(v), so that u = tan(x) and v = tan(y), and
assuming that x+ y ∈ (−π

2 ,
π
2 ):

arctan(u) + arctan(v) = arctan(
u+ v

1− uv
). (204.27)

204.5 The Functions sinh(x) and cosh(x)

We define for x ∈ R

sinh(x) =
ex − e−x

2
and cosh(x) =

ex + e−x

2
. (204.28)

We note that

Dsinh(x) = cosh(x) and Dcosh(x) = sinh(x). (204.29)

We have y = f(x) = sinh(x) is strictly increasing and thus has an in-
verse x = f−1(y) = arcsinh(y) with D(arcsinh) = R and R(arcsinh) = R.
Further, y = f(x) = cosh(x) is strictly increasing on [0,∞), and thus
has an inverse x = f−1(y) = arccosh(y) with D(arccosh) = [1,∞) and
R(arccosh) = [0,∞). We have

d

dy
arcsinh(y) =

1√
y2 + 1

,
d

dy
arccosh(y) =

1√
y2 − 1

. (204.30)
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204.6 The Hanging Chain

Consider a hanging chain fixed at (−1, 0) and (1, 0) in a coordinate system
with the x-axis horizontal and y-axis vertical. Let us seek the curve y = y(x)
described by the chain. Let (Fh(x), Fv(x)) be the two components of the
force in the chain at x. Vertical and horizontal equilibrium of the element
of the chain between x and x+∆x gives

Fh(x+∆x) = Fh(x), Fv(x) +m∆s = Fv(x+∆x),

where ∆s ≈
√
(∆x)2 + (∆y)2 ≈

√
1 + (y′(x))2∆x, and m is the weight of

the chain per unit length. We conclude that Fh(x) = Fh is constant, and

F ′
v(x) = m

√
1 + (y′(x))2.

Momentum equilibrium around the midpoint of the element of the chain
between x and x+∆x, gives

Fh∆y =
1

2
Fv(x+∆x)∆x +

1

2
Fv(x)∆x ≈ Fv(x)∆x,

which leads to

y′(x) =
Fv(x)

Fh
. (204.31)

Assuming that Fh = 1, we are thus led to the differential equation

F ′
v(x) = m

√
1 + (Fv(x))2.

We can check by direct differentiation that this differential equation is
satisfied if Fv(x) solves the equation

arcsinh(Fv(x)) = mx,

and we also have Fv(0) = 0. Therefore

Fv(x) = sinh(mx),

and thus by (204.31),

y(x) =
1

m
cosh(mx) + c

with the constant c to be chosen so that y(±1) = 0. We thus obtain the
following solution

y(x) =
1

m
(cosh(mx)− cosh(m)). (204.32)

The curve y(x) = cosh(mx)+c withm and c constants, is called the hanging
chain curve, or the catenaria.
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204.7 Comparing u′′ + k2u(x) = 0 and
u′′ − k2u(x) = 0

We summarize some experience from above. The solutions of the equation
u′′ + k2u(x) = 0 are linear combinations of sin(kx) and cos(kx). The solu-
tions of u′′ − k2u(x) = 0 are linear combinations of sinh(kx) and cosh(kx).

Chapter 204 Problems

204.1. Show that the solution of ü(t) + u(t) = 0 for t > 0 with u(0) = sin(α)
and u′(0) = cos(α) is given by u(t) = cos(t) sin(α) + sin(t) cos(α) = sin(t+ α).

204.2. Show that the solution of ü(t)+u(t) = 0 for t > 0 with u(0) = r cos(α) and
u′(0) = r sin(α) is given by u(t) = r(cos(t) cos(α) + sin(t) sin(α)) = r cos(t− α).

204.3. Show that the solution to ü(t) + ku(t) = 0 for t > 0 with u(0) =
r cos(α) and u′(0) = r sin(α), where k is a given positive constant, is given by
r cos(

√
k(t− α)). Give a mechanical interpretation of this model.

204.4. Show that the function sin(nx) solves the boundary value problem u′′(x)+
n2u(x) = 0 for 0 < x < π, u(0) = u(π) = 0.

204.5. Solve u′(x) = sin(x), x > π/4, u(π/4) = 2/3 .

204.6. Show that (a) sin(x) < x for x > 0, (b) x < tan(x) for 0 < x < π
2
.

204.7. Show that limx→0
sin(x)
x

= 1.

204.8. Show the following relations from the definition, i.e. from the differential
equation defining sin(x) and cos(x): (a) sin(−x) = − sin(x), (b) cos(−x) = cos(x),
(c) sin(π − x) = sin(x), (d) cos(π − x) = − cos(x), (e) sin(π/2− x) = cos(x), (f)
cos(π/2− x) = sin(x).

204.9. Prove the product formulas show that

sin(x) sin(y) =
1

2
(cos(x− y)− cos(x+ y)) ,

cos(x) cos(y) =
1

2
(cos(x− y) + cos(x+ y)) ,

sin(x) cos(y) =
1

2
(sin(x− y) + sin(x+ y)) .

204.10. Compute the following integrals by integrating by parts:

(a)
∫ 1

0
x3 sin(x)dx, ( b)

∫ 1

0
exp(x) sin(x)dx, (c)

∫ 1

0
x2 cos(x)dx.

204.11. Determine Taylor’s formula for arctan(x) at x = 0 and use your result
to calculate approximations of π. Hint: arctan(1) = π

4
.
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204.12. Show that arctan(1) = arctan(1/2) + arctan(1/3). Try to find other ra-
tional numbers a and b such that arctan(1) = arctan(a)+arctan(b). In particular
seek to find a and b as small as possible.

204.13. Combine your results from the previous two exercises to construct a
better algorithm for computing π. Even more efficient methods may be obtained
using the identity π/4 = 4 arctan(1/5) − arctan(1/239). Compare the two algo-
rithms and explain why the second is more efficient.

204.14. Show that: (a) arcsin(−x) = − arcsin(x), (b) arccos(−x) = π−arccos(x),
(c) arctan(−x) = − arctan(x), (d) arccot(−x) = π − arccot(x), (e) arcsin(x) +
arccos(x) = π/2, (f) arctan(x) + arccot(x) = π/2.

204.15. Calculate analytically: (a) arctan(
√
2−1), (b) arctan(1/8)+arctan(7/9),

(c) arcsin(1/7) + arcsin(11/4), (d) tan(arcsin(3/5)/2), (e) sin(2 arcsin(0.8)), (f)
arctan(2) + arcsin(3/

√
10).

204.16. Solve the equation: (a) arccos(2x) = arctan(x), (b) arcsin(cos(x)) =
x
√
3.

204.17. Calculate the derivative, if possible, of

(a) arctan(
√
x− x5), (b) arcsin(1/x2) arcsin(x2),

(c) tan(arcsin(x2)), (d) 1/ arctan(
√
x).

204.18. Compute numerically for different values of x, (a) arcsin(x), (b) arccos(x),
(c) arctan(x), (d) arccot(x).

204.19. Prove (204.30).

204.20. Verify that cosh2(x)− sinh2(x) = 1.

204.21. (a) Find the inverse x = arcsinh(y) of y = sinh(x) = 1
2
(ex − e−x) by

solving for x in terms of y. Hint: Multiply by ex and solve for z = ex. Then take
logarithms. (b) Find a similar formula for arccosh(y).

204.22. Compute analytically the area of a disc of radius 1 by computing the
integral ∫ 1

−1

√
1− x2 dx.

How do you handle the fact that
√
1− x2 is not Lipschitz continuous on [−1, 1]?

Hint: Use the substitution x = sin(y) and the fact the cos2(y) = 1
2
(1 + cos(2y)).
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205
The Functions exp(z), log(z), sin(z)
and cos(z) for z ∈ C

The shortest path between two truths in the real domain passes
through the complex domain. (Hadamard 1865-1963)

205.1 Introduction

In this chapter we extend some of the elementary functions to complex
arguments. We recall that we can write a complex number z in the form
z = |z|(cos(θ) + i sin(θ)) with θ = arg z the argument of z, and 0 ≤ θ =
Arg z < 2π the principal argument of z.

205.2 Definition of exp(z)

We define, writing z = x+ iy with x, y ∈ R,

exp(z) = ez = ex(cos(y) + i sin(y)), (205.1)

which extends the definition of ez with z ∈ R to z ∈ C. We note that in
particular for y ∈ R,

eiy = cos(y) + i sin(y), (205.2)

which is also referred to as Euler’s formula. We note that

sin(y) =
eiy − e−iy

2i
, cos(y) =

eiy + e−iy

2
, for y ∈ R, (205.3)
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and
|eiy| = 1 for y ∈ R. (205.4)

We can now express a complex number z = r(cos(θ) + i sin(θ)) in the
form

z = reiθ (205.5)

with θ = arg z and r = |z|.
One can prove (using the basic trigonometric formulas) that exp(z) sat-

isfies the usual law for exponentials so that in particular for z, ζ ∈ C,

ezeζ = ez+ζ . (205.6)

In particular, the rule for multiplication of two complex numbers z = |z|eiθ
and ζ = |ζ|eiϕ can be expressed as follows:

zζ = |z|eiθ|ζ|eiϕ = |z||ζ|ei(θ+ϕ). (205.7)

205.3 Definition of sin(z) and cos(z)

We define for z ∈ C

sin(z) =
eiz − e−iz

2i
, cos(z) =

eiz + e−iz

2
, (205.8)

which extends (205.3) to C.

205.4 de Moivres Formula

We have for θ ∈ R and n an integer

(eiθ)n = einθ,

that is,
(cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ), (205.9)

which is referred to as de Moivres formula. In particular,

(cos(θ) + i sin(θ))2 = cos(2θ) + i sin(2θ),

from which follows separating into real and complex parts

cos(2θ) = cos2(θ)− sin2(θ), sin(2θ) = 2 cos(θ) sin(θ).

Using de Moivres formula gives a quick way of deriving some of the basic
trigonometric formulas (in case one has forgotten these formulas).
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205.5 Definition of log(z)

We have defined above log(x) for x > 0 and we now pose the problem of
defining log(z) for z ∈ C. We recall that w = log(x) can be viewed as the
unique solution to the equation ew = x, where x > 0. We consider therefore
the equation

ew = z,

with z = |z|(cos(θ)+ i sin(θ)) ∈ C being given assuming z 6= 0, and we seek
w = Re w + iIm w ∈ C, with the intention to call a solution w = log(z).
Here Re w and Im w denote the real and imaginary parts of w. Equating
the modulus of both sides of the equation ew = z, we get

eRe w = |z|,

and thus
Re w = log(|z|).

Further, equating the argument of both sides, we get

Im w = θ = arg z,

and thus
w = log(|z|) + i arg z.

We are thus led to define

log(z) = log(|z|) + i arg z, (205.10)

which extends the definition of the natural logarithm from the positive real
numbers to non-zero complex numbers. We see that the imaginary part
log(z) is not uniquely defined up to multiples of 2π, since arg z is not, and
thus log(z) is multi-valued: the imaginary part of log(z) is not uniquely
defined up to multiples of 2π. Choosing θ = Arg z with 0 ≤ Arg z < 2π,
we obtain the principal branch of log(z) denoted by

Log(z) = log(|z|) + iArg z.

We see that if we let arg z increase from 0 beyond 2π, the function Log (z)
will be discontinuous at Im z = 2π. We thus have to remember that the
imaginary part of log(z) is not uniquely defined.

Chapter 205 Problems

205.1. Describe in geometrical terms the mappings f : C → C given by (a)
f(z) = exp(z), (b) f(z) = Log(z), (c) sin(z).
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206
Techniques of Integration

A poor head, having subsidiary advantages,.... can beat the best,
just as a child can draw a line with a ruler better than the greatest
master by hand. (Leibniz)

206.1 Introduction

It is not generally possible to find an explicit formula for a primitive func-
tion of a given arbitrary function in terms of known elementary functions,
by which we mean the polynomials, rational functions, root functions, ex-
ponentials and trigonometric functions along with their inverses and com-
binations. It is not even true that the primitive function of an elementary
function is another elementary function. A famous example is given by the
function f(x) = exp(−x2), whose primitive function F (x) (with F (0) = 0),
which exists by the Fundamental Theorem, is known not to be an elemen-
tary function (by a tricky proof by contradiction). To compute values of
F (x) =

∫ x
0
exp(y) dy for different values of x we therefore have to use nu-

merical quadrature just as in the case of the logarithm. Of course we can
give F (x) a name, for example we may agree to call it the error function
F (x) = erf(x) and add it to our list of known functions that we can use.

Nevertheless there will be other functions (such as sin(x)
x ) whose primitive

function cannot be expressed in the known functions.
The question of how to handle such functions (including also log(x),

exp(x), sin(x)...) of course arises: should we pre-compute long tables of
values of these functions and print them in thick books or store them in
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the computer, or should we compute each required value from scratch using
numerical quadrature? The first option was favored in earlier times when
computing power was sparse, and the second one is favored today (even in
the pocket calculator).
Despite the impossibility to reach generality, it is it is possible (and

useful) to compute primitive functions analytically in certain cases, and in
this chapter, we collect some tricks that have proved useful for doing this.
The tricks we present are basically various clever substitutions together
with integration by parts. We have no ambition to be encyclopedic. We
refer to Mathematics Handbook for Science and Engineering for further
development.
We start with rational functions, and then proceed to various combina-

tions of polynomials, logarithms, exponentials and trigonometric functions.

206.2 Rational Functions: The Simple Cases

Integration of rational functions depends on three basic formulas
∫ x

x0

1

s− c
ds = log |x− c| − log |x0 − c|, c 6= 0 (206.1)

∫ x

x0

s− a

(s− a)2 + b2
dx =

1

2
log((x−a)2+ b2)− 1

2
log((x0−a)2+ b2) (206.2)

and
∫ x

x0

1

(s− a)2 + b2
ds = [

1

b
arctan(

x− a

b
)]− [

1

b
arctan(

x0 − a

b
)], b 6= 0.

(206.3)
These formulas can be verified by differentiation. Using the formulas can
be straightforward as in

Example 206.1.

∫ 8

6

ds

s− 4
= log 4− log 2 = log 2.

Or more complicated as in

Example 206.2.

∫ 4

2

ds

2(s− 2)2 + 6
=

1

2

∫ 4

2

ds

(s− 2)2 + 3

=
1

2

∫ 4

2

ds

(s− 2)2 + (
√
3)2

=
1

2

(
1√
3
arctan

(4− 2√
3

)
− 1√

3
arctan

(2− 2√
3

))
.
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Of course we may combine these formulas with substitution:

Example 206.3.

∫ x

0

cos(s) ds

sin(s) + 2
=

∫ sin(x)

0

du

u+ 2
= log | sin(x) + 2| − log 2.

Using (206.2) and (206.3) may require completing the square, as we now
show in

Example 206.4. For example, consider

∫ 3

0

ds

s2 − 2s+ 5
.

We want to get s2 − 2s+ 5 into the form (s − a)2 + b2 if possible. We
set

(s− a)2 + b2 = s2 − 2as+ a2 + b2 = s2 − 2s+ 5.

Equating the coefficients of s on both sides gives a = 1. Equating the
constant terms on both sides gives b2 = 5−1 = 4 and therefore we may
take b = 2. After a little practice with completing the square, we can
often argue directly, as

s2 − 2s+ 5 = s2 − 2s+ 12 − 12 + 5 = (s− 1)2 + 22.

Returning to the integral, we have

∫ 3

0

ds

s2 − 2s+ 5
=

∫ 3

0

ds

(s− 1)2 + 22

=
1

2
arctan

(3− 2

2

)
− 1

2
arctan

(0− 2

2

)
.

206.3 Rational Functions: Partial Fractions

We now investigate a systematic method for computing integrals of rational
functions f(x), i.e. functions of the form f(x) = p(x)/q(x), where p(x) and
q(x) are polynomials. The method is based manipulating the integrand so
that the basic formulas (206.1)–(206.3) can be used. The manipulation is
based on the observation that it is possible to write a complicated rational
function as a sum of relatively simple rational functions.

Example 206.5. Consider the integral

∫ 5

4

s2 + s− 2

s3 − 3s2 + s− 3
ds.
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The integrand can be expanded

s2 + s− 2

s3 − 3s2 + s− 3
=

1

s2 + 1
+

1

s− 3

which we can verify by adding the two fractions on the right after
computing a common denominator,

1

s2 + 1
+

1

s− 3
=
s− 3

s− 3
× 1

s2 + 1
+
s2 + 1

s2 + 1
× 1

s− 3

=
s− 3 + s2 + 1

(s2 + 1)(s− 3)
=

s2 + s− 2

s3 − 3s2 + s− 3
.

Therefore we can integrate

∫ 5

4

s2 + s− 2

s3 − 3s2 + s− 3
ds =

∫ 5

4

1

s2 + 1
ds+

∫ 5

4

1

s− 3
ds

= (arctan (5)− arctan (4)) + (log(5 − 3)− log(4− 3)).

The general technique of partial fractions is based on a systematic method
for writing a rational function as a sum of simple rational functions that
can be integrated with the basic formulas (206.1)–(206.3). The method is
analogous to “reversing” the addition of rational functions by finding a
common denominator.
Applying the technique of partial fractions to a general rational function

has several steps, which we explain in “reverse” order. So we begin by
assuming that the numerator p(x) of the rational function p(x)/q(x) has
smaller degree than the denominator q(x), i.e. deg p(x) < deg q(x), and
that q(x) has the form

p(x)

q(x)
=

p(x)

k(x− c1) · · · (x− cn)((x − a1)2 + b21) · · · ((x− am)2 + b2m)
,

(206.4)
where k is a number, the ci are the real roots of q(x), and the second degree
factors (x− aj)

2 + b2j correspond to the complex roots aj ± ibj of q(x) that
necessarily come in pairs of complex conjugates. We call polynomials of the
form (x− aj)

2 + b2j irreducible because we cannot factor them as a product
of linear polynomials with real coefficients.
In the first instance, we assume that the zeroes {ci} and {aj ± ibj} are

distinct. In this case, we rewrite p(x)/q(x) as the sum of partial fractions

p(x)

q(x)
=

C1

x− c1
+· · ·+ Cn

x− cn
+
A1(x− a1) +B1

(x − a1)2 + b21
+· · ·+Am(x− am) +Bm

(x− am)2 + b2m
,

(206.5)
for some constants Ci, 1 ≤ j ≤ n, and Aj , Bj , 1 ≤ j ≤ m that we have to
determine. The motivation to rewrite p(x)/q(x) in this way is that we can
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then compute an integral of p(x)/q(x) by applying the formulas (206.1)–
(206.3) to integrate the individual terms on the right-hand side of (206.5)
as in the example above.

Example 206.6. For p(x) = q(x) = (x− 1)/(x2 − x− 2) with q(x) =
(x− 2)(x+ 1) we have

x− 1

x2 − x− 2
=

x− 1

(x − 2)(x+ 1)
=

1/3

x− 2
+

2/3

x+ 1
,

and thus
∫ x

x0

s− 1

s2 − s− 2
ds =

1

3

∫ x

x0

1

s− 2
ds+

2

3

∫ x

x0

1

s+ 1
ds

=
1

3
[log(s− 2)]s=xs=x0

+
2

3
[log(s+ 1)]s=xs=x0

.

The rationale for the expansion (206.5) is simply that if we ask for the
most general sum of rational functions with denominators of degrees 1 and
2 that can yield p(x)/q(x), where q(x) is the common denominator for the
sum, then we get precisely the right- hand side of (206.5). In particular
if the terms on the right had numerators of any higher degree, then p(x)
would have to have degree greater than q(x).
The constants Ci, Aj and Bj in (206.5) can be found by rewriting the

right-hand side of (206.5) with a common denominator.

Example 206.7. In the last example with q(x) = (x − 2)(x + 1), we
find that

C1

x− 2
+

C2

x+ 1
=
C1(x+ 1) + C2(x− 2)

(x− 2)(x+ 1)
=

(C1 + C2)x+ (C1 − 2C2)

(x− 2)(x+ 1)
,

which equals
x− 1

(x− 2)(x+ 1)

if and only if

C1 + C2 = 1 and C1 − 2C2 = −1,

that is if C1 = 1/3 and C2 = 2/3.

Since it is cumbersome to compute the constants by dealing with the frac-
tions, we usually rewrite the problem by multiplying both sides of (206.5)
by the common denominator.

Example 206.8. We multiply both sides of

x− 1

(x− 2)(x+ 1)
=

C1

x− 2
+

C2

x+ 1
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by (x − 2)(x+ 1) to get

x− 1 = C1(x+ 1)C2(x− 2) = (C1 + C2)x+ (C1 − 2C2).

Equating coefficients, we find C1 + C2 = 1 and C1 − 2C2 = −1, which
yields C1 = 1/3 and C2 = 2/3.

Example 206.9. To integrate f(x) = (5x2 − 3x + 6)/((x − 2)((x +
1)2 + 22)), we begin by writing the partial fraction expansion

5x2 − 3x+ 6

(x− 2)((x+ 1)2 + 22)
=

C

x− 2
+
A(x + 1) +B

(x+ 1)2 + 22
.

To determine the constants, we multiply both sides by (x−2)((x+1)2+
22)) to obtain

5x2 − 3x+ 6 = C((x + 1)2 + 22) + (A(x + 1) +B)(x− 2)

= (C +A)x2 + (2C − 2A+B)x+ (4C − 2A− 2B).

Equating coefficients, we find that C + A = 0, 2C − 2A + B = 1 and
5C − 2A − 2B = 0, that is C = 2, A = 3 and B = −1. Therefore we
find that
∫ x

x0

5s2 − 3s+ 6

(s− 2)((s+ 1)2 + 22))
ds

= 2

∫ x

x0

1

s− 2
ds+

∫ x

x0

3(s+ 1)− 1

(s+ 1)2 + 22
ds

= 2

∫ x

x0

1

s− 2
ds+ 3

∫ x

x0

s+ 1

(s+ 1)2 + 22
ds−

∫ x

x0

1

(s+ 1)2 + 22
ds

= 2
(
log |x− 2| − log |x0 − 2|

)

+
3

2

(
log((x+ 1)2 + 4)− log((x0 + 1)2 + 4)

)

− 1

2

(
arctan(

x+ 1

2
)− arctan(

x0 + 1

2
)
)
.

In the case that some of the factors in the factorization of the denomi-
nator (206.4) are repeated, i.e. some of the roots have multiplicity greater
than one, then we have to modify the partial sum expansion (206.5). We
do not write out a general case because it is a mess and nearly unreadable,
we just note that the principle for determining the correct partial fractions
is always to write down the most general sum that can give the indicated
common denominator.

Example 206.10. The general partial fraction expansion of f(x) =
x2/((x− 2)(x+ 1)2) has the form

x2

(x− 2)(x+ 1)2
=

C1

x− 2
+

C2,1

x+ 1
+

C2,2

(x+ 1)2
,
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for constants C1, C2,1 and C2,2 because all of the terms on the right-
hand will yield the common denominator (x − 2)(x+ 1)2. Multiplying
both sides by the common denominator and equating coefficients as
usual, we find that C1 = 4/9, C2,1 = 5/9 and C2,2 = −3/9.

In general if q(x) has the multiple factor (x− ci)
L the term Ci

x−ci in the
partial fraction expansion (206.5) should be replaced by the sum of fractions∑l=L
l=1

Ci,l

(x−c)l . There is a corresponding procedure for multiple factors of the

form ((x− a)2 + b2)L.
We have discussed how to integrate rational functions p(x)/q(x) where

deg p < deg q and q is factored into a product of linear and irreducible
quadratic polynomials. Now we discuss removing these restrictions. First
we deal with the factorization of the denominator q(x). The Fundamen-
tal Theorem of Algebra says that a polynomial q of degree n with real
coefficients has exactly n roots and hence it can be factored into a prod-
uct of n linear polynomials with possibly complex coefficients. However,
because the polynomial q has real coefficients, the complex roots always
come in complex conjugate pairs, i.e. if r is a root of q then so is r̄.
This means that there are an even number of linear factors of q corre-
sponding to complex roots and furthermore we can combine the factors
corresponding to conjugate roots to get quadratic factors with real co-
efficients. For example, (x − 3 + i)(x − 3 − i) = (x − 3)2 + 1. There-
fore every polynomial q(x) can theoretically be factored into a product
k(x− c1) · · · (x− cn)((x − a1)

2 + b21) · · · ((x− am)2 + b2m).
However, we caution that this theoretical result does not carry over in

practice to situations in which the degree of q is large. To determine the
factorization of q, we must determine the roots of q. In the problems and
examples, we stick to cases in which the roots are simple, relatively small
integers. But in general we know that the roots can be any kind of algebraic
number which we can only approximate. Unfortunately it turns out that it
is extremely difficult to determine the roots of a polynomial of high degree,
even using Newton’s method. So the method of partial fractions is used only
for low degree polynomials in practice, though it is a very useful theoretical
tool.
Finally we remove the restriction that deg p < deg q. When the degree

of the numerator polynomial p(x) is ≥ the degree of the denominator poly-
nomial q(x), we first use polynomial division to rewrite f(x) as the sum of

a polynomial s(x) and a rational function r(x)
q(x) for which the degree of the

numerator r(x) is less than the degree of the denominator q(x).

Example 206.11. For f(x) = (x3 − x)/(x2 + x+ 1), we divide to get
f(x) = x− 1 + (1 − x)/(x2 + x+ 1), so that

∫ x̄

0

x3

x2 + x+ 1
dx = [

1

2
x2 − x]x=x̄x=0 +

∫ x̄

0

1− x

x2 + x+ 1
dx.
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206.4 Products of Polynomial and Trigonometric
or Exponential Functions

To integrate the product of a polynomial and a trigonometric or exponential
function, we use integration by parts repeatedly to reduce the polynomial
to an constant.

Example 206.12. To compute a primitive function of x cos(x), we
integrate by parts once
∫ x

0

y cos(y) dy = [y sin(y)]y=xy=0 −
∫ x

0

sin(y) dy = x sin(x) + cos(x) + 1.

To handle higher order polynomials, we use integration by parts several
times.

Example 206.13. We have∫ x

0

s2es ds = s2(es)s=xs=0 − 2

∫ x

0

ses ds

= [s2es]s=xs=0 − 2
(
[ses]s=xs=0 −

∫ x

0

es ds
)

= [s2es)s=xs=0 − 2
(
[ses]s=xs=0 − [es]s=xs=0

)

= x2ex − 2xex + 2ex − 2.

206.5 Combinations of Trigonometric and Root
Functions

To compute a primitive function of sin(
√
y) for x > 0, we set y = t2 and

obtain by using partial integration
∫ x

0

sin(
√
y) dy =

∫ √
x

0

2t sin(t) dt = [−2t cos(t)]
t=

√
x

t=0 + 2

∫ √
x

0

cos(t) dt

= −2
√
x cos(

√
x) + 2 sin(

√
x).

206.6 Products of Exponential and Trigonometric
Functions

To compute a primitive function of ey sin(y), we use repeated integration
by parts as follows

∫ x

0

ey sin(y) dy = [ey sin(y)]y=xy=0 −
∫ x

0

ey cos(y) dy

= ex sin(x)− [ey cos(y)]y=xy=0 −
∫ x

0

ey sin(y) dy,
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which shows that
∫ x

0

ey sin(y) dy =
1

2
(ex sin(x)− ex cos(x) + 1)

206.7 Products of Polynomials and Logarithm
Functions

To compute a primitive function of x2 log(x), we integrate by parts:

∫ x

1

y2 log(y) dy = [
y3

3
log(y)]y=xy=1 −

∫ x

1

y3

3

1

y
dy =

x3

3
log(x) − x3

9
+

1

9
.

Chapter 206 Problems

206.1. Compute

(a)
∫ x
0
t sin(2t) dt (b)

∫ x
0
t2 cos(t) dt (c) intx0 t exp(−2t) dt. Hint: Integrate by

parts.

206.2. Compute (a)
∫ x
1
y log(y) dy (b)

∫ x
1
log(y) dy (c)

∫ x
0
arctan(t) dt (d)∫ x

0

exp(−t) cos(2t) dt. Hint: Integrate by parts.

206.3. Compute using the formula
∫ x
0

g′(y)
g(y)

dy = log(g(x)) − log(g(0)) the fol-

lowing integrals. (a)
∫ x
0

y
y2+1

dy (b)
∫ x
0

et

et+1
dt.

206.4. Compute by a suitable change of variable

(a)
∫ x
0
y exp(y2) dy (b)

∫ x
0
y
√
y − 1 dy (c)

∫ x
0
sin(t) cos2(t) dt.

206.5. Compute (a)
∫ x
0

dy
y2−y−2

dy (b)
∫ x
0

y3

y2+2y−3
dy (c)

∫ x
0

dy
y2+2y+5

dy (d)
∫ x
0

x−x2
(y−1)(y2+2y+5)

dy (e)
∫ x
0

x4

(x−1)(x2+x−6)
dy.

206.6. Recalling that a function is called even if f(−x) = f(x) and odd if
f(−x) = −f(x) for all x, (a) give examples of even and odd functions (b)
sketch their graphs, and (c) show that

∫ a

−a
f(x) dx = 2

∫ a

0

f(x) dx if f is even,

∫ a

−a
f(x) dx = 0 if f is odd. (206.6)

206.7. Compute (a)
∫ π
−π |x| cos(x) dx (b)

∫ π
−π sin

2(x) dx (c)
∫ π
−π x sin

2(x) dx

(d)
∫ π
−π arctan(x+ 3x3) dx.
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207
Solving Differential Equations Using
the Exponential

...he climbed a little further... and further...and then just a little
further. (Winnie-the-Pooh)

207.1 Introduction

The exponential function plays a fundamental role in modeling and analysis
because of its basic properties. In particular it can be used to solve a variety
of differential equations analytically as we show in this chapter. We start
with generalizations of the initial value problem (203.2) from Chapter The
exponential function:

u′(x) = λu(x) for x > a, u(a) = ua, (207.1)

where λ ∈ R is a constant, with solution

u(x) = exp(λ(x − a))ua for x ≥ a. (207.2)

Analytic solutions formulas may give very important information and
help the intuitive understanding of different aspects of a mathematical
model, and should therefore be kept as valuable gems in the scientist and en-
gineer’s tool-bag. However, useful analytical formulas are relatively sparse
and must be complemented by numerical solutions techniques. In the Chap-
ter The General Initial Value Problem we extend the constructive numeri-
cal method for solving (207.1) to construct solutions of general initial value
problems for systems of differential equations, capable of modeling a very
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large variety of phenomena. We can thus numerically compute the solution
to just about any initial value problem, with more or less computational
work, but we are limited to computing one solution for each specific choice
of data, and getting qualitative information for a variety of different data
may be costly. On the other hand, an analytical solution formula, when
available, may contain this qualitative information for direct information.
An analytical solution formula for a differential equation may thus be

viewed as a (smart and beautiful) short-cut to the solution, like evaluating
an integral of a function by just evaluating two values of a corresponding
primitive function. On the other hand, numerical solution of a differential
equation is like a walk along a winding mountain road from point A to point
B, without any short-cuts, similar to computing an integral by numerical
quadrature. It is useful to be able to use both approaches.

207.2 Generalization to u′(x) = λ(x)u(x) + f(x)

The first problem we consider is a model in which the rate of change of
a quantity u(x) is proportional to the quantity with a variable factor of
proportionality λ(x), and moreover in which there is an external “forcing”
function f(x). The problem reads:

u′(x) = λ(x)u(x) + f(x) for x > a, u(a) = ua, (207.3)

where λ(x) and f(x) are given functions of x, and ua is a given initial value.
We first describe a couple physical situations being modeled by (207.3).

Example 207.1. Consider for time t > 0 the population u(t) of rabbits
in West Virginia with inital value u(0) = u0 given, which we assume has
time dependent known birth rate β(t) and death rate δ(t). In general,
we would expect that rabbits will migrate quite freely back and forth
across the state border and that the rates of the migration would vary
with the season, i.e. with time t. We let fi(t) and fo(t) denote the rate
of migration into and out of the state respectively at time t, which we
assume to be known (realistic?). Then the population u(t) will satisfy

u̇(t) = λ(t)u(t) + f(t), for t > a, u(a) = ua, (207.4)

with λ(t) = β(t) − δ(t) and f(t) = fi(t) − fo(t), which is of the form
(207.3). Recall that u̇ = du

dt .

Example 207.2. We model the amount of solute such as salt in a
solvent such as water in a tank in which there is both inflow and outflow,
see Fig. 207.1. We let u(t) denote the amount of solute in the tank at
time t and suppose that we know the initial amount u0 at t = 0. We
suppose that a mixture of solute/solvent, of concentration Ci in say



207.2 Generalization to u′(x) = λ(x)u(x) + f(x) 1323

FIGURE 207.1. An illustration of a chemical mixing tank.

grams per liter, flows into the tank at a rate σi liters per second. We
assume there is also outflow at a rate of σo liters per second, and we
assume that the mixture in the tank is well mixed with a uniform
concentration C(t) at any time t.

To get a differential equation for u(t), we compute the change u(t+∆t)−
u(t) during the interval [t, t+∆t]. The amount of solute that flows into
the tank during that time interval is σiCi∆t, while the amount of solute
that flows out of the tank during that time equals σoC(t)∆t, and thus

u(t+∆t)− u(t) ≈ σiCi∆t− σoC(t)∆t, (207.5)

where the approximation improves when we decrease ∆t. Now the con-
centration at time t will be C(t) = u(t)/V (t) where V (t) is the volume
of fluid in the tank at time t. Substituting this into (207.5) and dividing
by ∆t gives

u(t+∆t)− u(t)

∆t
≈ σiCi − σo

u(t)

V (t)

and taking the limit ∆t → 0 assuming u(t) is differentiable gives the
following differential equation for u,

u̇(t) = − σo
V (t)

u(t) + σiCi.

The volume V (t) is determined simply by the flow rates of fluid in and
out of the tank. If there is initially V0 liters in the tank then at time
t, V (t) = V0 + (σi − σo)t because the flow rates are assumed to be
constant. This gives again a model of the form (207.3):

u̇(t) = − σo
V0 + (σi − σo)t

u(t) + σiCi for t > 0, u(0) = u0. (207.6)
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The Method of Integrating Factor

We now return to derive an analytical solution formula for (207.3), using
the method of integrating factor. To work out the solution formula, we
begin with the special case

u′(x) = λ(x)u(x) for x > a, u(a) = ua, (207.7)

where λ(x) is a given function of x. We let Λ(x) be a primitive function
of λ(x) such that Λ(a) = 0, assuming that λ(x) is Lipschitz continuous on
[a,∞). We now multiply the equation 0 = u′(x)−λ(x)u(x) by exp(−Λ(x)),
and we get

0 = u′(x) exp(−Λ(x))− u(x) exp(−(x))λ(x) =
d

dx
(u(x) exp(−Λ(x))),

where we refer to exp(−Λ(x)) as an integrating factor because it brought
the given equation to the form d

dx of something, namely u(x) exp(−Λ(x)),
equal to zero. We conclude that u(x) exp(−Λ(x)) is constant and is there-
fore equal to ua since u(a) exp(−Λ(a)) = u(a) = ua. In other words, the
solution to (207.7) is given by the formula

u(x) = exp(Λ(x))ua = eΛ(x)ua for x ≥ a. (207.8)

We can check by differentiation that this function satisfies (207.7), and
thus by uniqueness is the solution. To sum up, we have derived a solution
formula for (207.7) in terms of the exponential function and a primitive
function Λ(x) of the coefficient λ(x).

Example 207.3. If λ(x) = r
x and a = 1 then Λ(x) = r log(x) =

log(xr), and the solution of

u′(x) =
r

x
u(x) for x 6= 1, u(1) = 1, (207.9)

is according to (207.8) given by u(x) = exp(r log(x)) = xr. We may
define xr for

Duhamel’s Principle

We now continue with the general problem to (207.3). We multiply by
e−Λ(x), where again Λ(x) is the primitive function of λ(x) satisfying Λ(a) =
0, and get

d

dx
(u(x)e−Λ(x)) = f(x)e−Λ(x).

Integrating both sides, we see that the solution u(x) satisfying u(a) = ua
can be expressed as

u(x) = eΛ(x)ua + eΛ(x)

∫ x

a

e−Λ(y)f(y) dy. (207.10)
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This formula for the solution u(x) of (207.3), expressing u(x) in terms of the
given data ua and the primitive function Λ(x) of λ(x) satisfying Λ(a) = 0,
is referred to as Duhamel’s principle or the variation of constants formula.
We can check the validity of (207.10) by directly computing the derivative

of u(x):

u′(x) = λeΛ(x)ua + f(x) +

∫ x

0

(λ(x)eΛ(x)−Λ(y)f(y) dy

= λ(x)

(
eΛ(x)ua +

∫ x

0

eΛ(x)−Λ(y)f(y) dy

)
+ f(x).

Example 207.4. If λ(x) = λ is constant, f(x) = x, a = 0 and u0 = 0,
the solution of (207.3) is given by

u(x) =

∫ x

0

eλ(x−y)y dy = eλx
∫ x

0

ye−λy dy

= eλx
(
[− y
λ
e−λy]y=xy=0 +

∫ x

0

1

λ
e−λy dy

)
= −x

λ
+

1

λ2
(eλx − 1).

Example 207.5. In the model of the rabbit population (207.4), con-
sider a situation with an initial population of 100, the death rate is
greater than the birth rate by a constant factor 4, so λ(t) = β(t) −
δ(t) = −4, and there is a increasing migration into the state, so f(t) =
fi(t)− fo(t) = t. Then (207.10) gives

u(t) = e−4t100 + e−4t

∫ t

0

e4ss ds

= e−4t100 + e−4t

(
1

4
se4s|t0 −

1

4

∫ t

0

e4s ds

)

= e−4t100 + e−4t

(
1

4
te4t − 1

16
e4t +

1

16

)

= 100.0625e−4t+
t

4
− 1

16
.

Without the migration into the state, the population would decrease
exponentially, but in this situation the population decreases only for a
short time before beginning to increase at a linear rate.

Example 207.6. Consider a mixing tank in which the input flow at
a rate of σi = 3 liters/sec has a concentration of Ci = 1 grams/liter,
and the outflow is at a rate of σo = 2 liters/sec, the initial volume is
V0 = 100 liters with no solute dissolved, so u0 = 0. The equation is

u̇(t) = − 2

100 + t
u(t) + 3.
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We find Λ(t) = 2 ln(100 + t) and so

u(t) = 0 + e2 ln(100+t)

∫ t

0

e−2 ln(100+s)3 ds

= (100 + t)2
∫ t

0

(100 + s)−23 ds

= (100 + t)2
( −3

100 + t
+

3

100

)

=
3

100
t(100 + t).

As expected from the conditions, the concentration increases steadily
until the tank is full.

207.3 The Differential Equation u′′(x)− u(x) = 0

Consider the second order initial value problem

u′′(x)− u(x) = 0 for x > 0, u(0) = u0, u
′(0) = u1, (207.11)

with two initial conditions. We can write the differential equation u′′(x)−
u(x) = 0 formally as

(D + 1)(D − 1)u = 0,

where D = d
dx , since (D + 1)(D − 1)u = D2u −Du +Du − u = D2u− u.

Setting w = (D−1)u, we thus have (D+1)w = 0, which gives w(x) = ae−x

with a = u1−u0, since w(0) = u′(0)−u(0). Thus, (D−1)u = (u1−u0)e−x,
so that by Duhamel’s principle

u(x) = exu0 +

∫ x

0

ex−y(u1 − u0)e
−y dy

=
1

2
(u0 + u1)e

x +
1

2
(u0 − u1)e

−x.

We conclude that the solution u(x) of u′′(x) − u(x) = 0 is a linear combi-
nation of ex and e−x with coefficients determined by the initial conditions.
The technique of “factoring” the differential equation (D2 − 1)u = 0 into
(D + 1)(D − 1)u = 0, is very powerful and we now proceed to follow up
this idea.
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207.4 The Differential Equation∑n
k=0 akD

ku(x) = 0

In this section, we look for solutions of the linear differential equation with
constant coefficients:

n∑

k=0

akD
ku(x) = 0 for x ∈ I, (207.12)

where the coefficients ak are given real numbers, and I is a given interval.
Corresponding to the differential operator

∑n
k=0 akD

k, we define the poly-
nomial p(x) =

∑n
k=0 akx

k in x of degree n with the same coefficients ak as
the differential equation. This is called the characteristic polynomial of the
differential equation. We can now express the differential operator formally
as

p(D)u(x) =
n∑

k=0

akD
ku(x).

For example, if p(x) = x2 − 1 then p(D)u = D2u− u.
The technique for finding solutions is based on the observation that the

exponential function exp(λx) has the following property:

p(D) exp(λx) = p(λ) exp(λx), (207.13)

which follows from repeated use of the Chain rule. This translates the
differential operator p(D) acting on exp(λx) into the simple operation of
multiplication by p(λ). Ingenious, right?
We now seek solutions of the differential equation p(D)u(x) = 0 on an

interval I of the form u(x) = exp(λx). This leads to the equation

p(D) exp(λx) = p(λ) exp(λx) = 0, for x ∈ I,

that is, λ should be a root of the polynomial equation

p(λ) = 0. (207.14)

This algebraic equation is called the characteristic equation of the differ-
ential equation p(D)u = 0. To find the solutions of a differential equa-
tion p(D)u = 0 on the interval I, we are thus led to search for the roots
λ1, ....λn, of the algebraic equation p(λ) = 0 with corresponding solutions
exp(λ1x), ..., exp(λnx). Any linear combination

u(x) = α1 exp(λ1x) + ....+ αn exp(λnx), (207.15)

with αi real (or complex) constants, will then be a solution of the differential
equation p(D)u = 0 on I. If there are n distinct roots λ1,...,λn, then the
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general solution of p(D)u = 0 has this form. The constants αi will be
determined from initial or boundary conditions in a specific situation.
If the equation p(λ) = 0 has a multiple roots λi of multiplicity ri, then

the situation is more complicated. It can be shown that the solution is a
sum of terms of the form q(x) exp(λix), where q(x) is a polynomial of degree
at most ri−1. For example, if p(D) = (D−1)2, then the general solution of
p(D)u = 0 has the form u(x) = (α0 + α1x) exp(x). In the Chapter N-body
systems below we study the the constant coefficient linear second order
equation a0 + a1Du+ a2D

2u = 0 in detail, with interesting results!
The translation from a differential equation p(D)u = 0 to an algebraic

equation p(λ) = 0 is very powerful, but requires the coefficients ak of p(D)
to be independent of x and is thus not very general. The whole branch of
Fourier analysis is based on the formula (207.13).

Example 207.7. The characteristic equation for p(D) = D2 − 1 is
λ2 − 1 = 0 with roots λ1 = 1, λ2 = −1, and the corresponding gen-
eral solution is given by α1 exp(x) + α2 exp(−x). We already met this
example just above.

Example 207.8. The characteristic equation for p(D) = D2 + 1 is
λ2 + 1 = 0 with roots λ1 = i, λ2 = −i, and the corresponding general
solution is given by

α1 exp(ix) + α2 exp(−ix).

with the αi complex constants. Taking the real part, we get solutions
of the form

β1 cos(x) + β2 sin(x)

with the βi real constants.

207.5 The Differential Equation∑n
k=0 akD

ku(x) = f(x)

Consider now the nonhomogeneous differential equation

p(D)u(x) =

n∑

k=0

akD
ku(x) = f(x), (207.16)

with given constant coefficients ak, and a given right hand side f(x). Sup-
pose up(x) is any solution of this equation, which we refer to as a particular
solution. Then any other solution u(x) of p(D)u(x) = f(x) can be written

u(x) = up(x) + v(x)
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where v(x) is a solution of the corresponding homogeneous differential
equation p(D)v = 0. This follows from linearity and uniqueness since
p(D)(u− up) = f − f = 0.

Example 207.9. Consider the equation (D2−1)u = f(x) with f(x) =
x2. A particular solution is given by up(x) = −x2 − 2, and thus the
general solution is given by

u(x) = −x2 − 2 + α1 exp(x) + α2 exp(−x).

207.6 Euler’s Differential Equation

In this section, we consider Euler’s equation

a0u(x) + a1xu
′(x) + a2x

2u′′(x) = 0, (207.17)

which has variable coefficients aix
i of a very particular form. Following a

grand mathematical tradition, we guess, or make an Ansatz on the form
of the solution, and assume that u(x) = xm for some m to be determined.
Substituting into the differential equation, we get

a0x
m + a1x(x

m)′ + a2x
2(xm)′′ = (a0 + (a1 − 1)m+ a2m

2)xm,

and we are thus led to the auxiliary algebraic equation

a0 + (a1 − 1)m+ a2m
2 = 0

in m. Letting the roots of this equation be m1 and m2, assuming the roots
are real, any linear combination

α1x
m1 + α2x

m2

is a solution of (207.17). In fact the general solution of (207.17) has this
form if m1 and m2 are distinct and real.

Example 207.10. The auxiliary equation for the differential equation
x2u′′ − 3

2xu
′ − 2u = 0 is m2 − 7

2m − 2 = 0 with roots m1 = − 1
2 and

m2 = 4 and thus the general solution takes the form

u(x) = α1
1√
x
+ α2x

4.

Leonard Euler (1707-83) is the mathematical genius of the 18th century,
with an incredible production of more than 800 scientific articles half of
them written after he became completely blind in 1766, see Fig. 179.1.
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Chapter 207 Problems

207.1. Solve the initial value problem (207.7) with λ(x) = xr, where r ∈ R, and
a = 0.

207.2. Solve the following initial value problems: a) u′(x) = 8xu(x), u(0) =

1, x > 0, b) (15x+1)u(x)
u′(x)

= 3x, u(1) = e, x > 1, c) u′(x) + x
(1−x)(1+x)u =

0, u(0) = 1, x > 0.

207.3. Make sure that you got the correct answer in the previous problem, part
c). Will your solution hold for x > 1 as well as x < 1?

207.4. Solve the following initial value problems: a) xu′(x)+u(x) = x, u(1) =
3
2
, x > 1, b) u′(x) + 2xu = x, u(0) = 1, x > 0, c) u′(x) = x+u

2
, u(0) =

0, x > 0.

207.5. Describe the behavior of the population of rabbits in West Virginia in
which the birth rate exceeds the death rate by 5, the initial population is 10000
rabbits, and (a) there is a net migration out of the state at a rate of 5t (b) there
is a net migration out of the state at a rate of exp(6t).

207.6. Describe the concentration in a mixing tank with an initial volume of 50
liters in which 20 grams of solute are dissolved, there is an inflow of 6 liters/sec
with a concentration of 10 grams/liter and an outflow of 7 liters/sec.
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208
Improper Integrals

All sorts of funny thoughts, run around my head. (When We Were
Very Young, Milne)

208.1 Introduction

In some applications, it is necessary to compute integrals of functions that
are unbounded at isolated points or to compute integrals of functions over
unbounded intervals. We call such integrals improper, or sometimes (more
properly) generalized integrals. We compute these integrals using the basic
results on convergence of sequences that we have already developed.
We now consider these two kinds of improper integrals: integrals over

unbounded intervals and integrals of unbounded functions.

208.2 Integrals Over Unbounded Intervals

We start considering the following example of an integral over the un-
bounded interval [0,∞):

∫ ∞

0

1

1 + x2
dx.
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The integrand f(x) = (1 + x2)−1 is a smooth (positive) function that we
can integrate over any finite interval [0, n] to get,

∫ n

0

1

1 + x2
dx = arctan (n). (208.1)

Now we consider what happens as n increases, that is we integrate f over
increasingly longer intervals. Since limn→∞ arctan (n) = π/2, we may write

lim
n→∞

∫ n

0

1

1 + x2
dx =

π

2
,

and we are thus led to define
∫ ∞

0

1

1 + x2
dx = lim

n→∞

∫ n

0

1

1 + x2
dx =

π

2
.

We generalize in the obvious way to an arbitrary (Lipschitz continuous)
function f(x) defined for x > a, and thus define

∫ ∞

a

f(x) dx = lim
n→∞

∫ n

a

f(x) dx (208.2)

granted that the limit is defined and is finite. In this case, we say the
improper integral is convergent (or is defined) and that the function f(x)
is integrable over [a,∞). Otherwise, we say the integral is divergent (or is
undefined), and that f(x) is not integrable over [a,∞).
If the function f(x) is positive, then in order for the integral

∫∞
a
f(x) dx

to be convergent, the integrand f(x) has to get sufficiently small for large
values of x, since otherwise limn→∞

∫ n
a
f(x) dx = ∞ and the integral is

divergent. We saw above that the function 1
1+x2 was decaying to zero suf-

ficiently quickly for large values of x to be integrable over [a,∞).
Consider now the function 1

1+x with a less quick decay as x → ∞. Is it
integrable on [0,∞)? Well, we have

∫ n

0

1

1 + x
dx =

[
log(1 + x)

]n
0
= log(1 + n),

and since
log(1 + n) → ∞ as n→ ∞

although the divergence is slow, we understand that
∫∞
0

1
1+x dx is divergent.

Example 208.1. The improper integral
∫ ∞

1

dx

xα

is convergent for α > 1, since

lim
n→∞

∫ n

1

dx

x−α
= lim

n→∞
[−x

−(α−1)

α− 1
]n1 =

1

α− 1
.
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We can sometimes show that an improper integral exists even when we
can not compute its value.

Example 208.2. Consider the improper integral

∫ ∞

1

e−x

x
dx.

Since f(x) = e−x

x > 0 for x > 1, we see that the sequence {In}∞n=1,
with

In =

∫ n

1

e−x

x
dx

is increasing. By Chapter Optimization we know that {In}∞n=1 will have
a limit if we only can show that {In}∞n=1 is bounded above. Since triv-
ially 1/x ≤ 1 if x ≤ 1, we have for all n ≥ 1

In ≤
∫ n

1

e−x dx = e−1 − e−n ≤ e−1.

We conclude that
∫∞
1

e−x

x dx converges. Note that we may restrict n
to take integer values because the integrand e−x/x tends to zero as x
tends to infinity.

We may also compute integrals of the form

∫ ∞

−∞
f(x) dx.

We do this by choosing an arbitrary point −∞ < a <∞ and defining

∫ ∞

−∞
f(x) dx =

∫ a

−∞
f(x) dx +

∫ ∞

a

f(x) dx

= lim
m→−∞

∫ a

m

f(x) dx + lim
n→∞

∫ n

a

f(x) dx,

(208.3)

where we compute the two limits independently and both must be defined
and finite for the integral to exist.

208.3 Integrals of Unbounded Functions

We begin this section by considering the integral

∫ b

a

f(x) dx,
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where f(x) is unbounded at a, i.e. limx↓a f(x) = ±∞. We consider the
following example: ∫ 1

0

1√
x
dx.

The function 1√
x
is unbounded on (0, 1], but bounded and Lipschitz con-

tinuous on [ǫ, 1] for any 1 ≥ ǫ > 0. This means that the integrals

Iǫ =

∫ 1

ǫ

1√
x
dx = 2− 2

√
ǫ (208.4)

are defined for any 1 ≥ ǫ > 0, and evidently

lim
ǫ↓0→∞

Iǫ = 2,

where we recall that ǫ ↓ 0 means that ǫ tends to zero through positive
values. It is thus natural to define

∫ 1

0

1√
x
dx = lim

ǫ↓0

∫ 1

ǫ

1√
x
dx = 2.

In general if f(x) is unbounded close to a, then we define

∫ b

a

f(x) dx = lim
s↓a

∫ b

s

f(x) dx, (208.5)

and if f(x) is unbounded at b then we define

∫ b

a

f(x) dx = lim
s↑a

∫ s

a

f(x) dx (208.6)

when these limits are defined and finite. As above, we say the improper
integrals are convergent and defined if the limits exist and are finite, and
otherwise say the integrals are divergent and not defined.
We may naturally extend this definition to the case when f(x) is un-

bounded at a point a < c < b by defining

∫ b

a

f(x) dx = lim

∫ c

a

f(x) dx+ lim

∫ b

c

f(x) dx

= lim
s↑c

∫ s

a

f(x) dx+ lim
t↓c

∫ b

t

f(x) dx

(208.7)

where the two limits are computed independently and must both be defined
and finite for the integral to converge.
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Chapter 208 Problems

208.1. If possible, compute the following integrals

1.

∫ ∞

0

x

(1 + x2)2
dx

2.

∫ ∞

−∞
xe−x

2

dx

3.

∫ 1

0

1√
1− x

dx

4.

∫ π

0

cos(x)

(1− sin(x))1/3
dx

208.2. Prove that if
∫∞
0

|f(x)| dx is convergent, then so is
∫∞
0
f(x) dx, that is,

absolute convergence implies convergence.

208.3. Prove that
∫
B
‖x‖−α dx, where B = {x ∈ Rd : ‖x‖ < 1}, is convergent if

α < d for d = 1, 2, 3.
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209
Series

If you disregard the very simplest cases, there is in all of mathematics
not a single series whose sum has been rigorously determined. In
other words, the most important part of mathematics stand without
a foundation.(Abel 1802-1829)

209.1 Introduction

In this chapter we consider the concept of series, which is a sum of numbers.
We distinguish between a finite series, where the sum has a finite number
of terms, and an infinite series with an infinite number of terms. A finite
series does not pose any mysteries; we can, at least in principle, compute
the sum of a finite series by adding the terms one-by-one, given enough
time. The concept of an infinite series requires some explanation, since we
cannot actually add an infinite number of terms one-by-one, and we thus
need to define what we mean by an “infinite sum”.
The concept of infinite series has a central role in Calculus, because

a basic idea has been to seek to express “arbitrary” functions in terms
of series as sums of simple terms. This was the grand idea of Fourier who
thought of representing general functions as sums of trigonometric functions
in the form of Fourier series, and Weierstrass who tried to do the same with
monomials or polynomials in the form of power series. There are limitations
to both Fourier and power series and the role of such series is today largely
being taken over by computational methods. We therefore do not go into
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any excessive treatment of series, but we do present some important basic
facts, which are useful to know.
We recall that we already met one infinite series, namely the geometric

series ∞∑

i=0

ai = 1 + a+ a2 + a3 + · · · ,

where a is a real number. We determined the sum of this infinite series in
the case |a| < 1 by first computing the partial sum of order n:

sn =

n∑

i=0

ai = 1 + a+ a2 + · · ·+ an =
1− an+1

1− a
.

by summing the terms ai with i ≤ n. We then made the observation that
if |a| < 1, then

lim
n→∞

sn = lim
n→∞

1− an+1

1− a
=

1

1− a
,

and so we defined for |a| < 1 the sum of the infinite geometric series to be

∞∑

i=0

ai = lim
n→∞

n∑

i=0

ai =
1

1− a
.

We note that if |a| ≥ 1, then we had to leave the sum of the geometric se-
ries

∑∞
i=0 a

i undefined. If |a| ≥ 1, then |sn−sn−1| = |an| ≥ 1, and therefore
{sn}∞n=0 is not a Cauchy sequence, and thus limn→∞ sn = limn→∞

∑n
i=0 a

i

does not exist. Evidently, a necessary condition for convergence is that the
terms ai tend to zero as i tends to infinity.

209.2 Definition of Convergent Infinite Series

We now generalize these ideas to arbitrary infinite series. Thus let {an}∞n=0

denote a sequence of real numbers and consider the sequence of partial sums
{sn}∞n=0, where

sn =

n∑

i=0

ai = a0 + a1 + · · ·+ an (209.1)

is the partial sum of order n. We now say that the series
∑∞
i=0 ai is con-

vergent if the corresponding sequence of partial sums {sn}∞n=0 converges,
and we then write

∞∑

i=0

ai = lim
n→∞

sn = lim
n→∞

n∑

i=0

ai, (209.2)

which we refer to as the sum of the series. The convergence of a series∑∞
i=1 ai is thus reduced to the convergence of the sequence of it’s partial



209.3 Positive Series 1339

sums. All convergence issues for a series are handled in this way by reduc-
tion to convergence of sequences. This chapter therefore may be viewed as a
direct gives a direct continuation of Chapters Sequences and limits and Real
numbers. In particular, we understand as in the case of a geometric series,
that a necessary condition for convergence of a series

∑∞
i=0 ai is that the

terms ai tend to zero as i tends to infinity. However, this condition is not
sufficient, as we should know from our previous experience with sequences,
and as we will see again below.
Note that we can similarly consider series of the form

∑∞
i=1 ai or

∑∞
i=m ai

for any integer m.
Note that in a few special cases like the geometric series, we can actually

find an analytic formula for the sum of the series. However, for most series∑∞
i=0 ai this is not possible, or may be so be tricky that we can’t make

it. Of course, we can then usually compute an approximation by directly
computing a partial sum sn =

∑n
i=0 ai for some appropriate n, that is,

if n is not too big and the terms ai not too difficult to evaluate. To then
estimate the error, we are led to estimate the remainder

∑∞
i=n+1 ai. Thus

we see a need to be able to analytically estimate the sum of a series, which
may be easier than to analytically compute the exact sum.
In particular, such estimation may be used to decide if a series is conver-

gent or not, which of course is an important issue because playing around
with divergent series cannot have any meaning. In this pursuit, it is nat-
ural to distinguish between series in which all of the terms have the same
sign and those in which the terms can have different signs. It may be more
difficult to determine convergence for a series in which the terms can have
different signs because of the possibility of cancellation between the terms.
Further, if we bound a series remainder

∑∞
i=n+1 ai by using the triangle

inequality, we get

|
∞∑

i=n+1

ai| ≤
∞∑

i=n+1

|ai|,

where the series on the right hand side is positive. So, positive series are of
prime importance and we now turn to this topic.

209.3 Positive Series

A series
∑∞

i=1 ai is said to be a positive series, if ai ≥ 0 for i = 1, 2, .... The
important point about a positive series is that the sequence of partial sums
is non-decreasing, because

sn+1 − sn =

n+1∑

i=1

ai −
n∑

i=1

ai = an+1 ≥ 0. (209.3)
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In Chapter Optimization below we shall prove that a nondecreasing se-
quence converges if and only if the sequence is bounded above. If we accept
this as a fact, we understand that a positive series is convergent if and only
if the sequence of partial sums is bounded above, that is there is a constant
C such that

n∑

i=1

ai ≤ C for n = 1, 2, ..., . (209.4)

This gives a definite way to check convergence, which we state as a theorem:

Theorem 209.1 A positive series converges if and only if the sequence of
partial sums is bounded above.

This result does not apply if the series has terms with different signs. For
example, the series

∑∞
i=0(−1)i = 1 − 1 + 1 − 1 + 1... has bounded partial

sums, but is not convergent since (−1)i does not tend to zero as i tends to
infinity.

Example 209.1. We can sometimes use an integral to bound the par-
tial sums of a positive series and thus to prove convergence or estimate
remainders. As an example, consider the positive series

∑∞
i=2

1
i2 . The

partial sum

sn =

n∑

i=2

1

i2

may be viewed as a quadrature formula for the integral of
∫ n
1 x−2 dx,

see Fig. 209.1.

More precisely, we see that

∫ n

1

x−2 dx =

∫ 2

1

x−2 dx+

∫ 3

2

x−2 dx+ · · ·+
∫ n

n−1

x−2 dx

≥
∫ 2

1

1

22
dx+

∫ 3

2

1

32
dx + · · ·+

∫ n

n−1

1

n2
dx

≥ 1

22
+

1

32
+ · · ·+ 1

n2
= sn.

Since ∫ n

1

x−2 dx =
(
1− 1

n

)
≤ 1,

we conclude that sn ≤ 1 for all n and therefore the series
∑∞

i=2
1
i2

is convergent. To compute an approximation of the sum of the series,
we of course compute a partial sum sn with n sufficiently large. To
estimate the remainder we may of course use a similar comparison, see
Problem 209.5.
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1 2 3

f(x) = x−2

area 2−2

area 3−2

FIGURE 209.1. The relation between
∫ n
1
x−2 dx and

∑n
i=2 i

−2.

Example 209.2. The positive series
∑∞
i=1

1
i+i2 converges because for

all n

sn =

n∑

i=1

1

i+ i2
≤

n∑

i=1

1

i2
≤ 2

by the previous example.

Similarly, a negative series with all terms non-positive, converges if and
only if its partial sums are bounded below.

Example 209.3. For the alternating series

∞∑

i=1

(−1)i

i
,

we have that the difference between two successive partial sums

sn − sn−1 =
(−1)n

n

alternates in sign, and thus the sequence of partial sums is not mono-
tone, and therefore we cannot decide convergence or not from the above
theorem. We shall return to this series below and prove that it is in fact
convergent.
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209.4 Absolutely Convergent Series

Now we turn to series with terms of different signs. We begin by first
considering series that converge regardless of any cancellation between the
terms. We are motivated by the convergence results for positive series. A
series

∑∞
i=1 ai is said to be absolutely convergent if the series

∞∑

i=1

|ai|

converges. By the previous result we know that a series
∑∞
i=1 ai is abso-

lutely convergent if and only if the sequence {ŝn} with

ŝn =
n∑

i=1

|ai|, (209.5)

is bounded above.
We shall now prove that an absolutely convergent series

∑∞
i=1 ai is con-

vergent. By the triangle inequality we have for m > n,

|sm − sn| = |
m∑

n

ai| ≤
m∑

n

|ai| = |ŝm − ŝn|. (209.6)

Now, since we can make |ŝm− ŝn| arbitrarily small by takingm and n large,
because

∑∞
i=1 ai is absolutely convergent and thus {ŝn}∞n=1 is a Cauchy se-

quence, we conclude that {sn}∞n=1 is a Cauchy sequence and therefore con-
verges and thus the series

∑∞
i=1 ai is convergent. We state this fundamental

result as a theorem:

Theorem 209.2 An absolutely convergent series is convergent.

Example 209.4. The series
∑∞
i=1

(−1)i

i2 is convergent because
∑∞

i=1
1
i2

is convergent.

209.5 Alternating Series

The convergence of a general series with terms of “random” sign may be
very difficult to analyze because of cancellation of terms. We now consider
a special case with a regular pattern to the signs of the terms:

∞∑

i=0

(−1)iai (209.7)

where ai ≥ 0 for all i. This is called an alternating series since the signs of
the terms alternate. We shall now prove that if ai+1 ≤ ai for i = 0, 1, 2... and
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1
i
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limi→∞ ai = 0, then the alternating series converges. The key observation
is that the sequence {sn} of partial sums satisfies

s1 ≤ s3 ≤ s5 ≤ ...s2j+1 ≤ s2i ≤ ... ≤ s4 ≤ s2 ≤ s0, (209.8)

which shows that both limits limj→∞ s2j+1 and limi→∞ s2i exist. Since
ai → 0 as i tends to infinity, limj→∞ s2j+1 = limi→∞ s2i, and thus
limn→∞ sn exists and convergence of the series

∑∞
i=0(−1)iai follows. We

summarize in the following theorem first stated and proved by Leibniz:

Theorem 209.3 An alternating series with the property that the modulus
of its terms tends monotonically to zero, converges.

Example 209.5. The harmonic series

∞∑

i=1

(−1)i−1

i
= 1− 1

2
+

1

3
− 1

4
+ · · ·

converges. We now proceed to show that this series is not absolutely
convergent.

209.6 The Series
∑∞

i=1
1
i Theoretically Diverges!

We shall now show that the harmonic series
∑∞

i=1
(−1)i

i is not absolutely
convergent, i.e. we shall prove that the series

∞∑

i=1

1

i
= 1 +

1

2
+

1

3
+

1

4
+ · · ·

diverges. We do this by proving that the sequence {sn}∞n=1 of partial sums

sn =

n∑

i=1

1

i

can become arbitrarily large if n is large enough. To see this we group the
terms of a partial sum as follows:

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8

+
1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
+

1

16

+
1

17
+ · · ·+ 1

32
+ · · ·
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The first “group” is 1/2. The second group is

1

3
+

1

4
≥ 1

4
+

1

4
=

1

2
.

The third group is

1

5
+

1

6
+

1

7
+

1

8
≥ 1

8
+

1

8
+

1

8
+

1

8
=

1

2
.

The fourth group

1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
+

1

16

has 8 terms that are larger than 1/16, so it also gives a sum larger than
8/16 = 1/2. We can continue in this way, taking the next 16 terms, all of
which are larger than 1/32, then the next 32 terms, all of which are larger
than 1/64, and so on. Each time we take a group, we get a contribution to
the overall sum that is larger than 1/2.
When we take n larger and larger, we can combine more and more terms

in this way, making the sum larger in increments of 1/2 each time. The
partial sums therefore just become larger and larger as n increases, which
means the partial sums diverge to infinity.
Note that by the arithmetic rules, the partial sum sn should be the same

whether we compute the sum in the “forward” direction

sn = 1 +
1

2
+

1

3
+ · · · 1

n− 1
+

1

n

or the “backward” direction

sn =
1

n
+

1

n− 1
+ · · ·+ 1

3
+

1

2
+ 1.

In Fig. 209.2, we list various partial sums in both the forward and back-
ward directions computed using FORTRAN with single precision variables
with about 7 digits of accuracy. Note two things about these results:
First, the computed partial sums sn all become equal when n is large

enough, even though theoretically they should keep increasing to infinity
as n increases. This is because in finite precision the new terms we add
eventually get so small that they effectively give zero contribution. Thus,
although in principle the series diverges, in practice the series appears to
converge on the computer. This gives an illustration of idealism vs realism
in mathematics!
Second, the backward sum is strictly larger than the forward sum! This

is because in the summation a term effectively adds zero when the term is
sufficiently small compared to the current partial sum, and the size of the
partial sums is vastly different if we add in a forward or backward manner.
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n forward sum backward sum

10000 9.787612915039062 9.787604331970214
100000 12.090850830078120 12.090151786804200

1000000 14.357357978820800 14.392651557922360
2000000 15.311032295227050 15.086579322814940
3000000 15.403682708740240 15.491910934448240
5000000 15.403682708740240 16.007854461669920
10000000 15.403682708740240 16.686031341552740
20000000 17.390090942382810
30000000 17.743585586547850
40000000 18.257812500000000
50000000 18.807918548583980

100000000 15.403682708740240 18.807918548583980
200000000 18.807918548583980
1000000000 18.807918548583980

FIGURE 209.2. Forward 1 + 1
2
+ · · · + 1

n
and backward 1

n
+ 1

n−1
+ · · · + 1

2
+ 1

partial harmonic sums for various n computed with double precision.

FIGURE 209.3. Niels Henrik Abel (1802-1829):“ The divergent series are the
invention of the devil, and it is a shame to base on them any demonstration
whatsoever. By using them, one may draw any conclusion he pleases and that is
why these series have produced so many fallacies and so many paradoxes ..”.
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209.7 Abel

Niels Henrik Abel (1802-1829), the great mathematical genius of Norway,
is today world famous for his half-page proof from 1824 of the impossi-
bility of solving polynomial equations of degree larger or equal to five by
root-extraction. This settled a famous problem which had haunted many
generations of mathematicians. However, Abel’s life was short and tragic
and his fame came only after his sudden death at the age of 27. Gauss in
Göttingen was indifferent to the proof when it was first presented, based
on his view expressed in his thesis of 1801 that the algebraic solution of an
equation was no better than devising a symbol for the root of the equation
and then saying that the equation had a root equal to the symbol (compare
the square root of two).
Abel tried also unsuccessfully to convince Cauchy on a trip to Paris 1825,

which ended in misery, and he then left for Berlin on borrowed money
but succeeded to produce another master-piece now on so called elliptic
integrals. After returning to a modest position in Christiania he continued
to pour out high quality mathematics while his health was deteriorating.
After a sled journey to visit his girl friend for Christmas 1828 he became
seriously ill and died quickly after.

FIGURE 209.4. Evariste Galois: (1811-1832):“ Since the beginning of the cen-
tury, computational procedures have become so complicated that any progress by
those means has become impossible, without the elegance which modern math-
ematicians have brought to bear on their research, and by means of which the
spirit comprehends quickly and in one step a great many computations. It is
clear that elegance, so vaunted and so aptly named, can have no other purpose.
... Go to the roots, of these calculations! Group the operations. Classify them
according to their complexities rather than their appearances! This, I believe, is
the mission of future mathematicians. This is the road on which I am embarking
in this work” (from the preface to Galois’ final manuscript).
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209.8 Galois

Abel is contemporary with Evariste Galois (1811-32), who independently
1830 proved the same fifth order equation result as Abel, again with no re-
action from Cauchy. Galois was refused twice in the entrance exam to Ecole
Polytechnique apparently after accusing the examiner for posing questions
incorrectly. Galois was imprisoned for a revolutionary speech against King
Louis Philippe 1830, was released in 1832 but soon died after wounds from
a duel about his girl friend, at the age of 21.

Chapter 209 Problems

209.1. Prove that the series
∑∞

i=1 i
−α converges if and only if α > 1. Hint:

Compare with a primitive function of x−α.

209.2. Prove that the series
∑∞
i=1(−1)ii−α converges if and only if α > 0.

209.3. Prove that the following series converges: (a)
∞∑

i=1

e−i. (b)
∞∑

i=1

1 + (−1)i

i2
.

(c)
∞∑

i=1

e−i

i
. (d)

∞∑

i=1

1

(i+ 1)(i+ 4)
.

209.4. Prove that

∞∑

i=1

1

i2 − i
converges. Hint: first show that 1

2
i2 − i ≥ 0 for

i ≥ 2.

209.5. Estimate the remainder
∑∞

i=n
1
i2

for different values of n.

209.6. Prove that
∞∑

i=1

(−1)i sin(1/i) converges. More difficult: prove that it is

not absolutely convergent.

209.7. Explain in detail why the backward partial sum of the series
∑∞
i=1

1
i
is

larger than the forward sum.
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210
Scalar Autonomous Initial Value
Problems

He doesn’ use long, difficult words, like Owl. (The House at Pooh
Corner, Milne)

210.1 Introduction

In this chapter, we consider the initial value problem for a scalar au-
tonomous non-linear differential equation: Find a function u : [0, 1] → R
such that

u′(x) = f(u(x)) for 0 < x ≤ 1, u(0) = u0, (210.1)

where f : R → R is a given function and u0 a given initial value. We
assume that f : R → R is bounded and Lipschitz continuous, that is, there
are constants Lf and Mf such that for all v, w ∈ R,

|f(v)− f(w)| ≤ Lf |v − w|, and |f(v)| ≤Mf . (210.2)

For definiteness, we choose the interval [0, 1], and we may of course gener-
alize to any interval [a, b].
The problem (210.1) is in general non-linear, since f(v) in general is non-

linear in v, that is, f(u(x)) depends non-linearly on u(x). We have already
in Chapter The exponential function considered the basic case with f linear,
which is the case f(u(x)) = u(x) or f(v) = v. Now we pass on to nonlinear
functions such as f(v) = v2 and others.
Further, we call (210.1) autonomous because f(u(x)) depends on the

value of the solution u(x), but not directly on the independent variable x.
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A non-autonomous differential equation has the form u′(x) = f(u(x), x),
where f(u(x), x) depends on both u(x) and x. The differential equation
u′(x) = xu2(x) is non-autonomous and non-linear with f(v, x) = xv2,
while the equation u′(x) = u(x) defining the exponential is autonomous
and linear with f(v) = v.
Finally, we refer to (210.1) as a scalar problem since f : R → R is a real

valued function of one real variable, that is, v ∈ R and f(v) ∈ R, and thus
u(x) takes real values or u : [0, 1] → R. Below we shall consider systems
of equations with f : Rd → Rd and u : [0, 1] → Rd, where d > 1, which
models a very large range of phenomena.
We hope the reader (like Owl) is now at ease with the terminology: In

this chapter we thus focus on scalar autonomous non-linear differential
equations.
The initial value problem for a scalar autonomous differential equation

is the simplest of all initial value problems and the solution (when it ex-
ists) can be expressed analytically in terms of a primitive function F (v) of
the function 1/f(v). In the next chapter we present an extension of this
solution formula to a certain class of scalar non-autonomous differential
equations referred to as separable differential equations. The analytical so-
lution formula does not generalize to an initial value problems for a system
of differential equations, and is thus of very very limited use. However, the
solution formula is really a beautiful application of Calculus, which may
give valuable information in compact form in the special cases when it is
applicable.
We also present a direct constructive proof of existence of a solution to

the scalar autonomous problem, which generalizes to the very general case
of a initial value problems for (autonomous and non-autonomous) systems
of differential equations, as presented in Chapter The general initial value
problem below.

210.2 An Analytical Solution Formula

To derive the analytical solution formula, we let F (v) be a primitive func-
tion of the function 1/f(v), assuming v takes values so that zeros of f(v)
are avoided. Observe that here F (v) is a primitive function of the function
1/f(v), and not of f(v). We can then write the equation u′(x) = f(u(x))
as

d

dx
F (u(x)) = 1,

since by the Chain rule d
dxF (u(x)) = F ′(u(x))u′(x) = u′(x)

f(u(x)) . We conclude

that

F (u(x)) = x+ C,
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where the constant C is to be determined by the initial condition by setting
F (u0) = C at x = 0. Formally, we can carry out the calculus as follows:
We write the differential equation du

dx = f(u) in the form

du

f(u)
= dx

and integrate to get
F (u) = x+ C,

which gives the solution formula

u(x) = F−1(x + F (u0)), (210.3)

where F−1 is the inverse of F .

The Model u′ = un for n > 1

We use this example to show that the nonlinear nature of (210.1) allows
the interesting behavior of finite-time-blow-up of the solution. First consider
the case n = 2, that is, the initial value problem

u′(x) = u2(x) for x > 0, u(0) = u0 > 0, (210.4)

with f(v) = v2. In this case F (v) = −1/v with F−1(w) = −1/w, and we
obtain the solution formula

u(x) =
1

u−1
0 − x

=
u0

1− u0x
.

We see that that u(x) → ∞ as x→ u−1
0 , that is, the solution u(x) of (210.1)

with f(u) = u2 tends to infinity as x increases to u−1
0 and the solution does

not exist beyond this point, see Fig. 210.1. We say that the solution u blows
up in finite time or exhibits finite time blow-up.
If we consider u′(x) = u2(x) as a model for the growth of a quantity

u(x) with time x in which the rate of growth is proportional to u2(x) and
compare with the model u′(x) = u(x) with solution u0 exp(x) showing
exponential growth. In the model u′(x) = u2(x) the growth is eventually
much quicker than exponential growth since u2(x) > u(x) as soon as u(x) >
1.
We now generalize to

u′(x) = un(x) for x > 0, u(0) = u0,

where n > 1. In this case f(v) = v−n and F (v) = − 1
n−1v

−(n−1), and we
find the solution formula

u(x) =
1

(u−n+1
0 − (n− 1)x)1/(n−1)

.

Again the solution exhibits finite time blow-up.
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FIGURE 210.1. Solution of the equation u′ = u2

The Logistic Equation u′ = u(1− u)

We now consider the initial value problem for the logistic equation

u′(x) = u(x)(1 − u(x)) for x > 0, u(0) = u0,

which was derived by the mathematician and biologist Verhulst as a model
of a population with the growth rate decreasing with the factor (1− u), as
compared with the basic model u′ = u, as the population approaches the
value 1. Typically we assume 0 < u0 < 1 and expect to have 0 ≤ u(x) ≤ 1.
In this case we have f(u) = 1

u(1−u) and using that f(u) = 1
u + 1

1−u , we
find that

F (u) = log(u)− log(1− u) = log(
u

1− u
),

so that

log(
u

1− u
) = x+ C,

or
u

1− u
= exp(C) exp(x).

Solving for u and using the initial condition we find that

u(x) =
1

1−u0

u0
exp(−x) + 1

.

We see that the solution u(x) increases from u0 < 1 to 1 as x increases to
infinity, see Fig. 210.2, which gives the famous logistic S-curve modeling
growth with decreasing growth rate.
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FIGURE 210.2. Solution of the logistic equation

210.3 Construction of the Solution

For the direct construction of a solution of (210.1), we shall use the same
technique as that used for the linear problem f(u(x)) = u(x) considered in
Chapter The exponential function. Of course, one may ask why we should
worry about constructing the solution, when we already have the solution
formula (210.3). We may reply that the solution formula involves the (in-
verse of) the primitive function F (v) of 1/f(v), which we may have to
construct anyway, and then a direct construction of the solution may in
fact be preferable. In general, a solution formula when available may give
valuable information about qualitative properties of the solution such as
dependence of parameters of the problem, even if it is not necessarily the
most effective way of actually computing the solution.
To construct the solution we introduce meshes with nodes xni = ihn for

i = 1, · · · , N , where hn = 2−n and N = 2n, and for n = 1, 2, · · · . we
then define an approximate continuous piecewise linear solution Un(x) for
0 < x ≤ 1 by the formula

Un(xni ) = Un(xni−1) + hnf(U
n(xni−1)) for i = 1, · · · , N, (210.5)

with Un(0) = u0.
We want to prove that {Un(x)} is a Cauchy sequence for x ∈ [0, 1] and we

start by estimating Un(xni )−Un+1(xni ) for i = 1, · · · , N . Taking two steps
with step size hn+1 = 1

2hn to go from time xni−1 = xn+1
2i−2 to xni = xn+1

2i , we
get

Un+1(xn+1
2i−1) = Un+1(xn+1

2i−2) + hn+1f(U
n+1(xn+1

2i−2)),

Un+1(xn+1
2i ) = Un+1(xn+1

2i−1) + hn+1f(U
n+1(xn+1

2i−1)).
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Inserting now the value of Un+1(xn+1
2i−1) at the intermediate step xn+1

2i−1 from
the first equation into the second equation gives

Un+1(xn+1
2i ) = Un+1(xn+1

2i−2) + hn+1f(U
n+1(xn+1

2i−2))

+ hn+1f
(
Un+1(xn+1

2i−2) + hn+1f(U
n+1(xn+1

2i−2))
)
. (210.6)

Setting eni ≡ Un(xni ) − Un+1(xn+1
2i ) and subtracting (210.6) from (210.5),

we get

eni = eni−1 + hn
(
f(Un(xni−1))− f(Un+1(xn+1

2i−2))
)

+ hn+1

(
f(Un+1(xn+1

2i−2))− f
(
Un+1(xn+1

2i−2) + hn+1f(U
n+1(xn+1

2i−2))
))

≡ eni−1 + F1,n + F2,n,

with the obvious definition of F1,n and F2,n. Using the Lipschitz continuity
and boundedness (210.2), we have

|F1,n| ≤ Lfhn|eni−1|,
|F2,n| ≤ Lfh

2
n+1|f(Un+1(xn+1

2i−2))| ≤ LfMfh
2
n+1.

Thus for i = 1, · · · , 2N ,

|eni | ≤ (1 + Lfhn)|eni−1|+ LfMfh
2
n+1.

Iterating this inequality over i and using that en0 = 0, we get

|eni | ≤ LfMfh
2
n+1

i−1∑

k=0

(1 + Lfhn)
k for i = 1, · · · , N.

Now recalling (203.10) and (203.27), we have

i−1∑

k=0

(1 + Lfhn)
k ≤ exp(Lf )− 1

Lfhn
,

and thus we have proved that for i = 1, · · · , N ,

|eni | ≤
1

2
Mf exp(Lf )hn+1,

that is, for x̄ = ihn with i = 0, ..., N,

|Un(x̄)− Un+1(x̄)| ≤ 1

2
Mf exp(Lf)hn+1.

Iterating this inequality as in the proof of the Fundamental Theorem, we
get for m > n and x̄ = ihn with i = 0, ..., N,

|Un(x̄)− Um(x̄)| ≤ 1

2
Mf exp(Lf )hn.
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Again as in the proof of the Fundamental Theorem, we conclude that
{Un(x)} is a Cauchy sequence for each x ∈ [0, 1], and thus converges to a
function u(x), which by the construction satisfies the differential equation
u′(x) = f(u(x)) for x ∈ (0, 1] and u(0) = u0, and thus the limit u(x) is a
solution of the initial value problem (210.1).
It remains to prove uniqueness. Assume that v(x) satisfies v′(x) = f(v(x))

for x ∈ (0, 1] and v(0) = u0, and consider the function w = u − v. Since
w(0) = 0,

|w(x)| = |
∫ x

0

w′(y) dy| = |
∫ x

0

f(u(y))− f(v(y)) dy|

≤
∫ x

0

|f(u(y))− f(v(y))| dy ≤
∫ x

0

Lf |w(y)| dy.

Setting a = max0≤x≤(2Lf)−1 |w(x)|, we have

a ≤
∫ (2Lf )

−1

0

Lfa dy ≤ 1

2
a

which proves that w(x) = 0 for 0 ≤ x ≤ (2Lf )
−1. We now repeat the

argument for x ≥ (2Lf )
−1 to get uniqueness for 0 ≤ x ≤ 1.

We have now proved:

Theorem 210.1 The initial value problem (210.1) with f : R → R Lips-
chitz continuous and bounded has a unique solution u : [0, 1] → R, which is
the limit of the sequence of continuous piecewise linear functions {Un(x)}
constructed from (210.5) and satisfying |u(x) − Un(x)| ≤ 1

2Mf exp(Lf)hn
for x ∈ [0, 1].

The attentive reader will note that the existence proof does not seem
to apply to e.g. the initial value problem (210.4), because the function
f(v) = v2 is not Lipschitz continuous and bounded on R. In fact, the so-
lution u(x) = u0

1−u0x
only exists on the interval [0, u−1

0 ] and blows up at

x = u−1
0 . However, we can argue that before blow-up with say |u(x)| ≤ M

for some (large) constant M , it suffices to consider the function f(v) = v2

on the interval [−M,M ] where the assumption of Lipschitz continuity and
boundedness is satisfied. We conclude that for functions f(v) which are Lip-
schitz continuous and bounded on bounded intervals of R, the constructive
existence proof applies as longs as the solution does not blow up.

Chapter 210 Problems

210.1. Solve the following initial value problem analytically: u′(x) = f(u(x))
for x > 0, u(0) = u0, with (a) f(u) = −u2, (b) f(u) =

√
u, (c) f(u) = u log(u),

(d) f(u) = 1 + u2, (e) f(u) = sin(u), (f) f(u) = (1 + u)−1, (g) f(u) =
√
u2 + 4.
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210.2. Verify that the constructed function u(x) satisfies (210.1). Hint: Use that
by the construction we have u(x) = u0 +

∫ x
0
f(u(y)) dy for x ∈ [0, 1].

210.3. Find the velocity of a parachute jumper assuming that the air resistance
is proportional to the square of the velocity.

210.4. Let u(t) be the position of a body sliding along x-axis with the velocity
u̇(t) satisfying u̇(t) = − exp(−u). How long time does it take for the body to
reach the position u = 0 starting from u(0) = 5
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211
Separable Scalar Initial Value
Problems

The search for general methods for integrating ordinary differential
equations ended about 1755. (Mathematical Thought, from Ancient
to Modern Times, Kline)

211.1 Introduction

We now consider the initial value problem for a scalar non-autonomous
differential equation:

u′(x) = f(u(x), x) for 0 < x ≤ 1, u(0) = u0, (211.1)

in the special case when f(u(x), x) has the form

f(u(x), x) =
h(x)

g(u(x))
, (211.2)

where h : R → R and g : R → R. We thus consider the initial value problem

u′(x) =
h(x)

g(u(x))
for 0 < x ≤ 1, u(0) = u0, (211.3)

where g : R → R and h : R → R are given functions, which we refer to as
a separable problem, because the right hand side f(u(x), x) separates into
the quotient of one function h(x) of x only, and one function g(u(x)) of
u(x) only according to (211.2).
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211.2 An Analytical Solution Formula

We shall now derive an analytical solution formula that generalizes the
solution formula (210.3) for a scalar autonomous problem (corresponding
to the case h(x) = 1). Let then G(v) and H(x) be primitive functions of
g(v) and h(x) so that dG

dv = g and dH
dx = h, and suppose that the function

u(x) solves the equation

G(u(x)) = H(x) + C, (211.4)

for x ∈ [0, 1], where C is a constant. Differentiating with respect to x using
the Chain rule on the left hand side, we then find that g(u(x))u′(x) =
h(x), that is u(x) solves the differential equation u′(x) = h(x)/g(u(x)) =
f(u(x), x) as desired. Choosing the constant C so that u(0) = u0, we thus
obtain a solution u(x) of (211.3), that is the problem (211.1) with f(u(x), x)
of the separable form (211.2).
Note that (211.4) is an algebraic equation for the value of the solution

u(x) for each value of x. We have thus rewritten the differential equation
(211.3) as an algebraic equation (211.4) with x acting as a parameter, and
involving primitive functions of g(y) and h(x).
Of course, we may consider (211.1) with x in an interval [a, b] or [a,∞)

with a, b ∈ R.

Example 211.1. Consider the separable initial value problem

u′(x) = xu(x), x > 0, u(0) = u0, (211.5)

where f(u(x), x) = h(x)/g(u(x)) with g(v) = 1/v and h(x) = x. The
equation G(u(x)) = H(x) + C takes the form

log(u(x)) =
x2

2
+ C, (211.6)

and thus the solution u(x) of (211.5) is given by the formula

u(x) = exp(
x2

2
+ C) = u0 exp(

x2

2
),

with exp(C) = u0 chosen so that the initial condition u(0) = u0 is
satisfied. We check by differentiation using the Chain rule that indeed

u0 exp(
x2

2 ) satisfies u′(x) = xu(x) for x > 0.

Formally (“multiplying by dx”), we can rewrite (211.5) as

du

u
= x dx

and integrate to get

log(u) =
x2

2
+ C,

which corresponds to the equation (211.6).
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Example 211.2. On the rainy evening of November 11 1675 Leibniz
successfully solved the following problem as a first (crucial) test of the
power of the Calculus he had discovered on October 29: Find a curve
y = y(x) such that the subnormal p, see Fig. 211.1, is inversely propor-
tional to y. Leibniz argued as follows: By similarity, see again Fig. 211.1,
we have

dy

dx
=
p

y
,

and assuming the subnormal p to be inversely proportional to y, that
is,

p =
α

y

with α a positive constant, we get the differential equation

dy

dx
=

α

y2
=
h(x)

g(y)
, (211.7)

which is separable with h(x) = α and g(y) = y2. The solution y = y(x)
with y(0) = 0 thus is given by, see Fig. 211.1,

y3

3
= αx, that is y = (3αx)

1
3 , (211.8)

The next morning Leibniz presented his solution to a stunned audience
of colleagues in Paris, and rocketed to fame as a leading mathematician
and Inventor of Calculus.

x

y

y

p

dx
dy

y = f(x)

FIGURE 211.1. Leibniz’ subnormal problem (change from y = f(x) to y = y(x))
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211.3 Volterra-Lotka’s Predator-Prey Model

We now consider a biological system consisting of prey and predators like
rabbits and foxes which interact. Let x(t) be the density of the prey and y(t)
that of the predators at time t and consider Volterra-Lotka’s predator-prey
model for their interaction:

ẋ(t) = ax(t) − bx(t)y(t),
ẏ(t) = −αy(t) + βx(t)y(t)

(211.9)

where a, b, α and β are positive constants, and ẋ = dx
dt and ẏ = dy

dt . The
model includes a growth term ax(t) for the prey corresponding to births and
a decay term bx(t)y(t) proportional to the density of prey and predators
corresponding to the consumption of prey by the predators, together with
corresponding terms for the predators with different signs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x(t)

y
(t
)

(x(t), y(t)) for 0<t<25.5 with (a, b, c, d)=(.5, 1, .2, 1), (x0, y0)=(.5, .3)

FIGURE 211.2. Phase plane plot of a solution of Volterra-Lotka’s equation

This is a system of two differential equations in two unknowns x(t) and
y(t) for which analytical solutions are unknown in general. However, we
can derive an equation satisfied by the points (x(t), y(t)) in an x− y plane,
referred to as the x−y phase plane, as follows: Dividing the two equations,
we get

ẏ

ẋ
=

−αy + βxy

ax− bxy

and formally replacing ẏ
ẋ (by formally dividing out the common dt), we are

led to the equation

y′(x) =
−αy + βxy

ax− bxy
=
y(−α+ βx)

(a− by)x
,
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where y′ = dy
dx , which is a separable equation with solution y = y(x) satis-

fying
a log(y)− by = −α log(x) + βx + C,

or
ya exp(−by) = exp(C)x−α exp(βx)

where C is a constant determined by the initial conditions. We plot pairs
of (x, y) satisfying this equation in Fig. 211.2 as we let the prey x vary,
which traces a phase plane curve of the solution (x(t), y(t) of Fig. 211.2 as
t varies. We see that the solution is periodic with a variation from (many
rabbits, many foxes) to (few rabbits, many foxes) to (few rabbits, few foxes)
to (many rabbits, few foxes) and back to (many rabbits, many foxes). Note
that the phase plane curve shows the different combinations of rabbits
and foxes (x, y), but does not give the time evolution (x(t), y(t)) of their
interaction as a function of time t. We know that for a given t, the point
(x(t), y(t)) lies on the phase plane curve, but not where.

211.4 A Generalization

We now consider a generalization of the separable differential equation
(211.3) with solution u(x) satisfying an equation of the form G(u(x)) −
H(x) = C, to a differential equation with solution satisfying a more gen-
eral equation of the form F (x, u(x)) = C. This closely couples to Chapter
Potential fields below, and uses a generalization of the Chain rule, which
can be accepted right now by a willing reader, and which we will meet
again in Chapter Vector-valued functions of several variables below.
We thus consider the scalar initial value problem

u′(x) = f(u(x), x) for 0 < x ≤ 1, u(0) = u0, (211.10)

in the case f(u(x), x) has the form

f(u(x), x) =
h(u(x), x)

g(u(x)), x)
, (211.11)

where h(v, x) and g(v, x) are functions of v and x with the special property
that

g(v, x) =
∂F

∂v
(v, x), h(v, x) = −∂F

∂x
(v, x), (211.12)

where F (v, x) is a given function of v and x. Above we considered the
case when g(v, x) = g(v) is a function of v only and h(v, x) = h(x) is a
function of x only, and F (v, x) = G(v)−H(x) withG(v) andH(x) primitive
functions of g(v) and h(x), respectively. Now we allow F (v, x) to have a
more general form.



1362 211. Separable Scalar Initial Value Problems

Assume now that u(x) satisfies the equation

F (u(x), x) = C for 0 < x ≤ 1.

Differentiating both sides with respect to x, using a generalization of the
Chain rule, we then get

∂F

∂u

du

dx
+
∂F

∂x

dx

dx
= g(x, u(x))u′(x) − h(x, u(x)) = 0,

and thus u′(x) solves (211.10) with f(u(x), x) of the form (211.11). Again,
we thus have rewritten a differential equation as an algebraic equation
F (x, u(x)) = C with x acting as a parameter. We give an example. The
reader can construct many other similar examples.

Example 211.3. Let F (v, x) = x3

3 + xv + v3

3 so that g(v, x) = ∂F
∂v =

x + v2 and h(v, x) = −∂F
∂x = −x2 − v. If u(x) satisfies the algebraic

equation x3

3 + xu(x) + u3(x)
3 = C for x ∈ [0, 1], then u(x) solves the

differential equation

u′(x) = −x
2 + u(x)

x+ u2(x)
for 0 < x < 1.

To sum up: In this chapter we have given analytical solution formula for
some special cases of the scalar initial value problem (211.1), but we were
not able to give a solution formula in the case of a general non-autonomous
scalar equation.

Chapter 211 Problems

211.1. Prove that solutions (x(t), y(t) of the Volterra-Lotka model satisfies

x̄ =
1

T

∫ T

0

x(t) dt =
c

d
, ȳ =

1

T

∫ T

0

y(t) dt =
a

b
,

where T is the period of periodic solutions. Investigate the effect on the mean
values x̄ and ȳ of hunting of both predator and prey corresponding to including
dissipative terms −ǫx and −ǫy with ǫ > 0. Hint: Consider the integral of ẋ/x
over a period.

211.2. Extend the Volterra-Lotka model to the model

ẋ(t) = ax(t)− bx(t)y(t)− ex2(t),
ẏ(t) = −cy(t) + dx(t)y(t)− fy2(t),

(211.13)

where e and f are positive constants, with the additional terms modeling nega-
tive influences from competition within the species as the populations densities
increase. Compare the solutions of the two models numerically. Is the extended
system separable?



211.4 A Generalization 1363

211.3. Consider the spread of an infection modeled by

u̇ = −auv,
v̇ = auv − bv,

where u(t) is the density of the susceptibles and v(t) is that of the infectives at
time t, and a and b are positive constants. The term ±auv models the transfer
of susceptibles to infectives at a rate proportional to auv, and −bv models the
decay of infectives by death or immunity. Study the qualitative behavior of phase
plane curves.

211.4. Extend the previous model by changing the first equation to u̇ = −auv+
µ, with µ a positive constant modeling a constant growth of the susceptibles.
Find the equilibrium point, and study the linearized model linearized at the
equilibrium point.

211.5. Motivate the following model for a national economy:

u̇ = u− av, v̇ = b(u− v − w),

where u is the national income, v the rate of consumer spending and w the rate
of government spending, and a > 0 and b ≥ 1 are constants. Show that if w is
constant, then there is an equilibrium state, that is a solution independent of
time satisfying u − av = b(u − v − w) = 0. Show that the economy oscillates if
b = 1. Study the stability of solutions. Study a model with w = w0 + cu with w0

a constant. Show that there is no equilibrium state in this model if c ≥ (a−1)/a.
Draw some conclusion. Study a model with w = w0 + cu2.

211.6. Consider a boat being rowed across a river occupying the strip {(x, y) :
0 ≤ x ≤ 1, y ∈ R}, in such a way that the boat always points in the direction
of (0, 0). Assume that the boat moves with the constant speed u relative to the
water and that the river flows with constant speed v in the positive y-direction.
Show that the equations of motion are

ẋ = − ux√
x2 + y2

, ẏ = − uy√
x2 + y2

.

Show that the phase-plane curves are given by

y =
√
x2 + y2 = Ax1−α, where α− v

u
.

What happens if v > u?. Compute solutions.
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212
The General Initial Value Problem

Things are as they are because they were as they were. (Thomas
Gold)

212.1 Introduction

We now consider the Initial Value Problem or IVP for a system of nonlinear
differential equations of the form: Find u : [0, 1] → Rd such that

u′(x) = f(u(x), x) for 0 < x ≤ 1, u(0) = u0, (212.1)

where f : Rd × [0, 1] → Rd is a given bounded and Lipschitz continuous
function, u0 ∈ Rd is a given initial value, and d ≥ 1 is the dimension of the
system. The reader may assume d = 2 or d = 3, recalling the chapters on
analytic geometry in R2 and R3, and extend to the case d > 3 after having
read the chapter on analytic geometry in Rn below. The material in Chapter
Vector-valued functions of several real variables is largely motivated from
the need of studying problems of the form (212.1), and there is thus a close
connection between this chapter and the present one. We keep this chapter
abstract (and a bit philosophical), and present many concrete examples
below. Note that for notational convenience we here use superscript index
in the initial value u0 (instead of u0).
The IVP (212.1) is the non-autonomous vector version of the scalar ini-

tial value problem (210.1), and reads as follows in component form: Find
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functions ui : [0, 1] → R, i = 1, ..., d, such that

u′1(x) = f1(u1(x), u2(x), ..., ud(x), x) for 0 < x ≤ 1,

u′2(x) = f2(u1(x), u2(x), ..., ud(x), x) for 0 < x ≤ 1,

........

u′d(x) = fd(u1(x), u2(x), ..., ud(x), x) for 0 < x ≤ 1,

u1(0) = u10, u2(0) = u20, ud(0) = u0d,

(212.2)

where fi : Rd × [0, 1] → R, i = 1, ..., d, are given functions and u0i ,
i = 1, ..., d, are given initial values. With vector notation writing u =
(u1, ..., ud), f = (f1, ..., fd) and u0 = (u01, ..., u

0
d), we may write (212.2)

in the compact form (212.1). Of course, writing f : Rd × [0, 1] → Rd,
means that for each vector v = (v1, ..., vd) ∈ Rd and x ∈ [0, 1] there is
assigned a vector f(v, x) = (f1(v, x), ..., fd(v, x)) ∈ Rd, where fi(v, x) =
fi(v1, ..., vd, x).
We assume Lipschitz continuity and boundedness of f : Rd× [0, 1] → Rd

in the form: There are constants Lf and Mf such that for all v, w ∈ Rd

and x, y ∈ [0, 1],

|f(v, x)− f(w, y)| ≤ Lf(|v − w|+ |x− y|) and |f(v, x)| ≤Mf , (212.3)

where |v| = (
∑d

i=1 v
2
i )

1/2 is the Euclidean norm of v = (v1, ..., vd) ∈ Rd.
In short, everything looks the same as in the scalar case of (210.1) with

the natural extension to a non-autonomous problem, but the vector inter-
pretation makes the actual content of this chapter vastly different from that
of Chapter Scalar autonomous initial value problems. In particular, there is
in general no analytical solution formula if d > 1, since the solution formula
for d = 1 based on the existence of a primitive function of 1/f(v), does not
generalize to d > 1.
We prove the existence of a unique solution of the IVP (212.1) by using

a constructive process which is a direct generalization of the method used
for the scalar problem (210.1), which was a direct generalization of method
used to construct the integral. The result of this chapter is definitely one of
the highlights of mathematics (or at least of this book), because of its gen-
erality and simplicity: f : Rd × [0, 1] → Rd can be any bounded Lipschitz
continuous function with the dimension d arbitrarily large, and the proof
looks exactly the same as in the scalar case. Therefore this chapter has a
central role in the book and couples closely to several other chapters below
including Analytic geometry in Rn, Solving systems of linear equations, Lin-
earization and stability of IVP, Adaptive IVP-solvers, Vector-valued func-
tions of several real variales and various chapters on applications including
mechanical systems, electrical circuits, chemical reactions, and other phe-
nomena. This means that a full appreciation of this chapter can only be
made after digesting all this material. Nevertheless, it should be possible to
go through this chapter and understand that the general IVP (212.1) can
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be solved through a constructive process requiring more or less work. This
chapter also may be used as a basis for a bit of philosophical discussion
on constructive aspects of the World, as we now proceed to do (for the
interested reader).

212.2 Determinism and Materialism

Before we present the existence proof (which we thus have already seen),
we pause to reflect a little on the related mechanistic/deterministic view of
science and philosophy going back to Descartes and Newton and forming
the basis the industrial society leading into our own time. With this view
the World is like a big mechanical Clock governed by laws of mechanics,
which may be modeled as an initial value problem of the form (212.1)
with a certain function f and initial value u0 at time x = 0. The state of
this system for positive time is, according to the existence proof, uniquely
determined by the function f and u0, which would support a deterministic
or materialistic view of the World including the mental processes in human
beings: everything that will happen in the future is in principle determined
by the present state (assuming no blow-up). Of course, this view is in serious
conflict with massive everyday experience of unpredictability and our firm
belief in the existence of a free will, and considerable efforts have gone into
resolving this paradox through the centuries without complete success.
Let’s see if we can approach this paradox from a mathematical point of

view. After all, the determinitic/materialistic view is founded on a proof of
existence of a unique solution of an initial value problem of the form (212.1),
and thus the roots of the paradox may be hidden in the mathematical proof
itself. We will argue that the resolution of the paradox must be coupled to
aspects of predictability and computability of the problem (212.1), which we
will now briefly touch upon and return to in more detail below. We hope the
reader is open for this type of discussion, seldom met in a Calculus text. We
try to point to the necessity of a proper understanding of a mathematical
result, which may appear to be very simple and clear, like the existence
proof to be presented, but which in fact may require a lot of explanation
and qualification to avoid misunderstanding.

212.3 Predictability and Computability

The predictability of the problem (212.1) concerns the sensitivity of the
solution to the given data, that is, the function f and the initial value u0.
The sensitivity is a measure of the change of the solution under changes
of the data f and u0. If the solution changes very much even for very
small changes of data, then the sensitivity is very high. In such a case we
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need to know the data with very high precision to accurately predict the
solution. We shall see below that solutions of certain initial value problems
are highly sensitive to changes in data and in these problems accurate
prediction will be impossible. An example is given by the familiar process
of tossing a coin, which can be modeled as an initial value problem. In
principle, by repeatedly choosing the same initial value, the person tossing
the coin should be able to always get heads, for example. However, we all
know that this is impossible in practice, because the process is too sensitive
to small changes in the initial value (and the corresponding function f).
To handle this type of unpredictability the scientific field of statistics has
been developed.
Similarly, the computability of the problem (212.1) concerns (i) the sensi-

tivity of the solution to errors made in constructing the solution according
to the existence proof, and (ii) the amount of computational work needed
to construct the solution. Usually, (i) and (ii) go hand in hand: if the sen-
sitivity is high, then a lot of work is required and of course the work also
increases with the dimension d. A highly sensitive problem with d very large
is thus a computational night-mare. To construct the solution of the initial
value problem for even a small part of the Universe will thus be practically
impossible with any kind of computer, and claiming that in principle the
solution is determined would make little sense.
We will meet this problem with painstaking evidence when we turn into

numerical methods. We will see that most systems of the form (212.1)
with d small (d ≤ 10 say) may be solved within fractions of a second on
a PC, while some systems (like the famous Lorenz system with d = 3 to
be studied below) quickly will exhaust even supercomputers because of
very high sensitivity. We will further see that many systems of practical
interest with d large (d ≈ 106 − 107) can be solved within minutes/hours
on a PC, while accurate modeling of e.g. turbulent flow requires d ≥ 1010

and super-computer power. The most powerful super-computer in sight, the
Blue Gene consisting of 106 connected PCs to appear in a couple of years, is
designed for initial value problems of molecular dynamics of protein folding
for the purpose of medical drug design. A landmark in computing was set
in 1997 when the chess computer Deep Blue put the the world-champion
Gary Kasparov chess mate.
The computational work required to solve (212.1) may thus vary con-

siderably. Below we shall successively uncover a bit of this mystery and
identify basic features of problems requiring different amounts of compu-
tational work.
We will return to the concepts of predictability and computability of

differential equations below. Here we just wanted to give some perspective
on the constructive existence proof to be given showing some limits of
mathematics as a human activity.
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212.4 Construction of the Solution

The construction of the solution u(x) of (212.1) looks identical to the con-
struction of the solution of (210.1), after we interpret u(x) and f(u(x))
as vectors instead of scalars and make the natural extension to a non-
autonomous problem.
We begin by discretizing [0, 1] using a mesh with nodes xni = ihn for

i = 1, · · · , N, where hn = 2−n and N = 2n. For n = 1, · · · , N, we define
an approximate piecewise linear solution Un : [0, 1] → Rd by the formula

Un(xni ) = Un(xni−1) + hnf(U
n(xni−1), x

n
i−1), for i = 1, · · · , N, (212.4)

and setting Un(0) = u0. Note that Un(x) is linear on each subinterval
[xnn−1, x

n
i ].

We want to prove that for x ∈ [0, 1], {Un(x)}∞n=1 is a Cauchy sequence
in Rd. We start by estimating Un(xni )−Un+1(xni ) for i = 1, · · · , N . Taking
two steps with step size hn+1 = 1

2hn to go from time xni−1 = xn+1
2i−2 to

xni = xn+1
2i , we have

Un+1(xn+1
2i−1) = Un+1(xn+1

2i−2) + hn+1f(U
n+1(xn+1

2i−2), x
n
i−1),

Un+1(xn+1
2i ) = Un+1(xn+1

2i−1) + hn+1f(U
n+1(xn+1

2i−1), x
n+1
2i−1).

Inserting now the value of Un+1(xn+1
2i−1) at the intermediate step xn+1

2i−1 from
the first equation into the second equation, we get

Un+1(xn+1
2i ) = Un+1(xn+1

2i−2) + hn+1f(U
n+1(xn+1

2i−2), x
n
i−1)

+ hn+1f
(
Un+1(xn+1

2i−2) + hn+1f(U
n+1(xn+1

2i−2), x
n
i−1), x

n+1
2i−1

)
.

(212.5)
Setting eni ≡ Un(xni ) − Un+1(xn+1

2i ) and subtracting (212.5) from (212.4)
gives

eni = eni−1 + hn
(
f(Un(xni−1), x

n
i−1)− f(Un+1(xn+1

2i−2), x
n
i−1)

)

+ hn+1

(
f(Un+1(xn+1

2i−2), x
n
i−1)− f

(
Un+1(xn+1

2i−2)

+ hn+1f(U
n+1(xn+1

2i−2), x
n
i−1), x

n+1
2i−1

))
≡ eni−1 + F1,n + F2,n,

with the obvious definitions of F1,n and F2,n. Using (212.3), we have

|F1,n| ≤ Lfhn|eni−1|,
|F2,n| ≤ Lfh

2
n+1(|f(Un+1(xn+1

2i−2), x
n
i−1)|+ 1) ≤ LfM̄fh

2
n+1,

where M̄f =Mf + 1, and so for i = 1, · · · , N ,

|eni | ≤ (1 + Lfhn)|eni−1|+ LfM̄fh
2
n+1.
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Iterating this inequality over i and using that en0 = 0, we get

|eni | ≤ LfM̄fh
2
n+1

i−1∑

k=0

(1 + Lfhn)
i for i = 1, · · · , N.

Recalling (203.10) and (203.27), we have

i−1∑

k=0

(1 + Lfhn)
k =

(1 + Lfhn)
i − 1

Lfhn
≤ exp(Lf )− 1

Lfhn
,

and thus we have proved that for i = 1, · · · , N ,

|eni | ≤
1

2
M̄f exp(Lf )hn+1,

that is, for x̄ = ihn with i = 0, ..., N,

|Un(x̄)− Un+1(x̄)| ≤ 1

2
M̄f exp(Lf)hn+1.

Iterating this inequality as in the proof of the Fundamental Theorem, we
get for m > n and x̄ = ihn with i = 0, ..., N,

|Un(x̄)− Um(x̄)| ≤ 1

2
M̄f exp(Lf )hn. (212.6)

Again as in the proof of the Fundamental Theorem, we conclude that
{Un(x)} is a Cauchy sequence for each x ∈ [0, 1], and thus converges to a
function u(x), which by the construction satisfies the differential equation
u′(x) = f(u(x)) for x ∈ (0, 1] and u(0) = u0, and thus the limit u(x) is a
solution of the initial value problem (212.1). Uniqueness of a solution fol-
lows as in the scalar case considered in Chapter Scalar autonomous initial
value problems. We have now proved the following basic result:

Theorem 212.1 The initial value problem (212.1) with f : Rd × [0, 1] →
Rd bounded and Lipschitz continuous, has a unique solution u(x), which is
the limit of the sequence of continuous piecewise linear functions {Un(x)}
constructed from (212.4) and satisfying

|u(x)− Un(x)| ≤ (Mf + 1) exp(Lf )hn for x ∈ [0, 1]. (212.7)

212.5 Computational Work

The convergence estimate (212.7) indicates that the work required to com-
pute a solution u(x) of (212.1) to a given accuracy is proportional to
exp(Lf) and to exp(LfT ) if we consider a time interval [0, T ] instead of
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[0, 1]. With Lf = 10 and T = 10, which would seem to be a very inno-
cent case, we would have exp(LfT ) = exp(102) and we would thus have
to choose hn smaller than exp(−102) ≈ 10−30, and the number of com-
putational operations would be of the order 1030 which would be at the
limit of any practical possibility. Already moderately large constants such
as Lf = 100 and T = 100, would give an exponential factor exp(104)
way beyond any comprehension. We conclude that the appearance of the
exponential factor exp(LfT ), which corresponds to a worst possible case,
seems to limit the interest of the existence proof. Of course, the worst pos-
sible case does not necessarily have to occur always. Below we will present
problems with special features for which the error is actually smaller than
worst possible, including the important class of stiff problems where large
Lipschitz constants cause quick exponential decay instead of exponential
growth, and the Lorenz system where the error growth turns out to be of
order exp(T ) instead of exp(LfT ) with Lf = 100.

212.6 Extension to Second Order Initial Value
Problems

Consider a second order initial value problem

v̈(t) = g(v(t), v̇(t)) for 0 < t ≤ 1, v(0) = v0, v̇(0) = v̇0, (212.8)

with initial conditions for v(0) and v̇(0), where g : Rd×Rd → Rd is Lipschitz
continuous, v : [0, 1] → Rd and v̇ = dv

dt . In mechanics, initial value problems
often come in such second order form as they express Newton’s Law with
v̈(t) representing acceleration and g(v(t), v̇(t)) force. This problem can be
reduced to a first order system of the form (212.1) by introducing the new
variable w(t) = v̇(t) and writing (212.8) as

ẇ(t) = g(v(t), w(t)) for 0 < t ≤ 1,

v̇(t) = w(t) for 0 < t ≤ 1,

v(0) = v0, w(0) = v̇0.

(212.9)

Setting u = (u1, ..., u2d) = (v1, ..., vd, w1, ..., wd) and f(u) = (g1(u), · · · ,
gd(u), ud+1, ..., u2d), the system (212.9) takes the form u̇(t) = f(u(t)) for
0 < t ≤ 1, and u(0) = (v0, v̇0).
In particular, we can rewrite the second order scalar equations v̈+ v = 0

as a first order system and obtain existence of the trigonometric functions
via the general existence result for first order systems as solutions of the
corresponding initial value problem with appropriate data.
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212.7 Numerical Methods

The computational solution of differential equations is an important subject
with many aspects. The overall objective may be viewed to be to compute
approximate solutions with as little work as possible per digit of accuracy.
So far we have discussed only the simplest method for constructing approx-
imate solutions. In this section, we give a brief glimpse of other methods.
In Chapter Adaptive IVP solvers, we continue this study.
The computational method we have used so far, in which

Un(xni ) = Un(xni−1) + hnf(U
n(xni−1), x

n
i−1), for i = 1, · · · , N, (212.10)

with Un(0) = u0, is called the forward Euler method. The forward Euler
method is an explicit method because we can directly compute Un(xni ) from
Un(xni−1) without solving a system of equations.
In contrast, the backward Euler method in which the approximate solu-

tion is computed via the equation

Un(xni ) = Un(xni−1) + hnf(U
n(xni ), x

n
i ), for i = 1, · · · , N, (212.11)

with Un(0) = u0, is an implicit method. At each step we need to solve the
system

V = Un(xni−1) + hnf(V, x
n
i ), (212.12)

to compute Un(xni ) from Un(xni−1). Another implicit method is the mid-
point method

Un(xni ) = Un(xni−1) + hnf(
1

2
(Un(xni−1) + Un(xni )), x̄

n
i−1), i = 1, · · · , N,

(212.13)
with x̄ni−1 = 1

2 (x
n
i−1 + xni ), where we have to solve the system

V = Un(xni−1) + hnf(
1

2
(Un(xni−1) + V ), x̄ni−1) (212.14)

at each step. Note that both (212.12) and (212.14) are nonlinear equations
when f is nonlinear. We may use Fixed Point Iteration or Newton’s method
to solve them, see Chapter Vector-valued functions of several real variables
below.
We also present the following variant of the midpoint method, which we

call the cG(1), continuous Galerkin method with trial functions of order 1:.
The approximate solution is computed via

Un(xni ) = Un(xni−1) +

∫ xn
i

xn
i−1

f(U(x), x) dx, i = 1, · · · , N, (212.15)

and Un(0) = u0, where Un(x) is continuous piecewise linear function with
the values Un(xni ) at the nodes xni . If we evaluate the integral in (212.15)
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with the midpoint quadrature rule, we obtain the midpoint method. We
can of course use other quadrature formulas to get different methods.
We shall see that cG(1) is the first in a family of methods cG(q) with

q = 1, 2, ..., where the solution is approximated by continuous piecewise
polynomials of order q. The Galerkin feature of cG(1) is expressed by the
fact that the method can be formulated as

∫ xn
i

xn
i−1

(
dUn

dx
(x) − f(Un(x), x)) dx = 0,

stating that the mean-value over each subinterval of the residual dU
n

dx (x)−
f(U(x), x) of the continuous piecewise linear approximate solution Un(x),
is equal to zero (or that the residual is orthogonal to the set of constant
functions on each subinterval with a terminology to be used below).
We can prove convergence of the backward Euler and midpoint methods

in the same way as for the forward Euler method. The forward and back-
ward Euler methods are first order accurate methods in the sense that the
error |u(x)−Un(x)| is proportional to the step size hn, while the midpoint
method is second order accurate with the error proportional to h2n and thus
in general is more accurate. The computational work per step is generally
smaller for an explicit method than for an implicit method, since no sys-
tem of equations has to be solved at each step. For so-called stiff problems,
explicit methods may require very small time steps compared to implicit
methods, and then implicit methods can give a smaller total cost. We will
return to these issues in Chapter Adaptive IVP solvers below.
Note that all of the methods discussed so far generalize to allow non-

uniform meshes 0 = x0 < x1 < x2 < ... < xN = 1 with possibly varying
steps xi−xi−1. We will below return to the problem of automatic step-size
control with the purpose of keeping the error |u(xi) − U(xi)| ≤ TOL for
i = 1, · · · , N , where TOL is a given tolerance, while using as few time
steps as possible by varying the mesh steps, cf. the Chapter Numerical
Quadrature.

Chapter 212 Problems

212.1. Prove existence of a solution of the initial value problem (212.1) using
the backward Euler method or the midpoint method.

212.2. Complete the proof of existence for (212.1) by proving that the con-
structed limit function u(x) solves the initial value problem. Hint: use that
ui(x) =

∫ x
0
fi(u(y)) dy for x ∈ [0, 1], i = 1, ..., d.

212.3. Give examples of problems of the form (212.1).
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213
Lagrange and the Principle of Least
Action*

Dans les modifications des mouvements, l’action devient ordinaire-
ment un Maximum ou un Minimum. (Leibniz)

Whenever any action occurs in nature, the quantity of action em-
ployed by this change is the least possible. (Maupertuis 1746)

From my earliest recollection I have had an irresistible liking for
mechanics and the physical laws on which mechanics as a science is
based. (Reynolds)

213.1 Introduction

Lagrange (1736-1813), see Fig. 213.1, found a way to formulate certain
dynamical problems in mechanics using a Principle of Least Action. This
principle states that the state u(t) of a system changes with time t over a
given time interval [t1, t2], so that the action integral

I(u) =

∫ t2

t1

(T (u̇(t))− V (u(t)) dt (213.1)

is stationary, where T (u̇(t)) with u̇ = du
dt is the kinetic energy, and V (u(t))

is the potential energy of the state u(t). We here assume that the state u(t)
is a function u : [t1, t2] → R satisfying u(t1) = u1 and u(t2) = u2, where
u1 and u2 are given initial and final values. For example, u(t) may be the
position of a moving mass at time t. The action integral of a state is thus
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the difference between the kinetic and potential energies integrated in time
along the state.
We shall now get acquainted with Lagrange’s famous Principle of Least

Action and we shall see that it may be interpreted as a reformulation of
Newton’s law stating that mass times acceleration equals force. To this end,
we first need to explain what is meant by the statement that the action
integral is stationary for the actual solution u(t). Our tool is Calculus, at
its best!

FIGURE 213.1. Lagrange, Inventor of the Principle of Least Action: “I regard as
quite useless the reading of large treatises of pure analysis: too large a number of
methods pass at once before the eyes. It is in the works of applications that one
must study them; one judges their ability there and one apprises the manner of
making use of them”.

Following in the foot-steps of Lagrange, consider a perturbation v(t) =
u(t)+ǫw(t) = (u+ǫw)(t) of the state u(t), where w(t) is a function on [t1, t2]
satisfying w(t1) = w(t2) = 0 and ǫ is a small parameter. The function v(t)
corresponds to changing u(t) with the function ǫw(t) inside (t1, t2) while
keeping the values v(t1) = u1 and v(t2) = u2. The Principle of Least Action
states that the actual path u(t) has the property that for all such functions
w(t), we have

d

dǫ
I(u+ ǫw) = 0 for ǫ = 0. (213.2)

The derivative d
dǫI(u + ǫw) at ǫ = 0, measures the rate of change with

respect to ǫ at ǫ = 0 of the value of the action integral with u(t) replaced
by v(t) = u(t) + ǫw(t). The Principle of Least Action says this rate of
change is zero if u is the actual solution, which expresses the stationarity
of the action integral.
We now present a couple of basic applications illustrating the use of the

Principle of Least Action.
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213.2 A Mass-Spring System

We consider a system of a mass m sliding on a on a horizontal friction-less
x-axis and being connected to the origin with a weight-less Hookean spring
with spring constant k, see the Chapter Galileo, Newton et al. We know
that this system may be described by the equation mü + ku = 0, where
u(t) is the length of the spring at time t. We derive this model by using
the Principle of Least Action. In this case,

T (u̇(t)) =
m

2
u̇2(t) and V (u(t)) =

k

2
u2(t),

and thus

I(u) =

∫ t2

t1

(m
2
u̇2(t)− k

2
u2(t)

)
dt.

To motivate the expression V (u(t)) = k
2u

2(t) for the potential energy, we
use the definition of the potential energy as the total work required to move
the mass from position u = 0 to position u(t). The work to move the mass
from position v to v + ∆v is equal to kv∆v following the principle that
work = force × displacement. The total work is thus

V (u(t)) =

∫ u(t)

0

kv dv =
k

2
u2(t),

as announced.
To see how the equationmü+ku = 0 arises, we compute the derivative of

I(u+ǫw) with respect to ǫ and then set ǫ = 0, where w(x) is a perturbation
satisfying w(t1) = w(t2) = 0. Direct computation based on moving d

dǫ inside
the integral, which is allowed since the limits of integration are fixed,

d

dǫ
I(u+ ǫw) =

∫ t2

t1

d

dǫ

(m
2
u̇u̇+ ǫmu̇ẇ +

m

2
ǫ2ẇẇ − k

2
u2 − kǫuw − k

2
ǫ2w2

)
dt

=

∫ t2

t1

(
mu̇ẇ − kuw

)
dt for ǫ = 0.

Integrating by parts in the term mu̇ẇ, we get

∫ t2

t1

(
mü+ ku

)
w dt = 0,

for all w(t) with w(t1) = w(t2) = 0. This implies that mü + ku = 0 in
[t1, t2], since w(t) can vary arbitrarily in the interval (t1, t2), and we obtain
the desired equation.
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213.3 A Pendulum with Fixed Support

We consider a pendulum in the form of a body of mass one attached to a
weightless string of unit length fixed to the ceiling under the action of a
vertical gravity force normalized to one. The action integral of the difference
between kinetic and potential energy is given by

I(u) =

∫ t2

t1

(1
2
u̇2(t)− (1 − cos(u(t))

)
dt,

where u(t) represents the angle of the pendulum in radians at time t, mea-
sured from the vertical position, see Fig. 213.2.

1
u

u

sin(u)

cos(u)

tension

FIGURE 213.2. A pendulum.

The potential energy in this case is equal to the work of lifting the mass
from the bottom position to the level (1−cos(v)), which is exactly equal to
(1− cos(v)) if the gravitational constant is normalized to one. Stationarity
of the action integral requires that for all perturbations w(t) satisfying
w(t1) = w(t2) = 0, we have

0 =
d

dǫ

∫ t2

t1

(1
2
(u̇+ ǫẇ)2(t)− (1− cos(u(t) + ǫw(t))

)
dt for ǫ = 0,

which gives as above

∫ t2

t1

(
ü+ sin(u(t))

)
w dt = 0.

This yields the initial value problem

{
ü+ sin(u) = 0 for t > 0

u(0) = u0, u̇(0) = u1,
(213.3)
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where we added initial conditions for position and velocity.
The resulting differential equation ü = − sin(u) is an expression of New-

ton’s Law, since ü is the angular acceleration and − sin(u) is the restoring
force in the angular direction. We conclude that the Principle of Least
Action in the present case is a reformulation of Newton’s Law.
If the angle of the pendulum stays small during the motion, then we can

approximate sin(u) by u and obtain the linear equation ü + u = 0, with
solutions being linear combinations of sin(t) and cos(t).

213.4 A Pendulum with Moving Support

We now generalize to a pendulum with a support that is subject to a
prescribed motion. Consider thus a body of massm swinging in a weightless
string of length l that is attached to a support moving according to a
given function r(t) = (r1(t), r2(t)) in a coordinate system with the x1-axis
horizontal and the x2-axis vertical upward. Let u(t) be the angle of the
string at time t measured from the vertical.
The potential energy is again equal to the height of the body, measured

from some reference position, times mg with g the gravitational constant.
Thus, we may choose

V (u(t)) = mg(r2(t)− l cos(u)).

To express the kinetic energy, we need to take into account the motion of
the support. The velocity of the body relative to the support is (lu̇ cosu,
lu̇ sinu), and the total velocity is thus (ṙ1(t)+ lu̇ cosu, ṙ2(t)+ lu̇ sinu). The
kinetic energy is m/2 times the square of the modulus of the velocity, and
thus

T =
m

2

[
(ṙ1 + lu̇ cosu)2 + (ṙ1 + lu̇ sinu)2

]
.

Using the Principle of Least Action, we obtain the following equation:

ü+
g

l
sinu+

r̈1
l
cosu+

r̈2
l
sinu = 0, (213.4)

together with initial conditions for u(0) and u̇(0).
If the support is fixed with r̈1 = r̈2 = 0, then we recover the equation

(213.3) setting l = m = g = 1.

213.5 The Principle of Least Action

We now consider a mechanical system that is described by a vector function
u(t) = (u1(t), u2(t)). We may think of a system consisting of two bodies
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with positions given by the functions u1(t) and u2(t). The action integral
is

I(u1, u2) = I(u) =

∫ t2

t1

L(u(t) dt,

where
L(u1(t), u2(t)) = L(u(t)) = T (u̇(t)) − V (u(t))

is the difference of the kinetic energy T (u̇(t)) = T (u̇1(t), u̇2(t)) and the
potential energy V (u(t)) = V (u1(t), u2(t)). We refer to L(u(t)) as the La-
grangean of the state u(t).
The Principle of Least Action states that the action integral is stationary

at the true state u(t) in the sense that for all perturbations w1(t) and w2(t)
with w1(t1) = w2(t1) = w1(t2) = w2(t2), we have for ǫ = 0,

d

dǫ
I(u1 + ǫw1, u2) = 0

d

dǫ
I(u1, u2 + ǫw2) = 0.

Assuming that

T (u̇1(t), u̇2(t)) =
m1

2
u̇21(t) +

m2

2
u̇22(t),

we obtain performing the differentiation with respect to ǫ as above and
setting ǫ = 0,

∫ t2

t1

(
mu̇1(t)ẇ1(t)−

∂V

∂u1
(u1(t), u2(t))w1(t)

)
dt = 0,

∫ t2

t1

(
mu̇2(t)ẇ2(t)−

∂V

∂u2
(u1(t), u2(t))w2(t)

)
dt = 0.

Integrating by parts as above and letting w1 and w2 vary freely over (t1, t2),
we obtain

mü1(t) = − ∂V

∂u1
(u1(t), u2(t)),

mü2(t) = − ∂V

∂u2
(u1(t), u2(t)).

(213.5)

If we set

F1 = − ∂V

∂u1
, F2 = − ∂V

∂u2
,

then we can write the equations derived from the Principle of Least Action
as

mü1(t) = F1(u1(t), u2(t)),
mü2(t) = F1(u1(t), u2(t)),

(213.6)

which can be viewed as Newton’s Law if F1 and F2 are interpreted as forces.
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213.6 Conservation of the Total Energy

Defining the total energy

E(u(t)) = T (u̇(t)) + V (u(t))

as the sum of the kinetic and potential energies and using (213.5), we get

d

dt
E(u(t)) = m1u̇1ü1 +m2u̇2ü2 +

∂V

∂u1
u̇1 +

∂V

∂u2
u̇2

= u̇1
(
m1ü1 +

∂V

∂u1

)
+ u̇2

(
m2ü2 +

∂V

∂u2

)
= 0.

We conclude that the total energy E(u(t)) is constant in time, that is the
energy is conserved. Obviously, energy conservation is not a property of all
systems, and thus the Principle of Least Action only applies to so called
conservative systems, where the total energy is conserved. In particular,
effects of friction are not present.

213.7 The Double Pendulum

We now consider a double pendulum consisting of two bodies of masses m1

and m2, where the first body of mass m1 hangs on a weightless string of
length l1 attached to a fixed support and the second body of massm2 hangs
on a weightless string of length l2 attached to the first body. We shall now
apply the Principle of Least Action to derive the equations of motion for
this system.
To describe the state of the system, we use the angles u1(t) and u2(t) of

the two bodies measured from vertical position.
We now seek expressions for the kinetic and potential energies of the sys-

tem of the two bodies. The contributions from the second body is obtained
from the expressions for a pendulum with moving support derived above if
we set (r1(t), r2(t)) = (l1 sinu1,−l1 cosu1).
The potential energy of the first pendulum is −mgl1 cosu1 and the total

potential energy is

V (u1(t), u2(t)) = −m1gl1 cosu1(t)−m2g (l1 cosu1(t) + l2 cosu2(t)) .

The total kinetic energy is obtained similarly adding the kinetic energies
of the two bodies:

T (u̇1(t), u̇2(t)) =
m1

2
l21u̇

2
1 +

m2

2

[
(l1u̇1 cosu1 + l2u̇2 cosu2)

2

+(l1u̇1 sinu1 + l2u̇2 sinu2)
2
]
.
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u1

u2

l1

l2

m1

m2

FIGURE 213.3. Double pendulum

Using the identities sin2 u + cos2 u = 1 and cos (u1 − u2) = cosu1 cosu2 +
sinu1 sinu2, we can rewrite this expression as

T =
m1

2
l21u̇

2
1 +

m2

2

[
l21u̇

2
1 + l22u̇

2
2 + 2l1l2u̇1u̇2 cos (u1 − u2)

]
.

Applying the Principle of Least Action, we obtain the following system
of equations for a double pendulum:

ü1 +
m2

m1 +m2

l2
l1
[ü2 cos(u2 − u1)− u̇22 sin(u2 − u1)] +

g

l1
sinu1 = 0,

ü2 +
l1
l2
[ü1 cos(u2 − u1) + u̇21 sin(u2 − u1)] +

g

l2
sinu2 = 0.

(213.7)

We note that if m2 = 0, then the first equation is just the equation for
a simple pendulum, and that if ü1 = u̇1 = 0, then the second equation is
again the equation for a simple pendulum.

213.8 The Two-Body Problem

We consider the two-body problem for a small mass orbiting around a heavy
mass, such as the Earth moving around the Sun neglecting the influence of
the other planets. We assume that the motion takes place in a plane and
use polar coordinates (r, θ) with the origin at the center of the heavy mass
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to describe the position of the light body. Assuming that the heavy body
is fixed, the action integral representing the difference between the kinetic
and potential energy of the small mass is given by

∫ t2

t1

(1
2
ṙ2 +

1

2
(θ̇r)2 +

1

r

)
dt (213.8)

because the velocity is (ṙ, rθ̇) in the radial and angular directions respec-
tively, and the gravity potential is −r−1 = −

∫∞
r s−2 ds corresponding to

the work needed to move a particle of unit mass a distance r from the orbit
center to infinity. The corresponding Euler-Lagrange equations are

{
r̈ − rθ̇2 = − 1

r2 , t > 0,
d
dt(r

2θ̇) = 0, t > 0,
(213.9)

which is a second order system to be complemented with initial values for
position and velocity.
We construct the analytical solution of this system in a set of prob-

lems below, which may be viewed as a short course on Newton’s Principia
Matematica. We invite the reader to take this opportunity of getting on
speaking terms with Newton himself.

213.9 Stability of the Motion of a Pendulum

The linearization of the equation for a pendulum at ū ∈ R, ü+ sin(u) = 0,
is obtained by setting u = ū+ϕ and noting that sin(u) ≈ sin(ū)+cos(ū)ϕ.
This leads to

0 = ü+ sin(u) ≈ ϕ̈+ sin(ū) + cos(ū)ϕ.

Assuming first that ū = 0, we obtain the following linearized equation for
the perturbation ϕ,

ϕ̈+ ϕ = 0, (213.10)

with solution being a linear combination of sin(t) and cos(t). For example,
if ϕ(0) = δ and ϕ̇(0) = 0, then ϕ(t) = δ cos(t), and we see that an initially
small perturbation is kept small for all time: the pendulum stays close to
the bottom position under small perturbations.
Setting next ū = π, we obtain

ϕ̈− ϕ = 0 (213.11)

with the solution being a linear combination of exp(±t). Since exp(t) grows
very quickly, the state ū = π corresponding to the pendulum in the top
position is unstable. A small perturbation will quickly develop into a large
perturbation and the pendulum will move way from the top position.
We will return to the topic of this section in Chapter Linearization and

stability of initial value problems
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Chapter 213 Problems

213.1. Supply the missing details in the derivation of the equation for the pen-
dulum. If the angle u stays small during the motion, then the simpler linearized
model ü + u = 0 may be used. Solve this equation analytically and compare
with numerical results for the nonlinear pendulum equation to determine limits
of validity of the linear model.

213.2. Carry out the details in the derivation of the equations for the pendulum
with moving support and the double pendulum.

213.3. Study what happens for the double pendulum in the extreme cases, i.e.
at zero and infinity, for the parameters m1, m2, l1 and l2.

213.4. Derive the second equation of motion for the double pendulum from
the result for the pendulum with moving support by setting (r1(t), r2(t)) =
(l1 sin u1,−l1 cos u1).

213.5. Derive the equation of motion for a bead sliding on a frictionless plane
vertical curve under the action of gravity.

213.6. In the foot-steps of Newton give an analysis and analytical solution
of the two-body problem modeled by (213.9) through the following sequence of
problems: (i) Prove that a stationary point of the action integral (213.8) satisfies
(213.9). (ii) Prove that the total energy is constant in time. (iii) Introducing the
change of variables u = r−1, show that θ̇ = cu2 for c constant. Use this relation
together with the fact that the chain rule implies that

dr

dt
=
dr

du

du

dθ

dθ

dt
= −cdu

dθ
and r̈ = −c2u2 d

2u

dθ2

to rewrite the system (213.9) as

d2u

dθ2
+ u = c−2. (213.12)

Show that the general solution of (213.12) is

u =
1

r
= γ cos(θ − α) + c−2,

where γ and α are constants. (iii) Prove that the solution is either an ellipse,
parabola, or hyperbola. Hint: Use the fact that these curves can be described as
the loci of points for which the ratio of the distance to a fixed point and to a
fixed straight line, is constant. Polar coordinates are suitable for expressing this
relation. (iv) Prove Kepler’s three laws for planetary motion using the experience
from the previous problem.

213.7. Study the linearizations of the double pendulum at (u1, u2) = (0, 0) and
(u1, u2) = (π, π) and draw conclusions about stablity.

213.8. Attach an elastic string to a simple pendulum in some way and model
the resulting system.

213.9. Compute solutions of the presented models numerically.
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214
N -Body Systems*

The reader will find no figures in this work. The methods which I
set forth do not require either geometrical or mechanical reasonings,
but only algebraic operations, subject to a regular and uniform rule
of procedure. (Lagrange in Méchanique Analytique)

214.1 Introduction

We shall now model systems of N bodies interacting through mechani-
cal forces that result from springs and dashpots, see Fig. 214.2, or from
gravitational or electrostatic forces. We shall use two different modes of
description. In the first formulation, we describe the system through the
coordinates of (the centers of gravity of) the bodies. In the second, we use
the displacements of the bodies measured from an initial reference config-
uration. In the latter case, we also linearize under an assumption of small
displacements to obtain a linear system of equations. In the first formula-
tion, the initial configuration is only used to initialize the system and is
“forgotten” at a later time in the sense that the description of the system
only contains the present position of the masses. In the second formula-
tion, the reference configuration is retrievable through the evolution since
the unknown is the displacement from the reference position. The different
formulations have different advantages and ranges of application.
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214.2 Masses and Springs

We consider the motion in R3 of a system of N bodies connected by a set
of Hookean springs. For i = 1, ..., N , let the position at time t of body i
be given by the vector function ui(t) = (ui1(t), ui2(t), ui3(t)), with uik(t)
denoting the xk coordinate, k = 1, 2, 3, and suppose the mass of body i is
mi. Let body i be connected to body j with a Hookean spring of spring
constant kij ≥ 0 for i, j = 1, ...N . Some of the kij may be zero, which
effectively means that there is no spring connection between body i and
body j. In particular kii = 0. We assume to start with that the reference
length of the spring corresponding to zero spring tension is equal to zero.
This means that the spring forces are always attractive.

FIGURE 214.1. A typical system of masses, springs and dashpots in motion

We now derive the equations of motion for the mass-spring system using
the Principle of Least Action. We assume first that the gravitational force
is set to zero. The potential energy of the configuration u(t) is given by

V (u(t)) =

N∑

i,j=1

1

2
kij |ui − uj |2

=

N∑

i,j=1

1

2
kij
(
(ui1 − uj1)

2 + (ui2 − uj2)
2 + (ui3 − uj3)

2
)
,

(214.1)

with the time dependence of the coordinates uik suppressed for readability.
This is because the length of the spring connecting the body i and body j
is equal to |ui−uj|, and the work to stretch the spring from zero length to
length l is equal to 1

2kij l
2.
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The action integral is

I(u) =

∫ t2

t1

( N∑

i=1

1

2
mi

(
u̇2i1 + u̇2i2 + u̇2i3

)
− V (u(t))

)
dt,

and using the Principle of Least Action and the fact that

∂V (u)

∂uik
=

N∑

j=1

kij(uik − ujk),

we obtain the following system of equations of motion:

miüik = −
N∑

j=1

kij(uik − ujk), k = 1, 2, 3, i = 1, ..., N, (214.2)

or in vector form

miüi = −
N∑

j=1

kij(ui − uj), i = 1, ..., N, (214.3)

together with initial conditions for ui(0) and u̇i(0). We can view these
equations as expressing Newton’s Law

miüi = F si , (214.4)

with the total spring force F si = (F si1, F
s
i2, F

s
i3) acting on body i being equal

to

F si = −
N∑

j=1

kij(ui − uj). (214.5)

Inclusion of gravity forces in the direction of the negative x3 axis, adds a
component −mig to F si3, where g is the gravitational constant.
The system (214.3) is linear in the unknowns uij(t). If we assume that

the reference length with zero spring force of the spring connecting body i
and j is equal to lij > 0, then the potential changes to

V (u(t)) =

N∑

i,j=1

1

2
kij(|ui − uj| − lij)

2, (214.6)

and the resulting equations of motion are no longer linear. Below, we shall
consider a linearized form assuming |ui− uj| − lij is small compared to lij .
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214.3 The N -Body Problem

By tradition, a ”N -body” problem refers to a system of N bodies in motion
in R3 under the influence of mutual gravitational forces. An example is
given by our solar system with 9 planets orbiting around the Sun, where
we typically disregard moons, asteroids, and comets.
Let the position at time t of (the center of gravity of) body i be given

by the vector function ui(t) = (ui1(t), ui2(t), ui3(t)), with uik(t) denoting
the xk coordinate in R3, k = 1, 2, 3, and suppose the mass of body i is mi.
Newton’s inverse square law of gravitation states that the gravitational
force from the body j on the body i is given by

− γmimj

|ui(t)− uj(t)|2
ui(t)− uj(t)

|ui(t)− uj(t)|
= −γmimj

ui(t)− uj(t)

|ui(t)− uj(t)|3
,

where γ is a gravitational constant. We thus obtain the following system
of equations modeling the N -body problem:

miüi = −γmimj

∑

j 6=i

ui − uj
|ui(t)− uj(t)|3

, (214.7)

together with initial conditions for ui(0) and u̇i(0).
Alternatively, we may derive these equations using the Principle of Least

Action using the gravity potential

V (u) = −
N∑

i,j=1, i6=j

γmimj

|ui − uj |
,

and the fact that

∂V

∂uik
=
∑

j 6=i

γmimj

|ui − uj|3
(uik − ujk). (214.8)

The expression for the gravity potential is obtained by noticing that the
work to bring body i from a distance r of body j to infinity is equal to

∫ ∞

r

γmimj

s2
ds = γmimj [−

1

s
]s=∞
s=r =

γmimj

r
.

Notice the minus sign of the potential, arising from the fact that the body
i loses potential energy as it approaches body j.
Analytical solutions are available only in the case of the 2-body prob-

lem. The numerical solution of for example the 10-body problem of our
solar system is very computationally demanding in the case of long time
simulation. As a result, the long time stability properties of our Solar sys-
tem are unknown. For example, it does not seem to be known if eventually
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the Earth will change orbit with Mercury, Pluto will spin away to another
galaxy, or some other dramatic event will take place.
The general result of existence guarantees a solution, but the presence

of the stability factor exp(tLf ) brings the accuracy in long-time simulation
seriously in doubt.

214.4 Masses, Springs and Dashpots: Small
Displacements

We now give a different description of the mass-spring system above. Let
the initial position of body i, which is now chosen as reference position, be
ai = (ai1, ai2, ai3), and let the actual position at time t > 0 be given by
ai + ui(t) where now ui(t) = (ui1(t), ui2(t), ui3(t)) is the displacement of
body i from its reference position ai.
The potential energy of the configuration u(t) is given by

V (u(t)) =

N∑

i,j=1

1

2
kij
(
|ai + ui − (aj + uj)| − |ai − aj |

)2

=
1

2
kij
(
|ai − aj + (ui − uj)| − |ai − aj |

)2
,

assuming zero spring forces if the springs have the reference lengths ai−aj .
We now specialize to small displacements, assuming that |ui−uj| is small

compared to |ai−aj |. We then use that if |b| is small compared to |a|, where
a, b ∈ R3, then

|a+ b| − |a| = (|a+ b| − |a|)(|a+ b|+ |a|)
|a+ b|+ |a|

=
|a+ b|2 − |a|2
|a+ b|+ |a| =

(a+ b) · (a+ b)− a · a
|a+ b|+ |a| ≈ a · b

|a| .

Thus, if |ui − uj| is small compared to |ai − aj |, then

|ai − aj + (ui − uj)| − |ai − aj | ≈
(ai − aj) · (ui − uj)

|ai − aj |
,

and we obtain the following approximation of the potential energy

V̂ (u(t) =

N∑

i,j=1

1

2
kij

(
(ai − aj) · (ui − uj)

)2

|ai − aj |2
.

Using the Principle of Least Action we thus obtain the following linearized
system of equations

miüik = −
N∑

j=1

kij(ai − aj) · (ui − uj)

|ai − aj |2
(aik − ajk), k = 1, 2, 3, i = 1, ..., N,
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or in vector form

miüi = −
N∑

j=1

kij(ai − aj) · (ui − uj)

|ai − aj |2
(ai − aj), i = 1, ..., N. (214.9)

together with initial conditions for ui(0) and u̇i(0). We can view these
equations as expressing Newton’s Law

miüi = F si , i+ 1, ..., N, (214.10)

with the spring force F si acting on body i given by

F si = −
N∑

j=1

bijeij ,

where

eij =
ai − aj
|ai − aj |

is the normalized vector connecting aj and ai, and

bij = kijeij · (ui − uj). (214.11)

214.5 Adding Dashpots

A dashpot is a kind of shock absorber which may be thought of as consist-
ing of a piston that moves inside a cylinder filled with oil or some other
viscous fluid, see Fig. 214.2. As the piston moves, the flow of the fluid past

u

m

0

FIGURE 214.2. Cross section of a dashpot connected to a mass.

the piston creates a force opposite to the motion, which we assume is pro-
portional to the velocity with the constant of proportionality representing
the coefficient of viscosity of the dashpot.
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We now expand the above mass-spring model to include springs and
dashpots coupled in parallel. For each pair of nodes i and j, we let kij and
µij be the coefficients of a spring and a dashpot coupled in parallel, with
kij = 0 and µij = 0 if the spring or dashpot is absent, and in particular
kii = µii = 0. The dashpot force F di acting on body i will then be given by

F di = −
N∑

j=1

dijeij ,

where
dij = µijeij · (u̇i − u̇j). (214.12)

To get this result, we use the fact that

eij · (u̇i − u̇j)eij

is the projection of u̇i − u̇j onto eij . We thus assume that the dashpot
reacts with a force that is proportional to the projection of u̇i − u̇j onto
the direction ai − aj .
This leads to the linearized mass-spring-dashpot model:

miüi = F si + F di , i = 1, ..., N, (214.13)

together with initial conditions for ui(0) and u̇i(0). We can write these
equations as a system in the form

Mü+Du̇+Ku = 0, (214.14)

with constant coefficient matrices matrices M , D and K, where u is a 3N -
vector listing all the components uik. The matrix M is diagonal with the
masses mi as entries, and D and K are symmetric positive semi-definite
(see the problem section).
A system with dashpots is not conservative, since the dashpots consume

energy, and therefor cannot be modeled using the Principle of Least Action.
The linear system (214.14) models a wide range of phenomena and can be

solved numerically with appropriate solvers. We return to this issue below.
We now consider the simplest example of one mass connected to the origin
with a spring and a dashpot in parallel.

214.6 A Cow Falling Down Stairs

In Fig. ?? and Fig. ?? we show the result of computational simulation of a
cow falling down a staircase. The computational model consists of a skeleton
in the form of a mass-spring-dashpot-system together with a surface model
built upon the skeleton. The skeleton deforms under the action of gravity
forces and contact forces from the staircase and the surface model conforms
to the deformation.
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214.7 The Linear Oscillator

We now consider the simplest example consisting of one body of mass 1
connected to one end of a Hookean spring connected to the origin with the
motion taking place along the x1-axis. Assuming the spring has zero length
at zero tension, the system is described by

{
ü+ ku = 0 for t > 0,

u(0) = u0, u̇(0) = u̇0.
(214.15)

with u(t) denoting the x1 coordinated of the body at time t, and u0 and
u̇0 given initial conditions. The solution is given by

u(t) = a cos(
√
kt) + b sin(

√
kt) = α cos(

√
k(t− β)), (214.16)

where the constants a and b, or α and β, are determined by the initial con-
ditions. We conclude that the motion of the mass is periodic with frequency√
k and phase shift β and amplitude α, depending on the initial data. This

model is referred to as the linear oscillator. The solution is periodic with
period 2π√

k
, and the time scale is similar.

214.8 The Damped Linear Oscillator

Adding a dashpot in parallel with the spring in the model above gives the
model of a damped linear oscillator

{
ü+ µu̇+ ku = 0, for t > 0,

u(0) = u0, u̇(0) = u̇0.
(214.17)

In the case k = 0, we obtain the model

{
ü+ µu̇ = 0 for t > 0,

u(0) = u0, u̇(0) = u̇0,
(214.18)

with the solution

u(t) = − u̇0
µ

exp(−µt) + u0 +
u̇0
µ
.

We see that the mass approaches the fixed position u = u0+
u̇0

µ determined

by the initial data as t increases to infinity. The time scale is of size 1
µ .

The characteristic polynomial equation for the full model ü+µu̇+ku = 0,
is

r2 + µr + kr = 0.
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Completing the square we can write the characteristic equation in the form

(r +
µ

2
)2 =

µ2

4
− k =

1

4
(µ2 − 4k). (214.19)

If µ2 − 4k > 0, then there are two real roots − 1
2 (µ ±

√
µ2 − 4k), and the

solution u(t) has the form (see the Chapter The exponential function),

u(t) = ae−
1
2 (µ+

√
µ2−4k)t + be−

1
2 (µ−

√
µ2−4k)t,

with the constants a and b determined by the initial conditions. In this
case, the viscous damping of the dashpot dominates over the spring force,
and the solution converges exponentially to a rest position, which is equal
to u = 0 if k > 0. The fastest time scale is again of size 1

µ .

If µ2 − 4k < 0, then we introduce the new variable v(t) = e
µt
2 u(t), with

the objective of transforming the characteristic equation (214.19) into an

equation of the form s2 + (k − µ2

4 ) = 0. Since u(t) = e−
µt
2 v(t), we have

u̇(t) =
d

dt

(
e−

µt
2 v(t)

)
= (v̇ − µ

2
v)e−

µt
2 ,

ü(t) = (v̈ − µv̇ +
µ2

4
)e−

µt
2 ,

and thus the differential equation ü+ µu̇+ ku = 0 is transformed into

v̈ + (k − µ2

4
)v = 0,

with the solution v(t) being a linear combination of cos( t2
√
4k − µ2) and

sin( t2
√
4k − µ2). Transforming back to the variable u(t) we get the solution

formula

u(t) = ae−
1
2µt cos(

t

2

√
4k − µ2) + be−

1
2µt sin(

t

2

√
4k − µ2).

The solution again converges to the zero rest position as time passes if
µ > 0, but now it does so in an oscillatory fashion. Now two time scales
appear: a time scale of size 1

µ for the exponential decay and a time scale

1/
√
k − µ2/4 of the oscillations.

Finally, in the limit case µ2−4k = 0 the solution v(t) of the corresponding
equation v̈ = 0 is given by v(t) = a+ bt, and thus

u(t) = (a+ bt)e−
1
2µt.

This solution exhibits initial linear growth and eventually converges to a
zero rest position as time tends to infinity. We illustrate the three possible
behaviors in Fig. 214.3.
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u
(t
)

t

0

0 2 4 6 8 10

0.4

0.3

0.2

0.1

−0.1

te−t
− 1

3
e−4t + 1

3
e−t 1

2
e−t sin(2t)

FIGURE 214.3. Three solutions of the mass-spring-dashpot model (214.17) satis-
fying the initial conditions u(0) = 0 and u̇(0) = 1. The first solution corresponds
to µ = 5 and k = 4, the second to µ = 2 and k = 5, and the third to µ = 2 and
k = 1.

214.9 Extensions

We have above studied systems of bodies interacting through Hookean
springs, linear dashpots and gravitational forces. We can generalize to sys-
tems of non-linear springs, dashpots, and other mechanical devices like
springs reacting to changes of angles between the bodies, or other forces
like electrostatic forces. In this way, we can model very complex systems
from macroscopic scales of galaxies to microscopic molecular scales. For
example, electrostatic forces are related to potentials of the form

V e(u) = ±c
N∑

i,j=1

qiqj
|ui − uj|

where qi is the charge of body i and c is a constant, and thus have a form
similar to that of gravitational forces.
In particular, models for molecular dynamics take the form of N -body

systems interacting through electrostatic forces and forces modeled by var-
ious springs reacting to bond lengths and bond angles between the atoms.
In these applications, N may be of the order 104 and the smallest time
scale of the dynamics may be of size 10−14 related to very stiff bond length
springs. Needless to say, simulations with such models may be very compu-
tationally demanding and is often out of reach with present day computers.
For more precise information, we refer to the survey article Molecular mod-
eling of proteins and mathematical prediction of protein structure, SIAM
REV. (39), No 3, 407-460, 1997, by A. Neumair.
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Chapter 214 Problems

214.1. Verify the solution formulas for the three solutions shown in Fig. 214.3.

214.2. Write down the model (214.2) in a simple case of a system with a few
bodies.

214.3. Derive the equations of motion with the potential (214.6).

214.4. Generalize the mass-spring-dashpot model to arbitrary displacements.

214.5. Generalize the mass-spring model to different non-linear springs.

214.6. Model the vertical motion of a floating buoy. Hint: use that by Archimedes’
Principle, the upward force on a cylindrical vertical buoy from the water is pro-
portional to the immersed depth of the buoy.

214.7. Prove that the matrices D and K in (214.14) are symmetric positive
semi-definite.
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215
Piecewise Linear Approximation

The beginners mind is empty, free of the habits of the expert, ready
to accept, or doubt, and open to all the possibilities. It is a kind of
mind which can see things as they are. (Shunryu Suzuki)

215.1 Introduction

Approximating a complicated function to arbitrary accuracy by “simpler”
functions is a basic tool of applied mathematics. We have seen that piece-
wise polynomials are very useful for this purpose, and that is why approx-
imation by piecewise polynomials plays a very important role in several
areas of applied mathematics. For example, the Finite Element Method
FEM is an extensively used tool for solving differential equations that is
based on piecewise polynomial approximation, see the Chapters FEM for
two-point boundary value problems and FEM for Poisson’s equation.
In this chapter, we consider the problem of approximating a given real-

valued function f(x) on an interval [a, b] by piecewise linear polynomials
on a subdivision of [a, b]. We derive basic error estimates for interpolation
with piecewise linear polynomials and we consider an application to least
squares approximation.
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215.2 Linear Interpolation on [0, 1]

Let f : [0, 1] → R be a given Lipschitz continuous function. Consider the
function πf : [0, 1] → R defined by

πf(x) = f(0)(1− x) + f(1)x = f(0) + (f(1)− f(0))x.

Clearly, πf(x) is a linear function in x,

πf(x) = c0 + c1x,

where c0 = f(0), c1 = f(1) − f(0), and πf(x) interpolates f(x) at the
end-points 0 and 1 of the interval [0, 1], by which we mean that πf takes
the same values as f at the end-points, i.e.

πf(0) = f(0), πf(1) = f(1).

We refer to πf(x) as a linear interpolant of f(x) that interpolates f(x) at
the end-points of the interval [0, 1].

0 1

f(x)

(πf)(x)

FIGURE 215.1. The linear interpolant πf of a function f .

We now study the interpolation error f(x)− πf(x) for x ∈ [0, 1]. Before
doing so we get some perspective on the space of linear functions on [0, 1]
to which the interpolant πf belongs.

The Space of Linear Functions

We let P = P(0, 1) denote the set of first order (linear) polynomials

p(x) = c0 + c1x,

defined for x ∈ [0, 1], where the real numbers c0 and c1 are the coefficients
of p. We recall that two polynomials p(x) and q(x) in P may be added
to give a new polynomial p + q in P defined by (p + q)(x) = p(x) + q(x),
and that a polynomial p(x) in P may be multiplied by a scalar α to give a
polynomial αp in P defined by (αp)(x) = αp(x). Adding two polynomials
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is carried out by adding their coefficients, and multiplying a polynomial
by a real number is carried out by multiplying the coefficients by the real
number.
We conclude that P is a vector space where each vector is a particular

first order polynomial p(x) = c0 + c1x determined by the two real numbers
c0 and c1. As a basis for P we may choose {1, x}. To see this, we note that
each p ∈ P can be uniquely expressed as a linear combination of 1 and x:
p(x) = c0 + c1x, and we may refer to the pair (c0, c1) as the coordinates
of the polynomial p(x) = c0 + c1x with respect to the basis {1, x}. For
example, the coordinates of the polynomial p(x) = x with respect to the
basis {1, x}, are (0, 1), right? Since there are two basis functions, we say
that the dimension of the vector space P is equal to two.
We now consider an alternative basis {λ0, λ1} for P consisting of the two

functions λ0 and λ1 defined

λ0(x) = 1− x, λ1(x) = x.

Each of these functions takes the value 0 at one end-point and the value 1
at the other end-point, namely

λ0(0) = 1, λ0(1) = 0, and λ1(0) = 0, λ1(1) = 1.

See Fig. 215.2.

0

1

1

λ1 λ2

FIGURE 215.2. The basis functions λ0 and λ1.

Any polynomial p(x) = c0 + c1x in P can be expressed as a linear com-
bination of the functions λ0(x) and λ1(x), i.e.

p(x) = c0 + c1x = c0(1− x) + (c1 + c0)x = c0λ0(x) + (c1 + c0)λ1(x)

= p(0)λ0(x) + p(1)λ1(x),

A very nice feature of these functions is that the coefficients p(0) and p(1)
are the values of p(x) at x = 0 and x = 1. Moreover, λ0 and λ1 are linearly
independent, since if

a0λ0(x) + a1λ1(x) = 0 for x ∈ [0, 1],
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then setting x = 0 and x = 1 shows that a1 = a0 = 0. We conclude that
{λ0, λ1} is a basis for P .
In particular, we can express the interpolant πf ∈ P in the basis {λ0, λ1}

as follows:

πf(x) = f(0)λ0(x) + f(1)λ1(x), (215.1)

where the end-point values f(0) and f(1) appear as coefficients.

The Interpolation Error

We want to estimate the interpolation error f(x) − πf(x) for x ∈ [0, 1].
We prove that

|f(x)− πf(x)| ≤ 1

2
x(1 − x) max

y∈[0,1]
|f ′′(y)|, x ∈ [0, 1]. (215.2)

Since (convince yourself!)

0 ≤ x(1 − x) ≤ 1

4
for x ∈ [0, 1],

we can state the interpolation error estimate in the form

max
x∈[0,1]

|f(x)− πf(x)| ≤ 1

8
max
y∈[0,1]

|f ′′(y)|. (215.3)

This estimate states that the maximal value of the interpolation error
|f(x)−πf(x)| over [0, 1] is bounded by a constant times the maximum value
of the second derivative |f ′′(y)| over [0, 1], i.e. to the degree of concavity
or convexity of f , or the amount that f curves away from being linear, see
Fig. 215.3.

00 11

f
f

πfπf

FIGURE 215.3. The error of a linear interpolant depends on the size of |f ′′|,
which measures the degree that f curves away from being linear. Notice that the
error of the linear interpolant of the function on the right is much larger than of
the linear interpolant of the function on the left and the function on the right
has a larger second derivative in magnitude.



215.2 Linear Interpolation on [0, 1] 1401

To prove (215.2), we fix x in (0, 1) and use Taylor’s theorem to express
the values f(0) and f(1) in terms of f(x), f ′(x), f ′′(y0) and f ′′(y1) where
y0 ∈ (0, x) and y1 ∈ (x, 1). This gives

f(0) = f(x) + f ′(x)(−x) + 1

2
f ′′(y0)(−x)2,

f(1) = f(x) + f ′(x)(1 − x) +
1

2
f ′′(y1)(1 − x)2.

(215.4)

Substituting the Taylor expansions (215.4) into (215.1) and using the iden-
tities

λ0(x) + λ1(x) = (1− x) + x ≡ 1,

(−x)λ0(x) + (1− x)λ1(x) = (−x)(1 − x) + (1− x)x ≡ 0,
(215.5)

we obtain the error representation

f(x)− πf(x) = −1

2

(
f ′′(y0)(−x)2(1− x) + f ′′(y1)(1− x)2x

)
.

Using the identity (−x)2(1−x)+(1−x)2x = x(1−x)(x+1−x) = x(1−x)
gives (215.2),

|f(x)− πf(x)| ≤ 1

2
x(1 − x) max

y∈[0,1]
|f ′′(y)| ≤ 1

8
max
y∈[0,1]

|f ′′(y)|. (215.6)

Next, we prove the following estimate for the error in the first derivative,

|f ′(x) − (πf)′(x)| ≤ x2 + (1 − x)2

2
max
y∈[0,1]

|f ′′(y)|, x ∈ [0, 1]. (215.7)

Since 0 ≤ x2 + (1− x)2 ≤ 1 for x ∈ [0, 1],

max
x∈[0,1]

|f ′(x)− (πf)′(x)| ≤ 1

2
max
y∈[0,1]

|f ′′(y)|.

We illustrate in Fig. 215.4.
To prove (215.7), we differentiate (215.1) with respect to x (note that

the x-dependence is carried by λ0(x) and λ1(x)) and use (215.4) together
with the obvious identities

λ′0(x) + λ′1(x) = −1 + 1 ≡ 0,

(−x)λ′0(x) + (1 − x)λ′1(x) = (−x)(−1) + (1 − x) ≡ 1.

This gives the error representation:

f ′(x)− (πf)′(x) = −1

2

(
f ′′(y0)(−x)2(−1) + f ′′(y1)(1− x)2

)
,

where again y0 ∈ (0, x) and y1 ∈ (x, 1). This proves the desired result.
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00 11

f

pif
f ′

(πf)′

FIGURE 215.4. The derivative of a linear interpolant of f approximates the
derivative of f . We show f and the linear interpolant πf on the left and their
derivatives on the right.

Finally, we prove an estimate for |f(x) − πf(x)| using only the first
derivative f ′. This is useful when the second derivative f ′′ does not exist.
The Mean Value theorem implies

f(0) = f(x) + f ′(y0)(−x), f(1) = f(x) + f ′(y1)(1− x), (215.8)

where y0 ∈ [0, x] and y1 ∈ [x, 1]. Substituting into (215.1), we get

|f(x)−πf(x)| = |f ′(y0)x(1−x)−f ′(y1)(1−x)x| ≤ 2x(1−x) max
y∈[0,1]

|f ′(y)|.

Since 2x(1− x) ≤ 1
2 for 0 ≤ x ≤ 1, we thus find that

max
x∈[0,1]

|f(x)− πf(x)| ≤ 1

2
max
y∈[0,1]

|f ′(y)|.

We summarize in the following theorem.

Theorem 215.1 The linear polynomial πf ∈ P(0, 1), which interpolates
the given function f(x) at x = 0 and x = 1, satisfies the following error
bounds:

max
x∈[0,1]

|f(x)− πf(x)| ≤ 1

8
max
y∈[0,1]

|f ′′(y)|,

max
x∈[0,1]

|f(x)− πf(x)| ≤ 1

2
max
y∈[0,1]

|f ′(y)|,

max
x∈[0,1]

|f ′(x)− (πf)′(x)| ≤ 1

2
max
y∈[0,1]

|f ′′(y)|.

(215.9)

The corresponding estimates for an arbitrary interval I = [a, b] of length
h = b− a takes the following form, where of course P(a, b) denotes the set
of linear functions on [a, b]. Observe how the length h = b−a of the interval
enters, with the factor h2 in the estimate for f(x)− πf(x) with f ′′, and h
in the estimate for f ′(x) − (πf)′(x).
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Theorem 215.2 The linear polynomial πf ∈ P(a, b), which interpolates
the given function f(x) at x = a and x = b, satisfies the following error
bounds:

max
x∈[a,b]

|f(x)− πf(x)| ≤ 1

8
max
y∈[a,b]

|h2f ′′(y)|,

max
x∈[a,b]

|f(x)− πf(x)| ≤ 1

2
max
y∈[a,b]

|hf ′(y)|,

max
x∈[a,b]

|f ′(x)− (πf)′(x)| ≤ 1

2
max
y∈[a,b]

|hf ′′(y)|,

(215.10)

where h = b− a.

If we define the maximum norm over I = [a, b] by

‖v‖L∞(I) = max
x∈[a,b]

|v(x)|,

then we can state (215.9) as follows

‖f − πf‖L∞(I) ≤
1

8
‖h2f ′′‖L∞(I),

‖f − πf‖L∞(I) ≤
1

2
‖hf ′‖L∞(I),

‖f ′ − (πf)′‖L∞(I) ≤
1

2
‖hf ′′‖L∞(I).

(215.11)

Below we shall use an analog of this estimate with the L∞(I)-norm replaced
by the L2(I)-norm.

215.3 The Space of Piecewise Linear Continuous
Functions

For a given interval I = [a, b], we let a = x0 < x1 < x2 < · · · < xN = b be
a partition of I into N sub-intervals Ii = (xi−1, xi) of length hi = xi−xi−1,
i = 1, ..., N . We denote by h(x) the mesh function defined by h(x) = hi for
x ∈ Ii and we use Th = {Ii}Ni=1 to denote the set of intervals or mesh or
partition.
We introduce the vector space Vh of continuous piecewise linear functions

on the mesh Th. A function v ∈ Vh is linear on each subinterval Ii and is
continuous on [a, b]. Adding two functions in Vh or multiplying a function
in Vh by a real number gives a new function in Vh, and thus Vh is indeed
a vector space. We show an example of such a function in Fig. 216.2.
We now present a particularly important basis for Vh that consists of the

hat functions or nodal basis functions {ϕi}Ni=0 illustrated in Fig. 215.5.
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a bx1 xi

ϕi

xi−1 xi+1

FIGURE 215.5. The hat function ϕi associated to node xi.

The hat-function ϕi(x) is a function in Vh satisfying

ϕi(xj) = 1 if j = i, ϕi(xj) = 0 if j 6= i.

and is given by the formula:

ϕi(x) =





0, x /∈ [xi−1, xi+1],
x− xi−1

xi − xi−1
, x ∈ [xi−1, xi],

x− xi+1

xi − xi+1
, x ∈ [xi, xi+1].

The basis functions ϕ0 and ϕN associated to the boundary nodes x0 and
xN look like “half hats”. Observe that each hat function ϕi(x) is defined
on the whole interval [a, b] and takes the value zero outside the interval
[xi−1, xi+1] (or [a, x1] if i = 0 and [xN−1, b] if i = N).
The set of hat-functions {ϕi}Ni=0 is a basis for Vh because each v ∈ Vh

has the unique representation

v(x) =

N∑

i=0

v(xi)ϕi(x),

where the nodal values v(xi) appear as coefficients. To see this, it is suffi-
cient to realize that the functions on the left and right hand side are both
continuous and piecewise linear and take the same values at the nodes, and
thus coincide. Since the number of basis functions ϕi is equal to N +1, the
dimension of Vh is equal to N + 1.
The continuous piecewise linear interpolant πhf ∈ Vh of a given Lipschitz

continuous function f(x) on [0, 1] is defined by

πhf(xi) = f(xi) for i = 0, 1, ..., N,

that is, πhf(x) interpolates f(x) at the nodes xi, see Fig. 215.6. We can
express πhf in terms of the basis of hat functions {ϕi}Ni=0 as follows:

πhf =

N∑

i=0

f(xi)ϕi or πhf(x) =

N∑

i=0

f(xi)ϕi(x) for x ∈ [0, 1],

(215.12)
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with the x-dependence indicated.
Since πhf(x) is linear on each subinterval Ii and interpolates f(x) at the

end-points of Ii, we can express πf(x) analytically on Ii as follows:

πhf(x) = f(xi−1)
x− xi

xi−1 − xi
+ f(xi)

x− xi−1

xi − xi−1
for xi−1 ≤ x ≤ xi,

for i = 1, ..., N .

x0 x1 x2 x3 x4

f(x)

πhf(x)

FIGURE 215.6. An example of a continuous piecewise linear interpolant.

Using Theorem 215.2, we obtain the following error estimate for piecewise
linear interpolation:

Theorem 215.3 The piecewise linear interpolant πhf(x) of a twice dif-
ferentiable function f(x) on a partition of [a, b] with mesh function h(x)
satisfies

‖f − πhf‖L∞(a,b) ≤
1

8
‖h2 f ′′‖L∞(a,b),

‖f ′ − (πhf)
′‖L∞(a,b) ≤

1

2
‖h f ′′‖L∞(a,b).

(215.13)

If f(x) is only once differentiable, then

‖f − πhf‖L∞(a,b) ≤
1

2
‖h f ′‖L∞(a,b). (215.14)

Note that since the mesh function h(x) may have jumps at the nodes,
we interpret ‖h2 f ′′‖L∞(a,b) as

max
i=1,...,N

max
y∈[xi−1,xi]

|h2(y) f ′′(y)|,

where h(y) = xi − xi−1 for y ∈ [xi−1, xi].

215.4 The L2 Projection into Vh

Let f(x) be a given function on an interval I = [a, b] and Vh denote the
space of continuous piecewise linear functions Vh on a partition a = x0 <
... < xN = b of I with mesh function h(x).
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The orthogonal projection Phf of the function f into Vh is the function
Phf ∈ Vh such that

∫

I

(f − Phf)v dx = 0 for v ∈ Vh. (215.15)

Recalling the definition of the L2(I)-scalar product

(v, w)L2(I) =

∫

I

v(x)w(x) dx,

with the corresponding L2(I)-norm

‖v‖L2(I) = (

∫

I

v2(x) dx)1/2 ,

we can write (215.15) in the form

(f − Phf, v)L2(I) = 0 for v ∈ Vh.

This says that f −Phf is orthogonal to Vh with respect to the L2(I) scalar
product. We also call Phf the L2(I)-projection of f onto Vh.
We first show that Phf is uniquely defined and then prove that Phf is

the best Vh-approximation of f in the L2(I)-norm.
To prove uniqueness and existence, we express Phf in the nodal basis

{ϕi}Ni=0:

Phf(x) =

N∑

j=0

cjϕj(x),

where the cj = (Phf)(xj) are the nodal values of Phf that have to be
determined. We insert this representation into (215.15) and choose v = ϕi
with i = 0, ..., N , to get for i = 0, ..., N ,

∫

I

N∑

j=0

cjϕj(x)ϕi(x) dx =

N∑

j=0

cj

∫

I

ϕj(x)ϕi(x) dx

=

∫

I

fϕi dx ≡ bi , (215.16)

where we changed the order of integration and summation. This gives the
following system of equations

N∑

j=0

mijcj =

∫

I

fϕi dx ≡ bi i = 0, 1, ..., N, (215.17)

where

mij =

∫

I

ϕj(x)ϕi(x) dx, i, j = 0, ..., N.
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We can write (215.17) in matrix form as

Mc = b

where c = (c0, ..., cN ) is a N +1-vector of the unknown coefficients cj , and
b = (b0, ..., bN ) is computable from f(x), andM = (mij) is a (N+1)×(N+
1)-matrix that depends on the basis functions ϕi, but not on the function
f(x). We refer to the matrix M as the mass matrix.
We can now easily prove the uniqueness of Phf . Since the difference

Phf − P̄hf of two functions Phf ∈ Vh and P̄hf ∈ Vh satisfying the relation
(215.15), also satisfy

∫

I

(Phf − P̄hf)v dx = 0 for v ∈ Vh,

by choosing v = Phf − P̄hf , we get
∫

I

(Phf − P̄hf)
2 dx = 0,

and thus Phf(x) = P̄hf(x) for x ∈ I. Solutions of the system Mc = b are
therefore unique, and since M is a square matrix, existence follows from
the Fundamental Theorem of Linear Algebra. We sum up:

Theorem 215.4 The L2(I)-projection Phf of a given function f onto the
set of piecewise linear functions Vh on I is uniquely defined by (215.15)
or the equivalent system of equations Mc = b, where cj = Phf(xj) are
the nodal values of Phf , M is the mass matrix with coefficients mij =
(ϕj , ϕi)L2(I) = (ϕi, ϕj)L2(I) and the coefficients of the right hand side b are
given by bi = (f, ϕi).

Example 215.1. We compute the mass matrix M in the case of a
uniform subdivision with h(x) = h = (b− a)/N for x ∈ I. We get by a
direct computation

mii =

∫ xi+1

xi−1

ϕ2
i (x) dx =

2h

3
i = 1, ...N − 1, m00 = mNN =

h

3
,

mi,i+1 =

∫ xi+1

xi−1

ϕi(x)ϕi+1(x) dx =
h

6
i = 1, ...N − 1.

The corresponding “lumped” mass matrix M̂ = (m̂ij), which is a di-
agonal matrix with the diagonal element in each row being the sum of
the elements in the corresponding row of M , takes the form

m̂ii = h i = 1, ..., N − 1, m̂00 = m̂NN = h/2.

We see that M̂ may be viewed as a h-scaled variant of the identity ma-
trix and M can be viewed as an h-scaled approximation of the identity
matrix.
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We now prove that the L2(I)-projection Phf of a function f satisfies

‖f − Phf‖L2(I) ≤ ‖f − v‖L2(I), for all v ∈ Vh. (215.18)

This implies that Phf is the element in Vh with smallest deviation from f
in the L2(I)-norm. Applying Cauchy’s inequality to (215.15) with v ∈ Vh
gives
∫

I

(f − Phf)
2 dx

=

∫

I

(f − Phf)(f − Phf) dx+

∫

I

(f − Phf)(Phf − v) dx

=

∫

I

(f − Phf)(f − v) dx ≤ (

∫

I

(f − Phf)
2 dx)1/2(

∫

I

(f − v)2 dx)1/2,

which proves the desired result. We summarize:

Theorem 215.5 The L2(I)-projection Ph into Vh defined by (215.15), is
the unique element in Vh which minimizes ‖f −v‖L2(I) with v varying over
Vh.

In particular, choosing v = πhf in (215.18), we obtain

‖f − Phf‖L2(I) ≤ ‖f − πhf‖L2(I),

where πhf is the nodal interpolant of f introduced above. One can prove
the following analog of (215.13)

‖f − πhf‖L2(I) ≤
1

π2
‖h2 f ′′‖L2(I),

where the interpolation constant happens to be π−2. We thus conclude the
following basic result:

Theorem 215.6 The L2(I)-projection Ph into the space of piecewise lin-
ear functions Vh on I with mesh function h(x), satisfies the following error
estimate:

‖f − Phf‖L2(I) ≤
1

π2
‖h2 f ′′‖L2(I). (215.19)

Chapter 215 Problems

215.1. Give a different proof of the first estimate of Theorem Theorem 215.1 by
considering for a given x ∈ (0, 1), the function

g(y) = f(y)− πf(y)− γ(x)y(1− y), y ∈ [0, 1],

where γ(x) is chosen so that g(x) = 0. Hint: the function g(y) vanishes at 0, x
and 1. Show by repeated use of the Mean Value theorem that g′′ vanishes at some
point ξ, from which it follows that γ(x) = −f ′′(ξ)/2.
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215.2. Prove Theorem 215.2 from Theorem 215.1 by using the change of vari-
ables x = a + (b − a)z transforming the interval [0, 1] onto [a, b], setting F (z) =
f(a+(b−a)z) and using that by the Chain Rule, F ′ = dF

dz
= (b−a)f ′ = (b−a) df

dx
.

215.3. Develop approximation/interpolation with piecewise constant (discontin-
uous) functions on a partition of an interval. Consider interpolation at left-hand
endpoint, right-hand endpoint, midpoint and mean value for each subinterval.
Prove error estimates of the form ‖u − πhu‖L∞(I) ≤ C‖hu′‖L∞(I), with C = 1
or C = 1

2
.
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216
FEM for Two-Point Boundary Value
Problems

The results, however, of the labour and invention of this century are
not to be found in a network of railways, in superb bridges, in enor-
mous guns, or in instantaneous communication. We must compare
the social state of the inhabitants of the country with what it was.
The change is apparent enough. The population is double what it
was a century back; the people are better fed and better housed, and
comforts and even luxuries that were only within the reach of the
wealthy can now be obtained by all classes alike.......But with these
advantages there are some drawbacks. These have in many cases as-
sumed national importance, and it has become the province of the
engineer to provide a remedy. (Reynolds, 1868)

216.1 Introduction

We begin by deriving a model that is based on a conservation principle
which states:

The rate at which a specified quantity changes in a region is
equal to the rate that the quantity leaves and enters the region
plus the rate at which the quantity is created and destroyed
inside the region.

Such a conservation principle holds for a wide variety of quantities, includ-
ing animals, automobiles, bacteria, chemicals, fluids, heat and energy, etc.
So the model we derive has a wide application.
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In this chapter, we assume that the quantity to be modeled exists in
a very small diameter “tube” with constant cross section and that the
quantity varies in the direction along the tube but not at all within a fixed
cross section, see Fig. 216.1. We use x to denote the position along the
length of the tube and let t denote time. We assume that the quantity
in the tube is sufficiently abundant that it makes sense to talk about a
density u(x, t), measured in amount of the quantity per unit volume, that
varies continuously with the position x and time t. This is certainly valid
for quantities such as heat and energy, and may be more or less valid
for quantities such as bacteria and chemicals provided there is a sufficient
number of creatures or molecules respectively.

x1 x2
x

A

FIGURE 216.1. Variation in a very narrow “tube”.

We next express the conservation principle mathematically. We consider
a small region of the tube of width dx and cross-sectional area A. The
amount of quantity in this region is u(x, t)Adx. We let q(x, t) denote the
flux at position x and time t, or the amount of the quantity crossing the
section at x at time t measured in amount per unit area per unit time. We
choose the orientation so that q is positive when the flow is to the right. The
amount of quantity crossing the section at position x at time t is therefore
Aq(x, t). Lastly, we let f(x, t) denote the rate that the quantity is created
or destroyed within the section at x at time t measured in amount per unit
volume per unit time. So, f(x, t)Adx is the amount of the quantity created
or destroyed in the small region of width dx per unit time.
The conservation principle for a fixed length of pipe between x = x1 and

x = x2 implies that the rate of change of the quantity in this section must
equal the rate at which it flows in at x = x1 minus the rate at which it
flows out at x = x2 plus the rate at which it is created in x1 ≤ x ≤ x2. In
mathematical terms,

∂

∂t

∫ x2

x1

u(x, t)Adx = Aq(x1, t)−Aq(x2, t) +

∫ x2

x1

f(x, t)Adx.

or

∂

∂t

∫ x2

x1

u(x, t) dx = q(x1, t)− q(x2, t) +

∫ x2

x1

f(x, t) dx. (216.1)

Equation (216.1) is called the integral formulation of the conservation prin-
ciple.
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We can reformulate (216.1) as a partial differential equation provided
u(x, t) and q(x, t) are sufficiently smooth. For we can write,

∂

∂t

∫ x2

x1

u(x, t) dx =

∫ x2

x1

∂

∂t
u(x, t) dx,

q(x1, t)− q(x2, t) =

∫ x2

x1

∂

∂x
q(x, t) dx,

and therefore collecting terms,
∫ x2

x1

( ∂
∂t
u(x, t) +

∂

∂x
q(x, t) − f(x, t)

)
dx = 0.

Since x1 and x2 are arbitrary, the integrand must be zero at each point, or

∂

∂t
u(x, t) +

∂

∂x
q(x, t) = f(x, t). (216.2)

Equation (216.2) is the pointwise or differential formulation of the conser-
vation principle.
So far we have one equation for two unknowns. To complete the model,

we use a constitutive relation that describes the relation between the flux
and the density. This relation is specific to the physical properties of the
quantity being modeled, yet it is often unclear exactly how to model these
properties. A constitutive relation used in practice is often only an approx-
imation to the true unknown relation.
Many quantities have the property that the quantity flows from regions

of high concentration to regions of low concentration, and the rate of flow
increases as the differences in concentration increases. As a first approxi-
mation, we assume a simple linear relation

q(x, t) = −a(x, t) ∂
∂x
u(x, t), (216.3)

where a(x, t) > 0 is the diffusion coefficient. In case u represents heat,
(216.3) is known as Newton’s Heat Law. In general, equation (216.3) is
known as Fick’s Law. Note that the choice of sign of a guarantees for
example that flow is to the right if ux < 0, i.e. if u decreases across the
section at x. Substituting (216.3) into (216.2), we obtain the general time-
dependent reaction-diffusion equation,

∂

∂t
u(x, t)− ∂

∂x

(
a(x, t)

∂

∂x
u(x, t)

)
= f(x, t).

To simplify the notation, we use u̇ to denote ∂u/∂t and u′ to denote ∂u/∂x.
This yields

u̇(x, t)− (a(x, t)u′(x, t))′ = f(x, t). (216.4)

Convection or transport is another important process to take into ac-
count in this model.
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Example 216.1. When modeling populations of animals, diffusion
reflects the natural tendency of most creatures to spread out over a re-
gion due to randomly occurring interactions between pairs of creatures,
while convection models phenomena such as migration.

Convection is modeled by assuming a constitutive relation in which the
flux is proportional to the density, i.e.

ϕ(x, t) = b(x, t)u(x, t),

which results in a convection term in the differential equation of the form
(bu)′. The convection coefficient b(x, t) determines the rate and direction
of transport of the quantity being modeled.
In general, many quantities are modeled by a constitutive relation of the

form
ϕ(x, t) = −a(x, t)u′(x, t) + b(x, t)u(x, t)

which combines diffusion and convection. Arguing as above, we obtain the
general reaction-diffusion-convection equation

u̇(x, t)− (a(x, t)u′(x, t))′ + (b(x, t)u(x, t))′ = f(x, t). (216.5)

216.2 Initial Boundary-Value Problems

We have to add suitable data to (216.4) or (216.5) in order to specify a
unique solution. We model the amount of substance in a fixed length of
tube located between x = 0 and x = 1, as in Fig. 216.1, and specify some
information about u called boundary conditions at x = 0 and x = 1. We
also need to give some initial data at some initial time, which we take to be
t = 0. The evolutionary or time-dependent initial two point boundary value
problem reads: find u(x, t) such that





u̇− (au′)′ + (bu)′ = f in (0, 1)× (0, T ),

u(0, t) = u(1, t) = 0 for t ∈ (0, T )

u(x, 0) = u0(x) for x ∈ (0, 1),

(216.6)

where a, b, c are given coefficients and f and g are given data. The boundary
values u(0, t) = u(1, t) = 0 are known as homogeneous Dirichlet boundary
conditions.

Example 216.2. In the case that we use (216.4) to model the heat u
in a long thin wire, the coefficient a represents the heat conductivity of
the metal in the wire, f is a given heat source, and the homogeneous
Dirichlet boundary conditions at the end-points means that the tem-
perature of the wire is held fixed at 0 there. Such conditions are realistic
for example if the wire is attached to very large masses at the ends.



216.3 Stationary Boundary Value Problems 1415

Other boundary conditions found in practice include: nonhomogeneous
Dirichlet boundary conditions u(0) = u0, u(1) = u1 with constants u0, u1;
one homogeneous Dirichlet u(0) = 0 and one nonhomogeneous Neumann
boundary condition a(1)u′(1) = g1 with constant g1; and more general
Robin boundary conditions

−a(0)u′(0) = γ(0)(u0 − u(0)), a(1)u′(1) = γ(1)(u1 − u(1))

with constants γ(0), u0, γ(1), u1.

216.3 Stationary Boundary Value Problems

In many situations, u is independent of time and the model reduces to the
stationary reaction-diffusion equation

− (a(x)u′(x))′ = f(x) (216.7)

in the case of pure diffusion and

− (a(x)u′(x))′ + (b(x)u(x))′ = f(x) (216.8)

in case there is convection as well. For these problems, we only need to spec-
ify boundary conditions. For example, we consider the two-point boundary
value problem: find the function u(x) satisfying

{
−(au′)′ = f in (0, 1),

u(0) = u(1) = 0
(216.9)

and when there is convection: find u(x) such that

{
−(au′)′ + (bu)′ = f in (0, 1),

u(0, t) = u(1, t) = 0.
(216.10)

216.4 The Finite Element Method

We begin the discussion of discretization by studying the simplest model
above, namely the two-point boundary value problem for the stationary
reaction-diffusion model (216.9).
We can express the solution u(x) of (216.9) analytically in terms of data

by integrating twice (setting w = au′)

u(x) =

∫ x

0

w(y)

a(y)
dy + α1, w(y) = −

∫ y

0

f(z) dz + α2,
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where the constants α1 and α2 are chosen so that u(0) = u(1) = 0. We can
use this solution formula to compute the value of the solution u(x) for any
given x ∈ (0, 1) by evaluating the integrals analytically or numerically using
quadrature. However, this is very time consuming if we want the solution
at many points in [0, 1]. This motivates consideration of an alternative way
of computing the solution u(x) using the Finite Element Method (FEM),
which is a general method for solving differential equations numerically.
FEM is based on rewriting the differential equation in variational form
and seeking an approximate solution as a piecewise polynomial.
Note that we do not use the solution by integration outlined above, one

important consequence of that procedure is that u is “twice as differen-
tiable” as the data f , since we integrate twice to get from f to u.
We present FEM for (216.9) based on continuous piecewise linear ap-

proximation. We let Th : 0 = x0 < x1 < ... < xM+1 = 1, be a partition
(or triangulation) of I = (0, 1) into sub-intervals Ij = (xj−1, xj) of length
hj = xj−xj−1. We look for an approximate solution in the set Vh of contin-
uous piecewise linear functions v(x) on Th such that v(0) = 0 and v(1) = 0.
We show an example of such a function in Fig. 216.2. In Chapter 215, we

xixi-1 xM+1x0

hi 10

FIGURE 216.2. A continuous piecewise linear function in Vh.

saw that Vh is a finite dimensional vector space of dimension M with a
basis consisting of the hat functions {ϕj}Mj=1 illustrated in Fig. 215.5, asso-
ciated with the interior nodes x1, · · · , xM . The coordinates of a function v
in Vh in this basis are the values v(xj) at the interior nodes since a function
v ∈ Vh can be written

v(x) =

M∑

j=1

v(xj)ϕj(x).

Note that because v ∈ Vh is zero at 0 and 1, we do not include ϕ0 and
ϕM+1 in the set of basis functions for Vh.
The finite element method is based on restating the differential equation

−(au′)′ = f in an average or variational form

−
∫ 1

0

(au′)′v dx =

∫ 1

0

fv dx, (216.11)

where the function v varies over an appropriate set of test functions. The
variational form results frommultiplying the differential equation−(au′)′ =
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f by the test function v(x) and integrating over the interval (0, 1). The vari-
ational formulation says that the residual −(au′)′−f of the true solution is
orthogonal to all test functions v with respect to the L2(0, 1) scalar product.
The basic idea of FEM is to compute an approximate solution U ∈ Vh

that satisfies (216.11) for a restricted set of test functions. This approach
to computing an approximate solution is known as the Galerkin method
in memory of the Russian engineer and scientist Galerkin (1871-1945), see
Fig. 216.3. He invented his method while imprisoned for anti-Tsarist ac-
tivities during 1906-7. We call the set Vh, where we seek the FEM-solution
U , the trial space and we call the space of test functions the test space. In
the present case of homogeneous Dirichlet boundary conditions, we usually
choose the test space to be equal to Vh. Consequently, the dimensions of
the trial and test spaces are equal, which is necessary for the existence and
uniqueness of the approximate solution U .

FIGURE 216.3. Boris Galerkin, inventor of the Finite Element Method: “It is
really quite simple; just multiply by v(x) and then integrate”.

However since the functions in Vh do not have second derivatives, we
can not simply plug a potential approximate solution U in Vh directly into
(216.11). To get around this difficulty, we use integration by parts to move
one derivative from (au′)′ onto v, noting that functions in Vh are piecewise
differentiable. Assuming v is differentiable and v(0) = v(1) = 0:

−
∫ 1

0

(au′)′v dx = −a(1)u′(1)v(1) + a(0)u′(0)v(0) +
∫ 1

0

au′v′ dx

=

∫ 1

0

au′v′ dx.
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This leads to the continuous Galerkin finite element method of order 1
(cG(1)-method) for (216.9): compute U ∈ Vh such that

∫ 1

0

aU ′v′ dx =

∫ 1

0

fv dx for all v ∈ Vh. (216.12)

We note that the derivatives U ′ and v′ of the functions U and v ∈ Vh are
piecewise constant functions of the form depicted in Fig. 216.4 and are not

xixi-1

xM+1x0

FIGURE 216.4. The derivative of the continuous piecewise linear function in
Fig. 216.2.

defined at the nodes xi. However, the value of an integral is independent of
the value of the integrand at isolated points. Therefore, the integral (216.12)
with integrand aU ′v′ is uniquely defined as the sum of the integrals over
the sub-intervals Ij .

Discretization of the Stationary Reaction-Diffusion-Convection
Problem

To solve (216.10) numerically let 0 = x0 < x1 < ... < xL+1 = 1 be a
partition of (0, 1), and let Vh be the corresponding space of continuous
piecewise linear functions v(x) such that v(0) = v(1) = 0. The cG(1) FEM
for (216.10) takes the form: compute U ∈ Vh such that

∫ 1

0

(aU ′)v′ + (bU)′v) dx =

∫ 1

0

fv dx for all v ∈ Vh.

216.5 The Discrete System of Equations

We have not yet proved that the set of equations (216.12) has a unique
solution nor discussed what is involved in computing the solution U . This
is an important issue considering we constructed the FEM precisely because
the original problem is likely impossible to solve analytically.
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We prove that the cG(1)-method (216.12) corresponds to a square linear
system of equations for the unknown nodal values ξj = U(xj), j = 1, ...,M .
We write U using the basis of hat functions as

U(x) =

M∑

j=1

ξjϕj(x) =

M∑

j=1

U(xj)ϕj(x).

Substituting into (216.12), we change the order of summation and integra-
tion to obtain

M∑

j=1

ξj

∫ 1

0

aϕ′
jv

′ dx =

∫ 1

0

fv dx, (216.13)

for all v ∈ Vh. Now, it suffices to check (216.13) with v varying over the set
of basis functions {ϕi}Mi=1, since any function in Vh can be expressed as a
linear combination of the basis functions. We are thus led to the M ×M
linear system of equations

M∑

j=1

ξj

∫ 1

0

aϕ′
jϕ

′
i dx =

∫ 1

0

fϕi dx, i = 1, ...,M, (216.14)

for the unknown coefficients ξ1, ..., ξM . We let ξ = (ξ1, ..., ξM )⊤ denote the
M -vector of unknown coefficients and define the M ×M stiffness matrix
A = (aij) with elements

aij =

∫ 1

0

aϕ′
jϕ

′
i dx, i, j = 1, ....,M,

and the load vector b = (bi) with

bi =

∫ 1

0

fϕi dx, i = 1, ...,M.

These names originate from early applications of the finite element method
in structural mechanics describing deformable structures like the body and
wing of an aircraft or buildings. Using this notation, (216.14) is equivalent
to the system of linear equations

Aξ = b. (216.15)

In order to solve for the unknown vector ξ of nodal values of U , we first
have to compute the stiffness matrix A and the load vector b. In the first
instance, we assume that a(x) = 1 for x ∈ [0, 1]. We note that aij is zero
unless i = j− 1, i = j, or i = j+1 because otherwise either ϕi(x) or ϕj(x)
is zero on each sub-interval occurring in the integration. We illustrate this
in Fig. 216.5. We compute aii first. Using the definition of the hat function



1420 216. FEM for Two-Point Boundary Value Problems

xi-1 xi

ii-1

xi

i

xi+1xi

i i+1

FIGURE 216.5. Three possibilities to obtain a non-zero element in the stiffness
matrix.

ϕi,

ϕi(x) =





(x− xi−1)/hi, xi−1 ≤ x ≤ xi,

(xi+1 − x)/hi+1, xi ≤ x ≤ xi+1,

0, elsewhere,

the integration breaks down into two integrals:

aii =

∫ xi

xi−1

( 1
hi

)2
dx+

∫ xi+1

xi

( −1

hi+1

)2
dx =

1

hi
+

1

hi+1
for i = 1, 2, ...,M,

since ϕ′
i = 1/hi on (xi−1, xi) and ϕ

′
i = −1/hi+1 on (xi, xi+1) and ϕi is zero

on the other sub-intervals. Similarly,

ai i+1 =

∫ xi+1

xi

−1

(hi+1)2
dx = − 1

hi+1
for i = 1, 2, ...,M,

while ai i−1 = −1/hi for i = 2, 3, ...,M .
We compute the elements of the load vector of b in the same way to get

bi =

∫ xi

xi−1

f(x)
x − xi−1

hi
dx+

∫ xi+1

xi

f(x)
xi+1 − x

hi+1
dx, i = 1, ...,M.

The matrix A is a sparse matrix in the sense that most of its entries
are zero. In particular, A is a banded matrix with non-zero entries occur-
ring only in the diagonal, super-diagonal and sub-diagonal positions. A is
also called a tri-diagonal matrix. Moreover, A is a symmetric matrix since∫ 1

0
ϕ′
iϕ

′
j dx =

∫ 1

0
ϕ′
jϕ

′
i dx. Finally, A is positive-definite in the sense that

η⊤Aη =

M∑

i,j=1

ηiaijηj > 0,



216.6 Handling Different Boundary Conditions 1421

unless ηi = 0 for i = 1, ...,M . This follows by noting that if v(x) =∑M
j=1 ηjϕj(x) then by reordering the summation (check!)

M∑

i,j=1

ηiaijηj =

M∑

i,j=1

ηi

∫ 1

0

aϕ′
jϕ

′
i dx ηj

=

∫ 1

0

a

M∑

j=1

ηjϕ
′
j

M∑

i=1

ηiϕ
′
i dx =

∫ 1

0

av′(x)v′(x) dx > 0

unless v′(x) = 0 for all x ∈ [0, 1], that is v(x) = 0 for x ∈ [0, 1], since
v(0) = 0, that is ηi = 0 for i = 1, ...,M . This implies that A is invertible,
so that (216.15) has a unique solution for all data b.
We sum up: the stiffness matrix A is sparse, symmetric and positive

definite, and thus in particular the system Aξ = b has a unique solution
for all b.
We expect the accuracy of the approximate solution to increase as M

increases since the work involved in solving for U increases. Systems of
dimension 102 − 103 in one space dimension and up to 106 in two or three
space dimensions are common. An important issue is the efficient numerical
solution of the system Aξ = b.

216.6 Handling Different Boundary Conditions

We consider briefly the discretization of the two-point boundary value prob-
lem −(au′)′ = f in (0, 1) with the different boundary conditions.

Non-Homogeneous Dirichlet Boundary Conditions

We begin with the boundary conditions u(0) = u0 and u(1) = u1, where
u0 and u1 are given boundary values, where the conditions are non-homo-
geneous if u0u1 6= 0. In this situation, we compute an approximate solution
in the trial space Vh of continuous piecewise linear functions v(x) on a
partition Th : 0 = x0 < x1 < ... < xM+1 = 1, satisfying the boundary
conditions v(0) = u0, v(1) = u1, and we let the test functions vary over
the space V 0

h of continuous piecewise linear functions v(x) satisfying the
homogeneous boundary conditions v(0) = v(1) = 0. The trial and test
spaces are different in this case, but we note that they have equal dimension
(equal to the number M of internal nodes). Multiplying by a test function
and integrating by parts, we are led to the following method: compute
U ∈ Vh such that

∫ 1

0

aU ′v′ dx =

∫ 1

0

fv dx for all v ∈ V 0
h . (216.16)
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As above this leads to a symmetric positive definite system of equations in
the internal unknown nodal values U(x1), ..., U(xM ).

Neumann Boundary Conditions

We now consider the problem

{
−(au′)′ = f, in (0, 1),

u(0) = 0, a(1)u′(1) = g1,
(216.17)

with a non-homogeneous Neumann boundary condition at x = 1, which in
the case of modeling heat in a wire, corresponds to prescribing the heat
flux a(1)u′(1) at x = 1 to be g1.
To derive a variational formulation of this problem, we multiply the

differential equation −(au′)′ = f by a test function v and integrate by
parts to get

∫ 1

0

fv dx = −
∫ 1

0

(au′)′v dx =

∫ 1

0

au′v′ dx− a(1)u′(1)v(1) + a(0)u′(0)v(0).

Now a(1)u′(1) = g1 is specified but a(0)u′(0) is unknown. So it is convenient
to assume that v satisfies the homogeneous Dirichlet condition v(0) = 0.
Correspondingly, we define Vh to be the space of continuous functions v
that are piecewise linear on a partition Th of (0, 1) satisfying v(0) = 0.
Replacing a(1)u′(1) by g1, we are led to the following FEM for (216.17):
compute U ∈ Vh such that

∫ 1

0

aU ′v′ dx =

∫ 1

0

fv dx+ g1v(1) for all v ∈ Vh. (216.18)

We substitute U(x) =
∑M+1
i=1 ξiϕi(x), noting that the value ξM+1 =

U(xM+1) at the node xM+1 is now undetermined, into (216.18) and choose
v = ϕ1, · · · , ϕM+1 to get a (M + 1) × (M + 1) system of equations for
ξ. We show the form of the resulting stiffness matrix with a = 1 and load
vector in Fig. 216.6. Note that the last equation

U(xM+1)− U(xM )

hM+1
= bM+1 + g1

is a discrete analog of the boundary condition u′(1) = g1 since bM+1 ≈
hM+1

2 f(1).
To conclude, a Neumann boundary condition, unlike a Dirichlet condi-

tion, is not explicitly enforced in the trial space. Instead, the Neumann con-
dition is automatically satisfied as a consequence of the variational formula-
tion by letting the test functions vary freely at the corresponding boundary
point. In the case of Neumann boundary conditions, we thus simply can



216.6 Handling Different Boundary Conditions 1423

A

-hM+1

-1

-hM+1

-1

hM+1

-1

0

0

0 0 bM+1+g1

b

FIGURE 216.6. The stiffness matrix and load vector computed from (216.18) in
the case that a ≡ 1. A and b are the stiffness matrix and load vector previously
obtained in the problem with homogeneous Dirichlet boundary conditions and
bM+1 =

∫ 1

0
fϕM+1 dx.

“forget” the boundary conditions in the definition of the trial space Vh
and let the test space coincide with Vh. A Dirichlet boundary condition is
called an essential boundary condition and a Neumann condition is called
a natural boundary condition. An essential boundary condition is imposed
explicitly in the definition of the trial space, i.e. it is a strongly imposed
boundary condition, and the test space satisfy the corresponding homoge-
neous boundary condition. A natural boundary condition is not imposed in
the trial space and becomes automatically satisfied through the variational
formulation by letting the test functions vary freely at the corresponding
boundary point.

Robin Boundary Conditions

A natural generalization of Neumann conditions for the problem −(au′)′ =
f in (0, 1) are called Robin boundary conditions. These take the form

− a(0)u′(0) = γ(0)(u0 − u(0)), a(1)u′(1) = γ(1)(u1 − u(1)). (216.19)

In the case of modeling heat in a wire, γ(0) and γ(1) are given (non-
negative) boundary heat conductivities and u0 and u1 are given “outside
temperatures”. The Robin boundary condition at x = 0 states that the
heat flux −a(0)u′(0) is proportional to the temperature difference u0−u(0)
between the outside and inside temperature. If u0 > u(0) then heat will
flow from outside to inside and if u0 < u(0) then heat will flow from inside
out.

Example 216.3. We may experience this kind of boundary condition
with γ(0) quite large in a poorly insulated house on a cold winter day.
The size of the boundary heat conductivity γ is an important issue in
the real estate business in the north of Sweden.

When γ = 0, (216.19) reduces to a homogeneous Neumann boundary con-
dition. Conversely, letting γ tend to infinity, the Robin boundary condition
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−a(0)u′(0) = γ(0)(u0− u(0)) approaches the Dirichlet boundary condition
u(0) = u0.
Robin boundary conditions are natural boundary conditions like Neu-

mann conditions, Therefore, we let Vh be the space of continuous piecewise
linear functions on a partition of (0, 1) without any boundary conditions
imposed. Multiplying the equation −(au′)′ = f by a function v ∈ Vh and
integrating by parts, we get

∫ 1

0

fv dx = −
∫ 1

0

(au′)′v dx =

∫ 1

0

au′v′ dx− a(1)u′(1)v(1) + a(0)u′(0)v(0).

Replacing a(0)u′(0) and a(1)u′(1) using the Robin boundary conditions,
we get

∫ 1

0

fv dx =

∫ 1

0

au′v′ dx+ γ(1)(u(1)− u1)v(1) + γ(0)(u(0)− u0)v(0).

Collecting data on the right hand side, we are led to the following cG(1)
method: compute U ∈ Vh such that

∫ 1

0

aU ′v′ dx+ γ(0)u(0)v(0) + γ(1)u(1)v(1)

=

∫ 1

0

fv dx+ γ(0)u0v(0) + γ(1)u1v(1)

for all v ∈ Vh.
An even more general Robin boundary condition has the form

−a(0)u′(0) = γ(0)(u0−u(0))+g0, where g0 is a given heat flux. This Robin
boundary condition thus includes Neumann boundary conditions (γ = 0)
and Dirichlet boundary conditions (letting γ → ∞). The implementation
of a Robin boundary conditions is facilitated by the fact that the trial and
test space are the same.

216.7 Error Estimates and Adaptive Error Control

When conducting scientific experiments in a laboratory or building a sus-
pension bridge, for example, there is always a lot of worry about the errors
in the process. In fact, if we were to summarize the philosophy behind the
scientific revolution, a main component would be the modern emphasis on
the quantitative analysis of error in measurements during experiments and
the reporting of the errors along with the results. The same issue comes
up in computational mathematical modeling: whenever we make a com-
putation on a practical problem, we must be concerned with the accuracy
of the results and the related issue of how to compute efficiently. These
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issues naturally fit into a wider framework which also addresses how well
the differential equation models the underlying physical situation and what
effect errors in data and the model have on the conclusions we can draw
from the results.
We address these issues by deriving two kinds of error estimates for the

error u−U of the finite element approximation. First we prove an a priori
error estimate which shows that the Galerkin finite element method for
(216.9) produces the best possible approximation in Vh of the solution u in
a certain sense. If u has continuous second derivatives, then we know that
Vh contains good approximations of u, for example the piecewise linear
interpolant. So the a priori estimate implies that the error of the finite
element approximation can be made arbitrarily small by refining the mesh
provided that the solution u is sufficiently smooth to allow the interpolation
error to go to zero as the mesh is refined. This kind of result is called an
a priori error estimate because the error bound does not depend on the
approximate solution to be computed. One the other hand, it does requires
knowledge about the derivatives of the (unknown) exact solution.
After that, we prove an a posteriori error bound that bounds the error of

the finite element approximation in terms of its residual error. This error
bound can be evaluated once the finite element solution has been computed
and used to estimate the error. Through the a posteriori error estimate, it
is possible to estimate and adaptively control the finite element error to a
desired tolerance level by suitably refining the mesh.
To measure the size of the error e = u−U , we shall use the weighted L2

norm

‖w‖a =
(∫ 1

0

aw2 dx

)1/2

,

with weight a. More precisely we shall estimate the quantity

‖(u− U)′‖a
which we refer to as the energy norm of the error u− U .
We will use the following variations of Cauchy’s inequality with the

weight a present:
∣∣∣∣
∫ 1

0

av′w′ dx

∣∣∣∣ ≤ ‖v′‖a‖w′‖a and

∣∣∣∣
∫ 1

0

vw dx

∣∣∣∣ ≤ ‖v‖a‖w‖a−1 . (216.20)

An A Priori Error Estimate

We shall prove that the finite element approximation U ∈ Vh is the best
approximation of u in Vh with respect to the energy norm. This is a conse-
quence of the Galerkin orthogonality built into the finite element method
expressed by ∫ 1

0

a(u− U)′v′ dx = 0 for all v ∈ Vh (216.21)
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which results from subtracting (216.12) from (216.11) (integrated by parts)
with v ∈ Vh. This is analogous to the best approximation property of the
L2 projection studied in the Chapter Piecewise linear approximation.
We have for any v ∈ Vh,

‖(u− U)′‖2a =
∫ 1

0

a(u− U)′(u− U)′ dx

=

∫ 1

0

a(u− U)′(u− v)′ dx +

∫ 1

0

a(u− U)′(v − U)′ dx

=

∫ 1

0

a(u− U)′(u− v)′ dx,

where the last line follows because v − U ∈ Vh. Estimating using Cauchy’s
inequality, we get

‖(u− U)′‖2a ≤ ‖(u− U)′‖a‖(u− v)′‖a,

so that

‖(u− U)′‖a ≤ ‖(u− v)′‖a for all v ∈ Vh.

This is the best approximation property of U . We now choose in particular
v = πhu, where πhu ∈ Vh is the nodal interpolant of u, and use the following
weighted analog of (215.11)

‖(u− πhu)
′‖a ≤ Ci‖hu′′‖a,

where Ci is an interpolation constant that depends only on (the variation
of) a. We then obtain the following error estimate.

Theorem 216.1 The finite element approximation U satisfies ‖(u−U)′‖a ≤
‖(u − v)′‖a for all v ∈ Vh. In particular, there is a constant Ci depending
only on a such that

‖u′ − U ′‖a ≤ Ci‖hu′′‖a.
This energy norm estimate says that the derivative of the error of the

finite element approximation converges to zero at a first order rate in the
mesh size h. By integration it follows that the error itself, say pointwise
or in the L2 norm, also tends to zero. One can also prove a more precise
bound for the error u− U itself that is second order in the mesh size h.

An A Posteriori Error Estimate

We shall now estimate the energy norm error ‖u′ − U ′‖a in terms of the
residual R(U) = (aU ′)′ + f of the finite element solution U on each subin-
terval. The residual measures how well U solves the differential equation
and it is completely computable once U has been computed.
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We start by using the variational form of (216.11) with v = e = u − U
to find an expression for ‖u− U‖2a:

‖e′‖2a =
∫ 1

0

ae′e′ dx =

∫ 1

0

au′e′ dx−
∫ 1

0

aU ′e′ dx

=

∫ 1

0

fe dx−
∫ 1

0

aU ′e′ dx.

We then use (216.12), with v = πhe denoting the nodal interpolant of e in
Vh, to obtain

‖e′‖2a =

∫ 1

0

f (e− πhe) dx−
∫ 1

0

aU ′(e − πhe)
′ dx

=

∫ 1

0

f (e− πhe) dx−
M+1∑

j=1

∫

Ij

aU ′(e − πhe)
′ dx.

Now, we integrate by parts over each sub-interval Ij in the last term and use
the fact that all the boundary terms disappear because (e − πhe)(xj) = 0
to get the error representation formula

‖e′‖2a =
∫ 1

0

R(U)(e− πhe) dx, (216.22)

where the residual errorR(U) is the discontinuous function defined on (0, 1)
by

R(U) = f + (aU ′)′ on each sub-interval Ij .

From the weighted Cauchy inequality (216.20) (inserting factors h and
h−1), we get

‖e′‖2a ≤ ‖hR(U)‖a−1‖h−1(e− πhe)‖a.

One can prove the following analog of the second estimate of (215.11)

‖h−1(e − πhe)‖a ≤ Ci‖e′‖a,

where Ci is an interpolation constant depending on a, and we notice the
appearance of the factor h−1 on the left hand side. This proves the basic a
posteriori error estimate:

Theorem 216.2 There is an interpolation constant Ci depending only on
a such that the finite element approximation U satisfies

‖u′ − U ′‖a ≤ Ci‖hR(U)‖a−1. (216.23)
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Adaptive Error Control

Since the a posteriori error estimate (216.23) indicates the size of the error
of an approximation on a given mesh in terms of computable information,
it is natural to try to use this information to compute an accurate approx-
imation. This is the basis of adaptive error control.
The computational problem that arises once a two-point boundary value

problem is specified is to find a mesh such that the finite element approx-
imation achieves a given level of accuracy, or in other words, such that
the error of the approximation is bounded by an error tolerance TOL. In
practice, we are also concerned with efficiency, which means that we want
to determine a mesh with the fewest number of elements that yields an ap-
proximation with the desired accuracy. We try to reach this optimal mesh
by starting with a coarse mesh and successively refining based on the size
of the a posteriori error estimate. By starting with a coarse mesh, we try
to keep the number of elements as small as possible.
More precisely, we choose an initial mesh Th, compute the corresponding

cG(1) approximation U , and then check whether or not

Ci‖hR(U)‖a−1 ≤ TOL.

This is the stopping criterion, which guarantees that ‖u′−U ′‖a ≤ TOL by
(216.23). Therefore when the stopping criterion is satisfied, U is sufficiently
accurate. If the stopping criterion is not satisfied, we try to construct a new
mesh Th̃ of mesh size h̃ with as few elements as possible such that

Ci‖h̃R(U)‖a−1 = TOL.

This is the mesh modification criterion from which the new mesh size h̃ is
computed based on the size of the residual error R(U) of the approximation
on the old mesh. In order to minimize the number of mesh points, it turns
out that the mesh size should be chosen to equidistribute the residual error
in the sense that the contribution from each element to the integral giving
the total residual error is roughly the same. In practice, this means that
elements with large residual errors are refined, while elements in intervals
where the residual error is small are combined together to form bigger
elements.
We repeat the adaptive cycle of mesh modification followed by solution

on the new mesh until the stopping criterion is satisfied. By the a priori
error estimate, we know that if u′′ is bounded then the error tends to
zero as the mesh is refined. Hence, the stopping criterion will be satisfied
eventually. In practice, the adaptive error control rarely requires more than
a few iterations.
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216.8 Discretization of Time-Dependent
Reaction-Diffusion-Convection Problems

We now return to original time dependent problem (216.6).
To solve (216.6) numerically, we apply the cG(1) method for time dis-

cretization and the cG(1) FEM for discretization in space. More precisely,
let 0 = x0 < x1 < ... < xL+1 = 1 be a partition of (0, 1), and let Vh be
the corresponding space of continuous piecewise linear functions v(x) such
that v(0) = v(1) = 0. Let 0 = t0 < t1 < t2 < ... < tN = T be a sequence
of discrete time levels with corresponding time intervals In = (tn−1, tn)
and time steps kn = tn − tn−1, for n = 1, ..., N . We look for a numerical
solution U(x, t) that is linear in t on each time interval In. For n = 1, ..., N ,
we compute Un ∈ Vh such that for all v ∈ Vh,

∫

In

∫ 1

0

U̇v dx dt+

∫

In

∫ 1

0

(aU ′)v′ + (bU)′v) dx dt

=

∫

In

∫ 1

0

fv dx dt+

∫

In

(g(0, t)v(0) + g(1, t)v(1)) dt,

(216.24)

where U(tn, x) = Un(x) denotes the time nodal value for n = 1, 2, ..., N and
U0 = u0, assuming that u0 ∈ Vh. Since U is linear on each time interval, it
is determined completely once we have computed its nodal values.
Arguing as above using the expansion in terms of the basis functions for

Vh leads to a sequence of systems of equations for n = 1, ..., N ,

MUn + knAnU
n =MUn−1 + knb

n, (216.25)

where M is the mass matrix corresponding to Vh and An is a stiffness
matrix related to time interval In. Solving this system successively for n =
1, 2, ..., N , we obtain an approximate solution U of (216.10).

216.9 Non-Linear Reaction-Diffusion-Convection
Problems

In many situations, the coefficients or data depend on the solution u, which
leads to a nonlinear problem. For example if f depends on u, we get a
problem of the form





u̇− (au′)′ + (bu)′ = f(u) in (0, 1)× (0, T ),

u(0, t) = u(1, t) = 0, for t ∈ (0, T ),

u(x, 0) = u0(x) for x ∈ (0, 1).

(216.26)

Discretization as above eventually yields a discrete system of the form

MUn + knAnU
n =MUn−1 + knb

n(Un), (216.27)
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where bn depends on Un. This nonlinear system may be solved by fixed
point iteration or Newton’s method.
We conclude this section by presenting some examples of systems of non-

linear reaction-diffusion-convection problems arising in physics, chemistry
and biology. These systems may be solved numerically by a direct extension
of the cG(1) method in space and time presented above. In all examples, a
and the αi are a positive constants.

Example 216.4. The bistable equation for ferro-magnetism

u̇− au′′ = u− u3, (216.28)

with a small.

Example 216.5. Model of a superconductivity of a fluid

u̇1 − au′′1 = (1− |u|2)u1,
u̇2 − au′′2 = (1− |u|2)u2.

(216.29)

Example 216.6. Model of flame propagation

u̇1 − au′′1 = −u1e−α1/u2 ,

u̇2 − au′′2 = α2u1e
−α1/u2 .

(216.30)

Example 216.7. Field-Noyes equations for chemical reactions

u̇1 − au′′1 = α1(u2 − u1u3 + u1 − α2u
2
1),

u̇2 − au′′2 = α−1(α3u3 − u2 − u1u2),

u̇2 − au′′2 = α4(u1 − u3).

(216.31)

Example 216.8. Spread of rabies in foxes

u̇1 − au′′1 = α1(1− u1 − u2 − u3)− u3u1,

u̇2 − au′′2 = u3u1 − (α2 + α3 + α1u1 + α1u1 + α1u3)u2,

u̇2 − au′′2 = α2u2 − (α4 + α1u1 + α1u1 + α1u3)u3,

(216.32)

where α4 < (1 + (α3 + α1)/α2)
−1 − α1.

Example 216.9. Interaction of two species

u̇1 − au′′1 = u1M(u1, u2),

u̇2 − au′′2 = u2N(u1, u2),
(216.33)

where M(u1, u2) and N(u1, u2) are given functions describing various
situations such as (i) predator-prey (Mu2 < 0, Nu1 > 0) (ii) competing
species (Mu2 < 0, Nu1 < 0) and (iii) symbiosis (Mu2 > 0, Nu1 > 0).
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Example 216.10. Morphogenesis of patterns (zebra or tiger)

u̇1 − au′′1 = −u1u22 + α1(1− u1)

u̇2 − au′′2 = u1u
2
2 − (α1 + α2)u2.

(216.34)

Example 216.11. Fitz-Hugh-Nagumo model for transmission of axons

u̇1 − au′′1 = −u1(u1 − α1)(u1 − 1)− u2

u̇2 − au′′2 = α2u1 − α3u2,
(216.35)

0 < α1 < 1.

Chapter 216 Problems

216.1. Compute the stiffness matrix and load vector for the cG(1) method on a
uniform partition for (216.9) with a(x) = 1+x and f(x) = sin(x). Use quadrature
if exact integration is inconvenient.

216.2. Formulate the cG(1) method for the problem −(au′)′ + cu = f in (0, 1),
u(0) = u(1) = 0, where a(x) and c(x) are positive coefficients. Compute the
corresponding stiffness matrix when a = c = 1, assuming a uniform partition. Is
the stiffness matrix still symmetric, positive-definite, and tridiagonal?

216.3. Determine the resulting system of equations corresponding to the cG(1)
method (216.16) with non-homogeneous Dirichlet boundary conditions.

216.4. Prove a priori and a posteriori error estimates for cG(1) for −(au′)′ = f
in (0, 1) with Robin boundary conditions (a positive).

216.5. Prove a priori and a posteriori error estimates for cG(1) for −(au′)′+cu =
f in (0, 1) with Robin boundary conditions (a and c positive).

The “classical” phase of my career was summed up in the book The
Large Scale Structure of Spacetime which Ellis and I wrote in 1973. I
would not advise readers of this book to consult that work for further
information: it is highly technical, and quite unreadable. I hope that
since then I have learned how to write in a manner that is easier to
understand. (Stephen Hawking in A Brief History of Time)
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(Partly from Applied Mathematics Body and Soul, Vol 3, Springer 2003, coau-

thored with Kenneth Eriksson and Don Estep).

∆u = ∇ · ∇u

∂u

∂t
−∆u = f

∂2u

∂t2
−∆u = f

i
∂u

∂t
= −1

2
∆u+ V u

∂u

∂t
+ u · ∇u+∇p− ν∆u = f,

∇ · u = 0

∇×H = J, ∇ · B = 0, B = µH.
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217
Vector-Valued Functions of Several
Real Variables

Auch die Chemiker müssen sich allmänlich an den Gedanken gewöhn-
en, dass ihnen die theoretische Chemie ohne die Beherrschung der
Elemente der höheren Analysis ein Buch mit sieben Siegeln blieben
wirt. Ein Differential- oder Integralzeichen muss aufhören, für den
Chemiker eine unvertständliche Hieroglyphe zu sein,... wenn er sich
nicht der Gefahr aussetzen will, für die Entwicklung der theoretis-
chen Chemie jedes Verständnis zu verlieren. (H. Jahn, Grundriss der
Elektrochemie, 1895)

217.1 Introduction

We now turn to the extension of the basic concepts of real-valued functions
of one real variable, such as Lipschitz continuity and differentiability, to
vector-valued functions of several variables. We have carefully prepared the
material so that this extension will be as natural and smooth as possible.
We shall see that the proofs of the basic theorems like the Chain rule, the
Mean Value theorem, Taylor’s theorem, the Contraction Mapping theorem
and the Inverse Function theorem, extend almost word by word to the more
complicated situation of vector valued functions of several real variables.
We consider functions f : Rn → Rm that are vector valued in the sense

that the value f(x) = (f1(x), ..., fm(x)) is a vector in Rm with components
fi : Rn → R for i = 1, ...,m, where with fi(x) = fi(x1, ..., xn) and x =
(x1, ..., xn) ∈ Rn. As usual, we view x = (x1, ..., xn) as a n-column vector
and f(x) = (f1(x), ..., fm(x)) as a m-column vector.
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As particular examples of vector-valued functions, we first consider
curves, which are functions g : R → Rn, and surfaces, which are functions
g : R2 → Rn. We then discuss composite functions f ◦ g : R → Rm, where
g : R → Rn is a curve and f : Rn → Rm, with f ◦ g again being a curve.
We recall that f ◦ g(t) = f(g(t)).
The inputs to the functions reside in the n dimensional vector space

Rn and it is worthwhile to consider the properties of Rn. Of particular
importance is the notion of Cauchy sequence and convergence for sequences

{x(j)}∞j=1 of vectors x(j) = (x
(j)
1 , ...., x

(j)
n ) ∈ Rn with coordinates x

(j)
k , k =

1, ..., n. We say that the sequence {x(j)}∞j=1 is a Cauchy sequence if for all
ǫ > 0, there is a natural number N so that

‖x(i) − x(j)‖ ≤ ǫ for i, j > N.

Here ‖ · ‖ denotes the Euclidean norm in Rn, that is, ‖x‖ = (
∑n

i=1 x
2
i )

1/2.
Sometimes, it is convenient to work with the norms ‖x‖1 =

∑n
i=1 |xi| or

‖x‖∞ = maxi=1,...,n |xi|. We say that the sequence {x(j)}∞j=1 of vectors in
Rn converges to x ∈ Rn if for all ǫ > 0, there is a natural number N so
that

‖x− x(i)‖ ≤ ǫ for i > N.

It is easy to show that a convergent sequence is a Cauchy sequence and con-
versely that a Cauchy sequence converges. We obtain these results applying
the corresponding results for sequences in R to each of the coordinates of
the vectors in Rn.

Example 217.1. The sequence {x(i)}∞i=1 in R2, x(i) = (1−i−2, exp(−i)),
converges to (1, 0).

217.2 Curves in Rn

A function g : I → Rn, where I = [a, b] is an interval of real numbers, is a
curve in Rn , see Fig. 217.1. If we use t as the independent variable ranging
over I, then we say that the curve g(t) is parametrized by the variable t.
We also refer to the set of points Γ = {g(t) ∈ Rn : t ∈ I} as the curve Γ
parameterized by the function g : I → Rn.

Example 217.2. The simplest example of a curve is a straight line.
The function g : R → R2 given by

g(t) = x̄+ tz,

where z ∈ R2 and x̄ ∈ R2, is a straight line in R2 through the point x̄
with direction z, see Fig. 217.2.
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FIGURE 217.1. The curve g : [0, 4] → R3 with g(t) =
(
t1/2 cos(πt), t1/2 sin(πt),t

)
.

Example 217.3. Let f : [a, b] → R be given, and define g : [a, b] → R2

by g(t) = (g1(t), g2(t)) = (t, f(t)). This curve is simply the graph of the
function f : [a, b] → R, see Fig. 217.2.
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FIGURE 217.2. On the left: the curve g(t) = x̄ + ta. On the right: a curve
g(t) = (t, f(t)).

217.3 Different Parameterizations of a Curve

It is possible to use different parametrizations for the set of points forming
a curve. If h : [c, d] → [a, b] is a one-to-one mapping, then the composite
function f = g ◦ h : [c, d] → R2 is a reparameterization of the curve {g(t) :
t ∈ [a, b]} given by g : [a, b] → R2.

Example 217.4. The function f : [0,∞) → R3 given by

f(τ) = (τ cos(πτ2), τ sin(πτ2), τ2),

is a reparameterization of the curve g : [0,∞) → R3 given by

g(t) = (
√
t cos(πt),

√
t sin(πt), t),
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obtained setting t = h(τ) = τ2. We have f = g ◦ h.

217.4 Surfaces in Rn, n ≥ 3

A function g : Q→ Rn, where n ≥ 3 and Q is a subdomain of R2, may be
viewed to be a surface S in Rn , see Fig. 217.3. We write g = g(y) with
y = (y1, y2) ∈ Q and say that S is parameterized by y ∈ Q. We may also
identify the surface S with the set of points S = {g(y) ∈ Rn : y ∈ Q}, and
reparameterize S by f = g ◦ h : Q̃ → Rn if h : Q̃ → Q is a one-to-one
mapping of a domain Q̃ in R2 onto Q.

Example 217.5. The simplest example of a surface g : R2 → R3 is a
plane in R3 given by

g(y) = g(y1, y2) = x̄+ y1b1 + y2b2, y ∈ R2,

where x̄, b1, b2 ∈ R3.

Example 217.6. Let f : [0, 1] × [0, 1] → R be given, and define g :
[0, 1] × [0, 1] → R3 by g(y1, y2) = (y1, y2, f(y1, y2)). This is a surface,
which is the graph of f : [0, 1] × [0, 1] → R. We also refer to this
surface briefly as the surface given by the function x3 = f(x1, x2) with
(x1, x2) ∈ [0, 1]× [0, 1].
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FIGURE 217.3. The surface s(y1, y2) =
(
y1, y2, y1 sin

(
(y1 + y2)π/2

))
with

−1 ≤ y1, y2 ≤ 1, or briefly the surface x3 = x1 sin
(
(x1 + x2)π/2

)
with

−1 ≤ x1, x2 ≤ 1.
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217.5 Lipschitz Continuity

We say that f : Rn → Rm is Lipschitz continuous on Rn if there is a
constant L such that

‖f(x)− f(y)‖ ≤ L‖x− y‖ for all x, y ∈ Rn. (217.1)

This definition extends easily to functions f : A → Rm with the domain
D(f) = A being a subset of Rn. For example, A may be the unit n-cube
[0, 1]n = {x ∈ Rn : 0 ≤ xi ≤ 1, i = 1, ..., n} or the unit n-disc {x ∈ Rn :
‖x‖ ≤ 1}.
To check if a function f : A→ Rm is Lipschitz continuous on some subset

A of Rn, it suffices to check that the component functions fi : A → R are
Lipschitz continuous. This is because

|fi(x)− fi(y)| ≤ Li‖x− y‖ for i = 1, ...,m,

implies

‖f(x)− f(y)‖2 =
m∑

i=1

|fi(x)− fi(y)|2 ≤
m∑

i=1

L2
i ‖x− y‖2,

which shows that ‖f(x)− f(y)‖ ≤ L‖x− y‖ with L = (
∑

i L
2
i )

1
2 .

Example 217.7. The function f : [0, 1] × [0, 1] → R2 defined by
f(x1, x2) = (x1 + x2, x1x2), is Lipschitz continuous with Lipschitz con-
stant L = 2. To show this, we note that f1(x1, x2) = x1 + x2 is Lip-
schitz continuous on [0, 1] × [0, 1] with Lipschitz constant L1 =

√
2

because |f1(x1, x2)− f1(y1, y2)| ≤ |x1 − y1|+ |x2 − y2| ≤
√
2‖x− y‖ by

Cauchy’s inequality. Similarly, f2(x1, x2) = x1x2 is Lipschitz continuous
on [0, 1]× [0, 1] with Lipschitz constant L2 =

√
2 since |x1x2 − y1y2| =

|x1x2 − y1x2 + y1x2 − y1y2| ≤ |x1 − y1|+ |x2 − y2| ≤
√
2‖x− y‖.

Example 217.8. The function f : Rn → Rn defined by

f(x1, ..., xn) = (xn, xn−1, ..., x1),

is Lipschitz continuous with Lipschitz constant L = 1.

Example 217.9. A linear transformation f : Rn → Rm given by an
m × n matrix A = (aij), with f(x) = Ax and x a n-column vector,
is Lipschitz continuous with Lipschitz constant L = ‖A‖. We made
this observation in Chapter Analytic geometry in Rn. We repeat the
argument:

L = max
x 6=y

‖f(x)− f(y)‖
‖x− y‖ = max

x 6=y
‖Ax−Ay‖
‖x− y‖

= max
x 6=y

‖A(x− y)‖
‖x− y‖ = max

x 6=0

‖Ax‖
‖x‖ = ‖A‖.
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x1

x2

x

x̄

f(x)

f(x̄)

FIGURE 217.4. Illustration of the mapping f(x1, x2) = (x2, x1), which is clearly
Lipschitz continuous with L = 1.

Concerning the definition of the matrix norm ‖A‖, we note that the
function F (x) = ‖Ax‖/‖x‖ is homogeneous of degree zero, that is,
F (λx) = F (x) for all non-zero real numbers λ, and thus ‖A‖ is the
maximum value of F (x) on the closed and bounded set {x ∈ Rn :
‖x‖ = 1}, which is a finite real number.

We recall that if A is a diagonal n × n matrix with diagonal elements
λi, then ‖A‖ = maxi |λi|.

217.6 Differentiability: Jacobian, Gradient and
Tangent

We say that f : Rn → Rm is differentiable at x̄ ∈ Rn if there is a m × n
matrixM(x̄) = (mij(x̄)), called the Jacobian of the function f(x) at x̄, and
a constant Kf(x̄) such that for all x close to x̄,

f(x) = f(x̄) +M(x̄)(x− x̄) + Ef (x, x̄), (217.2)

where Ef (x, x̄) = (Ef (x, x̄)i) is an m-vector satisfying ‖Ef (x, x̄)‖
≤ Kf (x̄)‖x− x̄‖2. We also denote the Jacobian by Df(x̄) or f ′(x̄) so that
M(x̄) = Df(x̄) = f ′(x̄). Since f(x) is a m-column vector, or m× 1 matrix,
and x is a n-column vector, or n× 1 matrix, M(x̄)(x− x̄) is the product of
the m×n matrix M(x̄) and the n× 1 matrix x− x̄ yielding a m× 1 matrix
or a m-column vector.
We say that f : A→ Rm, where A is a subset of Rn, is differentiable on

A if f(x) is differentiable at x̄ for all x̄ ∈ A. We say that f : A → Rm is
uniformly differentiable on A if the constant Kf (x̄) = Kf can be chosen
independently of x̄ ∈ A.
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FIGURE 217.5. Carl Jacobi (1804-51);: ”It is often more convenient to possess
the ashes of great men than to possess the men themselves during their lifetime”
(on the return of Descarte’s remains to France).

We now show how to determine a specific elementmij(x̄) of the Jacobian
using the relation (217.2). We consider the coordinate function fi(x1, ..., xn)
and setting x = x̄ + sej , where ej is the jth standard basis vector and s
is a small real number, we focus on the variation of fi(x1, ...., xn) as the
variable xj varies in a neighborhood of x̄j . The relation (217.2) states that
for small non-zero real numbers s,

fi(x̄+ sej) = fi(x̄) +mij(x̄)s+ Ef (x̄+ sej , x̄)i, (217.3)

where ‖x− x̄‖2 = ‖sej‖2 = s2 implies

|Ef (x̄+ sej , x̄)i| ≤ Kf(x̄)s
2.

Note that by assumption ‖Ef (x, x̄)‖ ≤ Kf (x̄)‖x − x̄‖2, and so each coor-
dinate function Ef (x̄+ sej , x̄)i satisfies |Ef (x, x̄)i| ≤ Kf(x̄)‖x− x̄‖2.
Now, dividing by s in (217.3) and letting s tend to zero, we find that

mij(x̄) = lim
s→0

fi(x̄+ sej)− fi(x̄)

s
, (217.4)

which we can also write as

mij(x̄) =

lim
xj→x̄j

fi(x̄1, ..., x̄j−1, xj , x̄j+1, ..., x̄n)− fi(x̄1, ..., x̄j−1, x̄j , x̄j+1, ..., x̄n)

xj − x̄j
.

(217.5)
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We refer to mij(x̄) as the partial derivative of fi with respect to xj at x̄,

and we use the alternative notation mij(x̄) =
∂fi
∂xj

(x̄). To compute ∂fi
∂xj

(x̄)

we freeze all coordinates at x̄ but the coordinate xj and then let xj vary
in a neighborhood of x̄j . The formula

∂fi
∂xj

(x̄) =

lim
xj→x̄j

fi(x̄1, ..., x̄j−1, xj , x̄j+1, ..., x̄n)− fi(x̄1, ..., x̄j−1, x̄j , x̄j+1, ..., x̄n)

xj − x̄j
,

(217.6)

states that we compute the partial derivative with respect to the variable
xj by keeping all the other variables x1,...,xj−1, xj+1,...,xn constant. Thus,
computing partial derivatives should be a pleasure using our previous ex-
pertise of computing derivatives of functions of one real variable!
We may express the computation alternatively as follows:

∂fi
∂xj

(x̄) = mij(x̄) = g′ij(0) =
dgij
ds

(0), (217.7)

where gij(s) = fi(x̄ + sej).

Example 217.10. Let f : R3 → R be given by f(x1, x2, x3) =
x1e

x2 sin(x3). We compute

∂f

∂x1
(x̄) = ex̄2 sin(x̄3),

∂f

∂x2
(x̄) = x̄1e

x̄2 sin(x̄3),

∂f

∂x3
(x̄) = x̄1e

x̄2 cos(x̄3),

and thus

f ′(x̄) = (ex̄2 sin(x̄3), x̄1e
x̄2 sin(x̄3), x̄1e

x̄2 cos(x̄3))

Example 217.11. If f : R3 → R2 is given by f(x) =

(
exp(x21 + x22)
sin(x2 + 2x3)

)
,

then

f ′(x) =

(
2x1 exp(x

2
1 + x22) 2x2 exp(x

2
1 + x22) 0

0 cos(x2 + 2x3) 2 cos(x2 + 2x3)

)
.

We have now shown how to compute the elements of a Jacobian using
the usual rules for differentiation with respect to one real variable. This
opens a whole new world of applications to explore. The setting is thus a
differentiable function f : Rn → Rm satisfying for suitable x, x̄ ∈ Rn:

f(x) = f(x̄) + f ′(x̄)(x − x̄) + Ef (x, x̄), (217.8)
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with ‖Ef (x, x̄)‖ ≤ Kf (x̄)‖x − x̄‖2, where f ′(x̄) = Df(x̄) is the Jacobian

m× n matrix with elements ∂fi
∂xj

:

f ′(x̄) = Df(x̄) =




∂f1
∂x1

(x̄) ∂f1
∂x2

(x̄) ... ∂f1
∂xn

(x̄)
∂f2
∂x1

(x̄) ∂f2
∂x2

(x̄) ... ∂f2
∂xn

(x̄)

... ... ...
∂fm
∂x1

(x̄) ∂fm
∂x2

(x̄) ... ∂fm
∂xn

(x̄)


 .

Sometimes we use the following notation for the Jacobian f ′(x) of a
function y = f(x) with f : Rn → Rm:

f ′(x) =
dy1, ...., dym
dx1, ..., dxn

(x) (217.9)

The function x → f̂(x) = f(x̄) + f ′(x̄)(x − x̄) is called the linearization
of the function x→ f(x) at x = x̄. We have

f̂(x) = f ′(x̄)x+ f(x̄)− f ′(x̄)x̄ = Ax+ b,

with A = f ′(x̄) a m× n matrix and b = f(x̄)− f ′(x̄)x̄ a m-column vector.

We say that f̂(x) is an affine transformation, which is a transformation
of the form x → Ax + b, where x is a n-column vector, A is a m × n
matrix and b is a m-column vector. The Jacobian f̂ ′(x) of the linearization
f̂(x) = Ax + b is a constant matrix equal to the matrix A, because the
partial derivatives of Ax with respect to x are simply the elements of the
matrix A.
If f : Rn → R, that is m = 1, then we also denote the Jacobian f ′ by

∇f , that is,
f ′(x̄) = ∇f(x̄) = (

∂f

∂x1
(x̄), ...,

∂f

∂xn
(x̄)).

In words, ∇f(x̄) is the n-row vector or 1× n matrix of partial derivatives
of f(x) with respect to x1, x2,...,xn at x̄. We refer to ∇f(x̄) as the gradient
of f(x) at x̄. If f : Rn → R is differentiable at x̄, we thus have

f(x) = f(x̄) +∇f(x̄)(x − x̄) + Ef (x, x̄), (217.10)

with |Ef (x, x̄)| ≤ Kf (x̄)‖x − x̄‖2, and f̂(x) = f(x̄) +∇f(x̄)(x − x̄) is the
linearization of f(x) at x = x̄. We may alternatively express the product
∇f(x̄)(x− x̄) of the n-row vector (1×n matrix) ∇f(x̄) with the n-column
vector (n× 1 matrix) (x − x̄) as the scalar product ∇f(x̄) · (x − x̄) of the
n-vector ∇f(x̄) with the n-vector (x− x̄). We thus often write (217.10) in
the form

f(x) = f(x̄) +∇f(x̄) · (x− x̄) + Ef (x, x̄). (217.11)
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Example 217.12. If f : R3 → R is given by f(x) = x21 + 2x32 + 3x43,
then

∇f(x) = (2x1, 6x
2
2, 12x

3
3).

Example 217.13. The equation x3 = f(x) with f : R2 → R and
x = (x1, x2) represents a surface in R3 (the graph of the function f).
The linearization

x3 = f(x̄)+∇f(x̄) ·(x− x̄) = f(x̄)+
∂f

∂x1
(x̄)(x1− x̄1)+

∂f

∂x2
(x̄)(x2− x̄2)

with x̄ = (x̄1, x̄2), represents the tangent plane at x = x̄, see Fig. 217.13.

x1

x2

x3

x̄

x3 = f(x1, x2)

x3 = f(x̄) +∇f(x̄)(x− x̄)

FIGURE 217.6. The surface x3 = f(x1, x2) and its tangent plane.

Example 217.14. Consider now a curve f : R → Rm, that is, f(t) =
(f1(t), ..., fm(t)) with t ∈ R and we have a situation with n = 1. The

linearization t→ f̂(t) = f(t̄)+f ′(t̄)(t− t̄) at t̄ represents a straight line
in Rm through the point f(t̄) and the Jacobian f ′(t̄) = (f ′

1(t̄), ..., f
′
m(t̄))

gives the direction of the tangent to the curve f : R → Rm at f(t̄), see
Fig. 217.7.

217.7 The Chain Rule

Let g : Rn → Rm and f : Rm → Rp and consider the composite function
f ◦ g : Rn → Rp defined by f ◦ g(x) = f(g(x)). Under suitable assumptions
of differentiability and Lipschitz continuity, we shall prove a Chain rule
generalizing the Chain rule of Chapter Differentiation rules in the case
n = m = p = 1. Using linearizations of f and g, we have

f(g(x)) = f(g(x̄)) + f ′(g(x̄))(g(x) − g(x̄)) + Ef (g(x), g(x̄))

= f(g(x̄)) + f ′(g(x̄))g′(x̄)(x− x̄) + f ′(g(x̄))Eg(x, x̄) + Ef (g(x), g(x̄)),
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x1

x2

a bt
t s(a)

s(t)

s(b)

s′(t)

FIGURE 217.7. The tangent s′(t) to a curve given by s(t).

where we may naturally assume that

‖Ef(g(x), g(x̄))‖ ≤ Kf‖g(x)− g(x̄)‖2 ≤ KfL
2
g‖x− x̄‖2,

and ‖f ′(g(x̄))Eg(x, x̄)‖ ≤ ‖f ′(g(x̄))‖Kg‖x − x̄‖2, with suitable constants
of differentiability Kf and Kg and Lipschitz constant Lg. We have now
proved:

Theorem 217.1 (The Chain rule) If g : Rn → Rm is differentiable at
x̄ ∈ Rn, and f : Rm → Rp is differentiable at g(x̄) ∈ Rm and further
g : Rn → Rm is Lipschitz continuous, then the composite function f ◦ g :
Rn → Rp is differentiable at x̄ ∈ Rn with Jacobian

(f ◦ g)′(x̄) = f ′(g(x̄))g′(x̄).

The Chain rule has a wealth of applications and we now turn to harvest
a couple of the most basic examples.

217.8 The Mean Value Theorem

Let f : Rn → R be differentiable on Rn with a Lipschitz continuous gra-
dient, and for given x, x̄ ∈ Rn consider the function h : R → R defined
by

h(t) = f(x̄+ t(x− x̄)) = f ◦ g(t),
with g(t) = x̄+ t(x− x̄) representing the straight line through x̄ and x. We
have

f(x)− f(x̄) = h(1)− h(0) = h′(t̄),

for some t̄ ∈ [0, 1], where we applied the usual Mean Value theorem to the
function h(t). By the Chain rule we have

h′(t) = ∇f(g(t)) · g′(t) = ∇f(g(t)) · (x− x̄),

and we have now proved:
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Theorem 217.2 (Mean Value theorem) Let f : Rn → R be differen-
tiable on Rn with a Lipschitz continuous gradient ∇f . Then for given x
and x̄ in Rn, there is y = x+ t̄(x− x̄) with t̄ ∈ [0, 1], such that

f(x)− f(x̄) = ∇f(y) · (x− x̄).

With the help of the Mean Value theorem we express the difference
f(x)− f(x̄) as the scalar product of the gradient ∇f(y) with the difference
x− x̄, where y is a point somewhere on the straight line between x and x̄.
We may extend the Mean Value theorem to a function f : Rn → Rm to

take the form
f(x)− f(x̄) = f ′(y)(x− x̄),

where y is a point on the straight line between x and x̄, which may be
different for different rows of f ′(y). We may then estimate:

‖f(x)− f(x̄)‖ = ‖f ′(y) · (x− x̄)‖ ≤ ‖f ′(y)‖‖x− x̄‖,

and we may thus estimate the Lipschitz constant of f by maxy ‖f ′(y)‖ with
‖f ′(y)‖ the (Euclidean) matrix norm of f ′(y).

Example 217.15. Let f : Rn → R be given by f(x) = sin(
∑n

j=1 xj).
We have

∂f

∂xi
(x̄) = cos(

n∑

j=1

x̄j) for i = 1, ..., n,

and thus | ∂f∂xi
(x̄)| ≤ 1 for i = 1, ..., n, and therefore

‖∇f(x̄)‖ ≤ √
n.

We conclude that f(x) = sin(
∑n

j=1 xj) is Lipschitz continuous with

Lipschitz constant
√
n.

217.9 Direction of Steepest Descent and the
Gradient

Let f : Rn → R be a given function and suppose we want to study the
variation of f(x) in a neighborhood of a given point x̄ ∈ Rn. More precisely,
let x vary on the line through x̄ in a given direction z ∈ Rn, that is assume
that x = x̄ + tz where t is a real variable varying in a neighborhood of 0.
Assuming f to be differentiable, the linearization formula (217.8) implies

f(x) = f(x̄) + t∇f(x̄) · z + Ef (x, x̄), (217.12)

where |Ef (x, x̄)| ≤ t2Kf‖z‖2 and ∇f(x̄) · z is the scalar product of the
gradient ∇f(x̄) ∈ Rn and the vector z ∈ Rn. If ∇f(x̄) · z 6= 0, then the
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linear term t∇f(x̄) · z will dominate the quadratic term Ef (x, x̄) for small
t. So the linearization

f̂(x) = f(x̄) + t∇f(x̄) · z

will be a good approximation of f(x) for x = x̄ + tz close to x̄. Thus if
∇f(x̄) · z 6= 0, then we get good information on the variation of f(x) along
the line x = x̄ + tz by studying the linear function t → f(x̄) + t∇f(x̄) · z
with slope ∇f(x̄) · z. In particular, if ∇f(x̄) · z > 0 and x = x̄ + tz then

f̂(x) increases as we increase t and decreases as we decrease t. Similarly,

if ∇f(x̄) · z < 0 and x = x̄ + tz then f̂(x) decreases as we increase t and
increases as we decrease t.
Alternatively, we may consider the composite function Fz : R → R de-

fined by Fz(t) = f(gz(t)) with gz : R → Rn given by gz(t) = x̄+ tz. Obvi-
ously, Fz(t) describes the variation of f(x) on the straight line through x̄
with direction z, with Fz(0) = f(x̄). Of course, the derivative F ′

z(0) gives
important information on this variation close to x̄. By the Chain rule we
have

F ′
z(0) = ∇f(x̄)z = ∇f(x̄) · z,

and we retrieve ∇f(x̄) · z as a quantity of interest. In particular, the sign
of ∇f(x̄) · z determines if Fz(t) is increasing or decreasing at t = 0.
We may now ask how to choose the direction z to get maximal increase or

decrease. We assume ∇f(x̄) 6= 0 to avoid the trivial case with F ′
z(0) = 0 for

all z. It is then natural to normalize z so ‖z‖ = 1 and we study the quantity
F ′
z(0) = ∇f(x̄) · z as we vary z ∈ Rn with ‖z‖ = 1. We conclude that the

scalar product ∇f(x̄) · z is maximized if we choose z in the direction of the
gradient ∇f(x̄),

z =
∇f(x̄)
‖∇f(x̄)‖ ,

which is called the direction of steepest ascent. For this gives

max
‖z‖=1

F ′
z(0) = ∇f(x̄) · ∇f(x̄)

‖∇f(x̄)‖ = ‖∇f(x̄)‖.

Similarly, the scalar product is minimized if we choose z in the opposite
direction of the gradient ∇f(x̄),

z = − ∇f(x̄)
‖∇f(x̄)‖ ,

which is called the direction of steepest descent, see Fig. 217.8. For then

min
‖z‖=1

F ′
z(0) = −∇f(x̄) · ∇f(x̄)

‖∇f(x̄)‖ = −‖∇f(x̄)‖.
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FIGURE 217.8. Directions of steepest descent on a “hiking map”.

If ∇f(x̄) = 0, then x̄ is said to be a stationary point. If x̄ is a stationary
point, then evidently ∇f(x̄) · z = 0 for any direction z and

f(x) = f(x̄) + Ef (x, x̄).

The difference f(x)−f(x̄) is then quadratically small in the distance ‖x−x̄‖,
that is |f(x)− f(x̄)| ≤ Kf‖x− x̄‖2, and f(x) is very close to the constant
value f(x̄) for x close to x̄.

217.10 A Minimum Point Is a Stationary Point

Suppose x̄ ∈ Rn is a minimum point for the function f : Rn → R, that is

f(x) ≥ f(x̄) for x ∈ Rn. (217.13)

We shall show that if f(x) is differentiable at a minimum point x̄, then

∇f(x̄) = 0. (217.14)

For if ∇f(x̄) 6= 0, then we could move in the direction of steepest descent
from x̄ to a point x close to x̄ with f(x) < f(x̄), contradicting (217.13).
Consequently, in order to find minimum points of a function f : Rn → R,
we are led to try to solve the equation g(x) = 0, where g = ∇f : Rn → Rn.
Here, we interpret ∇f(x) as a n-column vector.
A whole world of applications in mechanics, physics and other areas may

be formulated as solving equations of the form ∇f(x) = 0, that is as finding
stationary points. We shall meet many applications below.
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217.11 The Method of Steepest Descent

Let f : Rn → R be given and consider the problem of finding a minimum
point x̄. To do so it is natural to try a method of Steepest Descent: Given
an approximation ȳ of x̄ with ∇f(ȳ) 6= 0, we move from ȳ to a new point
y in the direction of steepest descent:

y = ȳ − α
∇f(ȳ)

‖∇f(ȳ)‖ ,

where α > 0 is a step length to be chosen. We know that f(y) decreases
as α increases from 0 and the question is just to find a reasonable value
of α. This can be done by increasing α in small steps until f(y) doesn’t
decrease anymore. The procedure is then repeated with ȳ replaced by y.
Evidently, the method of Steepest Descent is closely connected to Fixed
Point Iteration for solving the equation ∇f(x) = 0 in the form

x = x− α∇f(x)

where we let α > 0 include the normalizing factor 1/‖∇f(ȳ)‖.

FIGURE 217.9. The method of Steepest Descent for
f(x1, x2) = x1 sin(x1 + x2) + x2 cos(2x1 − 3x2) starting at (.5, .5) with
α = .3.

217.12 Directional Derivatives

Consider a function f : Rn → R, let gz(t) = x̄ + tz with z ∈ Rn a given
vector normalized to ‖z‖ = 1, and consider the composite function Fz(t) =
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f(x̄+ tz). The Chain rule implies

F ′
z(0) = ∇f(x̄) · z,

and
∇f(x̄) · z

is called the derivative of f(x) in the direction z at x̄, see Fig. 217.10.

FIGURE 217.10. Illustration of directional derivative.

217.13 Higher Order Partial Derivatives

Let f : Rn → R be differentiable on Rn. Each partial derivative ∂f
∂xi

(x̄) is
a function of x̄ ∈ Rn may be itself be differentiable. We denote its partial
derivatives by

∂

∂xj

∂f

∂xi
(x̄) =

∂2f

∂xj∂xi
(x̄), i, j = 1, ..., n, x̄ ∈ Rn,

which are called the partial derivatives of f of second order at x̄. It turns out
that under appropriate continuity assumptions, the order of differentiation
does not matter. In other words, we shall prove that

∂2f

∂xj∂xi
(x̄) =

∂2f

∂xi∂xj
(x̄).

We carry out the proof in the case n = 2 with i = 1 and j = 2. We rewrite
the expression

A = f(x1, x2)− f(x̄1, x2)− f(x1, x̄2) + f(x̄1, x̄2), (217.15)
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as
A = f(x1, x2)− f(x1, x̄2)− f(x̄1, x2) + f(x̄1, x̄2), (217.16)

by shifting the order of the two mid terms. First, we set F (x1, x2) =
f(x1, x2)− f(x̄1, x2) and use (217.15) to write

A = F (x1, x2)− F (x1, x̄2).

The Mean Value theorem implies

A =
∂F

∂x2
(x1, y2)(x2 − x̄2) =

( ∂f
∂x2

(x1, y2)−
∂f

∂x2
(x̄1, y2)

)
(x2 − x̄2)

for some y2 ∈ [x̄2, x2]. We use the Mean value theorem once again to get

A =
∂2f

∂x1∂x2
(y1, y2)(x1 − x̄1)(x2 − x̄2),

with y1 ∈ [x̄1, x1]. We next rewrite A using (217.16) in the form

A = G(x1, x2)−G(x̄1, x2),

where G(x1, x2) = f(x1, x2) − f(x1, x̄2). Using the Mean Value theorem
twice as above, we obtain

A =
∂2f

∂x2∂x1
(z1, z2)(x1 − x̄1)(x2 − x̄2),

where zi ∈ [x̄i, xi], i = 1, 2. Assuming the second partial derivatives are
Lipschitz continuous at x̄ and letting xi tend to x̄i for i = 1, 2 gives

∂2f

∂x1∂x2
(x̄) =

∂2f

∂x2∂x1
(x̄).

We have proved the following fundamental result:

Theorem 217.3 If the partial derivatives of second order of a function
f : Rn → R are all Lipschitz continuous, then the order of application of
the derivatives of second order is irrelevant.

The result directly generalizes to higher order partial derivatives: if the
derivatives are Lipschitz continuous, then the order of application doesn’t
matter. What a relief!

217.14 Taylor’s Theorem

Suppose f : Rn → R has Lipschitz continuous partial derivatives of order
2. For given x, x̄ ∈ Rn, consider the function h : R → R defined by

h(t) = f(x̄+ t(x− x̄)) = f ◦ g(t),
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where g(t) = x̄ + t(x − x̄) is the straight line through x̄ and x. Clearly
h(1) = f(x) and h(0) = f(x̄), so the Taylor’s theorem applied to h(t) gives

h(1) = h(0) + h′(0) +
1

2
h′′(t̄),

for some t̄ ∈ [0, 1]. We compute using the Chain rule:

h′(t) = ∇f(g(t)) · (x− x̄) =
n∑

i=1

∂f

∂xi
(g(t))(xi − x̄i),

and similarly by a further differentiation with respect to t:

h′′(t) =
n∑

i=1

n∑

j=1

∂2f

∂xi∂xj
(g(t))(xi − x̄i)(xj − x̄j).

We thus obtain

f(x) = f(x̄)+∇f(x̄)·(x−x̄)+ 1

2

n∑

i,j=1

∂2f

∂xi∂xj
(y)(xi−x̄i)(xj−x̄j), (217.17)

for some y = x̄+ t̄(x− x̄) with t ∈ [0, 1]. The n×n matrix H(x̄) = (hij(x̄))

with elements hij(x̄) =
∂2f

∂xi∂xj
(x̄) is called the Hessian of f(x) at x = x̄.

The Hessian is the matrix of all second partial derivatives of f : Rn → R.
With matrix vector notation with x a n-column vector, we can write

n∑

i,j=1

∂2f

∂xi∂xj
(y)(xi − x̄i)(xj − x̄j) = (x− x̄)⊤H(y)(x− x̄).

We summarize:

Theorem 217.4 (Taylor’s theorem) Let f : Rn → R be twice dif-
ferentiable with Lipschitz continuous Hessian H = (hij) with elements

hij = ∂2f
∂xi∂xj

. Then, for given x and x̄ ∈ Rn, there is y = x + t̄(x − x̄)

with t̄ ∈ [0, 1], such that

f(x) = f(x̄) +∇f(x̄) · (x− x̄) +
1

2

n∑

i,j=1

∂2f

∂xi∂xj
(y)(xi − x̄i)(xj − x̄j)

= f(x̄) +∇f(x̄) · (x− x̄) +
1

2
(x− x̄)⊤H(y)(x− x̄).
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217.15 The Contraction Mapping Theorem

We shall now prove the following generalization of the Contraction Mapping
theorem.

Theorem 217.5 If g : Rn → Rn is Lipschitz continuous with Lipschitz
constant L < 1, then the equation x = g(x) has a unique solution x̄ =
limi→∞ x(i), where {x(i)}∞i=1 is a sequence in Rn generated by Fixed Point
Iteration: x(i) = g(x(i−1)), i = 1, 2, ..., starting with any initial value x(0).

The proof is word by word the same as in the case g : R → R considered in
Chapter Fixed Points and Contraction Mappings. We repeat the proof for
the convenience of the reader. Subtracting the equation x(k) = g(x(k−1))
from x(k+1) = g(x(k)), we get

x(k+1) − x(k) = g(x(k))− g(x(k−1)),

and using the Lipschitz continuity of g, we thus have

‖x(k+1) − x(k)‖ ≤ L‖x(k) − x(k−1)‖.

Repeating this estimate, we find that

‖x(k+1) − x(k)‖ ≤ Lk‖x(1) − x(0)‖,

and thus for j > i

‖x(i) − x(j)‖ ≤
j−1∑

k=i

‖x(k) − x(k+1)‖

≤ ‖x(1) − x(0)‖
j−1∑

k=i

Lk = ‖x(1) − x(0)‖Li 1− Lj−i

1− L
.

Since L < 1, {x(i)}∞i=1 is a Cauchy sequence in Rn, and therefore converges
to a limit x̄ = limi→∞ x(i). Passing to the limit in the equation x(i) =
g(x(i−1)) shows that x̄ = g(x̄) and thus x̄ is a fixed point of g : Rn → Rn.
Uniqueness follows from the fact that if ȳ = g(ȳ), then ‖x̄− ȳ‖ = ‖g(x̄)−
g(ȳ)‖ ≤ L‖x̄− ȳ‖ which is impossible unless ȳ = x̄, because L < 1.

Example 217.16. Consider the function g : R2 → R2 defined by
g(x) = (g1(x), g2(x)) with

g1(x) =
1

4 + |x1|+ |x2|
, g2(x) =

1

4 + | sin(x1)|+ | cos(x2)|
.

We have

| ∂gi
∂xj

| ≤ 1

16
,
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and thus by simple estimates

‖g(x)− g(y)‖ ≤ 1

4
‖x− y‖,

which shows that g : R2 → R2 is Lipschitz continuous with Lipschitz
constant Lg ≤ 1

4 . The equation x = g(x) thus has a unique solution.

217.16 Solving f(x) = 0 with f : Rn → Rn

The Contraction Mapping theorem can be applied as follows. Suppose f :
Rn → Rn is given and we want to solve the equation f(x) = 0. Introduce

g(x) = x−Af(x),

where A is some non-singular n×n matrix with constant coefficients to be
chosen. The equation x = g(x) is then equivalent to the equation f(x) = 0.
If g : Rn → Rn is Lipschitz continuous with Lipschitz constant L < 1, then
g(x) has a unique fixed point x̄ and thus f(x̄) = 0. We have

g′(x) = I −Af ′(x),

and thus we are led to choose the matrix A so that

‖I −Af ′(x)‖ ≤ 1

for x close to the root x̄. The ideal choice seems to be:

A = f ′(x̄)−1,

assuming that f ′(x̄) is non-singular, since then g′(x̄) = 0. In applications,
we may seek to choose A close to f ′(x̄)−1 with the hope that the cor-
responding g′(x) = I − Af ′(x) will have ‖g′x)‖ small for x close to the
root x̄, leading to a quick convergence. In Newton’s method we choose
A = f ′(x)−1, see below.

Example 217.17. Consider the initial value problem u̇(t) = f(u(t))
for t > 0, u(0) = u0, where f : Rn → Rn is a given Lipschitz continuous
function with Lipschitz constant Lf , and as usual u̇ = du

dt . Consider the
backward Euler method

U(ti) = U(ti−1) + kif(U(ti)), (217.18)

where 0 = t0 < t1 < t2.... is a sequence of increasing discrete time
levels with time steps ki = ti − ti−1. To determine U(ti) ∈ Rn satisfy-
ing (217.18) having already determined U(ti−1), we have to solve the
nonlinear system of equations

V = U(ti−1) + kif(V ) (217.19)
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in the unknown V ∈ Rn. This equation is of the form V = g(V ) with
g(V ) = U(ti−1) + kif(V ) and g : Rn → Rn.

Therefore, we use the Fixed Point Iteration

V (m) = U(ti−1) + kif(V
(m−1)), m = 1, 2, ...,

choosing say V (0) = U(ti−1) to try to solve for the new value. If Lf
denotes the Lipschitz constant of f : Rn → Rn, then

‖g(V )− g(W )‖ = ‖ki(f(V )− f(W ))‖ ≤ kiLf‖V −W‖, V,W ∈ Rn,

and thus g : Rn → Rn is Lipschitz continuous with Lipschitz constant
Lg = kiLf . Now Lg < 1 if the time step ki satisfies ki < 1/Lf and
thus the Fixed Point Iteration to determine U(ti) in (217.18) converges
if ki < 1/Lf . This gives a method for numerical solution of a very
large class of initial value problems of the form u̇(t) = f(u(t)) for t > 0,
u(0) = u0. The only restriction is to choose sufficiently small time steps,
which however can be a severe restriction if the Lipschitz constant Lf
is very large in the sense of requiring massive computational work (very
small time steps). Thus, caution for large Lipschitz constants Lf !!

217.17 The Inverse Function Theorem

Suppose f : Rn → Rn is a given function and let ȳ = f(x̄), where x̄ ∈ Rn

is given. We shall prove that if f ′(x̄) is non-singular, then for y ∈ Rn close
to ȳ, the equation

f(x) = y (217.20)

has a unique solution x. Thus, we can define x as a function of y for y close
to ȳ, which is called the inverse function x = f−1(y) of y = f(x). To show
that (217.20) has a unique solution x for any given y close to ȳ, we consider
the Fixed Point iteration for x = g(x) with g(x) = x− (f ′(x̄))−1(f(x)− y),
which has the fixed point x satisfying f(x) = y as desired. The iteration is

x(j) = x(j−1) − (f ′(x̄))−1(f(x(j−1))− y), j = 1, 2, ...,

with x(0) = x̄. To analyze the convergence, we subtract

x(j−1) = x(j−2) − (f ′(x̄))−1(f(x(j−2))− y)

and write ej = x(j) − x(j−1) to get

ej = ej−1 − (f ′(x̄))−1(f(x(j−1)− f(x(j−2)) for j = 1, 2, ...

The Mean Value theorem implies

fi(x
(j−1))− fi(x

(j−2)) = f ′(z)ej−1,
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where z lies on the straight line between x(j−1) and x(j−2). Note there
might be possibly different z for different rows of f ′(z). We conclude that

ej =
(
I − (f ′(x̄))−1f ′(z)

)
ej−1.

Assuming now that
‖I − (f ′(x̄))−1f ′(z)‖ ≤ θ, (217.21)

where θ < 1 is a positive constant, we have

‖ej‖ ≤ θ‖ej−1‖.

As in the proof of the Contraction Mapping theorem, this shows that the
sequence {x(j)}∞j=1 is a Cauchy sequence and thus converges to a vector
x ∈ Rn satisfying f(x) = y.
The condition for convergence is obviously (217.21). This condition is

satisfied if the coefficients of the Jacobian f ′(x) are Lipschitz continuous
close to x̄ and f ′(x̄) is non-singular so that (f ′(x̄))−1 exists, and we restrict
y to be sufficiently close to ȳ.
We summarize in the following (very famous):

Theorem 217.6 (Inverse Function theorem) Let f : Rn → Rn and
assume the coefficients of f ′(x) are Lipschitz continuous close to x̄ and
f ′(x̄) is non-singular. Then for y sufficiently close to ȳ = f(x̄), the equation
f(x) = y has a unique solution x. This defines x as a function x = f−1(y)
of y.

Carl Jacobi (1804-51), German mathematician, was the first to study the
role of the determinant of the Jacobian in the inverse function theorem, and
also gave important contributions to many areas of mathematics including
the budding theory of first order partial differential equations .

217.18 The Implicit Function Theorem

There is an important generalization of the Inverse Function theorem. Let
f : Rn ×Rm → Rn be a given function with value f(x, y) ∈ Rn for x ∈ Rn

and y ∈ Rm. Assume that f(x̄, ȳ) = 0 and consider the equation in x ∈ Rn,

f(x, y) = 0,

for y ∈ Rm close to ȳ. In the case of the Inverse Function theorem we
considered a special case of this situation with f : Rn × R → Rn defined
by f(x, y) = g(x)− y with g : Rn → Rn.
We define the Jacobian f ′

x(x, y) of f(x, y) with respect to x at (x, y) to
be the n× n matrix with elements

∂fi
∂xj

(x, y).
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Assuming now that f ′
x(x̄, ȳ) is non-singular, we consider the Fixed Point

iteration:
x(j) = x(j−1) − (f ′

x(x̄, ȳ))
−1f(x(j−1), y),

connected to solving the equation f(x, y) = 0. Arguing as above, we can
show this iteration generates a sequence {x(j)}j=1∞ that converges to x ∈
Rn satisfying f(x, y) = 0 assuming f ′

x(x, y) is Lipschitz continuous for x
close to x̄ and y close to ȳ. This defines x as a function g(y) of y for y close
to ȳ. We have now proved the (also very famous):

Theorem 217.7 (Implicit Function theorem) Let f : Rn ×Rm → Rn

with f(x, y) ∈ Rn and x ∈ Rn and y ∈ Rm, and assume that f(x̄, ȳ) = 0.
Assume that the Jacobian f ′

x(x, y) with respect to x is Lipschitz continuous
for x close to x̄ and y close to ȳ, and that f ′

x(x̄, ȳ) is non-singular. Then
for y close to ȳ, the equation f(x, y) = 0 has a unique solution x = g(y).
This defines x as a function g(y) of y.

217.19 Newton’s Method

We next turn to Newton’s method for solving an equation f(x) = 0 with
f : Rn → Rn, which reads:

x(i+1) = x(i) − f ′(x(i))−1f(x(i)), for i = 0, 1, 2, ..., (217.22)

where x(0) is an initial approximation. Newton’s method corresponds to
Fixed Point iteration for x = g(x) with g(x) = x − f ′(x)−1f(x). We shall
prove that Newton’s method converges quadratically close to a root x̄ when
f ′(x̄) is non-singular. The argument is the same is as in the case n = 1
considered above. Setting ei = x̄ − x(i), and using x̄ = x̄ − f ′(x(i))−1f(x̄)
if f(x̄) = 0, we have

x̄− x(i+1) = x̄− x(i) − f ′(x(i))−1(f(x̄)− f(x(i)))

= x̄− x(i) − f ′(x(i))−1(f ′(x(i)) + Ef (x
(i), x̄)) = f ′(x(i))−1Ef (x

(i), x̄).

We conclude that
‖x̄− x(i+1)‖ ≤ C‖x̄− x(i)‖2

provided
‖f ′(x(i))−1‖ ≤ C,

where C is some positive constant. We have proved the following funda-
mental result:

Theorem 217.8 (Newton’s method) If x̄ is a root of f : Rn → Rn such
that f(x) is uniformly differentiable with a Lipschitz continuous derivative
close to x̄ and f ′(x̄) is non-singular, then Newton’s method for solving
f(x) = 0 converges quadratically if started sufficiently close to x̄.
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In concrete implementations of Newton’s method we may rewrite (217.22)
as

f ′(x(i))z = −f(x(i)),
x(i+1) = x(i) + z,

where f ′(x(i))z = −f(x(i)) is a system of equations in z that is solved by
Gaussian elimination or by some iterative method.

Example 217.18. We return to the equation (217.19), that is,

h(V ) = V − kif(V )− U(ti−1) = 0.

To apply Newton’s method to solve the equation h(V ) = 0, we compute

h′(v) = I − kif
′(v),

and conclude that h′(v) will be non-singular at v, if ki < ‖f ′(v)‖−1.
We conclude that Newton’s method converges if ki is sufficiently small
and we start close to the root. Again the restriction on the time step is
connected to the Lipschitz constant Lf of f , since Lf reflects the size
of ‖f ′(v)‖.

217.20 Differentiation Under the Integral Sign

Finally, we show that if the limits of integration of an integral are indepen-
dent of a variable x1, then the operation of taking the partial derivative
with respect x1 can be moved past the integral sign. Let then f : R2 → R
be a function of two real variables x1 and x2 and consider the integral

∫ 1

0

f(x1, x2) dx2 = g(x1),

which is a function g(x1) of x1. We shall now prove that

dg

dx1
(x̄1) =

∫ 1

0

∂f

∂x1
(x̄1, x2) dx2, (217.23)

which is referred to as “differentiation under the integral sign”. The proof
starts by writing

f(x1, x2) = f(x̄1, x2) +
∂f

∂x1
(x̄1, x2)(x1 − x̄1) + Ef (x1, x̄1, x2),

where we assume that

|Ef (x1, x̄1, x2)| ≤ Kf(x̄1 − x1)
2.
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Taylor’s theorem implies this is true provided the second partial derivatives
of f are bounded. Integration with respect to x2 yields

∫ 1

0

f(x1, x2) dx2 =

∫ 1

0

f(x̄1, x2) dx2

+ (x1 − x̄1)

∫ 1

0

∂f

∂x1
(x̄1, x2) dx2 +

∫ 1

0

Ef (x1, x̄1, x2) dx2.

Since

|
∫ 1

0

Ef (x1, x̄1, x2) dx2| ≤ Kf (x̄1 − x1)
2

(217.23) follows after dividing by (x1− x̄1) and taking the limit as x1 tends
to x̄1. We summarize:

Theorem 217.9 (Differentiation under the integral sign) If the sec-
ond partial derivatives of f(x1, x2) are bounded, then for x1 ∈ R,

d

dx1

∫ 1

0

f(x1, x2) dx2 =

∫ 1

0

∂f

∂x1
(x1, x2) dx2 (217.24)

Example 217.19.

d

dx

∫ 1

0

(1 + xy2)−1 dy =

∫ 1

0

∂

∂x
(1 + xy2)−1 dy = −

∫ 1

0

y2

(1 + xy2)2
dy.

Chapter 217 Problems

217.1. Sketch the following surfaces in R3: (a) Γ = {x : x3 = x2
1 + x2

2}, (b)
Γ = {x : x3 = x2

1 − x2
2}, (c) Γ = {x : x3 = x1 + x2

2}, (d) Γ = {x : x3 = x4
1 + x6

2}.
Determine the tangent planes to the surfaces at different points.

217.2. Determine whether the following functions are Lipschitz continuous or
not on {x : |x| < 1} and determine Lipschitz constants:

• (a) f : R3 → R3 where f(x) = x|x|2,
• (b) f : R3 → R where f(x) = sin |x|2,
• (c) f : R2 → R3 where f(x) = (x1, x2, sin |x|2),
• (d) f : R3 → R where f(x) = 1/|x|,
• (e) f : R3 → R3 where f(x) = x sin(|x|), (optional)
• (f) f : R3 → R where f(x) = sin(|x|)/|x|. (optional)

217.3. For the functions in the previous exercise, determine which are contrac-
tions in {x : |x| < 1} and find their fixed points (optional).
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217.4. Linearize the following functions on R3 at x = (1, 2, 3):

• (a) f(x) = |x|2,
• (b) f(x) = sin(|x|2),
• (c) f(x) = (|x|2, sin(x2)),

• (d) f(x) = (|x|2, sin(x2), x1x2 cos(x3)).

217.5. Compute the determinant of the Jacobian of the following functions: (a)
f(x) = (x3

1 − 3x1x
2
2, 3x1x

2
2 − x3

2), (b) f(x) = (x1e
x2 cos(x3), x1e

x2 sin(x3), x1e
x2).

217.6. Compute the second order Taylor polynomials at (0, 0, 0) of the following
functions f : R3 → R: (a) f(x) =

√
1 + x1 + x2 + x3, (b) f(x) = (x1−1)x2x3, (c)

f(x) = sin(cos(x1x2x3)), (d) exp(−x2
1 − x2

2 − x2
3), (e) try to estimate the errors

in the approximations in (a)-(d).

217.7. Linearize f ◦ s, where f(x) = x1x2x3 at t = 1 with (a) s(t) = (t, t2, t3),
(b) s(t) = (cos(t), sin(t), t), (c) s(t) = (t, 1, t−1).

217.8. Evaluate
∫∞
0
yne−xy dy for x > 0 by repeated differentiation with respect

to x of
∫∞
0
e−xy dy.

217.9. Try to minimize the function u(x) = x2
1 + x2

2 + 2x2
3 by starting at x =

(1, 1, 1) using the method of steepest descent. Seek the largest step length for
which the iteration converges.

217.10. Compute the roots of the equation (x2
1 − x2

2 − 3x1 + x2 + 4, 2x1x2 −
3x2 − x1 + 3) = (0, 0) using Newton’s method.

217.11. Generalize Taylor’s theorem for a function f : Rn → R to third order.

217.12. Is the function f(x1, x2) =
x21−x

2
2

x21+x
2
2
Lipschitz continuous close to (0, 0)?

Jacobi and Euler were kindred spirits in the way they created their
mathematics. Both were prolific writers and even more prolific calcu-
lators; both drew a great deal of insight from immense algorithmical
work; both laboured in many fields of mathematics (Euler, in this
respect, greatly surpassed Jacobi) ; and both at any moment could
draw from the vast armoury of mathematical methods just those
weapons which would promise the best results in the attack of a
given problem. (Sciba)
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218
Level Curves/Surfaces and the
Gradient

It would make no sense to overload the student with all kinds of
little things that might be of occasional use. Instead, it is important
that students become familiar with ways to think mathematically,
recognize the need for applying mathematical methods to engineering
problems, realize that mathematics is a systematic science built on
relatively few principles and get a firm grasp for the interrelation
between theory, computing and experiment. (E. Kreyszig, in Preface
to Advanced Engineering Mathematics, 1993)

218.1 Level Curves

A level curve of a function u : R2 → R is a curve g : [a, b] → R2 such that

u(g(t)) = c for t ∈ [a, b], (218.1)

where c is a constant. A level curve is also called an isoline. The points
x on a level curve x = g(t) satisfying (218.1), all have the same function
value u(x) = u(g(t)) = c. By plotting the level curves or isolines for a
collection of different constants c, we get a level curve plot or contour plot
of the function u(x). The level curves are the projections onto R2 of the
intersections of the planes x3 = c in R3 with the graph {x ∈ R2 : x3 =
u(x1, x2), (x1, x2) ∈ R2}. We illustrate in Fig. 218.2.

Example 218.1. The level curves of the function u(x) = x21 + x22 are
the circles x21 + x22 = c with c ≥ 0 a constant. The level curves of the
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FIGURE 218.1. Projection onto R2 of the intersection of x3 = c and x3 = u(x1, x2

(with u(x1, x2) = 1− exp(−x2
1 − x2

2) and c = .5) gives a level curve.
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FIGURE 218.2. A plot of a surface and the corresponding contour plot with
contour curves shown every .7 units starting at the maximum height of 4.

function u(x) = 2x21 + x22 are the ellipses 2x21 + x22 = c with c ≥ 0. The
level curves of the function u(x) = x21−x2 are the parabolas x2 = x21−c
with c a constant.

Example 218.2. A hiking map indicates the level curves of the func-
tion u : R2 → R that gives the height of a point x ∈ R2 above a
reference level, like the see level. The difference in height between two
nearby level curves is typically 10 meters. The change in height between
two points can be obtained by counting the number of contour lines in-
tersected by a line joining the two points. This is useful when planning
a hiking trip. Recall Fig. 217.8

A level curve u(g(t)) = c may be thought of as the shore-lines with the
sea level equal to c above the reference level.
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218.2 Local Existence of Level Curves

The local existence of level curves follows from the following special case of
the Implicit Function theorem, where the level curve is given by t→ (t, g(t))
or t→ (g(t), t), where g : R → R.

Theorem 218.1 Assume u : R2 → R has continuous partial derivatives
and u(x̄1, x̄2) = c. If ∂u

∂x2
(x̄1, x̄2) 6= 0, then there is a δ > 0 such that

u(x1, x2) = c has a unique solution x2 = g(x1) for |x1 − x̄1| < δ. If
∂u
∂x1

(x̄1, x̄2) 6= 0, then there is a δ > 0 such that u(x1, x2) = c has a unique
solution x1 = g(x2) for |x2 − x̄2| < δ.

Notice that if ∂u
∂x2

(x̄1, x̄2) = 0, then the level curve is parallel to the
x2-axis, and thus we cannot expect the equation u(x1, x2) = c to define x2
as a function of x1 (a corresponding function x2 = g(x1) would then have
infinite slope at x1 = x̄1).

x1

x2

u(x, y) = x2 + y2 = 1

x2 = g(x1) =
√

1− x2
1

FIGURE 218.3. x2 = −
√

1− x2
1 giving one piece of the level curve

u(x1, x2) = x2
1 + x2

2 = 1.

218.3 Level Curves and the Gradient

Differentiating both sides of (218.1), we get using the Chain rule

d

dt
u(g(t)) = ∇u(x) · g′(t) = ∂u

∂x1
(g(t))g′1(t) +

∂u

∂x2
(g(t))g′2(t) = 0.

Since g′(t) = (g′1(t), g
′
2(t)) is the direction of the tangent of the curve g(t),

this means that the direction g′(t) of a level curve of a function u : R2 → R
is orthogonal to the gradient ∇u(g(t)). Recall that the gradient ∇u(x)
points in the direction of the steepest ascent of the function u(x) at x,
and the direction perpendicular to the gradient (the direction of the level
curve) is a direction in which u stays constant, see Fig. 218.4. Moving along
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a level curve the function stays constant, and moving in the direction of
the gradient the function increases as quickly as possible!
Since the gradient ∇(x̄) is a normal to the tangent to the level curve

through x̄, we can write the equation for the tangent to the level curve
through x̄ in the form ∇u(x̄) · (x− x̄) = 0.

x1

x2

u = c

u < c

u > c

∇u

FIGURE 218.4. The gradient of ∇u(x) of a function u : R2 → R is orthogonal to
the level curve of u through x.

We summarize:

Theorem 218.2 The gradient ∇u(g(t)) of a function u : R2 → R is or-
thogonal to the tangent g′(t) of a level curve g : I → R. We can write the
equation for the tangent to the level curve through x̄ in the form ∇u(x̄) ·
(x− x̄) = 0.

Example 218.3. Consider the function u(x1, x2) = x21 + x22 with cir-
cular level curves g(t) = (g1(t), g2(t)) satisfying g

2
1(t) + g22(t) = c2. We

have ∇u(x) = (2x1, 2x2) and differentiating g21(t) + g22(t) = c2 with
respect to t we get 0 = 2g1(t)g

′
1(t) + 2g2(t)g

′
2(t) = ∇u(g(t)) · g′(t)

as expected. Alternatively, parameterizing a level curve g(t) satisfy-
ing g21(t) + g22(t) = c2 by g(t) = c(cos(t), sin(t)), we have g′(t) =
c(− sin(t), cos(t)) = (−x2(t), x1(t)) with x = g(t). We check that
∇u(g(t)) · g′(t) = 2(x1(t), x2(t)) × (−x2(t), x1(t)) = 0.

Example 218.4. If u : R2 → R is of the form u(x1, x2) = f(x1)− x2,
where f : R → R, then ∇u(x) = (f ′(x1),−1). A level curve u(g(t)) = c
can be parameterized by g(t) = (t, f(t) − c), and g′(t) = (1, f ′(t)).
Clearly, ∇u(g(t)) · g′(t) = (f ′(t),−1) · (1, f ′(t)) = 0.
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218.4 Level Surfaces

A level surface of a function u : R3 → R is a surface g : Q → R3, where Q
is a subset of R2, such that

u(g(y)) = c for y ∈ Q, (218.2)

where c is a constant. A level surface is also called an isosurface. The points
on a level surface g(t) satisfying (218.1) all have the same function value
u(g(y)) = c.
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1

FIGURE 218.5. A piece of the level surface u(x1, x2, x3) = x2
1 + x2

3 = 1.

218.5 Local Existence of Level Surfaces

The local existence of level surfaces follows from the following special case
of the Implicit Function theorem. We find that the level surface is param-
eterized as g(y1, y2) = (y1, y2, f(y1, y2)), g(y1, y3) = (y1, f(y1, y2), y3) or
g(y2, y3) = (f(y2, y3), y2, y3) with some function f : R2 → R, depending on
which partial derivative is non-zero.

Theorem 218.3 Assume u : R3 → R has continuous partial derivatives
and u(x̄1, x̄2, x̄3) = c, where c is a constant. If ∂u/∂x3 6= 0, then there is
a δ > 0 such that u(x1, x2, x3) = c has a unique solution x3 = f(x1, x2)
for ‖(x1, x2) − (x̄1, x̄2)‖ < δ. If ∂u/∂x2 6= 0, then there is a δ > 0 such
that u(x1, x2, x3) = c has a unique solution x2 = g(x1, x3) for ‖(x1, x3) −
(x̄1, x̄3)‖ < δ. If ∂u/∂x1 6= 0, then there is a δ > 0 such that u(x1, x2, x3) =
c has a unique solution x1 = g(x2, x3) for ‖(x2, x3)− (x̄2, x̄3)‖ < δ.
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218.6 Level Surfaces and the Gradient

Differentiating both sides of (218.2) with respect to y1 and y2, where y =
(y1, y2), we get using the Chain rule

∂

∂yi
u(g(y)) = ∇u(g(y)) · g′,i(y) = 0, i = 1, 2,

where we use the notation

g′,i(y) =
∂

∂yi
g(y).

We use the comma in g′,i to indicate differentiation with respect to xi,
while gi will denote component i of g = (g1, g2, g3). We recall that the
tangent plane (linearization) of g(y) at x̄ = g(ȳ) is given by (y1, y2) →
g(ȳ) + (y1 − ȳ1)g

′
,1(ȳ) + (y2 − ȳ2)g

′
,2(ȳ), and we conclude that ∇u(g(ȳ))

is orthogonal to the tangent plane of the level surface through x̄ = g(ȳ).
We say that ∇u(g(ȳ)) is orthogonal to the level surface u(x) = c through
x̄ = g(ȳ), or that ∇u(g(ȳ)) is a normal to the level surface u(x) = c at
x̄ = g(ȳ), see Fig. 218.6. Since ∇u(x̄) thus is a normal to the tangent plane
at x, the equation for the tangent plane to a level surface through x̄ can
also be written ∇u(x̄) · (x− x̄) = 0.
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grad u 
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ds 
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1 

FIGURE 218.6. The gradient ∇u(x) = (2x1,−1, 2x3) of
u(x1, x2, x3) = x2

1 + x2
3 − x2 is orthogonal to a level surface

(x1, x3) → g(x1, x3) = (x1, x
2
1 + x2

3 + c, x3) since g′1 = (1, 2x1, 0) and
g′3 = (0, 2x3, 1).

We summarize:

Theorem 218.4 The gradient ∇u(x̄) of a function u : R3 → R, is orthog-
onal to the tangent plane (y1, y2) → g(ȳ)+(y1− ȳ1)g′,1(ȳ)+(y2− ȳ2)g′,2(ȳ) of
a level surface y → x = g(y), where x̄ = g(ȳ). The equation for the tangent
plane of a level surface through x̄ can also be written ∇u(x̄) · (x− x̄) = 0.

Example 218.5. Consider the function u(x) = x21 + x22 + x23 with the
level surfaces g(y) satisfying g21(y) + g22(y) + s23(y) = c2 representing
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spheres centered at the origin with radii c. The gradient ∇(x) = 2x is
evidently orthogonal to a tangent plane of a level surface at x.

Example 218.6. If u : R3 → R is of the form u(x1, x2, x3) = f(x1, x2)−
x3, where f : R → R, then∇u(x) = (f ′

,1(x1, x2), f
′
,2(x1, x2),−1). A level

surface u(g(y)) = c can be parameterized by g(y) = (y1, y2, f(y1, y2)−
c), and g′1(y) = (1, 0, f ′

,1(y)) and g
′
2(y) = (0, 1, f ′

,2(y)). Clearly,∇u(g(y))·
g′,i(y) = 0 for i = 1, 2.

Chapter 218 Problems

218.1. Sketch the following surfaces in R3: (a) Γ = {x : x2
1 + x2

2 = x3}, (b) Γ =
{x : x2

1+x
2
2 = x2

3}, (c) Γ = {x : x2
1+x

2
2 = −x2

3}, (d) Γ = {x : x2
1+2x2

2+3x2
3 = 6}.

Determine the tangent planes to the surfaces at various points.

218.2. Find parametrization of the curves for the intersections of the surfaces
in the previous exercise with the plane x3 = 1.

218.3. Show that the surface Γ = {x : x2
1 + 2x2

2 + 3x2
3 + x1x

3
3 = 7} can be

expressed in the form x3 = g(x1, x2) close to (1, 1, 1).

218.4. Compute the gradients of the following functions f : R3 → R: (a) f(x) =
xn1 (x

n
2 + xn3 ), (b) f(x) = |x|, (c) f(x) = |x|2, (d) f(x) = 1/|x|, (e) f(x) =

exp(x1x2x3).

218.5. For each of the functions in the previous exercise, determine the equation
for the tangent plane to the level surface f(x) = f(1, 1, 1) at x = (1, 1, 1).

218.6. Determine the equation for the tangent plane at x = (1, 2, 3) for the
following surfaces: (a) x3 = 3

2
x1x2, (b) x

2
1 + x2

2 + x2
3 = 14, (c) x2 = sin(2πx1) +

2 cos(2πx3).

218.7. Determine the tangent plane and normal vector to the ellipse x2
1+3x2

2 =
10 at x = (1,

√
3).

218.8. Let f : Q→ R, where Q = [0, 1]×[0, 1] is the unit square, satisfy f(x) = 0
for x on the boundary of Q. Prove under convenient assumptions that there is a
point y ∈ Q such that ∇f(y) = 0.
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219
Linearization and Stability of Initial
Value Problems

The logos of somewome to that base anything, when most character-
istically mantissa minus, comes to nullum in the endth: orso, here is
nowet badder than the sin of Aha with his cosin Lil, verswaysed on
coversvised, and all that’s consecants and cotangincies... (Finnegans
Wake, James Joyce)

219.1 Introduction

We continue the study of the general initial value problem (212.1), now
focussing on the stability of solutions, which is a measure of the sensitivity of
solutions to perturbations in given data. This is a fundamentally important
aspect of the behavior of solutions, which we touched upon in Chapter The
general initial value problem, and which we now consider more closely.
We consider an autonomous problem of the form

u̇(t) = f(u(t)) for 0 < t ≤ T, u(0) = u0, (219.1)

where f : Rd → Rd is a given bounded Lipschitz continuous function,
u0 ∈ Rd is a given initial value, and we seek a solution u : [0, T ] → Rd,
where we think of [0, T ] as a given time interval. To study the stability of
a given solution u(t) to small perturbations in given data, e.g. in the given
initial data u0, we will consider an associated linearized problem that arises
upon linearizing the function v → f(v) around the solution u(t).
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219.2 Stationary Solutions

We consider first the simplest case of a stationary solution u(t) = ū for 0 ≤
t ≤ T , that is a solution u(t) of (219.1) that is independent of time t. Since
u̇(t) = 0 if u(t) is independent of time, u(t) = ū is a stationary solution if
f(ū) = 0 and u0 = ū, where ū = (ū1, ..., ūd) ∈ Rd. The equation f(ū) = 0
corresponds to a system of d equations fi(ū1, ..., ūd) = 0, i = 1, ..., d, in
d unknowns ū1, ..., ūd, where the fi are the components of f . We studied
such systems of equations in Chapter Vector-valued functions of several real
variables. Here, we assume the existence of a stationary solution u(t) = ū
so that ū ∈ Rd satisfies the equation f(ū) = 0. In general, there may be
several roots ū of the equation f(v) = 0 and thus there may be several
stationary solutions. We also refer to a stationary solution u(t) = ū as an
equilibrium solution.

Example 219.1. The stationary solutions ū of the Crash model
{
u̇1 + νu1 − κu1u2 = ν t > 0,

u̇2 + 2νu2 − νu2u1 = 0 t > 0,
(219.2)

of the form u̇ = f(u) with f(u) = (−νu1 + κu1u2 + ν,−2νu2 + νu2u1),
are ū = (1, 0) and ū = (2, νκ ).

219.3 Linearization at a Stationary Solution

We shall now study perturbations of a given stationary solution under
small perturbations of initial data. We thus assume f(ū) = 0 and denote
the corresponding equilibrium solution by ū(t) for t > 0, that is ū(t) = ū for
t > 0. We consider the initial value problem (219.1) with u0 = ū+ϕ0, where
ϕ0 ∈ Rd is a given small perturbation of the initial data ū. We denote the
corresponding solution by u(t) and focus attention on the corresponding
perturbation in the solution, that is ψ(t) = u(t)− ū(t) = u(t)− ū. We want
to derive a differential equation for the perturbation ψ(t), and to this end
we linearize f at ū and write

f(u(t)) = f(ū+ ψ(t)) = f(ū) + f ′(ū)ψ(t) + e(t),

where f ′(ū) is the Jacobian of f : Rd → Rd at ū and the error term e(t) is
quadratic in ψ(t) (and thus is very small if ψ(t) is small). Since f(ū) = 0
and u(t) satisfies (219.1), we have

ψ̇(t) =
d

dt
(ū+ ψ(t))) = f(u(t)) = f ′(ū)ψ(t) + e(t).

Neglecting the quadratic term e(t), we are led to a linear initial value
problem,

ϕ̇(t) = f ′(ū)ϕ(t) for t > 0, ϕ(0) = ϕ0, (219.3)
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where ϕ(t) is an approximation of the perturbation ψ(t) = u(t)− ū up to a
second order term. We refer to (219.3) as the linearized problem associated
to the stationary solution ū of (219.1). Since f ′(ū) is a constant d×dmatrix,
we can express the solution to (219.3) using the matrix exponential as

ϕ(t) = exp(tA)ϕ0 for 0 < t ≤ T, (219.4)

where A = f ′(ū). We thus have a formula that describes the evolution of
perturbation ϕ(t) starting from an initial perturbation ϕ(0) = ϕ0. Depend-
ing on the nature of the matrix exp(tA), the perturbation may increase or
decrease with time, reflecting a stronger or lesser sensitivity of the solution
u(t) to perturbations in initial data and therefore different stability features
of the given problem.
We know that if A is diagonalizable, so that A = BΛB−1 where B is a

non-singular d× d matrix and Λ is a diagonal matrix with the eigenvalues
λ1, ..., λd of A on the diagonal, then

ϕ(t) = B exp(tΛ)B−1ϕ0 for t ≥ 0. (219.5)

We see that each component of ϕ(t) is a linear combination of exp(tλ1),...,
exp(tλd) and the sign of the real part Re λi of λi determines if the corre-
sponding term grows or decays exponentially. If some Re λi > 0, then we
have exponential growth of certain perturbations, which indicates that the
corresponding stationary solution ū is unstable. On the other hand, if all
Re λi ≤ 0, then we would expect ū to be stable.
These considerations are qualitative in nature, and to be more precise we

should base judgements of stability or instability on quantitative estimates
of perturbation growth. In the diagonalizable case, (219.5) implies in the
Euclidean vector and matrix norms that

‖ϕ(t)‖ ≤ ‖B‖‖B−1‖ max
i=1,...,d

exp(tλi)‖ϕ0‖. (219.6)

We see that the maximal perturbation growth is governed by the maximal
exponential factors exp(tλi) as well as the factors ‖B‖ and ‖B−1‖ related to
the transformation matrix B. If the transformation matrix B is orthogonal,
then ‖B‖ = ‖B−1‖ = 1, and the perturbation growth is governed solely by
the exponential factors exp(tλi). We give this case special attention:

219.4 Stability Analysis when f ′(ū) Is Symmetric

If A = f ′(ū) is symmetric so that A = QΛQ−1 with Q orthogonal and Λ a
diagonal matrix with real diagonal elements λi, then

‖ϕ(t)‖ ≤ max
i=1,...,d

exp(tλi)‖ϕ0‖. (219.7)
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In particular, if all eigenvalues λi ≤ 0 then perturbations ϕ(t) cannot grow
with time, and we say that the solution ū is stable. On the other hand,
if some eigenvalue λi > 0 and the corresponding eigenvector is gi then
ϕ(t) = exp(tλi)gi solves the linearized initial value problem (219.3) with
ϕ0 = gi, and evidently the particular perturbation ϕ(t) grows exponentially.
We then say that the solution ū is unstable. Of course, the size of the positive
eigenvalues influence the perturbation growth, so that if λi > 0 is small,
then then growth is slow and the instability is mild. Likewise, if λi is small
negative, then the exponential decay is slow.

219.5 Stability Factors

We may express the stability features of a particular perturbation ϕ0

through a stability factor S(T, ϕ0) defined as follows:

S(T, ϕ0) = max
0≤t≤T

‖ϕ(t)‖
‖ϕ0‖ .

where ϕ(t) solves the linearized problem (219.3) with initial data ϕ0. The
stability factor S(T, ϕ0) measures the maximal growth of the norm of ϕ(t)
over the time interval [0, T ] versus the norm of the initial value ϕ0.
We can now seek to capture the overall stability features of a stationary

solution ū by maximization over all different perturbations:

S(T ) = max
ϕ0 6=0

S(T, ϕ0).

If the stability factor S(T ) is large, then some perturbations grow very
much over the time interval [0, T ], which indicates a strong sensitivity to
perturbations or instability. On the other hand, if S(T ) is of moderate size
then the perturbation growth is moderate, which signifies stability. Using
the Euclidean matrix norm, we can also express S(T ) as

S(T ) = max
0≤t≤T

‖ exp(tA)‖.

Example 219.2. If A = f ′(ū) is symmetric with eigenvalues λ1, ..., λd,
then

S(T ) = max
i=1,...,d

max
0≤t≤T

exp(tλi).

In particular, if all λi ≤ 0, then S(T ) = 1.

Example 219.3.

The initial value problem for a pendulum takes the form

u̇1 = u2, u̇2 = − sin(u1) for t > 0,

u1(0) = u01, u2(0) = u02,
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corresponding to f(u) = (u2,− sin(u1) and the equilibrium solutions
are ū = (0, 0) and ū = (π, 0). We have

f ′(ū) =

(
0 1

− cos(ū1) 0

)
,

and the linearized problem at ū = (0, 0) thus takes the form

ϕ̇(t) =

(
0 1
−1 0

)
ϕ(t) ≡ A0ϕ(t) for t > 0, ϕ(0) = ϕ0,

with solution

ϕ1(t) = ϕ0
1 cos(t) + ϕ0

2 sin(t), ϕ2(t) = −ϕ0
1 sin(t) + ϕ0

2 cos(t).

It follows by a direct computation (or using that

(
cos(t) sin(t)
− sin(t) cos(t)

)
is

an orthogonal matrix), that for t > 0

‖ϕ(t)‖2 = ‖ϕ0‖2,

and thus the norm ‖ϕ(t)‖ of a solution ϕ(t) of the linearized equations
is constant in time, which means that the stability factor S(T ) = 1
for all T > 0. We conclude that if the norm of a perturbation is small
initially, it will stay small for all time. This means that the equilibrium
solution ū = (0, 0) is stable. More precisely, if the pendulum is perturbed
initially a little from its bottom position, the pendulum will oscillate
back and forth around the bottom position with constant amplitude.
This fits our direct experimental experience of course.

Note that the linearized operator A0 is non-symmetric; the eigenvalues
of A0 are purely imaginary ±i, which says that ‖ϕ(t)‖ = ‖ϕ0‖, that
is a perturbation neither grows nor decays. Another way to derive this
fact is to use the fact that A0 is antisymmetric, that is A⊤

0 = −A0,
which shows that (A0ϕ, ϕ) = (ϕ,A⊤

0 ϕ) = −(ϕ,A0ϕ) = −(A0ϕ, ϕ), and
thus (A0ϕ, ϕ) = 0, where (·, ·) is the R2 scalar product. It follows from
the equation ϕ̇ = A0ϕ upon multiplication by ϕ that 0 = (ϕ̇, ϕ) =
1
2
d
dt (ϕ, ϕ) =

1
2
d
dt‖ϕ‖2, which proves that ‖ϕ(t)‖2 = ‖ϕ0‖2.

The linearized problem at ū = (π, 0) reads

ϕ̇(t) =

(
0 1
1 0

)
ϕ(t) ≡ Aπϕ(t) for t > 0, ϕ(0) = ϕ0,

with symmetric matrix Aπ with eigenvalues ±1. Since one eigenvalue is
positive, the stationary solution ū = (π, 0) is unstable. More precisely,
the solution is given by

ϕ1 =
ϕ0
1

2
(et+ e−t) +

ϕ0
2

2
(et− e−t), ϕ2 =

ϕ0
1

2
(et− e−t)+

ϕ0
2

2
(et+ e−t),
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and due to the exponential factor et, perturbations will grow exponen-
tially in time, and thus an initially small perturbation will become large
as soon as t ≥ 10 say. Physically, this means that if the pendulum is
perturbed initially a little from its top position, the pendulum will even-
tually move away from the top position, even if the initial perturbation
is very small. This fact of course has direct experimental evidence: to
balance a pendulum with the weight in the top position is tricky busi-
ness. Small perturbations quickly grow to large perturbations and the
equilibrium solution (π, 0) of the pendulum is unstable.

Example 219.4. The linearization of the Crash model (219.2) at the
equilibrium solution ū = (1, 0), takes the form

ϕ̇(t) =

(
−ν κ
0 −ν

)
ϕ(t) ≡ Aν,κϕ(t) for t > 0, ϕ(0) = ϕ0, (219.8)

The solution is given by ϕ2(t) = ϕ0
2 exp(−νt), and ϕ1(t) =

tκ exp(−νt)ϕ0
2 + exp(−νt)ϕ0

1. Clearly, ϕ2(t) decays monotonically to
zero and so does ϕ1(t) if κ = 0. But, if κ 6= 0 then ϕ1(t) reaches the
following value, assuming for simplicity that ϕ01 = 0,

ϕ1(ν
−1) = ν−1κ exp(−1)ϕ0

2,

which contains the factor ν−1 that is large if ν is small. In other words,
the stability factor S(ν−1) ∼ ν−1, which is large if ν is small. Eventu-
ally, however, ϕ1(t) decays to zero. As a result, the equilibrium solution
(1, 0) is stable only to small perturbations, since we saw in the Chapter
The Crash model that (1, 0) is unstable to perturbations above a certain
threshold depending on λ. Note that here the Jacobian f ′(ū) = Aν,κ
has a double eigenvalue −ν, but Aν,κ is non-symmetric and the space
of eigenvectors is one-dimensional and is spanned by (1, 0). As a result,
the term tκ exp(−νt)ϕ0

2 with linear growth in t appears; thus in this
highly non-symmetric problem (if ν is small), large perturbation growth
∼ ν−1 is possible although all eigenvalues are non-positive.

The matrix Aν,κ is an example of a non-normal matrix. A non-normal
matrix A is a matrix such that A⊤A 6= AA⊤. A non-normal matrix may
or may not be diagonalizable, and if diagonalizable so that A = BΛB−1,
we may have ‖B‖ or ‖B−1 large, resulting in large stability factors in the
corresponding linearized problem, as we just saw (cf. Problem 219.5).

The linearization at the equilibrium solution ū = (2, νκ ) takes the form

ϕ̇(t) =

(
0 2κ
ν2

κ 0

)
ϕ(t) for t > 0, ϕ(0) = ϕ0. (219.9)

The eigenvalues of the Jacobian are ±
√
2ν and the solution is a linear

combination of exp(
√
2νt) and exp(−

√
2νt) and thus has one expo-

nentially growing part with growth factor exp(
√
2νt). The equilibrium

solution u = (2, νκ ) is thus unstable.
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219.6 Stability of Time-Dependent Solutions

We now seek to extend the scope to linearization and linearized stability
for a time-dependent solution ū(t) of (219.1). We want to study solutions of
the form u(t) = ū(t)+ψ(t), where ψ(t) is a perturbation. Using d

dt ū = f(ū)
and linearizing f at ū(t), we obtain

d

dt
(ū+ ψ)(t) = f(ū(t)) + f ′(ū(t))ψ(t) + e(t),

with e(t) quadratic in ψ(t). This leads to the linearized equation

ϕ̇(t) = A(t)ϕ(t) for t > 0, ϕ(0) = ϕ0, (219.10)

where A(t) = f ′(ū(t)) is an d × d matrix that now depends on t if ū(t)
depends on t. We have no analytical solution formula to this general prob-
lem and thus although the stability properties of the given solution ū(t)
are expressed through the solutions ϕ(t) of the linearized problem (219.10),
it may be difficult to analytically assess these properties. We may define
stability factors S(T, ϕ0) and S(T ) just as above, and we may say that a
solution ū(t) is stable if S(T ) is moderately large, and unstable if S(T ) is
large. To determine S(T ) in general, we have to use numerical methods and
solve (219.10) with different initial data ϕ0. We return to the computation
of stability factors in the next chapter on adaptive solvers for initial value
problems.

219.7 Sum Up

The question of stability of solutions to initial value problems is of fun-
damental importance. We can give an affirmative answer in the case of a
stationary solution with corresponding symmetric Jacobian. In this case a
positive eigenvalue signifies instability, with the instability increasing with
increasing eigenvalue, and all eigenvalues non-positive means stability. The
case of an anti-symmetric Jacobian also signifies stability with the norm of
perturbations being constant in time. If the Jacobian is non-normal we have
to watch out and remember that just looking at the sign of the real part
of eigenvalues may be misleading: in the non-normal case algebraic growth
may in fact dominate slow exponential decay for finite time. In these cases
and also for time-dependent solutions, an analytical stability analysis may
be out of reach and the desired information about stability may be obtained
by numerical solution of the associated linearized problem.
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Chapter 219 Problems

219.1. Determine the stationary solutions to the system

u̇1 = u2(1− u2
1),

u̇2 = 2− u1u2,

and study the stability of these solutions.

219.2. Determine the stationary solutions to the following system (Minea’s
equation) for different values of δ > 0 and γ,

u̇1 = −u1 − δ(u2
2 + u2

3) + γ,

u̇2 = −u2 − δu1u2,

u̇3 = −u3 − δu1u3,

and study the stability of these solutions.

219.3. Determine the stationary solutions of the system (219.1) with (a) f(u) =
(u1(1−u2), u2(1−u1)), (b) f(u) = (−2(u1−10)+u2 exp(u1),−2u2−u2 exp(u1)),
(c) f(u) = (u1 +u1u

2
2 +u1u

2
3,−u1+u2−u2u3+u1u2u3, u2 +u3−u2

1), and study
the stability of these solutions.

219.4. Determine the stationary solutions of the system (219.1) with (219.1)
with (a) f(u) = (−1001u1 + 999u2, 999u1 − 1001u2), (b) f(u) = (−u1 + 3u2 +
5u3,−4u2 +6u3, u3), (c) f(u) = (u2,−u1 − 4u2), and study the stability of these
solutions.

219.5. Analyze the stability of the following variant of the linearized problem
(219.8) with ǫ > 0 small,

ϕ̇(t) =

(
−ν κ
ǫ −ν

)
ϕ(t) ≡ Aν,κ,ǫϕ(t) for t > 0, ϕ(0) = ϕ0, (219.11)

by diagonalizing the matrix ≡ Aν,κ,ǫ. Note that the diagonalization degenerates
as ǫ tends to zero (that is, the two eigenvectors become parallel). Check if Aν,κ,ǫ
is a normal or non-normal matrix.
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220
Adaptive Solvers for IVPs

On two occasions I have been asked (by members of Parliament),
“Pray, Mr Babbage, if you put into the machine wrong figures, will
the right answer come out?”. I am not able rightly to apprehend
the kind of confusion of ideas that could provoke such a question.
(Babbage (1792-1871))

220.1 Introduction

In this chapter, we discuss the important issue of adaptive error control for
numerical methods for initial value problems. This is the subject of auto-
mated choice of the time step with the purpose of controlling the numerical
error to within a given tolerance level. The basic idea is to combine feed-back
information from the computation concerning the residual of the computed
solution and the results of auxiliary computations of stability factors. We
focus first on on the cG(1) method and then comment on the backward Eu-
ler method, also referred to as dG(0), the discontinuous Galerkin method
with piecewise constants.
We also discuss the application of cG(1) and dG(0) to a class of so-called

stiff IVPs typically arising in chemical reaction modeling.
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220.2 The cG(1) Method

We recall that cG(1), the continuous Galerkin method with polynomials of
order 1, for the initial value problem u̇(t) = f(u(t)) for t > 0, u(0) = u0,
with f : Rd → Rd, takes the form

U(tn) = U(tn−1) +

∫ tn

tn−1

f(U(t)) dt, n = 1, 2, ..., (220.1)

where U(t) is continuous piecewise linear with nodal values U(tn) ∈ Rd at
an increasing sequence of discrete time levels 0 = t0 < t1 < ..., and U(0) =
u0. If we evaluate the integral in (220.1) with the midpoint quadrature rule,
we obtain the Midpoint method:

U(tn) = U(tn−1) + knf

(
U(tn) + U(tn−1)

2

)
, n = 1, 2, ..., (220.2)

where kn = tn − tn−1 is the time step. The cG(1)-method is the first in
a family of cG(q)-methods with q = 1, 2, ...,, where the solution is ap-
proximated by continuous piecewise polynomials of order q. The Galerkin
“orthogonality” of cG(1) is expressed by the fact that the method can be
formulated

∫ tn

tn−1

(U̇(t)− f(U(t))) · v dt = 0, n = 1, 2, ..., (220.3)

for all v ∈ Rd. This says that the residual

R(U(t) = U̇(t)− f(U(t)), t ∈ [0, T ], (220.4)

of the continuous piecewise linear approximate solution U(t) is orthogonal
to the constant functions v(t) = v ∈ Rd on each subinterval (tn−1, tn). The
residual u̇(t) − f(u(t)) of the exact solution is zero since u̇(t) = f(u(t)),
while the residual of R(U(t)) of the approximate solution U(t) is non-zero
in general. Similarly, in cG(q) the residual is orthogonal on (tn−1, tn) to
polynomials of degree q − 1. Note that (220.1) is a vector equation that
reads

Ui(tn) = Ui(tn−1) +

∫ tn

tn−1

fi(U(t)) dt, n = 1, 2, ..., i = 1, ..., d,

as can be seen from (220.3) upon setting v = ei, i = 1, ..., d.
We will now study the problem of automatic step-size control with the

purpose of keeping the error

‖u(T )− U(T )‖ ≤ TOL,
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where T = tN is a final time and TOL is a given tolerance, while using
as few time steps as possible. The objective is the same as that of com-
puting an integral over an interval [0, T ] using numerical quadrature to a
certain tolerance using as few quadrature points as possible. This is ex-
actly the problem we meet in the case of a scalar initial value problem
u̇(t) = f(u(t), t) with f(u(t), t) = f(t).
We shall derive an a posteriori error estimate in which the final error

‖u(T )−U(T )‖ is estimated in terms of the residual R(U(t) = U̇(t)−f(U(t))
and certain stability factors that measure the accumulation of the numerical
errors introduced in each time step.
The a posteriori error estimate takes the form

‖u(T )− U(T )‖ ≤ Sc(T ) max
0≤t≤T

‖k(t)R(U(t)‖, (220.5)

where k(t) = kn = tn− tn−1 for t ∈ [tn−1, tn) and where the stability factor
Sc(T ) is defined as follows. We consider the linearized problem

− ϕ̇(t) = A⊤(t)ϕ(t) for 0 < t < T, ϕ(T ) = ϕ0, (220.6)

where

A(t) =

∫ 1

0

f ′(su(t) + (1 − s)U(t)) ds.

We note that replacing u(t) by U(t) gives the following approximate formula
for A(t),

A(t) ≈ f ′(U(t)),

assuming U(t) is close to u(t). We conclude that A(t) is close to the Jaco-
bian f ′(u(t)) of f(v) at v = u(t) if U(t) is a reasonable approximation of
u(t) Note that the dual A⊤(t) of A(t) occurs in (220.6). Note further that
the linearized dual problem (220.6) runs backward in time since the initial
value ϕ(T ) = ϕ0 is specified at time t = T . We are now ready to introduce
the following stability factors:

Sd(T ) = max
ϕ0∈Rd

‖ϕ(t)‖
‖ϕ0‖ ,

Sc(T ) = max
ϕ0∈Rd

∫ t
0 ‖ϕ̇(s)‖ ds

‖ϕ0‖ ,

(220.7)

where ϕ solves (220.6). We note that the stability factors measure different
features of the the dual solution ϕ. The stability factor Sd(t) measures the
maximal perturbation growth over the time interval [0, T ]. We met this
factor in the previous chapter. We shall see that this factor is tailored to
measure the effect of an error in the initial data u0 and the “d” in Sd
refers to “data”. The stability factor Sc(t) measures the integral of ‖ϕ̇‖
over [0, T ] and is geared to evaluate the error in cG(1) and the “c” in Sc
refers to “computation”.
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We shall give the proof of (220.5) below, first in a very simple case with
n = 1 and f(u(t)) = au(t) with a a constant and then in the general case.
The proofs are very similar. Before plunging into the proofs, we shall try to
digest the a posteriori error estimate, and see how it can be used to design
an adaptive algorithm aiming at controlling the final error ‖u(T )− U(T )‖
on a given tolerance level with as few time steps as possible.
The stability factors Sc(T ) and Sd(T ) can be computed by numerically

solving the linearized dual problem (220.6) with ϕ0 = ei for i = 1, ..., d. If d
is large, then we may reduce the variation of the initial data by limiting the
error control to certain components only, or by trying to choose ϕ0 parallel
to u(T )−U(T ), which we approximate as Uh(T )−UH(T ) with Uh(T ) and
UH(T ) being approximations computed with two different tolerances.

220.3 Adaptive Time Step Control for cG(1)

We recall the basic error estimate (220.5):

‖u(T )− U(T )‖ ≤ Sc(T ) max
0≤t≤T

‖k(t))R(t)‖, (220.8)

where R(t) = U̇(t)− f(U(t)) and we assume that the stability factor S(T )
has been computed or estimated. We will return to this issue below. To
achieve ‖u(T ) − U(T )‖ ≤ TOL, we use (220.5) to choose the time steps
kn = tn − tn−1 so that

k(t) = kn ≈ TOL

Sc(T )Rn
for t ∈ [tn−1, tn), (220.9)

where
Rn = max

tn−1≤t≤tn
‖U̇(t)− f(U(t))‖

is the residual on the time interval [tn−1, tn). Note that the residual Rn
is computable from the computed solution U(t) and if Sc(T ) is known,
timestepalg gives an equation for the time step kn = tn− tn−1, where tn−1

already known. As with adaptive numerical quadrature, (220.9) yields a
nonlinear equation for the time step kn = tn − tn−1 that we can seek
to solve using some form of trial-and-error strategy or by prediction, e.g.
replacing Rn by Rn−1.

220.4 Analysis of cG(1) for a Linear Scalar IVP

We shall now prove an a posteriori error estimate for cG(1) for a a linear
scalar IVP of the form

u̇(t) = au(t) + f(t) for t > 0, u(0) = u0, (220.10)



220.4 Analysis of cG(1) for a Linear Scalar IVP 1481

where a is a constant and f(t) is a given function. The analysis is based
on representing the error in terms of the solution ϕ(t) of the following dual
problem: {

−ϕ̇ = aϕ for T > t ≥ 0,

ϕ(T ) = e(T ),
(220.11)

where e = u − U . Note again that (220.11) runs “backwards” in time
starting at time tN and that the time derivative term ϕ̇ has a minus sign.
We start from the identity

|e(T )|2 = |e(T )|2 +
∫ T

0

e (−ϕ̇− aϕ) dt,

and integrate by parts to get the following representation of |e(T )|2,

|e(T )|2 =

∫ T

0

(ė− ae)ϕdt+ e(0)ϕ(0),

where we allow U(0) to be different from u(0), corresponding to an error
in the initial value u(0). Since u solves the differential equation (220.10),
that is u̇+ au = f , we have

ė− au = u̇− au− U̇ + aU = f − U̇ + aU,

and thus we obtain the following representation of the error |e(T )|2 in terms
of the residual R(U) = U̇ − aU − f and the dual solution ϕ ,

|e(T )|2 =

∫ T

0

(f + aU − U̇)ϕdt+ e(0)ϕ(0) = −
∫ tN

0

R(U)ϕdt+ e(0)ϕ(0).

(220.12)
Next, we use the Galerkin orthogonality of cG(1),

∫ tn

tn−1

R(U) dt = 0 for n = 1, 2, ...,

to rewrite (220.12) as

e(T )2 = −
∫ T

0

R(U)(ϕ− ϕ̄) dt+ e(0)ϕ(0), (220.13)

where ϕ̄ is the mean-value of ϕ over each time interval, that is

ϕ̄(t) =
1

kn

∫ tn

tn−1

ϕ(s) ds for t ∈ [tn−1, tn).

We shall now use ∫

In

|ϕ− ϕ̄| dt ≤ kn

∫

In

|ϕ̇| dt,
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which follows by integration from the facts that

ϕ(t)− ϕ̄(t) =
1

kn

∫ tn

tn−1

(ϕ(t)− ϕ(s)) ds,

and

|ϕ(t)− ϕ(s)| ≤
∫ t

s

|ϕ̇(σ)| dσ ≤
∫ tn

tn−1

|ϕ̇(σ)| dσ for s, t ∈ [tn−1, tn].

Thus, (220.13) implies

|e(T )|2 ≤
N∑

n=1

Rn

∫

In

|ϕ− ϕ̄|dt+ |e(0)||ϕ(0)|

≤
N∑

n=1

knRn

∫

In

|ϕ̇|dt+ |e(0)||ϕ(0)|,
(220.14)

where
Rn = max

tn−1≤t≤tn
|R(U(t))|.

Bringing out the max of knRn over n, we get

|e(T )|2 ≤ max
1≤n≤N

knRn

∫ tN

0

|ϕ̇| dt+ |e(0)||ϕ(0)|.

Recalling that ϕ(T ) = e(T ) and using the definitions of Sc(tN ) and Sd(tN ),
we get the following final estimate,

|e(T )| ≤ Sc(T ) max
0≤t≤T

|k(t)R(U(t))|+ Sd(T )|e(0)|.

The stability factors Sc(T ) and Sd(T ) measure the effects of the accu-
mulation of error in the approximation. To give the analysis a quantitative
meaning, we have to give a quantitative bound of this factor. The following
lemma gives an estimate for Sc(T ) and Sd(T ) in the cases a ≤ 0 and the
case a ≥ 0 with possibly vastly different stability factors. We notice that
the solution ϕ(t) of (220.11) is given by the explicit formula

ϕ(t) = e(T ) exp(a(T − t)).

We see that if a ≤ 0, then the solution ϕ(t) decays as t decreases from T ,
and the case a ≤ 0 is thus the “stable case”. If a > 0 then the exponential
factor exp(aT ) enters, and depending on the size of a this case is “unstable”.
More precisely, we conclude directly from the explicit solution formula that

Lemma 220.1 The stability factors Sc(T ) and Sd(T ) satisfy if a > 0,

Sd(T ) ≤ exp(aT ), Sc(T ) ≤ exp(aT ), (220.15)

and if a ≤ 0, then
Sd(T ) ≤ 1, Sc(T ) ≤ 1. (220.16)
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220.5 Analysis of cG(1) for a General IVP

The extension of the a posteriori error analysis to a general IVP u̇ = f(u)
with f : Rd → Rd goes as follows. We recall that the linearized dual problem
takes the form

− ϕ̇(t) = A⊤(t)ϕ(t) for 0 < t < T, ϕ(T ) = e(T ), (220.17)

with

A(t) =

∫ 1

0

f ′(su(t) + (1 − s)U(t)) ds,

where u(t) is the exact solution and U(t) the approximate solution. We
now use the fact that

A(t)e(t) =

∫ 1

0

f ′(su(t) + (1 − s)U(t))e(t) ds

=

∫ 1

0

d

ds
f(su(t) + (1− s)U(t)) ds = f(u(t))− f(U(t)),

(220.18)

where we used the Chain rule and the Fundamental Theorem of Calculus.
We start from the identity

‖e(T )‖2 = ‖e(T )‖2 +
∫ T

0

e · (−ϕ̇−A⊤ϕ) dt,

and integrate by parts to get the error representation,

‖e(T )‖2 =
∫ T

0

(ė −Ae) · ϕdt+ e(0) · ϕ(0),

where we allow U(0) to be different from u(0), corresponding to an error in
the initial value u(0). Since u solves the differential equation u̇− f(u) = 0,
(220.18) implies

ė −Ae = u̇− f(u)− U̇ + f(U) = −U̇ + f(U),

and thus we obtain the following representation of the error ‖e(T )‖2 in
terms of the residual R(U) = U̇ − f(U) and the dual solution ϕ,

‖e(T )‖2 = −
∫ tN

0

R(U)ϕdt+ e(0)ϕ(0). (220.19)

From this point, the proof proceeds just as in the scalar case considered
above and we thus obtain the following a posteriori error estimate

‖e(T )‖ ≤ Sc(T ) max
0≤t≤T

‖k(t)R(U(t))‖+ Sd(T )‖e(0)‖,
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which can be used a basis for adaptive time step control as described above.
The stability factors Sc(T ) and Sd(T ) may be estimated by solving the
dual problem with suitable initial data. The proof of the a posteriori error
estimate shows that the stability factors may be defined by

Sd(T ) =
‖ϕ(t)‖
‖e(T )‖ ,

Sc(T ) =

∫ t
0 ‖ϕ̇(s)‖ ds
‖e(T )‖ ,

(220.20)

where ϕ solves the linearized dual problem with initial data ϕ(T ) = e(T ).
As indicated, to compute the stability factors Sd(T ) and Sc(T ), we may
solve the dual problem with some estimation of e(T ) obtained by solving
the initial value problem with two tolerances and approximating e(T ) by
the difference of the corresponding approximate solutions. Alternatively,
choosing ϕ(T ) = ei, we obtain a posteriori error control for error component
ei(T ). If d is not large, we may this way control all components of the error,
and if d is large, we may choose a couple different i at random.
The size of the stability factors indicate the degree of stability of the

solution u(t) being computed. If the stability factors are large, the residuals
R(U(t) and e(0) have to be made correspondingly smaller by choosing
smaller time steps and the computational problem is more demanding.

220.6 Analysis of Backward Euler for a General
IVP

We now derive an a posteriori error estimate for the backward Euler method
for the IVP (219.1):

U(tn) = U(tn−1) + knf(U(tn)), n = 1, 2, ..., N, U(0) = u0.

We associate a function U(t) defined on [0, T ] to the function values U(tn),
n = 0, 1, ..., N, as follows:

U(t) = U(tn) for t ∈ (tn−1, tn].

In other words, U(t) is piecewise constant on [0, T ] and takes the value
U(tn) on (tn−1, tn], and thus takes a jump from the value U(tn−1) to the
value U(tn) at the time level tn−1.
We can now write the backward Euler method as,

U(tn) = U(tn−1) +

∫ tn

tn−1

f(U(t)) dt,
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or equivalently

U(tn) · v = U(tn−1) · v +
∫ tn

tn−1

f(U(t)) · v dt, (220.21)

for all v ∈ Rd. This method os also referred to as dG(0), that is the dis-
continuous Galerkin method of order zero, corresponding to approximating
the exact solution by a piecewise constant function U(t) satisfying the or-
thogonality condition (220.21).
We are now ready to derive an a posteriori error estimate following the

same strategy as for the cG(1) method. We start from the identity

‖e(T )‖2 = ‖e(T )‖2 +
N∑

n=1

∫ tn

tn−1

e · (−ϕ̇−A⊤ϕ) dt,

and integrate by parts on each subinterval (tn−1, tn) to get the following
error representation,

‖e(T )‖2 =
N∑

n=1

∫ tn

tn−1

(ė−Ae) · ϕdt

−
N−1∑

n=2

(U(tn)− U(tn−1))ϕ(tn−1),

where the last term results from the jumps of U(t) at the the nodes t = tn−1

and we assume U(0) = u(0) for simplicity. Since u solves the differential
equation u̇− f(u) = 0, (220.18) and the fact that U̇ on (tn−1, tn) imply

ė−Ae = u̇− f(u)− U̇ + f(U) = −U̇ + f(U) = f(U) on (tn−1, tn),

and thus we obtain

‖e(T )‖2 = −
N−1∑

n=2

(U(tn)− U(tn−1))ϕ(tn−1) +

∫ tN

0

f(U)ϕdt.

Using (220.21) with v = ϕ̄, the mean value of ϕ as above, we get

‖e(T )‖2 = −
N−1∑

n=2

(U(tn)− U(tn−1)) · (ϕ(tn−1)− ϕ̄(tn−1))

+

n∑

n=1

∫ tn

tn−1

f(U)(ϕ− ϕ̄) dt.

We note that ∫ tn

tn−1

f(U)(ϕ− ϕ̄) dt = 0,
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since f(U(t)) is constant on (tn−1, tn], and ϕ̄ is the mean value of ϕ, and
thus the error representation takes the final form

‖e(T )‖2 = −
N−1∑

n=2

(U(tn)− U(tn−1)) · (ϕ(tn−1)− ϕ̄(tn−1)).

Using

‖ϕ(tn−1)− ϕ̄(tn−1)‖ ≤
∫ tn

tn−1

‖ϕ̇(t)‖ dt,

we obtain the following a posteriori error estimate for the backward Euler
method ,

‖e(T )‖ ≤ Sc(T ) max
1≤n≤N

‖U(tn))− U(tn−1))‖. (220.22)

Note the very simple form of this estimate involving the jumps ‖U(tn)) −
U(tn−1))‖ playing the role the residual. The a posteriori error estimate
(220.22) can be used as a basis for an algorithm for adaptive time step
control of the following form: for n = 1, 2, ..., choose kn so that

‖U(tn))− U(tn−1))‖ ≈ TOL

Sc(T )
.

220.7 Stiff Initial Value Problems

A stiff initial value problem u̇ = f(u) may be characterized by the fact
that the stability factors Sd(T ) and Sc(T ) are of moderate size even for
large T , while the norm of the linearized operator f ′(u(t)) is large, that
is the Lipschitz constant Lf is very large. Such initial value problems are
common for example in models of chemical reaction with reactions on a
range of time scales from slow to fast. Typical solutions include so-called
transients where the fast reactions make the solution change quickly over a
short (initial) time interval, after which the fast reactions are ”burned out”
and the slow reactions make the solution change on a longer time scale.
The prototype of a stiff initial value problem has the form

u̇ = f(u) ≡ −Au for t > 0, u(t) = u0 = (u0i ), (220.23)

where A is a constant symmetric positive semidefinite d × d matrix with
non-negative eigenvalues λi ranging from zero to large positive values. Ac-
cordingly, the norm of the matrix A is large and Lf is large. By diago-
nalization, we may reduce to the case when A is a diagonal matrix with
non-negative diagonal elements λi, in which case the solution u(t) = (ui(t))
is given by

ui(t) = exp(−λi t)u0i for t > 0, (220.24)
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with u0 = (u0i ). This explicit solution formula shows that a component
ui(t) corresponding to a large positive eigenvalue λi decays very quickly to
zero, while a component with a small eigenvalue stays almost constant for
a long time and eventually decays to zero. The sign of the eigenvalues is
evidently crucial: if some λi was negative, then the corresponding solution
component would explode exponentially more or less quickly depending on
the size of λi. In particular, (220.24) with the λi non-negative implies

‖u(t)‖ ≤ ‖u0‖ for t > 0, (220.25)

which indicates a form of stability with stability factor equal to 1 in the
sense that the norm of the solution does not increase in time.
The dual problem corresponding to (220.23) takes the form

−ϕ̇+Aϕ = 0 for T > t > 0, ϕ(T ) = ψ,

with ψ given data at time t = T . As a counterpart of (220.25), we conclude
that Sd(T ) ≤ 1. We can similarly show that Sc(T ) grows very slowly with
increasing T . We sum up: (220.23) represents a stiff problem; stability fac-
tors are of moderate size even for large T while the norm of the (linearized)
operator A is large.
From numerical point of view, stiff problems may seem particularly

friendly since the stability factors grow very slowly with time, but there is
one hook that has attracted a lot of attention in the literature on numer-
ical methods for initial value problems, namely the failure of an explicit
method like the forward Euler method. We write this method for the equa-
tion u̇ = −Au in the form

Un = Un−1 − knAU
n−1

with Un an approximation of u(tn) and 0 = t0 < t1 < ... an increasing
sequence of time levels, and kn = tn − tn−1. If A is diagonal with diagonal
elements λi ≥ 0, then

Uni = (1− knλi)U
n−1
i

and if λi is large positive, then |1 − knλi| may be much larger than 1
unless the time step kn is sufficiently small (kn ≤ 2/|λi| for all i) and
the the numerical solution will then quickly explode to infinity, while the
corresponding exact solution quickly decays to zero. The explicit Euler
method will thus give completely wrong results unless sufficiently small
time steps are used. This may lead to very inefficient time-stepping since
after the transients have died out, the solution may vary only slowly and
large time steps would be desirable. We note that the time step limit kn ≤
2/|λi| for all i, is set by the largest eigenvalue maxλi, while the time long-
time scale is set by the smallest eigenvalue min λi, so that if the quotient
maxλi/minλi is large (which signifies a stiff problem), then explicit Euler
would be inefficient outside transients.
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On the other hand, the dG(0), or implicit Euler method,

Un + knAU
n = Un−1

with

Uni = (1 + knλi)
−1Un−1

i

will be stable and work very well without step size limitation because 1 +
knλi ≥ 1 for all λi ≤ 0.
For the cG(1)-method, we will have

Uni =
1− knλi
1 + knλi

Un−1
i

and stability prevails because

|1− knλi
1 + knλi

| ≤ 1

for all λi ≥ 0.
We conclude that both dG(0) and cG(1) may be used for stiff problems,

but both these methods are implicit and require the solution of system of
equations at each time step. More precisely, dG(0) for a problem of the
form u̇ = f(u) takes the form

Un − knf(U
n) = Un−1.

At each time step we have to solve an equation of the form v − knf(v) =
Un−1 with Un−1 given. To this end we may try a damped fixed point
iteration in the form

v(m) = v(m−1) − α(v(m−1) − knf(v
(m−1))− Un−1),

with α some suitable matrix (or constant in the simplest case). Choosing
α = I, and iterating once with v0 = 0 corresponds to the explicit Euler
method. Convergence of the fixed point iteration requires that

‖I + knαf
′(v)‖ < 1

for relevant values of v, which could force α to be small (e.g. in the stiff
case with f ′(v) having large negative eigenvalues) and result in slow con-
vergence. A first try could be to choose α to be a diagonal matrix with
αi = (f ′

ii)(v
m−1))−1 (corresponding to diagonal scaling) and hope that the

number of iterations would not be too large. In some cases more efficient
iterative solvers would have to be used.
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220.8 On Explicit Time-Stepping for Stiff
Problems

We just learned that explicit time-stepping for stiff problems require small
time steps outside transients and thus may be inefficient. We shall now indi-
cate a way to get around this limitation through a process of stabilization,
where a large time step is accompanied by a couple of small time steps.
The resulting method has similarities with the control system of a modern
(unstable) jet fighter like the Swedish JAS Gripen, the flight of which is
controlled by quick small flaps of a pair of small extra wings ahead of the
main wings, or balancing a stick vertically on the finger tips if we want a
more domestic application.
We shall now explain the basic (simple) idea of the stabilization and

present some examples, as illustrations of fundamental aspects of adap-
tive IVP-solvers and stiff problems. Thus to start with, suppose we apply
explicit Euler to the scalar problem

u̇(t) + λu(t) = 0 for t > 0.

u(0) = u0,
(220.26)

with λ > 0 taking first a large time step K satisfying Kλ > 2 and then m
small time steps k satisfying kλ < 2, to get the method

Un = (1 − kλ)m(1−Kλ)Un−1, (220.27)

altogether corresponding to a time step of size kn = K+mk. Here K gives
a large unstable time step with |1−Kλ| > 1 and k is a small time step with
|1 − kλ| < 1. Defining the polynomial function p(x) = (1 − θx)m(1 − x),
where θ = k

K , we can write the method (220.27) in the form

Un = p(Kλ)Un−1.

For stability we need

|p(Kλ)| ≤ 1, that is |1− kλ|m(Kλ− 1) ≤ 1,

or

m ≥ log(Kλ− 1)

− log |1− kλ| ≈ 2 log(Kλ), (220.28)

with c = kλ ≈ 1/2 for definiteness.
We conclude that m may be quite small even if Kλ is large, since the

logarithm grows so slowly, and then only a small fraction of the total time
would be spent on stabilizing time-stepping with the small time steps k.
To measure the efficiency gain we introduce

α =
1 +m

K + km
∈ (1/K, 1/k),
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which is the number of time steps per unit interval with stabilized explicit
Euler method, and by (220.28)) we have

α ≈ 1 + 2 log(Kλ)

K + log(Kλ)/λ
≈ 2λ

log(Kλ)

Kλ
≪ 2λ, (220.29)

for Kλ≫ 1. On the other hand, the number of time steps per unit interval
for the usual explicit Euler is

α0 = 1/k = λ/2, (220.30)

choosing a maximum time step k = 2/λ.
The cost reduction factor using the stabilized explicit Euler method

would thus be

α

α0
≈ 4 log(Kλ)

Kλ

which can be quite significant for large values of Kλ.
We now present some examples using an adaptive cg(1) IVP-solver in

stabilized explicit form with just a few iterations in each time step, which
allows large time steps. In all problems we note the initial transient, where
the solution components change quickly, and the oscillating nature of the
time step sequence outside the transient with large time steps followed by
some small stabilizing time steps.

Example 220.1. We apply the indicated method to the scalar problem
equation (220.26) with u0 = 1 and λ = 1000, and display the result in
Figure 220.1. The cost reduction factor with comparison to a standard
explicit method is large: α/α0 ≈ 1/310.

Example 220.2. We now consider the 2× 2 diagonal system

u̇(t) +

(
100 0
0 1000

)
u(t) = 0 for t > 0,

u(0) = u0,

(220.31)

with u0 = (1, 1). There are now two eigenmodes with large eigenvalues
that have to be stabilized. The cost reduction is α/α0 ≈ 1/104.

Example 220.3. The is the so-called HIRES problem (“High Irradi-
ance RESponse”) from plant physiology which consists of the following
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FIGURE 220.1. Solution and time step sequence for eq. (220.26), α/α0 ≈ 1/310.
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FIGURE 220.2. Solution and time step sequence for eq. (220.31), α/α0 ≈ 1/104.
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eight equations:





u̇1 = −1.71u1 + 0.43u2 + 8.32u3 + 0.0007,
u̇2 = 1.71u1 − 8.75u2,
u̇3 = −10.03u3 + 0.43u4 + 0.035u5,
u̇4 = 8.32u2 + 1.71u3 − 1.12u4,
u̇5 = −1.745u5 + 0.43u6 + 0.43u7,
u̇6 = −280.0u6u8 + 0.69u4 + 1.71u5 − 0.43u6 + 0.69u7,
u̇7 = 280.0u6u8 − 1.81u7,
u̇8 = −280.0u6u8 + 1.81u7,

(220.32)
together with the initial condition u0 = (1.0, 0, 0, 0, 0, 0, 0, 0.0057). We
present the solution and the time step sequence in Figure 220.3. The
cost is now α ≈ 8 and the cost reduction factor is α/α0 ≈ 1/33.
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FIGURE 220.3. Solution and time step sequence for eq. (220.32), α/α0 ≈ 1/33.

Example 220.4. The “Chemical Akzo-Nobel” problem consists of the
following six equations:





u̇1 = −2r1 + r2 − r3 − r4,
u̇2 = −0.5r1 − r4 − 0.5r5 + F,
u̇3 = r1 − r2 + r3,
u̇4 = −r2 + r3 − 2r4,
u̇5 = r2 − r3 + r5,
u̇6 = −r5,

(220.33)
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where F = 3.3 · (0.9/737 − u2) and the reaction rates are given by
r1 = 18.7 ·u41

√
u2, r2 = 0.58 ·u3u4, r3 = 0.58/34.4 ·u1u5, r4 = 0.09 ·u1u24

and r5 = 0.42 ·u26
√
u2. We integrate over the interval [0, 180] with initial

condition u0 = (0.437, 0.00123, 0, 0, 0, 0.367). Allowing a maximum time
step of kmax = 1 (chosen arbitrarily), the cost is only α ≈ 2 and the cost
reduction factor is α/α0 ≈ 1/9. The actual gain in a specific situation
is determined by the quotient between the large time steps and the
small damping time steps, as well as the number of small damping
steps that are needed. In this case the number of small damping steps
is small, but the large time steps are not very large compared to the
small damping steps. The gain is thus determined both by the stiff
nature of the problem and the tolerance (or the size of the maximum
allowed time step).
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FIGURE 220.4. Solution and time step sequence for eq. (220.33), α/α0 ≈ 1/9.

Example 220.5. We consider now Van der Pol’s equation:

ü+ µ(u2 − 1)u̇+ u = 0,

which we write as {
u̇1 = u2,
u̇2 = −µ(u21 − 1)u2 − u1.

(220.34)

We take µ = 1000 and solve on the interval [0, 10] with initial condition
u0 = (2, 0). The time step sequence behaves as desired with only a small
portion of the time spent on taking small damping steps. The cost is
now α ≈ 140 and the cost reduction factor is α/α0 ≈ 1/75.
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FIGURE 220.5. Solution and time step sequence for eq. (220.34), α/α0 ≈ 1/75.

Chapter 220 Problems

220.1. Compute the stability factors Sd(T ) and Sc(T ) for the linear scalar IVP
u̇(t) = −λ(t)u(t) for t > 0, u(0) = u0, where λ(t) depends on time t and (a)
λ(t) ≥ 0, (b) λ(t) < 0.

220.2. Compute Sd(T ) and Sc(T ) for the linear 2×2 system u̇1 = u2, u̇2 = −u1

for t > 0, u(0) = u0.

220.3. Implement adaptive IVP-solvers based on dG(0) and cG(1) and apply
the solvers to different problems.

220.4. Show that the a posteriori error estimate for cG(1) may be written on the
form ‖e(T )‖ ≤ Sc(T )max0≤t≤T ‖k(t)(f(U(t)) − f̄(U(t)))‖+ Sd(T )‖e(0)‖, where
f̄(U(t)) is the mean-value of f(U(t)) over each time interval.

220.5. Show that choosing in the dual problem ϕ(T ) = ei gives control of error
component ei(T ).

220.6. Develop explicit versions of dG(0) and cG(1) based on fixed point itera-
tion at each time step. Show that with diagonal scaling such an explicit method
may work very well for some stiff problems.
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221
Optimization

1. All living beings are driven by passion to seek maximal Pleasure.
2. There is Pleasure of the Body and Pleasure of the Soul. In the
Pleasure of the Soul, the Body cannot take part, whereas the Plea-
sure of the Body is equally shared by the Soul. (the 2 first of the
14 basic principles of Anthropologica physica, by King Karl XII of
Sweden, 1717)

221.1 Introduction

In this chapter, we expand on some basic aspects of optimization touched
upon in the previous chapter in connection to minimization. Optimization
is very rich subject and we shall return to other aspects below. The issues we
discuss here are connected to the very basics of Calculus and are considered
as “deep” and understandable only by the very best math majors. You
may test your own reaction to the discussions presented, and if you get the
expected feeling of confusion, don’t worry, just proceed to the next chapter.
If on the other hand, against all odds, you get the feeling of grasping the
main ideas, then you may congratulate yourself for being more gifted for
mathematics than you thought!
In our modern world, optimization is a code word. To optimize is to use

available resources as efficiently as possible, or to find the best of available
alternatives. In our private lives, we may want our car to use as little fuel
as possible, to buy an item at lowest possible price, to use as little effort
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as possible to clean the house, or to get maximal enjoyment out of the
vacation trip.
In automatized production, the leading principle is always to optimize

and seek to use as little energy, material and human resources as possible to
produce a certain amount of goods. A basic idea in our capitalistic system
is that in the long run the most efficient mode of production will win the
market.
A basic problem of optimization is to find the maximum or minimum

value of a given function f : Ω → R defined on some set of numbers
Ω. Typically, Ω may be a domain in Rd with d = 1, 2, 3, ..., that may
be bounded or unbounded, or Ω may be a finite set such as the set of
natural numbers 1, 2..., 100. More precisely, finding a minimum point x̄ in
Ω amounts to finding a point x̄ ∈ Ω such that

f(x) ≥ f(x̄) for all x ∈ Ω, (221.1)

and we then say that f(x̄) is the minimum value of f : Ω → R. Note that
there may be several minimum points, but of course there may be only one
minimum value. If in an Olympic 100 meter race, three runners share the
best time of 9.99 seconds, then all the three runners may share the gold
medal. However, there cannot be two runners with different final times who
both get a gold medal.
We now consider the problem of finding the minimum value and cor-

responding minimum point(s) of a given function f : Ω → R. We may
distinguish between the following two cases: (a) Ω is a domain of Rd with
infinitely many points, as when Ω is the unit disc {x ∈ Rd : ‖x‖ ≤ 1}; (b)
Ω contains finitely many points, as for example Ω = {1, 2, 3, ..., 10}. The
case (a) is “continuous” and (b) is “discrete”. The two cases are not fully
disjoint; there may be a gradual passage from “discrete” to “continuous”
as the number of elements in Ω increases. In the case Ω is discrete with
finitely many points, we may find the minimum value and corresponding
minimum point(s) of f : Ω → R by different algorithms for sorting. If Ω is
“continuous” with infinitely many points, sorting may be impossible and
different algorithms that use information from the derivative of f(x) in
variations of steepest descent are often used.

221.2 Sorting if Ω Is Finite

If Ω is a finite set of numbers, for example if Ω = {1, 2, ..., 9, 10}, then we
just make a list of the corresponding 10 function values f(1), f(2),...,f(10)
and by sorting these values according to magnitude in increasing order,
we can find the minimum value f(x̄) and the corresponding argument x̄.
Of course, we don’t have to sort all the numbers according to magnitude
to find the smallest one. We just have to find the first element in the list
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sorted according to magnitude in increasing order. Repeating this process
we can sort all the numbers in the given list of numbers.

Example 221.1. For example, suppose that Ω = {1, 2, ..., 9, 10} and
f(1) = 143, f(2) = 538, f(3) = 67, f(4) = 964, f(5) = 287, f(6) =
64, f(7) = 123, f(8) = 333, f(9) = 63, f(10) = 88. By direct inspec-
tion, we see that the minimum point is x̄ = 9 and the minimum value
is f(x̄) = 63.

While sorting sounds simple, it turns out to be an interesting problem to
do sorting efficiently when there are a large number of values to be sorted.
So there are different algorithms for sorting and sorting algorithms hold a
prominent place in computer science. A simple algorithm for finding the
minimum m of N numbers f(1), · · · , f(N) goes as follows:

1. Set m = f(1) and x̄ = 1

2. For x = 2, · · · , N, if f(x) < m set m = f(x̄) and x̄ = x.

The minimum value is then m = f(x̄) and the minimum point is x = x̄.
The algorithm is based on successive comparison of pairs of numbers (if
f(x) < m then we update m and x̄ and set m = f(x̄) and x̄ = x). The
number of comparisons in the indicated algorithm is apparently N − 1.
Repeating the algorithm with f(x̄) eliminated, we can get a complete

sorting according to magnitude using (N − 1) + (N − 2) + · · ·+ 1 ≈ 1
2N

2

comparisons.

221.3 What if Ω Is Not Finite?

If Ω is an interval of real numbers, for example Ω = [0, 1], then Ω contains
infinitely many points and sorting the values f(x) with x ∈ Ω of a given
function f : Ω → R by pairwise comparison appears impossible in prac-
tice because we cannot perform infinitely many comparisons. Of course,
in practice we replace Ω by a finite set of numbers, for example by using
a single precision floating point representation of the points in Ω. So in
principle, we can then apply the above sorting strategy. But, the procedure
will be computationally intensive. With seven digits we would have 107

values f(x) to compare, which using the above algorithm requires on the
order of 107 comparisons to find the minimum. If the interval Ω is larger
and the desired precision higher, then the number of comparisons would be
correspondingly larger. The total computational cost would also involve as
a multiplicative factor the cost of evaluating the function value f(x) for a
given x, which itself could require many arithmetic operations. The total
cost in direct comparison thus may be prohibitively large.
We now seek efficient algorithms to handle the case that Ω is a domain of

Rd interval and the function f(x) is Lipschitz continuous with a Lipschitz
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constant L. In this case, the function values f(x) cannot change more than
the argument of x changes times L. If we want to find the minimum value up
to a certain tolerance TOL, then we need to do approximately (L/TOL)d

comparisons if the diameter of Ω is of order one. Depending on the choice
of the tolerance TOL and L this may be acceptable or not.
If the function f(x) is differentiable then we may restrict the search

further using information from the derivative, as we shall see below.

221.4 Existence of a Minimum Point

How can we be sure that there in fact is a minimum point? We discuss the
proof of the following basic theorem addressing this question below.

Theorem 221.1 If f : Ω → R is Lipschitz continuous, where Ω is a closed
and bounded subset of Rd, then there is a minimum point x̄ ∈ Ω such that
f(x̄) ≤ f(x) for all x ∈ Ω.

The assumption that Ω is closed and bounded is essential to guarantee
existence of the minimum, as the following examples show.

Example 221.2. The function f : (0, 1) → R with f(x) = x does not
have a minimum point in (0, 1). In this case Ω = (0, 1) is not closed.

Example 221.3. The function f : [1,∞) → R with f(x) = 1/x does
not have a minimum point in [1,∞). In this case Ω = [1,∞) is not
bounded.

Note however that a function f : Ω → R may have a minimum even if Ω
is unbounded. In particular, if f(x) increases to infinity as ‖x‖ increases,
then we can effectively reduce the search for a minimum to a bounded set.

Example 221.4. The function f : [0,∞) given by f(x) = x2 − 2x
attains a minimum value f(1) = −1; since f(x) ≥ 0 for x ≥ 2, we may
restrict the search for a minimum to [0, 2].

221.5 The Derivative Is Zero at an Interior
Minimum Point

We assume that f : Ω → R is a given Lipschitz continuous differentiable
function, where Ω is a domain in Rd. We shall now prove that if x̄ is an
interior minimum point of f : Ω → R, that is x̄ is a minimum point and the
ball {x ∈ Rd : ‖x − x̄‖ < δ} is included in Ω for some positive number δ,
then f ′(x̄) = ∇f(x̄) = 0, where f ′ = ∇f is the gradient of f . This follows
by writing

f(x) = f(x̄) + f ′(x̄) · (x− x̄) + Ef (x, x̄)
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with |Ef (x, x̄)| ≤ Kf (x̄)‖x − x̄‖2. If now f ′(x̄) 6= 0, we may choose x =
x̄− ǫf ′(x̄) ∈ Ω with ǫ > 0 and estimate to get

f(x) ≤ f(x̄)− ǫ‖f ′(x̄)‖2 + ǫ2Kf (x̄)‖f ′(x̄)‖2

= f(x̄)− ǫ‖f ′(x̄)‖2(1− ǫKf(x̄)) < f(x̄).

For ǫ sufficiently small, we get a contradiction to the assumption that x̄ is
a minimum point. We have proved the following basic result, see Fig. 221.1
and Fig. 221.2.

Theorem 221.2 Suppose f : Ω → R has a minimum point at an interior
point x̄ in Ω, and suppose that f : Ω → R is differentiable at x̄. Then
f ′(x̄) = 0.

Using this result, we may search for interior minimum points among the
zeros of the derivative f ′(x) in Ω. To find these zeros we may use some
algorithm for computing roots, like Fixed Point Iteration or Newton or the
Bisection algorithm. There is thus a strong connection between algorithms
for finding interior minimum points of f : Ω → R and algorithms for
computing roots of f ′(x) = 0.

x

y

a bx̄

y = f(x)

y = f(x̄)

FIGURE 221.1. f ′(x̄) = 0 at an interior minimum point x̄.

Note that if the minimum point x̄ of f : Ω → R is not interior to Ω, i.e.
x̄ lies on the boundary of Ω, then the derivative f ′(x̄) may be non-zero, see
Fig. 221.3.

Example 221.5. Suppose we want to minimize f : Ω → R with
Ω = [0, 2] and f(x) = x2−2x. Since Ω is closed and bounded and f(x) is
Lipschitz continuous, we know that there is a minimum point x̄ ∈ [0, 2].
If x̄ is interior to [0, 2], that is if 0 < x̄ < 2, then f ′(x̄) = 2x̄−2 = 0 and
thus x̄ = 1. We compare the value f(1) = −1 to the values f(0) = 0
and f(2) = 0 on the boundary of [0, 2] and conclude that f(1) = −1 is
the minimum value and x̄ = 1 the corresponding minimum point.
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y = f(x̄)

y = f(x̄) + f ′(x̄)(x− x̄)

FIGURE 221.2. f ′(x̄) < 0 implies that f(x) < f(x̄) for x close to x̄ with x̄ > x,
that is, x̄ cannot be a minimum point.
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y = f(x)

y = f(a) + f ′(a)(x− a), f ′(a) > 0

FIGURE 221.3. f ′(x̄) may be non-zero at a minimum x̄ on the boundary.

Example 221.6. Suppose we want to minimize f : Q → R with
f(x) = f(x1, x2) = x21+x

2
2−2x1−x2 on a closed squareQ = [0, 2]×[0, 2],

see Fig. 221.4. We know that there is a minimum point in Q. We first
compute the interior points x̂ where f ′(x̂) = 0. Since f ′(x) = (2x1 −
2, 2x2 − 1), x̂ = (1, 0.5) with the function value f(1, 0.5) = −1.25.
It remains to study the variation of f(x) on the boundary of Q to
see if we find a value smaller than −1.25. We do this by considering
each piece of the boundary separately. On the part x2 = 0, we have
f(x) = x21 − 2x1 with x1 ∈ [0, 2], and we see arguing as in the previous
example that the minimum value is f(1, 0) = −1. On the part x2 = 2,
we have f(x1, 2) = x21−2x1+3 with minimum f(1, 2) = 2. On the part
x1 = 0, we have f(0, x2) = x22 − x2 with minimum f(0, 0.5) = −0.25,
and on the part x1 = 2, we have f(2, x2) = x22 − x2 with minimum
f(2, 0.5) = −0.25. We conclude that the minimum point is the interior
point x̄ = (1, 0.5) and that the minimum value is f(1, 0.5) = −1.25.

Example 221.7. You are asked to design a box (without top) of a
given volume using as little material as possible. Letting the sides of
the box be x1, x2 and x3, the volume is x1x2x3 = V and the surface to
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x3 = f(x1, x2) = x2
1 + x2

2 − 2x1 − x2

FIGURE 221.4. Minmizing f(x) = x2
1 + x2

2 − 2x1 − x2 on Q = [0, 2]× [0, 2]

be minimized is x1x2 + 2x1x3 + 2x2x3. Eliminating x3 gives

f(x1, x2) = x1x2 + 2V (
1

x1
+

1

x2
),

which is to be minimized over Ω = [0,∞) × [0,∞). Seeking points x̂
with f ′(x̂) = (0, 0), we find x̂1 = x̂2 = (2V )1/3 with the corresponding
height x̂3 = 1

2 (2V )1/3, and the area

f(x̂) = (2V )2/3 + 2(2V )2/3.

Comparing with (x1, x2) with x1 or x2 very large or small give large
values to f(x1, x2) and thus the minimum point is x̂. The solution is a
box with square bottom and height half of the width.

We also remark that a minimum value may be attained at an interior
point where the given function is nondifferentiable. For example, the mini-
mum value of the function f(x) = |x− 1| on [0, 2] is attained at x̄ = 1 with
minimum value f(x̄) = f(1) = 0. This type of interior minimum points
must be considered separately. Thus, to find all possible minimum points
we have to consider the points x̄ for which f ′(x̄) = 0, and in addition to
these the end points of the domain of definition and interior points where
f(x) is not differentiable, see Fig. 221.5.

221.6 The Role of the Hessian

We know that if x̄ is an interior minimum point of a function f : Ω → R,
then f ′(x̄) = 0. But it is not true in general that if f ′(x̄) = 0, then x̄ is a
minimum point. A point x̄ with f ′(x̄) = 0 may e.g. be a maximum point, or
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x x

y y

x̄x̄

y = f(x)

y = f(x)

FIGURE 221.5. f ′(x̄) = 0 may correspond also to a maximum point or an inflec-
tion point.

an inflection point, see Fig. 221.5. If the Hessian H of f : Ω → is positive
definite close to x̄ and f ′(x̄) = 0, then we have by Taylor’s theorem

f(x) = f(x̄) +
1

2
(x− x̄)⊤H(y) · (x− x̄) > f(x̄)

for x close to x̄ and some y between x and x̄, and thus x̄ is a local minimum
point.
We recall that an n× n matrix A is said to be positive definite if

v⊤Av > 0

for all non-zero v ∈ Rn. The Spectral Theorem implies that A is positive
definite if and only if the eigenvalues of A are positive.

Example 221.8. If A = (aij) is a symmetric 2 × 2 matrix, then A is
positive definite if

a11a22 − a212 > 0 and a11 > 0.

This follows by completing squares in

v⊤Av = a11v
2
1 + a22v

2
2 + 2a12v1v2.

221.7 Minimization Algorithms: Steepest Descent

We discuss briefly how to find candidates for minimum points of a given
function f : Ω → R, where Ω is a domain in Rd. We assume that f : Ω → R
is Lipschitz continuous and differentiable on Ω.
In the steepest descent method, we construct a sequence {xi} in Rd that

hopefully converges to a (local) minimum point by means of the iteration

xi+1 = xi − αif
′(xi), (221.2)

where αi is a positive parameter. Since αi > 0, if f ′(xi) > 0 then xi+1 <
xi, and if f ′(xi) < 0 then xi+1 > xi. This means that if f ′(xi) > 0, so
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that f(x) is increasing at x = xi, then taking xi+1 < xi should result in
f(xi+1) < f(xi), and thus xi+1 should be closer to a minimum point than
xi. A similar argument applies in the case f ′(xi) < 0.
It is clear that the choice of the parameter αi is important. If αi is too

small, then the convergence will be slow, and if αi is too large, the sequence
xi may start to oscillate.
Note that we may view the gradient method (221.2) for minimization of

f(x) as Fixed Point Iteration for computing a root of f ′(x) = 0.
If steepest descent leads to the boundary Γ of Ω, then we may replace

the steepest descent iteration by the projected gradient method defined

xi+1 = xi − αiPf
′(xi),

where Pf ′(xi) is the projection of f ′(xi) onto the tangent plane to Γ at
xi ∈ Γ.
The general idea is thus to find roots of f ′(x) = 0 using steepest descent

for the minimization of f(x) or equivalently fixed point iteration for f ′(x) =
0. Once the roots of f ′(x) = 0 have been determined, the minimization is
reduced to a search on the boundary of Ω and the interior zeros of f ′(x).

221.8 Existence of a Minimum Value and Point

We return to proof of the fundamental result which says that if f : Ω → R
is Lipschitz continuous and Ω is a closed and bounded domain of Rd, then
there is a minimum point x̄ ∈ Ω with corresponding minimum value f(x̄).
We carry out the proof in for d = 1 so that Ω = [a, b] is a bounded closed
interval. The proof in the case d > 1 is similar.
We shall prove that a Lipschitz continuous function f : [a, b] → R on a

closed and bounded interval [a, b] has a minimum point by “constructing”
a minimum point using the Bisection algorithm. We shall see that the
“construction” is controversial at one step. Trying to resolve this issue
yields added insight into the nature of minimization algorithms.
Normally, the proof we present here is considered so “difficult” that it

is given only in “advanced” senior undergraduate or beginning graduate
courses. With our good preparation on the Bisection algorithm and the
nature of real numbers, we can plunge into the proof, and we will see that
it is “easy” up to the non-constructive aspects.
We first recall that the Lipschitz continuity of f(x) and the fact that

[a, b] is bounded implies that f : [a, b] → R is bounded from above and
below. In particular, there is some m ∈ R such that

f(x) ≥ m for all x ∈ [a, b]. (221.3)

We say that m is a lower bound of f : [a, b] → R if (221.3) holds. Clearly,
there are many lower bounds since if m is a lower bound, any number
m < m is also a lower bound.
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In the proof, we shall use the concept of greatest lower bound defined as
follows: we say that m is a greatest lower bound of f : [a, b] → R if

f(x) ≥ m for all x ∈ [a, b] (221.4)

for all M > m there is some x ∈ [a, b] such that f(x) < M. (221.5)

In words, m is a greatest lower bound of f : [a, b] → R if m is a lower
bound of f : [a, b] → R and any number bigger than m is not a lower
bound for f : [a, b] → R. The concept of greatest lower bound has played
an important role in the development of Calculus during the 20th century.
The proof now proceeds in two steps:

Step 1: Existence of a Greatest Lower Bound m of f : [a, b] → R

We shall prove the existence of a greatest lower bound m by using the
Bisection method. Letm be a lower bound of f : [a, b] → R, whose existence
was established above. Set y0 = m and Y0 = f(b) and define ŷ1 = 1

2 (y0 +
Y0) =

1
2 (m + f(b)). Note that y0 ≤ ŷ1 ≤ Y0. If f(x) ≥ ŷ1 for all x ∈ [a, b],

then set y1 = ŷ1 and Y1 = Y0. If not, then there is an x ∈ [a, b] such that
f(x) < ŷ1, and we set y1 = m and Y1 = ŷ1. We have now passed from the
pair (y0, Y0), or interval (y0, Y0), to the interval (y1, Y1). By construction,
f(x) ≥ yi for all x ∈ [a, b] and i = 0, 1 and there is some x ∈ [a, b] such
that f(x) < Yi unless Y0 or Y1 is already a greatest lower bound.
Repeating this process, we get two sequences {yi} and {Yi} such that for

i = 0, 1, 2, ...,,

yi < Yi, yi+1 ≥ yi Yi+1 ≤ Yi,

0 < Yi − yi = 2−i(Y0 −m),

f(x) ≥ yi for all x ∈ [a, b],

there is an x ∈ [a, b] such that f(x) < Yi,

or some Yi is a greatest lower bound. As in Chapter
√
2, we see that the

sequences {yi} and {Yi} are Cauchy sequences and both converge to one
real number, which we denote by m. The number m is the greatest lower
bound of f : [a, b] → R since m satisfies the following two conditions:

(f(x) ≥ m for all x ∈ [a, b],

for any M > m there is an x ∈ [a, b] such that f(x) < M.

We have now proved the existence of a greatest lower bound to the Lipschitz
continuous function f : [a, b] → R on the closed and bounded interval [a, b].
Note that this result also holds if (a, b) is a bounded open interval. We have
thus not yet used the fact that [a, b] is closed.
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Step 1: Existence of a Minimum Point

We now construct a convergent sequence {xi} with xi ∈ [a, b] and

lim
i→∞

f(xi) = m.

Setting x̄ = limi→∞ xi, we have f(x̄) = m and thus x̄ is a minimum point
and we are done.
To construct {xi} we again use the Bisection algorithm as follows: set

x0 = a, and X0 = b, and define x̂1 = 1
2 (x0 + X0). If f(x) > m for all x

such that x̂1 < x ≤ X1, then we set x1 = x0 and X1 = x̂1. If not, we
set x1 = x̂1 and X1 = X0. Repeating the process, we obtain a convergent
sequence {xi} with limit x̄ and by construction we have f(x̄) = m. Note
that to guarantee that x ∈ [a, b], we need [a, b] to be closed. We note that
the minimum value (of course) is equal to the greatest lower bound.
We summarize in the following theorem:

Theorem 221.3 (Existence of minimum point) Suppose f : I → R is
Lipschitz continuous and I = [a, b] is a closed and bounded interval. Then
there is a point x̄ ∈ [a, b], where f : I → R assumes a minimum value m̄,
that is, f(x) ≥ m̄ for all x ∈ [a, b], and f(x̄) = m̄.

In the proof of this theorem we used the Bisection algorithm twice. Set-
ting y = f(x), we may say that we first used the Bisection algorithm in the
variable y to prove existence of a greatest lower bound m and then in the
variable x to prove existence of a minimum point x̄ satisfying f(x̄) = m.

221.9 Existence of Greatest Lower Bound

If we examine the proof of existence of a greatest lower bound to the Lips-
chitz continuous function f : I → R, we see that the crucial fact behind the
proof is that f : [a, b] → R is bounded below, that is there is a real number
m such that f(x) ≥ m for all x ∈ [a, b]. We can interpret this in terms of
a property of the range R(f) = {y : y = f(x) for some x ∈ D(f) = [a, b]},
namely

y ≥ m for all y ∈ R(f).

This says that the set R(f) is bounded below.
More generally, we say that a set A of real numbers is bounded from

below if there is a real number m such that y ≥ m for all y ∈ A. Using the
same argument as just used in the case A = R(f), we obtain the following
fundamental property of real numbers.

Theorem 221.4 (Existence of greatest lower bound) Suppose A is
a set of real numbers which is bounded from below, that is, there is a real
number m such that x ≥ m for x ∈ A. Then the set A has a greatest lower
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bound m ∈ R satisfying x ≥ m for all x ∈ A and for all M > m there is
an x ∈ A such that x < M .

221.10 Constructibility of a Minimum Value and
Point

We now discuss to what extent the above existence proof is constructive.
There are two issues: (i) construction of the greatest lower bound, which is
the same as the minimum value, and (ii) construction of a minimum point.
In the application of the Bisection algorithm in (i), we have to check if

f(x) ≥ ŷi for all x ∈ [a, b],

while in the application in (ii), we have to check if

f(x) > m for all x such that x̂1 < x ≤ X1.

Both checks appear to involve infinitely many values of x. In the worst
case this would require infinitely many comparisons. The number may be
reduced if f(x) is differentiable by using information concerning f ′(x). For
example, the sign of f ′(x) indicates if f(x) is increasing or decreasing which
may be used to reduce the amount of comparison.
Thus, depending on the nature of the given function f : I → R, the given

proof of existence of a minimum value and minimum point may be more
or less constructive in nature.
Is it possible to make the proof fully constructive? We expect this to

be possible if we accept to determine the minimum value up to a tolerance
TOL > 0. Suppose then that the function f(x) is Lipschitz continuous with
Lipschitz constant L. We can then reduce all comparisons to a discrete grid
of points of mesh size 1

LTOL between neighboring points.
To sum up, if f : I → R is Lipschitz continuous and [a, b] is bounded,

then it is possible to determine the minimum value f : I → R up to a given
tolerance with a finite number of operations.
To determine an interior minimum point amounts to finding a root of

f ′(x) = 0 and thus the constructibility of a minimum point can be reduced
to the constructibility of a root of f ′(x) = 0. We discussed the cost of
computing roots in Chapters Fixed Point Iteration and Newton’s method.

221.11 A Decreasing Bounded Sequence Converges!

Suppose {xi} is a bounded decreasing sequence, that is x1 ≥ x2 ≥ · · · ≥
xn ≥ xn+1 ≥ ..., and xn ≥ m for all n for some number m. Then the set of
all numbers xn is bounded below, and thus has a greatest lower bound m̄.
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We shall prove that limn→∞ xn = m̄. By the definition of greatest lower
bound, for all ǫ > 0 there is an xN such that m̄ ≤ xN ≤ m̄+ ǫ. Since xn ≤
xN for n ≥ N , and xn ≥ x̄, it follows that m̄ ≤ xn ≤ m̄+ ǫ for all n ≥ N ,
which proves the desired result. We summarize in the following theorem
which is a cornerstone of the analysis of functions of a real variables.

Theorem 221.5 Suppose {xi}∞i=1 is a decreasing sequence that is bounded
below or an increasing sequence that is bounded above. Then {xi}∞i=1 is
convergent.

Chapter 221 Problems

221.1. Find the maximum and minimum values of the function f(x1, x2) =
x2
1 + 2x2

2 − x1 on the unit disc x2
1 + x2

2 ≤ 1.

221.2. Find the point of the plane 3x1 + 4x2 − x3 = 26 which is closest to the
origin.

221.3. Find the shape of a box (with top included) which for given surface area
has maximal volume.

221.4. Seek minimum and maximum values of the following functions:

(a) f(x1, x2) = (1 + x2
1 + x2

2)
−1 for (x1, x2) ∈ R2, (b) f(x1, x2) = x1x2 for

x2
1 + x2

2 ≤ 1, (c) f(x1, x2, x3) = x1 + x2 + x3 for x2
1 + x2

2 + x2
3 ≤ 1.

221.5. Show that the function x4
1 + x4

2 + x4
3 − 4x1x2x3 has a minimum point at

(x1, x2.x3) = (1, 1, 1).

221.6. Find the triangle of largest area that can be inscribed in a given circle.

221.7. Find the point on the curve x2 = x2
1 which is closest to the point (0, 1).

221.8. Determine the constants a0 and a1 which minimize for a given function
f : [0, 1] → R, the integral

∫ 1

0

(f(x)− a0 − a1x)
2 dx.

221.9. Find the maximum value of x1 + x2 + ... + xn subject to the condition
x2
1 + x2

2 + ....+ x2
n ≤ 1.

221.10. A stationary point of a function f : Rn → R is a point x ∈ Rn such that
f ′(x) = 0. Determine if any of the stationary points of the following functions is
a maximum or minimum point: (a) f(x1, x2, x3) = x2

1+x
2
2+x

2
3−x1−x2+x3+1,

(b) f(x1, x2, x3) = x2
1+x

2
2+2x2

3+4x1−x2+x3+5, (c) f(x1, x2, x3) = cos(x1)+
cos(x2) + cos(x3).
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222
The Divergence, Rotation and
Laplacian

.. Stokes was a very important formative influence on subsequent gen-
erations of Cambridge men, including Maxwell. With Green, who in
turn had influenced him, Stokes followed the work of the French, es-
pecially Lagrange, Laplace, Fourier, Poisson and Cauchy. This is seen
most clearly in his theoretical studies in optics and hydrodynamics;
but it should also be noted that Stokes, even as an undergradu-
ate, experimented incessantly. Yet his interests and investigations
extended beyond physics, for his knowledge of chemistry and botany
was extensive, and often his work in optics drew him into those fields.
(Parkinson)

Appointed professor of mathematics at the Ecole Polytechnique in
1809 Ampére held posts there until 1828. Ampére and Cauchy shared
the teaching of analysis and mechanics and there was a great contrast
between the two with Cauchy’s rigorous analysis teaching leading to
great mathematical progress but found extremely difficult by stu-
dents who greatly preferred Ampére’s more conventional approach
to analysis and mechanics. (O’Connor and Robertson)

222.1 Introduction

We saw previously that the gradient of a function of several variables is a
practically useful differential operator. In this chapter, we introduce some
other useful operators, including the divergence, rotation and the Lapla-
cian, together with the gradient play a fundamental role in mathematical
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modeling in science and engineering. We first define the operators in R2

and then in R3, noting that the rotation takes somewhat different forms in
R2 and R3.

FIGURE 222.1. Napoleon to Laplace (1749-1827): “You have written this huge
book on the system of the world without once mentioning the Author of the
Universe”. Laplace to Napoleon: “Sire, I had no need of this hypothesis”

222.2 The Case of R2

We recall that the gradient of a function u : R2 → R, denoted grad u or∇u,
is the vector-valued function formed by the first order partial derivatives
of u, i.e.

grad u = ∇u =

(
∂u

∂x1
,
∂u

∂x2

)
.

The divergence of a vector function u = (u1, u2) : R2 → R2, denoted
div u or ∇ · u, is the scalar function defined by

div u = ∇ · u =
∂u1
∂x1

+
∂u2
∂x2

.

Formally, we have

∇ · u = (
∂

∂x1
,
∂

∂x2
) · (u1, u2)

where we may think of ( ∂
∂x1

, ∂
∂x2

) “as a vector” and let the dot indicate a
“scalar product”. This idea applies to all the formulas below involving ∇
combined with the operators · and ×.
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The rotation of a vector function u : R2 → R2, denoted by rot u or ∇×u,
is the scalar function

rotu = ∇× u =
∂u2
∂x1

− ∂u1
∂x2

= (
∂

∂x1
,
∂

∂x2
)× (u1, u2).

If u : R2 → R is a scalar function, then rotu = ∇ × u is defined as the
vector function

rotu = ∇× u =

(
∂u

∂x2
,− ∂u

∂x1

)
.

The different appearances of rotu = ∇× u, with u a scalar or u = (u1, u2)
a vector function will be explained when we pass to R3 below. For now, it
may be helpful to recall the different appearances of a × b with a, b ∈ R2

or a, b ∈ R3.
The following identities follow directly from the definitions for any func-

tion u:

∇ · (∇× u) = div (rot u) = 0, (u : R2 → R2)

∇× (∇u) = rot (grad u) = 0, (u : R2 → R).
(222.1)

Finally, the Laplacian ∆u of a function u : R2 → R is defined by

∆u = ∇ · (∇u) = div (grad u) =
∂2u

∂x21
+
∂2u

∂x22
,

where ∂2u
∂x2

i

= ∂
∂xi

( ∂u∂xi
).

222.3 The Laplacian in Polar Coordinates

In polar coordinates x = (x1, x2) = (r cos(θ), r sin(θ)) with r ≥ 0 and
0 ≤ θ < 2π, the Laplacian takes the form

∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
. (222.2)

This follows by a routine computation using that the Jacobian of the map-
ping x = (r cos(θ), r sin(θ)), in the notation (217.9) is given by

d(x1, x2)

d(r, θ)
=

(
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)
,

so that
d(r, θ)

d(x1, x2)
=

(
cos(θ) sin(θ)

− sin(θ)/r cos(θ)/r

)
,

and thus by the Chain rule

∂

∂x1
= cos(θ)

∂

∂r
− sin(θ)

r

∂

∂θ
and

∂

∂x2
= sin(θ)

∂

∂r
+

cos(θ)

r

∂

∂θ
.
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222.4 Some Basic Examples

The function u : R2 → R2 given by u(x) = 1
2 (x1, x2), satisfies

∇ · u(x) = 1.

The function v : R2 → R2 given by v(x) = 1
2 (−x2, x1), satisfies

∇× v(x) = 1.

The function w : R2 → R given by w(x) = 1
4 (x

2
1 + x22), satisfies

∆w = 1.

We plot these basic examples in Fig. 222.2
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FIGURE 222.2. Basic examples satisfying ∇ · u = 1, ∇ × v = 1 and ∆w = 1,
respectively.

We see that u(x) “explodes”, v(x) “rotates” and w(x) is a “hump”.

222.5 The Laplacian Under Rigid Coordinate
Transformations

It follows from the form of the Laplacian in polar coordinates, that the
Laplacian is invariant under rotations and translations in R2, i.e. so-called
rigid transformations of the form

x̃1 = cos(α)x1 + sin(α)x2 + a1

x̃2 = − sin(α)x1 + cos(α)x2 + a2,

where (x1, x2) are the old coordinates and (x̃1, x̃2) the new ones. In other
words, the Laplacian takes exactly the same form in the two coordinate
systems:

∂2u

∂x21
+
∂2u

∂x22
=
∂2u

∂x̃21
+
∂2u

∂x̃22
.

This fact is reflected in the observation that the Laplace operator typically
occurs in isotropic models that have the same properties in all directions.
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222.6 The Case of R3

The gradient of a function u : R3 → R, denoted grad u or ∇u, is the
vector-valued function formed by the set of first order partial derivatives
of u, i.e.

grad u = ∇u =

(
∂u

∂x1
,
∂u

∂x2
,
∂u

∂x3

)
.

For a vector function u : R3 → R3, the divergence div u is a scalar
function defined by

div u =

3∑

i=1

∂ui
∂xi

,

and rotu is the vector function

rot u = ∇× u =

(
∂u3
∂x2

− ∂u2
∂x3

,
∂u1
∂x3

− ∂u3
∂x1

,
∂u2
∂x1

− ∂u1
∂x2

)
.

We now explain the relation of the operator of rotation ∇× in R3 to the
operator of rotation ∇× in R2 introduced above. Consider first a function
u : R3 → R3 of the form u = (u1, u2, 0) with u1 and u2 being independent
of x3 so that effectively ui : R2 → R with ui = ui(x1, x2) for i = 1, 2.. We
have

∇× u = (0, 0,
∂u2
∂x1

− ∂u1
∂x2

) = (0, 0,∇× (u1, u2)).

Secondly, if u : R3 → R3 has the form u = (0, 0, u3) with u3 independent
of x3, so that effectively u3 : R2 → R, then

∇× u = (
∂u3
∂x2

,−∂u3
∂x1

, 0) = (∇× u3, 0).

We conclude that ∇× u for u : R2 → R and ∇× u for u : R2 → R2, may
be viewed as special cases of ∇× u for u : R3 → R3.
The Laplacian ∆u of a function u : R2 → R is defined by

∆u = ∇ · (∇u) = div (grad u) =

3∑

i=1

∂2u

∂x2i
.

By direct computation we verify the following identities:

∇ · (∇× u) = 0,

∇× (∇u) = 0,

∇× (∇× u) = −∆u+∇(∇ · u).
(222.3)
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222.7 Basic Examples, Again

The function u : R3 → R3 given by u(x) = 1
3x, satisfies

∇ · u(x) = 1.

The function v : R3 → R3 given by v(x) = 1
2 (−x2, x1, 0), satisfies

∇× v(x) = (0, 0, 1).

The function w : R3 → R given by w(x) = 1
6‖x‖2, satisfies

∆w = 1.

We plot these basic examples in Fig. 222.3
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FIGURE 222.3. Basic examples in R3 satisfying ∇ · u = 1, ∇× v = 1.

We see again that u(x) “explodes”, v(x) “rotates” along the x3 axis while
the “hump” w(x) is difficult to visualize.

222.8 The Laplacian in Spherical Coordinates

In spherical coordinates.

x = (x1, x2, x3) = (r sin(ϕ) cos(θ), r sin(ϕ) sin(θ), r cos(ϕ)),

where r ≥ 0, 0 ≤ θ < 2π and 0 ≤ ϕ < π, the Laplacian is given by

∆u =
1

r2
∂

∂r

(
r2
∂u

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂u

∂θ

)
+

1

r2 sin2(θ)

∂2u

∂ϕ2
. (222.4)

The Laplacian is invariant under orthogonal coordinate transformations in
R3.

Example 222.1. Consider the velocity field generated by rotation
around a vector ω ∈ R3 with angular speed ‖ω‖, that is the vector field

v(x) = ω × x.
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We compute

∇× v(x) = ∇× (ω2x3 − ω3x2, ω3x1 − ω1x3, ω1x2 − ω2x1)

= (2ω1, 2ω2, 2ω3) = 2ω.

We conclude that the rotation∇×v(x) of a velocity field v(x) generated
by a rotation according to a given vector ω is equal to 2ω. This motivates
the name of the differential operator ∇× as the “rotation”.

Example 222.2. A basic formula of electromagnetics expressing
Ampère’s law states that the magnetic field H generated by a unit
electrical current flowing through the x3-axis in the positive direction,
is given by

H(x) = H(x1, x2, x3) =
1

2π

(−x2, x1, 0)
x21 + x22

for x21 + x22 > 0. (222.5)

We compute

∇×H(x) =
1

2π
(0, 0,

∂

∂x1

x1
x21 + x22

− ∂

∂x2

−x2
x21 + x22

) = 0 for x21+x
2
2 > 0.

Thus∇×H(x) = 0 for x21+x
2
2 > 0, which is just Amperes’s Law∇×H =

J , where J is the current density, noting that J(x) = for x21 + x22 > 0,
i.e. outside the x3-axis. Amperes’s Law is one of Maxwell’s equations.
Below we shall show how to interpret the equation ∇ × H(x) = J(x)
for x21 + x22 = 0 and motivate the factor 1

2π in (222.5).

1. 5

1
0. 5

0

0.5

1
1.5

1. 5

1

0. 5

0

0.5

1

1.5

1

0. 5

0

0.5

1

x
1

x
2

x
3

FIGURE 222.4. The magnetic field around a current through the x3-axis
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Chapter 222 Problems

222.1. Let F = (5x1−3x1x2+x
2
3, sin(x1) cos(x1)+x1, sin(x1) exp(x1x2)). With

x = (1, 2, 3), compute (a) ∇ · F , (b) ∇× F , (c) ∇(∇ · F ), (d) ∇× (∇× F ).

222.2. Interpret the expression (∇ × ∇)u in a reasonable way and show that
(∇×∇)u = 0 for any u. Compare with ∇× (∇× u).

222.3. Show that for appropriate function u and v

1. ∇(uv) = (∇u)v + u(∇v),
2. ∇ · (uv) = (∇u) · v + u(∇ · v),
3. ∇× (uv) = (∇u)× v + u(∇× v),

4. ∇ · (u× v) = v · (∇× u)− u · (∇× v),

5. ∇× (u× v) = (v · ∇)u− (∇ · u)v − (u · ∇)v + (∇ · v)u,
6. ∇(u · v) = (u · ∇)v + (v · ∇)u+ u× (∇× v) + v × (∇× u).

222.4. Compute ∇(r · F (r)) where r = ‖x‖.

222.5. Prove that the velocity field v(x) = ω×x, where ω ∈ R3 is a given vector,
satisfies ∇ · v(x) = 0. Interpret the result in fluid mechanical terms.

222.6. Prove directly using the Chain rule that the Laplacian in R2 and R3 is
invariant under rigid coordinate transformations.

222.7. Prove (222.3), (222.2) and (222.4).

222.8. Show that if u : R2 → R, then ∇× (∇× u) = rot (rot u) = −∆u.

222.9. Show that the function u : R2 → R given by u(x) = c1 log(‖x‖)+ c2 with
c1 and c2 constants, is a solution of the Laplace equation ∆u(x) = 0 in R2 for
x 6= 0 .

222.10. Prove that the function u : R3 → R given by u(x) = c1‖x‖−1 + c2,
with c1 and c2 constants, is a solution of Laplace’s equation ∆u(x) = 0 in R3 for
x 6= 0.

222.11. Show that the divergence is invariant under rigid coordinate transfor-
mations. Does the rotation have the same property?

All the effects of Nature are only the mathematical consequences of
a small number of immutable laws. (Laplace)
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Curve Integrals

We can scarcely believe that Ampère really discovered the law of
action by means of the experiments which he describes. We are led to
suspect, what, indeed, he tells us himself, that he discovered the law
by some process which he has not shown us, and that when he had
afterwards built up a perfect demonstration he removed all traces of
the scaffolding by which he had raised it. (Maxwell about Ampères
Memoir on the Mathematical Theory of Electrodynamic Phenomena,
Uniquely Deduced from Experience)

223.1 Introduction

In this chapter we introduce the concept of an integral over a curve or
curve integral, and develop some applications including arc length, work
and line integrals. We start with plane curves parameterized by functions
s : I → R2, where I = [a, b] is an interval of the real line R. We then
generalize to curves in Rn parameterized by functions s : I → Rn with
n ≥ 2.

223.2 The Length of a Curve in R2

Let Γ be a curve in R2 given by the function s : I → R2, where I = [a, b] is
an interval of R, that is, Γ = {s(t) ∈ R2 : t ∈ I}, or Γ = s(I), see Fig. 223.1.
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We now try to determine the length of Γ. We shall see that this leads to the
introduction of the notion of an integral over a curve or a curve integral.
To define the length of a curve, we view the curve Γ as the being made

up of little pieces of Γ. If the little pieces are sufficiently small, we can get
away with approximating them by straight segments, and the length of a
straight piece of curve is easy to compute. To find the total length of Γ,
we will sum the lengths of all the little pieces forming Γ. We will find the
integral is useful for this purpose.

x1

x2

a bt
t

ti

Ii

ti−1
s(a)

s(b)

s(t)
s′(ti−1)

Γi

|Γi| = |s′(ti−1)|hn

FIGURE 223.1. The total length of curve is the sum of the lengths of little pieces
of the curve.

Let a = t0 < t1 < ... < tn = b be a subdivison of I into intervals
Ii = (ti−1, ti]. Consider the following linear approximation of the mapping
s(t) restricted to the subinterval Ii, see Fig. 223.1,

s̄(t) = s(ti−1) + (t− ti−1)s
′(ti−1).

The mapping s̄ maps Ii onto the line segment Γi of length

‖s′(ti−1)‖(ti − ti−1),

and it is thus natural to use

Ln(Γ) =

n∑

i=1

‖s′(ti−1)‖(ti − ti−1)

as an approximation of the length of Γ. Assuming that ‖s′(t)‖ is Lipschitz
continuous on I and assuming that maxi(ti− ti−1) tends to zero as n tends
to infinity, we can use the usual arguments to show that {Ln(Γ)}∞n=1 is a
Cauchy sequence and thus converges to a limit, which we denote by L(Γ).
We define this limit to be the length of Γ:

L(Γ) =

∫

I

‖s′(t)‖ dt. (223.1)

This formula expresses the length of a curve Γ = s(I) as an integral over
the parameter domain I of Γ with the modulus ‖s′(t)‖ of the derivative
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of the representing function s : I → R2 as a weight. Formally, we have
ds = ‖s′(t)‖dt, where ds represents the increase of the length of the curve
corresponding to an increase dt of the parameter t; the function ‖s′(t)‖
gives the local “change of scale” between the “element of curve length” ds;
and the “parameter element” dt, see Fig. 223.1. We are thus led to write

L(Γ) =

∫

Γ

ds =

∫

I

‖s′(t)‖ dt.

We will return to this notation in the next section.

Example 223.1. We compute the length of the circumference Γ of a
circle of radius 1 centered at the origin. The curve Γ is given by the
function s : [0, 2π) → R2 with s(t) = (cos(t), sin(t)) and 0 ≤ t < 2π.
We have s′(t) = (− sin(t), cos(t)) and ‖s′(t)‖ = 1, and thus

L(Γ) =

∫ 2π

0

‖s′(t)‖ dt =
∫ 2π

0

dt = 2π.

We conclude that the the length of the circumference of a circle of radius
1 is equal to 2π (no big surprise). We check the result using a different
parametrization. The upper semi-circle Γ+ of Γ can be parameterized
by s : [−1, 1] → R2 given by s(t) = (t,

√
1− t2) with −1 ≤ t ≤ 1. We

have

s′(t) = (1,− t√
1− t2

), ‖s′(t)‖ =
1√

1− t2
,

and thus

L(Γ) = 2L(Γ+)

=

∫ 1

−1

1√
1− t2

dt = 2
[
arcsin(t)

]1
−1

= 2(
π

2
− (−π

2
)) = 2π.

223.3 Curve Integral

Let Γ = s(I) be a curve in R2 given by the function s : I → R2, where
I = [a, b] is an interval of R, and let u : Γ → R be a function defined on Γ.
We assume that the tangent s′ : I → R2 and the function u : Γ → R are
both Lipschitz continuous, which guarantees that ‖s′(t)‖ and u(s(t)) are
both Lipschitz continuous on I. We define the integral of u over Γ by

∫

Γ

u ds ≡
∫

Γ

u(x) ds(x) ≡
∫ b

a

u(s(t))‖s′(t)‖ dt.

Formally, we have ds = ds(x) = ‖s′(t)‖ dt, where x = s(t).
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Example 223.2. If Γ is an interval [a, b] on the x1-axis given by
s(t) = (t, 0), a ≤ t ≤ b, then s′(t) = (1, 0), ‖s′(t)‖ = 1, and

∫

Γ

u ds =

∫ b

a

u(x1, 0) dx1 =

∫ b

a

u(t, 0) dt.

Example 223.3. Let Γ = s(I) be the semicircle given by s(t) =
(cos(t), sin(t)), 0 ≤ t ≤ π, and u(x) = u(x1, x2) = x21. Using ‖s′(t)‖ = 1,
we get

∫

Γ

u ds =

∫ π

0

cos2(t) dt =
1

2

∫ π

0

(1 − cos(2t)) dt =
π

2
.

223.4 Reparameterization

An important observation is that the value of a curve integral is indepen-
dent of the parameterization of the curve. To see this, consider two different
parameterizations s : [a, b] → Γ and σ : [c, d] → Γ of a curve Γ in R2. As-
sociate to each τ ∈ [c, d] the unique value t ∈ [a, b] such that s(t) = σ(τ),
which defines t = t(τ)) as a function of τ (assuming that the curve does
not cross itself), so that σ(τ) = s(t(τ)), see Fig. 223.2.

a bt
t

c d
τ

τ

Γs(t)
σ(τ )

FIGURE 223.2. Reparametrization of a curve.

We now use the formula for change of integration variables and the fact
that by the Chain rule

σ′(τ) =
dσ

dτ
=
ds

dt

dt

dτ
= s′(t)

dt

dτ
,

to see that, assuming dt
dτ ≥ 0,

∫ b

a

u(s(t))‖s′(t)‖ dt =
∫ d

c

u(s(t(τ)))‖s′(t(τ))‖ dt
dτ

dτ

=

∫ d

c

u(σ(τ))‖σ′(τ)‖ dτ.
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This shows that the curve integral
∫

Γ

u ds =

∫

Γ

u dσ

is independent of the parametrization s : [a, b] → Γ or σ : [c, d] → Γ of Γ.

Example 223.4. We reparameterize the semicircle Γ in the previous
example by s(t) = (t,

√
1− t2) with −1 ≤ t ≤ 1 and get with u(x) = x21,

integrating by parts
∫

Γ

u ds =

∫ 1

−1

t
t√

1− t2
dt =

[
−t
√
1− t2

]1
−1

+

∫ 1

−1

√
1− t2 dt

=

∫ 0

−π

√
1− cos2(θ)(− sin(θ)) dθ =

∫ π

0

sin2(θ) dθ =
π

2
.

223.5 Work and Line Integrals

Let F : R2 → R2 be a vector function representing a variable force, or a
force field, defined in R2, and let Γ be a curve in R2 given by s : [a, b] → R2

starting at A = s(a) and ending at B = s(b). Consider a particle acted
upon by the force F moving along Γ from A to B, see Fig. 223.3. The
projection Fs(s(t)) of the force F (s(t)) on the direction s′(t) of the tangent
to s(t) is equal to

Fs(s(t)) = F (s(t)) · s′(t) 1

‖s′(t)‖ . (223.2)

A

B
Γ

s(t)

s′(t)

F (s(t))

Fs(s(t))

FIGURE 223.3. Force field F and curve Γ, and projection of F onto s′(t).

Using the idea that “the work is equal to the projection of the force in
the direction of the displacement × displacement”, the work performed by
the force F (s(t)) as the particle moves from s(ti−1) to s(ti) is

F (s(ti)) · s′(ti)
1

‖s′(ti)‖
‖s(ti)− s(ti−1)‖

≈ F (s(ti)) · s′(ti)
1

‖s′(ti)‖
‖s′(ti)‖(ti)− ti−1) = F (s(ti)) · s′(t)(ti − ti−1).



1522 223. Curve Integrals

As above a = t0 < t1 < ...ti−1 < ti < ... < tn = b is an increasing sequence
of discrete time levels, where we think of the time steps ti− ti−1 as tending
to zero. We are now led to define the total work W (F,Γ) as the particle
moves from A = s(a) to B = s(b) along Γ, as

W (F,Γ) =

∫ b

a

F (s(t)) · s′(t) dt.

Setting ds = s′(t) dt, we also write

∫

Γ

F · ds =
∫ b

a

F (t) · s′(t) dt,

which we call a line integral. To sum up, we have

W (F,Γ) =

∫

Γ

F · ds =
∫ b

a

F (t) · s′(t) dt

=

∫ b

a

(F1(t)s
′
1(t) + F2(t)s

′
2(t)) dt.

(223.3)

Alternatively, we can write

W (F,Γ) =

∫

Γ

Fs ds =

∫ b

a

Fs‖s′(t)‖ dt =
∫

Γ

F · ds, (223.4)

with Fs being the projection of F onto s′(t) according to (223.2).

Example 223.5. Assume that F (x) = (x2,−x1) and let Γ be given
by s(t) = (cos(t), sin(t)), 0 ≤ t < 2π. We have

W (F,Γ) =

∫

Γ

F · ds =
∫ 2π

0

(sin(t),− cos(t)) · (− sin(t), cos(t)) dt

= −
∫ 2π

0

dt = −2π.

223.6 Work and Gradient Fields

There is an important special case. If F = ∇ϕ, that is the force field F is
the gradient field of a potential ϕ(x), then the Chain rule implies

W (F,Γ) =

∫

Γ

F · ds =
∫ b

a

∇ϕ(s(t)) · s′(t) dt

=

∫ b

a

d

dt
ϕ(s(t)) dt = ϕ(B)− ϕ(A).
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We conclude that if the force field F is the gradient field F = ∇ϕ of a
potential ϕ(x), then the work performed by F along a curve Γ from A to
B is equal to the difference ϕ(B) − ϕ(A) of the values of the potential ϕ
at the end point B and the starting point A. In other words, the work is
independent of the curve from A to B. In particular, if the curve is closed
so that B = s(b) = s(a) = A, then the work is zero.
Below we consider the problem of finding conditions guaranteeing that

a given force F (x) is the gradient of a potential so that F (x) = ∇ϕ(x) for
some scalar function ϕ(x).

Example 223.6. As a basic application, we consider the attractive
gravitational force F (x) = ∇ϕ(x) with ϕ(x) = 1/‖x‖ being the New-
tonian potential, corresponding to a unit mass at the the origin, that
is

F (x) = − 1

‖x‖2
x

‖x‖ ,

with normalization of the gravitational constant to one. We note that
F (x) is directed towards the origin and obeys the inverse square law:
‖F (x)‖ = ‖x‖−2. We have

W (F,Γ) =
1

‖B‖ − 1

‖A‖ ,

which corresponds to the work performed as a unit mass moves in the
gravitational field from a distance ‖A‖ to the distance ‖B‖ from the
origin. In particular, if ‖A‖ = ∞, then W (F,Γ) = 1/‖B‖. We conclude
that the work required to “lift” a particle of unit mass from a distance
r of an attracting gravitational field of unit strength at the origin to an
infinite distance is equal to 1/r.

223.7 Using the Arclength as a Parameter

Note that if u(x) = 1 for all x ∈ Γ, then

∫

Γ

ds =

∫

Γ

1 ds =

∫

Γ

u(x) ds(x) =

∫ b

a

‖s′(t)‖ dt

is the length of the curve Γ = s(I) with I = [a, b]. In particular,

σ(t̄) =

∫ t̄

a

‖s′(t)‖ dt

is the arclength of the part of the curve from s(a) to s(t̄). The Fundamental
Theorem of Calculus implies

σ′(t̄) = ‖s′(t̄)‖. (223.5)
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We may now choose the arclength σ = σ(t) as the parameter instead of t
since to each t, there is a unique arclength σ(t) and vice versa. This gives
a reparameterization of s(t) = s̄(σ) with

‖s̄′(σ)‖ = ‖ds
dt

‖| dt
dσ

| = ‖s′(t)‖ 1

|σ′(t)| =
‖s′(t)‖
‖s′(t)‖ = 1.

We conclude that if the arclength σ to used to parameterize the curve
s : I → R2, then ‖s′(σ)‖ = 1 and, see Fig. 223.4,

L(Γ) =

∫

Γ

ds =

∫ L(Γ)

0

dσ.

s( )

s(0)

x1

x2

FIGURE 223.4. A curve Γ parameterized by arclength σ.

223.8 The Curvature of a Plane Curve

The curvature of a curve s : [a, b] → R2 measures of how quickly the curve
bends as we move along the curve. It is defined by

κ =
dθ

dσ
,

where θ is the polar angle of the tangent vector s′ = (s′1, s
′
2) defined by

θ(t)) = tan−1
(
s′2/s

′
1

)
and σ is arclength. In the case of a straight line, the

polar angle θ(t) is constant and the curvature is zero, see Fig. 223.5.
The arc length σ(t) satisfies, recalling (223.5), dσdt = |s′|, and thus dt

dσ =
|s′|−1. The chain rule implies

κ(t) =
dθ

dt

dt

dσ
=

θ′(t)

‖s′(t)‖ .

Computing θ′(t), we find that

κ(t) =
s′1(t)s

′′
2(t)− s′′1 (t)s

′
2(t)(

s′1(t)
2 + s′2(t)

2
)3/2 .
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(t)

s /(t)

s(t)

(t)

s /(t)

s(t)

x1

x2 x2

x1

FIGURE 223.5. The polar angle θ of the tangent vector of a straight line is
constant as shown on the right. The tangent vector of a curve that bends, like
the example on the left, has a different polar angle at each point.

In particular if the curve is parameterized by s(x1) = (x1, f(x1)), where
f : R → R has two continuous derivatives, then the curvature at the point
(x1, f(x1)), is given by

κ(x1) =
f ′′(x1)(

1 + (f ′(x1))2
)3/2 .

We define the circle of curvature at a point P = s(t) on a curve s :
[a, b] → R2, as the circle of radius |κ|−1(t) (assuming κ 6= 0) that shares
the same tangent line as Γ at P and points to the left of T if κ > 0 and to
the right if κ < 0, see Fig. 223.6. The radius of curvature at P is |κ|−1(t).

| |-1

P

s /

s

FIGURE 223.6. The circle of curvature of Γ at P .

223.9 Extension to Curves in Rn

The definitions of integrals over curves and line integrals directly extend
to curves in Rn represented by s : [a, b] → Rn with n ≥ 2.
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Example 223.7. Consider the circular helix Γ in R3 given by s(t) =
(cos(t), sin(t), t), 0 ≤ t ≤ 20π, and let u(x) = x23. We have since s′(t) =
(− sin(t), cos(t), 1) and thus ‖s′(t)‖ =

√
2,

∫

Γ

u ds =

∫ 20π

0

t2
√
2 dt =

√
2

3
(20π)3.

Chapter 223 Problems

223.1. (a) Compute the length of (a) the catenary (hanging chain curve) given by
s(t) = (t, cosh (t)) with −1 ≤ t ≤ 1, (b) the circular helix s(t) = (cos(t), sin(t), t)
with 0 ≤ t ≤ 4π, (c) the cycloid s(t) = (t − sin(t), 1 − cos(t)) with 0 ≤ t ≤ 2π,
(d) the semi-cubical parabola s(t) = (t3, t2) with 0 ≤ t ≤ 2, (e) the four-cusped
hypocycloid or astroid s(t) = (cos3(t), sin3(t)).

223.2. Let Γ be the circular helix s(t) = (cos(t), sin(t), t) with t ∈ [0, 2π).
Compute the value of the curve integral

∫
Γ
u ds for (a) u(x) = 1, (b) u(x) = x3,

(c) u(x) = x1x2x3.

223.3. Compute the curve integral
∫
Γ
x1x2 ds, where (a) Γ is the part of the

unit circle in the x1x2-plane from (1, 0, 0) to (0, 1, 0), (b) Γ is the part of the unit
square in the x1x2-plane from (1, 0, 0) to (0, 1, 0). (c) Γ is the shortest path from
(1, 0, 0) to (0, 1, 0).

223.4. (a) Compute the line integral
∫
Γ
x · ds where Γ is the unit circle in the

x1x2-plane. (b) Try other choices of closed curves Γ and evaluate the integral.

223.5. Compute the line integral
∫
Γ
F · ds with Γ the unit circle in the x1x2

plane and (a) F (x) = (x1,x2)

|x|2 , (b) F (x) = (−x2,x1)
|x|2 . Does the result depend on

whether you integrate around the unit circle clockwise or counter-clockwise?

223.6. A particle is moved counter-clockwise around the square 0 ≤ x1, x2 ≤ 1,
x3 = 0 under the action of the force field f(x) = ((x1 − x2)

2, 2x2 + x2
1, x1).

Compute the work done.

223.7. Let f(x) = (2x1 + x2, 3x1 − 2x2). Compute
∫
Γ
f · ds with Γ given by

(a) the straight line from (0, 0) to (1, 1), (b) the parabola x2 = x2
1 from (0, 0) to

(1, 1), (c) the curve x2 = sin(πx1/2) from (0, 0) to (1, 1), (d) the curve x2 = xn1
with n > 0 from (0, 0) to (1, 1).

223.8. Compute the integral of u = x1 x2 over the boundary of the unit square
[0, 1]× [0, 1].

223.9. Find the circle of curvature of x2 = x2
1 at x1 = 0.

223.10. Find the curvature of the plane curve
(
R cos(θ), R sin(θ)

)
where R is

constant. Conclude that the curvature of a circle of radius R is R−1.
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223.11. Verify the two formulas for the curvature.

223.12. (a) Compute the curvature of the curve (x1, x
2
1). (b) Do the same for

(x1, x
3
1), and then discuss what happens at the inflection point.

223.13. Consider a hanging chain described by a function y(x) with −1 ≤ x ≤ 1
and y(−1) = y(1). Let for 0 ≤ x ≤ 1, T (x) be the modulus of the chain force
at x, and let s(x) be the length of the chain from 0 to x. Derive the vertical
equilibrium equation

y′(x) = cs(x) = c

∫ 1

0

√
1 + (y′(x))2 dx,

with c a constant. Show that this equation is satisfied with y′(x) = sinh(x
c
), and

conclude that y(x) = c cosh(x
c
).

223.14. Find the direction of the tangent at the point (1, 1, 1) of the curve cut
out on the surface x2

1 + x2
1x2 + x2

2x3 + x2
3 = 0. Hint: Use implicit differentiation.

223.15. Show that if a plane curve Γ is represented in polar coordinates (ρ(θ), θ)
with ρ(theta) a function of θ and a ≤ θ ≤ b, then ds2 = ρ2 dθ2 + dρ2 and thus

L(Γ) =

∫ b

a

(ρ2 + (ρ′)2)1/2 dθ.

Compute the the length of the cardioid ρ = (1− cos(θ) with 0 ≤ θ ≤ 2π.

223.16. Compute the length of a string which is wound around a circular cylinder
with a uniform pitch.
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224
Double Integrals

To understand this for sense it is not required that a man should be
a geometrician or a logician, but that he should be mad. [”This” is
that the volume generated by revolving the region under 1/x from 1
to infinity has finite volume.] (Hobbes 1588-1679)

He was 40 years old before he looked on geometry; which happened
accidentally. Being in a gentleman’s library, Euclid’s Elements lay
open, and ”twas the 47 El. libri I” [Pythagoras’ Theorem]. He read
the proposition . ”By God”, sayd he, ”this is impossible:” So he
reads the demonstration of it, which referred him back to such a
proposition; which proposition he read. That referred him back to
another, which he also read. Et sic deinceps, that at last he was
demonstratively convinced of that trueth. This made him in love
with geometry. (About Thomas Hobbes by John Aubrey 1626-1697)

224.1 Introduction

We have studied the integral
∫ 1

0

f(x) dx,

where f : [0, 1] → R is a Lipschitz continuous function of one variable. We
call this a one-dimensional integral. We generalize this idea to the double
integral ∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2, (224.1)
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which has two integration variables x1 and x2 that run from 0 to 1. Here
f : Q → R is a Lipschitz continuous function defined on the unit square
Q = [0, 1]× [0, 1] = {x = (x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}, satisfying

|f(x)− f(y)| ≤ Lf‖x− y‖ for x, y ∈ Q. (224.2)

224.2 Double Integrals over the Unit Square

Recall that we define the one dimensional integral as

∫ 1

0

f(x) dx = lim
n→∞

N∑

i=1

f(xni )hn, (224.3)

where 0 = xn0 < xn1 < ... < xnN = 1 is a subdivision of the interval [0, 1]
with xni = ihn, i = 1, ..., N and hn = 2−n and N = 2n.
To define the double integral, we let 0 = xn1,0 < xn1,1 < ... < xn1,N = 1

and 0 = xn2,0 < xn2,1 < ... < xn2,N = 1 be a subdivisions of the interval
[0, 1] with xn1,i = ihn, i = 0, ..., N , and xn2,j = jhn, j = 0, ..., N , where
hn = 2−n and N = 2n. This corresponds to a subdivision of the unit
squareQ = [0, 1]×[0, 1] into sub-squaresQni,j = Ini ×Jnj of area hnhn, where
Ini = (xn1,i−1, x

n
1,i] J

n
j = (xn2,j−1, x

n
2,j ], where i, j = 1, ..., N , see Fig. 224.1.

hn

hn

Qnij

hn

Qnmij

hm

FIGURE 224.1. Partition of the unit square Q into quadratic or rectangular
sub-domains Qnij or Qnmij .

We shall prove that the limit limn→∞ Sn exists, where

Sn =

N∑

i=1

N∑

j=1

f(xn1,i, x
n
2,j)hnhn (224.4)

is a Riemann sum over all the sub-squares Qni,j . We define

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 = lim
n→∞

N∑

i=1

N∑

j=1

f(xn1,i, x
n
2,j)hnhn. (224.5)
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We begin by estimating the difference Sn−Sn+1 with the goal of proving
that {Sn} is a Cauchy sequence. Each sub-square Qni,j consists of the four

sub-squares Qn+1
2i,2j , Q

n+1
2i−1,2j Q

n+1
2i,2j−1, and Qn+1

2i−1,2j−1, see Fig. 224.2. We
have

Sn − Sn+1 =

N∑

i=1

N∑

j=1

aijhnhn,

where, see Fig. 224.2,

aij = f(xn1,i, x
n
2,j)−

1

4

(
f(xn+1

1,2i , x
n+1
2,2j ) + f(xn+1

1,2i−1, x
n+1
2,2j )

+ f(xn+1
1,2i , x

n+1
2,2j−1) + f(xn+1

1,2i−1, x
n+1
2,2j−1)

)
.

(xn+12i−1, x
n+1
2j−1) (xn+12i−1, x

n+1
2j )

(xn+12i−1, x
n+1
2j ) (xn+12i , x

n+1
2j )=(xni , x

n
j )

0

0.5

1

1.5

2

2.5

3

FIGURE 224.2. On the left: Qnij and four sub-squares and quadrature point. On
the right: A function f(x1, x2) and its piecewise constant approximation on Qnij
and on the four sub-squares.

The Lipschitz continuity condition (224.2) implies

|aij | ≤
1

4
Lf (hn+1 + hn+1 +

√
2hn+1) ≤ Lfhn+1,

and thus

|Sn − Sn+1| ≤
N∑

i=1

N∑

j=1

|aij |hnhn ≤ Lfhn+1

N∑

i=1

N∑

j=1

hnhn = Lfhn+1.
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The usual arguments show that for m > n,

|Sn − Sm| ≤ 2Lfhn+1 = Lfhn,

which proves that {Sn} is a Cauchy sequence and thus converges to a real
number. We decide, following our dear friends Leibniz and Cauchy as usual,
to denote this real number by

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 = lim
n→∞

Sn = lim
n→∞

N∑

i=1

N∑

j=1

f(xn1,i, x
n
2,j)hnhn.

We shall also use the notation

∫

Q

f(x) dx =

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2.

We summarize as follows:

Theorem 224.1 If f : [0, 1]× [0, 1] → R is Lipschitz continuous, then the
limit

lim
n→∞

N∑

i=1

N∑

j=1

f(xn1,i, x
n
2,j)hnhn,

exists, where hn = 2−n and N = 2n, xn1,i = ihn, x
n
2,j = jhn, and we define

∫

Q

f(x) dx =

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 = lim
n→∞

N∑

i=1

N∑

j=1

f(xn1,i, x
n
2,j)hnhn.

(224.6)

In general, the partitions in x1 and x2 can be independent, leading to
Riemann sums of the form

Snm =

N∑

i=1

M∑

j=1

f(xn1,i, x
m
2,j)hnhm, (224.7)

where hn = 2−n and N = 2n, hm = 2−m and M = 2m. This corresponds
to a subdivision of Q into sub-squares Qnmij = Ini × Jmj . The proof above
directly generalizes to prove that if n ≥ n and m ≥ m then

|Snm − Snm| ≤ Lf max(hn, hm).

This proves the following generalization of the previous theorem.



224.3 Double Integrals via One-Dimensional Integration 1533

Theorem 224.2 Suppose f : [0, 1] × [0, 1] → R is Lipschitz continuous.
Then the following limit exists

lim
n,m→∞

N∑

i=1

M∑

j=1

f(xn1,i, x
m
2,j)hnhm,

where hn = 2−n, N = 2n, hm = 2−m, M = 2m, xn1,i = ihn, x
m
2,j = jhm,

and

∫

Q

f(x) dx =

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 = lim
n,m→∞

N∑

i=1

M∑

j=1

f(xn1,i, x
m
2,j)hnhm.

(224.8)

224.3 Double Integrals via One-Dimensional
Integration

To compute the Riemann sum Snm, we have to perform a summation over
all the sub-squares Qnmij covering Q. The summation may be performed in
different orders, row by row, column by column, or in some other order. We
thus obtain the following alternative expressions for the double integral of
f(x1, x2) over Q:

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 = lim
n,m→∞

N∑

i=1

M∑

j=1

f(xn1,i, x
m
2,j)hnhm

= lim
n,m→∞

N∑

i=1

( M∑

j=1

f(xn1,i, x
m
2,j)hm

)
hn

= lim
n,m→∞

M∑

j=1

( N∑

i=1

f(xn1,i, x
m
2,j)hn

)
hm,

where
∑N

i=1

∑M
j=1 indicates an arbitrary order of summation,

∑N
i=1

(∑M
j=1

)

summation column by column, and
∑M

j=1

(∑N
i=1

)
summation row by row

over the subdomains Qnmij of Q in the x1x2-plane, see Fig. 224.3
We can also perform the limits with respect to n and m independently,

and we then arrive at the formula
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FIGURE 224.3. Different orders of summation

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 = lim
n,m→∞

N∑

i=1

M∑

j=1

f(xn1,i, x
m
2,j)hnhm

= lim
n→∞

N∑

i=1

(
lim
m→∞

M∑

j=1

f(xn1,i, x
m
2,jhm

)
hn

= lim
m→∞

M∑

j=1

(
lim
n→∞

N∑

i=1

f(xn1,i, x
m
2,jhn

)
hm.

This corresponds to the following formula:

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 =

∫ 1

0

(∫ 1

0

f(x1, x2) dx2
)
dx1

=

∫ 1

0

(∫ 1

0

f(x1, x2) dx1
)
dx2,

or ∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 =

∫ 1

0

g1(x1) dx1 =

∫ 1

0

g2(x2) dx2,

where

g1(x1) =

∫ 1

0

f(x1, x2) dx2 = lim
m→∞

M∑

j=1

f(x1, x
m
2,j)hm

and

g2(x2) =

∫ 1

0

f(x1, x2) dx1 = lim
n→∞

N∑

i=1

f(xn1,i, x2)hn

define functions g1(x1) and g2(x2) of x1 and x2 respectively. In other words,
the double integral of f(x1, x2) over [0, 1]×[0, 1] equals the integral of g2(x2)
over [0, 1],

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 =

∫ 1

0

g2(x2)dx2 = lim
n→∞

M∑

j=1

g2(x
m
2,j)hm,
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and equals the integral of g1(x1) over [0, 1],

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 =

∫ 1

0

g1(x1)dx1 = lim
n→∞

N∑

i=1

g1(x
n
1,i)hn.

We conclude that a double integral can be computed by repeated, or iter-
ated, integration in one dimension. We may summarize this experience as
follows:

Theorem 224.3 If f : [0, 1]× [0, 1] → R is Lipschitz continuous, then

∫

Q

f(x) dx =

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 =

=

∫ 1

0

(∫ 1

0

f(x1, x2) dx2
)
dx1 =

∫ 1

0

(∫ 1

0

f(x1, x2) dx1
)
dx2.

We can interpret the statement of this theorem as a change of order of
integration in the sense that integrating with respect to x1 and then with
respect to x2 gives the same result as integrating first with respect to x2
and then with respect to x1. The usual way to evaluate a double integral
is to use iterated one-dimensional integration in some order.

Example 224.1.

With Q = [0, 1]× [0, 1],

∫

Q

x1x
3
2 dx =

∫ 1

0

∫ 1

0

x1x
3
2 dx1dx2 =

∫ 1

0

x1
(∫ 1

0

x32 dx2
)
dx1

=

∫ 1

0

x1
[x42
4

]1
0
dx1 =

1

4

∫ 1

0

x1dx1 =
1

4

[x21
2

]1
0
=

1

8
.

∫

Q

x1x
3
2 dx =

∫ 1

0

∫ 1

0

x1x
3
2 dx1dx2 =

∫ 1

0

x32
(∫ 1

0

x1 dx1
)
dx2

=

∫ 1

0

x32
[x21
2

]1
0
dx2 =

1

2

∫ 1

0

x32dx2 =
1

2

[x42
4

]1
0
=

1

8
.

Alternatively, we may first integrate with respect to x1 and then with
respect to x2 to get,

∫

Q

x1x
3
2 dx =

∫ 1

0

∫ 1

0

x1x
3
2 dx1dx2 =

∫ 1

0

x32
(∫ 1

0

x1 dx1
)
dx2

=

∫ 1

0

x32
[x21
2

]1
0
dx2 =

1

2

∫ 1

0

x32dx2 =
1

2

[x42
4

]1
0
=

1

8
.
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224.4 Generalization to an Arbitrary Rectangle

The double integral defined on the unit square generalizes directly to inte-
grals over arbitrary rectangles Q = [a1, b1] × [a2, b2] with sides parallel to
the axis. If f : Q→ R is Lipschitz continuous, then

∫

Q

f(x) dx =

∫

Q

f(x1, x2) dx1dx2 =

∫ b1

a1

(∫ b2

a2

f(x1, x2
)
dx2) dx1

=

∫ b2

a2

(∫ b1

a1

f(x1, x2) dx1
)
dx2.

224.5 Interpreting the Double Integral as a Volume

The sum
N∑

i=1

N∑

j=1

f(xn1,i, x
n
2,j)hnhn (224.9)

represents the sum of the volumes

f(xn1,i, x
n
2,j)hnhn (224.10)

of thin boxes with cross-section of area hnhn and height f(xn1,i, x
n
2,j). Intu-

itively, this is an approximation of the volume under the graph of f(x1, x2)
with (x1, x2) varying overQ. It is thus natural to define the volume V (f,Q)
under the graph of f(x1, x2) over Q to be

V (f,Q) =

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 (224.11)

Example 224.2. We compute the volume of a pyramid of height 1
with base [0, 2] × [0, 2], see Fig. 224.4. One quarter of the volume is
equal to the integral

∫
Q
f(x) dx, where Q = [0, 1]× [0, 1], f(x) = x2 for

x ∈ Q such that x2 ≤ x1 and f(x) = x1 for x ∈ Q such that x1 ≤ x2.
We have

V (f,Q) =

∫

Q

f(x) dx =

∫ 1

0

(∫ x1

0

x2 dx2 +

∫ 1

x1

x1 dx2
)
dx1

=

∫ 1

0

(
x21
2

+ x1(1− x1) dx1 =
[x21
2

− x31
6

]1
0
=

1

2
− 1

6
=

1

3
.

We conclude that the volume of the pyramid is equal to 4
3 . This agrees

with the standard formula stating that the volume of a pyramid is equal
to 1

3Bh, where B is the area of the base and h is the height.
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1
2

x1

x2

FIGURE 224.4. Volume of pyramid

224.6 Extension to General Domains

We next define the double integral of a function f(x) over a more general
domain Ω in the plane. We start by assuming that the boundary Γ of Ω is
described by two curves x2 = γ1(x1) and x2 = γ2(x1) for 0 ≤ x1 ≤ 1, as
shown in Fig. 224.5, so that Ω = {x ∈ [0, 1] × R : γ1(x1) ≤ x2 ≤ γ2(x1)}
We assume that the functions γi : [0, 1] → R are Lipschitz continuous with
Lipschitz constant Lγ . We further assume that f : Ω → R is Lipschitz
continuous with Lipschitz constant Lf .

n

x1

x2

Γ

Ω

x2 = γ1(x1)

x2 = γ2(x1)

FIGURE 224.5. The domain Ω in the plane

We assume that Ω is contained in the unit square Q. We partition Q as
above into squares Ini × Jnj of area hnhn, where I

n
i = (xn1,i−1, x

n
1,i] J

n
j =

(xn2,j−1, x
n
2,j ]. We denote by ωn the set of indices (i, j) such that the square

Ini ×Jnj intersects Ω, and we let Ωn be the union of the squares Ini ×Jnj with
indices (i, j) ∈ ωn. In other words, Ωn is an approximation of Ω consisting
of all the squares Ini × Jnj in Q that intersect Ω. We consider the Riemann
sum

Sn =
∑

(i,j)∈ωn

f(xn1,i, x
n
2,j)hnhn. (224.12)
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We shall prove that limn→∞ Sn exists and then naturally define

∫

Ω

f(x) dx = lim
n→∞

∑

(i,j)∈ωn

f(xn1,i, x
n
2,j)hnhn. (224.13)

To this end, we estimate the difference Sn−Sn+1, which now has contribu-
tions from two sources; (i) from the variation of f(x) over each sub-square
Ini × Jnj , and (ii) from the difference between Ωn and Ωn+1.
The first contribution can be shown to be bounded by Lfhn by arguing

just as for integration over a square. The second contribution is bounded by
2A(1 +Lγ)hn, where A is a bound for |f(x)|, that is |f(x)| ≤ A for x ∈ Ω.
This follows from the observation that if a square Ini ×Jnj of Ωn, is entirely
outside or inside Ω, then so are all the four squares of Ωn+1 within Ini ×Jnj .
The difference between Ωn and Ωn+1 arises from the squares Ini ×Jnj which
are partly inside and partly outside Ω. The area of these squares is bounded
by 2Lγhn, where the factor 2 arises from the fact that there are two curves
γ1 and γ2, see Fig. 224.6. The difference in area between Ωn and Ωn+1 is
thus bounded by 2Lγhn.

Γ

Ω

FIGURE 224.6. Approximation of integral over general domain

Together, this shows that

|Sn − Sn+1| ≤ (Lf + 2ALγ)hn, (224.14)

which as proves that limn→∞ Sn exists. We summarize as follows:

Theorem 224.4 Let Ω = {x ∈ [0, 1]× R : γ2(x1) ≤ x2 ≤ γ1(x1)}, where
γi : [0, 1] → R are Lipschitz continuous, and let f : Ω → R be Lipschitz
continuous. Then limn→∞ Sn exists, where Sn is the Riemann sum defined
by (224.12), and we define

∫

Ω

f(x) dx =

∫

Ω

f(x1, x2) dx1dx2 = lim
n→∞

Sn. (224.15)
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224.7 Iterated Integrals over General Domains

The integral of a function f(x) over a domain Ω = {x ∈ [0, 1]×R : γ2(x1) ≤
x2 ≤ γ1(x1)} may be computed by iterated integration in one dimension
as follows

∫

Ω

f(x) dx =

∫

Ω

f(x1, x2) dx1 dx2 =

∫ 1

0

(∫ γ1(x1)

γ2(x1)

f(x1, x2) dx2

)
dx1.

(224.16)
This is another way of expressing the fact that,

∫

Ω

f(x) dx = lim
n→∞

∑

(i,j)∈ωn

f(xn1,i, x
n
2,j)hnhn

= lim
n→∞

N∑

i=1

( ∑

j:(i,j)∈ωn

f(xn1,i, x
n
2,j)hn

)
hn

The role of x1 and x2 may be interchanged and the integral is inde-
pendent of the particular representation of Γ. To handle a more gen-
eral domain Ω, we split Ω into appropriate sub-domains Ωj and define∫
Ω f dx =

∑
j

∫
Ωj
f dx. Again the integral of f over Ω represents the vol-

ume of the domain under the graph of f over Ω.
Evaluation of an integral over a two-dimensional domain by repeated

integration was used by Euler in 1738, when he computed the gravitational
attraction of an elliptic lamina.

Example 224.3. We compute the double integral

I =

∫

Ω

(x21 + x2) dx,

over the domain Ω = {x ∈ R2 : x21 ≤ x2 ≤ x1, 0 ≤ x1 ≤ 1}. We have

I =

∫ 1

0

(∫ x1

x2
1

(x21 + x2) dx2
)
dx1 =

∫ 1

0

[
x21x2 +

x22
2

]x1

x2
1
dx1

=

∫ 1

0

(x31 +
x21
2

− x41 −
x41
2
)dx1 =

1

4
+

1

6
− 1

5
− 1

10
=

7

60
.

Example 224.4. We compute the double integral

I =

∫

Ω

1

x2
dx
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over the domain Ω = {x ∈ R2 : 1 ≤ x2 ≤ exp(x1), 0 ≤ x1 ≤ 1}. We
have

I =

∫ 1

0

(∫ exp(x1)

1

1

x2
dx2
)
dx1 =

∫ 1

0

[
log(x2)

]exp(x1)

1
dx1

=

∫ 1

0

x1dx1 =
1

2
.

224.8 The Area of a Two-Dimensional Domain

We define the area A(Ω) of a domain Ω in R2 by

A(Ω) =

∫

Ω

dx, (224.17)

i.e. by integration of the constant function f(x) = 1 over Ω. If Ω = {x ∈
[0, 1]× R : γ1(x1) ≤ x2 ≤ γ2(x1)}, then

A(Ω) =

∫ 1

0

(∫ γ1(x1)

γ2(x1)

dx2

)
dx1 =

∫ 1

0

(
γ2(x1)− γ1(x1)

)
dx1,

which conforms with the previous formula of the area between the curves
γ1(x1) and γ1(x1) as the integral of the difference γ2(x1)− γ1(x1).

Example 224.5. The area of the triangle Ω with corners at (0, 0),
(1, 0) and (1, 1), can be computed as follows

A(Ω) =

∫

Ω

dx =

∫ 1

0

(

∫ x1

0

dx2) dx1 =

∫ 1

0

1

2
dx1 =

1

2
.

224.9 The Integral as the Limit of a General
Riemann Sum

We defined the integral using uniform subdivisions in x1 and x2, resulting
in approximate subdivisions of a given domain Ω in R2 into squares or
rectangles. We can however use more general subdivisions of Ω. Suppose
that f : Ω → R is a Lipschitz continuous function and that the boundary
of a domain Ω can be made up of pieces of Lipschitz curves x2 = γ(x1)
or x1 = γ(x2). For N = 1, 2, ..., we divide Ω into a collection {Ωi}Ni=1 of
pairwise disjoint sets Ωi such that the union of the Ωi is equal to Ω. Let dΩi
be the area of Ωi and let dN be the maximal diameter of Ωi for i = 1, ..., N ,
see Fig. 224.7. We assume that dN tends to zero as N tends to infinity.
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x1

x2

FIGURE 224.7. Subdivison of general domain

The arguments used above show that

∫

Ω

f(x) dx = lim
N→∞

N∑

i=1

f(xi)dΩi, (224.18)

where xi is a point in Ωi for i = 1, .., N . The first step in proving this result
is to use the estimate

|f(x)− f(y)| ≤ LfdN if x, y ∈ Ωi, (224.19)

which implies that the variation of f(x) with x ranging over Ωi is small if the
diameter of Ωi is small. The second step involves the Lipschitz continuity of
the boundary of Ω and the boundedness of f(x). By the way, a byproduct
of the proof of this result is the estimate

|
∫

Ω

f(x) dx−
N∑

i=1

f(xi)dΩi| ≤ LfdNA(Ω), (224.20)

where A(Ω) is the area of Ω.

224.10 Change of Variables in a Double Integral

We next extend the idea of changing variables in a one-dimensional integral
to a two dimensional integral. More precisely, we want to make a change
of variables in an integral

∫

Ω

f(x) dx =

∫

Ω

f(x1, x2) dx1dx2, (224.21)

where Ω is a given domain in R2 and the integration variable x runs over Ω.
We assume that g : Ω̃ → Ω is a one-to-one mapping of y ∈ Ω̃ onto x = g(y)
in Ω that represents the change of variables. We shall prove that (224.21)
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with respect to x can be rewritten as an integral with respect to y in the
form ∫

Ω

f(x) dx =

∫

Ω̃

f(g(y))G(y) dy, (224.22)

where G(y) is defined as

G(y) = | det g′(y)|.

That is G(y) is the absolute value of the determinant of the Jacobian g′(y)
of g(y). Formally, this gives dx = | det g′(y)| dy or | det g′(y)| = | det dxdy |, and
| det g′(y)| is the local change of area measure as we go from y-coordinates
to x-coordinates. The change of variable formula can therefore be written

∫

Ω

f(x) dx =

∫

Ω̃

f(g(y))| det g′(y)| dy, (224.23)

To prove this let Ω̃i be a small subdomain of Ω̃ and let Ωi = g(Ω̃i) be
the image of Ω̃i under the mapping x = g(y). If g′(y) were constant over
Ω̃i, and so g(y) were linear on Ω̃i, then

dΩi = | det g′(yi)|dΩ̃i,

where yi is a point in Ω̃i, dΩi is the area of Ωi, and dΩ̃i is the area of Ω̃i.
If {Ω̃i}ni=1 is a subdivision of Ω̃ into subdomains Ω̃i of maximal diameter
dn, we have

∫

Ω

f(x) dx ≈
∑

i

f(xi)dΩi

≈
∑

i

f(g(yi)| det g′(yi)|dΩ̃i ≈
∫

Ω̃

f(g(y))| det g′(y)| dy,

where xi = g(yi) and the approximations are bounded by dn times Lipschitz
constants of the functions f(x), f(g(y)) and | det g′(y)|. The change of
variables formula (224.23) follows by passing to the limit as n tends to
infinity and dn tends to 0.
We summarize:

Theorem 224.5 (Change of variables) Assume y → x = g(y) maps
a domain Ω̃ in R2 onto a domain Ω in R2, where the Jacobian of g is
Lipschitz continuous and let f : Ω → R be Lipschitz continuous. Then

∫

Ω

f(x) dx =

∫

Ω̃

f(g(y))| det g′(y)| dy, (224.24)

Example 224.6. Consider the mapping x = g(y) = (2y1+y2, y1−2y2)
mapping the unit square Ω̃ = [0, 1] × [0, 1] onto the parallelogram Ω
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spanned by the vectors (2, 1) and (1,−2). We have det g′(y) = −5, and
thus

∫

Ω

f(x) dx =

∫

Ω̃

f(2y1 + y2, y1 − 2y2) | − 5| dy

= 5

∫ 1

0

∫ 1

0

f(2y1 + y2, y1 − 2y2) dy.

If f(x) = x2 then

∫

Ω

f(x) dx = 5

∫ 1

0

∫ 1

0

(y1 − 2y2) dy = 5(
1

2
− 1) = −5

2
.

Polar Coordinates

A particularly important change of variables is from rectangular coordi-
nates to polar coordinates,

(x1, x2) = (r cos(θ), r sin(θ))

where x = (x1, x2) ∈ R2 and r ≥ 0, 0 ≤ θ < 2π, see Fig. 224.8.

x1

x2

r
RR

ω

ω

θ x = (r cos(θ), r sin(θ))

FIGURE 224.8. Polar coordinates

The Jacobian of the mapping (r, θ) → (x1, x2) is given by

d(x1, x2)

d(r, θ)
=

(
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)
,

and

det
d(x1, x2)

d(r, θ)
= r(cos2(θ) + sin2(θ)) = r.

Example 224.7. If Ω = {x ∈ R2 : |x| ≤ 1, x1 ≥ 0, x2 ≥ 0} is the part of
the unit circle in the positive quadrant, then the corresponding domain
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in polar coordinates takes the from Ω̃ = {(r, θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ π
2 },

and ∫

Ω

f(x1, x2) dx1dx2 =

∫

Ω̃

f(r cos(θ, r sin(θ)) rdr dθ.

In particular with f(x) = 1, we have

A(Ω) =

∫

Ω

dx1dx2 =

∫

Ω̃

rdr dθ

=

∫ π
2

0

∫ 1

0

r dr dθ =

∫ π
2

0

1

2
dθ =

π

4
.

We have now computed the area of a quarter of a unit disc to be equal
to π

4 , so the area of a unit disc is π. A basic result of mathematics!

Example 224.8. Using polar coordinates, we have

∫

R2

e−x
2
1−x2

2 dx =

∫ 2π

0

∫ ∞

0

e−r
2

r dr dθ = 2π
[
− 1

2
e−r

2]∞
0

= π.

Since ∫

R2

e−x
2
1−x2

2 dx =

∫ ∞

−∞
e−x

2
1 dx1

∫ ∞

−∞
e−x

2
2 dx2,

we conclude that ∫ ∞

−∞
e−x

2

dx =
√
π. (224.25)

Evidently, we did something magical: although we do not know a prim-
itive function to e−x

2

we are able to obtain an analytic expression for∫∞
−∞ e−x

2

dx.

Chapter 224 Problems

224.1. Compute with Ω = [0, 1]× [0, 1] the unit square the integrals (a)
∫
Ω
(x1+

x2) dx (b)
∫
Ω
x1x2 dx (c)

∫
Ω

dx
x1+x2

(d)
∫
Ω
exp(−x1x2) dx

224.2. Compute with Ω = {(x1, x2) : 0 ≤ x1 ≤ x2 ≤ 1} the integrals (a)∫
Ω
x1
x2
dx (b)

∫
Ω
exp2x2 dx (c)

∫
Ω
expx

2
2 dx

224.3. Change the order of integration in the following integrals

1.
∫ 1

1/2

∫ 1−x1
0

f(x1, x2) dx2dx1

2.
∫ 1

0

∫√1−x21
0 f(x1, x2) dx2dx1

3.
∫ 1

0

∫ 0

x2−1
f(x1, x2) dx1dx2
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4.
∫ 1

0

∫ 1+x1
1−x1 f(x1, x2) dx2dx1

224.4. Evaluate the following integrals:

1.
∫
Ω
(x2

1 + 2x3
2) dx, with Ω a triangle with vertices (0, 0), (1, 0), (0, 1).

2.
∫
Ω
x2
1x2 dx, with Ω = {x ∈ R2 : x2

1 + x2
2 ≤ 1, 0 ≤ x2.

3.
∫
Ω
(x1 + x2) dx, with Ω the tetrahedron with vertices (0, 0), (1, 0), (2, 1),

(2, 2).

4.
∫
Ω
|1− x1 − x2| dx, with Ω the unit square.

224.5. Find the volume under the graph of the following functions

1. f(x) = ex1 cos(x2), 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ π
2
.

2. f(x) = x2
1e

−x1−x2 , 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 2.

3. f(x) = x2
1x2, 0 ≤ x1 ≤ 1, x1 + 1 ≤ x2 ≤ x1 + 2.

4. f(x) =
√
x2
1 − x2

2, x
2
1 − x2

2 ≥ 0, 0 ≤ x1 ≤ 1.

224.6. A cylindrical hole of radius b is drilled symmetrically through a metal
sphere of radius a > b. Find the volume of metal removed.

224.7. Evaluate ∫

Ω

(1− x2
1

a21
− x2

2

a22
)3/2 dx

where Ω is the ellipse {x ∈ R2 :
x21
a21

+
x22
a22

≤ 1}.

224.8. Evaluate ∫

Ω

x1 + x2

x2
1

ex1+x2 dx,

where Ω = {x ∈ R2 : x2 ≤ x1 ≤ 2− x2, 0 ≤ x2 ≤ 1}. Hint: Use the substitution
y1 = x1 + x2, y2 = x2

x1
.

224.9. Compute the area of one petal of the rose 0 ≤ r ≤ 3 sin(θ) (polar
coordinates).

224.10. Compute the area within the cardoid r = 1 + cos(θ).

224.11. Compute the following double integrals:

1.
∫
Ω
x1 exp(x1x2) dx, for Ω = {x : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 2},

2.
∫
Ω
x1x2 exp(x1 + x2) dx, for Ω = {x : 1 ≤ x1 ≤ 2 ≤ x2 ≤ 3},

3.
∫
Ω
x dx, for Ω = {x : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}.

224.12. Compute the following double integrals:

1.
∫
Ω
exp(−x1) dx, for Ω = {x : 0 ≤ x1 ≤ 1, |x2| ≤ x1},

2.
∫
Ω
x1x2‖x‖ dx, for Ω = {x : 0 ≤ x1 ≤ 1, 1 ≤ x2 ≤ 2},

3.
∫
Ω

x1
1+x2

dx, for Ω = {x : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1− x1}.
224.13. Compute the following double integrals by changing variables:

1.
∫
Ω
‖x‖2 dx, for Ω = {x : x2

1 + x2
2 − 2x1 − 2x2 ≤ 0},

2.
∫
Ω
x1x2 dx, for Ω = {x : 3x2

1 + x2
2 − 2x1 ≤ 0},

3.
∫
Ω
exp(−‖x‖2) dx, for Ω = R2.
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225
Surface Integrals

King Karl XII of Sweden (1682-1717) had an extraordinary talent for
mathematics. He was by Swedenborg (the great Swedish Universal
Genius, 1688-1772) considered equal if not better than Leibniz him-
self. King Karl XII could easily multiply large numbers without pen
and paper, and proposed 64 as the right choice of basis of the natural
numbers. Over night he constructed symbols and gave names to all
the digits 0, 1, ..., 62, 63. (from The History of Sweden, by Herman
Lindquist).

225.1 Introduction

Previously, in Chapter Curve integrals we defined the notion of an integral
computed over a curve or a curve integral. In this chapter, we use the same
ideas to define an integral over a surface or a surface integral. We start with
the surface integral representing surface area.

225.2 Surface Area

Let S be a surface in R3 parameterized by the mapping s : Ω → R3,
where Ω is a domain in R2 with coordinates y = (y1, y2) ∈ R2, so that
s = s(y) = (s1(y), s2(y), s3(y)). We define the area A(S) of the surface S
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as the following integral over the parameter domain Ω,

A(S) =

∫

Ω

‖s′,1 × s′,2‖ dy, (225.1)

where

s′,1 =



∂s1
∂y1
∂s2
∂y1
∂s3
∂y1


 , s′,2 =



∂s1
∂y2
∂s2
∂y2
∂s3
∂y2


 ,

are the columns of the Jacobian

s′ =



∂s1
∂y1

∂s1
∂y2

∂s2
∂y1

∂s2
∂y2

∂s3
∂y1

∂s3
∂y2


 .

Note all the coefficients are functions of y ∈ Ω.
To motivate this definition, recall that the linearization of the mapping

s : Ω → R3 at ȳ is given by

y → ŝ(y) = s(ȳ) + (y1 − ȳ1)s
′
,1(ȳ) + (y2 − ȳ2)s

′
,2(ȳ).

Consider a small square R(ȳ, h) = [ȳ1, ȳ1 + h] × [ȳ2, ȳ2 + h] in Ω of side
length h and area h2 with lower left-hand corner at the point ȳ ∈ Ω. Here,
we think of h as small. The linearization ŝ(y) maps the square R(ȳ, h) into
a small parallelogram P (s(ȳ), h) in the tangent plane of S through s(ȳ)
spanned by the two vectors s′,1(ȳ) and s

′
,2(ȳ), with one of the corners of the

parallelogram at s(ȳ). Recall now from Chapter Analytic Geometry in R2

that the area of a parallelogram spanned by two vectors a and b in R2 is
equal to ‖a× b‖. So, the area of P (s(ȳ), h) is equal to

‖s′,1(ȳ)× s′,2(ȳ)‖h2.

The change of scale of area is thus ‖s′,1(ȳ)× s′,1(ȳ)‖. A small piece (square)
of area h2 at ȳ ∈ Ω in the parameter domain, thus corresponds to a small
piece of the surface S at s(ȳ) of area approximately ‖s′,1(ȳ) × s′,2(ȳ)‖h2,
where the approximation improves as h gets smaller.
Summing over all little pieces and letting h tend to zero, we are led to

define the area A(S) of the surface S by (225.1), which we write as

A(S) =

∫

Ω

‖s′,1(y)× s′,2(y)‖ dy =

∫

Ω

‖s′,1 × s′,2‖ dy =

∫

S

ds.

We thus write ds = ‖s′,1 × s′,2‖ dy, which expresses the change of scale. Of
course, we assume that ‖s′,1×s′,2‖ is Lipschitz continuous to guarantee that
the integral exists.
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y1

y2

x1

x2

x3

s′1
s′2

s′(y)

FIGURE 225.1. The surface area scale

Example 225.1. Consider the surface S of a sphere of radius one
centered at the origin. We describe this using spherical coordinates,

x = s(y1, y2) = (sin(y2) cos(y1), sin(y2) sin(y1), cos(y2))
⊤,

where 0 ≤ y1 < 2π, 0 ≤ y2 < π, see Fig. 226.3. We have

s′,1 = (− sin(y2) sin(y1), sin(y2) cos(y1), 0)
⊤,

s′,2 = (cos(y2) cos(y1), cos(y2) sin(y1),− sin(y2))
⊤,

(225.2)

and thus by a direct computation ‖s′‖ = sin(y2). We compute

A(S) =

∫ 2π

0

∫ π

0

sin(y2) dy2 dy1 =

∫ 2π

0

2 dy1 = 4π,

and thus conclude that the surface area of a sphere of radius 1 is equal
to 4π.

Example 225.2. We compute the area A(S) of the surface S given by
s(y1, y2) = (2y1y2, y

2
1 , 2y

2
2) with 0 ≤ y1, y2 ≤ 1. We have

s′(y) = (2y2, 2y1, 0)× (2y1, 0, 4y2) = 4(2y1y2,−2y22,−y21)
so that ‖s′(y)‖ = 4(y21 + 2y22), and thus

A(S) =

∫ 1

0

∫ 1

0

4(y21 + 2y22) dy1dy2 = 4(
1

3
+

2

3
) = 4.

225.3 The Surface Area of a the Graph of a
Function of Two Variables

In the case S is given as the graph of a function f : Ω → R, so that
s(y1, y2) = (y1, y2, f(y1, y2)), then

A(S) =

∫

S

ds =

∫

Ω

‖s′,1 × s′,2‖ dy =

∫

Ω

√
1 + f2

,1 + f2
,2 dy1dy2, (225.3)
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where f,i denotes the partial derivative of f with respect to yi. This follows
from

s′,1 × s′,2 = (1, 0, f,1)× (0, 1, f,2) = (−f,1,−f,2,, 1).

Example 225.3. The surface S of a hemisphere of radius 1 and cen-
tered at the origin is given by s(y1, y2) = (y1, y2,

√
1− y21 − y22) with

y ∈ Ω = {y ∈ R2 : y21 + y22 ≤ 1}. We have

A(S) =

∫

Ω

√
1 + f2

,1 + f2
,2 dy1dy2 =

∫

Ω

1√
1− y21 − y22

dy

=

∫ 2π

0

∫ 1

0

1√
1− r2

r dr dθ = 2π
[
−
√
1− r2

]1
0
= 2π.

(225.4)

We retrieve the above result that the surface area of a sphere of radius
1 is equal to 4π.

225.4 Surfaces of Revolution

Surfaces of revolution occur in many practical applications. To generate a
surface of revolution, we let f : [a, b] → R be a given positive function and
consider the surface S represented by

s(x1, x2) = (x1, f(x1) cos(x2), f(x1) sin(x2)),

with a ≤ x1 ≤ b and 0 ≤ x2 < 2π, see Fig. 225.2. We use (x1, x2) as
reference coordinates instead of (y1, y2). We have

s′,1×s′,2 = (1, f ′(x1) cos(x2), f
′(x1) sin(x2))×(0,−f(x1) sin(θ), f(x1) cos(θ))

and thus by a direct computation

‖s′,1 × s′,2‖ = f(x1)
√
1 + (f ′(x1))2. (225.5)

The area A(S) of S is given by:

A(S) =

∫ 2π

0

∫ b

a

f(x1)
√
1 + (f ′(x1))2 dx1dθ

= 2π

∫ b

a

f(x1)
√
1 + (f ′(x1))2 dx1. (225.6)

Example 225.4. Consider the surface S of a parabolic reflector ob-
tained by rotating the curve f(x1) =

√
x1 around the x1-axis between

x1 = 0 and x1 = 1. We have

A(S) = 2π

∫ 1

0

√
x1

√
1 +

1

4x1
dx1 = π

∫ 1

0

√
4x1 + 1 dx1 =

π

6
(53/2 − 1).
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x1

x2

x3

b

√
x2
2 + x2

3 = r = f(x1)

FIGURE 225.2. A surface of revolution

225.5 Independence of Parameterization

We shall prove that if t : Ω̃ → Ω is a one-to-one mapping of η ∈ Ω̃ ⊂ R2

onto y = t(η) ∈ Ω, and r(η) = s(t(η)) maps Ω̃ onto S, then

∫

S

ds =

∫

Ω̃

‖r′,1 × r′,2‖ dη =

∫

Ω

‖s′,1 × s′,2‖ dy. (225.7)

This shows that the surface area of the surface S is independent of the
parametrization of S.
We need to show that with y = t(η), we have

‖r′,1(η)× r′,2(η)‖ = ‖s′,1(y)× s′,2(y)‖ | det t′(η)|, (225.8)

where | det t′| is the determinant of the Jacobian t′(η) of t(η). This follows
after a lengthy computation that starts with differentiating r(η) = s(t(η))
using the Chain rule.

225.6 Surface Integrals

Let S = s(Ω) be a surface in R3 parameterized by the mapping s : Ω → R3,
where Ω is a domain in R2, and let u : S → R be a real-valued function
defined on S. We assume that u, s and ‖s′,1×s′,2‖ are Lipschitz continuous.
We define the integral of u over S to be

∫

S

u ds =

∫

Ω

u(s(y))‖s′,1(y)× s′,2(y)‖ dy. (225.9)

Example 225.5. Let S = s(Ω) be the “dome” given by s(y1, y2) =
(y1, y2, 1 − y21 − y22) and Ω = {y ∈ R2 : y21 + y22 ≤ 1}, and u(x) =
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x1

x2

x3

y1

y2

y = t(η)

x = s(y) = s(t(η)) = r(η)

η

η1

η2

Ω
Ω̃

FIGURE 225.3. Reparametrization r(η) = s(t(η)) of a surface given by s(y).

(5x21 + 5x22 + x3)
1/2, so that u(s(y)) = (5y21 + 5y22 + 1 − y21 − y22)

1/2 =
(1 + 4y21 + 4y22)

1/2. We compute

‖s′,1(y)× s′,2(y)‖ = ‖(1, 0,−2y1)× (0, 1,−2y2)‖ = (1 + 4y21 + 4y22)
1/2,

and get using polar coordinates:

∫

S

u ds =

∫

Ω

u(s(y))‖s′,1(y)× s′,2(y)‖ dy

=

∫

Ω

(1 + 4y21 + 4y22)
1/2(1 + 4y21 + 4y22)

1/2 dy

= 2π

∫ 1

0

(1 + 4r2)r dr =
3

2
.

225.7 Moment of Inertia of a Thin Spherical Shell

The moment of inertia of a thin sphere S = {‖x‖ = 1} of (uniformly
distributed) total mass m about the x3-axis, is equal to

I =
m

4π

∫

S

(x21 + x22) ds. (225.10)
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If the sphere rotates with angular speed ω around the x3 axis, then the
total kinetic energy is equal to

E =
1

2

m

4π

∫

S

ω2(x21 + x22) ds =
1

2
ω2I. (225.11)

Using spherical coordinates to compute gives

I =
2m

3
. (225.12)

Chapter 225 Problems

225.1. (a) Verify that ‖s′,1(y)× s′,2(y)‖ = sin(y2) in (225.2). (b) Verify (225.5).
(c) Prove (225.8).

225.2. Determine which famous building is defined by the MATLAB c© code
given below, and compute the surface area of its roof.

r=0:.1:1;
v=0:pi/20:2*pi;
[R,V]=meshgrid(r,v);
surf(10*cos(V),10*sin(V),R.*(5+cos(V).ˆ2-sin(V).ˆ 2))
hold on
surf(10*R.*cos(V),10*R.*sin(V),5+(R.*cos(V)).ˆ2-(R.*sin(V)).ˆ 2)
hold off
axis(’equal’)

225.3. Another famous building. What does it take to repaint it?

w=0:pi/20:3*pi/4;
v=0:pi/20:2*pi;
[W,V]=meshgrid(w,v);
h=surf(sin(W).*cos(V),sin(W).*sin(V),cos(W));
set(h,’FaceColor’,[1 1 1])
axis(’equal’)

225.4. Motivate (225.11), and prove (225.12).

225.5. (a) Consider the surface S = {x : x = y1a+ y2b+ (1− y1 − y2)c, y ∈ T},
where a, b, c ∈ R3 and T = {y ∈ R2 : y1 + y2 ≤ 1, yi ≥ 0, i = 1, 2}. Give a
geometric description of S and compute its area.
(b) Find a parametrization of the form x =My+b of the (flat) triangular surface
S with corners in (1, 0, 0), (0, 0, 3) and (0, 3,−9), with parameter domain T as in
(a), where b is a 3-vector and M a 3-by-2 matrix.
(b) Compute the area of S. Does the area depend on b? Interpret!
(c) Compute

∫
S
(x1 + 2x2) dS
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225.6. Compute (a)
∫
S
dS (b)

∫
S
f(x) dS where S = {x : x = My, y ∈ Q}, Q

is the unit square in R2 and M is the 3-by-2 matrix with columns (1, 0, 1)⊤ and
(0, 1, 2)⊤, and f(x) = x3. Also, plot the surface S and interpret (a) as the area
of S. Compare the computation of (a) with the method for computing the area
of a parallelogram using the cross product in Linear algebra.

225.7. Compute (a)
∫
S
dS (b)

∫
S
x2 dS where S = {x : x = y1(1−y2)(1, 0, 0)+

(1 − y1)(1 − y2)(1, 2, 0) + (1 − y1)y2(0, 1, 1) + y1y2(0, 0, 3), 0 ≤ yi ≤ 1, i = 1, 2}.
Plot the surface and describe its geometry.

225.8. Compute (a)
∫
S
dS (b)

∫
S
x1x2 dS where S = {(y1, y2, y1y2) : 0 ≤ yi ≤

1, i = 1, 2}.

225.9. Consider for given r > 0 and h > 0 the surface

S = {x : x = (r cos(v), r sin(v), z), 0 ≤ v ≤ 2π, 0 ≤ z ≤ h}.

(a) Give a geometrical description of S, and give corresponding parameterizations
of the surfaces (b) S = {x ∈ R3 : x2

2 + x2
3 = 4, |x1| ≤ 5} (c) S = {x ∈ R3 :

x2
2 + 4x2

3 = 4, 0 ≤ x1 ≤ x2
2 + x2

3}.

225.10. Compute
∫
S
(x1+x2+x3) dS where S = {(x1, x2, x3) : x1 = y1 cos(y2), x2 =

y1 sin(y2), x3 = y1(cos(y2) + sin(y2))}.

225.11. Compute
∫
S
(x1, x2, x3) ·n ds if S is the boundary of Ω = {x : x1 +x2 +

x3 ≤ 1, xi ≥ 0, i = 1, 2, 3}.

225.12. Compute
∫
S

(x1,x2,x3)

‖x‖2 · ndS for the cylindrical shell S = {x ∈ R3 :

x2
1 + x2

2 = 1,−a ≤ x3 ≤ a}, and the corresponding limit as a→ ∞.

225.13. Compute the moment of inertia of the cylindrical shell S = {x ∈ R3 :
x2
1 + x2

2 = 1,−1 ≤ x3 ≤ 1} with respect to the x1-axis.

225.14. Compute
∫
S
(x1, 0, x3) · ndS where S = {(y1 + y2, y

2
1 − y22 , y1y2) : 0 ≤

y1 ≤ 1, 0 ≤ y2 ≤ 1}, and n is the normal to S with n3 < 0.

225.15. Compute the area of the torus (donut) in R3 given by

s(y1, y2) =
(
(a+ b cos(y2)) cos(y1), (a+ b cos(y2)) sin(y1), b sin(y2)

)

with a > b constants and 0 ≤ y1, y2 < 2π.

225.16. Plot and compute the area of the surface S = {(r cos(v), r sin(v), v) :
1 ≤ r ≤ 2, 0 ≤ v ≤ 4π}. In what type of buildings can one find constructions like
this?

225.17. Describe/plot the surfaces (of rotation, if you wish) (a) x2
1 + x2

2 =
x2
3, x3 > 0 (b) 5 + x2

1 + x2
2 = x2

3 ≤ 9, x3 > 0 and compute its area.
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226
Multiple Integrals

We met weekly, (sometimes at Dr Goddard’s lodgings, sometimes
at the Mitre in Wood Street near-by) at a certain hour, under a
certain penalty, and a weekly contribution for the charge of exper-
iments, with certain rules agreed among us. There, to avoid being
diverted to other discourses and for some other reasons, we barred
all discussion of Divinity, of State Affairs, and of news (other than
what concerned our business of philosophy) confining ourselves to
philosophical inquiries, and related topics; as medicine, anatomy, ge-
ometry, astronomy, navigation, statics, mechanics, and natural ex-
periments. (Wallis about the formation of the Royal Society)

226.1 Introduction

We now consider triple integrals over domains in R3 and more generally
multiple integrals over domains in Rn with n > 3.

226.2 Triple Integrals over the Unit Cube

A triple integral over the unit cube Q = {x ∈ R3 : 0 ≤ xi ≤ 1, i = 1, 2, 3}
of a Lipschitz continuous function f : Q→ R takes the form

∫

Q

f(x) dx =

∫ 1

0

∫ 1

0

∫ 1

0

f(x1, x2, x3) dx1 dx2 dx3.
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This can be computed by iterated integration in any order, for example,
∫

Q

f(x) dx =

∫ 1

0

(∫ 1

0

(∫ 1

0

f(x1, x2, x3) dx3

)
dx2

)
dx1.

The definition of the integral and the verification of the iterated integration
formula is a direct generalization of the corresponding steps in the case of
a double integral over the unit square.

Example 226.1. We compute the integral of x21x2e
x1x2x3 over the unit

cube Q,

∫

Q

x21x2e
x1x2x3 dx =

∫ 1

0

∫ 1

0

(∫ 1

0

x21x2e
x1x2x3 dx3

)
dx1dx2

=

∫ 1

0

∫ 1

0

[
x1e

x1x2x3

]x3=1

x3=0
dx1dx2 =

∫ 1

0

∫ 1

0

x1(e
x1x2 − 1) dx1dx2.

which leaves a double integral that we know how to handle.

226.3 Triple Integrals over General Domains in R3

Let Ω = {x ∈ R3 : γ2(x1, x2) ≤ x3 ≤ γ1(x1, x2), (x1, x2) ∈ ω}, where ω
is a domain in R2 and γ1 : ω → R and γ2 : ω → R are given functions of
(x1, x2), see Fig. 226.1. Let f : Ω → R Lipschitz continuous. We define the
triple integral of f(x) over Ω by

∫

Ω

f(x) dx =

∫

ω

(∫ γ1(x1,x2)

γ2(x1,x2)

f(x1, x2, x3) dx3

)
dx1dx2

via iterated integration first with respect to x3 and then with respect to
(x1, x2) ∈ ω.
Expanding the double integral over ω into two one-dimensional integrals,

assuming ω = {(x1, x2, x3) : α2 ≤ x1 ≤ α1, β2(x1) ≤ x2 ≤ β1(x1)}, we
have

∫

Ω

f(x) dx =

∫ α1

α2

(∫ β1(x1)

β2(x1)

(∫ γ1(x1,x2)

γ2(x1,x2)

f(x) dx3

)
dx2

)
dx1

=

∫ α1

α2

(∫

ω(x1)

f(x1, x2, x3) dx2dx3

)
dx1,

where ω(x1) = {(x2, x3) : β2(x1) ≤ x2 ≤ β1(x1), γ2(x1, x2) ≤ x3 ≤
γ1(x1, x2)} is the cross-section of the domain Ω with a plane with fixed x1-
coordinate. This way of splitting a triple integral into an one-dimensional
integral of double integrals over domain cross-sections corresponds to cut-
ting a piece of bread or ham into slices.
We may define triple integrals similarly for more general domains by

dividing the domain suitably into pieces.
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x1

x2

x3

ω

x3 = γ1(x1, x2)

x3 = γ2(x1, x2)

FIGURE 226.1. Integration over a volume by first integrating in the x3-direction.

226.4 The Volume of a Three-Dimensional Domain

We define the volume V (Ω) of a domain Ω in R3 as

V (Ω) =

∫

Ω

dx,

i.e. by integrating f(x) = 1 over x ∈ Ω. If Ω = {x ∈ [0, 1] × [0, 1] × R :
γ2(x1, x2) ≤ x3 ≤ γ1(x1, x2)}, then

V (Ω) =

∫ 1

0

∫ 1

0

(∫ γ1(x1,x2)

γ2(x1,x2)

dx3

)
dx1dx2

=

∫ 1

0

∫ 1

0

(
γ1(x1)− γ2(x1)

)
dx1 dx2,

which conforms to the previous formula of the volume between the sur-
faces γ1(x1, x2) and γ2(x1, x2) as the integral of the difference γ1(x1, x2)−
γ2(x1, x2).

Example 226.2. The volume of the pyramid Ω with corners at (0, 0, 0),
(1, 0, 0), (0, 1, 0), and (0, 0, 1) described as {x ∈ R3 : 0 ≤ x1+x2+x3 ≤
1, x1x2, x3 ≥ 0}, can be computed with ω = {(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤
x2 ≤ 1− x1} as follows

V (Ω) =

∫

ω

(∫ 1−x1−x2

0

dx3

)
dx1dx2 =

∫

Ω

dx

=

∫ 1

0

(∫ 1−x1

0

(∫ 1−x1−x2

0

dx3

)
dx2

)
dx1

=

∫ 1

0

(∫ 1−x1

0

(1− x1 − x2) dx2

)
dx1 =

∫ 1

0

(1 − x1)
2/2 dx1 =

1

6
,



1558 226. Multiple Integrals

which agrees with the earlier computation giving the volume of a pyra-
mid as 1

3Bh, where B is the area of the base and h the height, see
Fig. 226.2.

x1

x2

x3

1

1

1

x2 = 1− x1

x3 = 1− x1 − x2

FIGURE 226.2. Integration over a pyramid.

226.5 Triple Integrals as Limits of Riemann Sums

We may also define integrals over domains in R3 as limits of Riemann sums

∫

Ω

f(x) dx = lim
N→∞

N∑

i=1

f(xi)dΩi, (226.1)

where {Ωi}Ni=1 is a subdivision of the given domain Ω into pieces Ωi with
volume V (Ωi) ≤ dN and quadrature points xi ∈ Ωi, where dN tends to
0 as N tends to infinity. The error estimate (224.20) for double integrals
generalizes directly to three dimensions.

226.6 Change of Variables in a Triple Integral

We next prove an analog of the change of variable formula for two dimen-
sional integrals. We thus want to make a change of variables in an integral

∫

Ω

f(x) dx =

∫

Ω

f(x1, x2, x3) dx1dx2dx3, (226.2)
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where Ω is a given domain in R3 and the integration variable x runs over
Ω. If g : Ω̃ → Ω is a one-to-one mapping of y ∈ Ω̃ onto x = g(y) in Ω, we
have the following change of variables formula

∫

Ω

f(x) dx =

∫

Ω̃

f(g(y))| det g′(y)| dy, (226.3)

where | det g′(y)| is the modulus of the determinant of the Jacobian g′(y)
of g(y). Formally, we write dx = | det g′(y)|dy or | det g′(y)| = | det dxdy |,
and | det g′(y)| is the local change of volume measure as we go from y-
coordinates to x-coordinates.
To prove this, let Ω̃i be a small subdomain of Ω̃ and let Ωi = g(Ω̃i) be the

image of Ω̃i under the mapping x = g(y). If g′(y) were constant andg(y)
were linear over Ω̃i, then

dΩi = |g′(yi)|dΩ̃i, (226.4)

where yi is a point in Ω̃i, dΩi is the area of Ωi, and dΩ̃i is the area of Ω̃i.
Thus,

∫

Ω

f(x) dx ≈
∑

i

f(xi)dΩi

≈
∑

i

f(g(yi)| det g′(yi)|dΩ̃i ≈
∫

Ω̃

f(g(y))| det g′(y)| dy,

where xi = g(yi) and {Ω̃i}Ni=1 is a subdivision of Ω̃ of maximal diameter dN .
Assuming now that f(x), f(g(y)) and | det g′(y)| are Lipschitz continuous,
the formula (226.3) follows by passing to the limit as dN tends to 0.

Spherical Coordinates

As a particular important change of variables, we consider spherical coor-
dinates,

(x1, x2, x3) = (r sin(ϕ) cos(θ), r sin(ϕ) sin(θ), r cos(ϕ)),

where x = (x1, x2, x3) ∈ R3 and r ≥ 0, 0 ≤ θ < 2π, 0 ≤ ϕ < π, see
Fig. 226.3.
The Jacobian of the mapping (r, θ, ϕ) → (x1, x2, x3) is equal to

d(x1, x2, x3)

d(r, θ, ϕ)
=



sin(ϕ) cos(θ) −r sin(ϕ) sin(θ) r cos(ϕ) cos(θ)
sin(ϕ) sin(θ) r sin(ϕ) cos(θ) r cos(ϕ) sin(θ)

cos(ϕ) 0 −r sin(ϕ)




and by a direct computation

| det d(x1, x2, x3)
d(r, θ, ϕ)

| = r2 sin(ϕ). (226.5)
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x1

x2

x3

θ

ϕ

x = (r sin(ϕ) cos(θ), r sin(ϕ) sin(θ), r cos(ϕ))

FIGURE 226.3. Spherical coordinates

The change of variables formula from Cartesian x-coordinates to spher-
ical coordinates takes the form

∫

Ω

f(x) dx

=

∫

Ω̃

f
(
r sin(ϕ) cos(θ), r sin(ϕ) sin(θ), r cos(ϕ)

)
r2 sin(ϕ) dr dθ dϕ,

where it is understood that Ω̃ is a subdomain of {(r, θ, ϕ) : 0 ≤ r, 0 ≤ θ ≤
2π, 0 ≤ ϕ ≤ π}, so that (r, θ, ϕ) → x is a one-to-one mapping of Ω̃ onto Ω.

Example 226.3. The unit ball B = {x ∈ R3 : |x| ≤ 1, } is described
in spherical coordinates as B̃ = {(r, θ, ϕ) : 0 ≤ r ≤ 1, 0 ≤ θ < 2π,
0 ≤ ϕ < π}. The volume V (B) of B is given by

B =

∫

B

dx =

∫

B̃

dr dθ dϕ =

∫ π

0

∫ 2π

0

∫ 1

0

r2 sin(ϕ) dr dθ dϕ

=

∫ π

0

sin(ϕ) dϕ

∫ 2π

0

dθ

∫ 1

0

r2 dr = 2 · 2π 1
3
=

4π

3
.

Note the way the triple integral splits into a product of three one-
dimensional integrals because the limits of integration are fixed numbers
in all the coordinate directions and the function to be integrated is a
product of functions of the individual variables.

We have shown that the volume of the unit ball in R3 to be equal to
4π
3 . Another basic result of Calculus!



226.7 Solids of Revolution 1561

226.7 Solids of Revolution

To generate a solid of revolution, we let f : [a, b] → R be a given (posi-
tive) function and consider the body B in R3 represented by s(x1, r, θ) =
(x1, r cos(θ), r sin(θ)) with a ≤ x1 ≤ b, 0 ≤ θ < 2π and 0 ≤ r ≤ f(x1), see
Fig. 226.4. We have

d(x1, x2, x3)

d(x1, r, θ)
=



1 0 0
0 cos(θ) sin(θ)
0 −r sin(θ) r cos(θ)




and thus by a direct computation

| det d(x1, x2, x3)
d(x1, r, θ)

| = r.

The coordinate system (x1, r, θ) is an example of so called cylindrical co-
ordinates suitable for data with rotational symmetry.
The volume V (B) of B is given by:

V (B) =

∫ 2π

0

∫ b

a

∫ f(x1)

0

r drdx1dθ = π

∫ b

a

f2(x1) dx1. (226.6)

x1

x2

x3

b

√
x2
2 + x2

3 = r = f(x1)

FIGURE 226.4. A solid of revolution

Example 226.4. Consider the body B obtained by rotating the parabo-
la f(x1) =

√
x1 around the x1-axis between x1 = 0 and x1 = 1. We

have

V (B) = π

∫ 1

0

x1 dx1 =
π

2
.

Example 226.5. The center of mass x̄ of a body B of revolution
obtained rotating a curve f(x1) around the x1-axis from x1 = a to
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x1 = b is given by x̄2 = x̄3 = 0 (rotational symmetry) and

x̄1 =
π

V (B)

∫ b

a

x1f
2(x1) dx1.

226.8 Moment of Inertia of a Ball

The moment of inertia about the x3-axis of the ball B = {‖x‖ = 1} of
(uniformly distributed) total mass m, is equal to

I =
m

V (B)

∫

B

(x21 + x22) dx. (226.7)

If the ball rotates with angular speed ω around the x3 axis, then the total
kinetic energy is equal to

E =
1

2

m

V (B)

∫

B

ω2(x21 + x22) dx =
1

2
ω2I. (226.8)

Using spherical coordinates gives

I =
2m

5
. (226.9)

Chapter 226 Problems

226.1. Motivate (226.8) and prove (226.9).

226.2. Verify (226.5).

226.3. Compute the following triple integrals:

1.
∫
Ω
‖x‖2 dx, for Ω = {x ∈ R3 : 0 ≤ xi ≤ 1, i = 1, 2, 3},

2.
∫
Ω
exp(x1+x2+x3) dx, for Ω = {x ∈ R3 : 0 ≤ xi ≤ 1, i = 1, 2, x3 ≤ x1+x2},

3.
∫
Ω
1/‖x‖2 dx, for Ω = {x ∈ R3 : 1 ≤ ‖x‖ ≤ 2}.

226.4. Compute with domains Ω as in Fig. 226.4
∫
Ω
(1− x2) dx.

226.5. Compute for Ω = {(x1, x2, x3) : x
2
1 + x2

2 ≤ 1, |x3| ≤ 1}

1.
∫
Ω

dx
‖x‖2

2. The moment of inertia of Ω with respect to the x3-axis.

3. The moment of inertia of Ω with respect to the x2-axis.
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x1

x1

x2

x2

x3
x3

(1, 0, 0)(0, 1, 0)

(0, 1, 0)

(0, 0, 1)(0, 1, 1)
(1, 1, 1)

226.6. Compute the following multiple integrals:

1.
∫
Ω

exp(−‖x‖)
‖x‖ dx, for Ω = {x ∈ R3 : ‖x‖ > 1},

2.
∫
Ω
x1 + x2 + x3 + x4 dx, for Ω = {x ∈ R4 : 0 ≤ xi ≤ 1, i = 1, 2, 3, 4},

3.
∫
Ω
x1 + . . .+ xn dx, for Ω = {x ∈ Rn : 0 ≤ xi ≤ 1, i = 1, . . . , n}.

226.7. Compute the following multiple integrals:

1.
∫
Ω
x dx,

2.
∫
Ω
‖x‖ dx,

3.
∫
Ω
‖x‖2 dx,

where Ω = {x ∈ R3 : ‖x‖ ≤ 1}.

226.8. Try to generalize the result in the previous exercise to Rn, denoting the
area of the unit sphere, {x ∈ Rn : ‖x‖ = 1}, by Sn.

226.9. Compute the integral
∫
R2 exp(−‖x‖2) dx and use the result to compute∫

Rn exp(−‖x‖2) dx.

226.10. Find the moment of inertia of a unit cube with respect to its diagonal.

226.11. Let Ey be the domain in Rn where the absolute value of f : Rn → R
is larger than y, i.e. Ey = {x ∈ Rn : |f(x)| > y}, and let g(y) be the volume
(size, measure) of this domain, i.e. g(y) =

∫
Ey
dx. Show, by changing the order

of integration, that ∫

Rn

|f(x)| dx =

∫ ∞

0

g(y) dy.
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227
Gauss’ Theorem and Green’s Formula
in R2

Mathematics at its best: it looks impressive (incomprehensible), but
is trivial for anyone who understands the notation. (R. Reagan)

227.1 Introduction

We now turn to two of the corner stones of calculus in several dimen-
sions, namely Gauss’ theorem and Green’s formula , beginning with two
dimensions. We shall see that these famous (and useful) results are direct
consequences of the fundamental formula,

∫

Ω

∂u

∂x2
dx =

∫

Γ

un2 ds, (227.1)

where Ω is a domain in R2 with boundary Γ and n(x) = (n1(x), n2(x)) is
the outward unit normal to Γ at x ∈ Γ, that is n(x) is orthogonal to the
tangent to Γ at x and points out of Ω and ‖n(x)‖ = 1, see Fig. 227.2. We
shall see that this formula is an analog of the Fundamental Theorem

∫ b

a

du

dx
dx = u(b)− u(a), (227.2)

stating that the integral over an interval [a, b] of the derivative du
dx of a

function u is equal to the difference between the end-point values u(b) and
u(a).
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227.2 The Special Case of a Square

To see the connection between (227.1) and (227.2), we first assume that Ω
is the unit square [0, 1] × [0, 1]. In this case n2 = 1 on the top Γ1 of the
square and n2 = −1 on the bottom Γ3, and n2 = 0 on the vertical sides Γ2

and Γ4, see Fig. 227.2. Therefore,

∫

Γ

un2 ds =

∫ 1

0

u(x1, 1) dx1 −
∫ 1

0

u(x1, 0) dx1

if we parameterize Γ1 by s(x1) = (x1, 1) and Γ3 by s(x1) = (x1, 0). On the
other hand, integrating first with respect to x2 and then with respect to
x1 and using (227.2), we have

∫

Ω

∂u

∂x2
dx =

∫ 1

0

(∫ 1

0

∂u

∂x2
(x1, x2) dx2

)
dx1 =

∫ 1

0

(
u(x1, 1)− u(x1, 0)) dx1

=

∫ 1

0

u(x1, 1) dx1 −
∫ 1

0

u(x1, 0) dx1 =

∫

Γ

un2 ds,

which proves (227.1) when Ω is a square. We see that (227.1) results from
using (227.2) with du

dx dx replaced by ∂u
∂x2

dx2, followed by an integration

with respect to x1. The net result is that the integral of ∂u
∂x2

dx2 over Ω is
replaced by a curve integral of un2 over the boundary Γ of Ω.

n

Ω

Γ
Γ1

Γ2

Γ3

Γ4
n = (1, 0)

n = (0, −1)

n = (−1, 0)

n = (0, −1)

FIGURE 227.1. To the left: A domain Ω with boundary Γ and normal n. To the
right: A special case.

227.3 The General Case

We now consider a domain Ω bounded by two curves Γ1 parameterized by
s1(x1) = (x1, γ1(x1)) and Γ2 parameterized by s2(x1) = (x1, γ2(x1)) with
a ≤ x1 ≤ b, and n = (n1, n2) is the outward normal to Γ, see Fig. 227.2.
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x1

x2

Ω

Γ

n

x2 = γ1(x1)

x2 = γ2(x1)

FIGURE 227.2. A domain Ω with two curves defining the boundary Γ.

The proof of (227.1) depends on the key observation that

‖ ds1
dx1

‖ =
√
1 + (γ′1)

2, n2 =
1√

1 + (γ′1)
2
,

‖ ds2
dx1

‖ =
√
1 + (γ′2)

2, n2 = − 1√
1 + (γ′2)

2
.

Formally, n2ds1 = dx1 and n2ds2 = −dx1, see Fig. 227.3.

n
n2

dx1

dx1 = n2 ds

ds‖n‖ = 1

FIGURE 227.3. The key observation that dx1
ds

= n2
1

by similarity.

Note that n2 is positive on the upper boundary curve s1 and negative
on the lower boundary curve s2. We thus have

∫

Γ1

un2 ds1 =

∫ b

a

u(x1, γ1(x1))n2‖
ds1
dx1

‖ dx1 =

∫ b

a

u(x1, γ1(x1)) dx1,

∫

Γ2

un2 ds2 =

∫ b

a

u(x1, γ2(x1))n2‖
ds2
dx1

‖ dx1 = −
∫ b

a

u(x1, γ1(x1)) dx1.
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Secondly, integrating first with respect to x2 and then with respect to x1
and using the Fundamental Theorem, we see that

∫

Ω

∂u

∂x2
dx =

∫

Ω

∂u

∂x2
dx2 dx1 =

∫ b

a

(∫ γ1(x1)

γ2(x1)

∂u

∂x2
dx2

)
dx1

=

∫ b

a

u(x1, γ1(x1)) dx1 −
∫ b

a

u(x1, γ2(x1)) dx1.

Since ∫

Γ

un2 ds =

∫

Γ1

un2 ds1 +

∫

Γ2

un2 ds2,

the desired formula (227.1) now follows. The proof generalizes to arbitrary
domains bounded by smooth curves with Lipschitz continuous tangents.
We summarize in the following basic theorem:

Theorem 227.1 If Ω is a domain in R2 with boundary Γ with outward
unit normal (n1, n2) and u : Ω → R is differentiable, then

∫

Ω

∂u

∂xi
dx =

∫

Γ

uni ds, i = 1, 2. (227.3)

Applying (227.3) to the product vw of two functions v and w, we obtain
the following analog of integration by parts in two dimensions:

Theorem 227.2 (Integration by parts in 2d) If Ω is a domain in R2

with boundary Γ with outward unit normal (n1, n2) and v, w : Ω → R, then
∫

Ω

∂v

∂xi
w dx =

∫

Γ

vw ni ds−
∫

Ω

v
∂w

∂xi
dx, i = 1, 2. (227.4)

Applying (227.3) to the components ui of a vector valued function u =
(u1, u2) and summing over i = 1, 2, we obtain the Divergence theorem, or
Gauss’ theorem ∫

Ω

∇ · u dx =

∫

Γ

u · n ds, (227.5)

where u · n = u1n1 + u2n2 and

∇ · u = (
∂

∂x1
,
∂

∂x2
) · (u1, u2) =

∂u1
∂x1

+
∂u2
∂x2

.

Applying (227.4) with w replaced by ∂w
∂xi

and summing over i = 1, 2, we
obtain Green’s formula:

∫

Ω

∇v · ∇w dx =

∫

Γ

v∂nw ds−
∫

Ω

v∆w dx, (227.6)

where

∂nw = ∇w · n =
∂w

∂x1
n1 +

∂w

∂x2
n2, (227.7)
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is the outward normal derivative of w on Γ. We often use Green’s formula
in the form

∫

Ω

v∆w dx−
∫

Ω

∆v w dx =

∫

Γ

v ∂nw ds−
∫

Γ

∂nv w ds, (227.8)

which results after applying (227.6) twice and using

∆w = div gradw = ∇ · ∇w

= (
∂

∂x1
,
∂

∂x2
) · ( ∂w

∂x1
,
∂w

∂x2
) =

∂

∂x1
(
∂w

∂x1
) +

∂

∂x2
(
∂w

∂x2
),

which can be written succinctly as ∆w = ∂2w
∂x2

1
+ ∂2w

∂x2
2
.

We also note the following analog of the Divergence theorem:

∫

Ω

∇× u dx =

∫

Γ

n× u ds, (227.9)

where u : Ω → R2 and ∇× u = ∂u2

∂x1
− ∂u1

∂x2
, and n× u = u2n1 − u1n2. This

is just a restatement of

∫

Ω

(∂u2
∂x1

− ∂u1
∂x2

)
dx =

∫

Γ

(
u2n1 − u1n2

)
ds (227.10)

and therefore follows from (227.3). We further note that τ = (−n2, n1) is
a unit tangent to Γ, since n = (n1, n2) is a unit normal and (−n2, n1) ·
(n1, n2) = 0, and τ = (−n2, n1) is directed in the counter-clockwise direc-
tion of Γ, see Fig. 227.4.

n

Ω

Γ

τ

FIGURE 227.4. The unit tangent τ = (−n2, n1) to Γ expressed in terms of the
normal n = (n1, n2).

We often write
∫

Γ

u2n1 − u1n2 ds =

∫

Γ

u · τ ds =
∫

Γ

u · ds,
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interpreting ds in the last integral as the vector τds with the old use of ds
as the element of curve length. This is consistent with the notation

∫

Γ

u · ds =
∫ b

a

u(s(t)) · s′(t) dt,

where s : [a, b] → R2 represents Γ, which was introduced in Chapter Curve
Integrals. Caution: we here use “ds” with two different interpretations: as
the element of curve length (a scalar), and as an element of the tangent
vector (a vector).
We summarize the basic results derived in this chapter as follows:

Theorem 227.3 If Ω is a domain in R2 with boundary Γ with outward
unit normal (n1, n2), and u : Ω → R2 and v, w : Ω → R, then

∫

Ω

∂v

∂xi
dx =

∫

Γ

v ni ds, i = 1, 2, (227.11)

∫

Ω

∂v

∂xi
w dx =

∫

Γ

vw ni ds−
∫

Ω

v
∂w

∂xi
dx, i = 1, 2, (227.12)

∫

Ω

∇ · u dx =

∫

Γ

u · n ds, (227.13)

∫

Ω

∇× u dx =

∫

Γ

n× u ds =

∫

Γ

u · ds, (227.14)

∫

Ω

∇v · ∇w dx =

∫

Γ

v∂nw ds−
∫

Ω

v∆w dx, (227.15)

∫

Ω

v∆w dx−
∫

Ω

∆v w dx =

∫

Γ

v ∂nw ds−
∫

Γ

∂nv w ds. (227.16)

Example 227.1. For u(x1, x2) = x1 and i = 1 in (227.11), we obtain∫
Ω
dx =

∫
Γ
x1n1 ds =

∫
Γ
x1 dx2. An interesting observation from this

is that you may compute the area
∫
Ω dx, for example of a piece of

land, simply by walking its boundary and computing
∫
Γ x1 dx2. The

planetometer is a mechanical devise for computing the area of plane
domains built on this principle, which has been used extensively by
Surveyors.

Example 227.2. If ∇ × u = 0 in the domain Ω between two curves
Γ1 and Γ2 that both start at the point a and end at the point b, then∫
Γ1
u · ds =

∫
Γ2
u · ds, where ds is the vector tangential to the curves in

the direction from a to b of length equal to the element of curve length.
This follows from the fact that

∫
Γ1∪Γ−

2
u ·ds =

∫
Γ u ·ds = 0, by (227.14),

where Γ−
2 denotes the curve Γ2 with the direction of ds reversed. We

conclude that curve integrals of a field u = (u1, u2) with ∇ × u = 0,
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that is of an irrotational field, is independent of the particular “path”
of the curve from a to b. The integral of u · ds only depends on the two
end-points a and b of the integration. Fields u = (u1, u2) of this type
are called conservative. As we shall see below, such fields are given by
a potential, that is, they are the gradient field of some scalar potential
ϕ = ϕ(x) so u = ∇ϕ.
Furthermore,

∫
γ
u · ds = ϕ(b) − ϕ(a) for a curve γ from a to b. For

example, the field u = (x2, x1) has u1(x1, x2) = x2 and u2(x1, x2) = x1
and thus ∇u = ∂u2

∂x1
− ∂u1

∂x2
= 1 − 1 = 0. We find easily that u = ∇ϕ

for ϕ(x) = x1x2, and the integral of u · ds from a point a = (a1, a2) to
b = (b1, b2) is given by b1b2 − a1a2.

Chapter 227 Problems

227.1. Derive (227.4), (227.5), (227.6) and (227.8) from (227.3).

227.2. (a) Explain why (227.1) is valid also for a domain like {(x1, x2) : x1 ≤
|x2|, x2

1 + x2
2 ≤ 1}. (b) Verify by direct computation of

∫
Ω

∂u
∂x2

dx and
∫
Γ
un2 ds

that (227.1) is valid for u = r1/4 sin(v/4) and Ω = {(r cos(v), r sin(v)) : 0 <
r < 1, 0 < v < 2π}, where r =

√
x2
1 + x2

2 and v = arccot(x1/x2) for x2 > 0,
v = arccot(x1/x2) + π for x2 < 0 are the usual polar coordinates. Recall that by
the chain rule you may express ∂u

∂x2
in terms of ∂u

∂r
and ∂u

∂v
if you like.

227.3. Assume u = (u1, u2) is divergence free in Ω with boundary Γ. What can
be said about (a)

∫
Γ
u · n ds, (b) u(x) · n(x) for points x on Γ.

227.4. Assume
∫
Γ
u · nds = 0, where Γ is the boundary of a domain Ω with

exterior unit normal n. What can be said about ∇ · u in Ω? (Before you give a
too definite answer you may want to consider for example the case u = (x2

1, x
2
2)

with Ω the unit disc.) Assume
∫
γ
u ·nds = 0 for all closed curves γ in Ω, and the

derivatives of ui are Lipschitz. What can then be said about u in Ω?

227.5. Consider a “deformation” of R2 where the points x = (x1, x2) are dis-
placed to new positions x + u(x), u = (u1, u2), ui = ui(x). We call u(x) the
displacement field and the Jacobian u′(x) of u(x) the deformation tensor (ma-
trix). Consider for simplicity the case ui(x) = aixi, i = 1, 2, and assume the
displacement is “area preserving”, corresponding to “incompressibility” of the
deformed material. Show that for small deformations, one has div u ≈ 0. Hint:
Consider x→ x+u(x) as a change of variables and use an established fact about
the Jacobian of area preserving maps.

227.6. Consider the vector field u(x) = x/‖x‖2. Let Ω be the disc {x ∈ R2 :
‖x−a‖ ≤ 1}, and Γ its boundary with exterior unit normal n. Compute

∫
Γ
u ·nds

for a = (2, 0) and a = 0. Do the results conform with the Divergence theorem?
Make an “arrow plot” of u in the (x1, x2)-plane. Can you see a connection the
eruption of a volcano? Does the Divergence theorem apply in the case a = (0, 0)?
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227.7. Show that if ∇ · u = 0 and Γ and Γ̄ are curves with normals n and n̄ as
in Fig. 227.7, then

∫
Γ
u · nds =

∫
Γ̄
u · n̄ ds.

n
Gamma

barGamma

barn

227.8. For u = ( 2x1x2
1+x22

,− log(1 + x2
2)) and Γ the curve (a) {(x1, x2) : x

2
1 + x2

2 =

1, xi ≥ 0, i = 1, 2} (b) {(x1, x2) : x1 = 2−(x2−1)2, x1 ≥ 1}, compute
∫
Γ
u ·n ds.

Hint: Close the curves and use the Divergence theorem.

227.9. Show that the field u = ex1x2(1 + x1x2, x
2
1) is irrotational, and find a

potential ϕ such that u = ∇ϕ.

227.10. Evaluate the integrals in (227.16) for w a solution to the differential
equation −∆w = f in Ω = R2 and v = − 1

2π
log(x − x̄), assuming w and ∂nw

vanish for ‖x‖ large. Show that this gives a formula for w(x̄) in terms of f and
v. Hint: Take Ω = {x ∈ R2 : ‖x− x̄‖ > ǫ} and let ǫ tend to zero.

227.11. Let w be the solution to −∆w = f in the upper half plane x2 > 0,
− ∂w
∂x2

= g for x2 = 0, and assume w and ∇w vanish for ‖x‖ large. Show that

for x̄ = (x̄1, 0) on Γ = {(x1, x2) : x2 = 0}, one has 1
2
w(x̄) =

∫
{x:x2>0} vf dx +

∫
{x:x2=0} vg ds, where v = − 1

2π
log(x − x̄). Hint: Take Ω = {x ∈ R2 : x2 >

0, ‖x− x̄‖ > ǫ} in (227.16), and let ǫ tend to zero.

227.12. Show that for harmonic functions v and w, that is with ∆v = 0 and
∆w = 0, one has

∫
Γ
∂nvw ds =

∫
Γ
v∂nw ds for a closed curve Γ.

227.13. Find the area of the domain enclosed by the curve

Γ = {(r cos(v), r sin(v)) : r = 2 + sin(v), 0 ≤ v < 2π}.
Hint: Integrals of the form

∫
sin4(v) dv and

∫
cos4(v) dv may be computed using

integration by parts, as follows:

I =

∫
cos4(v) dv =

∫
(1− sin2(v)) cos(v) · cos(v) dv = {int. by parts}

= (sin(v)− 1

3
sin3(v)) · cos(v)−

∫
(sin(v)− 1

3
sin3(v))(− sin(v)) dv

= (sin(v)− 1

3
sin3(v)) · cos(v) +

∫
sin2(v) dv − 1

3

∫
(1− cos2(v))2 dv

= (sin(v)− 1

3
sin3(v)) cos(v) +

∫
sin2(v) dv − 1

3

∫
(1− 2 cos2(v)) dv − 1

3
I,

from which I can be computed.
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228
Gauss’ Theorem and Green’s Formula
in R3

Of those who with me have written something about these matters,
either I alone am mad, or I alone am not mad. No third option can
be maintained, unless (as perchance it may seem to some) we are all
mad. (Hobbes to Wallis)

If he is mad, he is not likely to be convinced by reason; on the other
hand, if we be mad, we are in no position to attempt it. (Wallis to
Hobbes)

We now extend the results of the previous chapter to three dimensions.
The basic result is the following analog of (227.1): If Ω is a domain in
R3 with boundary Γ, then

∫

Ω

∂u

∂x3
dx =

∫

Γ

un3 ds, (228.1)

where (n1, n2, n3) is the outward normal to Γ. To prove this, we assume that
Γ is composed of the two surfaces Γ1 given by s1(x1, x2) = (x1, x2, γ1(x1, x2))
and Γ2 given by s2(x1, x2) = (x1, x2, γ2(x1, x2)), where (x1, x2) ∈ ω and
the parameter domain ω is a domain in R2, and we assume that Ω = {x ∈
R3 : (x1, x2) ∈ ω, γ2(x1, x2) < x3 < γ1(x1, x2)}, see Fig. 228.1. We have
s′i,1 × s′i,2 = (1, 0, γi,1) × (0, 1, γi,2) for i = 1, 2, where γi,j =

∂γi
∂xj

, and thus

on Γ1

‖s′1,1 × s′1,2‖ =
√
1 + (γ′1,1)

2 + (γ′1,2)
2, n3 =

1√
1 + (γ′1,1)

2 + (γ′1,2)
2
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and on Γ2

‖s′2,1 × s′2,2‖ =
√
1 + (γ′2,1)

2 + (γ′2,2)
2, n3 = − 1√

1 + (γ′2,1)
2 + (γ′2,2)

2
.

x3

x3=gamma2(x1,x2)

x3=gamma1(x1,x2)

omega
x1

x2

FIGURE 228.1. A domain Ω bounded by two graphs Γ1 and Γ2.

Integrating first with respect to x3 and using the Fundamental Theorem
we get

∫

Ω

∂u

∂x3
dx =

∫

Ω

∂u

∂x3
dx3dx1dx2

=

∫

ω

u(x1, x2, γ1(x1, x2)) dx1dx2 −
∫

ω

u(x1, x2, γ2(x1, x2)) dx1dx2

=

∫

ω

un3‖s′1,1 × s′1,2‖dx1dx2 +
∫

ω

un3‖s′2,1 × s′2,2‖dx1dx2

=

∫

Γ1

un3 ds+

∫

Γ2

un3 ds =

∫

Γ

un3 ds,

which proves (228.1). Note that n3 = 0 on the “vertical” parts of Γ! This
result generalizes to

∫

Ω

∂u

∂xi
dx =

∫

Γ

uni ds, i = 1, 2, 3, (228.2)

for a general domain Ω in R3 with boundary Γ with outward unit normal
(n1, n2, n3).
Applying (228.2) to the product vw of two functions v and w, we obtain

the analog of integration by parts in three dimensions,
∫

Ω

∂v

∂xi
w dx =

∫

Γ

vw ni ds−
∫

Ω

v
∂w

∂xi
dx, i = 1, 2, 3. (228.3)

Applying (228.3) to the components ui of a vector valued function u =
(u1, u2, u3) with w = 1 and summing over i, we obtain the Divergence
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theorem, or Gauss’ theorem in three dimensions

∫

Ω

∇ · u dx =

∫

Γ

u · n ds, (228.4)

where ∇ · u = ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

) · (u1, u2, u3) = ∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3
=
∑3

i=1
∂ui

∂xi
,

and u · n = u1n1 + u2n2 + u3n3 is the component of u in the direction of
the normal n. If u represents a flux of some quantity, like heat flux or water
flux, then u(x) · n(x) at a point x ∈ Γ represents the flux through Γ (out
of Ω), or normal flux, and thus

∫

Γ

u · n ds

represents the total flux through Γ.
We also directly obtain the following analog of Gauss’ theorem for a

function u : Ω → R3:
∫

Ω

∇× u dx =

∫

Γ

n× u ds, (228.5)

which is now a vector equation!!
Another consequence of (228.3) is Green’s formula:

∫

Ω

∇v · ∇w dx =

∫

Γ

v∂nw ds−
∫

Ω

v∆w dx, (228.6)

where ∂nv = ∇v · n = ∂v
∂x1

n1 + ∂v
∂x2

n2 + ∂v
∂x3

n3 is the outward normal

derivative of v on Γ, and now ∆w = ∂2w
∂x2

1
+ ∂2w

∂x2
2
+ ∂2w

∂x2
3
. We often use

Green’s formula in the form
∫

Ω

v∆w dx−
∫

Ω

∆v w dx =

∫

Γ

v ∂nw ds−
∫

Γ

∂nv w ds, (228.7)

which results after applying (228.6) twice.
We summarize the basic results derived in this chapter as follows:

Theorem 228.1 If Ω is a domain in R3 with boundary Γ with outward
unit normal n = (n1, n2, n3), and u : Ω → R3 and v, w : Ω → R, then

∫

Ω

∂v

∂xi
dx =

∫

Γ

v ni ds, i = 1, 2. (228.8)

∫

Ω

∂v

∂xi
w dx =

∫

Γ

vw ni ds−
∫

Ω

v
∂w

∂xi
dx, i = 1, 2. (228.9)

∫

Ω

∇ · u dx =

∫

Γ

u · n ds (228.10)
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∫

Ω

∇× u dx =

∫

Γ

n× u ds, (228.11)

∫

Ω

∇v · ∇w dx =

∫

Γ

v∂nw ds−
∫

Ω

v∆w dx, (228.12)

∫

Ω

v∆w dx−
∫

Ω

∆v w dx =

∫

Γ

v ∂nw ds−
∫

Γ

∂nv w ds. (228.13)

Example 228.1. We compute the total flow of the vector field u(x) =
(x1 + x52, x2 + x3x1, x3 + x1x2) out of the boundary S of the unit ball
B = {x ∈ R3 : ‖x‖ = 1}, that is the integral,
∫

S

u·n ds =
∫

S

((x1+x
5
2)x1+(x2+x3x1)x2+(x3+x1x2)x3) ds, (228.14)

where we used that the outward unit normal n to S at x ∈ S is given by
n(x) = x. Since div u(x) = 3 for x ∈ R3, we have by Gauss’s theorem

∫

S

u · n ds =
∫

B

3 dx = 3V (B) = 4π,

which gives a quick way of computing the quite difficult integral (228.14).

228.1 George Green (1793-1841)

George Green, a millers son and self-taught mathematician (he left school
at age 9 after two years of study), published 1827 on his own ”An Essay
on the Application of Mathematical Analysis to the Theories of Electric-
ity and Magnetism” introducing in particular so-called Green’s functions
forming the basis of the modern theory of partial differential equations. His
importance in mathematics was only recognized after his death in the work
by in particular Maxwell on electromagnetics.

Chapter 228 Problems

228.1. Write out and verify (228.5) from (228.2).

228.2. (a) Prove Green’s formula (228.6) using (228.3). (b) Prove (228.13).

228.3. Compute the integral
∫
Γ

x
‖x‖3 ·n ds, where Γ = {x ∈ R3 : x2

1 + x2
2 +(x3 −

ja)2 = a2} for a > 0 and j = 0, 1, 2, respectively, where n is the exterior unit
normal to Γ. Interpret the results.

228.4. Compute the integral
∫
Γ

1
x21+x

2
2

(−x2,x1)
x21+x

2
2

× ds, where Γ = {x ∈ R3 :

x2
1 + x2

2 + x3 = 1}.
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228.5. Let Γ be the unit sphere in R3 with exterior unit normal n and compute
the following integrals:

1.
∫
Γ
x · nds,

2.
∫
Γ
x× nds,

3.
∫
Γ

1
‖x‖2

x
‖x‖ · nds,

4.
∫
Γ

1
‖x‖2

x
‖x‖ × nds.

228.6. Verify that for a radial field F (x) = ‖x‖α x
‖x‖ one has div F = (α+2)‖x‖.

228.7. What is the smallest possible value of the integral
∫
Γ
F · nds, where

F (x) = (x1x
2
2 − 4x1x2, 4x2x

2
3 + 8x2x3 + 5x2, x

2
1x3 − 2x1x3) and Γ is a closed

surface in R3, and n its exterior unit normal? Hint: Enclose all the “sinks” of F ,
that is, consider the domain where div F ≤ 0.

228.8. Compute the surface integral
∫
Γ
F · nds, where

F (x) = (x2
2, x1x2(cos(x1))

2 + x1x
3
2 + exp(cos(x1x

2
3)), x1x3(sin(x1))

2
− 3x1x

2
2x3),

and Γ is the part of the sphere ‖x‖ = 2 with positive x3-coordinate, and n
its normal with also positive x3-component. Hint: The function F is chosen
seemingly difficult only to confuse you.

228.9. Let {x1, x2, ..., xN} be a set of points in Rn, and let

F (x) =
N∑

j=1

1

4π‖x− xj‖2
x− xj

‖x− xj‖
.

Compute the surface integral
∫
Γ
F ·n ds for any closed surface Γ containing k ≤ N

of the points {x1, x2, ..., xN}, with n the exterior unit normal as usual.

228.10. Show, as you did in Chapter Newton’s Nightmare, that the gravitation
from a sphere is the same as if all the mass of the sphere was concentrated to its
center, but now using Gauss’ theorem to make things easier. Use as starting point
that the divergence of the gravitational field is (proportional to) the density, i.e.

∇ · F = ρ/c

for some constant c, and assume spherical symmetry, i.e. the direction of the
gravitational field is in the radial direction from the center of the sphere.

228.11. Show that if −∆u = f in Ω, then for any function v that is zero on Γ,
the boundary of Ω, one has

∫

Ω

∇u · ∇v =

∫

Ω

fv.

Also prove that if ∂nu = g on Γ, then for all functions v,
∫

Ω

∇u · ∇v =

∫

Ω

fv +

∫

Γ

gv ds.
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FIGURE 228.2. Stokes at age 22: “After taking my degree I continued to reside
in College and took private pupils. I thought I would try my hand at original
research....”
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229
Stokes’ Theorem

I too feel that I have been thinking too much of late, but in a dif-
ferent way, my head running on divergent series, the discontinuity of
arbitrary constants, ... I often thought that you would do me good by
keeping me from being too engrossed by those things. (Stokes asking
Mary Susanna Robinson to marry him 1857)

229.1 Introduction

Stokes’ theorem states that if u : R3 → R3 is differentiable, then
∫

S

(∇× u) · n ds =
∫

Γ

u · ds , (229.1)

where S is a surface in R3 bounded by a closed curve Γ, n is a unit normal to
S, and Γ is oriented in a clockwise direction following the positive direction
of the normal n, see Fig. 229.1. The integral

∫

Γ

u · ds

is called the circulation of u around Γ. The integral
∫

S

(∇× u) · n ds

is the total flow of the rotation ∇×u across the surface S. Stokes’ theorem
states that the total flow of ∇× u across S is equal to the circulation of u
around the boundary Γ of S.
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FIGURE 229.1. A Stokes surface S with boundary curve Γ.

Stokes (1819-1903), an Irish mathematician/physicist and professor in
Cambridge 1849, gave basic contributions to the theory of viscous fluid
flow modeled by the Navier-Stokes equations, see Fig. 228.2.

229.2 The Special Case of a Surface in a Plane

We start by considering the special case of a plane surface S̄ in the plane
{x ∈ R3 : x3 = 0} with normal n̄ = (0, 0, 1) and with boundary Γ, see
Fig. ??. In this case, Stokes’ theorem takes the form

∫

S̄

(∇× u) · n̄ ds =
∫

S̄

(
∂u2
∂x1

− ∂u1
∂x2

)
dx1 dx2

=

∫

Γ

u · ds =
∫

Γ

(u2n1 − u1n2) ds. (229.2)

By identifying the plane {x3 = 0} with R2, this is (227.10) and is a direct
consequence of (227.3). This result is often referred to as Green’s formula
in two dimensions. We have thus proved Stokes’ theorem in the case of a
plane surface S in the plane {x3 = 0}.
Note that the unit tangent direction is given by τ = (−ñ2, ñ1), where ñ =

(ñ1, ñ2) is the outward normal direction to Γ in the plane {x : x3 = 0} with
a counter clockwise orientation when viewed from the top of the normal
n̄ = (0, 0, 1) of S̄. The orientation is consistent with the specification that
τ should be oriented clockwise when following the direction of the normal
to S̄.

Example 229.1. Let S = {x ∈ R3 : ‖x‖ ≤ 1, x3 = 0} be the unit
disc in the plane {x3 = 0} bounded by the curve Γ parameterized
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by s(t) = (cos(t), sin(t), 0), 0 ≤ t ≤ 2π. Choose n = (0, 0, 1) and let
u(x) = (−x2, x1, 0) so that ∇× u(x) = (0, 0, 2). We compute

∫

S

(∇× u) ds = 2π,

∫

Γ

u · ds =
∫ 2π

0

(cos2(t) + sin2(t))dt = 2π,

in accordance with Stokes’ theorem.

Example 229.2. Ampere’s law states the ∇ × H = J , where H is
the magnetic field and J the electric current. Stokes’ theorem states
that the circulation of H around a closed curve Γ bounding a surface
S is equal to the total current through the surface S. Stokes’ theorem
is thus one of the corner-stones of electromagnetic field theory.

229.3 Generalization to an Arbitrary Plane Surface

We shall now verify that both the left and right hand side of Stokes’ equality
∫

S

(∇× u) · n ds =
∫

Γ

u · ds ,

are invariant under orthogonal coordinate transformations. We thus obtain
a proof of Stokes’ theorem for a given plane surface S through the origin,
by choosing coordinates so that S lies in the plane {x3 = 0}, and using the
proof of the previous section. The case of a surface S not passing through
the origin is reduced to the previous case by a simple translation of the
origin of the coordinate system.
To prove the invariance, let x = Qx̄ be an orthogonal coordinate trans-

formation with Q an orthogonal 3 × 3 matrix from a set of coordinates x̄
to x. The dependent vector variable u also transforms as u = Qū, where
u are the components in x-coordinates and ū the coordinates of the same
quantity in x̄-coordinates. We have a similar relation between the elements
of integration ds = s′(t)dt and ds̄ = s̄′(t)dt in the different coordinates
since s′(t) = Qs̄′(t), that is ds = Qds̄. Therefore,

∫

Γ

u · ds =
∫

Γ

Qū ·Qds̄ =
∫

Γ

Q⊤Qū · ds̄ =
∫

Γ

ū · ds̄,

and the invariance of the right hand side of (241.23) follows.
To prove the invariance of the left hand side of (241.23), we use the Chain

rule to obtain the following relation between the gradient ∇ with respect
to x and the gradient ∇̄ with respect to x̄,

∇ = Q∇̄.
A direct computation shows that

(∇× u) · n = (Q∇̄ ×Qū) ·Qn̄ = (∇̄ × ū) · n̄, (229.3)
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which proves the invariance since dx̄ = dx. Note that (229.3) is analogous
to the the relation

(Qa×Qb) ·Qc = (a× b) · c
for a, b, c ∈ R3. This expresses the invariance of the volume spanned by
three vectors a, b and c under orthogonal coordinate transformations.

229.4 Generalization to a Surface Bounded by a
Plane Curve

Suppose that S is a surface bounded by a curve Γ contained in the plane
{x3 = 0}, see Fig. ??. We do not assume that S is contained in {x3 = 0}.
Let S̄ be the surface in the plane {x3 = 0} with the boundary Γ and let
Ω be the volume bounded by the surface S and the plane surface S̄. Since
∇ · (∇× u) = 0, the Divergence theorem implies

0 =

∫

Ω

∇ · (∇× u) dx =

∫

S

∇× u · n ds+
∫

S̄

∇× u · n ds, (229.4)

where n is the outward unit normal to the boundary ∂Ω of Ω. If n is a
normal to S and n̄ = −n is a normal to S̄, then (229.4) implies

∫

S

∇× u · n ds =
∫

S̄

∇× u · n̄ ds.

Applying Stokes’ theorem to S̄, we obtain
∫

S

∇× u · n ds =
∫

S̄

∇× u · n̄ ds =
∫

Γ

u · ds,

which proves Stokes’ theorem for the surface S bounded by the plane curve
Γ.
A proof of Stokes’ theorem for the case of a general curve is outlined in

Problem 229.1. We now summarize:

Theorem 229.1 (Stokes’ theorem). If S is a surface in R3 with unit
normal n, and Γ is the boundary of S oriented clockwise following the
direction of n, then

∫

S

(∇× u) · n ds =
∫

Γ

u · ds.

We state the following important direct consequence of Stokes’ theorem:

Theorem 229.2 If u : Ω → R3 with Ω a domain in R3 is a differentiable
vector field such that ∫

Γ

u · ds = 0

for all closed curves Γ in Ω, then ∇× u = 0 in Ω.
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Chapter 229 Problems

229.1. Prove Stokes theorem for a curve Γ given by s(t) = (x1(t), x2(t), f(x1(t),
x2(t))), t ∈ [a, b], where f : R2 → R, bounding a surface Ω = {x ∈ R3 :
x3 − f(x1, x2) = 0} in R3. Hint: The projection of Γ on the x1x2-plane is the
curve Γ̃ represented by s̃(t) = (x1(t), x2(t), 0) which bounds the domain Ω̃ in the
x1x2-plane. Show that, writing ui = ui(x1, x2, f(x1, x2)),

∫

Γ

u · ds =
∫ b

a

(
u1x

′
1 + u2x

′
2 + u3(

∂f

∂x1
x′
1 +

∂f

∂x2
x′
2)
)
dt

=

∫ b

a

(
(u1 + u3

∂f

∂x1
)x′

1 + (u2 + u3
∂f

∂x2
)x′

2

)
dt

=

∫

Γ̃

(
u1 + u3

∂f

∂x1
, u2 + u3

∂f

∂x2

)
· ds = I.

Then use the Stokes theorem for a plane curve established above, to show that

I =

∫

Ω̃

( ∂

∂x1
(u2 + u3

∂f

∂x2
)− ∂

∂x2
(u1 + u3

∂f

∂x1
)
)
dx,

and prove by performing the differentiations and direct computation that

I =

∫

Ω

(∇× u) · nds,

where nds = (− ∂f
∂x1

,− ∂f
∂x2

, 1) dx.

229.2. Give a proof of the equality
∫
Ω
∇×udx =

∫
Γ
n×uds, where Ω is a subset

of R3 with boundary Γ with outward unit normal n, by applying the divergence
theorem to u× a with a an arbitrary constant vector.

229.3. Study the relation between Green’s formula (227.9), in the form (227.10),
and the divergence theorem applied to the two-dimensional domain S with bound-
ary Γ: ∫

S

(
∂v1
∂x1

+
∂v2
∂x2

)
dx1 dx2 =

∫

Γ

(v1n1 + v1n2) ds ,

with the identification (u1, u2) = (−v2, v1) corresponding to counter clockwise
rotation of the vector (v1, v2) by π/2. Explain how the clockwise direction in
Stokes’ theorem becomes a counter clockwise direction in (227.9).

229.4. Compute the integral

∫

Γ

(x2
1x2,−x3

1)/‖x‖4 · ds,

where Γ is the curve in the x1x2-plane from (1, 0) to (0, 1) defined by (x1(t), x2(t)) =
(cos(t)15, sin(t)17), 0 ≤ t ≤ π/2.
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229.5. Compute the integral

∫

Γ

1

x2
1 + x2

2

(−x2, x1, x3)

‖x‖ · ds,

where Γ is a curve traversing the unit circle in the x1x2-plane five times counter-
clockwise, then two times clockwise, and then again four times counterclockwise,
as viewed from the positive x3-axis.

229.6. Use Stokes’ theorem to prove that

∫

Γ

v ds =

∫

S

n×∇v ds,

where S is a surface in R3 bounded by the closed curve Γ. Hint: Use Stokes’
theorem with u = va and a is a arbitrary vector in R3.

229.7. Verify by direct computation Stokes’ theorem for (a) S the hemisphere
{x ∈ R3 : ‖x‖ = 1, x3 ≥ 0} and u = (x2, 2x3, 3x1), (b) S = {x ∈ R3 : x3 =
1− x2

1 − x2
2, x3 ≥ 0}.

229.8. (a) Let Ω be a domain in R2 with boundary Γ. Show that the area A(Ω)
is given by the formula

A(Ω) =
1

2

∫

Γ

u · ds,

where u(x) = (−x2, x1) and Γ is oriented counter-clockwise. Use this result to
show that the area bounded by the ellipse x = (a cos(t), b sin(t)), 0 ≤ t ≤ 2π,
with half-axes a and b, is equal to πab. (b) Try to design a mechanical instrument
for measuring the area of a domain in R2 (planimeter).
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230
Potential Fields

He is a rather tall, lanky-looking man, with moustache and beard
about to turn grey with a somewhat harsh voice and rather deaf. He
was unwashed, with his cup of coffee and cigar. One of his failings
is forgetting time, he pulls his watch out, finds it past three, and
runs out without even finishing the sentence. (Thomas Hirst about
Dirichlet 1850)

230.1 Introduction

We know from Chapter Curve integrals that potential force fields play an
important role in mechanics. Let u : Ω → R3 be a given vector function,
where Ω is a domain in R3. How can we check if u(x) is a potential field,
that is, if there is a scalar function or scalar potential, ϕ such that

u(x) = ∇ϕ(x) for x ∈ Ω? (230.1)

We recall that if u = ∇ϕ is a potential field and Γ is a curve parameterized
by s : [0, 1] → R3 from a = s(0) to b = s(1), then the work of u along Γ is
given by

∫

Γ

u · ds =
∫ 1

0

∇ϕ(s(t)) · s′(t) dt =
∫ 1

0

dϕ(s(t))

dt
dt = ϕ(b)− ϕ(a).

In particular, the work is the same along all curves from a to b, and if the
curve is closed with ϕ(1) = ϕ(0) then the work performed when moving
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around the curve is zero. A field with the property that the work along a
closed curve is zero is referred to as a conservative field. A potential field
is thus a conservative field.
A basic example of a gradient field is the gravitational field of a mass m

at the origin,

u(x) = −m x

‖x‖3 = ∇(
m

‖x‖ ),

normalizing units so the gravitational constant is one. The electrical field
of a charge m at the origin has the same form. In that case, the potential
ϕ(x) = m/‖x‖ represents potential energy (gravitational or electrical), and
curve integrals

∫
Γ u · ds = ϕ(b)− ϕ(a) represents the work performed by a

unit mass or charge when moved from a to b along Γ.

230.2 An Irrotational Field Is a Potential Field

We saw earlier that a potential field u = ∇ϕ is irrotational, that is ∇×u =

∇ × (∇ϕ) = 0. This follows from a direct computation using ∂2ϕ
∂xi∂xj

=

∂2ϕ
∂xj∂xi

. In other words, ∇× u = 0 in Ω is a necessary condition for u to be

a potential field in Ω.
We shall now prove that, the condition ∇ × u = 0 in Ω is a sufficient

condition for u to be a potential field in Ω, under the assumption that Ω is
convex. We recall that Ω is convex if for any two points x and x̄ in Ω, the
entire line segment x̄ + t(x − x̄), 0 ≤ t ≤ 1 between x̄ and x, is also in Ω,
see Fig. 230.1. Convexity implies in particular that Ω has “no holes”. We

FIGURE 230.1. One convex and two non-convex domains.

thus conclude that u is a potential field in a convex domain Ω if and only
u is irrotational in Ω. In other words, u = ∇ϕ in Ω for some potential ϕ if
and only if ∇× u = 0 in Ω.
We carry out the proof by constructing a potential ϕ such that∇ϕ = u for

a given irrotational field u(x) in the convex domain Ω. For the construction,
we choose a fixed point x̄ in Ω. For each point x, we let Γx be a curve in Ω
connecting x̄ to x and we define

ϕ(x) =

∫

Γx

u · ds. (230.2)
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x

x̄

Ω

Γx

FIGURE 230.2. A curve Γx in Ω joining x̄ and x.

We first prove that ϕ(x) is independent of the choice of curve Γx from
x̄ to x. Assume that Γx and Γ̃x are two curves from x̄ to x. Together they
form a closed curve Γ bounding a surface S so Stokes theorem implies

∫

Γ

u · ds = ±
∫

S

(∇× u) · n ds = 0,

since ∇× u = 0 on S. Now
∫

Γ

u · ds =
∫

Γx

u · ds−
∫

Γ̃x

u · ds

if we orient Γ in the same direction as Γx and thus in the opposite direction
as Γ̃x. We conclude that

∫

Γ̃x

u · ds =
∫

Γx

u · ds,

and the independence of the choice of curve connecting x̄ with x follows.
Next, we prove that the function ϕ(x) defined by (230.2) satisfies∇ϕ(x) =

u(x) for x ∈ Ω. We do this by choosing a curve Γx to connect to x along the
x1-axis, the x2-axis, or the x3-axis. Letting Γx connect along the x1-axis
according to Fig. 230.3, for x̂ close to x we have

ϕ(x)− ϕ(x̂) =

∫ x1

x̂1

u1(t, x2, x3) dt ,

and the Fundamental Theorem implies

∂ϕ

∂x1
(x) = u1(x).

Similarly, we obtain ∂ϕ
∂xi

(x) = ui(x) for i = 2, 3. We summarize:

Theorem 230.1 If u : Ω → Rd, with Ω being a convex domain in Rd for
d = 2, 3, satisfies ∇ × u(x) = 0 for all x ∈ Ω, then there is a function
ϕ : Ω → R such that u(x) = ∇ϕ(x) for x ∈ Ω.
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x

x̄

x̂

Ω Γx

FIGURE 230.3. A curve Γx in Ω connecting to x along the x1-axis.

230.3 A Counter-Example for a Non-Convex Ω

Consider the function u : Ω → R2, defined by u(x) = (−x2, x1)/‖x‖2 with
Ω = {x ∈ R2 : x 6= 0}. This function satisfies

∇× u(x) =
∂u2
∂x1

− ∂u1
∂x2

=
−2x1x2
‖x‖4 − −2x1x2

‖x‖4 = 0 for x ∈ Ω.

Nevertheless, u(x) cannot be written in the form u(x) = ∇ϕ(x) for x ∈ Ω.
This follows by noting that if, for example, Γ is the closed circle given by
s(t) = r(cos(t), sin(t)), 0 ≤ t < 2π, then

∫

Γ

u · ds =
∫ 2π

0

1

r2
r2 dt = 2π,

while if u(x) = ∇ϕ(x),
∫
Γ u · ds = 0 since Γ is closed. The reason is that in

this case Ω is not convex. The point x = 0 does not belong to Ω and thus Ω
has a “hole”. We cannot extend Ω to include x = 0 since the function u(x)
is singular at x = 0 and in particular not Lipschitz continuous at x = 0.

Chapter 230 Problems

230.1. If possible, find a potential ϕ for (a) u(x) = (x1, x2, x3) (b) u(x) =
(x3, x1, x2) (c) u(x) = (x2

2 − x3, 2x1x2, 3x
2
3 − x1).

230.2. We recall from above that ∇× u = 0 if and only if u = ∇ϕ for some ϕ.

We now ask the question if ∇ · u = 0 if and only if u = ∇× ψ for some (vector)
potential ψ. Recall that we already know that the “if-part” of this is true, namely
that ∇ · u = 0 if u = ∇× ψ for some ψ for some ψ.

It turns out that also the “only if-part” is true, that is, if ∇ · u = 0 we may
construct a (vector) potential ψ such that u = ∇ × |psi. Verify this, using the
construction ψ(x) =

∫ 1

0
u(tx)×tx dt, and assuming ∇·u in all of R3 for simplicity.

230.3. Extend the above counterexample to the function u : R3 → R3 given by
u(x) = (−x2, x1, 0)/‖x‖2 representing the magnetic field around a current along
the x3-axis.
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231
Center of Mass and Archimedes’
Principle*

The simplest schoolboy is now familiar with facts for which Archimedes
would have sacrificed his life. (Ernest Renan)

.

231.1 Introduction

We now turn to a study of the stability of floating bodies, including the
question of how to design a big ship or a sailing boat so that it does not
tip over. An example of an unfortunate design is given by the warship
Vasa, which tipped over on its maiden voyage on August 10 1628 in the
harbor of Stockholm and sank along with 50 of the crew of 150 people. In
the resulting trial, it was decided that the ship was “well built, but badly
proportioned” and no-one was held guilty for the disaster. The ship can
now be studied at the Vasa museum in Stockholm.
Evidently, the stability properties of Vasa came as a surprise. Vasa had

a new design with two gundecks with heavy artillery instead of one and
the planned ballast of stone was not sufficient as a counterbalance. The old
rules of ship design apparently did not apply to the new design and Calculus
and scientific computing at that time was too primitive for trustworthy
predictions.
Let’s see what we can do today with a little bit of Calculus. We start

with the concept of center of mass, pass on to Archimedes principle and
the question of stability of floating bodies.
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231.2 Center of Mass

Consider a body B occupying the volume V in R3. Suppose the density of
the body at x is given by ρ(x). The total mass m(B) of the body is

m(B) =

∫

V

ρ(x) dx.

The center of mass x̄ = (x̄1, x̄2, x̄3) ∈ R3 of the body B is defined by

x̄i

∫

V

ρ(x) dx =

∫

V

xiρ(x) dx , i = 1, 2, 3,

that is

x̄i =

∫
V xiρ(x) dx∫
V
ρ(x) dx

, i = 1, 2, 3.

In vector form, this is

x̄ =

∫
V
xρ(x) dx∫

V ρ(x) dx
.

We now explain the relevance of the concept of center of mass using the
concept of torque. Assume the body B is acted upon by a vertical gravity
force field −e3 of unit strength with the coordinate direction e3 oriented
vertically upward. The torque about a point x̄ of a force F acting at x is
equal to

(x− x̄)× F = −F × (x− x̄),

see Fig. 231.1. In other words, the torque is a vector that is perpendicular
to the plane generated by the direction of the force F and the lever arm
x − x̄, with modulus equal to the modulus of F times the distance of the
point x̄ from the line of action of F .
The torque of the gravity field (assuming the acceleration of gravity

g = 1) acting on an element of mass ρ(x) dx at position x about a given
point x̄ is equal to

ρ(x) dx e3 × (x− x̄).

The total torque T of the gravity field −e3 on the body B about x̄ is thus
equal to

T = e3 ×
∫

V

ρ(x)(x − x̄) dx = 0,

by the definition of the center of mass x̄. The torque about x̄ thus vanishes
which means that body will balance if supported at x̄, see Fig. 231.2.
More precisely,

T = e3 × (

∫

V

ρ(x)x dx − x̄

∫

V

ρ(x) dx) = 0 (231.1)
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x1

x2

x3

T

T

F

F

x

x̄

x− x̄

FIGURE 231.1. The torque T = (x− x̄)×F about the point x̄ of F acting at x.

if and only if

x̄i =

∫
V xiρ(x) dx∫
V ρ(x) dx

,

for i = 1, 2. This means that the body will balance if supported at a
point x = (x1, x2, x3) with x1 = x̄1 and x2 = x̄2, while x3 may be chosen
arbitrarily, see Fig. 231.2. Thus, if the body is supported at its center of
mass x̄ then it will balance independently of its orientation. If the body
is supported at a point x different from the center of mass x̄, then it will
balance only if x̄− x is parallel to the direction of the gravity field.

FIGURE 231.2. A body supported at its center of mass, in two stable positions,
and a body supported at a boundary point, balanced but unstable.

Example 231.1. We compute the center of mass x̄ of a thin triangular
plate of uniform thickness occupying the region Ω = {x ∈ R2 : 0 ≤
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x1, x2, x1 + x2 ≤ 1} in the plane. We get

x̄i =

∫
Ω
xi dx∫
Ω
dx

=
1/6

1/2
=

1

3
.

Example 231.2. We compute the center of mass of the half-ball Ω =
{x ∈ R3 : ‖x‖ ≤ 1, x3 ≥ 0}. By symmetry x̄1 = x̄2 = 0. For x̄3 we get
using spherical coordinates

∫

Ω

x3 dx =

∫ 2π

0

∫ π/2

0

∫ 1

0

r cos(ϕ) r2 sin(ϕ) drdϕdθ

=

∫ 2π

0

∫ π/2

0

1

2
sin(2ϕ)

[1
4
r4
]1
0
dϕdθ

=
1

4

∫ 2π

0

[1
4
cos(2ϕ)

]π/2
0

dθ =
1

4

∫ 2π

0

dθ = π/4,

that is, x̄3 =
∫
Ω
x3 dx/

∫
Ω
dx = π/4

2π/3 = 3
4 .

231.3 Archimedes’ Principle

Archimedes principle states that (i) the buoyancy force acting on a body
B totally immersed in a liquid is equal to the weight of the displaced
liquid and (ii) acts along a vertical line through the center of mass of the
displaced fluid, which we refer to as the center of bouyancy cb. We shall
now prove this fact using vector Calculus. The force from the fluid acting
on an element ds = ds(x) of the surface S of the body B at position x is
equal to −p(x)n(x) ds, where p(x) is the pressure of the liquid and n(x) is
the outward (from B) unit normal to S at x. The total pressure force on
B is thus

F = −
∫

S

p(x)n(x) ds(x) = −
∫

S

pn ds.

Since ∫

V

∂p

∂xi
dx =

∫

S

pni ds, i = 1, 2, 3,

where V is the volume occupied by B, we have

F = −
∫

V

∇p(x) dx

The pressure p(x) in a fluid at rest, called the hydro-static pressure, is given
by

p(x) = ρz(x) + p0,
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z

p

p0

FIGURE 231.3. Hydrostatic pressure p(x) = ρz(x) + p0.

where z(x) is the depth, ρ is the constant density of the fluid and p0 is the
pressure on the surface of the fluid, see Fig. 231.3.
The pressure force at a point x is equal in all directions and its modulus

p(x) equal is to the weight ρz(x) of the column of fluid above the point x
plus the surface pressure p0 from the atmosphere. We conclude that

∇p(x) = −ρe3,

where we assume that the coordinate direction e3 is vertical and pointed
upwards. Therefore,

F =

∫

V

ρ dx e3 ≡We3,

where W =
∫
V
ρ dx is the total weight of the displaced fluid. This proves

the first part of Archimedes principle.
Next, the total torque T from the fluid pressure forces on S about a point

x̄ is given by

T =

∫

S

(x− x̄)× (−p(x)n(x)) ds(x) =
∫

S

n(x)× p(x)(x − x̄) ds.

Recalling that ∫

S

n× F ds =

∫

V

∇× F dx,

we find that

T =

∫

V

∇× (p(x)(x − x̄)) dx.

But,
∇× (p(x)(x − x̄)) = ∇p× (x− x̄) + p∇× (x− x̄).

Since ∇× (x− x̄) = 0, it follows that

T =

∫

V

∇p× (x− x̄) dx = −
∫

V

ρ(x− x̄) dx× e3
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and the torque T vanishes if x̄ satisfies

x̄i

∫

V

ρ dx =

∫

V

xiρ dx for i = 1, 2.

We conclude that the buoyancy force is vertical upward and is acting along
a vertical line through the center of mass of the displaced fluid. We have
now proved:

Theorem 231.1 (Archimedes’ principle) The buoyancy force acting
on a body immersed in a liquid is equal to the weight of the displaced liquid
and acts along a vertical line through the center of mass of the displaced
fluid.

We can directly extend Archimedes’ principle to a partially immersed
body assuming the pressure on the surface of the fluid to be is zero.

231.4 Stability of Floating Bodies

The stability of a floating body B is of central importance in all forms of
boating, from canoes to big ships. The question of stability can be reduced
to a question of the relative position of (i) the center of mass cm of the
body B and (ii) the center of buoyancy cb of B according to the following
discussion. Consider the body in rest position with the gravity force acting
vertically downward from the center of gravity, and the buoyancy force act-
ing vertically upward from the center of buoyancy. We assume the body is
in equilibrium with the gravity force and the buoyancy force balancing and
acting along the vertical line through the centers of gravity and buoyancy,
see Fig. 231.4.

cb

cbcb

cm
cmcm

FIGURE 231.4. Floating bodies with centers of gravity and buoyancy.

Assume that the body is tilted a small angle so that the centers of grav-
ity and buoyancy are displaced horizontally, see Fig. 231.4. Let T be the
resulting torque from the pair of gravity and buoyancy forces. The sign of T
will govern the stability! If T acts in the same direction as the tilting, then
the tendency of tilting will be enforced and the body will depart from its
equilibrium position and eventually tilt over, see Fig. 231.4. This happens if
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the center of gravity is displaced horizontally in the direction of tilting more
quickly than the center of buoyancy. Conversely, if the center of gravity is
displaced more slowly, then the resulting torque T will be negative and act
as a restoring force seeking to bring back the body to the rest position, see
Fig. 231.4. We now consider two examples with simple geometry.

Example 231.3. Consider a space capsule with hemispherical base
and conical top floating in the Pacific and waiting to be recovered.
Will the capsule float upright or not? Assuming the capsule is floating
upright with a part of the hemispherical base immersed into the water,
see Fig. 231.5.

C
cm

cb

FIGURE 231.5. Space capsule floating upright.

The resultant of the buoyancy forces is directed upward and acts through
the center C of the hemisphere, see Fig. 231.5. If the capsule is tilted
a little, the resultant of the buoyancy forces is still directed upwards
through C and the torque from the gravity force will be de-stabilizing
if the center of mass cm of the capsule is positioned above C, and sta-
bilizing if cm is below C, for cm on the symmetry axis of the capsule,
see Fig. 231.5.

Example 231.4. Consider a rectangular box with square horizontal
cross section of width 2w and height 2h and density ρ̄ which is floating in
a fluid of density ρ, see Fig. 231.6. Suppose that ρ̄ is small compared to
ρ so that it penetrates into the fluid only slightly. To test the stability of
the box, suppose the box is rotated a small angle θ around the mid-point
C at the bottom. The de-stabilizing torque about C resulting from the
gravity force through the center of gravity is equal to gρ̄(2w)22hh sin(θ),
see Fig. 231.6. The stabilizing torque from the change of buoyancy forces
caused by the rotation is equal to

2
2

3
www sin θ

1

2
ρgw,
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because the area of the triangle CAB is equal to ww sin θ 1
2 , and the

center of gravity of CAB is at horizontal distance 2 2
3w from C. The

position is stable if

2
2

3
w4 sin θ

1

2
ρg > gρ̄8w2h2 sin(θ),

that is, if
w2ρ > 12h2ρ̄.

A
BM2w

2h

FIGURE 231.6. Floating box.

Chapter 231 Problems

231.1. The density of ice is 0.917 times the density of water (at −4◦C). How
large a part of an iceberg is visible above the water surface?

231.2. How does a log float? Why does it not want to float in an upright position?

231.3. Understand why catamaran ships have good stability properties.

231.4. Find the stable floating position of a “log” with a quadratic cross-section
and density ρ̄ = 1

2
ρ. Find the stable positions as a function of the ratio ρ̄/ρ

(we know from above that for ρ̄/ρ sufficiently small it will float as the box in
Fig. 231.6). May there be more than one stable position (disregarding symmetric
ones). Discuss! May the conclusion depend on the shape of the cross-section?

231.5. How does a (perfect) ice cube float? How does a barrel (cylinder) float,
given hight/diameter ratio and density?

231.6. Study the design of sailing boats from the stability point of view. Study
in particular modern designs with good form stability (wide and flat bottom),
and classical designs with a narrow deep hull. Connect to the discussion above.

231.7. Extend Archimedes principle to a body immersed into a system of two
layers of different fluids on top of each other.
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232
Laplacian Models

... on aura donc ∆u = 0; cette équation remarquable nous sera de la
plus grande utilité .... (Laplace)

If one has to stick to this damned quantum jumping, then I re-
gret ever having been involved in this thing. I don’t like it (quan-
tum mechanics), and I’m sorry I ever had anything to do with it.
(Schrödinger)

232.1 Introduction

In this chapter, we present some basic models involving the Laplacian, in-
cluding models for heat conduction, elasticity, electromagnetics, fluid me-
chanics, and gravitation. In deriving these models, we make use of the
basics of Calculus in several dimensions including Gauss’ and Stokes’ theo-
rems, and we get a quick and easy introduction to some of mysteries of the
mechanics and physics of “continuous media”. We also make connections
to linear algebra when discretizing the Laplacian using the 5-point scheme
and variants of “Svensson’s formula”.

232.2 Heat Conduction

We first model heat conduction in a heat-conducting material occupying
the volume Ω in R3 with boundary Γ, over a time interval I = [0, T ]. We
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let u(x, t) denote the temperature and q(x, t) the heat flux at the point x at
time t. The heat flux is a vector q = (q1, q2, q3), where qi is the heat flux,
or rate of heat flowing in the direction xi. We let f(x, t) denote the rate of
heat (per unit of volume) supplied at (x, t) by a heat source.
We derive the model using a basic conservation law expressing conser-

vation of heat in the following form: for any fixed domain V in Ω with
boundary S, the rate of the total heat introduced in V by the external
source is equal to the rate of the total heat accumulated in V plus the total
heat flux through S. This is based on the conviction that the heat intro-
duced in V by the external source can choose between two options only: (i)
flow out of V or (ii) be accumulated in V . With S denoting the boundary
of V and n denoting the outward unit normal to S, see Fig. 232.1, the
conservation law can be expressed as

V

n

FIGURE 232.1. An arbitrary subset V of a heat conducting body Ω.

∫

V

f dx =
∂

∂t

∫

V

λu dx+

∫

S

q · n ds, (232.1)

where λ(x, t) is the heat capacity coefficient giving the amount heat per
unit of volume needed to raise the temperature one unit, and all functions
are evaluated at a specific time t ∈ I. By the Divergence theorem,

∫

S

q · n ds =
∫

V

∇ · q dx,

and combined with (232.1), this implies that

∫

V

(
∂

∂t
(λu) +∇ · q

)
dx =

∫

V

f dx,

where the time derivative could be moved under the integral sign because
V does not depend on time t. Since V is arbitrary, assuming the integrands
are Lipschitz continuous, it follows that

∂

∂t
(λu)(x, t) +∇ · q(x, t) = f(x, t) for all x ∈ Ω, 0 < t ≤ T, (232.2)
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which is a differential equation describing conservation of heat involving
two unknowns: the temperature u(x, t) and the heat flux q(x, t). We thus
have one equation and two unknowns and we need yet another equation.
The second equation is a constitutive equation that couples the heat flux

q to the temperature gradient∇u. Fourier’s law states that heat flows from
warm to cold regions with the heat flux proportional to the temperature
gradient:

q(x, t) = −a(x, t)∇u(x, t) for x ∈ Ω, 0 < t ≤ T (232.3)

where the factor of proportionality a(x, t) is the coefficient of heat conduc-
tivity. Note the minus sign indicating that the heat flows from warm to
cold regions, and that the heat conductivity a(x, t) is positive. Combining
(232.2) and (232.3), we obtain the basic differential equation describing
heat conduction:

∂

∂t
(λu)−∇ · (a∇u) = f in Ω× (0, T ], (232.4)

where a(x, t) and λ(x, t) are given positive coefficients depending on (x, t)
and f(x, t) is a given heat source, and the unknown u(x, t) represents the
temperature.
To define the solution uniquely, the differential equation is complemented

by initial and boundary conditions. The complete model with Dirichlet
boundary conditions reads





∂
∂t (λu)−∇ · (a∇u) = f in Ω× (0, T ],

u = ub on Γ× (0, T ],

u(x, 0) = u0(x) for x ∈ Ω,

(232.5)

where u0 is the initial temperature and ub is the boundary temperature.
The Dirichlet boundary condition corresponds to immersing the body Ω
in a large reservoir with a specified temperature ub and assuming that
the boundary acts as a perfect thermal conductor so that the temperature
of the body on the boundary is equal to the specified outside reservoir
temperature ub. Note that the given boundary temperature ub = ub(x, t)
may vary with (x, t).
Other commonly encountered boundary conditions are Neumann and

Robin boundary conditions. A Neumann boundary condition corresponds
to prescribing the heat flux q · n across (out of) the boundary:

q · n = −a∇u · n = −a∂u
∂n

= −a∂nu = g on Γ,

with g given. A homogeneous Neumann boundary condition with g = 0 cor-
responds to a perfectly insulating boundary with the heat flux across the
boundary being zero. A homogenous Robin boundary condition is interme-
diate with the boundary neither being perfectly conducting nor perfectly
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insulated, with the heat flux through the boundary being proportional to
the difference of the temperature u inside and a given temperature ub out-
side Ω:

−a∂nu = κ(u− ub)

with κ a positive coefficient representing the heat conductivity of the bound-
ary.
Partitioning the boundary Γ into disjoint pieces Γ1, Γ2 and Γ3 with

different types of boundary conditions, the general initial boundary value
problem IBVP for the heat equation has the form,





∂
∂t (λu)−∇ · (a∇u) = f in Ω× (0, T ],

u = ub on Γ1 × (0, T ],

−a∂nu = g on Γ2 × (0, T ],

a∂nu+ κ(u − ub) = 0 on Γ3 × (0, T ],

u(x, 0) = u0(x) for x ∈ Ω,

(232.6)

where ub represents a given “exterior” boundary temperature, and g rep-
resents a given outward normal heat flux on the boundary.
We note that in a stationary situation with ∂

∂t (λu) = 0 and with the
heat source f = 0, the equation (232.2) expressing conservation of heat,
takes the form

∇ · q = 0. (232.7)

If heat is neither produced nor accumulated, then conservation of heat is
expressed by the equation∇·q = 0, that is, the heat flux q is divergence-free.
Below we shall meet several other examples of divergence-free fields.

232.3 The Heat Equation

We refer to the special case of (232.6) with λ = a = 1 as the heat equation.
In the case with homogeneous Dirichlet boundary conditions, we get the
model





∂u
∂t −∆u = f in Ω× (0, T ],

u = 0 on Γ× (0, T ],

u(x, 0) = u0(x) for x ∈ Ω,

where u0 is the initial temperature, and ∆u = ∇ · (∇u) is the Laplacian.
The heat equation serves as a basic prototype of a parabolic problem.
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FIGURE 232.2. Poisson (1781-1840): “Life is good for only two things: to study
mathematics and to teach it”

232.4 Stationary Heat Conduction: Poisson’s
Equation

The stationary analog of (232.6) reads




−∇ · (a∇u) = f in Ω,

u = ub on Γ1,

−a∂nu = g on Γ2,

a∂nu+ κ(u− ub) = 0 on Γ3.

(232.8)

Choosing a = 1 leads to the Poisson equation:




−∆u = f in Ω,

u = u1 on Γ1,

−a∂nu = g2 on Γ2,

a∂nu+ κ(u − ub) = g3 on Γ3.

(232.9)

In the case of homogeneous Dirichlet boundary conditions on the whole of
the boundary, the Poisson equation reads

{
−∆u = f in Ω,

u = 0 on Γ.
(232.10)

Poisson’s equation serves as a basic model of an elliptic problem and has
numerous applications in physics and mechanics. We present the basic ap-
plications below. Poisson’s equation −∆u = f with f = 0 is referred to as
Laplace’s equation: ∆u = 0.
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We now give a couple of analytic solutions to the heat equation in simple
situations:

Example 232.1. The stationary temperature u in a heat conduction
unit cube Q with heat production and conduction coefficient equal to
one, zero boundary temperature for x1 = 0, 1, and zero heat flux for
x2, x3 = 0, 1, is given by

u(x) =
1

2
(x1(1 − x1).

We see that the temperature is maximal for x1 = 0.5 and drops off
quadratically towards the Dirichlet boundary, see Fig. 232.3 for a plot
in the corresponding case in two dimension in the unit square.

Example 232.2. Consider the homogenous heat equation in the unit
square Q with f = 0 and homogenous Dirichlet boundary conditions:
the function

u(x, t) = e−(n2+m2)t sin(nx1) sin(mx2)

with m,n = 1, 2, 3, ... is a solution of the homogenous heat equation
∂u
∂t − ∆u = 0 with initial value u0(x1, x2) = sin(nx1) sin(mx2), see
Fig. 232.3. We see that the temperature u(x, t) decays exponentially in
time very quickly if n and/or m is only moderately large. This corre-
sponds to the fact that a temperature oscillating in space, is quickly
levelled out.

Example 232.3. The stationary temperature u(x) between the two
planes {x3 = 0} and {x3 = 1} bounding a heat conducting layer with
heat conductivity coefficient equal to one, zero heat source, and the
temperature u = 1 on {x3 = 1} and u = 0 on {x3 = 0}, is given by
u(x) = x3 displaying a linear variation of the temperature between the
plates. No surprise of course.

232.5 Convection-Diffusion-Reaction

The heat equation models the physical phenomenon of diffusion, and we
now extend this model to include the phenomena of convection and reaction.
We obtain a scalar convection-diffusion-reaction equation, which is another
basic model in science. We consider a typical case where u represents the
concentration of a certain chemical species subject to convection in a given
velocity field β(x, t), diffusion with diffusion coefficient ǫ(x, t) and reaction
with reaction rate α(x, t). For example, u may represent the concentration
of a contaminant in a volume of water moving with the velocity β(x, t).
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FIGURE 232.3. The functions 1
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(x1(1− x1) and sin(πx1)sin(2πx2)

The model results from a principle of conservation of mass together with
a constitutive equation generalizing Fourier’s law expressing the flow rate
q of the chemical species in terms of ∇u and βu. Conservation of mass is
expressed by

u̇+∇ · q + αu = f,

where f represents a source term, and the constitutive law takes the form

q = βu− ǫ∇u.

which says that the total flow rate q is the sum of a convective rate βu and
a diffusive rate −ǫ∇u. The model thus takes the form:

u̇+∇ · (βu) + αu −∇ · (ǫ∇u) = f in Ω× (0, T ], (232.11)

together with initial and boundary conditions, where Ω is domain in space
and [0, T ] a given time interval. We shall meet this model and generaliza-
tions thereof in several different contexts below.

232.6 Elastic Membrane

Consider a horizontal elastic net covering the unit square Q = {x ∈ R2 :
0 ≤ xi ≤ 1, i = 1, 2} formed by elastic strings tied together at nodes
aij ∈ R2 in a uniform quadrilateral mesh with mesh size h = 1/N , so that
aij = (ih, jh), i, j = 0, 1, ..., N , where N is the number of cells in each
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coordinate direction. Assume that the net is stretched so that the tension
in each string is equal to h, corresponding to the tension being equal to one
per unit of length. Note the normalization introduced says that the tension
in each string decreases as the number of strings increases. We refer to the
situation in which all the nodes lie in the plane of the square and there is
no external load on the net as the unloaded reference configuration of the
net.
Suppose the net is subject to a set of downward vertical loads of size

fijh
2 at the nodes aij . The net will deform under the loads and the nodes

will be displaced from the initial unloaded reference configuration. Let the
vertical displacement of node aij be denoted by ui,j . If the displacements
are small, then (recalling the Chapter String theory) the vertical upward
force from the net on node aij is equal to

(ui,j − ui−1,j) + (ui,j − ui+1,j) + (ui,j − ui,j−1) + (ui,j − ui,j+1),

with contributions from the four pieces of string meeting at aij . This is
because the vertical slope of the line between for example node (i, j) and
(i− 1, j) is equal to (ui,j − ui−1,j)/h and the tension is h. We thus obtain
the following vertical equilibrium equation for each node aij :

−ui−1,j − 2ui,j + ui+1,j

h2
− ui,j−1 − 2ui,j + ui,j+1

h2
= fij .

Passing to the limit as h tends to zero, and recalling that Taylor’s theorem
implies

lim
h→0

v(x− h)− 2v(x) + v(x+ h)

h2
= v′′(x) =

d2v

dx2
(x)

if v : R → R is twice differentiable, we are led to the equation

−∆u(x) = f(x).

This equation expresses the equilibrium of a horizontal membrane made
by an elastic fabric and carrying a vertical load of intensity (force per
unit area) f(x), where u(x) is the vertical displacement of the membrane
at x and we assume that the membrane in its unloaded plane reference
configuration is prestressed to uniform tension in all directions.
We can generalize to a horizontal membrane covering a general domain Ω

in R2. Assuming the membrane is fixed at the boundary Γ of Ω, so that the
vertical displacement u(x) is zero at Γ, we thus obtain Poisson’s equation

−∆u = f in Ω, u = 0 on Γ (232.12)

as a model for the vertical deflection of a horizontal elastic membrane
spanned over the boundary Γ of a domain Ω in R2, subject to a vertical
load of intensity f(x). This is a basic model of elasticity theory.
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u

f

FIGURE 232.4. An elastic membrane under a load f(x) and supported at Γ.

Example 232.4. If Ω = {x ∈ R2 : ‖x‖ < 1} is the unit disc, and the
load f is radially symmetric, then the deflection u will also be radially
symmetric. Recalling the form of the Laplacian in polar coordinates
from the Chapter The divergence, rotation and Laplacian, we can write
(232.12) in the form

−∆u = −1

r

∂

∂r

(
r
∂u

∂r

)
= f(r) for 0 < r < 1, u(1) = 0,

∂u

∂r
(0) = 0.

Note the boundary condition ∂u
∂r (0) = 0, which has no counterpart in

x-coordinates, says that u(x) is differentiable at x = 0. If ∂u
∂r (0) 6= 0,

then u(x) has a a conical “to” at x = 0 and thus is not differentiable
at x = 0. If f(r) = 1, then the solution is given by

u(r) =
1

4
(1− r2) for 0 ≤ r ≤ 1.

232.7 Solving the Poisson Equation

Suppose we would like to numerically solve the Poisson equation

−∆u = f in Q, u = ub on Γ

where Q is the unit square with boundary Γ and f(x) a given function
on Q. Recalling the derivation of the model −∆u = f from the previous
section, we are led to computing approximations Ui,j of u(ih, jh) for i, j =
0, 1, ..., N , where h = 1/N , from the system of equations

− Ui−1,j − 2Ui,j + Ui+1,j

h2
− Ui,j−1 − 2Ui,j + Ui,j+1

h2
= f(ih, jh),

i, j = 1, ..., N − 1,

that is

4Ui,j − Ui−1,j − Ui+1,j − Ui,j−1 − Ui,j+1 = h2f(ih, jh),

i, j = 1, ..., N − 1, (232.13)



1606 232. Laplacian Models

where Ui,j = ub(ih, jh) if i or j is equal to 0 or N . We see that this is an
m×m system of equations with m = (N−1)×(N−1) in the unknowns Ui,j
where i, j = 1, ..., N−1. This is the famous 5-point scheme for the Poisson’s
equation, where the unknown Ui,j is coupled to its four neighbors Ui−1,j ,
Ui+1,j , Ui,j−1, Ui,j+1.
If f = 0, then the 5-point scheme takes the form (“Svensson’s formula”)

Ui,j =
1

4
(Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1),

stating that each value Ui,j is the mean value of the neighboring values
(reflecting a basic feature of the Swedish national character).
Note that (232.13) is a linear system of equations for the values of U that

requires some work to solve. For example, we may try to solve (232.13) by
fixed point iteration as follows with k = 0, 1, ...

Uk+1
i,j = Uki,j

− α
(
4Uki,j − Uki−1,j − Uki+1,j − Uki,j−1 − Uki,j+1 − h2f(ih, jh)

)
, (232.14)

for i, j = 1, ..., N − 1, with Uk+1
i,j = ub(ih, jh) if i or j is equal to 0 or N .

Here, Uki,j is an approximation of Ui,j after k steps starting with an initial

approximation U0
ij and α is a positive constant. It turns out that if α is

sufficiently small, then the iteration converges, see Problem 232.9, although
the convergence gets slower as the step size h decreases.

Example 232.5. Assuming x2 independence, we are led to the model

−u′′(x) = f(x) for 0 < x < 1, u(0) = u0, u(1) = u1,

where u′(x) = du
dx . The corresponding discrete model takes the form

− (Ui−1 − 2Ui + Ui+1) = h2f(ih),

i = 1, ..., N − 1, U0 = u0, UN = u1, (232.15)

with Ui representing an approximation of u(ih). Assuming for simplicity
u0 = u1 = 0, the discrete model can be written in the form

AU = b,

with U = (U1, ..., UN−1), b = (b1, ..., bN−1) with bi = h2f(ih), A = (aij)
an (N − 1) × (N − 1) matrix with aii = 2, ai,i−1 = ai−1,i = −1 and
aij = 0 if |i − j| > 1. The fixed point iteration described above can be
written

Uk+1 = Uk − α(AUk − b),

and the criterion of convergence is ‖I − αA‖ < 1, which we prove in
Problem 232.9 to be valid if α > 0 is sufficiently small. Here, ‖I −αA‖
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is the Euclidean norm of the matrix I − αA and the Spectral theorem
implies

‖I − αA‖ = max
i

|1− αλi|,

where the λi are the eigenvalues of the symmetric matrix A.

232.8 The Wave Equation: Vibrating Elastic
Membrane

We now model the dynamic motion of the elastic membrane considered
above in the static. We complement the given exterior force f(x, t), which
now may be dependent on time, by a dynamic force, which according to
Newton’s law, takes the form mü, with m representing mass per unit area
and ü representing the acceleration of vertical displacement u. This to leads
to the wave equation, modeling a vibrating membrane subject to an exterior
load,





ü−∆u = f in Ω× (0, T ],

u = 0 on Γ× (0, T ],

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) for x ∈ Ω,

(232.16)

where Ω denotes a domain in Rd with boundary Γ, u0 is a given initial
displacement, u̇0 is a given initial displacement velocity, and we assume
homogeneous Dirichlet boundary conditions for simplicity. Other boundary
conditions, notably periodic boundary conditions, are also relevant for this
model.

232.9 Fluid Mechanics

Fluid flow opens a rich field for mathematical modelling. We think of a
fluid as a collection of many small “fluid particles” and we seek to describe
the fluid flow resulting from the motion of all these fluid particles. We work
under the assumption that the particles are so small and there are so many,
that we can treat the fluid as a continuum. Usually, we use an Eulerian
mode of description in which we describe the flow in terms of the velocity
u(x, t) ∈ R3 of the fluid particles at position x ∈ R3 at time t, or simply
the velocity of the fluid at (x, t). This corresponds to attaching an observer
to each fixed point x for the purpose of observing the velocity u(x, t) of the
fluid particles that happen to be at position x at time t. The observer thus
sits at position x and watches the fluid particles swirl by.
Alternatively, in a Lagrangian mode of description, an observer is at-

tached to each fluid particle with the purpose of observing the change of
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velocity of the fluid particle with time. In this case, the observer follows
the particle. The different modes of description are both useful and may
also be used together, see the chapters on convection-diffusion in [?].

The Equation of Mass Conservation

We consider the flow of a fluid within a certain volume Ω ∈ R3 using an
Eulerian description with u(x, t) representing the velocity of the fluid at x
at time t. The velocity u is a vector u = (u1, u2, u3).
Let ρ(x, t) denote the density of a fluid at (x, t) measuring the mass of the

fluid particles per unit of volume. Let V be a fixed volume with boundary
S. The total mass of the fluid in V at time t is given by

∫

V

ρ(x, t) dx.

The mass of fluid at time t passing out through the boundary S per unit
of time is given by

∫

S

ρ(x, t)u(x, t) · n(x) ds(x) =
∫

V

∇ · (ρu)(x, t) dx,

where we used the Divergence theorem. The rate of change of mass in V
plus the rate of mass flow through the boundary must be zero if we assume
that no fluid is added or removed, which leads to the following expression
of mass conservation,

∂

∂t

∫

V

ρ(x, t) dx+

∫

V

∇ · (ρu)(x, t) dx = 0.

If ρ varies smoothly, then ∂
∂t may be moved under the integral sign and

since V was arbitrarily, we are led to the differential equation expressing
mass conservation,

∂ρ

∂t
+∇ · (ρu) = 0, (232.17)

Of course this is a basic equation of mathematical modelling. Performing
the differentiation with respect to x, we can express mass conservation in
the form

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0. (232.18)

Particle Paths and Streamlines

Let the velocity of a fluid be given by the function u(x, t). Consider the
IVP

d

dt
x(t) = u(x(t), t) for t > 0, x(0) = x0.
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The solution x(t) represents the curve, or path or trajectory, followed by
a fluid particle that starts at position x0 at time t = 0 and moves with
velocity u(x(t), t) for t > 0. If the velocity u(x, t) = u(x) is independent of
time t, then particle paths are also referred to as streamlines.

Incompressible Flow

If the fluid velocity u(x, t) satisfies

∇ · u(x, t) =
(∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

)
(x, t) = 0 for x ∈ Ω t > 0,

then the flow is said to be incompressible in Ω for t > 0.
If the flow is incompressible, the equation (232.18) of mass conservation

takes the form
∂ρ

∂t
+ u · ∇ρ = 0. (232.19)

Since dx
dt = u for a x(t) particle path, the Chain rule implies

∂

∂t
ρ(x(t), t) =

∂ρ

∂t
+ u · ∇ρ = 0.

This says that the density is constant along particle paths, or in other words
the volume occupied by a certain set of fluid particles is constant. So, the
fluid cannot be compressed. It is common to assume that the density of an
incompressible fluid is constant.
Water is very nearly incompressible; it is very difficult to change the total

volume of a bucket of water. Air is compressible; the air tank of a diver
contains a huge volume of air at normal pressure compressed and stored in
a small volume at high pressure. But to get the air into the tank consumes
energy.

Incompressible Potential Flow

In so-called stationary flow, the velocity u(x, t) is independent of time and
thus the fluid velocity u(x) is a function of x ∈ Ω. Note that in a stationary
flow the fluid particles at x are moving if u(x) 6= 0, but the velocity of the
fluid particles at x does not change with time.
The velocity field u(x) of rotation-free fluid flow satisfies ∇ × u = 0,

which implies u = ∇ϕ for a scalar velocity potential ϕ under appropriate
convexity assumptions. If the fluid is incompressible, then ∇ · u = 0, and
we obtain the Laplace equation ∆ϕ = 0 for the potential of a rotation-free
incompressible flow. At a solid boundary, through which the fluid cannot
penetrate, the normal velocity of the fluid is zero, which translates into a
homogeneous Neumann boundary condition ∂nϕ = 0 for the potential ϕ.
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We now give some basic examples of incompressible potential flow. For
simplicity, we consider situations in which the velocity u(x) is independent
of the x3-coordinate.

Example 232.6. The potential

ϕ(x1, x2) = x21 − x22

satisfies ∆ϕ = 0 and the corresponding flow velocity u = ∇ϕ is given
by

u(x) = (2x1,−2x2).

This represents stationary flow in a corner, see Fig. 232.5. A streamline
x(t) satisfies dx

dt = (2x1,−2x2), which is a separable equation with
solutions satisfying

x1(t)x2(t) = c,

where c is a constant, see Fig. 232.5. We check by computing d
dtx1x2 =

ẋ1x2 + x1ẋ2 = 2x1x2 − 2x12x2 = 0.

Example 232.7. The potential

ϕ(x) = log(‖x‖)

satisfies ∆ϕ(x) = 0 for x 6= 0, and the corresponding flow velocity
u = ∇ϕ is given by u(x) = x

‖x‖2 , see Fig. 232.5.

Example 232.8. We consider incompressible potential flow around an
infinite circular cylinder along the x3-axis with cross-section Ω = {x =
(x1, x2) ∈ R2 : ‖x‖ < 1} from left to right, see Fig. 232.5. The potential
ϕ is given in polar coordinates x = r(cos(θ), sin(θ)) by

ϕ(x) = ϕ(r, θ) = (r +
1

r
) cos(θ),

corresponding to a flow from right to left sweeping around Ω and ap-
proaching u(x) = (1, 0) for ‖x1‖ large and x2 bounded. We note that
∆ϕ = 0 for r 6= 0, and that ∂ϕ

∂r = 1− 1/r2 = 0 for r = 1 and thus the
flow is tangential to the boundary of Ω.

Note that fluid flow is rarely rotation-free in the whole region occupied
by the fluid. In particular, if the fluid is viscous then rotation is generated
at solid boundaries.

Incompressible Flow With Rotation

We now consider basic examples of incompressible flow in two dimensions
with non-zero rotation. We assume u(x) = (u1(x), u2(x)) satisfies ∇·u = 0,
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FIGURE 232.5. Examples of incompressible potential flow

where x = (x1, x2). Defining v = (−u2, u1) this equation reads ∇× v = 0
and under appropriate convexity assumptions, there is a potential ϕ with
v = ∇ϕ. Thus,

u = (v2,−v1) = (
∂ϕ

∂x2
,− ∂ϕ

∂x1
) = ∇× ϕ.

With the rotation ∇× u = f given, we are led to the Poisson equation for
ϕ,

f = ∇× u = ∇× (∇× ϕ) = −∆ϕ.

Example 232.9. Given f = 4 we find the corresponding solution
ϕ(x) = −‖x‖2 with u(x1, x2) = (−2x2, 2x1), see Fig. 232.6. Choosing
ϕ(x) = log(‖x‖) corresponds to f(x) = 0 for x 6= 0, and the corre-
sponding velocity u(x1, x2) = ‖x‖−2(x2,−x1), see Fig. 232.6.
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FIGURE 232.6. Incompressible flow with rotation
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The Euler and Navier-Stokes Equations

The Euler equations for an incompressible inviscid fluid with constant den-
sity equal to one, take the form

∂u

∂t
+ (u · ∇)u+∇p = f, ∇ · u = 0, (232.20)

where u(x, t) is the velocity and p(x, t) the pressure of the fluid at the
point x at time t, and f is an applied volume force like a gravitational
force. In an inviscid fluid, the viscosity is zero and the only interior force
acting between the fluid particles is the pressure force that is equal in
all directions and acts normal to any surface. The equation ∇ · u = 0
expresses the incompressibility of the flow. The first equation expresses
Newton’s law stating that the acceleration d

dtu(x(t), t), where x(t) is the

trajectory followed by a fluid particle satisfying dx
dt = u(x(t), t), is equal to

the force −∇p + f , consisting of the pressure force −∇p and the applied
force f . We see this by computing with the the Chain rule and the equation
dx
dt = u(x(t), t) to get

d

dt
ui(x(t), t) =

∂ui
∂t

+
dx

dt
· ∇ui =

∂ui
∂t

+ (u · ∇)ui,

which leads to the vector form (232.20). The Navier-Stokes equations are
modifications of the Euler equations with an additional viscous force term
−ν∆u, where ν is the viscosity coefficient. In a fluid with non-zero viscosity,
there are also tangential (shear) forces acting on a surface.

232.10 Maxwell’s Equations

The interaction between electric and magnetic fields are described by
Maxwell’s equations:





∂B

∂t
+∇× E = 0,

−∂D
∂t

+∇×H = J,

∇ · B = 0, ∇ ·D = ρ,

B = µH, D = ǫE, J = σE,

(232.21)

where E is the electric field, H is the magnetic field , D is the electric
displacement, B is the magnetic flux , J is the electric current, ρ is the
charge, µ is the magnetic permeability, ǫ is the dielectric constant of elec-
tric permittivity, and σ is the electric conductivity. The first equation is
referred to as Faraday’s law, the second is Ampère’s law, ∇ · D = ρ is
Coulomb’s law, Gauss law ∇ · B = 0 expresses the absence of “magnetic
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charge”, and J = σE is Ohm’s law. Maxwell, see Fig. 232.7, included the
term ∂D/∂t for purely mathematical reasons and then used Calculus to
predict the existence of electromagnetic waves before these had been ob-
served experimentally.

FIGURE 232.7. Maxwell (1831-1879), inventor of the mathematical theory of
electromagnetism: “We can scarcely avoid the conclusion that light consists in
the transverse undulations of the same medium which is the cause of electric and
magnetic phenomena”.

Typical boundary conditions include various combinations of E · n (per-
fect insulator), E × n (perfect conductor), H · n and H × n.
Maxwell’s equations describe the whole world of electromagnetic phe-

nomena with an astounding economy of notation and accuracy of mod-
elling. Our modern information society builds on electromagnetic waves.
We shall now pick out a couple of Laplace equation models from Maxwell’s
equations by considering some basic particular cases.

Electrostatics

A basic problem in electrostatics is to describe the stationary electric field
E(x) in a volume Ω in R3 containing charges of density ρ(x) and enclosed
by a perfectly conducting surface Γ. Faraday’s law states that

∇× E = 0 in Ω,

since we assume that ∂B
∂t = 0. Recalling Chapter Potential fields, it follows

that the electric field E is the gradient of a scalar electric potential ϕ, i.e.
E = ∇ϕ. Coulomb’s law says

∇ · E = ρ in Ω,

so we are led to the Poisson equation for the potential ϕ,

∆ϕ = ∇ · ∇ϕ = ρ in Ω.
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The boundary condition E×n = 0 on the boundary Γ of Ω with n denoting
the outward unit normal, says that the tangential component of E vanishes
on the boundary. This models a perfectly conducting boundary in which
differences in the electric field are leveled out. This means that E = ∇ϕ
is normal to the boundary, so the boundary is a level surface of ϕ and the
potential ϕ is constant on the boundary. Since ϕ is undetermined up to a
constant, we may assume that ϕ = 0 on the boundary and we arrive at
Poisson’s equation −∆ϕ = f with f = −ρ in Ω with homogenous Dirichlet
boundary conditions ϕ = 0 on Γ.
The potential ϕ(x) of a point charge at the origin is given by

ϕ(x) =
c

‖x‖
with the corresponding electric field

E(x) = − cx

‖x‖3

and c a suitable constant. We shall return to this solution below.

Example 232.10. Let Ω = {x ∈ R2 : ‖x‖ < 1, x1 < 0 or x2 > 0}
be a circular disc with a piece cut out and a reentrant corner of angle
ω = 3π

2 , see Fig. 232.8. By a direct computation we can verify that the
function

ϕ(x) = rα sin(αθ)

expressed in polar coordinates x = r(cos(θ), sin(θ)), where α = π
ω = 2

3 ,
satisfies the Laplace equation ∆ϕ = 0 in Ω and the boundary condition
ϕ = 0 in the straight parts of the boundary meeting at the origin.
Letting ϕ represent an electric potential, the corresponding electric field
E(x) = ∇ϕ(x) satisfies

∂E

∂r
= αrα−1 sin(αθ)

and thus since α < 1, is singular (infinite) at the corner where r = 0.
This means that the electric field is very strong close to the corner, and
the sharper the corner (α smaller) the stronger is the field. This may
support the observation that an electric lightening is more likely to hit
the pointed tower of church than a smooth hill, or the design of an
electronic scanner where electrons pop out of the pin of a sharp needle.

Example 232.11. The potential ϕ of the electric field between two
concentric spheres S1 = {x ∈ R3 : ‖x‖ < r1} and S2 = {x ∈ R3 : ‖x‖ <
r2} with r2 > r1, is given by

ϕ(x) =
1

‖x‖
if we assume that ϕ = 1/ri on Si, i = 1, 2.
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FIGURE 232.8. A potential with singular electric field

Example 232.12. The function

ϕ(x1, x2)) = arctan(
x2
x1

)

defined for x1 > 0 satisfies ∆ϕ(x) = 0 for x1 > 0, and is constant
= arctan(c) on rays x2 = cx1 through the origin of slope c. The corre-
sponding electric field E(x) = ∇ϕ(x) given by

E(x) =
(−x2, x1)

‖x‖2 .

We see that E(x) is singular at x = 0.

Magnetostatics

The basic problem inmagnetostatics arises by combining Gauss’ law∇·H =
0, assuming µ constant and guaranteeing that H = ∇× ϕ for some vector
potential ψ satisfying ∇ · ψ = 0, with Faraday’s law ∇×H = J to give

∇× (∇× ψ) = −∆ψ = J,

where we use the facts that ∇ × (∇ × ψ) = −∆ψ + ∇(∇ · ψ) and that
∇ · ϕ = 0.
The magnetic field around a unit current J in the x3-direction is given

by

H(x) =
1

2π

(−x2, x1, 0)
‖x‖2 ,
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which can be verified by direct computation showing that ∇ · H(x) = 0
and ∇ × H(x) = 0 for (x1, x2) 6= 0. The presence of the factor 1

2π makes∫
Γ
H · ds = 1 for any counter-clockwise oriented circle in the x1x2-plane,

from which by Stokes theorem follows that ∇×H = J , see the next section
on Gravitation and delta functions.

Time-Dependent Magnetics

In low frequency applications, the term ∂D
∂t so cleverly introduced by

Maxwell, plays a minor role and can be discarded. Let’s see where this
leads. Since ∇ · B = 0, we can write B as B = ∇ × ψ, where ψ is a
magnetic vector potential. Inserting this into Faraday’s law gives

∇×
(
∂ψ

∂t
+ E

)
= 0,

from which it follows that

∂ψ

∂t
+ E = ∇ϕ,

for some scalar potential ϕ. Multiplying by σ and using the laws of Ohm
and Ampère, we obtain a vector equation for the magnetic potential ψ:

σ
∂ψ

∂t
+∇×

(
µ−1∇× ψ

)
= σ∇ϕ.

This system reduces to a scalar equation in two variables if we assume that
B = (B1, B2, 0) is independent of x3. It then follows that ψ has the form
ψ = (0, 0, u) for some scalar function u that depends only on x1 and x2, so
that B1 = ∂u/∂x2 and B2 = −∂u/∂x1. We end up with a scalar equation
for the scalar magnetic potential u in the form

σ
∂u

∂t
−∇ ·

(
µ−1∇u

)
= f, (232.22)

for some function f(x1, x2). Choosing σ = µ = 1 leads to the heat equation,





∂
∂tu(x, t)−∆u(x, t) = f(x, t) for x ∈ Ω, 0 < t ≤ T,

u(x, t) = 0 for x ∈ Γ, 0 < t ≤ T,

u(x, 0) = u0(x) for x ∈ Ω,

(232.23)

where Ω ⊂ R2 with boundary Γ, and we posed homogeneous Dirichlet
boundary conditions. In the stationary case, we again obtain Poisson’s
equation with Dirichlet boundary conditions.
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232.11 Gravitation

In his famous treatise Mécanique Céleste in five volumes published during
1799-1825, Laplace extended Newton’s theory of gravitation and in partic-
ular developed a theory for describing gravitational fields based on using
gravitational potentials that satisfy Laplace’s equation, or more generally
Poisson’s equation.
We consider a gravitational field in R3 with gravitational force F (x) at

position x, generated by a distribution of mass of density ρ(x). We recall
that the work of a unit mass, moving along a curve Γ is given by

∫

Γ

F · ds,

If the curve Γ is closed, then the total work performed by the gravitational
forces should be zero. Stokes’ theorem implies that a gravitational field F
should satisfy ∇× F = 0. Using the basic result of the Chapter Potential
fields, we conclude that F is the gradient of a scalar potential ϕ, i.e.

F (x) = ∇ϕ(x). (232.24)

Laplace proposed the following relation between the gravitational field F
and the mass distribution ρ,

−∇ · F (x) = ρ(x), (232.25)

assuming the gravitational constant is normalized to one. This is analogous
to Coulomb’s law ∇·E = ρ in electrostatics and also to the energy balance
equation ∇ · q = f for stationary heat conduction, where q is the heat flux
and f a heat source. In particular, (239.4) states that ∇·F (x) = 0 at points
x where there is no mass so that ρ(x) = 0. Combining (239.3) and (239.4),
we obtain Poisson’s equation −∆ϕ = ρ for the gravitational potential ϕ.
Since the origin and property of gravitation of “acting at a distance” is

still lacking a convincing physical explication, the equation −∇ · F (x) =
ρ(x) including ∇ · F = 0 in empty space, should be viewed as a basic
postulate on the nature of a gravitational field. Of course it seems very
difficult to motivate that ∇ · F should be something different from zero in
empty space, but a real a “proof” that ∇ · F must be zero in empty space
seems to be missing.
Newton considered gravitational fields generated by point masses. Math-

ematically, a unit point mass at a point z ∈ R3 is represented by the so-
called delta function δz at z, defined by the property that for any smooth
function v, ∫

R3

δz v dx = v(z), (232.26)

where the integration is to be interpreted in a generalized sense. We could
think of a δz as a limit of positive functions ϕh(x) such that ϕh(x) = 0 if
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‖x− z‖ > h and ∫

R3

ϕh(x) dx = 1,

as h tends to zero. For example we may choose

ϕh(x) =
3

4πh3
if ‖x− z‖ < h

and ϕh(x) = 0 elsewhere. If v(x) is Lipschitz continuous at z, then

limh→0

∫

R3

ϕh(x)v(x) dx = v(z),

which gives (232.26) its meaning. The function ϕh(x) represents a very tall
and narrow “hump” around z with volume one.
We expect that the gravitational potential Φ(x) corresponding to a unit

point mass at the origin, to satisfy

−∆Φ = δ0 in R3, (232.27)

assuming the gravitational constant to be equal to one. To give a precise
meaning to this equation involving the somewhat mysterious delta function
δ0 at 0, we first formally multiply by a smooth test function v vanishing
outside a bounded set to get

−
∫

R3

∆Φ(x)v(x) dx = v(0). (232.28)

Next, we integrate the left-hand side by parts formally using Green’s for-
mula to move the Laplacian from E to v, noting that the boundary terms
disappear since v vanishes outside a bounded set. We may thus reformulate
(239.5) as seeking a potential E(x) satisfying

−
∫

R3

Φ(x)∆v(x) dx = v(0), (232.29)

for all smooth functions v(x) vanishing outside a bounded set. We may
view this as the concrete interpretation of (239.5), which is perfectly well
defined since now the Laplacian acts on the smooth function v(x) and the
potential Φ is assumed to be integrable. We also require the potential Φ(x)
to decay to zero as ‖x‖ tends to infinity, which corresponds to a “zero
Dirichlet boundary condition at infinity”.
In the Chapter The divergence, rotation and Laplacian, we showed that

the function 1/‖x‖ satisfies Laplace’s equation ∆u(x) = 0 for 0 6= x ∈ R3,
while it is singular at x = 0. We shall prove that the following scaled version
of this function satisfies (239.7):

Φ(x) =
1

4π

1

‖x‖ . (232.30)
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We refer to this function as the fundamental solution of −∆ in R3. We
conclude in particular that the gravitational field in R3 created by a unit
point mass at the origin is given by

F (x) = ∇Φ(x) = − 1

4π

x

‖x‖3 ,

which is precisely Newton’s inverse square law of gravitation. Laplace thus
gives a motivation why the exponent should be two, which Newton did not
(and therefore was criticized by Leibniz). Of course, it still remains to mo-
tivate (239.4). In the context of heat conduction, the fundamental solution
E(x) represents the stationary temperature in a homogeneous body with
heat conductivity equal to one filling the whole of R3, subject to a concen-
trated heat source of strength one at the origin and with the temperature
tending to zero as ‖x‖ tends to infinity.
We now prove that the function Φ(x) defined by (239.8) satisfies (239.7).

We first note that since ∆v is smooth and vanishes outside a bounded set
and Φ(x) is integrable over bounded domains,

∫

R3

Φ∆v dx = lim
a→0+

∫

Da

Φ∆v dx, (232.31)

where Da = {x ∈ R3 : a < ‖x‖ < a−1}, with a small positive, is a
bounded region obtained from R3 by removing a little sphere of radius a
with boundary surface Sa and also points further away from the origin than
a−1, see Fig. 239.4. We now use Green’s formula on Da with w = Φ. Since

Da

Sa

a

a−1

FIGURE 232.9. A cross-section of the domain Da.

v is zero for ‖x‖ large, the integrals over the outside boundary vanish when
a is sufficiently small. Using the fact that ∆Φ = 0 in Da, Φ = 1/(4πa) on
Sa and ∂Φ/∂n = 1/(4πa2) on Sa with the normal pointing in the direction
of the origin, we obtain

−
∫

Da

Φ∆v dx =

∫

Sa

1

4πa2
v ds−

∫

Sa

1

4πa

∂v

∂n
ds = I1(a) + I2(a),
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with the obvious definitions of I1(a) and I2(a). Now, lima→0 I1(a) = v(0)
because v(x) is continuous at x = 0 and the surface area of Sa is equal
to 4πa2, while lima→0 I2(a) = 0. The desired equality (239.7) now follows
recalling (239.9).
The corresponding fundamental solution of −∆ in R2 is given by

Φ(x) =
1

2π
log(

1

‖x‖ ). (232.32)

In this case the fundamental solution is not zero at infinity.
Replacing 0 by an arbitrary point z ∈ R3, (239.7) becomes

−
∫

R3

Φ(z − x)∆v(x) dx = v(z), (232.33)

which leads to a solution formula for Poisson’s equation in R3. For example,
if u satisfies the Poisson equation −∆u = f in R3 and |u(x)| = O(‖x‖−1) as
‖x‖ → ∞, then u may be represented in terms of the fundamental solution
Φ and the right-hand side f as follows:

u(z) =

∫

R3

Φ(z − x)f(x) dx =
1

4π

∫

R3

f(x)

‖z − x‖ dx. (232.34)

We see that u(z) is a mean value of f centered around z weighted so that
the influence of the values of f(x) is inversely proportional to the distance
from z.
Similarly, the potential u resulting from a distribution of mass of density

ρ(x) on a (bounded) surface Γ in R3 is given by

u(z) =
1

4π

∫

Γ

ρ(x)

‖z − x‖ ds(x). (232.35)

Formally, we obtain this formula by simply adding the potentials from
all the different pieces of mass on Γ. One can show that the potential u
defined by (239.13) is continuous in R3 if ρ is bounded on Γ, and of course
u satisfies Laplace’s equation away from Γ. Suppose now that we would
like to determine the distribution of mass ρ on Γ so that the corresponding
potential u defined by (239.13) is equal to a given potential u0 on Γ, that
is we seek in particular a function u solving the boundary value problem
∆u = 0 in Ω and u = u0 on Γ, where Ω is the volume enclosed by Γ. This
leads to the following integral equation: given u0 on Γ find the function ρ
on Γ such that

1

4π

∫

Γ

ρ(y)

‖x− y‖ ds(y) = u0(x) for x ∈ Γ. (232.36)

This is a Fredholm integral equation of the first kind, named after the
Swedish mathematician Ivar Fredholm (1866-1927). In the beginning of
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the 20th century, Fredholm and Hilbert were competing to prove the exis-
tence of solutions of the basic boundary value problems of mechanics and
physics using integral equation methods. The integral equation (239.14) is
an alternative way of formulating the boundary value problem of finding u
such that ∆u = 0 in Ω, and u = u0 on Γ. Integral equations may also be
solved using Galerkin methods.

232.12 The Eigenvalue Problem for the Laplacian

The eigenvalue problem for the Laplace operator with Dirichlet boundary
conditions on a domain Ω in Rd with boundary Γ takes the form: Find
nonzero eigen-functions ϕ(x) with corresponding eigenvalues λ such that

{
−∆ϕ = λϕ in Ω,

ϕ = 0 on Γ.
(232.37)

In the one-dimensional case with Ω = (0, π), the eigenfunctions are (modulo
normalization) ϕn(x) = sin(nx) with corresponding eigenvalues λn = n2,
n = 1, 2, ... For a two-dimensional square Ω = (0, π)× (0, π), the eigenfunc-
tions are ϕnm(x1, x2) = sin(nx1) sin(mx2), n,m = 1, 2, ..., with eigenvalues
λnm = n2 +m2.
It follows by multiplication of (250.2) by ϕ and integration by parts,

that all eigenvalues λ are positive. More precisely, there is an increasing se-
quence of eigenvalues tending to infinity, and eigenfunctions corresponding
to different eigenvalues are orthogonal with respect to the scalar product
(v, w) =

∫
Ω
vw dx.

If ϕ(x) is an eigenfunction with corresponding eigenvalue λ, then the (real
part of the) function u(x, t) = exp(it

√
λ)ϕ(x) solves the homogeneous wave

equation
ü−∆u = 0 in Ω× R

corresponding to a vibrating elastic membrane (drum head) if d = 2 (string
if d = 1). The smallest eigenvalue corresponds to the basic tone of the drum
head.
In Fig. 250.1, we show contour plots for the first four eigenfunctions,

corresponding to λ1 ≈ 38.6, λ2 ≈ 83.2, λ3 ≈ 111., and λ4 ≈ 122., in a
case where Ω corresponds to the lid of a guitar with Dirichlet boundary
conditions on the outer boundary, described as an ellipse, and Neumann
boundary conditions at the hole in the lid,
Often the smaller eigenvalues are the most important in considerations of

design. This is the case for example in designing suspension bridges, which
must be built so that the lower eigenvalues of vibrations in the bridge are
not close to possible wind-induced frequencies. This was not well under-
stood in the early days of suspension bridges which caused the famous
collapse of the Tacoma bridge in 1940.
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(a) (b)

(d) (c)

FIGURE 232.10. Contour plots of the first four eigenfunctions of the guitar lid
corresponding to (a) λ1 ≈ 38.6, (b) λ2 ≈ 83.2, (c) λ3 ≈ 111., and (d) λ4 ≈ 122..
These were computed with Femlab with a fixed mesh size of diameter .02.

The smallest eigenvalue is equal to the minimum value of the Rayleigh
quotient

(∇ψ,∇ψ)
(ψ, ψ)

,

when varying over functions ψ satisfying the boundary conditions. More,
generally, the eigenvalues corresponds to stationary values of the Rayleigh
quotient.

232.13 Quantum Mechanics

The two most revolutionary achievements of physics during the 20th cen-
tury was the development of of the Theory of General Relativity for Gravita-
tion on astronomic scales by Einstein, and Quantum Mechanics for atomic
scales by Schrödinger (1887-1961,Nobel Prize in Physics 1933), see Fig. 250.14.
Einstein never fully accepted Quantum Mechanics, and the Grand Unified
Theory connecting Gravitation and Quantum Mechanics is still missing,
with String Theory being a recent attempt to fill the gap.
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The basic equation of Quantum Mechanics is the Schrödinger equation,
which for a system of N electrons (with the Born-Oppenheimer approxi-
mation) takes the following normalized form:

i
∂ϕ

∂t
= Hϕ =

(
−1

2

∑

j

∆j + V (r1, ..., rN )
)
ϕ, (232.38)

where ϕ = ϕ(r1, ..., rN , t) is a wave function depending on the set of
space coordinates (r1, ..., rN ) with each rj varying over R3, together with
time t, ∆j denotes the Laplacian with respect to the coordinate rj ∈ R3,
and V (r1, ..., rN ) denotes a potential depending on (r1, ..., rN ) representing
repulsive Coulomb forces between the electrons and attractive Coulomb
forces between the electrons and the (fixed) nuclei of the system, H =
− 1

2

∑
j ∆j + V is the Hamiltonian representing a sum of kinetic and po-

tential energies, and i denotes the imaginary unit. The wave function is
complex-valued and the square of its modulus represents an electron prob-
ability density.
The Schrödinger equation appears to give a very good description of

phenomena on atomistic scales, but unfortunately it is not easy to deal
with because of the large number of spatial dimensions involved: For a
system with 100 electrons, which is still very small, the number of space
dimensions is equal to 300, and standard techniques for either analytical or
numerical solution fall very short. So, although the Schrödinger equation
admittedly is a very beautiful equation which gives a surprisingly concise
description of atomistic physics, it is certainly impossible to solve exactly
analytically, and approximate solution becomes a key issue. The 1998 Nobel
Prize in Chemistry was awarded Robert Kohn for his method for approxi-
mate solution of the Schrödinger equation based on using a single electron
density function with the space dependence restricted to R3, independent of
the number of electrons, and corresponding approximate potentials. Such
simplified Schrödinger equations, referred to as Kohn-Sham equations, are
today used extensively in computational chemistry.

The Hydrogen Atom

The Hydrogen atom consisting of one electron and one neutron is the only
case in which analytical solution of the Schrödinger equation is feasible: In
this case the Schrödinger equation takes the following (normalized) form
assuming the neutron is positioned at the origin: Find the wave function
ϕ(x, t) with x ∈ R3, such that for t > 0

i
∂ϕ

∂t
= (−1

2
∆+ V )ϕ in R3, (232.39)
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FIGURE 232.11. Schrödinger (1887-1961) at age 13: “I was a good student in all
subjects, loved mathematics and physics, but also the strict logic of the ancient
grammars, hated only memorizing incidental dates and facts. Of the German
poets, I loved especially the dramatists, but hated the pedantic dissection of this
works”

where ∆ is the usual Laplacian with respect to x, V (x) = − 1
|x| is the

Coulomb potential of the proton, with the normalization that
∫

R3

|ϕ(x, t)|2 dx = 1 for t > 0.

For a domain Ω ∈ R3, the integral
∫

Ω

|ϕ(x, t)|2 dx

represents the probability to find the electron in the domain Ω at time t.

Formally, − 1
2∆ corresponds to the kinetic energy p2

2m with p the momentum
and m the mass, replacing p by −i∇ and setting m = 1.
In the time-harmonic case with a time-dependence of the form exp(−iωt)

with frequency ω, this leads to the eigenvalue problem: Find ϕ(x) 6= 0 and
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ω ∈ R such that
Hϕ = ωϕ, (232.40)

with H = − 1
2∆+V the Hamiltonian and the eigenvalue ω representing an

energy level. The eigenvalues are real and the (real) eigenfunction corre-
sponding to the smallest eigenvalue (smallest energy) is referred to as the
ground state and the eigenfunctions corresponding to larger eigenvalues as
bound states.
Assuming spherical symmetry (232.40) takes the following form in spher-

ical coordinates with r the radius: Find ϕ(r) such that

−1

2

d2ϕ

dr2
− 1

r

dϕ

dr
− 1

r
ϕ = ωϕ for r > 0,

with the side condition that ϕ(0) is finite and ϕ(x) is square integrable
over R3. The ground state is given by the eigenfunction ϕ(r) = exp(−r)
corresponding to the eigenvalue ω = − 1

2 .

Chapter 232 Problems

232.1. Interpret the fixed point iteration for Poisson’s equation as an explicit
time stepping scheme for the heat equation du

dt
− ∆u = f with time step αh2

with the starting value given by the initial approximation U0. Explain why the
convergence is slow if h is small.

232.2. Consider a horizontal elastic membrane spanned over a circular ring with
constant tension H in all directions in unloaded configuration. Discuss under
what conditions the membrane can carry a non-zero volume of water and try to
compute the volume.

232.3. Prove that (239.10) is a fundamental solution of −∆ in R2.

232.4. Because the presented mathematical models of heat flow and gravitation,
namely Poisson’s equation, are the same, it opens the possibility of thinking of a
gravitational potential as “temperature” and a gravitational field as “heat flux”.
Can you “understand” something about gravitation using this analogy?

232.5. Present the integral equation corresponding to (239.14) in the case d = 2.

232.6. What equation is obtained if ∂D/∂t is not neglected in the setting of
time-dependent magnetics, but the x3 independence is kept?

232.7. Derive the heat equation describing the heat conduction in a thin piece
of wire of length one whose ends are kept at a fixed temperature (i.e., derive the
heat equation in one dimension):






u̇− u′′ = f in (0, 1)× (0, T ],

u(0, t) = u(1, t) = 0 for t ∈ (0, T ],

u(x, 0) = u0(x) for x ∈ (0, 1).

(232.41)
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232.8. Let F (x) be the gravitational field generated by a homogeneous ball of
mass m occupying the volume {x ∈ R3 : ‖x‖ ≤ r}, satisfying ∇F (x) = ρ for
‖x‖ < r and ∇F (x) = 0 for ‖x‖ > r, where ρ is the density of the sphere. Argue
that by symmetry F (x) = f(‖x‖) −x

‖x‖ for ‖x‖ > r for some function f : (0,∞) →
R. Use the Divergence theorem to see that if R > r then

∫

SR

F (x) · ndS = 4πR2f(R) =

∫

BR

∇F (x) dx = m,

where SR is the boundary of the ball BR = {x ∈ R3 : ‖x‖ ≤ R}. Conclude that
f(R) = m

4πR2 , and thus that F (x) = m
4π

−x
‖x‖3 for ‖x‖ > r. This gives an alternative

way of handling of Newton’s nightmare. Note the change of normalization with
the factor 1/4π appearing here.

232.9. To analyze the convergence of the fixed point iteration for the system of
equations (232.15), we need to show that ‖I − αA‖ < 1, where A = (aij) is the
(N − 1) × (N − 1) matrix with aii = 2, ai,i−1 = ai−1,i = −1 and aij = 0 if
|i − j| > 1. Since A is symmetric, we have recalling the Chapter The Spectral
Theorem:

‖I − αA‖ = max
i

|1− αλi|,

where λi, i = 1, ..., N−1, are the eigenvalues of A. To see this, diagonalize. Prove
that for all nonzero V ∈ RN−1

AV · V =

N−1∑

i,j=1

aijViVj > 0,

and conclude that λi > 0 for all i (Hint: complete squares!). Show similarly that
for all V ∈ RN−1

(I − αA)V · V ≥ 0

if α ≤ 1
4
(Hint: same as before!). Conclude that Fixed point iteration converges

if 0 < α ≤ 1
4
. Can you prove convergence if α < 1

2
? What about convergence if

α < 0? Hint: Use that if A is a symmetric m×m matrix with eigenvalues λ1 ≤
λ2 ≤ ... ≤ λm, then λ1 = minV ∈Rm(AV · V )/(V · V ) and λm = maxV ∈Rm(AV ·
V )/(V · V ), where V 6= 0.

232.10. Extend the above analysis to the 5-point scheme for the Laplacian and
show that fixed point iteration converges if 0 < α < 1

8
(or better α < 1

4
).

232.11. Gather some friends and arrange them in a square regular grid, and ask
them to keep updating their own value according to a Svensson’s formula as the
mean value of their neighbors (starting with zero), and assigning certain given
values to the people at the boundary. Collect the values obtained after conver-
gence. You have solved Laplace equation on a square with Dirichlet boundary
values numerically. What value of α in fixed point iteration did you effectively
use?

232.12. Prove Bernoulli’s theorem stating that in stationary Euler flow satisfying
(u · ∇)u+∇p = 0 the quantity 1

2
‖u|2 + p is constant along streamlines.
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232.13. Explain the Magnus effect causing a top-spin tennis ball curve down-
wards (see also Chapter Analytic functions).

232.14. Prove that the hydrogen atom is stable in the sense that the Rayleigh
quotient

RQ(ψ) =
1
2

∫
Ω
|∇ψ|2 dx−

∫
Ω
ψ2/r dx∫

Ω
ψ2 dx

,

satisfies
min
ψ∈V

RQ(ψ) ≥ −2,

showing that the electron does not fall into the proton. Hint: estimate
∫
Ω
ψ ψ
r

using Cauchy’s inequality and the following Poincaré inequality for functions
ψ ∈ V : ∫

Ω

ψ2

r2
dx ≤ 4

∫

Ω

|∇ψ|2 dx. (232.42)

This shows that the potential energy cannot outpower the kinetic energy in the
Rayleigh quotient. To prove the last inequality, use the representation

∫

Ω

ψ2

r2
dx = −

∫

Ω

2ψ∇ψ · ∇ ln(|x|) dx.

resulting from Green’s formula, together with Cauchy’s inequality.

232.15. (a) Show that the eigenvalue problem for the hydrogen atom for eigen-
functions with radial dependence only, may be formulated as the following one-
dimensional problem

− 1

2
ϕrr −

1

r
ϕr −

1

r
ϕ = λϕ, r > 0, ϕ(0) finite,

∫

R

ϕ2r2 dr <∞, (232.43)

where ϕr =
dϕ

dr
. (b) Show that ψ(r) = exp(−r) is an eigenfunction corresponding

to the eigenvalue λ = − 1
2
. (b) Is this the smallest eigenvalue? (c) Determine λ2

and the corresponding eigenfunction by using a change of variables of the form
ϕ(r) = v(r) exp(− r

2
). (d) Solve (250.17) numerically.

The idea of the continuum seems simple to us. We have somehow lost
sight of the difficulties it implies ... We are told such a number as
the square root of 2 worried Pythagoras and his school almost to ex-
haustion. Being used to such queer numbers from early childhood, we
must be careful not to form a low idea of the mathematical intuition
of these ancient sages; their worry was highly credible. (Schrödinger)
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233
Piecewise Linear Polynomials in R2

and R3

...usually he sat in a comfortable attitude, looking down, slightly
stooped, with hands folded above his lap. He spoke quite freely, very
clearly, simply and plainly: but when he wanted to emphasize a new
viewpoint ... then he lifted his head, turned to one of those sitting
next to him, and gazed at him with his beautiful, penetrating blue
eyes during the emphatic speech. ... If he proceeded from an expla-
nation of principles to the development of mathematical formulas,
then he got up, and in a stately very upright posture he wrote on
a blackboard beside him in his peculiarly beautiful handwriting: he
always succeeded through economy and deliberate arrangement in
making do with a rather small space. For numerical examples, on
whose careful completion he placed special value, he brought along
the requisite data on little slips of paper. (Dedekind about Gauss)

233.1 Introduction

In this chapter, we prepare for the application of FEM to partial differen-
tial equations by discussing approximation of functions by piecewise linear
functions in in R2 and R3. We consider three main topics: (i) the con-
struction of a mesh, or triangulation, for a domain in R2 or R3, (ii) the
construction piecewise linear functions on a triangulation, and (iii) estima-
tion of interpolation errors.
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FIGURE 233.1. The mesh on the left was used in a computation of the flow of air
around two airfoils. The mesh on the right was used to discretize a piece of metal
punched with a fancy character. In both cases, the meshes are adapted to allow
accurate computation, taking into account both the behavior of the solution and
the shape of the domain.

233.2 Triangulation of a Domain in R2

We start by considering a two-dimensional domain Ω with a polygonal
boundary Γ. A triangulation Th = {K} is a sub-division of Ω into a non-
overlapping set of triangles, or elements, K constructed so that no vertex
of one triangle lies on the edge of another triangle, see Fig. 233.2. We
use Nh = {N} to denote the set of nodes N or corners of the triangles,
usually numbered N1, N2, ..., NM , whereM is the total number of nodes. A
triangulation is specified by a list of the coordinates of the nodes, together
with a list containing the numbers of the nodes of each triangle. We may
also list the set of triangle sides or edges Sh = {S} , with each edge S
specified by the node numbers of its two end-points, and a list of the nodes
and edges on the boundary Γ.
We measure the size of a triangle K ∈ Th, by the length hK of its largest

side, which is called the diameter of the triangle. The mesh function h(x)
associated to a triangulation Th is the piecewise constant function defined
so h(x) = hK for x ∈ K for eachK ∈ Th. We measure the degree of isotropy
of an element K ∈ Th by its smallest angle τK . If τK ≈ π/3 then K is
almost isosceles, while if τK is small then K is thin, see Fig. 233.3. We use
the smallest angle among the triangles in Th, i.e.

τ = min
K∈Th

τK

as a measure of the degree of anistropy of the triangulation Th. We shall
see below that certain interpolation errors related to approximation with
piecewise linear functions on a given triangulation get larger as τ tends to
zero, corresponding to allowing the triangles to very thin.
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K

N

S

FIGURE 233.2. A triangulation of a domain Ω.

K
K

τK ≈ π/3

τK << π/3

FIGURE 233.3. Measuring the isotropy of a triangle.

The basic problem of mesh generation is to generate a triangulation of a
given domain with mesh size given by a prescribed mesh function h(x). This
problem arises in each step of an adaptive algorithm, where a new mesh
function is computed from an approximate solution on a given mesh, and
a new mesh is constructed with mesh size given by the new mesh function.
The process is then repeated until a stopping criterion is satisfied. The new
mesh may be constructed from scratch or by modification of the previous
mesh including local refinement or coarsening.
In the advancing front strategy a mesh with given mesh size is con-

structed beginning at some point (often on the boundary) by successively
adding one triangle after another, each with a mesh size determined by the
mesh function. The curve dividing the domain into a part already triangu-
lated and the remaining part is called the front. The front sweeps through
the domain during the triangulation process. An alternative is to use a
h-refinement strategy, where a mesh with a specified local mesh size is
constructed by successively dividing elements of an initial coarse triangula-
tion with the elements referred to as parents, into smaller elements, called
the children. We illustrate the refinement and advancing front strategies in
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Fig. 233.4. It is often useful to combine the two strategies using the advanc-

FIGURE 233.4. The mesh on the left is being constructed by successive h refine-
ment starting from the coarse parent mesh drawn with thick lines. The mesh on
the right is being constructed by an advancing front strategy. In both cases, high
resolution is required near the upper right-hand corner.

ing front strategy to construct an initial mesh that represents the geometry
of the domain with adequate accuracy, and use adaptive h-refinement.
There are various strategies for performing the division in an h-refinement

aimed at limiting the degree of anisotropy of the elements. After the refine-
ments are completed, the resulting mesh is fixed up by the addition of edges
aimed at avoiding nodes that are located in the middle of element sides.
This causes a mild “spreading” of the adapted region. We illustrate one
technique for h-refinement in Fig. 233.5. In general, refining a mesh tends

FIGURE 233.5. On the left, two elements in the mesh have been marked for
refinement. The refinement uses the Rivara algorithm in which an element is
divided into two pieces by inserting a side connecting the node opposite the
longest side to the midpoint of the longest side. Additional sides are added to
avoid having a node of one element on the side of another element. The refinement
is shown in the mesh on the right along with the boundary of all the elements
that had to be refined in addition to those originally marked for refinement.

to introduce elements with small angles, as can be seen in Fig. 233.5 and
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it is an interesting problem to construct algorithms for mesh refinement
that avoid this tendency in situations where the degree of anisotropy has
to be limited. On the other hand, in certain circumstances, it is important
to use “stretched” meshes that have regions of thin elements aligned to-
gether to give a high degree of refinement in one direction. In these cases,
we also introduce mesh functions that give the local stretching, or degree of
anisotropy, and the orientation of the elements. We discuss the construction
and use of such meshes in the advanced companion volume.

233.3 Mesh Generation in R3

Mesh generation in three dimensions is analogous to that in two dimensions
with the triangles being replaced by tetrahedra. In practice, the geometric
constraints involved become more complicated and the number of elements
also increases drastically. We show some examples in Fig. ?? and Fig. 233.6,
and further examples in Fig. ?? and Fig. ??.

FIGURE 233.6. The surface mesh on the body, and parts of a tetrahedral mesh
around a Saab 2000

233.4 Piecewise Linear Functions

Let Th = {K} be a triangulation of a two-dimensional domain Ω with piece-
wise polynomial boundary Γ, let Nh = {N} denote the nodes of Th and
introduce the corresponding the finite dimensional vector space Vh consist-
ing of the continuous piecewise linear functions on Th. In other words,

Vh =
{
v : v is continuous on Ω, v|K ∈ P(K) for K ∈ Th

}
,
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where P(K) denotes the set of linear functions on K, i.e., the set of func-
tions v(x) = v(x1, x2) of the form v(x) = c0+c1x1+c2x2 for some constants
ci. We can describe a function v(x) in Vh by the nodal values v(N) with
N ∈ Nh because of two facts. The first is that a linear function is uniquely
determined by its values at three points, as long as they don’t lie on a
straight line. To prove this claim, let K ∈ Th have vertices ai = (ai1, a

i
2),

(a1
1,a1

2)

(a2
1,a2

2)
(a3

1,a3
2)

K

FIGURE 233.7. On the left, we show that the three nodal values on a triangle
determine a linear function. On the right, we show the notation used to describe
the nodes of a typical triangle.

i = 1, 2, 3, see Fig. 233.7. We want to show that v ∈ P(K) is determined
uniquely by {v(a1), v(a2), v(a3)} = {v1, v2, v3}. A linear function v can be
written v(x1, x2) = c0 + c1x1 + c2x2 for some constants c0, c1, c2. Substi-
tuting the nodal values of v into this expression yields a linear system of
equations: 


1 a11 a12
1 a21 a22
1 a31 a31





c0
c1
c2


 =



v1
v2
v3


 .

The determinant of the coefficient matrix is equal to the determinant of the
following matrix resulting from subtracting the first row from the second
and third row: 


1 a11 a12
0 a21 − a11 a22 − a12
0 a31 − a11 a22 − a12


 ,

which is equal to the twice the area of the triangle K (up to the sign). The
determinant of the coefficient matrix is thus non-zero, and we conclude that
the system of equations(233.4) has a unique solution. We conclude that
at linear function is uniquely specified by its values at three non-colinear
points.
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The second fact is that if a function is linear in each of two neighboring
triangles and its nodal values on the two common nodes of the triangles
are equal, then the function is continuous across the common edge. To

K2

K1

Ni

Nj

v(Nj)

v(Ni) K1= K1

K1
K2

FIGURE 233.8. On the left, we show that a function that is piecewise linear on
triangles reduces to a linear function of one variable on triangle edges. On the
right, we plot a function that is piecewise linear on triangles whose values at the
common nodes on two neighboring triangles do not agree.

see this, let K1 and K2 be adjoining triangles with common boundary
∂K1 = ∂K2; see the figure on the left in Fig. 233.8. Parameterizing v along
this boundary, we see that v is a linear function of one variable there. Such
functions are determined uniquely by the value at two points, and therefore
since the values of v on K1 and K2 at the common nodes agree, the values
of v on the common boundary between K1 and K2 agree, and v is indeed
continuous across the boundary.
To construct a set of basis functions for Vh, we begin by describing a

set of element basis functions for triangles. Once again, assuming that a
triangle K has nodes at {a1, a2, a3}, the element nodal basis is the set of
functions λi ∈ P(K), i = 1, 2, 3, such that

λi(a
j) =

{
1, i = j,

0, i 6= j.

We show these functions in Fig. 233.9.
We construct the global basis functions for Vh by piecing together the

element basis functions on neighboring elements using the continuity re-
quirement, i.e. by matching element basis functions on neighboring trian-
gles that have the same nodal values on the common edge. The resulting
set of basis functions {ϕj}Mj=1, where N1, N2,..., NM is an enumeration of
the nodes N ∈ Nh, is called the set of tent functions. The tent functions
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a

a2

a3
2

3

1

1

1

Ni

i

FIGURE 233.9. On the left, we show the three element nodal basis functions for
the linear functions on K. On the right, we show a typical global basis “tent”
function.

can also be defined by specifying that ϕj ∈ Vh satisfy

ϕj(Ni) =

{
1, i = j,

0, i 6= j,

for i, j = 1, ...,M . We illustrate a typical tent function in Fig. 233.9. We
see in particular that the support of ϕi is the set of triangles that share the
common node Ni.
The tent functions are a nodal basis for Vh because if v ∈ Vh then

v(x) =

M∑

i=1

v(Ni)ϕi(x).

233.5 Max-Norm Error Estimates

In this section we prove the basic pointwise maximum norm error estimate
for linear interpolation on a triangle, which states that the interpolation
error depends on the second order partial derivatives of the function being
interpolated, i.e. on the “curvature” of the function, the mesh size and the
shape of the triangle. Analogous results hold for other norms. The results
also extend directly to more than two space dimensions.
Let K be a triangle with vertices ai, i = 1, 2, 3. Given a continuous

function v defined on K, let the linear interpolant πKv ∈ P(K) be defined
by

πKv(a
i) = v(ai), i = 1, 2, 3.

We illustrate this in Fig. 233.10.
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a1a2

a3

h

K

v

v

FIGURE 233.10. The nodal interpolant πKv of v.(change from πh to πK)

Theorem 233.1 If v has continuous second derivatives, then

‖v − πKv‖L∞(K) ≤
1

2
h2K‖D2v‖L∞(K), (233.1)

‖∇(v − πKv)‖L∞(K) ≤
3

sin(τK)
hK‖D2v‖L∞(K), (233.2)

where hK is the largest side of K, τK is the smallest angle of K, and

D2v =




2∑

i,j=1

( ∂2v

∂xi∂xj

)2



1/2

.

If ∇v is continuous, then

‖v − πKv‖L∞(K) ≤ hK‖Dv‖L∞(K), (233.3)

Note that the gradient estimate depends on the reciprocal of the sine of
the smallest angle of K, and therefore this error bound deteriorates as the
the triangle gets thinner.
The proof follows the same general outline as the proofs of corresponding

results in the Chapter Piecewise linear approximation. Let λi, i = 1, 2, 3,
be the element basis functions for P(K) defined by λi(a

j) = 1 if i = j, and
λi(a

j) = 0 otherwise. A function w ∈ P(K) has the representation

w(x) =

3∑

i=1

w(ai)λi(x) for x ∈ K,

and thus

πKv(x) =
3∑

i=1

v(ai)λi(x) for x ∈ K, (233.4)

since πKv(a
i) = v(ai). We shall derive representation formulas for the

interpolation errors v− πKv and ∇(v − πKv), using a Taylor expansion at
x ∈ K:

v(y) = v(x) +∇v(x) · (y − x) +R(x, y),
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where

R(x, y) =
1

2

2∑

i,j=1

∂2v

∂xi∂xj
(ξ)(yi − xi)(yj − xj),

is the remainder term of order 2 and ξ is a point on the line segment
between x and y. In particular choosing y = ai = (ai1, a

i
2), we have

v(ai) = v(x) +∇v(x) · (ai − x) +Ri(x), (233.5)

where Ri(x) = R(x, ai). Inserting (233.5) into (233.4) gives for x ∈ K

πKv(x) = v(x)
3∑

i=1

λi(x)+∇v(x)·
3∑

i=1

(ai−x)λi(x)+
3∑

i=1

Ri(x)λi(x). (233.6)

We shall use the following identities that hold for j, k = 1, 2, and x ∈ K,

3∑

i=1

λi(x) = 1,

3∑

i=1

(aij − xj)λi(x) = 0, (233.7)

3∑

i=1

∂

∂xk
λi(x) = 0,

3∑

i=1

(aij − xj)
∂λi
∂xk

= δjk, (233.8)

where δjk = 1 if j = k and δjk = 0 otherwise. The first of the identities
in (233.7) follows by choosing v(x) = 1 in (233.6), and the second follows
by choosing v(x) = d1x1 + d2x2 with di ∈ R. Finally, (233.8) follows by
differentiating (233.7).
Using (233.7), we obtain the following representation of the interpolation

error,

v(x)− πKv(x) = −
3∑

i=1

Ri(x)λi(x).

Since |ai − x| ≤ hK , we can estimate the remainder term Ri(x) as

|Ri(x)| ≤
1

2
h2K‖D2v‖L∞(K), i = 1, 2, 3.

where we used Cauchy’s inequality twice to estimate an expression of the
form

∑
ij xicijxj =

∑
i xi
∑
j cijxj .

Now, using the fact that 0 ≤ λi(x) ≤ 1 if x ∈ K, for i = 1, 2, 3, we obtain

|v(x) − πKv(x)| ≤ max
i

|Ri(x)|
3∑

i=1

λi(x) ≤
1

2
h2K‖D2v‖L∞(K) for x ∈ K,

which proves (233.1).
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To prove (233.2), we differentiate (233.4) with respect to xk, k = 1, 2 to
get

∇(πKv)(x) =
3∑

i=1

v(ai)∇λi(x),

which together with (233.5) and (233.8) gives the following error represen-
tation:

∇(v − πKv)(x) = −
3∑

i=1

Ri(x)∇λi(x) for x ∈ K.

We now note that

max
x∈K

|∇λi(x)| ≤
2

hK sin(τK)
,

which follows by an easy estimate of the shortest height (distance from a
vertex to the opposite side) of K. We now obtain (233.2) and (233.3) finally
follows using tha Mean Value theorem. The proof is now complete.
Let now Th = {K} be a triangulation of a domain Ω with mesh function

h(x), and let πh denote nodal interpolation into the corresponding space
of continuous piecewise linear functions Vh on Th. The interpolation error
estimates of Theorem 233.1 then take the form

‖v − πhv‖L∞(Ω) ≤
1

2
‖h2D2v‖L∞(Ω), (233.9)

‖v − πhv‖L∞(Ω) ≤ ‖hDv‖L∞(Ω), (233.10)

‖∇(v − πhv)‖L∞(Ω) ≤
3

sin(τ)
‖hD2v‖L∞(Ω), (233.11)

where τ is the smallest of the τK . Below we shall use analogs of these
estimates with the L∞(Ω) replaced by L2(Ω).

FIGURE 233.11. Sergei Lvovich Sobolev (1908-1989), creator of Functional Anal-
ysis and inventor of Sobolev spaces:“I wonder if my space of functions H1(Ω) is
large enough to contain the solution?”



1640 233. Piecewise Linear Polynomials in R2 and R3

233.6 Sobolev and his Spaces

Sergei Sobolev (1908-1989) played a leading role in the mathematical world
of the former Soviet Union and made important contributions to the theory
and practice of partial differential equations, in particular on questions of
existence, uniqueness, stability and regularity of solutions by developing
tools of Functional Analysis. He also worked on numerical methods and
gave important results on interpolation and quadrature of functions of sev-
eral variables by developing techniques of Sobolev spaces. A basic Sobolev
space is the space of real-valued functions defined on a domain Ω in Rd,
which are square integrable together with their first partial derivatives,
denoted by H1(Ω).

233.7 Quadrature in R2

To compute the stiffness matrix and load vector a FEM, we have to compute
integrals of the form

∫
K
g(x) dx, where K is a triangle or tetrahedron and

g a given function. Sometimes we may evaluate these integrals exactly, but
usually this is either impossible or inefficient. Instead we usually evaluate
the integrals approximately using quadrature formulas. We briefly present
some quadrature formulas for integrals over triangles.
In general, we would like to use quadrature formulas that do not affect the

accuracy of the underlying finite element method, which of course requires
an estimate of the error due to quadrature. A quadrature formula for an
integral over an element K has the form

∫

K

g(x) dx ≈
q∑

i=1

g(yi)ωi, (233.12)

for a specified choice of nodes {yi} in K and weights {ωi}. We now list
some possibilities using the notation aiK to denote the vertices of a triangle

K, aijK to denote the midpoint of the side connecting aiK to ajK , and a123K

to denote the center of mass of K, and denote by |K| the area of K:
∫

K

g dx ≈ g
(
a123K

)
|K|, (233.13)

∫

K

g(x) dx ≈
3∑

j=1

g(ajK)
|K|
3
, (233.14)

∫

K

g dx ≈
∑

1≤i<j≤3

g
(
aijK
) |K|

3
, (233.15)

∫

K

g dx ≈
3∑

j=1

g
(
aiK
) |K|
20

+
∑

1≤i<j≤3

g
(
aijK
)2|K|

15
+ g
(
a123K

)9|K|
20

. (233.16)
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We refer to (233.13) as the center of gravity quadrature, to (233.14) as
the vertex quadrature, and to (233.15) as the midpoint quadrature. Recall
that the accuracy of a quadrature formula is related to the precision of
the formula. A quadrature formula has precision r if the formula gives the
exact value of the integral if the integrand is a polynomial of degree at
most r− 1, but there is some polynomial of degree r such that the formula
is not exact. The quadrature error for a quadrature rule of precision r is
proportional to hr, where h is the mesh size. More precisely, the error of a
quadrature rule of the form (233.12) satisfies

∣∣∣∣∣

∫

K

g dx−
q∑

i=1

g(yi)ωi

∣∣∣∣∣ ≤ ChrK
∑

|α|=r

∫

K

|Dαg| dx,

where C is a constant. Vertex and center of gravity quadrature have pre-
cision 2, midpoint quadrature has precision 3, while (233.16) has precision
4.
In finite element methods based on continuous piecewise linear functions,

we often use nodal or vertex quadrature, often also referred to as lumped
mass quadrature, because the mass matrix computed this way becomes
diagonal.

Example 233.1. In Fig. ?? and Fig. ?? we give two examples, one
from fluid mechanics. and the other from electromagnetics.

Chapter 233 Problems

233.1. For a given triangle K, determine the relation between the smallest angle
τK , the triangle diameter hK and the diameter ρK of the largest inscribed circle.

233.2. Draw the refined mesh that results from sub-dividing the smallest two
triangles in the mesh on the right in Fig. 233.5.

233.3. Let K be a tetrahedron with vertices {ai, i = 1, ..., 4}. Show that a
linear polynomial v(x) = c0 + c1x1+ c2x2+ c3x3 on K is uniquely determined by
the nodal values {v(ai), i = 1, ..., 4}. Show that the corresponding finite element
space Vh consists of continuous functions.

233.4. Prove that the quadrature formulas (233.13),(233.14), (233.15) and (233.16)
have the indicated precision.

233.5. Prove that using nodal quadrature to compute a mass matrix for piece-
wise linears, gives a diagonal mass matrix where a diagonal term is the sum of the
terms in the corresponding row in the exactly computed mass matrix. Motivate
the term “lumped”.
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234
FEM for Boundary Value Problems in
R2 and R3

...were very confused, skipping suddenly from one idea to another,
from one formula to the next, with no attempt to give a connection
between them. His presentations were obscure clouds, illuminated
from time to time by flashes of pure genius. ... of the thirty who
enrolled with me, I was the only one to see it through. (Menabrea
about Cauchy 1832)

234.1 Introduction

In this chapter, we extend the cG(1) FEM for reaction-diffusion-convection
problems in one space dimension to corresponding boundary value problems
in R2 and R3 of the form: Find u : Ω → R such that

−∇ · (a∇u) +∇ · (ub) + cu = f in Ω, (234.1)

together with boundary conditions of Dirichlet, Neumann or Robin type,
where a(x) > 0, b(x) and c(x) are given variable coefficients, f(x) is a given
right hand side, and Ω is a bounded open domain in R2 or R3. Note that
the coefficient b is a vector (typically corresponding to a given convection
velocity), and that the equation (234.1) can alternatively be written

−∇ · (a∇u) + b · ∇u+ ĉu = f in Ω, (234.2)

with ĉ = c + ∇ · b. In general, problems of this form cannot be solved
analytically and we have to rely on a numerical method such as FEM for
computing the solution u(x) for given data.
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We consider below the extension to corresponding time dependent prob-
lems of the form

u̇−∇ · (a∇u) +∇ · (ub) + cu = f, (234.3)

together with initial and boundary value problems, including extensions to
systems of such equations, using the material in the Chapters The General
Initial Value Problem and Adaptive IVP-Solvers.
The most fundamental example of the form (234.1) is Poisson’s equation

with homogeneous Dirichlet boundary conditions corresponding to setting
a = 1, b = 0 and c = 0:

{
−∆u(x) = f(x) for x ∈ Ω,

u(x) = 0 for x ∈ Γ,
(234.4)

where Ω is a bounded domain in R2 with polygonal boundary Γ. We recall
that ∇ · (∇u) = ∆u. We shall now present the cG(1) method for (240.1)
generalizing cG(1) for the two-point boundary value problem (216.9), and
then extend to the general problem (234.1).

FIGURE 234.1. Richard Courant (1888-1972), pioneer of finite elements: “In
fact, already when writing my 1910 Ph D thesis on using the Dirichlet minimum
principle to prove the existence of solutions to Poisson’s equation on a domain
Ω, I had in mind of seeking approximate solutions in a subspace of the Sobolev
space H1(Ω) consisting of piecewise linear functions on a triangulation of Ω...”.

234.2 Richard Courant: Inventor of FEM

Richard Courant (1888-1972) was a student of Hilbert and published to-
gether with him the monumental workMethoden der Mathematischen Phys-
ik. In the mid 1930s he fled to New York away from the Nazis and created
the Courant Institute of Mathematical Sciences, since 1964 occupying a
13 storey building close to Washington Square in Greenwich Village on
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Manhattan. Courant presented in a famous paper from 1943 the basics of
finite element approximation of differential equations, as an expansion of
a foot-note in the 1924 Methoden. This foot-note must be one of the most
productive remarks in the history of science generating hundreds of thou-
sands of scientific articles and a flood of software from the mid 1960s and
on.

234.3 Variational Formulation

We let Th = {K} be a triangulation of Ω with mesh function h(x) and
internal nodes N1, ....NM , and we let Vh be the corresponding finite element
space of continuous piecewise linear functions that vanish on the boundary
Γ. We first give (240.1) the following preliminary variational formulation:

−
∫

Ω

∆u v dx =

∫

Ω

f v dx (234.5)

for all suitable test functions v, which results from multiplying (240.1) by
v(x) and integrating over Ω. We now want to rewrite the left-hand side to
move a derivative from ∆u onto v. Assuming that the test function v is
zero on Γ, Green’s formula implies

−
∫

Ω

∆u v dx = −
∫

Γ

∂nuv ds+

∫

Ω

∇u · ∇v dx =

∫

Ω

∇u · ∇v dx,

where ∂n = ∂
∂n denotes the outward unit normal derivative on Γ. We find

that a solution u(x) of (240.1) satisfies
∫

Ω

∇u · ∇v dx =

∫

Ω

f v dx, (234.6)

for all test functions v with v = 0 on Γ.

234.4 The cG(1) FEM

We are thus led to the following formulation of the cG(1) FEM for (240.1):
Find U ∈ Vh such that

∫

Ω

∇U · ∇v dx =

∫

Ω

f v dx for all v ∈ Vh, (234.7)

where Vh is the space of continuous piecewise linear functions on a trian-
gulation Th of Ω that vanish on the boundary Γ. Using the notation

(w, v) =

∫

Ω

wv dx, (∇w,∇v) =
∫

Ω

∇w · ∇v dx,
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we can write cG(1) in the form: Find U ∈ Vh such that

(∇U,∇v) = (f, v) for all v ∈ Vh. (234.8)

We see that that the trial space and test spaces are equal (= Vh) and include
the homogenous Dirichlet boundary condition. The Galerkin orthogonality
is expressed by

(∇u −∇U,∇v) = 0 for all v ∈ Vh, (234.9)

which results upon subtracting (240.6) from (240.2) with v ∈ Vh.
We recall that the nodal basis functions {ϕi}Mi=1 associated with the

internal nodes N1, ....NM of Th is a basis for Vh. Expressing U in terms of
this basis,

U(x) =

M∑

j=1

U(Nj)ϕj(x), (234.10)

substituting into (240.6), and choosing v = ϕi for i = 1, ...,M , gives

M∑

j=1

(∇ϕj ,∇ϕi)U(Nj) = (f, ϕi), i = 1, ...,M.

This is equivalent to the linear system of equations

Aξ = b, (234.11)

where ξ = (ξj) is the vector of internal nodal values ξj = U(Nj), A = (aij)
is the stiffness matrix with elements aij = (∇ϕj ,∇ϕi) and b = (bi) with
bi = (f, ϕi) is the load vector..
The stiffness matrix A is obviously symmetric and it is also positive-

definite since for any v =
∑M

i=1 ηiϕi in Vh,

M∑

i,j=1

ηiaijηj =
M∑

i,j=1

ηi(∇ϕi,∇ϕj)ηj

=


∇

M∑

i=1

ηiϕi,∇
M∑

j

ηjϕj


 = (∇v,∇v) > 0,

unless ηi = 0 for all i. This means in particular that (240.8) has a unique
solution vector U and thus the cG(1) finite element problem (240.6) has a
unique solution U ∈ Vh.
A triangle with associated linear approximation, i.e. the basic finite el-

ement of cG(1), is also called the Courant element, as a recognition of its
inventor.
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Uniform Triangulation of a Square

We compute the stiffness matrix A and load vector b in (240.8) explicitly
on the uniform triangulation of the square Ω = [0, 1] × [0, 1] pictured in
Fig. 240.1. We choose an integer m ≥ 1 and set h = 1/(m + 1), then
construct the triangles as shown. The diameter of the triangles in Th is√
2h and there are M = m2 internal nodes. We number the nodes starting

from the lower left and moving right, then working up across the rows.

(0,0) (h,0) (2h,0) ((m-1)h,0) (mh,0) ((m+1)h,0)

(0,h)

(0,2h)

(0,(m+1)h)

(0,mh)

N1 N2 Nm-1

N2m
Nm+1 Nm+2

Nm

N2m+1

Nm2

N3m

N(m-1)m

(1,1)

FIGURE 234.2. The standard triangulation of the unit square.

In Fig. 240.2, we show the support of the basis function corresponding
to the node Ni along with parts of the basis functions for the neighboring
nodes. As in one dimension, the basis functions are “almost” orthogonal in

i

FIGURE 234.3. The support of the basis function ϕi together with parts of the
neighboring basis functions.

the sense that only basis functions ϕi and ϕj sharing a common triangle
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in their supports yield a non-zero value in (∇ϕi,∇ϕj). We show the nodes
neighboring Ni in Fig. 240.3. The support of any two neighboring basis

i-m i-m+1

i+1i-1

i+mi+m-1

i

i

FIGURE 234.4. The indices of the nodes neighboring Ni and an “exploded” view
of ϕi.

functions overlap on just two triangles, while a basis function “overlaps
itself” on six triangles.
We first compute

aii = (∇ϕi,∇ϕi) =
∫

Ω

|∇ϕi|2 dx =

∫

support of ϕi

|∇ϕi|2 dx,

for i = 1, ...,m2. As noted, we only have to consider the integral over the
domain pictured in Fig. 240.3, which is written as a sum of integrals over
the six triangles making up the domain. Examining ϕi on these triangles,
see Fig. 240.3, we see that there are only two different integrals to be
computed since ϕi looks the same, except for orientation, on two of the six
triangles and similarly the same on the other four triangles. We shade the
corresponding triangles in Fig. 240.2. The orientation affects the direction
of ∇ϕi of course, but does not affect |∇ϕi|2.
We compute (∇ϕi,∇ϕi) on the triangle shown in Fig. 240.4. In this case,

ϕi is one at the node located at the right angle in the triangle and zero at
the other two nodes. We change coordinates to compute (∇ϕi,∇ϕi) on the
reference triangle shown in Fig. 240.4. Again, changing to these coordinates
does not affect the value of (∇ϕi,∇ϕi) since∇ϕi is constant on the triangle.
On the triangle, ϕi can be written ϕi = ax1 + bx2 + c for some constants
a, b, c. Since ϕi(0, 0) = 1, we get c = 1. Similarly, we compute a and b to find
that ϕi = 1−x1/h−x2/h on this triangle. Therefore, ∇ϕi =

(
−h−1,−h−1

)

and the integral is

∫

⊲

|∇ϕi|2 dx =

∫ h

0

∫ h−x1

0

2

h2
dx2 dx1 = 1.

In the second case, ϕi is one at a node located at an acute angle of the
triangle and is zero at the other nodes. We illustrate this in Fig. 240.5.
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FIGURE 234.5. First case showing ϕi on the left together with the variables used
in the reference triangle.

We use the coordinate system shown in Fig. 240.5 to write ϕi = 1− x1/h.
When we integrate over the triangle, we get 1/2.
Summing the contributions from all the triangles gives

aii = (∇ϕi,∇ϕi) = 1 + 1 +
1

2
+

1

2
+

1

2
+

1

2
= 4.

Next, we compute (∇ϕi,∇ϕj) for indices corresponding to neighboring
nodes. For a general node Ni, there are two cases of inner products (see
Fig. 240.2 and Fig. 240.3):

ai i−1 = (∇ϕi,∇ϕi−1) = (∇ϕi,∇ϕi+1) = (∇ϕi,∇ϕi−m) = (∇ϕi,∇ϕi+m),

and
ai i−m+1 = (∇ϕi,∇ϕi−m+1) = (∇ϕi,∇ϕi+m−1).

The orientation of the triangles in each of the two cases are different, but
the inner product of the gradients of the respective basis functions is not
affected by the orientation. Note that the the equations corresponding to
nodes next to the boundary are special, because the nodal values on the
boundary are zero, see Fig. 240.1. For example, the equation corresponding
to N1 only involves N1, N2 and Nm+1.
For the first case, we next compute (∇ϕi,∇ϕi+1). Plotting the intersec-

tion of the respective supports shown in Fig. 240.6, we conclude that there
are equal contributions from each of the two triangles in the intersection.
We choose one of the triangles and construct a reference triangle as above.
Choosing suitable variables, we find that

∇ϕi · ∇ϕi+1 =
(
− 1

h
,− 1

h

)
·
( 1
h
, 0
)
= − 1

h2
,
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Ni
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h
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x2=x1

i=0

i=1

FIGURE 234.6. Second case showing ϕi and the reference triangle.

i+1
i

FIGURE 234.7. The overlap of ϕi and ϕi+1.

and integrating over the triangle gives −1/2. Similarly, we see that

(∇ϕi,∇ϕi−m+1) = (∇ϕi,∇ϕi+m−1) = 0.

We can now determine the stiffness matrix A using the information
above.We start by considering the first row. The first entry is (∇ϕ1,∇ϕ1) =
4 since N1 has no neighbors to the left or below. The next entry is
(∇ϕ1,∇ϕ2) = −1. The next entry after that is zero, because the supports
of ϕ1 and ϕ3 do not overlap. This is true in fact of all the entries up to
and including ϕm. However, (∇ϕ1,∇ϕm+1) = −1, since these neighboring
basis functions do share two supporting triangles. Finally, all the rest of
the entries in that row are zero because the supports of the corresponding
basis functions do not overlap. We continue in this fashion working row by
row. The result is pictured in Fig. 240.7. We see that A has a block struc-
ture consisting of banded m×m sub-matrices, most of which consist only
of zeros. Note the pattern of entries around corners of the diagonal block
matrices; it is a common mistake to program these values incorrectly.
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FIGURE 234.8. The stiffness matrix.

The storage of a sparse matrix and the solution of a sparse system are
both affected by the structure or sparsity pattern of the matrix. The sparsity
pattern is affected in turn by the enumeration scheme used to mark the
nodes.
There are several algorithms for reordering the coefficients of a sparse

matrix to form a matrix with a smaller bandwidth. Reordering the coeffi-
cients is equivalent to computing a new basis for the vector space.
The load vector b is computed in the same fashion, separating each in-

tegral ∫

Ω

fϕi dx =

∫

support of ϕi

f(x)ϕi(x) dx

into integrals over the triangles making up the support of ϕi. To compute
the elements (f, ϕi) of the load vector, we often use one of the quadrature
formulas presented in Chapter ??.

234.5 Basic Data Structures

To compute the finite element approximation U , we have to compute the
coefficients of the stiffness matrix A and load vector b and solve the linear
system of equations (240.8). We just computed A and b for a uniform
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triangulation of the unit square, and we now discuss the case of a general
triangulation of a general domain.
We have to compute the non-zero elements aij = (∇ϕj ,∇ϕi) of the

stiffness matrix A. We know that aij = 0 unless both Ni and Nj are nodes
of the same triangleK, because only then the supports of basis functions ϕi
and ϕj overlap. The common support corresponding to a non-zero element
aij is equal to the support of ϕi if j = i, and is equal to the two triangles
with the common edge connecting Nj and Ni if i 6= j. In each case aij is
the sum of contributions

aKij =

∫

K

∇ϕj · ∇ϕi dx (234.12)

over the triangles K in the common support. The process of adding up the
contributions aKij from the relevant triangles K to get the element aij , is
called assembling the stiffness matrix A. Arranging for a given triangle K
the numbers aKij , where Ni and Nj are nodes of K, into a 3 × 3 matrix,
we obtain the element stiffness matrix for the triangle K. We refer to
the assembled matrix A as the global stiffness matrix. Notice that we use
element with two different meanings: as an element aij of the stiffness
matrix A, and as a finite element or triangle of the triangulation.
To compute the element stiffness matrix aKij for a given triangle K, we

need the physical coordinates of the nodes of K. To perform the assembly
where we loop over all elements and add the corresponding contributions
to the global stiffness matrix, we need the node numbers of each triangle.
Similar information is needed to compute the load vector. The required
information is arranged in a data structure, or data base, containing (i)
a list of the coordinates of the nodes numbered in some way, and (ii) a
list of the node numbers of each triangle. A list of the numbers of the
nodes on the boundary is also needed to handle the boundary conditions
This information is typically the output of the mesh generator generating
a triangulation of the domain.

234.6 Solving the Discrete System

Once we have assembled the stiffness matrix A and computed the load
vector b, we have to solve the linear system AU = b to obtain the finite
element approximation U(x). We now discuss this topic briefly based on
the material presented in Chapter 94. The stiffness matrix resulting from
discretizing the Laplacian is symmetric and positive-definite and therefore
invertible. These properties also mean that there is a wide choice in the
methods used to solve the linear system AU = b, which take advantage of
the fact that A is sparse.
In the case of the standard uniform discretization of a square, we saw that

A is a banded matrix with five non-zero diagonals and bandwidth m + 1,
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wherem is the number of nodes on a side. The dimension of A ism2 and the
asymptotic operations count for using Gaussian elimination is O

(
m4
)
=

O
(
h−4

)
. Note that even though A has mostly zero diagonals inside the

band, fill-in occurs as the elimination is performed, so we may as well treat
A as if it has non-zero diagonals throughout the band. Clever rearrangement
of A to reduce the amount of fill-in leads to a solution algorithm with an
operations count on the order of O(m3) = O(h−3). In contrast, if we treat
A as a full matrix, we get an asymptotic operations count of O

(
h−6

)
, which

is considerably larger for a large number of elements.
In general, we get a sparse stiffness matrix, though there may not be a

band structure. If we want to use a Gaussian elimination method efficiently
in general, then it is necessary to first reorder the system to bring the matrix
into banded form.
We can also apply both the Jacobi and Gauss-Seidel methods to solve

the linear system arising from discretizing the Poisson equation. In the
case of the uniform standard discretization of a square for example, the
operations count is O

(
M
)
per iteration for both methods if we make use of

the sparsity of A. Therefore a single step of either method is much cheaper
than a direct solve. The question is: How many iterations do we need to
compute in order to obtain an accurate solution?
Typically the spectral radius of the iteration matrix of the Jacobi or

Gauss-Seidel method is equal to 1 − Ch2 with C some moderate positive
constant, which means that the convergence rate quickly gets slow as h
decreases: to reduce the error a certain factor, we need of the order of
O(h−2) iterations, and since each iteration takes O(h−2) operations, the
total number of operations is O(h−4), which is the same order as using a
banded Gaussian elimination solver.
There has been a lot of activity in developing iterative methods that

converge more quickly than Jacobi and Gauss-Seidel. In recent years, very
efficient multi-grid methods have been developed and are now becoming a
standard tool. A multi-grid method is based on a sequence of Gauss-Seidel
or Jacobi steps performed on a hierarchy of successively coarser meshes and
are optimal in the sense that the solution work is proportional to the total
number of unknowns (that is h−2 in the model problem).

234.7 An Equivalent Minimization Problem

The variational problem (240.6) is equivalent to the following quadratic
minimization problem: find U ∈ Vh such that

F (u) ≤ F (v) for all v ∈ Vh, (234.13)

where

F (v) =
1

2

∫

Ω

|∇v|2 dx−
∫

Ω

fv dx =
1

2
(∇v,∇v) − (f, v).
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The quantity F (v) may be interpreted as the total energy of the function
v(x) composed of the internal energy 1

2 (∇v,∇v) and the load potential
−(f, v). Thus, the solution U minimizes the total energy F (v) with v vary-
ing over Vh.
To see the equivalence of (240.6) and (240.5), we assume first that U ∈ Vh

satisfies (240.6). Let then v ∈ Vh and write v = U + (v −U) = U +w with
w = v − U ∈ Vh. Using (∇U,∇w) = (∇w,∇U), we get

F (v) = F (U + w) =

1

2
(∇U,∇U) + (∇U,∇w) + 1

2
(∇w,∇w) − (f, U)− (f, w)

= F (U) +
1

2
(∇w,∇w) ≥ F (U),

with equality only if w = 0. We conclude that U satisfies (240.5).
Conversely, if U is the solution of (240.5), then we have for all v ∈ Vh

gv(ǫ) = F (U + ǫv) ≥ g(0) = F (U) for all ǫ ∈ R,

and thus ǫ = 0 is an interior minimum point of gv(ǫ) with v fixed, and thus
g′v(0) = 0. Computing we get

0 = g′v(0) = (∇U,∇v)− (f, v)

and thus U satisfies (240.6). We sum up in the following theorem:

Theorem 234.1 The problems (240.6) and (240.5) are equivalent in the
sense that they have the same unique solution.

234.8 An Energy Norm A Priori Error Estimate

In this section, we derive a priori and a posteriori estimates of the error
u− U in the energy norm ‖∇(u− U‖ with

‖∇v‖ = (

∫

Ω

|∇v|2 dx)1/2, (234.14)

where u is the exact solution and U a finite element solution of Poisson’s
equation with homogeneous Dirichlet boundary conditions. The energy
norm, which is the L2 norm of the gradient of a function in this problem,
arises naturally in the error analysis of the finite element method because
it is closely tied to the variational problem. The gradient of the solution,
representing heat flow, electric field, flow velocity, or stress for example, can
be a variable of physical interest as much as the solution itself, representing
temperature, potential or displacement for example, and in this case, the
energy norm is the relevant error measure.
We first prove that the Galerkin finite element approximation is the best

approximation of the true solution in Vh with respect to the energy norm.
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Theorem 234.2 Assume that u satisfies the Poisson equation (240.1) and
U is the Galerkin finite element approximation satisfying (240.6). Then

‖∇(u− U)‖ ≤ ‖∇(u− v)‖ for all v ∈ Vh. (234.15)

The proof goes as follows: Using the Galerkin orthogonality (234.9) with
v replaced by U − v ∈ Vh, we can write

‖∇e‖2 = (∇e,∇(u− U)) = (∇e,∇(u − U)) + (∇e,∇(U − v)).

Adding the terms involving U on the right, whereby U drops out, and using
Cauchy’s inequality, we get

‖∇e‖2 = (∇e,∇(u− v)) ≤ ‖∇e‖ ‖∇(u− v)‖,

which proves the theorem after dividing by ‖∇e‖.
Choosing v = πhu and using an L2(Ω) analog of the interpolation es-

timate (233.11), we get the following quantitative a priori error estimate
(with ‖v‖ = ‖v‖L2(Ω)):

Corollary 234.3 There exists a constant Ci depending only on the mini-
mal angle τ in Th, such that

‖∇(u− U)‖ ≤ Ci‖hD2u‖. (234.16)

234.9 An Energy Norm A Posteriori Error
Estimate

We now prove an a posteriori error estimate following the strategy used for
the two-point boundary value problem in Chapter ??. A new feature occur-
ring in higher dimensions is the appearance of integrals over the internal
edges S in Sh. We start by writing an equation for the error e = u − U
using (240.2) and (240.6) to get

‖∇e‖2 = (∇(u − U),∇e) = (∇u,∇e)− (∇U,∇e)
= (f, e)− (∇U,∇e) = (f, e− πhe)− (∇U,∇(e − πhe)),

where πhe ∈ Vh is an interpolant of e. We now break up the integrals over
Ω into sums of integrals over the triangles K in Th and integrate by parts
over each triangle in the last term to get

‖∇e‖2 =
∑

K

∫

K

(f+∆U)(e− π̃he) dx−
∑

K

∫

∂K

∂U

∂nK
(e−πhe) ds, (234.17)

where ∂U/∂nK denotes the derivative of U in the outward normal direction
nK of the boundary ∂K of K. In the boundary integral sum in (240.16),
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each internal edge S ∈ Sh occurs twice as a part of each of the boundaries
∂K of the two triangles K that have S as a common side. Of course the
outward normals nK from each of the two triangles K sharing S point
in opposite directions. For each side S, we choose one of these normal
directions and denote by ∂Sv the derivative of a function v in that direction
on S. We note that if v ∈ Vh, then in general ∂Sv is different on the two
triangles sharing S; see Fig. 233.8, which indicates the “kink” over S in the
graph of v. We can express the sum of the boundary integrals in (240.16)
as a sum of integrals over edges of the form

∫

S

[∂SU ](e− πhe) ds,

where [∂SU ] is the difference, or jump, in the derivative ∂SU computed from
the two triangles sharing S. The jump appears because the outward normal
directions of the two triangles sharing S are opposite. We further note that
e − π̃he is continuous across S, but in general does not vanish on S even
if πh is the nodal interpolant. This is different than the one-dimensional
case, where the corresponding sum over nodes does indeed vanish because
e−πhe vanishes at the nodes. We may thus rewrite (240.16) as follows with
the second sum replaced by a sum over internal edges S:

‖∇e‖2 =
∑

K

∫

K

(f +∆U)(e− πhe) dx+
∑

S∈Sh

∫

S

[∂SU ](e− πhe) ds.

Next, we return to a sum over element edges ∂K by just distributing each
jump equally to the two triangles sharing it, to obtain an error represen-
tation of the energy norm of the error in terms of the residual error:

‖∇e‖2 =
∑

K

∫

K

(f +∆U)(e−πhe) dx+
∑

K

1

2

∫

∂K

h−1
K [∂SU ](e−πhe)hK ds,

where we have prepared to estimate the second sum by inserting a fac-
tor hK and compensating. In crude terms, the residual error results from
substituting U into the differential equation −∆u − f = 0, but in reality
straightforward substitution is not possible because U is not twice differ-
entiable in Ω. The integral on the right over K is the remainder from sub-
stituting U into the differential equation inside each triangle K, while the
integral over ∂K arises because ∂SU in general is different when computed
from the two triangles sharing S.
We estimate the first term in the error representation by inserting a

factor h, compensating and using the estimate ‖h−1(e − πhe)‖ ≤ Ci‖∇e‖
analogous to (233.11), to obtain

|
∑

K

∫

K

h(f +∆U)h−1(e− πhe) dx|

≤ ‖hR1(U)‖‖h−1(e − πhe)‖ ≤ Ci‖hR1(U)‖‖∇e‖,
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where R1(U) is the function defined on Ω by setting R1(U) = |f + ∆U |
on each triangle K ∈ Th. We estimate the contribution from the jumps on
the edges similarly. Formally, the estimate results from replacing hK ds by
dx corresponding to replacing the integrals over element boundaries ∂K
by integrals over elements K. Dividing by ‖∇e‖, we obtain the following a
posteriori error estimate:

Theorem 234.4 There is an interpolation constant Ci only depending on
the minimal angle τ such that the error of the Galerkin finite element ap-
proximation U of the solution u of the Poisson equation satisfies

‖∇u−∇U‖ ≤ Ci‖hR(U)‖, (234.18)

where R(U) = R1(U) +R2(U) with

R1(U) = |f +∆U | on K ∈ Th,

R2(U) =
1

2
max
S⊂∂K

h−1
K

∣∣[∂SU ]
∣∣ on K ∈ Th.

Note that R1(U) is the contribution to the total residual from the interior
of the elements K. In the present case of piecewise linear approximation,
R1(U) = |f |. Further, R2(U) is the contribution to the residual from the
jump of the normal derivative of U across edges. In the one dimensional
problem considered in Chapter ??, this contribution does not appear be-
cause the interpolation error may be chosen to be zero at the node points.

234.10 Adaptive Error Control

The basic goal of adaptive error control is to find a triangulation Th with a
least number of nodes such that the corresponding finite element approxi-
mation U satisfies

‖∇u−∇U‖ ≤ TOL. (234.19)

Using the a posteriori error estimate we are thus led to find a triangulation
Th with a least number of nodes such that the corresponding finite element
approximation U satisfies

Ci‖hR(U)‖ ≤ TOL. (234.20)

This is a nonlinear constrained minimization problem with U depending on
Th. If (240.17) is a reasonably sharp estimate of the error, then a solution
of this optimization problem will meet our original goal.
We cannot expect to be able to solve this minimization problem analyt-

ically. Instead, a solution has to be sought by an iterative process in which
we start with a coarse initial mesh and then successively modify the mesh
by seeking to satisfy the stopping criterion (240.19) with a minimal number
of elements. More precisely, we follow the following adaptive algorithm:
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1. Choose an initial triangulation T (0)
h .

2. Given the jth triangulation Th(j) with mesh function h(j), compute
the corresponding finite element approximation U (j).

3. Compute the corresponding residuals R1(U
(j)) and R2(U

(j)) and
check whether or not (240.19) holds. If it does, stop.

4. Find a new triangulation Th(j+1) with mesh function h(j+1) and with
a minimal number of nodes such that Ci‖h(j+1)R(U (j))‖ ≤ TOL,
and then proceed to #2.

The success of this iteration hinges on the mesh modification strategy
used to perform step #4. A natural strategy for error control based on the
L2 norm uses the principle of equidistribution of the error in which we try
to equalize the contribution from each element to the integral defining the
L2 norm. The rationale is that refining an element with large contribution
to the error norm gives a large pay-off in terms of error reduction per new
degree of freedom.
In other words, the approximation computed on the optimal mesh Th in

terms of computational work satisfies

‖∇e‖2L2(K) ≈
TOL2

M
for all K ∈ Th,

where M is the number of elements in Th. Based on (240.17), we would
therefore like to compute the triangulation at step #4 so that

C2
i

(∥∥h(j+1)R
(
U (j+1)

)∥∥2
L2(K)

≈ TOL2

M (j+1)
for all K ∈ Th(j+1) , (234.21)

where M (j+1) is the number of elements in Th(j+1) . However, (240.20) is a
nonlinear equation, since we don’t know M (j+1) and U (j+1) until we have
chosen the triangulation. Hence, we replace (240.20) by

C2
i

(∥∥h(j+1)R
(
U (j)

)∥∥2
L2(K)

≈ TOL2

M (j)
for all K ∈ Th(j+1), (234.22)

and use this formula to compute the new mesh size h(j+1).
There are several questions we may ask about the process described here:

How much efficiency is lost by replacing (240.18) by (240.19)? Does the
iterative process #1–#4 converge? Is the approximation (240.21) justified?
We address such issues in the advanced companion volumes.
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234.11 An Example

We want to compute the the solution

u(x) =
a

π
exp
(
−a(x21 + x22)

)
, a = 400,

of Poisson’s equation −∆u = f on the square (−.5, .5)× (−.5, .5) with f(x)
being the following “approximate delta function”:

f(x) =
4

π
a2
(
1− ax21 − ax22

)
exp
(
−a(x21 + x22)

)
,

We plot f in Fig. 240.10 (note the vertical scale), together with the initial
mesh with 224 elements. The adaptive algorithm took 5 steps to achieve

f(x)

0

5.105

1.106

1.5.106

2.106

x2

-0.5-0.250.00.250.5x1

-0.5 -0.25 0.0 0.25 0.5

FIGURE 234.9. The approximate delta forcing function f and the initial mesh
used for the finite element approximation.

an estimated .5% relative error. We plot the final mesh together with the
associated finite element approximation in Fig. 240.11. The algorithm pro-
duced meshes with 224, 256, 336, 564, 992, and 3000 elements respectively.

234.12 Non-Homogeneous Dirichlet Boundary
Conditions

We now consider Poisson’s equation with non-homogeneous Dirichlet bound-
ary conditions: {

−∆u = f in Ω,

u = g on Γ,
(234.23)

where g is the given boundary data.
We compute a finite element approximation on a triangulation Th, where

we now also include the nodes on the boundary, denoting the internal nodes
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FIGURE 234.10. The finite element approximation with a relative error of .5%
and the final mesh used to compute the approximation. The approximation has
a maximum height of roughly 5.

by Nh as above and the set of nodes on the boundary by Nb. We compute
an approximation U of the form

U =
∑

Nj∈Nb

ξjϕj +
∑

Nj∈Nh

ξjϕj , (234.24)

where ϕj denotes the basis function corresponding to node Nj in an enu-
meration {Nj} of all the nodes, and, because of the boundary conditions,
ξj = g(Nj) for Nj ∈ Nb. Thus the boundary values of U are given by g on
Γ and only the coefficients of U corresponding to the interior nodes remain
to be found. To this end, we substitute (240.24) into the variational formu-
lation of (240.22) with the test functions being all the basis functions for
the internal nodes, and we then get the following a square system of linear
equations for the unknown coefficients of U :

∑

Nj∈Nh

ξj(∇ϕj ,∇ϕi) = (f, ϕi)−
∑

Nj∈Nb

g(Nj)(∇ϕj ,∇ϕi), Ni ∈ Nh.

where the terms with known boundary values of U are shifted to the right
hand side as data.

234.13 An L-shaped Membrane

We present an example that shows the performance of the adaptive al-
gorithm on a problem with a boundary singularity with the derivatives of
the exact solution being infinite at a corner of the boundary. We consider
the Laplace equation in an L-shaped domain that has a non-convex corner
at the origin satisfying homogeneous Dirichlet boundary conditions at the
sides meeting at the origin and non-homogeneous conditions on the other
sides, see Fig. 240.13. We choose the boundary conditions so that the exact
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solution is u(r, θ) = r2/3 sin(2θ/3) in polar coordinates (r, θ) centered at
the origin, which has a typical singularity of a corner problem:

∂u

∂r
(r, θ) =

2

3
r−1/3 sin(2θ/3),

which tends to infinity as r tends to zero (unless θ = 0 or θ = 3π
2 ).

We use the knowledge of the exact solution to evaluate the performance
of the adaptive algorithm.
We compute using an adaptive FEM-solver with energy norm control

based on (240.17) to achieve an error tolerance of TOL= .005 using h
refinement mesh modification. In Fig. 240.13, we show the initial mesh
Th(0) with 112 nodes and 182 elements. In Fig. 240.14, we show the level

(0,0)

u=0

FIGURE 234.11. The L-shaped domain and the initial mesh.

curves of the solution and the final mesh with 295 nodes and 538 elements
that achieves the desired error bound. The interpolation constant was set
to Ci = 1/8. The quotient between the estimated and true error on the
final mesh was 1.5.

FIGURE 234.12. Level curves of the solution and final adapted mesh on the
L-shaped domain.

Since the exact solution is known in this example, we can also use the a
priori error estimate to determine a mesh that gives the desired accuracy.
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We do this by combining the a priori error estimate (240.15) and the princi-
ple of equidistribution of error to determine h(r) so that Ci‖hD2u‖ = TOL
while keeping h as large as possible (and keeping the number of elements
at a minimum). Since D2u(r) ≈ r−4/3, as long as h ≤ r, that is up to the
elements touching the corner, we determine that

(
hr−4/3

)2
h2 ≈ TOL2

M
or h2 = TOLM−1/2r4/3,

where M is the number of elements and h2 measures the element area.
To compute M from this relation, we note that M ≈

∫
Ω
h−2 dx, since the

number of elements per unit area is O(h−2), which gives

M ≈M1/2TOL−1

∫

Ω

r−4/3 dx.

Since the integral is convergent (prove this), it follows that M ∝ TOL−2,
which implies that h(r) ∝ r1/3 TOL. Note that the total number of un-
knowns, up to a constant, is the same as that required for a smooth so-
lution without a singularity, namely TOL−2. This depends on the very
local nature of the singularity in the present case. In general, of course
solutions with singularities may require a much larger number of elements
than smooth solutions do.

234.14 Robin and Neumann Boundary Conditions

Next, we consider Poisson’s equation with homogeneous Dirichlet condi-
tions on part Γ1 of the boundary and non-homogeneous Robin conditions
on the remaining part of the boundary Γ2:





−∆u = f in Ω,

u = 0 on Γ1,

∂nu+ κu = g on Γ2,

(234.25)

where κ ≥ 0 is a given coefficient, and f and g are given data. Setting
κ = 0 gives the Neumann condition ∂nu + κu = g. To find a variational
formulation, we multiply the Poisson equation by a test function v satisfying
the homogenous Dirichlet boundary condition, integrate over Ω, and use
Green’s formula to move derivatives from u to v:

(f, v) = −
∫

Ω

∆u v dx =

∫

Ω

∇u · ∇v dx−
∫

Γ

∂nuv ds

=

∫

Ω

∇u · ∇v dx+

∫

Γ2

κuv ds−
∫

Γ2

gv ds,
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where we use the boundary conditions to rewrite the boundary integral. We
are thus led to the following cG(1) FEM based on a space Vh of continuous
piecewise linear functions vanishing on Γ1: find U ∈ Vh such that

(∇U,∇v) +
∫

Γ2

κUv ds = (f, v) +

∫

Γ2

gv ds for all v ∈ Vh. (234.26)

We recall that boundary conditions like the Dirichlet condition that are
enforced explicitly in the choice of the space Vh are called essential boundary
conditions. Boundary conditions like the Robin condition that are implicitly
contained in the weak formulation are called natural boundary conditions.
(To remember that we must assume essential conditions: there are two “ss”
in assume and essential.)
Note that the stiffness matrix and load vector related to (240.28) con-

tain contributions from both integrals over Ω and Γ2 related to the basis
functions corresponding to the nodes on the boundary Γ2.
To illustrate, we compute the solution of Laplace’s equation with a com-

bination of Dirichlet, Neumann and Robin boundary conditions on the
domain shown in Fig. 240.15 using an adaptive FEM-solver. We show the
boundary conditions in the illustration. The problem models e.g. station-
ary heat flow around a hot water pipe in the ground. We show the mesh

u=0

u
n =0u

n =0

u
n =-u

- u=0

u=1

FIGURE 234.13. A problem with Robin boundary conditions.

used to compute the approximation so that the error in the L2 norm is
smaller than .0013 together with a contour plot of the approximation in
Fig. 240.16. We notice that the level curves are parallel to a boundary with
a homogeneous Dirichlet condition, and orthogonal to a boundary with a
homogeneous Neumann condition.



1664 234. FEM for Boundary Value Problems in R2 and R3

FIGURE 234.14. The adaptive mesh and contour lines of the approximate solu-
tion of the problem shown in Fig. 240.15 computed with error tolerance .0013.

234.15 Stationary Convection-Diffusion-Reaction

We now consider the extension to a convection-diffusion-reaction problem
of the form

−∇ · (a∇u) +∇ · (ub) + cu = f in Ω,

a∂nu+ κu = g on Γ.
(234.27)

with Robin boundary conditions, where f and g are given data, and a > 0,
b, c and κ ≥ 0 are given coefficients, and Ω is a given domain in R2 with
boundary Γ. The term cu models absorption if c ≥ 0 and production c < 0.
Let Vh be the space of continuous piecewise linear functions on a trian-

gulation of Ω with no restriction on the nodal values on the boundary. The
cG(1) FEM for (234.27) takes the form: Find U ∈ Vh such that

∫

Ω

a∇U · ∇v dx+

∫

Ω

∇ · (Ub)v dx+

∫

Ω

cUv dx+

∫

Γ

κUv ds

=

∫

Ω

fv dx+

∫

Γ

gv ds, (234.28)

for all v ∈ Vh. Note that the extension to include the terms ∇ · (Ub) and
cu is very natural and that the corresponding terms in the variational
formulation are obtained by multiplying by the test function v without any
partial integration. For the term −∇ · (a∇u) we note that multiplication
by v(x) and integration over Ω gives using the Divergence theorem

−
∫

Ω

∇ · (a∇u)v dx =

∫

Ω

a∇U · ∇v dx−
∫

Γ

a∂nu v ds

and the variational formulation results from replacing −a∂nu ds by ku− g
using the Robin boundary condition.
The matrix equation corresponding to (234.28) has a banded and sparse

stiffness matrix, but the symmetry is lost if b 6= 0, as is evident from the
presence of the non-symmetric term

∫
Ω∇ · (ub)v dx. The non-symmetry of
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the convection term eliminates the best approximation property of FEM,
but FEM still may give good results. If c < 0 then solutions may be non-
unique corresponding to non-zero solutions (eigen-functions) of the homo-
geneous problem −∇ · (a∇u) +∇ · (ub) + cu = 0.

The Convection-Dominated Case: Streamline Diffusion

If |b| > a
h , where h(x) is the mesh size, which we refer to as a convection-

dominated case, and the exact solution is non-smooth with rapid variation,
then the FEM-solution may exhibit spurious oscillations. In such cases the
cG(1)-method (234.28) will have to be modified by changing the test func-
tions from v to v + δ∇ · (vb) in all terms but the diffusion and boundary
terms, where δ = h

2|b| acts as a parameter. The presence of the modification

δ∇ · (vb) introduces the positive quadratic term
∫
Ω δ(∇ · (Ub))2 dx upon

choosing v = U , which gives enhanced stability and (almost) eliminates
spurious oscillations. The fact that the modification is not made in the dif-
fusion term does not destroy accuracy, because in the convection dominated
case the diffusion coefficient is small. The modified method is referred to
as the streamline diffusion method or weighted least squares-stabilization.

234.16 Time-Dependent
Convection-Diffusion-Reaction

We now consider the time-dependent analog of (234.27), that is the problem

u̇−∇ · (a∇u) +∇ · (ub) + cu = f in Ω× (0, T ],

a∂nu+ κu = g on Γ× (0, T ],

u(·) = u0 in Ω,

(234.29)

where [0, T ] is a given time interval, and u0 a given initial value. For the
time discretization we may use e.g. dG(0) or cG(1) on a subdivision 0 =
t0 < t1 < · · · < tN = T into time intervals In = (tn−1, tn] with time steps
kn = tn − tn−1. Using dG(0) we seek Un ∈ Vh for n = 1, ..., N , such that
for n = 1, ..., N ,

∫

Ω

Unv dx+

∫

Ω×In
a∇Un · ∇v dx dt

+

∫

Ω×In
∇ · (Unb)v dx dt +

∫

Ω×In
cUnv dx dt+

∫

Γ×In
κUnv ds dt

=

∫

Ω

Un−1v dx+

∫

Ω×In
fv dx dt+

∫

Γ×In
gv ds dt,

(234.30)
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for all v ∈ Vh, where U
0 = u0. The corresponding discrete system for Un

takes the form
Mξn + knAnξ

n =Mξn−1 + knb
n

where the vector ξn contains the nodal values of Un ∈ Vh, M is the mass
matrix related to Vh, An is the relevant stiffness matrix connected to the
convection-diffusion-reaction terms, and bn the relevant load vector.
In a convection-dominated case, the test functions v are again modified

to v + δ∇ · (vb) in all terms with integration over Ω× In, but the diffusion
term.

234.17 The Wave Equation

We now consider the extension to the wave equation with homogeneous
Dirichlet boundary conditions:

ü−∆u = f in Ω× (0, T ],

u = 0 on Γ× (0, T ],

u = u0, u̇ = u̇0 in Ω,

(234.31)

where u0 and u̇0 are given initial conditions. As above we let Vh be the
set of piecewise linears functions on a triangulation of Ω satisfying the
homogeneous Dirichlet boundary conditions, and we let 0 = t0 < t1 <
· · · < tN = T be a subdivision of [0, T ] into time intervals In = (tn−1, tn]
with time steps kn = tn− tn−1. We apply cG(1) in space and cG(1) in time
and seek a discrete solution U in the space of functions Wh spanned by the
functions

v(x, t) =
N∑

n=0

M∑

j=1

ηnj ϕj(x)ψn(t),

where {ϕj(x)}Mj=1 is a basis for Vh, and {ψn(t)}Nn=0 is a basis for the space of
continuous piecewise linear functions on the subdivision 0 = t0 < t1 < · · · <
tN = T . The corresponding discrete system takes the following explicit
form if mass lumping is used in space as well as time and the time step is
constant kn = k:

ξn+1 = 2ξn − ξn−1 + k2Aξn for n = 1, ..., N − 1,

with appropriate starting values ξ0 and ξ1 computed from the initial con-
ditions, and A the relevant stiffness matrix related to the Laplacian.

234.18 Examples

We present some examples of systems of nonlinear reaction-diffusion-
convection equations (234.27) arising in physics, chemistry and biology of
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the form

u̇i −∇ · (ai∇ui) +∇ · (uibi) + ciui = fi(u1, ..., ud) in Ω× I, i = 1, ..., d,
(234.32)

where the ai > 0, bi and ci are given coefficients, and the fi : Rd → R.
These systems may be solved numerically by a direct extension of the cG(1)
method in space and time presented above. We will return in detail to this
issue below. In all the examples, a is a positive constant.

Example 234.1. The bistable equation for ferro-magnetism

u̇− a∆u = u− u3. (234.33)

Example 234.2. Superconductivity of fluids

u̇1 − a∆u1 = (1− |u|2)u1,
u̇2 − a∆u2 = (1− |u|2)u2.

(234.34)

Example 234.3. Flame propagation

u̇1 − a∆u1 = −u1e−α1/u2 ,

u̇2 − a∆u2 = α2u1e
−α1/u2 ,

(234.35)

where α1, α2 > 0 are constants.

Example 234.4. Interaction of two species

u̇1 − a∆u1 = u1M(u1, u2),

u̇2 − a∆u2 = u2N(u1, u2),
(234.36)

where M(u1, u2) and N(u1, u2) are given functions describing various
situations such as (i) predator-prey (Mu2 < 0, Nu1 > 0) (ii) competing
species (Mu2 < 0, Nu1 < 0) and (iii) symbiosis (Mu2 > 0, Nu1 > 0).

Example 234.5. Morphogenesis of patterns (zebra)

u̇1 − a∆u1 = −u1u22 + α1(1 − u1),

u̇2 − a∆u2 = u1u
2
2 − (α1 + α2)u2.

(234.37)

Example 234.6. Belousov-Zhabotinski reaction in chemical kinetics

u̇1 − a∆u1 = α1(u2 − u1u2 + u1 − α2u
2
2),

u̇2 − a∆u2 = α−1
1 (α3u3 − u2 − u1u2).

u̇3 − a∆u3 = α4(u1 − u3),

(234.38)

where α ≈ 102, α2 ≈ 10−2, α3 ≈ 1, α4 ≈ 10−1.
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Chapter 234 Problems

234.1. Compute the coefficients of the mass matrix M on the standard trian-
gulation of the square of mesh size h. Hint: it is possible to use quadrature based
on the midpoints of the sides of the triangle because this is exact for quadratic
functions. The diagonal terms are h2/2 and the off-diagonal terms are all equal
to h2/12. The sum of the elements in a row is equal to h2.

234.2. Compute the stiffness matrix for cG(1) for the problem −∆u = 1 in
Ω = (0, 1) × (0, 1) with u = 0 on the side with x2 = 0 and ∂nu + u = 1 on the
other three sides of Ω using the standard triangulation. Note the contribution to
the stiffness matrix from the nodes on the boundary.

234.3. Describe the sparsity pattern of the stiffness matrices A for the Poisson
equation with homogeneous Dirichlet data on the unit square corresponding to
the continuous piecewise linear finite element method on the standard triangula-
tion using the three numbering schemes pictured in Fig. 240.9.

1

m2

1

m2

2

3

4

(a) (b) (c)

1 m

2m

5

m

FIGURE 234.15. Three node numbering schemes for the standard triangulation
of the unit square.

234.4. Compute the load vector for f(x) = x1+x
2
2 on the standard triangulation

of the unit square using exact integration and the lumped mass (trapezoidal rule)
quadrature.

234.5. Write a code to solve Aξ = b using both the Jacobi and Gauss-Seidel
iteration methods, making use of the sparsity of A in storage and operations.
Compare the convergence rate of the two methods using the result from a direct
solver as a reference value.

234.6. Write a code to solve the system Aξ = b with A a band matrix.

234.7. Compute the stiffness matrix for the Poisson equation with homogeneous
Dirichlet boundary conditions for (a) the union jack triangulation of a square
shown in Fig. 240.8 and (b) the triangulation of triangular domain shown in
Fig. 240.8.

234.8. Compute the discrete equations for the finite element approximation for
−∆u = 1 on Ω = (0, 1) × (0, 1) with boundary conditions u = 0 for x1 = 0,
u = x1 for x2 = 0, u = 1 for x1 = 1 and u = x1 for x2 = 1 using the standard
triangulation (Fig. 240.1).
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(0,0) (h,0) (2h,0) ((m-1)h,0) (mh,0) ((m+1)h,0)

(0,h)

(0,2h)

(0,(m+1)h)

(0,mh)

N2 Nm-1

N2m
Nm+1

N(m-1)m

(1,1)

N1

FIGURE 234.16. The “union jack” triangulation of the unit square and a uniform
triangulation of a right triangle.

234.9. (a) Show that the element stiffness matrix (240.13) for the linear poly-
nomials on a triangle K with vertices at (0, 0), (h, 0), and (0, h) numbered 1, 2
and 3, is given by 


1 −1/2 −1/2

−1/2 1/2 0
−1/2 0 1/2



 .

(b) Use this result to verify the formula computed for the stiffness matrix A for
the continuous piecewise linear finite element method for the Poisson equation
with homogeneous boundary conditions on the unit square using the standard
triangulation. (c) Compute the element stiffness matrix for a triangle K with
nodes {ai}.
234.10. Compute the asymptotic operations count for the direct solution of the
system Aξ = b using the three A computed in Problem 240.15.

234.11. Apply the finite element method with piecewise linear approximation to
the Poisson equation in three dimensions with a variety of boundary conditions.
Compute the stiffness matrix and load vector in some simple cases.

234.12. Derive a priori error bound in the energy norm for cG(1) FEM for
Poisson’s equation with Robin boundary conditions. Generalize to problems of
the form −∇ · (a∇u) + cu = f , where a(x) > 0 and c ≥ 0.

234.13. Derive a posteriori error bound in the energy norm for cG(1) FEM for
Poisson’s equation with Robin boundary conditions. Generalize to problems of
the form −∇ · (a∇u) + cu = f , where a(x) > 0 and c ≥ 0.

234.14. Implement adaptive energy norm error control for cG(1) for Poisson’s
equation based on an a posteriori error estimate.

234.15. Find an exact solution of the L-shaped membrane problem with the
Dirichlet condition replaced by a Neumann condition on one of the sides meeting
at 3π

2
corner. What is the nature of the singularity?

234.16. Let ω(x) be a positive weight function defined on the domain Ω ⊂ R2.
Assume that the mesh function h(x) minimizes the integral

∫
Ω
h2(x)ω(x)dx under

the constraint
∫
Ω
h−2(x) dx = N , where N is a given positive integer. Prove that

h4(x)ω(x) must be constant. Interpret the result as equidistribution in the context
of error control. Hint: argue that h4(x)ω(x) is the gain adding one more node.
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235
Inverse Problems

I never guess. It is a capital mistake to theorize before one has data.
Insensibly one begins to twist facts to suit theories, instead of theories
to suit facts.

When you have eliminated the impossible, whatever remains, how-
ever improbable, must be the truth. (Sherlock Holmes in the The
Sign of Four, 1888)

235.1 Introduction

We have above in our study of Poisson’s equation studied “forward” prob-
lems of the form: Given the function f : Ω → R, find a function u : Ω → R
such that {

−∆u = f in Ω,

∂nu+ κu = 0 on Γ,
(235.1)

where κ ≥ 0 is a given constant. A corresponding “inverse” problem would
be to assume knowledge of u(x) and seek the corresponding function f(x)
so that (235.1) is satisfied! If we know u(x) in the entire region Ω, this is a
problem of differentiation: we just compute ∆u(x) from u(x). We then have
−∆u = f ! We have studied this problem in Chapter The derivative, and
we recall that this problem is a bit delicate and that we have to balance
the step length h in a difference approximation of ∆ to the precision in the
given data u(x).



1672 235. Inverse Problems

Suppose now that we know u(x) only on the boundary Γ. Can we then
determine f(x) in Ω? This type of problem connects to a wealth of impor-
tant applications of the following form: Suppose we can measure something
on the boundary of an object. Can we then say something about what is
inside the object? For example, suppose the object is a human body, and
that we can measure something on the boundary (or outside) the body.
Can we than get some information on what is inside the body? Or, sup-
pose we can accumulate data on the surface of the Earth, can we then say
something about what is in the interior of the Earth, such as the presence
of layers of oil. These are all examples of inverse problems.
The nature of an inverse problem is to be “ill-posed” in the sense that

solutions may be non-unique and/or that small changes in the data may
cause large changes in the solution. To single out a unique solution which
is not too sensitive to little errors in data, we may have to “regularize”
the inverse problem e.g. by smoothing of the data and/or restricting the
size of (derivatives of) the solution. Differentiation is such an ill-posed
problem where we may need to “smooth” or regularize a given function
before attempting to compute its derivative.
A typical forward problem is “well-posed” in the sense that small changes

in data cause small changes in the solution. A basic example of a well-posed
problem is integration corresponding to solving a differential equation. The
corresponding inverse problem is differentiation which is ill-posed as we
just noted. Solving a differential equation does not always correspond to a
well-posed problem: in Chapter Lorenz and the Essence of Chaos we met a
simple differential equation with solutions being highly sensitive to changes
in data.

Example 235.1. An electrocardiogram ECG produces a curve reflect-
ing the electrical activity of the heart from measurements of electric
potentials on the chest, and the curve gives a specialist information on
abnormal activities of the heart such as abnormal heart rhythm (ar-
rhythmias). Similarly, an electroencephalogram EEG gives information
on the electrical activity of the brain from measurements of electric
potentials on the scalp. These techniques are however too imprecise for
many diagnoses, and more recently techniques of electrocardiographic
imaging have been developed, which build on solving inverse problems
for Poisson-like equations. The geometry of the individual patient is
then obtained from computer tomography, and a picture of the electri-
cal activity inside the body is obtained from measurements of electric
potentials on the boundary (e.g. the chest or scalp) by solving an inverse
problem for a Poisson-like equation (using the finite element method).
Electrocardiographic imaging may give more accurate information on
e.g. abnormal cardiac or brain activity than ECG and EEG, and is now
a part of practice in advanced neurological and radiological depart-
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ments. Further development of in particular the computational process
(adaptivity, geometric modeling) is needed to increase the accuracy.

Example 235.2. Another inverse problem of importance to mankind
occurs in inverse seismic prospecting: Explosions on the surface of the
Earth are set off and the reflections of the induced waves in the man-
tle of the Earth are recorded on the surface, and from this informa-
tion one tries to determine subsurface structures such as layers of oil-
bearing rock. To solve this reconstruction problem one uses computa-
tional methods based on solving the wave equation involving a wave
speed coefficient characteristic of different materials, and through op-
timization one tries to find the local wave speed coefficient which gives
best least squares fit to measured data on the surface of the Earth, and
which then gives information on the unknown subsurface layering.

235.2 An Inverse Problem for One-Dimensional
Convection

We start considering the simplest boundary value problem:

u′(x) = f(x), for x ∈ (0, 1], u(0) = 0, (235.2)

modeling convection with u : [0, 1] → R representing a concentration and
f : [0, 1] → R a source. We seek to determine or reconstruct the function f :
[0, 1] → R from the boundary value observation u(1) of the corresponding
solution u(x) of (235.2). It is clear that we cannot hope to determine f(x)
for all x ∈ (0, 1) from this observation alone. This is because there are many
functions f(x) such that the corresponding function u(x) satisfies (235.2)
and u(1) = 0. To see this it is sufficient to choose a non-zero function u(x)
on [0, 1] satisfying u(0) = u(1) = 0 and define f(x) = u′(x). Evidently, the
reconstruction is undetermined up to such functions.
The indeterminancy of the reconstruction f(x) reflects the ill-posed na-

ture of the inverse problem; even if the measurements of the boundary value
u(1) is very precise, the corresponding source f(x) is not well defined. We
thus need some extra condition to single out a (hopefully) unique source
f(x). We may do this in many ways and depending on the extra condition
imposed, we may get different reconstructions f(x). We now indicate one
possibility, where we reconstruct under the extra condition that f(x) is as
small as possible in a least squares sense, which is a common technique of
regularization. We then reformulate the inverse problem as the following
least squares optimization problem: Find the function f : [0, 1] → R which
minimizes the total “cost”

J(f) = (u(1)− ū(1))2 + µ

∫ 1

0

f(x)2 dx,
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where u(x) solves (235.2), ū(1) is the observed boundary value at x = 1,
and µ > 0 is a constant. We may view this as a control problem where the
objective is to find the control f : [0, 1] → R which minimizes the total cost
J(f), where the µ-term measures the cost of the control f and the first
term the cost of a boundary value misfit u(1)− ū(1).
We can phrase this problem as finding the function u(x) with u(0) = 0

which minimizes

(u(1)− ū(1))2 + µ

∫ 1

0

(u′)2 dx.

Recalling Chapter FEM for two-point boundary value problems, we under-
stand that the solution u(x) satisfies u′′(x) = 0 in (0, 1), u(0) = 0 and
u(1)− ū(1)+µu′(1) = 0. We conclude that u(x) = 1

1+µ ū(1)x, and thus the

reconstructed source f(x) = u′(x) takes on a constant value and is given
by

f(x) =
1

1 + µ
ū(1) for x ∈ [0, 1].

Evidently, we are led to choose the regularization parameter µ small; the
smaller µ is the more accurately we will fit the boundary value observation
ū(1). Since the reconstructed function f(x) is constant, we have effectively
only one constant to determine and we may expect to be able to determine
this single value from the single observation ū(1).
We can also rephrase the optimization problem as follows introducing the

integral operator B defined on functions on [0, 1] by Bf(x) =
∫ x
0
f(y) dy

for x ∈ [0, 1]: Find the function f : [0, 1] → R which minimizes

J(f) = (Bf(1)− ū(1))2 + µ

∫ 1

0

f(x)2 dx.

The optimality condition obtained by setting d
dǫJ(f + ǫg) = 0 for ǫ = 0,

where g : [0, 1] → R is an arbitrary function, takes the form:

(Bf(1)− ū(1))Bg(1) + µ

∫ 1

0

f(x)g(x) dx = 0 (235.3)

for all functions g : [0, 1] → R. We shall now rewrite this condition by in-
troducing the adjoint operator B⊤ defined on functions w(x) as follows:
for a given w = w(x) we let B⊤w be the function on [0, 1] satisfying
(B⊤w)′(x) = 0 for x ∈ (0, 1) and B⊤w(1) = w(1), that is, B⊤w is the
constant function on [0, 1] taking the value w(1) for all x. We can then
rewrite (235.3) in the form

∫ 1

0

B⊤(Bf(x) − ū(1))(x)g(x) dx + µ

∫ 1

0

f(x)g(x) dx = 0 (235.4)
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for all functions g : [0, 1] → R, because by partial integration

∫ 1

0

B⊤(Bf(x) − ū(1))(x) (Bg(x))′︸ ︷︷ ︸
=g(x)

dx = (Bf(1)− ū(1))Bg(1),

where as indicated (Bg(x))′ = g(x) and B⊤w(1) = w(1). We conclude that

∫ 1

0

(B⊤Bf + µf)g dx =

∫ 1

0

B⊤ū(1)g dx

for all functions g : [0, 1] → R, and therefore

B⊤Bf + µf = B⊤ū(1) on (0, 1), (235.5)

or with I the identity operator:

(B⊤B + µI)f = B⊤ū(1). (235.6)

We conclude that f(x) is constant on [0, 1] and takes the value

f(x) =
1

1 + µ
ū(1) for x ∈ [0, 1],

which is the same result as already derived. We note the form (235.6) of
the optimality condition (235.6) with the operator B⊤B + µI appearing.
We shall meet the same equation below with different solution operators
B and adjoints B⊤.

235.3 An Inverse Problem for One-Dimensional
Diffusion

We continue with the boundary value problem

− u′′ = f in (0, 1), u′(0) = 0, u′(1) + u(1) = 0, (235.7)

where we seek to determine the source f(x) in (0, 1) by observing the
boundary values u(0) and u(1) of the corresponding solution u(x) of (235.7).
Again it is clear that we cannot hope to determine f(x) for all x ∈ (0, 1)
from these two observations alone, because there are many functions f(x)
such that the corresponding function u(x) satisfies (235.7) and u(0) =
u(1) = 0. To see this it is sufficient to choose a non-zero function u(x) on
[0, 1] satisfying u(0) = u′(0) = u(1) = u′(1) = 0 and set f(x) = −u′′(x).
As above we seek to reconstruct f(x) under the extra condition that f(x)

is as small as possible and we therefore reformulate the inverse problem as
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the following least squares optimization problem: Find f(x) in (0, 1) such
that

J(f) = (u(0)− ū(0))2 + (u(1)− ū(1))2 + µ

∫ 1

0

f2(x) dx

is as small as possible, where µ > 0 is a positive constant acting as a
regularization, ū(0) and ū(1) are the boundary observations, and of course
u(x) solves (235.7). We thus seek f(x) so that in a least squares sense we
fit the boundary observations as well as the smallness of f(x) as well as
possible.
To state the optimality equations, we introduce the solution operator B

corresponding to (235.7), that is, for a given function f : [0, 1] → R we let
Bf(x) be the function on [0, 1] satisfying

∫ 1

0

(Bf)′v′ dx+Bf(1)v(1) =

∫ 1

0

fv dx, (235.8)

for all functions v(x) on [0, 1]. This follows from Chapter FEM for two-point
boundary value problems. Setting d

dǫJ(f + ǫg) = 0 for ǫ = 0, we obtain the
optimality condition in the form

(Bf(0)− ū(0), Bg(0)) + (Bf(1)− ū(1), Bg(1)) + µ

∫ 1

0

f(x)g(x) dx = 0

(235.9)
for all functions g(x) on [0, 1]. Next we introduce the adjoint operator B⊤

defined as follows: given the values w(0) and w(1), we let B⊤w be the
function on [0, 1] which satisfies

∫ 1

0

(B⊤w)′v′ dx+B⊤w(1)v(1) = w(0)v(0) + w(1)v(1) (235.10)

for all v(x). We see that (B⊤w)′′ = 0 and −(B⊤w)′(0) = w(0), B⊤w(1) +
(B⊤w)′(1) = w(1). In other words, B⊤w is a linear function determined by
the two boundary conditions. In particular, if w(0) = 0, then B⊤w = w(1)
is a constant. Now, setting v = Bg in (235.10), we get

w(0)Bg(0) + w(1)Bg(1) =

∫ 1

0

(B⊤w)′(Bg)′ dx+B⊤w(1)Bg(1)

=

∫ 1

0

B⊤wg dx,

where we used (235.8) with f replaced by g and v replaced by B⊤w, and
thus we can write the optimality condition (235.9) in the same form as
above:

(B⊤B + µI)f = B⊤ū. (235.11)

From this equation we can uniquely solve for the function f(x), which will
be a linear function defined by two constants, because f = 1

µB
⊤(Bf − ū).
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For example if ū(0) = 0 and ū(1) = 1, then we get choosing µ small,
f(x) ≈ 10ū(1)x− 8ū(1) with corresponding solution u(x) ≈ −3x3 + 4x2.
We now comment on the nature of the optimality equation (235.11). The

operator B maps a space of sources, say F , into a space of observations,
say O, and the adjoint operator B⊤ maps O into F . We may think of the
dimension of F as large, and that of O as smaller. For the discussion we
may assume that the dimension of F is n and the dimension of O is m
and thus B corresponds to an m × n matrix and B⊤ to an n ×m matrix
with m << n. This will be the setting with computational approximations
of the solution operators B and B⊤. In particular, the columns of B must
be severely linearly independent since there are many more columns than
rows, and thus the n × n matrix B⊤B must be singular with many non-
zero n-vectors f satisfying B⊤Bf = 0. On the other hand, the matrix
B⊤B + µI with µ > 0 is nonsingular, because if (B⊤B + µI)f = 0, then
scalar multiplication by the n-vector f⊤, we obtain ‖Bf‖2 + µ‖f‖2 = 0
and thus f = 0. The non-zero solutions f to B⊤Bf = 0 are eigenvectors
corresponding to a zero eigenvalue, and by changing to the regularized
operator B⊤B + µI we shift the spectrum to the interval [µ,∞) on the
positive real axis.

235.4 An Inverse Problem for Poisson’s Equation

We now pass to an inverse problem for Poisson’s equation (235.1) assuming
Ω, Γ and κ to be known: Given u(x) = Û(x) for x ∈ Γ, find f(x) for x ∈ Ω.
We approach this problem directly in discrete form as the following least

squares problem: Find F ∈ Vh which minimizes

J(F ) = ‖U − Û‖2Γ + µ‖F‖2Ω (235.12)

over Vh, where U ∈ Vh satisfies

(∇U,∇v)Ω + (κU, v)Γ = (F, v)Ω for all v ∈ Vh, (235.13)

and Vh is the space of continuous piecewise linear functions on a given
triangulation of Ω of mesh size h(x). As above µ ≥ 0 acts as a regularization
parameter which helps to cope with the ill-posed nature of the problem.
Further, ‖ · ‖Ω and (·, ·)Ω denote the L2(Ω) norm and scalar product, and
similarly, ‖ · ‖Γ and (·, ·)Γ denote the L2(Γ) norm and scalar product.
We reformulate (235.12) by introducing the solution operator Bh : Vh →

Wh defined by BhF = UF on Γ, where UF ∈ Vh solves (235.13), and Wh is
the restriction of the space Vh to the boundary Γ, that is a set of piecewise
linear functions on Γ. By definition, UF ∈ Vh satisfies:

(∇UF ,∇v)Ω + (κUF , v)Γ = (F, v)Ω for all v ∈ Vh. (235.14)
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We can now formulate the minimization problem (235.12) as follows: Find
F ∈ Vh which minimizes

J(F ) = ‖BhF − Û‖2Γ + µ‖F‖2Ω, (235.15)

over Vh. This is a quadratic minimization problem with unique solution
F ∈ Vh characterized by a least squares equation of the form

(BhF,BhG)Γ + (µF,G)Ω = (Û , BhG)Γ for all G ∈ Vh, (235.16)

which expresses that d
dǫJ(F + ǫG) = 0 for ǫ = 0 for all G ∈ Vh.

We can express (235.16) as

(B⊤
h BhF,G)Ω + (µF,G)Ω = (B⊤

h Û , G)Ω for all G ∈ Vh,

that is
(B⊤

h Bh + µI)F = B⊤
h Û , (235.17)

where B⊤
h : Wh → Vh is the transpose of Bh defined as follows: Given

w ∈ Wh, we let B⊤
h w ∈ Vh satisfy

(∇v,∇B⊤
h w)Ω + (κv, B⊤

h w)Γ = (v, w)Γ for all v ∈ Vh. (235.18)

In other words, B⊤
h w is an approximation of the solution z of the Poisson-

problem: {
−∆z = 0 in Ω,

∂nz + κz = w on Γ.
(235.19)

Choosing v = BhG in (235.18), we get using also (235.13) with v = B⊤
h w

(BhG,w)Γ = (∇BhG,∇B⊤
h w)Ω + (κBhG, B

⊤
h w)Γ = (G,B⊤

h w)Ω

and thus as expected from a transpose

(BhG,w)Γ = (G,B⊤
h w)Ω,

that is, moving Bh from G onto w brings in the transpose B⊤
h .

Solving (235.17) gives an approximation F (x) of the function f(x) we are
looking for. We may solve (235.17) by direct matrix inversion if the number
of nodes is small, and by some iterative method such as the gradient or the
conjugate gradient method for larger problems.
The gradient method takes the form:

Fn+1 = Fn−α((B⊤
h Bh+µI)F

n−B⊤
h Û) = Fn−α(B⊤

h (BhF
n−Û)+µFn).

In each step we have to compute first BhF and then B⊤
h (BhF − Û) corre-

sponding to solving two Poisson problems.
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Example 235.3. In our first application realized using Matlab we
interpret (235.17) as a matrix equation explicitly formed by computing
the inverses of the stiffness matrices for the problem (235.14) and the
adjoint (235.18), and we then solve this matrix equation to get the
nodal values of F (x). One may handle a couple of hundreds of nodes
this way. For simplicity, we have considered the case Ω = {(x1, x2) :
0 < x1, x2 < 1} with κ = 1 and f = 0.5 + (x− y) (x+ y − 1), observed
the boundary values of the resulting solution u, and then solved for a
reconstruction of the given data f using µ = 0.0001. The result is shown
in Fig. 235.1 with reconstruction error ∼ 0.032 in f and ∼ 0.000176 in
the corresponding state (boundary values).

original data observation reconstruction
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FIGURE 235.1. Original data f (left), resulting state u (middle), and the recon-
struction of f (right) with µ = 0.0001 and reconstruction error ∼ 0.032.

Example 235.4. We next take κ = 50 and show the resulting state u
in Fig. 235.2. The reconstruction using µ = 0.0001 is now rather poor,
at least in terms of f with a reconstruction error of order ∼ 0.4, while
the corresponding state error is of order ∼ 0.02. Taking µ = 0.00001
brings the state error down to ∼ 0.003, while a reconstruction of f with
error ∼ 0.04 requires taking µ = 0.0000005.

235.5 An Inverse Problem for Laplace’s Equation

Let Ω be a domain in R2 with boundary Γ composed of three parts Γ0, Γ1

and Γ2. For a given function f defined on Γ2, let uf be the solution to the
boundary value problem

{
−∆uf = 0 in Ω,

uf = 0 on Γ0 ∪ Γ1, uf = f on Γ2,
(235.20)

and define Bf =
∂uf

∂n on Γ1, where n is the unit outward normal to Γ1. We
may think of uf as a stationary temperature defined in Ω satisfying given
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original data observation reconstruction
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FIGURE 235.2. Original data f (left), resulting state u (middle), and the recon-
struction of f (right) with µ = 0.0001, now with reconstruction error ∼ 0.43.
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FIGURE 235.3. Original data f (left), resulting state u (middle), and the re-
construction of f (right) after 10 steps of the conjugate gradient method with
µ = 0.000001, with a state error ∼ 0.0003 in (the boundary values of) u and a
reconstruction error ∼ 0.07 in f .

boundary conditions on Γ (= 0 on Γ0 ∪ Γ1 and = f on Γ2) and with Bf
representing the heat flux on Γ1. Suppose now we can measure the heat
flux on Γ1 and that we want to determine the temperature f on Γ2. We
thus have a situation where we have access to the temperature (= 0) along
Γ0∪Γ1 and may measure also the heat flux, say q̄, along Γ1, and we want to
determine the temperature f on the inaccessible part of the boundary Γ2.
This problem arises in EKG with u being a potential and Γ1 representing
the surface of the chest and Γ2 that of the heart, and the inverse problem
being to reconstruct the potential on the heart from measurements on the
chest.
We formulate the reconstruction problem as a least squares optimization

problem of the form: Find f on Γ2 which minimizes

J(f) = ‖Bf − q̄‖2Γ1
+ µ‖f‖2Γ2

,
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where we use the notation of the previous section, and µ > 0. The opti-
mality equation as usual takes the form

(B⊤B + µI) = B⊤q̄,

where B⊤g = ∂ug

∂n on Γ2 and ug solves the problem

{
−∆ug = 0 in Ω,

ug = g on Γ1, ug = 0 on Γ0 ∪ Γ2.
(235.21)

This because by integrations by parts

(g,Bf)Γ1 = (∇ug, ∇uf )Ω = (B⊤g, f)Γ2

Example 235.5. We consider again the domain Ω = {(x1, x2) : 0 <
x1, x2 < 1} now with Γ1 = {(0, x2) : 0 < x2 < 1}, Γ2 = {(1, x2) : 0 <
x2 < 1} and Γ0 = Γ\Γ1 with an observed flow q̄ along Γ1 corresponding
to f = 6 x22 (1− x2) along Γ2. The figure shows the original (Dirichlet)
boundary values to the left, the resulting state u and the associated
observed flux q along Γ1 in the middle, and the control/reconstruction
f after a few conjugate gradient iterations to the right, with µ = 0.001.
The error in the (piecewise constant) reconstruction of the boundary
values along Γ2 is ∼ 0.2 and the resulting error in flux through Γ1 is
∼ 0.006.
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FIGURE 235.4. Original Dirichlet boundary values (left), the corresponding state
u with observed flow q along Γ1 (middle), and the reconstruction of the boundary
values along Γ2 (to the right) using µ = 0.001 and a few (5) conjugate gradient
steps.
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235.6 The Backward Heat Equation

Another basic inverse problem is the Backward heat equation: Given the
temperature at final time t = T , find the temperature at initial time t = 0.
We consider this problem in the following setting: let f(x) be an ini-

tial temperature and let u(x, t) be the corresponding solution of the heat
equation: 




u̇−∆u = 0 in Ω× (0, T ],

∂nu+ κu = 0 on Γ× (0, T ],

u(x, 0) = f(x) for x ∈ Ω,

where the domain Ω ∈ Rd and the coefficient κ ≥ 0 are given. We consider
the following inverse problem: Given the final temperature u(x, T ), find
the initial temperature u(x, 0) = f(x). This corresponds to solving the
heat equation “backwards”.
We consider the following discrete analog of (235.6) with discretization in

space: Let Vh be the usual space of continuous piecewise linear functions on
a triangulation of Ω with mesh size h(x), and let F ∈ Vh and let U(t) ∈ Vh
be the solution of the discrete heat equation

{
(U̇ , v)Ω + (∇U(t),∇v)Ω = 0 for t ∈ (0, T ], v ∈ Vh,

(U(0), v)Ω = (F, v)Ω for v ∈ Vh.
(235.22)

The discrete inverse problem, corresponding to a discrete “backwards” heat
equation, reads: Given the final temperature U(T ) = Û ∈ Vh, find the
initial temperature U(0) = F ∈ Vh.
To formulate this problem as a regularized least squares problem, we

introduce the solution operator Bh : Vh → Vh defined as follows: BhF =
U(T ) ∈ Vh, where U solves with U(0) = F ∈ Vh. The operator Bh thus
takes an initial temperature F to a corresponding final temperature BhF .
The regularized least squares problem is now the same as that above, that
is, we seek F ∈ Vh which minimizes

J(F ) = ‖BhF − Û‖2Ω + µ‖F‖2Ω, (235.23)

over Vh. The unique solution F ∈ Vh to this quadratic minimization prob-
lem is characterized by a least squares equation of the form

(BhF,BhG)Ω + (µF,G)Ω = (Û , BhG)Ω for all G ∈ Vh, (235.24)

which we can express as

(B⊤
h BhF,G)Ω + (µF,G)Ω = (B⊤

h Û , G)Ω for all G ∈ Vh,

that is
(B⊤

h Bh + µI)F = B⊤
h Û , (235.25)
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where B⊤
h : Vh → Vh is defined as follows: B⊤

h G = Z(0) ∈ Vh, where
Z(t) ∈ Vh solves the discrete heat equation

{
−(v, Ż)Ω + (∇v,∇Z)Ω = 0 for t ∈ (0, T ], v ∈ Vh,

(v, Z(T ))Ω = (G, v)Ω for v ∈ Vh.
(235.26)

Note computing B⊤
h corresponds to solving a heat equation: note the minus

sign in the term −(v, Ż) and that we solve starting with t = T and ending
with t = 0. Changing variables introducing a new time variable s = T − t
brings this problem into the form of the usual heat equation. Note that
(235.26) is a discrete analog of the problem:





−ż −∆z = 0 in Ω× (0, T ],

∂nz + κz = 0 on Γ× [0, T ),

z(x, T ) = g(x) for x ∈ Ω,

with G ∈ Vh an approximation of g(x) and Z(t) ∈ Vh an approximation of
z(·, t) for t ∈ [0, T ].
To solve the least squares equation by the gradient or conjugate gradient

method, we have to compute BhF
n and B⊤

h G for given vectors Fn and G
in Vh, by using some time stepping method such as the dG(0) or cG(1)
method.

Example 235.6. We consider the given problem with domain Ω as in
the previous examples, κ = 1000 corresponding to boundary conditions
u ≈ 0, final time T = 0.1 and observed state at time T corresponding
to initial values u0 = 16 x1 (1− x1)x2 (1− x2) and u0 = 2min(x1, 1−
x1, x2, 1 − x2), respectively. We then seek to reconstruct these initial
data from the observations of the resulting solutions at time T = 0.1
with µ = 0.001 and a few conjugate gradient iteration using the cG(1)
(initiated by two dG(0) steps to filter out high frequency noise) with
timesteps k = 0.0025. The results are shown in Fig. 235.5 and 235.6,
respectively. The reconstruction error in the first case is ∼ 0.057 and in
the second case ∼ 0.19.

One would think that by decreasing µ it would be possible to better
reconstruct the crisp details in the initial data u0 in the second example.
However, the observation we use here is a computed one modelling the
fact that observations are imperfect or not considered in full detail in
most cases, so that in this case the reconstruction does not get much
better by decreasing µ. However, if we decrease T to say 0.02 we can
reconstruct also the more detailed structure of u0 also in the second
example with µ = 0.00001 and a resulting reconstruction error ∼ 0.068:
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original data observation reconstruction
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FIGURE 235.5. Original initial data u0 = 16x1 (1− x1)x2 (1− x2) (left), corre-
sponding observed state/solution at time T = 0.1 (middle), and reconstruction
of u0 (right) obtained with µ = 0.001.
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FIGURE 235.6. Original initial data u0 = 2max(x1, 1−x1, x2, 1−x2) (left), cor-
responding observed state/solution at time T = 0.1 (middle), and reconstruction
of u0 (right) obtained with µ = 0.001.
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FIGURE 235.7. Original initial data u0 = 2max(x1, 1−x1, x2, 1−x2) (left), cor-
responding observed state/solution at time T = 0.02 (middle), and reconstruction
of u0 (right) obtained with µ = 0.00001.
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236
Optimal Control

We’re making the right decisions to bring the solution to an end.
(George W. Bush)

236.1 Introduction

In this chapter we continue with aspects of optimization connected to op-
timal control in the following setting: Consider an IVP of the form: Find
the state v : [0, T ] → Rn satisfying the state equation

v̇(t) + f(v(t), q(t)) = 0 0 < t ≤ T, v(0) = u0, (236.1)

where f : Rn × Rm → Rn is a given function, u0 a given initial value,
and q : [0, T ] → Rm is a control. We seek to determine an optimal control
p : [0, T ] → Rm such that J(p) ≤ J(q) for all q : [0, T ] → Rm, where

J(q) ≡ 1

2
‖v − û‖2 + α

2
‖q‖2, (236.2)

where v solves (236.1), û : [0, T ] → Rn is a given function, and

‖w‖2 =

∫ T

0

|w(t)|2 dt

with | · | denoting the Euclidean norm, and α is a positive constant. We
thus seek to choose the control q so that the corresponding state v is as
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close as possible to a given state û in the ‖ · ‖-norm and we also add a cost
of the control measured by the factor α > 0.
We reformulate this problem as the following saddle point problem:

min
v,q

max
µ

L(v, q, µ) (236.3)

with the Lagrangian L defined by

L(v, q, µ) =
1

2
‖v − û‖2 + α

2
‖q‖2 + (v̇ + f(v, q), µ) (236.4)

with (·, ·) the scalar product corresponding to the norm ‖ · ‖, and (v, q, µ)
varying freely (with v(0) = u0 and µ(T ) = 0).
The condition for stationarity of L(v, q, µ) at (u, p, λ) is L′(u, p, λ) = 0,

where L′ is the Jacobian of L : Rn×Rm×Rn → R, or in component form:

(u̇+ f(u, p), µ) = 0 ∀µ, (236.5)

(u− û, v) + (v̇ + f ′
v(u, p)v, λ) = 0 ∀v, (236.6)

(f ′
q(u, p)q, λ) + α(p, q) = 0 ∀q, (236.7)

where f ′
v(v, q) and f

′
q(v, q) denote the Jacobians of f(v, q) with respect to

v and q at (v, q), respectively, and we assume that v(0) = 0 and µ(T ) = 0.
We can restate these equations in (u, p, λ) pointwise in time as follows:

u̇+ f(u, p) = 0 on [0, T ], u(0) = u0, (236.8)

− λ̇+ f ′
v(u, p)

⊤λ = û− u on [0, T ], λ(T ) = 0. (236.9)

f ′
q(u, p)

⊤λ+ αp = 0 on [0, T ], (236.10)

where⊤ denotes transpose. Here (236.8) is the state equation, (236.9) is the
costate equation, and (236.10) is the feed back control coupling the optimal
control p to the costate λ.
To solve the stationarity equations we may consider the following gradi-

ent method in the control p:

pn+1 = pn − κ(αpn + f ′
q(u

n, pn)⊤λn) (236.11)

where un and λn solve the state and costate equations u̇n + f(un, pn) = 0
and −λ̇n+f ′

v(u
n, pn)⊤λn = û−un, respectively, and κ > 0 is a step length.

Example 236.1. If f(v, p) = Av−Bq with A a n× n and B a n×m
matrix, then the stationarity equations take the form:

u̇+Au = Bp on [0, T ], u(0) = u0, (236.12)

− λ̇+A⊤λ = û− u on [0, T ], λ(T ) = 0. (236.13)

αp = B⊤λ on [0, T ]. (236.14)
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236.2 The Connection Between dJ
dp and ∂L

∂p

We shall now prove that

J ′(p) =
dJ

dp
(p) =

∂L

∂p
(u, p, λ), (236.15)

where the state u = u(p) satisfies the state equation (236.8) with control
p, and the costate λ satisfies the costate equation (236.9). We can thus
express the gradient J ′(p) = dJ

dp (p) of the cost function J(p) in terms of

the corresponding state u = u(p) and costate λ, while direct computation
of J ′(p) requires computation of the derivative u′(p) of the state u(p) with
respect to the control p: By the Chain rule we have

J ′(p)q =
∂

∂ǫ
J(p+ ǫq)|ǫ=0 = (u(p)− û, u′(p)q) + α(p, q),

where we thus want to eliminate u′(p). To do so we differentiate the state
equation in the form (assuming for simplicity that u0 = 0),

0 = (u,−µ̇) + (f(u, p), µ) ∀µwith µ(T ) = 0,

with respect to p, to get ∀µ with µ(T ) = 0,

0 =
d

dǫ

(
(u(p+ ǫq),−µ̇) + (f(u(p+ ǫq), p+ ǫq, µ))

)
|ǫ=0,

that is,

0 = (u′(p)q,−µ̇) + (f ′
u(u(p), p)u

′(p)q + f ′
p(u(p), p)q, µ)

or
(u′(p)q,−µ̇) + (u′(p)q, f ′

u(u(p), p)
⊤µ) = −(q, f ′

p(u(p), p)
⊤µ).

Choosing now µ = λ and using that by the costate equation,

(u′(p)q,−λ̇) + (u′(p)q, f ′
u(u(p), p)

⊤λ) = −(u(p)− û, u′(p)q),

we can now express J ′(p) in the form

J ′(p)q = (q, f ′
p(u(p), p)

⊤λ) + α(p, q),

or

J ′(p) = f ′
p(u(p), p)

⊤λ+ αp =
∂L

∂p
(u, p, λ)

as we set out to demonstrate.
Through the introduction of the costate λ we are thus able to express

the gradient of the cost J(p) with respect to the control p, and we may
then apply a gradient method to search for the minimum of J(p).



1688 236. Optimal Control

Example 236.2. We consider the problem of balancing an inverted
pendulum on a fingertip, when the mass is subject to perturbations
of horizontal force and initial condition. Assuming small displacements
around the vertical position, the state equation takes the form u̇2(t)−
u1(t) = f(t) and u̇1(t) − u2(t) = p(t) for 0 < t ≤ T , u1(0) = u01,
u2(0) = u02, where f(t) is the perturbation and p(t) the control. The
optimal control problem of keeping the pendulum in upright position
with u1 and u2 close to zero, takes the form: Find p : [0, T ] → R which
minimizes the cost

J(p) =
1

2

∫ T

0

(a1u
2
1(t) + a2u

2
2(t)) dt+

α

2

∫ T

0

p2(t) dt,

where (u1, u2) solves the state equation with control p, and a1, a2 and α
are positive constants. In Fig. 236.1 we show the result of applying the
gradient method (236.11) for this problem with f(t) = sin(2t)+sin(10t),
u01 = 0.3, u02 = 0, T = 2, a1 = 100, a2 = 1, α = 0.0001 and κ = 0.005.
We note that the weighting with a1 >> a2 gears the control towards
keeping the position u1(t) close to zero, rather than the velocity u2(t).
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FIGURE 236.1. Source, control, state and costate for the inverse pendulum prob-
lem
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237
Differential Equations Tool Bag

It seems to me that there are at least four different viewpoints– or
extremes of viewpoint– that one may reasonably hold:

1. All thinking is computation; in particular, feelings of conscious
awareness are evoked merely by the carrying out of appropriate
computations. (Hard AI)

2. Awareness is a feature of the brain’s physiological action; and
whereas any physical action can be simulated computation-
ally, computational simulation cannot by itself evoke awareness.
(Soft AI)

3. Appropriate physical action of the brain evokes awareness, but
this physical action cannot even be properly simulated compu-
tationally. (Penrose’s view)

4. Awareness cannot be explained by physical, computational, or
any other scientific terms.

(R. Penrose in Shadows of the Mind)

237.1 Introduction

We here collect basic facts about solving differential equations analytically
and numerically.
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237.2 The Equation u′(x) = λ(x)u(x)

The solution to the scalar initial value problem

u′(x) = λ(x)u(x) for x > a, u(a) = ua,

where λ(x) is a given function of x, and ua a given initial value, is

u(x) = exp(Λ(x))ua = eΛ(x)ua,

where Λ(x) is a primitive function of λ(x) such that Λ(a) = 0. In particular,
if λ is a constant, then u(x) = exp(λx)ua.

237.3 The Equation u′(x) = λ(x)u(x) + f(x)

The solution the scalar initial value problem

u′(x) = λ(x)u(x) + f(x) for x > a, u(a) = ua,

where λ(x) and f(x) are given functions of x, and ua a given initial value,
can be expressed using Duhamel’s principle in the form

u(x) = eΛ(x)ua + eΛ(x)

∫ x

a

e−Λ(y)f(y) dy.

where Λ(x) is a primitive function of λ(x) such that Λ(a) = 0.

237.4 The Differential Equation∑n
k=0 akD

ku(x) = 0

A solution to the constant coefficient differential equation

p(D)u(x) =

n∑

k=0

akD
ku(x) = 0, for x ∈ I,

where I is an interval of real numbers, has the form

u(x) = α1 exp(λ1) + ....+ αn exp(λn),

where the αi are arbitrary constants and the λi are the roots of the poly-
nomial equation p(λ) = 0 with p(λ) =

∑n
k=0 akλ

k, assuming there are n
distinct roots. If p(λ) = 0 has a multiple root λi of multiplicity r, then the
solution is the sum of terms of the form form q(x) exp(λix), where q(x) is a
polynomial of degree at most r− 1. For example, if p(D) = (D− 1)2, then
a solution of p(D)u = 0 has the form u(x) = (a0 + a1x) exp(x).
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237.5 The Damped Linear Oscillator

A solution u(t) to

ü+ µu̇+ ku = 0, for t > 0,

where µ and k are constants, has the form

u(t) = ae−
1
2 (µ+

√
µ2−4k)t + be−

1
2 (µ−

√
µ2−4k)t,

if µ2 − 4k > 0, and

u(t) = ae−
1
2µt cos(

t

2

√
4k − µ2) + be−

1
2µt sin(

t

2

√
4k − µ2),

if µ2 − 4k < 0, and

u(t) = (a+ bt)e−
1
2µt,

if µ2 − 4k = 0, where a and b are arbitrary constants.

237.6 The Matrix Exponential

The solution to the initial value problem linear system

u′(x) = Au(x) for 0 < x ≤ T, u(0) = u0,

where A is a constant d× d matrix, u0 ∈ Rd, T > 0, is given by

u(x) = exp(xA)u0 = exAu0.

If A is diagonalizable so that A = SDS−1, where S is nonsingular and D
is diagonal with diagonal elements di (the eigenvalues of A), then

exp(xA) = S exp(xD)S−1.

where exp(xD) be the diagonal matrix with diagonal elements equal to
exp(xdi).
The solution to the initial value problem

u′(x) = Au(x) + f(x) for 0 < x ≤ 1, u(0) = u0,

where f(x) is a given function, is given by Duhamel’s principle:

u(x) = exp(xA)u0 +

∫ x

0

exp((x − y)A)f(y) dy.
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237.7 Fundamental Solutions of the Laplacian

The function Φ(x) = 1
4π

1
‖x‖ for x ∈ R3 satisfies the differential equation

−∆Φ = δ0 in R3, where δ0 represents a point mass at the origin. The
function Φ(x) = 1

2π log( 1
‖x‖ ) for x ∈ R2 satisfies the differential equation

−∆Φ = δ0 in R2, where δ0 represents a point mass at the origin.

237.8 The wave equation in 1d

The general solution to the one-dimensional wave equation

ü− u′′ = 0 for x, t ∈ R,

is given by u(x, t) = v(x − t) + w(x + t) where v, w : R → R are arbitrary
functions.

237.9 Numerical Methods for IVPs

The dG(O), the discontinuous Galerkin method with piecewise constants,
for the initial value problem u̇(t) = f(u(t), t) for t > 0, u(0) = u0, with
f : Rd+1 → Rd, takes the form

Un = Un−1 +

∫ tn

tn−1

f(Un, t) dt, n = 1, 2, ...,

where U(t) is piecewise constant on a partition 0 = t0 < t1 < · · · < tn <
tn+1 < · · · , with U(t) = Un for t ∈ (tn−1, tn] and U(0) = u0. With right-
end point quadrature we obtain the implicit backward-Euler method:

Un = Un−1 + knf(U
n, tn) dt, n = 1, 2, ...,

where kn = tn − tn−1. The explicit forward Euler method reads:

Un = Un−1 + knf(U
n−1, tn−1) dt, n = 1, 2, ...,

The cG(1), the continuous Galerkin method with continuous piecewise lin-
ear functions, takes the form

U(tn) = U(tn−1) +

∫ tn

tn−1

f(U(t), t) dt, n = 1, 2, ...,

where U(t) is continuous piecewise linear with nodal values U(tn) ∈ Rd

and U(0) = u0.
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237.10 cg(1) for Convection-Diffusion-Reaction

The cG(1) finite element method for the scalar convection-diffusion-
reaction problem

−∇ · (a∇u) +∇ · (ub) + cu = f in Ω,

a
∂u

∂n
+ κu = g on Γ,

with Robin boundary conditions, where f and g are given data, and a > 0,
b, c and κ ≥ 0 are given coefficients, and Ω is a given domain in R2 with
boundary Γ, takes the form: Find U ∈ Vh such that

∫

Ω

a∇U · ∇v dx+

∫

Ω

∇ · (ub)v dx+

∫

Ω

cuv dx+

∫

Γ

κuv ds

=

∫

Ω

fv dx+

∫

Γ

gv ds,

where Vh is a space of continuous piecewise linear functions on a triangu-
lation of Ω with no restriction on the nodal values on the boundary.

237.11 Svensson’s Formula for Laplace’s Equation

Ui,j =
1

4
(Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1), for i, j ∈ Z,

where Ui,j approximates u(ih, jh) with h > 0 and u : R2 → R solves
∆u = 0.

237.12 Optimal Control

The stationary equations for the saddle point problemminv,qmaxµ L(v, q, µ),
with

L(v, q, µ) =
1

2
‖v − û‖2 + α

2
‖q‖2 + (v̇ + f(v, q), µ)

with (v, w) =
∫ T
0
v · w dt and (v, q, µ) varying freely (with v(0) = u0 and

µ(T ) = 0), take the form:

u̇+ f(u, p) = 0 on [0, T ], u(0) = u0, (237.1)

− λ̇+ f ′
v(u, p)

⊤λ = û− u on [0, T ], λ(T ) = 0. (237.2)

f ′
q(u, p)

⊤λ+ αp = 0 on [0, T ], (237.3)

where⊤ denotes transpose. Here (237.1) is the state equation, (237.2) is the
costate equation, and (237.3) is the feed back control coupling the optimal
control p to the costate λ.
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238
Applications Tool Bag

238.1 Introduction

In this section we collect the basic models of engineering and science ex-
pressed as differential equations. For specification of boundary and initial
values we refer to the text.

238.2 Malthus’ Population Model

u̇ = λu− µu,

where u(t) is the population at time t, λ ≥ 0 the birth rate and µ ≥ 0 the
death rate.

238.3 The Logistics Equation

u̇ = u(1− u)

238.4 Mass-Spring-Dashpot System

mü+ µu̇+ ku = f, ((force balance),
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where u(t) is the displacement, m is the mass, µ the viscosity, and k the
spring constant.

238.5 LCR-Circuit

Lü+Ru̇+
u

C
= f, ((balance of potentials),

where u(t) is a primitive function of the current, L is the inductance, R
the resistance, C the capacitance, and f a potential.

238.6 Laplace’s Equation for Gravitation

−∆u = ρ,

where u : R3 → R is the gravitational potential and ρ(x) the mass density.

238.7 The Heat Equation

u̇−∇ · q = f, q = k∇u (heat balance and Fourier’s law)

where u(x, t) is a temperature, q(x, t) a heat flux, k(x, t) > 0 a conduction
coefficient and f(x, t) a heat source. If k = 1, then we get the heat equation:
u̇−∆u = f .

238.8 The Wave Equation

ü−∆u = f.

238.9 Convection-Diffusion-Reaction

u̇+∇ · (βu) + αu−∇ · (ǫ∇u) = f.

where u(x, t) a concentration, β(x, t) is a convection velocity, α(x, t) a reac-
tion coefficient, ǫ(x, t) a diffusion coefficient, and f(x, t) a production rate.
.
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238.10 Maxwell’s Equations




∂B

∂t
+∇× E = 0, (Faraday’s law)

−∂D
∂t

+∇×H = J, (Ampère’s law)

∇ · B = 0, ∇ ·D = ρ, (Gauss’ and Coulomb’s laws

B = µH, D = ǫE, J = σE, (constitutive laws and Ohm’s law)

where E is the electric field, H is the magnetic field , D is the electric
displacement, B is the em magnetic flux , J is the electric current, ρ is the
charge, µ is the magnetic permeability , ǫ is the dielectric constant, and σ
is the electric conductivity.

238.11 The Incompressible Navier-Stokes
Equations

∂u

∂t
+ (u · ∇)u+∇p− ν∆u = f, ∇ · u = 0,

where u(x, t) is the fluid velocity, p(x, t) the pressure, f(x, t) a given force
and ν > 0 a constant viscosity.

238.12 Schrödinger’s Equation

i
∂ϕ

∂t
=
(
−1

2

∑

j

∆j + V (r1, ..., rN )
)
ϕ(r1, ..., rN ), rj ∈ R3.

i
∂ϕ

∂t
=
(
−1

2
∆ +

1

|x|
)
ϕ(x), x ∈ R3, (Hydrogen atom).
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239
Poisson’s Equation Analysis

Nature resolves everything to its component atoms and never
reduces anything to nothing. (Lucretius)

... on aura donc ∆u = 0; cette équation remarquable nous sera
de la plus grande utilité dans la theorie de la figure des corps
célestes. (Laplace)

One time I was sitting visiting the show at the Old Copley
Theatre, an idea came into my mind which simply distracted
all my attention from the performance. It was the notion of an
optical machine for harmonic analysis. I had already learned
not to disregard these stray ideas, no matter when they came
to my attention, and I promptly left the theatre to work out
some of the details of my new plan....The projected machine will
solve boundary value problems in the field of partial differential
equations. (Wiener)

239.1 Introduction

In this chapter, we extend the material of Chapter ?? to Poisson’s equa-
tion −∆u = f in a domain Ω ⊂ Rd, where d = 2 or d = 3, together
with various boundary conditions. We begin by presenting some models
from physics and mechanics that are modeled by Poisson’s equation and
describing some of the properties of its solutions. We then discuss the finite
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element method for the Poisson equation: constructing the discrete system
of linear equations determining the approximation, deriving a priori and a
posteriori error estimates, formulating an adaptive error control algorithm,
and briefly addressing some implementation issues. The material directly
extends e.g. to problems with variable coefficients of the form (232.8) and
to three space dimensions using piecewise linear approximation based on
tetrahedral meshes.

239.2 Applications of Poisson’s equation

We derived Poisson’s equation in Chapter ?? as a model of stationary
heat conduction. Poisson’s equation is the prototype of the class of elliptic
equations and has numerous applications in physics and mechanics. These
include

• Elasticity. The model (??) of the deflection of an elastic string dis-
cussed in Chapter ?? can be extended to describe the transversal
deflection due to a transverasal load of a horizontal elastic membrane
of uniform tension stretched over a plane curve Γ enclosing a region
Ω in R2; see Fig. 239.1. The equation takes the form of the Poisson
equation −∆u = f in Ω together with the boundary condition u = 0
on Γ, where f(x) is the transversal load.

u

f

FIGURE 239.1. An elastic membrane under the load f supported at Γ.

• Electrostatics. A basic problem in electrostatics is to describe the elec-
tric field E(x) in a volume Ω containing charges of density ρ(x) and
enclosed by a perfectly conducting surface Γ. Coulomb’s law, one of
the famous Maxwell equations describing electromagnetic phenom-
ena, can be written

∇ · E = ρ in Ω. (239.1)

It follows from Faraday’s law ∇×E = 0 (see Chapter ?? below), that
the electric field E is the gradient of a scalar electric potential ϕ, i.e.
E = ∇ϕ. This leads to the Poisson equation ∆ϕ = ρ with a Dirichlet
boundary condition ϕ = c on Γ, where c is a constant.
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• Fluid mechanics. The velocity field u of rotation-free fluid flow satis-
fies ∇×u = 0, from which it follows that u = ∇ϕ where ϕ is a (scalar)
velocity potential. If the fluid is incompressible, then ∇·u = 0, and we
obtain the Laplace equation ∆ϕ = 0 for the potential of rotation-free
incompressible flow. At a solid boundary, the normal velocity is zero,
which translates to a homogeneous Neumann boundary condition for
the potential. Note that fluid flow is rarely rotation-free in the whole
region occupied by the fluid. In particular, if the fluid is viscous, then
rotation is generated at solid boundaries.

• Statistical physics. The problem is to describe the motion of particles
inside a container Ω that move at random until they hit the bound-
ary where they stop. We illustrate this in Fig. 239.2. Suppose the

1
2

FIGURE 239.2. An illustration of Brownian motion.

boundary Γ of Ω is divided into two pieces Γ = Γ1 ∪ Γ2. Let u(x) be
the probability that a particle starting at x ∈ Ω winds up stopping
at some point on Γ1, so that u(x) = 1 means that it is certain and
u(x) = 0 means it never happens. It turns out that u solves ∆u = 0
in Ω together with u = 1 on Γ1 and u = 0 on Γ2. Note that the
solution of this problem is not continuous on the boundary.

239.3 Solution by Fourier series

For special domains, it is possible to write down a formula for the solu-
tion of Poisson’s equation using Fourier series. For example in Cartesian
coordinates, this is possible if the domain is a square or cube. Using polar,
cylindrical or spherical coordinates, the set of domains for which Fourier’s
method may be used includes discs, cylinders, and spheres.
As an illustration, we use Fourier series to solve Poisson’s equation

−∆u = f in a cube Ω = (0, π)× (0, π)× (0, π) with homogeneous Dirichlet
boundary conditions. Because the sides of the cube are parallel to the co-
ordinate axes, we can use separation of variables to reduce the problem to
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finding a Fourier series in each variable independently. We start by seeking
a solution of the eigenvalue problem −∆v = λv in Ω, with v = 0 on the
boundary of Ω, of the form

v(x1, x2, x3) = V1(x1)V2(x2)V3(x3),

where each factor satisfies an independent boundary condition Vi(0) =
Vi(π) = 0, i = 1, 2, 3. Substituting this into the differential equation yields

V ′′
1

V1
+
V ′′
2

V2
+
V ′′
3

V3
= −λ.

Because x1, x2, and x3 vary independently, each term V ′′
i /Vi must be con-

stant. Denoting this constant by λi we find that each Vi must solve

V ′′
i + λiVi = 0 in (0, π), Vi(0) = Vi(π) = 0.

This is the one-dimensional eigenvalue problem considered in Section ??
with solution Vi(xi) = sin(jxi) and λi = j2, where j is an arbitrary integer.
It follows that

λ = λjkl = j2 + k2 + l2, (239.2)

for integers j, k, and l with the corresponding eigenfunction

v = vjkl = sin(jx1) sin(kx2) sin(lx3).

Using the orthogonality of the eigenfunctions, the solution u can be ex-
pressed as a Fourier series

u(x) =
∑

j,k,l

Ajkl sin(jx1) sin(kx2) sin(lx3),

with Fourier coefficients

Ajkl = λ−1
jkl

(
2

π

)3 ∫

Ω

f(x) sin(jx1) sin(kx2) sin(lx3) dx.

The discussion about convergence is nearly the same as in one dimension.
In particular, if f ∈ L2(Ω) then the Fourier series of u converges and defines
a solution of the given Poisson equation.

239.1. Prove the formula for Ajkl.

239.2. Prove that the set of eigenfunctions {vjkl} are pairwise orthogonal.

239.3. (a) Compute the Fourier series for the solution of −∆u = 1 in the square
(0, π)× (0, π) with homogeneous Dirichlet boundary conditions. (b) Do the same
with the Dirichlet condition replaced by a Neumann condition on one side of the
square.
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Note that there can be several different eigenfunctions for a specific
eigenvalue. The multiplicity of an eigenvalue is the number of linearly in-
dependent eigenvectors that share that eigenvalue. Computing the mul-
tiplicity of an eigenvalue λ given by (239.2) is equivalent to determining
the number of ways λ be written as a sum of the squares of three inte-
gers counting order. For example, λ = 6 has multiplicity three because
6 = 22 + 1 + 1 = 1 + 22 + 1 = 1 + 1 + 22.

239.4. Show that λ = 17 is an eigenvalue of the Poisson equation posed on
(0, π)3 with Dirichlet boundary conditions and compute its multiplicity.

239.4 Gravitational fields and fundamental
solutions

In his famous treatise Mécanique Céleste in five volumes published 1799-
1825, Laplace extended Newton’s theory of gravitation and in particular
developed a theory for describing gravitational fields based on using gravi-
tational potentials that satisfy Laplace’s equation, or more generally Pois-
son’s equation.
We consider a gravitational field in R3 with gravitational force F (x) at

position x, generated by a distribution of mass of density ρ(x). We recall
that the work of a unit mass, moving along a curve Γ joining a point A to
a point B, is given by ∫

Γ

Fτ ds,

where Fτ is the component of F in the direction of the tangent to the curve.
We illustrate this in Fig. 239.3. If the path Γ is closed, then the total work

F

F

FIGURE 239.3. The motion of a particle in a field F along a curve Γ.

performed is zero. By Stokes’ theorem, it follows that a gravitational field
F satisfies ∇ × F = 0 and using the results in Chapter ??, we conclude
that F is the gradient of a scalar potential u, i.e.

F = ∇u. (239.3)

Laplace proposed the following relation between the gravitational field F
and the mass distribution ρ:

−∇ · F = gρ, (239.4)
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where g is a gravitational constant. This is analogous to Coulomb’s law
∇ · E = ρ in electrostatics, see (239.1), and also to the energy balance
equation ∇ · q = f for stationary heat conduction, where q is the heat flux
and f a heat source, which we derived in Chapter ??. A corresponding
“derivation” of (239.4) does not appear to be available, reflecting that the
nature of gravitation is not yet understood. In particular, (239.4) suggests
that ∇ · F (x) = 0 at points x where there is no mass so that ρ(x) = 0.
Combining (239.3) and (239.4), we obtain Poisson’s equation −∆u = gρ for
the gravitational potential u. In particular, the potential satisfies Laplace’s
equation ∆u = 0 in empty space.
Newton considered gravitational fields generated by point masses. We

recall that a unit point mass at a point z ∈ R3 is represented mathemat-
ically by the delta function δz at z, which is defined by the property that
for any smooth function v,

∫

R3

δz v dx = v(z),

where the integration is to be interpreted in a generalized sense. Actually,
δz is a distribution, not a proper function, and there is no conventional
“formula” for it; instead we define the delta function by its action inside
an average of a smooth function.
Formally, the gravitational potential E(x) (avoid confusion with the no-

tation for an electric field used above) corresponding to a unit point mass
at the origin should satisfy

−∆E = δ0 in R3, (239.5)

where we assumed that the gravitational constant is equal to one. To give
a precise meaning to this equation, we first formally multiply by a smooth
test function v vanishing outside a bounded set, to get

−
∫

R3

∆E(x)v(x) dx = v(0). (239.6)

Next, we rewrite the left-hand side formally integrating by parts using
Green’s formula (??) to move the Laplacian from E to v, noting that the
boundary terms dissappear since v vanishes outside a bounded set. We may
thus reformulate (239.5) as seeking a potential E(x) satisfying

−
∫

R3

E(x)∆v(x) dx = v(0), (239.7)

for all smooth functions v(x) vanishing outside a bounded set. This is a
weak formulation of (239.5), which is perfectly well defined since now the
Laplacian acts on the smooth function v(x) and the potential E is assumed
to be integrable. We also require the potential E(x) to decay to zero as |x|
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tends to infinity, which corresponds to a “zero Dirichlet boundary condition
at infinity”.
In Chapter ??, we showed that the function 1/|x| satisfies Laplace’s

equation ∆u(x) = 0 for 0 6= x ∈ R3, while it is singular at x = 0. We shall
prove that the following scaled version of this function satisfies (239.7):

E(x) =
1

4π

1

|x| . (239.8)

We refer to this function as the fundamental solution of −∆ in R3. We
conclude in particular that the gravitational field in R3 created by a unit
point mass at the origin is proportional to

F (x) = ∇E(x) = − 1

4π

x

|x|3 ,

which is precisely Newton’s inverse square law of gravitation. Laplace thus
gives a motivation why the exponent should be two, which Newton did not
(and therefore was criticized by Leibniz). Of course, it still remains to mo-
tivate (239.4). In the context of heat conduction, the fundamental solution
E(x) represents the stationary temperature in a homogeneous body with
heat conductivity equal to one filling the whole of R3, subject to a concen-
trated heat source of strength one at the origin and with the temperature
tending to zero as |x| tends to infinity.
We now prove that the function E(x) defined by (239.8) satisfies (239.7).

We then first note that since ∆v is smooth and vanishes outside a bounded
set, and E(x) is integrable over bounded sets, we have

∫

R3

E∆v dx = lim
a→0+

∫

Da

E∆v dx, (239.9)

where Da = {x ∈ R3 : a < |x| < a−1}, with a small, is a bounded region
obtained from R3 by removing a little sphere of radius a with bound-
ary surface Sa and also points further away from the origin than a−1, see
Fig. 239.4. We now use Green’s formula (??) on Da with w = E. Since v is
zero for |x| large, the integrals over the outside boundary vanish when a is
sufficiently small. Using the fact that ∆E = 0 in Da, E = 1/(4πa) on Sa
and ∂E/∂n = 1/(4πa2) on Sa with the normal pointing in the direction of
the origin, we obtain

−
∫

Da

E∆v dx =

∫

Sa

1

4πa2
v ds−

∫

Sa

1

4πa

∂v

∂n
ds = I1(a) + I2(a),

with the obvious definitions of I1(a) and I2(a). Now, lima→0 I1(a) = v(0)
because v(x) is continuous at x = 0 and the surface area of Sa is equal
to 4πa2, while lima→0 I2(a) = 0. The desired equality (239.7) now follows
recalling (239.9).
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Da

a

a-1

Sa

FIGURE 239.4. A cross-section of the domain Da.

The corresponding fundamental solution of −∆ in R2 is given by

E(x) =
1

2π
log(

1

|x| ). (239.10)

In this case the fundamental solution is not zero at infinity.

239.5. Prove that (239.10) is a fundamental solution of −∆ in R2.

239.6. Because the presented mathematical models of heat flow and gravitation,
namely Poisson’s equation, are the same, it opens the possibility of thinking of a
gravitational potential as “temperature” and a gravitational field as “heat flux”.
Can you “understand” something about gravitation using this analogy?

Replacing 0 by an arbitrary point z ∈ R3, (239.7) becomes

−
∫

R3

E(z − x)∆v(x) dx = v(z), (239.11)

which leads to a solution formula for Poisson’s equation in R3. For example,
if u satisfies the Poisson equation −∆u = f in R3 and |u(x)| = O(|x|−1) as
|x| → ∞, then u may be represented in terms of the fundamental solution
E and the right-hand side f as follows:

u(z) =

∫

R3

E(z − x)f(x) dx =
1

4π

∫

R3

f(x)

|z − x| dx. (239.12)

We see that u(z) is a mean value of f centered around z weighted so that
the influence of the values of f(x) is inversely proportional to the distance
from z.

239.7. Present a corresponding solution formula in the case d = 2.

Similarly, the potential u resulting from a distribution of mass of density
ρ(x) on a (bounded) surface Γ in R3 is given by

u(z) =
1

4π

∫

Γ

ρ(·)
|z − ·| ds, (239.13)
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where the dot indicates the integration variable. Formally we obtain this
formula by simply adding the potentials from all the different pieces of mass
on Γ. One can show that the potential u defined by (239.13) is continuous
in R3 if ρ is bounded on Γ, and of course u satisfies Laplace’s equation away
from Γ. Suppose now that we would like to determine the distribution of
mass ρ on Γ so that the corresponding potential u defined by (239.13) is
equal to a given potential u0 on Γ, that is we seek in particular a function
u solving the boundary value problem ∆u = 0 in Ω and u = u0 on Γ, where
Ω is the volume enclosed by Γ. This leads to the following integral equation:
given u0 on Γ find the function ρ on Γ, such that

1

4π

∫

Γ

ρ(y)

|x− y| ds = u0(x) for x ∈ Γ. (239.14)

This is a Fredholm integral equation of the first kind, named after the
Swedish mathematician Ivar Fredholm (1866-1927). In the beginning of
the 20th century, Fredholm and Hilbert were competing to prove the exis-
tence of solutions of the basic boundary value problems of mechanics and
physics using integral equation methods. The integral equation (239.14) is
an alternative way of formulating the boundary value problem of finding u
such that ∆u = 0 in Ω, and u = u0 on Γ. Integral equations may also be
solved using Galerkin methods. We return to the topic of integral equations
and their numerical solution in the advanced volume.

239.8. Show that the potential from a uniform distribution of mass on the surface
of a sphere is given as follows: (a) outside the sphere the potential is the same as
the potential from a point mass at the origin of the sphere with the same mass
as the total surface mass. (b) inside the sphere the potential is constant. Hint:
rewrite the surface integral in spherical coordinates and consult a calculus book
to evaluate the resulting standard integral.

239.5 Green’s functions

There is an analog of the formula (239.12) for the solution of Poisson’s
equation in a bounded domain Ω based on using a Green’s function, which
is the analog of the fundamental solution on a domain different from Rd.
The Green’s function Gz(x) for the Laplace operator with homogeneous
Dirichlet boundary conditions on a bounded domain Ω with boundary Γ
satisfies: {

−∆Gz(x) = δz(x) for x ∈ Ω,

Gz(x) = 0 for x ∈ Γ.

Gz(x) has a singularity at z corresponding to that of the fundamental so-
lution and in this sense, it is a modified fundamental solution that satisfies
the Dirichlet boundary condition. In heat conduction, the Green’s function
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Gz(x) represents the stationary temperature in a homogeneous heat con-
ducting body occupying Ω with zero temperature at its boundary subjected
to a concentrated heat source at z ∈ Ω. It is possible to compute Gz for
special domains. For example if Ω = {x : |x| < a} is the ball of radius a in
R3 centered at the origin, then

Gz(x) =
1

4π|x− z| −
1

4π| |z|x/a− az/|z| | . (239.15)

239.9. Verify (239.15).

239.10. Determine the Green’s function for a “half space” defined as a part of
R3 that has a given plane as a boundary. Hint: consider the function (|x− z|−1−
|x− z∗|−1)/(4π), where z∗ is obtained from z by reflection in the plane defining
the half space.

If u satisfies −∆u = f in Ω and u = g on Γ, then using Green’s formula
as above we find that the solution u can be represented as

u(z) = −
∫

Γ

g ∂nGz ds+

∫

Ω

f Gz dx. (239.16)

In the case Ω is the ball of radius a and f = 0, so that

u(z) =
a2 − |z|2
2d−1πa

∫

Sa

gKz ds, (239.17)

with Sa = {x : |x| = a} and Kz(x) = |x− z|−d, the representation (239.16)
is called Poisson’s formula for harmonic functions. We note in particular
that the value at the center of the sphere Sa is equal to the mean value of
u on the surface of the sphere, i.e.

u(0) =
1

(2a)d−1π

∫

Sa

u ds.

Thus a harmonic function has the property that the value at a point is
equal to its spherical mean values.

239.11. Verify (239.16) and (239.17).

In general it is difficult to use (239.16) to compute a solution of Pois-
son’s equation, since finding a formula for the Green function for a gen-
eral domain is difficult. Moreover, integrals over the entire domain and its
boundary have to be evaluated for each value u(z) desired.
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239.6 The differentiability of solutions

The Poisson formula may be used to show that a bounded function u
satisfying ∆u = 0 in a domain Ω has derivatives of any order inside Ω.
Thus a harmonic function is smooth inside the domain where it is harmonic.
This is because the function |z−x|−d is differentiable with respect to z any
number of times as long as x 6= z, and if x is strictly inside Ω then the
sphere |z − x| = a is contained in Ω for a sufficiently small, so that the
Poisson representation formula may be used. Thus a bounded solution u of
∆u = 0 in Ω is smooth away from the boundary of Ω. On the other hand,
it may very well have singularities on the boundary; we discuss this below.
These results carry over to solutions of the Poisson equation −∆u = f in
Ω: if f is smooth inside Ω then so is u.
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240
Poisson’s Equation FEM

Aman who was famous as a tree climber was guiding someone in
climbing a tall tree. He ordered the man to cut the top branches,
and, during this time, when the man seemed in great danger,
the expert said nothing. Only when the man was coming down
and had reached the height of the eaves did the expert call out,
“Be careful! Watch your step coming down!” I asked him, “Why
did you say that? At that height he could jump the rest of the
way if he chose.”
“That’s the point,” said the expert. “As long as the man was up
at a dizzy height and the branches were threatening to break,
he himself was so afraid I said nothing. Mistakes are always
made when people get to easy places.” (Kenko, translated by
D. Keene)

240.1 Variational Formulation

We present the finite element method with piecewise linear approximation
for the Poisson equation with homogeneous Dirichlet boundary conditions

{
−∆u(x) = f(x) for x ∈ Ω,

u(x) = 0 for x ∈ Γ,
(240.1)

where Ω is a bounded domain in R2 with polygonal boundary Γ,
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Generalizing the procedure used in one dimension from Chapter ??, we
first give (240.1) the following variational formulation: find u ∈ V such that

(∇u,∇v) = (f, v) for all v ∈ V, (240.2)

where

(w, v) =

∫

Ω

wv dx, (∇w,∇v) =
∫

Ω

∇w · ∇v dx,

and

V =

{
v :

∫

Ω

(|∇v|2 + v2)dx <∞ and v = 0 on Γ

}
. (240.3)

A detailed motivation for the choice of V is given in Chapter ??. Here
we note that if v and w belong to V , then (∇v,∇w) is well defined, and
if v ∈ V and f ∈ L2(Ω), then (f, v) is well defined. This follows from
Cauchy’s inequality. Thus, (240.2) makes sense. In fact, we may think of V
as the largest space with this property.
As in the one-dimensional case, we now seek to show that (240.1) and

(240.2) have the same solution if f is smooth. First, to see that a solution u
of (240.1) with continuous second derivatives (requiring f to be continuous)
also is a solution of the variational problem (240.2), we multiply −∆u = f
by v ∈ V and use Green’s formula to get
∫

Ω

fv dx = −
∫

Ω

∆u v dx = −
∫

Γ

∂nuv ds+

∫

Ω

∇u · ∇v dx =

∫

Ω

∇u · ∇v dx,

where the boundary condition v = 0 on Γ was used to eliminate the bound-
ary integral over Γ. Conversely, assuming that the solution of (240.2) has
continuous second derivatives, we can use Green’s formula in (240.2) to put
two derivatives back on u, again using the boundary conditions on v, to
get ∫

Ω

(−∆u− f) v dx = 0 for all v ∈ V. (240.4)

Now suppose that −∆u − f is non-zero, say positive, at some point x ∈
Ω. Since −∆u − f is continuous, it is therefore positive in some small
neighborhood of x contained in Ω. We choose v to be a smooth “hill” that
is zero outside the neighborhood and positive inside. It follows that (−∆u−
f)v is positive in the small neighborhood and zero outside, which gives a
contradiction in (240.4). It remains to show that the solution u of (240.2)
in fact has continuous second order derivatives if f is continuous; we prove
such a regularity result in Chapter ??. We conclude that the differential
equation (240.1) and the variational problem (240.2) have the same solution
if the data f is continuous. As in the one-dimensional case, the variational
problem (240.2) is meaningful for a wider set of data including f ∈ L2(Ω).

240.1. Prove that the set of functions that are continuous and piecewise differ-
entiable on Ω and vanish on Γ, is a subspace of V .
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240.2. Assuming that a solution of (240.2) is continuous on Ω∪ Γ, show that it
is unique. Hint: choose v = u and use the continuity of u.

240.3. Provide the details of the equivalence of (240.1) and (240.2).

The variational problem (240.2) is equivalent to the following quadratic
minimization problem: find u ∈ V such that

F (u) ≤ F (v) for all v ∈ V, (240.5)

where

F (v) =
1

2

∫

Ω

|∇v|2 dx−
∫

Ω

fv dx.

The quantity F (v) may be interpreted as the total energy of the function
v ∈ V composed of the internal energy 1

2

∫
Ω
|∇v|2 dx and the load potential

−
∫
Ω fv dx. Thus, the solution u minimizes the total energy F (v) over V .

In Chapter ?? we prove existence of a unique solution to the minimization
problem (240.5) and thus existence of a unique solution to the variational
problem (240.2) and consequently to (240.1).

240.4. Prove the equivalence of (240.5) and (240.2).

240.2 The finite element method

Let Th = {K} be a triangulation of Ω with mesh function h(x) and let
Vh be the corresponding finite element space of continuous piecewise linear
functions vanishing on Γ. The finite element space Vh is a subspace of the
space V defined by (240.3). Let Nh = {N} denote the set of internal nodes
N and Sh = {S} the set of internal edges S of Th. We exclude the nodes
and edges on the boundary because of the homogeneous Dirichlet boundary
condition. Let {N1, ..., NM} be an enumeration of the internal nodes Nh,
and {ϕ1, ..., ϕM} the corresponding nodal basis for Vh.
The finite element method for (240.1) reads: find U ∈ Vh such that

(∇U,∇v) = (f, v) for all v ∈ Vh. (240.6)

As in one dimension, we can interpret this as demanding that U solve the
Poisson equation in an “average” sense corresponding to the residual of U
being “orthogonal” in a certain sense to Vh. More precisely, using the fact
that (∇u,∇v) = (f, v) for v ∈ Vh because Vh ⊂ V , (240.6) is equivalent to

(∇u −∇U,∇v) = 0 for all v ∈ Vh, (240.7)

which expresses the Galerkin orthogonality of the finite element approxi-
mation.

240.5. Prove that if (240.6) holds with v equal to each of the nodal basis
functions Vh, then (240.6) holds for all v ∈ Vh.
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240.3 The discrete system of equations

Expanding U in terms of the basis functions {ϕi} as

U =

M∑

j=1

ξjϕj , where ξj = U(Nj),

substituting this into (240.6) and choosing v = ϕi, gives

M∑

j=1

(∇ϕj ,∇ϕi)ξj = (f, ϕi), i = 1, ...,M.

This is equivalent to the linear system of equations

Aξ = b, (240.8)

where ξ = (ξi) is the vector of nodal values, A = (aij) is the stiffness matrix
with elements aij = (∇ϕj ,∇ϕi) and b = (bi) = (f, ϕi) is the load vector.
The stiffness matrix A is obviously symmetric and it is also positive-definite
since for any v =

∑
i ηiϕi in Vh,

M∑

i,j=1

ηiaijηj =

M∑

i,j=1

ηi(∇ϕi,∇ϕj)ηj

=


∇

M∑

i=1

ηiϕi,∇
M∑

j

ηjϕj


 = (∇v,∇v) > 0,

unless ηi = 0 for all i. This means in particular that (240.8) has a unique
solution ξ.
Similarly, we determine the linear system determining the L2 projection

Phv of a function v ∈ L2(Ω) into Vh defined by

(Phv, w) = (v, w) for all w ∈ Vh.

Substituting Phv =
∑

j ηjϕj and choosing w = ϕi, i = 1, ...,M , we obtain
the linear system

Mη = b, (240.9)

where the mass matrix M has coefficients (ϕj , ϕi) and the data vector b
has coefficients (v, ϕi).

240.6. Prove that the mass matrix is symmetric and positive definite.
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240.4 The discrete Laplacian

It will be convenient below to use a discrete analog ∆h of the Laplacian ∆
defined as follows: For a given w ∈ V , let ∆hw be the unique function in
Vh that satisfies

− (∆hw, v) = (∇w,∇v) for all v ∈ Vh. (240.10)

In particular, if w ∈ Vh, denoting the nodal values of w by the vector η
and those of ∆hw by ζ, we find that (240.10) is equivalent to the system
of equations −Mζ = Aη, where M is the mass matrix and A the Poisson
stiffness matrix. In other words, the nodal values of the discrete Laplacian
∆hw of the function w ∈ Vh with nodal values η, are given by −M−1Aη. We
may think of ∆h as a linear operator on Vh corresponding to multiplication
of nodal values by the matrix −M−1A. Using ∆h, we may express the finite
element problem (240.6) as finding U ∈ Vh such that

−∆hU = Phf, (240.11)

where Ph is the L2 projection onto Vh. If w is smooth we may write (240.10)
also as

(∆hw, v) = (∆w, v) for all v ∈ Vh, (240.12)

which is the same as to say that ∆hw = Ph∆w. Usually, we don’t actually
compute ∆hw, but we shall see that the notation is handy.

240.7. Verify (240.11).

240.5 An example: uniform triangulation of a
square

We compute the stiffness matrix and load vector explicitly on the uniform
triangulation of the square Ω = [0, 1] × [0, 1] pictured in Fig. 240.1. We
choose an integerm ≥ 1 and set h = 1/(m+1), then construct the triangles
as shown. The diameter of the triangles in Th is

√
2h and there are M =

m2 internal nodes. We number the nodes starting from the lower left and
moving right, then working up across the rows.
In Fig. 240.2, we show the support of the basis function corresponding

to the node Ni along with parts of the basis functions for the neighboring
nodes. As in one dimension, the basis functions are “almost” orthogonal in
the sense that only basis functions ϕi and ϕj sharing a common triangle
in their supports yield a non-zero value in (∇ϕi,∇ϕj). We show the nodes
neighboring Ni in Fig. 240.3. The support of any two neighboring basis
functions overlap on just two triangles, while a basis function “overlaps
itself” on six triangles.
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(0,0) (h,0) (2h,0) ((m-1)h,0) (mh,0) ((m+1)h,0)

(0,h)

(0,2h)

(0,(m+1)h)

(0,mh)

N1 N2 Nm-1

N2m
Nm+1 Nm+2

Nm

N2m+1

Nm2

N3m

N(m-1)m

(1,1)

FIGURE 240.1. The standard triangulation of the unit square.

i

FIGURE 240.2. The support of the basis function ϕi together with parts of the
neighboring basis functions.

We first compute

(∇ϕi,∇ϕi) =
∫

Ω

|∇ϕi|2 dx =

∫

support of ϕi

|∇ϕi|2 dx,

for i = 1, ...,m2. As noted, we only have to consider the integral over the
domain pictured in Fig. 240.3, which is written as a sum of integrals over
the six triangles making up the domain. Examining ϕi on these triangles,
see Fig. 240.3, we see that there are only two different integrals to be
computed since ϕi looks the same, except for orientation, on two of the six
triangles and similarly the same on the other four triangles. We shade the
corresponding triangles in Fig. 240.2. The orientation affects the direction
of ∇ϕi of course, but does not affect |∇ϕi|2.
We compute (∇ϕi,∇ϕi) on the triangle shown in Fig. 240.4. In this case,
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i-m i-m+1

i+1i-1

i+mi+m-1

i

i

FIGURE 240.3. The indices of the nodes neighboring Ni and an “exploded” view
of ϕi.

Ni
h

i=0

i=0

i=1

h

(0,0) (h,0)

(0,h)

x1

x2

x2=h-x1

FIGURE 240.4. First case showing ϕi on the left together with the variables used
in the reference triangle.

ϕi is one at the node located at the right angle in the triangle and zero at
the other two nodes. We change coordinates to compute (∇ϕi,∇ϕi) on the
reference triangle shown in Fig. 240.4. Again, changing to these coordinates
does not affect the value of (∇ϕi,∇ϕi) since∇ϕi is constant on the triangle.
On the triangle, ϕi can be written ϕi = ax1 + bx2 + c for some constants
a, b, c. Since ϕi(0, 0) = 1, we get c = 1. Similarly, we compute a and b to find
that ϕi = 1−x1/h−x2/h on this triangle. Therefore, ∇ϕi =

(
−h−1,−h−1

)

and the integral is
∫

⊲

|∇ϕi|2 dx =

∫ h

0

∫ h−x1

0

2

h2
dx2 dx1 = 1.

In the second case, ϕi is one at a node located at an acute angle of the
triangle and is zero at the other nodes. We illustrate this in Fig. 240.5.
We use the coordinate system shown in Fig. 240.5 to write ϕi = 1− x1/h.
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Ni

i=0

i=1

h

(0,0) (h,0)

(h,h)

x1

x2=x1

i=0

i=1

FIGURE 240.5. Second case showing ϕi and the reference triangle.

When we integrate over the triangle, we get 1/2.

240.8. Verify this.

Summing the contributions from all the triangles gives

(∇ϕi,∇ϕi) = 1 + 1 +
1

2
+

1

2
+

1

2
+

1

2
= 4.

Next, we compute (∇ϕi,∇ϕj) for indices corresponding to neighboring
nodes. For a general node Ni, there are two cases of inner products (see
Fig. 240.2 and Fig. 240.3):

(∇ϕi,∇ϕi−1) = (∇ϕi,∇ϕi+1) = (∇ϕi,∇ϕi−m) = (∇ϕi,∇ϕi+m),

and
(∇ϕi,∇ϕi−m+1) = (∇ϕi,∇ϕi+m−1).

The orientation of the triangles in each of the two cases are different, but
the inner product of the gradients of the respective basis functions is not
affected by the orientation. Note that the the equations corresponding to
nodes next to the boundary are special, because the nodal values on the
boundary are zero, see Fig. 240.1. For example, the equation corresponding
to N1 only involves N1, N2 and Nm+1.
For the first case, we next compute (∇ϕi,∇ϕi+1). Plotting the intersec-

tion of the respective supports shown in Fig. 240.6, we conclude that there
are equal contributions from each of the two triangles in the intersection.
We choose one of the triangles and construct a reference triangle as above.
Choosing suitable variables, we find that

∇ϕi · ∇ϕi+1 =
(
− 1

h
,− 1

h

)
·
( 1
h
, 0
)
= − 1

h2
,
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i+1
i

FIGURE 240.6. The overlap of ϕi and ϕi+1.

and integrating over the triangle gives −1/2.

240.9. Carry out this computation in detail.

Since there are two such triangles, we conclude that (∇ϕi,∇ϕi+1) = −1.

240.10. Prove that (∇ϕi,∇ϕi−m+1) = (∇ϕi,∇ϕi+m−1) = 0.

We can now determine the stiffness matrix A using the information
above.We start by considering the first row. The first entry is (∇ϕ1,∇ϕ1) =
4 sinceN1 has no neighbors to the left or below. The next entry is (∇ϕ1,∇ϕ2) =
−1. The next entry after that is zero, because the supports of ϕ1 and ϕ3 do
not overlap. This is true in fact of all the entries up to and including ϕm.
However, (∇ϕ1,∇ϕm+1) = −1, since these neighboring basis functions do
share two supporting triangles. Finally, all the rest of the entries in that
row are zero because the supports of the corresponding basis functions do
not overlap. We continue in this fashion working row by row. The result
is pictured in Fig. 240.7. We see that A has a block structure consisting
of banded m × m submatrices, most of which consit only of zeros. Note
the pattern of entries around corners of the diagonal block matrices; it is
a common mistake to program these values incorrectly.

240.11. Compute the stiffness matrix for the Poisson equation with homoge-
neous Dirichlet boundary conditions for (a) the union jack triangulation of a
square shown in Fig. 240.8 and (b) the triangulation of triangular domain shown
in Fig. 240.8.

240.12. Compute the coefficients of the mass matrix M on the standard trian-
gulation of the square of mesh size h. Hint: it is possible to use quadrature based
on the midpoints of the sides of the triangle because this is exact for quadratic
functions. The diagonal terms are h2/2 and the off-diagonal terms are all equal
to h2/12. The sum of the elements in a row is equal to h2.

240.13. Compute the stiffness matrix A for the continuous piecewise quadratic
finite element method for the Poisson equation with homogeneous boundary con-
ditions on the unit square using the standard triangulation.
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FIGURE 240.7. The stiffness matrix.

240.14. Compute the matrix −M̂−1A on the standard triangulation, where M̂
is the lumped mass matrix obtained computing the mass matrix using nodal
quadrature. Give an interpretation of −M̂−1A related to ∆h.

The storage of a sparse matrix and the solution of a sparse system are
both affected by the structure or sparsity pattern of the matrix. The sparsity
pattern is affected in turn by the enumeration scheme used to mark the
nodes.

240.15. Describe the sparsity pattern of the stiffness matrices A for the Poisson
equation with homogeneous Dirichlet data on the unit square corresponding to
the continuous piecewise linear finite element method on the standard triangula-
tion using the three numbering schemes pictured in Fig. 240.9.

There are several algorithms for reordering the coefficients of a sparse ma-
trix to form a matrix with a smaller bandwidth. Reordering the coefficients
is equivalent to computing a new basis for the vector space.
The load vector b is computed in the same fashion, separating each in-

tegral ∫

Ω

fϕi dx =

∫

support of ϕi

f(x)ϕi(x) dx

into integrals over the triangles making up the support of ϕi. To compute
the elements (f, ϕi) of the load vector, we often use one of the quadrature
formulas presented in Chapter ??.
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(0,0) (h,0) (2h,0) ((m-1)h,0) (mh,0) ((m+1)h,0)

(0,h)

(0,2h)

(0,(m+1)h)

(0,mh)

N2 Nm-1

N2m
Nm+1

N(m-1)m

(1,1)

N1

FIGURE 240.8. The “union jack” triangulation of the unit square and a uniform
triangulation of a right triangle.

240.16. Compute the load vector b for f(x) = x1+x
2
2 on the standard triangula-

tion of the unit square using exact integration and the lumped mass (trapezoidal
rule) quadrature.

240.6 General remarks on computing the stiffness
matrix and load vector

To compute the finite element approximation U , we have to compute the
coefficients of the stiffness matrix A and load vector b and solve the linear
system of equations (240.8). This is relatively easy to do on a uniform
mesh, but it is a considerable programming problem in general because of
the complexity of the geometry involved.
The first task is to compute the non-zero elements aij = (∇ϕj ,∇ϕi) of

the stiffness matrix A. As we saw above, aij = 0 unless both Ni and Nj are
nodes of the same triangle K because this is the only way that the support
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FIGURE 240.9. Three node numbering schemes for the standard triangulation
of the unit square.

of different basis functions overlap. The common support corresponding to
a non-zero coefficient is equal to the support of ϕj if i = j and equal to
the two triangles with the common edge connecting Nj and Ni if i 6= j. In
each case aij is the sum of contributions

aKij =

∫

K

∇ϕj · ∇ϕi dx (240.13)

over the triangles K in the common support. The process of adding up
the contributions aKij from the relevant triangles K to get the aij , is called
assembling the stiffness matrix A. Arranging for a given triangle K the
numbers aKij , where Ni and Nj are nodes of K, into a 3× 3 matrix (renum-
bering locally the nodes 1, 2 and 3 in some order), we obtain the element
stiffness matrix for the element K. We refer to the assembled matrix A as
the global stiffness matrix. The element stiffness matrices were originally
introduced as a way to organize the computation of A. They are also useful
in iterative methods where the assembly (and storage) of A may be avoided
completely, and the coefficients aij are assembled as they are required for
the computation of discrete residuals.

240.17. (a) Show that the element stiffness matrix (240.13) for the linear poly-
nomials on a triangle K with vertices at (0, 0), (h, 0), and (0, h) numbered 1, 2
and 3, is given by 


1 −1/2 −1/2

−1/2 1/2 0
−1/2 0 1/2



 .

(b) Use this result to verify the formula computed for the stiffness matrix A for
the continuous piecewise linear finite element method for the Poisson equation
with homogeneous boundary conditions on the unit square using the standard
triangulation. (c) Compute the element stiffness matrix for a triangle K with
nodes {ai}.

240.18. (a) Compute the element stiffness matrix for Poisson’s equation for the
quadratic polynomials on the reference triangle with vertices at (0, 0), (h, 0) and
(0, h). (b) Use the result to compute the corresponding global stiffness matrix for
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the standard triangulation of the unit square assuming homogeneous boundary
conditions; cf. Problem 240.13.

240.19. (a) Compute the element stiffness matrix AK for the continuous bilin-
ear finite element method for the Poisson equation with homogeneous boundary
conditions on the unit square using a triangulation into small squares. (b) Use
the result to compute the global stiffness matrix.

240.20. There are speculations that the coupling of two nodes Ni and Nj cor-
responding to a non-zero coefficient aij in the stiffness matrix A = (aij), is
established through the exchange of particles referred to as femions. The nature
of these hypothetical particles is unknown. It is conjectured that a femion has
zero mass and charge but nevertheless a certain “stiffness”. Give your opinion on
this question.

240.7 Basic data structures

To compute the element stiffness matrices aKij , we need the physical coor-
dinates of the nodes of K, and to perform the assembly of A we need the
global numbering of the nodes. Similar information is needed to compute
the load vector. This information is arranged in a data structure, or data
base, containing a list of the coordinates of the nodes and a list of the global
numbers of the nodes of each triangles. Additional information such as a
list of the neighboring elements of each element and a list of the edges, may
also be needed for example in adaptive algorithms. It is desirable to orga-
nize the data structure so that mesh modification can be handled easily.
We discuss this further in the advanced companion book.

240.8 Solving the discrete system

Once we have assembled the stiffness matrix, we solve the linear system
Aξ = b to obtain the finite element approximation. We discuss this briefly
based on the material presented in Chapter 94. The stiffness matrix result-
ing from discretizing the Laplacian is symmetric and positive-definite and
therefore invertible. These properties also mean that there is a wide choice
in the methods used to solve the linear system for ξ, which take advantage
of the fact that A is sparse.
In the case of the standard uniform discretization of a square, we saw

that A is a banded matrix with five non-zero diagonals and bandwidth
m + 1, where m is the number of nodes on a side. The dimension of A is
m2 and the asymptotic operations count for using a direct method to solve
the system is O

(
m4
)
= O

(
h−4

)
. Note that even though A has mostly zero

diagonals inside the band, fill-in occurs as the elimination is performed,
so we may as well treat A as if it has non-zero diagonals throughout the
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band. Clever rearrangement of A to reduce the amount of fill-in leads to
a solution algorithm with an operations count on the order of O(m3) =
O(h−3). In contrast, if we treat A as a full matrix, we get an asymptotic
operations count of O

(
h−6

)
, which is considerably larger for a large number

of elements.

240.21. Compute the asymptotic operations count for the direct solution of the
system Aξ = b using the three A computed in Problem 240.15.

240.22. Write a code to solve the system Aξ = b that uses the band structure
of A.

In general, we get a sparse stiffness matrix, though there may not be a
band structure. If we want to use direct methods efficiently in general, then
it is necessary to first reorder the system to bring the matrix into banded
form.
We can also apply both the Jacobi and Gauss-Seidel methods to solve the

linear system arising from discretizing the Poisson equation. In the case of
the uniform standard discretization of a square for example, the operations
count is O

(
5M

)
per iteration for both methods if we make use of the

sparsity of A. Therefore a single step of either method is much cheaper
than a direct solve. The question is: How many iterations do we need to
compute in order to obtain an accurate solution?
It is not to difficult to show that the spectral radius of the iteration

matrix of the Jacobi method MJ is ρ(MJ) = 1 − h2π2/2 + O(h4), which
means that the convergence rate is RJ = h2π2/2+O(h4). The Gauss-Seidel
method is more difficult to analyze, see Isaacson and Keller ([?]), but it
can be shown that ρ(MGS) = 1 − h2π2 + O(h4) yielding a convergence
rate of RGS = h2π2 +O(h4), which is twice the rate of the Jacobi method.
Therefore, the Gauss-Seidel method is preferable to the Jacobi method. On
the other hand, the convergence rate of either method decreases like h2 so
as we refine the mesh, both methods become very slow. The number of
operations to achieve an error of 10−σ is of order 5σ/(π2h4) . This is the
same order as using a direct banded solver.
There has been a lot of activity in developing iterative methods that con-

verge more quickly. For example, a classic approach is based on modifying
MGS in order to decrease the spectral radius, and the resulting method
is called an accelerated or over-relaxed Gauss-Seidel iteration. In recent
years, very efficient multi-grid methods have been developed and are now
becoming a standard tool. A multi-grid method is based on a sequence
of Gauss-Seidel or Jacobi steps performed on a hierarchy of successively
coarser meshes and are optimal in the sense that the solution work is pro-
portional to the total number of unknowns. We discuss multigrid methods
in detail in the advanced companion volume.

240.23. Program codes to solve Aξ = b using both the Jacobi and Gauss-Seidel
iteration methods, making use of the sparsity of A in storage and operations.
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Compare the convergence rate of the two methods using the result from a direct
solver as a reference value.

240.9 Energy norm error estimates

In this section, we derive a priori and a posteriori error bounds in the
energy norm for the finite element method for Poisson’s equation with
homogeneous Dirichlet boundary conditions. The energy norm, which is
the L2 norm of the gradient of a function in this problem, arises naturally
in the error analysis of the finite element method because it is closely tied
to the variational problem. The gradient of the solution, representing heat
flow, electric field, flow velocity, or stress for example, can be a variable of
physical interest as much as the solution itself, representing temperature,
potential or displacement for example, and in this case, the energy norm
is the relevant error measure. We also prove optimal order error estimates
in the L2 norm of the solution itself. We discuss analysis in other norms in
the advanced companion book.

240.9.1 A priori error estimate

We first prove that the Galerkin finite element approximation is the best
approximation of the true solution in Vh with respect to the energy norm.

Theorem 240.1 Assume that u satisfies the Poisson equation (240.1) and
U is the Galerkin finite element approximation satisfying (240.6). Then

‖∇(u− U)‖ ≤ ‖∇(u− v)‖ for all v ∈ Vh. (240.14)

Proof:Using the Galerkin orthogonality (240.7) with U − v ∈ Vh, we can
write

‖∇e‖2 = (∇e,∇(u− U)) = (∇e,∇(u − U)) + (∇e,∇(U − v)).

Adding the terms involving U on the right, whereby U drops out, and using
Cauchy’s inequality, we get

‖∇e‖2 = (∇e,∇(u− v)) ≤ ‖∇e‖ ‖∇(u− v)‖,

which proves the theorem after dividing by ‖∇e‖. �
Using the interpolation results of Theorem ?? choosing v = πhu, we get

the following concrete quantitative a priori error estimate:

Corollary 240.2 There exists a constant Ci depending only on the mini-
mal angle τ in Th, such that

‖∇(u− U)‖ ≤ Ci‖hD2u‖. (240.15)
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240.10 A posteriori error estimate

We now prove an a posteriori error estimate following the strategy used for
the two-point boundary value problem in Chapter ??. A new feature occur-
ring in higher dimensions is the appearance of integrals over the internal
edges S in Sh. We start by writing an equation for the error e = u − U
using (240.2) and (240.6) to get

‖∇e‖2 = (∇(u − U),∇e) = (∇u,∇e)− (∇U,∇e)
= (f, e)− (∇U,∇e) = (f, e− π̃he)− (∇U,∇(e − π̃he)),

where π̃he ∈ Vh is an interpolant of e chosen as in (??). We may think of π̃he
as the usual nodal interpolant of e, although from a technical mathematical
point of view, π̃he will have to be defined slightly differently. We now break
up the integrals over Ω into sums of integrals over the triangles K in Th
and integrate by parts over each triangle in the last term to get

‖∇e‖2 =
∑

K

∫

K

(f+∆U)(e− π̃he) dx−
∑

K

∫

∂K

∂U

∂nK
(e− π̃he) ds, (240.16)

where ∂U/∂nK denotes the derivative of U in the outward normal direction
nK of the boundary ∂K of K. In the boundary integral sum in (240.16),
each internal edge S ∈ Sh occurs twice as a part of each of the boundaries
∂K of the two triangles K that have S as a common side. Of course the
outward normals nK from each of the two triangles K sharing S point
in opposite directions. For each side S, we choose one of these normal
directions and denote by ∂Sv the derivative of a function v in that direction
on S. We note that if v ∈ Vh, then in general ∂Sv is different on the two
triangles sharing S; see Fig. 233.8, which indicates the “kink” over S in the
graph of v. We can express the sum of the boundary integrals in (240.16)
as a sum of integrals over edges of the form

∫

S

[∂SU ](e− π̃he) ds,

where [∂SU ] is the difference, or jump, in the derivative ∂SU computed
from the two triangles sharing S. The jump appears because the outward
normal directions of the two triangles sharing S are opposite. We further
note that e−π̃he is continuous across S, but in general does not vanish on S,
even if it does so at the end-points of S if π̃h is the nodal interpolant. This
makes a difference with the one-dimensional case, where the corresponding
sum over nodes does indeed vanish, because e− πhe vanishes at the nodes.
We may thus rewrite (240.16) as follows with the second sum replaced by
a sum over internal edges S:

‖∇e‖2 =
∑

K

∫

K

(f +∆U)(e− π̃he) dx+
∑

S∈Sh

∫

S

[∂SU ](e− π̃he) ds.
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Next, we return to a sum over element edges ∂K by just distributing each
jump equally to the two triangles sharing it, to obtain an error represen-
tation of the energy norm of the error in terms of the residual error:

‖∇e‖2 =
∑

K

∫

K

(f +∆U)(e− π̃he) dx

+
∑

K

1

2

∫

∂K

h−1
K [∂SU ](e− π̃he)hK ds,

where we prepared to estimate the second sum by inserting a factor hK and
compensating. In crude terms, the residual error results from substituting
U into the differential equation −∆u−f = 0, but in reality, straightforward
substitution is not possible because U is not twice differentiable in Ω. The
integral on the right over K is the remainder from substituting U into
the differential equation inside each triangle K, while the integral over ∂K
arises because ∂SU in general is different when computed from the two
triangles sharing S.
We estimate the first term in the error representation by inserting a

factor h, compensating and using the estimate ‖h−1(e − π̃he)‖ ≤ Ci‖∇e‖
of Theorem ??, to obtain

|
∑

K

∫

K

h(f +∆U)h−1(e− π̃he) dx|

≤ ‖hR1(U)‖‖h−1(e − π̃he)‖ ≤ Ci‖hR1(U)‖‖∇e‖,

where R1(U) is the function defined on Ω by setting R1(U) = |f + ∆U |
on each triangle K ∈ Th. We estimate the contribution from the jumps on
the edges similarly. Formally, the estimate results from replacing hK ds by
dx corresponding to replacing the integrals over element boundaries ∂K
by integrals over elements K. Dividing by ‖∇e‖, we obtain the following a
posteriori error estimate:

Theorem 240.3 There is an interpolation constant Ci only depending on
the minimal angle τ such that the error of the Galerkin finite element ap-
proximation U of the solution u of the Poisson equation satisfies

‖∇u−∇U‖ ≤ Ci‖hR(U)‖, (240.17)

where R(U) = R1(U) +R2(U) with

R1(U) = |f +∆U | on K ∈ Th,

R2(U) =
1

2
max
S⊂∂K

h−1
K

∣∣[∂SU ]
∣∣ on K ∈ Th.

As we mentioned, R1(U) is the contribution to the total residual from
the interior of the elements K. Note that in the case of piecewise linear
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approximation, R1(U) = |f |. Further, R2(U) is the contribution to the
residual from the jump of the normal derivative of U across edges. In the
one dimensional problem considered in Chapter ??, this contribution does
not appear because the interpolation error may be chosen to be zero at the
node points. We observe that the presence of the factor of h in front of the
residual error R(U) in (240.17) originates from the Galerkin orthogonality
and the estimate ‖h−1(e − π̃he)‖ ≤ Ci‖∇e‖.
240.24. Derive a priori and a posteriori error bound in the energy norm for
the finite element approximation of the solution of the Poisson equation in which
the integrals involving the data f are approximated using the one point Gauss
quadrature on each triangle or the “lumped mass” nodal quadrature. Hint: recall
the modeling error estimate in Chapter ??.

240.25. Give a more precise proof of the estimate for the jump term in Theo-
rem 240.3 using Theorem ?? starting from the error representation.

240.26. Implement an “error estimation” routine for a code that approximates
the Poisson problem using the continuous piecewise linear finite element method.
Construct a test problem with a known solution by choosing a function u(x) that
is zero on the boundary of the unit square and setting f = −∆u, then compare
the error estimate to the true error on a few meshes.

240.11 Adaptive error control

An immediate use of an a posteriori error bound is to estimate the error of a
computed solution which gives important information to the user. We may
also base an adaptive algorithm on the a posteriori error estimate seeking
to optimize the computational work needed to reach a certain accuracy.
More precisely, we formulate the basic goal of adaptive error control as:

for a given tolerance TOL, find a triangulation Th that requires the least
amount of computational work to achieve

‖∇u−∇U‖ ≤ TOL, (240.18)

where U ∈ Vh is the finite element approximation corresponding to Th.
Measuring the computational work in terms of the number of nodes of the
triangulation Th and estimating the unknown error by the computable a
posteriori error bound, we are led to the problem of finding the triangula-
tion Th with the least number of nodes such that the corresponding finite
element approximation U satisfies the stopping criterion

Ci‖hR(U)‖ ≤ TOL. (240.19)

This is a nonlinear constrained minimization problem with U depending on
Th. If (240.17) is a reasonably sharp estimate of the error, then a solution
of this optimization problem will meet our original goal.



240.11 Adaptive error control 1729

We cannot expect to be able to solve this minimization problem analyt-
ically. Instead, a solution has to be sought by an iterative process in which
we start with a coarse initial mesh and then successively modify the mesh
by seeking to satisfy the stopping criterion (240.19) with a minimal number
of elements. More precisely, we follow the following adaptive algorithm:

1. Choose an initial triangulation T (0)
h .

2. Given the jth triangulation Th(j) with mesh function h(j), compute
the corresponding finite element approximation U (j).

3. Compute the corresponding residuals R1(U
(j)) and R2(U

(j)) and
check whether or not (240.19) holds. If it does, stop.

4. Find a new triangulation Th(j+1) with mesh function h(j+1) and with
a minimal number of nodes such that Ci‖h(j+1)R(U (j))‖ ≤ TOL,
and then proceed to #2.

The success of this iteration hinges on the mesh modification strategy
used to perform step #4. A natural strategy for error control based on the
L2 norm uses the principle of equidistribution of the error in which we try
to equalize the contribution from each element to the integral defining the
L2 norm. The rationale is that refining an element with large contribution
to the error norm gives a large pay-off in terms of error reduction per new
degree of freedom.
In other words, the approximation computed on the optimal mesh Th in

terms of computational work satisfies

‖∇e‖2L2(K) ≈
TOL2

M
for all K ∈ Th,

where M is the number of elements in Th. Based on (240.17), we would
therefore like to compute the triangulation at step #4 so that

C2
i

(∥∥h(j+1)R
(
U (j+1)

)∥∥2
L2(K)

≈ TOL2

M (j+1)
for all K ∈ Th(j+1) , (240.20)

where M (j+1) is the number of elements in Th(j+1) . However, (240.20) is a
nonlinear equation, since we don’t know M (j+1) and U (j+1) until we have
chosen the triangulation. Hence, we replace (240.20) by

C2
i

(∥∥h(j+1)R
(
U (j)

)∥∥2
L2(K)

≈ TOL2

M (j)
for all K ∈ Th(j+1), (240.21)

and use this formula to compute the new mesh size h(j+1).
There are several questions that need to be answered about the process

described here, including: how much efficiency is lost by replacing (240.18)
by (240.19)? In other words, how much bigger is the right-hand side of
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(240.17) than the left-hand? Does the iterative process #1–#4 converge to a
solution of the minimization problem? How should the initial triangulation
Th(0) be chosen and how does this affect the convergence of the adaptive
procedure? Is the approximation (240.21) justified? We address these issues
in the advanced companion volume.
We conclude this section with an example that illustrates the behavior

of this adaptive algorithm in a situation in which the forcing function is
highly localized. We use Femlab to approximate the solution

u(x) =
a

π
exp
(
−a(x21 + x22)

)
, a = 400,

of Poisson’s equation −∆u = f on the square (−.5, .5)× (−.5, .5) with f(x)
the following “approximate delta function”:

f(x) =
4

π
a2
(
1− ax21 − ax22

)
exp
(
−a(x21 + x22)

)
,

We plot f in Fig. 240.10 (note the vertical scale), together with the initial
mesh with 224 elements. The adaptive algorithm took 5 steps to achieve

f(x)

0

5.105

1.106

1.5.106

2.106

x2

-0.5-0.250.00.250.5x1

-0.5 -0.25 0.0 0.25 0.5

FIGURE 240.10. The approximate delta forcing function f and the initial mesh
used for the finite element approximation.

an estimated .5% relative error. We plot the final mesh together with the
associated finite element approximation in Fig. 240.11. The algorithm pro-
duced meshes with 224, 256, 336, 564, 992, and 3000 elements respectively.

240.27. Let ω(x) be a positive weight function defined on the domain Ω ⊂ R2.
Assume that the mesh function h(x) minimizes the integral

∫
Ω
h2(x)ω(x)dx under

the constraint
∫
Ω
h−1(x) dx = N , where N is a given positive integer. Prove

that h3(x)ω(x) is constant. Interpret the result as equidistribution in the context
of error control. Hint: use the Lagrange multiplier method with the Lagrange
function L(h, λ) =

∫
Ω
h2(x)ω dx+ λ(

∫
Ω
h−1(x) dx−N).
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FIGURE 240.11. The finite element approximation with a relative error of .5%
and the final mesh used to compute the approximation. The approximation has
a maximum height of roughly 5.

240.12 Dealing with different boundary conditions

The variational problem has to be modified when the boundary conditions
are changed from homogeneous Dirichlet conditions.

240.12.1 Non-homogeneous Dirichlet boundary conditions

We first discuss the Poisson’s equation with non-homogeneous Dirichlet
boundary conditions: {

−∆u = f in Ω,

u = g on Γ,
(240.22)

where g is the given boundary data. The variational formulation takes the
following form: find u ∈ Vg, where

Vg =

{
v : v = g on Γ and

∫

Ω

(|∇v|2 + v2)dx <∞
}
,

such that

(∇u,∇v) = (f, v) for all v ∈ V0, (240.23)

with

V0 =

{
v : v = 0 on Γ and

∫

Ω

(|∇v|2 + v2)dx <∞
}
.

Recall that Vg, where we look for u, is called the trial space, while V0, from
which we choose test functions, is called the test space. In this case, the
trial and test spaces satisfy different boundary conditions, namely, the trial
functions satisfy the given non-homogeneous Dirichlet condition u = g on
Γ while the test functions satisfy the homogeneous Dirichlet boundary con-
dition. This is important in the construction of the variational formulation
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(240.23) because when we multiply the differential equation by a test func-
tion v ∈ V0 and use integration by parts, the boundary integral vanishes
because v = 0 on Γ. The need to choose test functions satisfying homoge-
neous Dirichlet boundary conditions can also be understood by considering
the minimization problem that is equivalent to (240.23): find u ∈ Vg such
that F (u) ≤ F (w) for all w ∈ Vg, where F (w) = 1

2 (∇w,∇w) − (f, w).
The variational formulation (240.23) results from setting the derivative
d
dǫF (u + ǫv) equal to zero, where v ∈ V0 is a perturbation satisfying zero
boundary conditions so that u+ ǫv ∈ Vg.
We compute a finite element approximation on a triangulation Th, where

we now also include the nodes on the boundary, denoting the internal nodes
by Nh as above and the set of nodes on the boundary by Nb. We compute
an approximation U of the form

U =
∑

Nj∈Nb

ξjϕj +
∑

Nj∈Nh

ξjϕj , (240.24)

where ϕj denotes the basis function corresponding to node Nj in an enu-
meration {Nj} of all the nodes, and, because of the boundary conditions,
ξj = g(Nj) for Nj ∈ Nb. Thus the boundary values of U are given by g on
Γ and only the coefficients of U corresponding to the interior nodes remain
to be found. To this end, we substitute (240.24) into (240.2) and compute
inner products with all the basis functions corresponding to the interior
nodes, which yields a square system of linear equations for the unknown
coefficients of U :

∑

Nj∈Nh

ξj(∇ϕj ,∇ϕi) = (f, ϕi)−
∑

Nj∈Nb

g(Nj)(∇ϕj ,∇ϕi), Ni ∈ Nh.

Note that the terms corresponding to the boundary values of U become
data on the right-hand side of the system.

240.28. Show that Vg is not a vector space. Prove that the solution of the weak
problem is unique.

240.29. Compute the discrete equations for the finite element approximation
for −∆u = 1 on Ω = (0, 1) × (0, 1) with boundary conditions u = 0 for x1 = 0,
u = x1 for x2 = 0, u = 1 for x1 = 1 and u = x1 for x2 = 1 using the standard
triangulation (Fig. 240.1).
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240.13 Laplace’s equation on a wedge-shaped
domain

We consider Laplace’s equation with Dirichlet boundary conditions in a
wedge-shaped domain making an angle ω:





−∆u = 0 in Ω = {(r, θ) : 0 ≤ r < 1, 0 < θ < ω}
u(r, 0) = u(r, ω) = 0, 0 ≤ r < 1,

u(1, θ) = sin(γθ), 0 ≤ θ ≤ ω,

(240.25)

where γ = π/ω, see Fig. 240.12. The boundary conditions are chosen so

u=0

u=sin( / )

FIGURE 240.12. A domain with an interior corner.

that the exact solution u is given by the following simple explicit formula

u(r, θ) = rγ sin(γθ). (240.26)

Note that the solution satisfies homogenous Dirichlet boundary conditions
on the straight sides joining the corner.

240.30. Verify the formula (240.26) by direct computation using the equation
for the Laplacian in polar coordinates.

We noted in Section 239.6 that a solution of Laplace’s equation in a
domain (a harmonic function) is smooth inside the domain. We now show
using the above example that a harmonic function may have a singularity
at a corner of the boundary of the domain. Denoting the derivative with
respect to r by Dr, we have from (240.26)

Dru(r, θ) = γrγ−1 sin(γθ), D2
ru(r, θ) = γ(γ − 1)rγ−2 sin(γθ),

and so on, which shows that sufficiently high derivatives of u become sin-
gular at r = 0, with the number depending on γ or ω. For example if
ω = 3π/2, then u(r, θ) ≈ r2/3 and Dru(r, θ) ≈ r−1/3 with a singularity at
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r = 0. The gradient ∇u corresponds to e.g. stresses in an elastic membrane
or to an electric field. The analysis shows that these quantities become in-
finite at corners of angle ω > π, which thus indicates extreme conditions at
concave corners. If the boundary conditions change from Dirichlet to Neu-
mann at the corner, then singularities may occur also at convex corners;
see Problem 240.31.
More generally, a solution of Poisson’s equation with smooth right hand

side in a domain with corners, e.g. a polygonal domain, is a sum of terms
of the form (240.26) plus a smooth function.

240.31. Solve the wedge problem with the Dirichlet condition replaced by a
Neumann condition on one of the straight parts of the boundary.

240.14 An example: an L-shaped membrane

We present an example that shows the performance of the adaptive al-
gorithm on a problem with a corner singularity. We consider the Laplace
equation in an L-shaped domain that has a non-convex corner at the origin
satisfying homogeneous Dirichlet boundary conditions at the sides meet-
ing at the origin and non-homogeneous conditions on the other sides, see
Fig. 240.13. We choose the boundary conditions so that the exact solution
is u(r, θ) = r2/3 sin(2θ/3) in polar coordinates (r, θ) centered at the origin,
which has the typical singularity of a corner problem. We use the knowledge
of the exact solution to evaluate the performance of the adaptive algorithm.
We compute using FEniCS with energy norm control based on (240.17)

to achieve an error tolerance of TOL= .005 using h refinement mesh mod-
ification. In Fig. 240.13, we show the initial mesh Th(0) with 112 nodes and
182 elements. In Fig. 240.14, we show the level curves of the solution and

(0,0)

u=0

FIGURE 240.13. The L-shaped domain and the initial mesh.

the final mesh with 295 nodes and 538 elements that achieves the desired
error bound. The interpolation constant was set to Ci = 1/8. The quotient
between the estimated and true error on the final mesh was 1.5.
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FIGURE 240.14. Level curves of the solution and final adapted mesh on the
L-shaped domain.

Since the exact solution is known in this example, we can also use the a
priori error estimate to determine a mesh that gives the desired accuracy.
We do this by combining the a priori error estimate (240.15) and the princi-
ple of equidistribution of error to determine h(r) so that Ci‖hD2u‖ = TOL
while keeping h as large as possible (and keeping the number of elements
at a minimum). Since D2u(r) ≈ r−4/3, as long as h ≤ r, that is up to the
elements touching the corner, we determine that

(
hr−4/3

)2
h2 ≈ TOL2

M
or h2 = TOLM−1/2r4/3,

where M is the number of elements and h2 measures the element area.
To compute M from this relation, we note that M ≈

∫
Ω
h−2 dx, since the

number of elements per unit area is O(h−2), which gives

M ≈M1/2TOL−1

∫

Ω

r−4/3 dx.

Since the integral is convergent (prove this), it follows that M ∝ TOL−2,
which implies that h(r) ∝ r1/3 TOL. Note that the total number of un-
knowns, up to a constant, is the same as that required for a smooth solution
without a singularity, namely TOL−2. This depends on the very local na-
ture of the singularity in the present case. In general, of course solutions
with singularies may require a much larger number of elements than smooth
solutions do.

240.32. Use Femlab to approximate the solution of the Poisson equation on
the L-shaped domain using the stated boundary conditions. Start with a coarse
triangulation and use a smallish error tolerance. Print out the final mesh and use
a ruler to measure the value of h versus r roughly, and then plot the points on a
log-log plot. Compute a line through the data and compare the slope of this to
the relation h ≈ r1/3 TOL based on the a priori result.
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240.15 Robin and Neumann boundary conditions

Next, we consider Poisson’s equation with homogeneous Dirichlet condi-
tions on part of the boundary and non-homogeneous Robin conditions on
the remainder: 




−∆u = f in Ω,

u = 0 on Γ1,

∂nu+ κu = g on Γ2,

(240.27)

where Γ = Γ1∪Γ2 is a partition of Γ into two parts and κ ≥ 0. The natural
trial space is

V =

{
v : v = 0 on Γ1 and

∫

Ω

(
|∇v|2 + v2

)
dx <∞

}
,

where the trial functions satisfy the homogeneous Dirichlet condition but
the Robin condition is left out. The test space is equal to the trial space,
because of the homogeneous Dirichlet condition.
To find the variational formulation, we multiply the Poisson equation by

a test function v ∈ V , integrate over Ω, and use Green’s formula to move
derivatives from u to v:

(f, v) = −
∫

Ω

∆u v dx =

∫

Ω

∇u · ∇v dx−
∫

Γ

∂nuv ds

=

∫

Ω

∇u · ∇v dx+

∫

Γ2

κuv ds−
∫

Γ2

gv ds,

where we use the boundary conditions to rewrite the boundary integral.
We are thus led to the following variational formulation: find u ∈ V such
that

(∇u,∇v) +
∫

Γ2

κuv ds = (f, v) +

∫

Γ2

gv ds for all v ∈ V. (240.28)

It is clear that a solution of (240.27) satisfies (240.28). Conversely, we
show that a solution of (240.28) that has two continuous derivatives also
satisfies the differential equation (240.27). We integrate (240.28) by parts
using Green’s formula to put all the derivatives onto u to get

−
∫

Ω

∆u v dx+

∫

Γ

∂nuv ds+

∫

Γ2

κuv ds =

∫

Ω

fv dx+

∫

Γ2

gv ds

for all v ∈ V

or
∫

Ω

(−∆u− f)v dx+

∫

Γ2

(∂nu+ λu − g)v ds = 0 for all v ∈ V. (240.29)
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By first varying v inside Ω as above while keeping v = 0 on the whole of
the boundary Γ, it follows that u solves the differential equation −∆u = f
in Ω. Thus (240.29) reduces to

∫

Γ2

(∂nu+ κu− g)v ds = 0 for all v ∈ V.

The same argument works here; if ∂nu + κu − g is non-zero, say positive,
at some point of Γ, then it is positive in some small neighborhood of the
point in Γ and choosing v to be a positive “hill” centered at the point and
zero outside the neighborhood, gives a contradiction. Thus by varying v on
Γ2, we see that the Robin boundary condition ∂nu + λu = g on Γ2 must
be satisfied (provided ∂nu+ κu− g is continuous).
We recall that boundary conditions like the Dirichlet condition that are

enforced explicitely in the choice of the space V are called essential bound-
ary conditions. Boundary conditions like the Robin condition that are im-
plicitly contained in the weak formulation are called natural boundary con-
ditions. (To remember that we must assume essential conditions: there are
two “ss” in assume and essential.)
To discretize the Poisson equation with Robin boundary conditions on

part of the boundary (240.27), we triangulate Ω as usual, but we number
both the internal nodes and the nodes on Γ2, where the Robin boundary
conditions are posed. We do not number the nodes on Γ1 where the ho-
mogeneous Dirichlet conditions are imposed. Nodes located where Γ1 and
Γ2 meet should then be considered Dirichlet nodes. We then write U as in
(240.24) with Nb denoting the nodes on Γ2. In this problem, however, the
coefficients of U corresponding to nodes in Nb are unknown. We substitute
(240.24) into the weak form (240.28) and compute the inner products with
all the basis functions corresponding to nodes in Nh ∪ Nb to get a square
system. The boundary value g enters into the discrete equations as data on
the right-hand side of the linear system for U .
Note that the stiffness matrix and load vector related to (240.28) con-

tain contributions from both integrals over Ω and Γ2 related to the basis
functions corresponding to the nodes on the boundary Γ2.
To illustrate, we compute the solution of Laplace’s equation with a com-

bination of Dirichlet, Neumann and Robin boundary conditions on the
domain shown in Fig. 240.15 using Femlab. We show the boundary con-
ditions in the illustration. The problem models e.g. stationary heat flow
around a hot water pipe in the ground. We show the mesh that Femlab
used to compute the approximation so that the error in the L2 norm is
smaller than .0013 together with a contour plot of the approximation in
Fig. 240.16. We notice that the level curves are parallel to a boundary with
a homogeneous Dirichlet condition, and orthogonal to a boundary with a
homogeneous Neumann condition.
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u=0
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- u=0
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FIGURE 240.15. A problem with Robin boundary conditions.

FIGURE 240.16. The adaptive mesh and contour lines of the approximate solu-
tion of the problem shown in Fig. 240.15 computed with error tolerance .0013.

240.33. Compute the discrete system of equations for the finite element approx-
imation of the problem −∆u = 1 in Ω = (0, 1) × (0, 1) with u = 0 on the side
with x2 = 0 and ∂nu + u = 1 on the other three sides of Ω using the standard
triangulation. Note the contribution to the stiffness matrix from the nodes on the
boundary.

240.34. (a) Show that the variational formulation of the Neumann problem

{
−∇ · (a∇u) + u = f in Ω,

a∂nu = g on Γ,
(240.30)

where a(x) is a positive coefficient, is to find u ∈ V such that

∫

Ω

a∇u · ∇v dx+

∫

Ω

uv dx =

∫

Ω

fv dx+

∫

Γ

gv ds for all v ∈ V, (240.31)

where

V =

{
v :

∫

Ω

a|∇v|2dx+

∫

Ω

v2dx <∞
}
.

(b) Apply the finite element method to this problem and prove a priori and
a posteriori error estimates. (c) Derive the discrete equations in the case of a
uniform triangulation of a square and a = 1.
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240.35. Apply the finite element method with piecewise linear approximation to
the Poisson equation in three dimensions with a variety of boundary conditions.
Compute the stiffness matrix and load vector in some simple case.

240.16 Error estimates in the L2 norm

Major scientific progress in different directions can only be gained
through extended observation in a prolonged stay in a specific region,
while observations during a balloon expedition cannot escape being
of a superficial nature. (Nansen, in Farthest North, 1897)

So far in this chapter we have used the energy norm to measure the er-
ror. The main reason is that the energy norm arises naturally from the
variational problem. However, it is often desirable to measure the error
in different norms. In fact, specifying the quantities to be approximated
and the norm in which to measure the error is a fundamentally important
part of modeling, and directly affects the choice of approximation and error
control algorithm.
As an example, we develop an error analysis in the L2 norm. Actually,

it is possible to derive an L2 error estimate directly from the energy norm
error estimates. In the two-point boundary value model problem (216.9)
with a = 1, this follows by first expressing a function v defined on [0, 1]
and satisfying v(0) = 0 as the integral of its derivative:

v(y) = v(0) +

∫ y

0

v′(x) dx =

∫ y

0

v′(x) dx for 0 ≤ y ≤ 1,

and then using Cauchy’s inequality to estimate

|v(y)| ≤
∫ 1

0

|v′(x)| dx ≤
(∫ 1

0

12 dx

)1/2

‖v′‖ = ‖v′‖,

where ‖ · ‖ denotes the L2 norm on (0, 1). Squaring this inequality and
integrating from 0 to 1 in x, we find

‖v‖ ≤ ‖v′‖.

Applying this estimate with v = U − u and recalling the a priori energy
norm error estimate 216.1, we thus obtain the following L2 error estimate
for the two-point boundary value problem (216.9) with a = 1:

‖u− U‖ ≤ Ci‖hu′′‖.

However, this estimate is not optimal because we expect the L2 error of
a good approximation of u in Vh, like for example the piecewise linear
interpolant, to decrease quadratically in the mesh size h and not linearly
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as in the estimate. We now improve the estimate and show that the error
of the finite element approximation indeed is optimal in order with respect
to the L2 norm. This is remarkable, because it requires the error in the
derivative to be “in average” better than first order.

240.36. Prove that if e is zero on the boundary of the unit square Ω, then

(∫

Ω

|e|2 dx
)1/2

≤
(∫

Ω

|∇e|2 dx
)1/2

.

Hint: extend the proof of the corresponding result in one dimension. Use the
result to obtain an error estimate in the L2-norm for the finite element method
for Poisson’s equation with homogeneous Dirichlet boundary conditions.

240.17 Error analysis based on duality

An approach to error analysis in a general norm is to use the idea of duality
to compute the norm of a function by maximizing weighted average values,
or inner products, of the function over a set of weights. For example,

‖u‖L2(Ω) = max
v∈L2(Ω),v 6=0

∫
Ω
u v dx

‖v‖L2(Ω)
,

which follows because Cauchy’s inequality shows that the right-hand side
is bounded by the left-hand side, while choosing v = u shows the equality.
The fact that the norm of a function can be measured by computing a suffi-
cient number of average values is both fundamentally important and widely
applicable in a variety of situations. In fact, we already used this technique
in the analysis of the parabolic model problem discussed in Chapter ??,
though without much background. We now give a more careful develop-
ment.
We illustrate the idea behind a duality argument by first estimating the

error of a numerical solution of a linear n× n system of equations Aξ = b.
Recall that we discussed this previously in Chapter 94. We let ξ̄ denote
a numerical solution obtained for instance using an iterative method and
estimate the Euclidean norm |e| of the error e = ξ − ξ̄. We start by posing
the dual problem A⊤η = e, where e is considered to be the data. Of course,
we don’t know e but we will get around this. Using the dual problem, we get
the following error representation by using the definition of the transpose,

|e|2 = (e, A⊤η) = (Ae, η) = (Aξ −Aξ̄, η) = (b −Aξ̄, η) = (r, η)

where r = b−Aξ̄ is the residual error. Suppose that it is possible to estimate
the solution η of the equation A⊤η = e in terms of the data e as

|η| ≤ S|e|, (240.32)
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where S is a stability factor. It follows by Cauchy’s inequality that

|e|2 ≤ |r||η| ≤ S|r||e|,

or

|e| ≤ S|r|.

This is an a posteriori error estimate for the error e in terms of the residual
r and the stability factor S.
We can guarantee that (240.32) holds by defining the stability factor by

S = max
θ∈Rn, θ 6=0

|ζ|
|θ|

where ζ solves A⊤ζ = θ.
The point of this example is to show how duality can be used to get an

error representation in terms of the residual and the dual solution, from
which the error can be estimated in terms of the residual and a stability fac-
tor. We use this approach repeatedly in this book, and also take advantage
of the Galerkin orthogonality.

240.18 An a posteriori estimate for a two-point
boundary value problem

We first prove an a posteriori error estimate in the L2(0, 1) norm , denoted
by ‖ · ‖, for the problem

{
−(au′)′ + cu = f, in (0, 1),

u(0) = 0, u(1) = 0,
(240.33)

where a(x) > 0 and c(x) ≥ 0. We denote by U the cG(1) solution to the
problem using the usual finite element space Vh of continuous piecewise
linear functions. The dual problem takes just the same form as (240.33)
because the given problem is symmetric:

{
−(aϕ′)′ + cϕ = e, in (0, 1),

ϕ(0) = 0, ϕ(1) = 0,
(240.34)

where e = u−U . We now use (240.33), (240.34), and the Galerkin orthog-
onality with the test function v = πhe ∈ Vh, to obtain
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‖e‖2 =
∫ 1

0

e(−(aϕ′)′ + cϕ) dx =

∫ 1

0

(ae′ϕ′ + ceϕ) dx

=

∫ 1

0

(au′ϕ′ + cuϕ) dx−
∫ 1

0

(aU ′ϕ′ + cUϕ) dx

=

∫ 1

0

fϕ dx−
∫ 1

0

(aU ′ϕ′ + cUϕ) dx

=

∫ 1

0

f(ϕ− πhϕ) dx −
M+1∑

j=1

∫

Ij

(aU ′(ϕ− πhϕ)
′ + cU(ϕ− πhϕ)) dx.

Integrating by parts over each sub-interval Ij , we find that all the boundary
terms disappear, and we end up with

‖e‖2 ≤ ‖h2R(U)‖‖h−2(ϕ− πhϕ)‖,
where R(U) = f +(aU ′)′− cU on each sub-interval. Using an interpolation
error estimate of the form ‖h−2(ϕ − πhϕ)‖ ≤ Ci‖ϕ′′‖, and defining the
strong stability factor by

S = max
ξ∈L2(I)

‖ϕ′′‖
‖ξ‖ (240.35)

where ϕ satisfies (240.34) with e replaced by ξ, we obtain the following a
posteriori error estimate:

Theorem 240.4 The finite element approximation U of (??) satisfies

‖u− U‖ ≤ SCi‖h2R(U)‖.
Note that the size of the stability factor S varies with the choice of the
coefficients a(x) and c(x).

240.37. Prove that if a > 0 and c ≥ 0 are constant, then S ≤ a−1.

The implementation of an adaptive error control based on Theorem
240.34 is the same as for error control based on the energy norm. For
an example, we choose a = 0.01, c = 1 and f(x) = 1/x and compute
using Femlab1d with the L2 norm of the error bounded by TOL = .01.
We plot the finite element approximation, the residual, and the mesh size
in Fig. 240.17. In this example, there are two sources of singularities in
the solution. First, because the diffusion coefficient a is small, the solution
may become steep near the boundaries, forming what are called boundary
layers. Secondly, the source term f itself is large near x = 0 and undefined
at 0. The singularity in the data f affects the residual, while the size of a
affects both the residual and the stability factor S. The adaptive algorithm
approximates the stability factor S by solving the dual problem (240.34)
with e replaced by an approximation. In this example, S ≈ 37.
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FIGURE 240.17. Finite element approximation, residual error, and meshsize com-
puted with adaptive error control based on the L2 norm.

240.19 A priori error estimate for a two-point
boundary value problem

We also prove an a priori error estimate in the L2 norm assuming for
simplicity that the mesh size h is constant, and c = 0. Note the presence
of the weighted norm ‖ · ‖a.
Theorem 240.5 The finite element approximation U of (??) satisfies

‖u− U‖ ≤ CiSa‖h(u− U)′‖a ≤ C2
i Sa‖h2u′′‖a,

where Sa = maxξ 6=0 ‖ϕ′′‖a/‖ξ‖ with ϕ satisfying (240.34) with e replaced
by ξ.

Proof: Assuming that ϕ satisfies (240.34) with c = 0, and using the
Galerkin orthogonality (??) and an L2 estimate for the interpolation error,
we obtain

‖e‖2 =
∫ 1

0

ae′ϕ′ dx =

∫ 1

0

ae′(ϕ− πhϕ)
′ dx

≤ ‖he′‖a‖h−1(ϕ− πhϕ)
′‖a ≤ Ci‖he′‖a‖ϕ′′‖a,
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where Ci = Ci(a). The proof is completed by using the definition of Sa and
noting that multiplying the energy norm error estimate by h gives

‖he′‖a ≤ Ci‖h2u′′‖a. (240.36)

�
This estimate generalizes to the case of variable h assuming that the

mesh size h does not change too rapidly from one element to the next.

240.38. Prove that if a > 0 then Sa ≤ 1/
√
a. Note that S and Sa involve

somewhat different norms, which is compensated by the presence of the factor a
in R(U).

240.20 A priori and a posteriori error estimates for
the Poisson equation

We now carry through the same program for the Poisson equation in two
dimensions. We here assume that the mesh function h(x) is differentiable
and there is a constant τ1 > 0 such that τ1hK ≤ h(x) ≤ hK for x ∈ K for
each K in Th. This may be realized by smoothing of the original piecewise
constant mesh function.
The proofs are based on a basic strong stability (or elliptic regularity)

estimate for the solution of the Poisson equation (240.1) giving an estimate
of the strong stability factor S. In Chapter ??, we give the proof in the
case of a convex domain with smooth boundary. In this case S = 1, and the
stability estimate states that all second derivatives of a function u vanishing
on the boundary of Ω can be bounded by the particular combination of
second derivatives given by ∆u.

Theorem 240.6 If Ω is convex with polygonal boundary, or if Ω is a gen-
eral domain with smooth boundary, then there is a constant S independent
of f , such that the solution u of (240.1) satisfies

‖D2u‖ ≤ S‖∆u‖ = S‖f‖. (240.37)

If Ω is convex, then S = 1.

The a priori error estimate is

Theorem 240.7 Let Ω be convex with polygonal boundary or a general
domain with smooth boundary. Then there exists a constant Ci only de-
pending on τ and τ1, such that the finite element approximation U of the
Poisson problem (240.1) satisfies

‖u− U‖ ≤ SCi‖h∇(u− U)‖, (240.38)
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where S is defined in Theorem 240.6. Furthermore, if |∇h(x)|∞ ≤ µ for
x ∈ Ω for some sufficiently small positive constant µ, then

‖h∇(u− U)‖ ≤ Ci‖h2D2u‖, (240.39)

where Ci also depends on µ. In particular, if Ω is convex then

‖u− U‖ ≤ Ci‖h2D2u‖. (240.40)

Proof: Letting ϕ solve the dual problem−∆ϕ = e in Ω together with ϕ = 0
on Γ, we obtain by integration by parts, using the Galerkin orthogonality
and the interpolation estimate Theorem ??

‖e‖2 = (u− U, u− U) = (∇(u − U),∇ϕ)
= (∇(u− U),∇(ϕ− πhϕ)) ≤ Ci‖h∇(u− U)‖‖D2ϕ‖,

from which the first estimate follows using the strong stability result. The
second estimate (240.39) follows directly from the energy norm error es-
timate if h is constant and we discuss the general result in the advanced
companion volume. The final result (240.40) is obtained using the regularity
estimate (240.37). �
The a posteriori error estimate is

Theorem 240.8 There are constants Ci and S such that, if U is the finite
element approximation of (240.1), then with the residual R defined as in
Theorem 240.3,

‖u− U‖ ≤ SCi‖h2R(U)‖. (240.41)

If Ω is convex, then S = 1.

Proof: With ϕ defined as in the previous proof, we have

‖e‖2 = (∇(u − U),∇ϕ) = (f, ϕ)− (∇U,∇ϕ)
= (f, ϕ− πhϕ)− (∇U,∇(ϕ− πhϕ)).

The desired result follows by an argument similar to that used in the a
posteriori energy norm estimate by estimating ‖h−2(ϕ− πhϕ)‖ in terms of
Ci‖D2ϕ‖ and using the strong stability estimate to close the loop. �

It is like an attempt, over and over again, to reveal the heart of
things. (K. Jarret)

A poem should be equal to:
Not true ...
A poem should not mean
But be. (Archibald MacLeish)
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241
The Power of Abstraction

Maybe in order to understand mankind, we have to look at the
word itself. Mankind. Basically, it’s made up of two separate
words - “mank” and “ind”. What do these word mean? It’s a
mystery, and that’s why, so is mankind. (Jack Handley)

The use of mathematical symbolism eliminates the waste of
mental energy on trivialities, and liberates this energy for de-
ployment where it is needed, to wit, on the chaotic frontiers
of theory and practice. It also facilitates reasoning where it is
easy, and restrains it where it is complicated. (Whitehead)

241.1 Introduction

Up until now we have considered a set of specific examples spanning the
fundamental models in science. In this chapter, we consider an “abstract”
linear elliptic problem, concentrating on the basic questions of existence,
uniqueness, and stability of solutions together with the basic approximation
properties of the Galerkin method. After that, we apply the abstract the-
ory to specific problems including Poisson’s equation with various boundary
conditions, a model of linear elasticity, and Stoke’s equations for creeping
fluid flow. The abstract framework we describe is the result of a long devel-
opment of variational methods initiated by Euler and Lagrange, continued
by Dirichlet, Riemann, Hilbert, Rayleigh, Ritz, Galerkin, and continuing
at the present time partly because of the modern interest in the finite el-
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ement method. The advantage of considering a problem in abstract form
is that we can emphasize the essential ingredients and moreover we can
apply results for the abstract problem to specific applications as soon as
the assumptions of the abstract problem are satisfied without having go
through the same type of argument over and over again. This is the real
“power” of abstraction. We focus on linear elliptic problems, since setting
up an abstract framework is easist in this case. The framework may be ex-
tended naturally to a class of nonlinear elliptic problems related to convex
minimization problem and to the related parabolic problems. An abstract
framework for hyperbolic problems is less developed; see the advanced com-
panion book for details. We keep the presentation in this chapter short, and
give more details in the advanced companion volume. The idea is to indicate
a framework, not to develop it in detail.
We recall from Chapters ?? and ?? that we started by rewriting a given

boundary value problem in variational form. We then applied Galerkin’s
method to compute an approximate solution in a subspace of piecewise
polynomials and we proved energy norm error estimates using the Galerkin
orthogonality. The abstract elliptic problem we consider is formulated in
variational terms and has stability and continuity properties directly re-
lated to the energy norm. The basic theorem on the the existence, unique-
ness, and stability of the solution of the abstract elliptic problem is the
Lax-Milgram theorem. We also give a related result stating that Galerkin’s
method is optimal in the energy norm. These results guarantee that some
of the basic models of science including Poisson’s equation and the equa-
tions for linear elasticity and Stokes flow have a satisfactory mathematical
form and may be solved approximately using Galerkin’s method. This is a
cornerstone in science and engineering.

241.2 The abstract formulation

The ingredients of the abstract formulation are

(i) a Hilbert space V where we look for the solution, with norm ‖ · ‖V
and scalar product (·, ·)V ,

(ii) a bilinear form a : V × V → R that is determined by the underlying
differential equation,

(iii) a linear form L : V → R that is determined by the data.

A Hilbert space is a vector space with a scalar product that is complete,
which means that any Cauchy sequence in the space converges to a limit
in the space. Recall that we discussed the importance of using a space
with this property in Chapter 199, where we used the completeness of the
continuous functions on an interval to prove the Fundamental Theorem of
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Calculus. A bilinear form a(·, ·) is a function that takes V ×V into the real
numbers, i.e. a(v, w) ∈ R for all v, w ∈ V , such that a(v, w) is linear in each
argument v and w, that is a(α1v1 + α2v2, w1) = α1a(v1, w1) + α2a(v2, w1)
and a(v1, α1w1+α2w2) = α1a(v1, w1)+α2a(v1, w2) for αi ∈ R, vi, wi ∈ V .
Finally, a linear form L(·) is a function on V such that L(v) ∈ R for all
v ∈ V and L(v) is linear in v.
The abstract problem reads: find u ∈ V such that

a(u, v) = L(v) for all v ∈ V. (241.1)

We make some assumptions on a(·, ·) and L(·), which gives an abstract
definition of a linear “elliptic” problem. We first assume that a(·, ·) is V-
elliptic or coercive, which means that there is a positive constant κ1 such
that for all v ∈ V ,

a(v, v) ≥ κ1‖v‖2V . (241.2)

We also require that a(·, ·) is continuous in the sense that there is a constant
κ2 such that for all v, w ∈ V

|a(v, w)| ≤ κ2‖v‖V ‖w‖V . (241.3)

We finally require that the linear form L(·) is continuous in the sense that
there is a constant κ3 such that for all v ∈ V ,

|L(v)| ≤ κ3‖v‖V . (241.4)

The reason that we say that L is continuous if (241.4) holds is because
by linearity |L(v)−L(w)| ≤ κ3‖v−w‖V , which shows that L(v) → L(w) if
‖v−w‖V → 0, i.e., if v → w in V . Assumption (241.3) similarly implies that
a(·, ·) is continuous in each variable. Further, we define the energy norm
‖ · ‖a by ‖v‖a =

√
a(v, v), noting that (241.2) in particular guarantees that

a(v, v) ≥ 0. By (241.2) and (241.3), we have κ1‖v‖2V ≤ ‖v‖2a ≤ κ2‖v‖2V .
In other words, if a quantity is small in the energy norm ‖ · ‖a then it
is small in the norm ‖ · ‖V and vica versa. We refer to this situation by
saying that ‖ · ‖a and ‖ · ‖V are equivalent norms. Thus, without changing
anything qualitatively, we could choose the norm in the Hibert space V
to be the energy norm ‖ · ‖a related to the bilinear form a, in which case
κ1 = κ2 = 1. In this sense, the energy norm is a natural choice to use to
analyze the bilinear form a. In applications, the energy norm fits with the
notion of energy in mechanics and physics.

241.1. Determine a and L for (216.9), (??), and (240.1).

241.3 The Lax-Milgram theorem

We now state and prove the basic Lax-Milgram theorem.
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Theorem 241.1 Suppose a(·, ·) is a continuous, V-elliptic bilinear form
on the Hilbert space V and L is a continuous linear functional on V . Then
there is a unique element u ∈ V satisfying (241.1). Moreover, the following
stability estimate holds

‖u‖V ≤ κ3
κ1
. (241.5)

Recall that the bilinear forms a associated to the two-point boundary
value problem (216.9) and to Poisson’s equation (240.1) are symmetric, i.e.

a(v, w) = a(w, v) for all v, w ∈ V.

Symmetric problems have additional structure that make the proof of the
Lax-Milgram theorem easier, and this is the case we consider now. We treat
the non-symmetric case in the companion volume, see also Renardy and
Rogers ([?]).
If a is symmetric, then the variational problem (241.1) is equivalent to

the minimization problem: find u ∈ V such that

F (u) ≤ F (v) for all v ∈ V, (241.6)

where F (v) = a(v, v)/2− L(v). We state and prove this equivalence in the
following theorem.

Theorem 241.2 An element u ∈ V satisfies (241.1) if and only if u sat-
isfies (241.6).

Proof: Assume first that u ∈ V satisfies (241.6). Choose v ∈ V and con-
sider the function g(ǫ) = F (u + ǫv) for ǫ ∈ R. By (241.6) we know that
g(ǫ) ≥ g(0) for ǫ ∈ R, so that g′(0) = 0 if g′(0) exists. But, differentiating
the expression g(ǫ) = (a(u, u) + ǫ(a(u, v) + a(v, u)) + ǫ2a(v, v))/2−L(u)−
ǫL(v) with respect to ǫ and setting ǫ = 0, gives a(u, v) − L(v) = 0, and
(241.1) follows. Note that the symmetry of a(·, ·) is crucial to this argument.
Conversely, if (241.1) is satisfied, then for all w ∈ V ,

F (u + w) =
1

2
a(u, u) + a(u,w) +

1

2
a(w,w) − L(u)− L(w)

= F (u) +
1

2
a(w,w) ≥ F (u),

with equality only if w = 0, which proves (241.6). �
We now prove the Lax-Milgram theorem for symmetric a(·, ·) by using

the equivalence of (241.1) and (241.6).

Proof: Since we have assumed that the energy norm and the norm of V
are equivalent in (241.2) and (241.3), without loss of generality, we can take
(·, ·)V to be a(·, ·), so that a(v, v) = ‖v‖2V , and κ1 = κ2 = 1.
We consider the set of real numbers that can be obtained as the limit of

sequences {F (uj)} with uj ∈ V . We observe that this set is bounded below
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by −1/2 since F (v) ≥ ‖v‖2V /2 − ‖v‖V ≥ −1/2 for all v ∈ V . We claim
that the set of limits of {F (uj)} contains a smallest real number and we
denote this number by β. Clearly, β ≥ −1/2 if β exists. Now, the existence
of β follows from the basic property of the real numbers that a set of real
numbers that is bounded below has a greatest lower bound. In other words,
there is a largest real number that is smaller or equal to all numbers in the
set, which in our case is the number β. This property is equivalent to the
property of convergence of a Cauchy sequence of real numbers. As another
example, the set of positive real numbers ξ such that ξ2 > 2 is clearly
bounded below and its largest lower bound is nothing but

√
2. See Rudin

([?]) for more details.
Accepting the existence of β, we also know that β ≤ F (0) = 0, and thus

−1/2 ≤ β ≤ 0. Now let {uj} be a minimizing sequence for the minimization
problem (241.6), i.e. a sequence such that

F (uj) → β as j → ∞. (241.7)

We prove that {uj} is a Cauchy sequence in the sense that for any given
ǫ > 0 there is a natural number Nǫ such that

‖ui − uj‖V < ǫ if i, j ≥ Nǫ. (241.8)

Since V is complete, there is a u ∈ V such that ‖u−uj‖ → 0 as j → ∞. By
the continuity properties of F , it follows that F (u) = β. and thus u ∈ V
is a solution of (241.6) and therefore (241.1). The uniqueness follows from
the last inequality of the proof of Theorem 241.2 above.
To prove that the minimizing sequence is a Cauchy sequence, we note

that (241.7) implies that for any ǫ > 0 there is a Nǫ such that

F (uj) ≤ β +
ǫ2

8
if j ≥ Nǫ. (241.9)

We use the parallelogram law

‖ui − uj‖2V = 2‖ui‖2V + 2‖uj‖2V − ‖ui + uj‖2V ,

together with the definition of F (v), the definition of β, and (241.9), to
argue

1

4
‖ui − uj‖2V = F (ui) + F (uj)− 2F

(
1

2
(ui + uj)

)

≤ F (ui) + F (uj)− 2β ≤ ǫ2

4
,

proving (241.8).
Finally, the stability estimate follows immediately after taking v = u in

(241.1) and using the V -ellipticity and the continuity of L. �.



1752 241. The Power of Abstraction

241.4 The abstract Galerkin method

We consider Galerkin’s method in abstract form applied to the problem
(241.1): given a finite dimensional space Vh ⊂ V , find U ∈ Vh such that

a(U, v) = L(v) for all v ∈ Vh. (241.10)

This leads to a linear system of equations whose size is determined by
the dimension of Vh. We could for example choose Vh to be the space of
polynomials of a fixed degree or less, the space of trigonometric functions
with integer frequencies up to a fixed maximum, or in the case of the finite
element method, the space of piecewise polynomial functions. We note that
since Vh ⊂ V , we have the familiar Galerkin orthogonality:

a(u− U, v) = 0 for all v ∈ Vh. (241.11)

The basic a priori error estimate reads:

Theorem 241.3 If u and U satisfy (241.1) and (241.10) then for all v ∈
Vh,

‖u− U‖V ≤ κ2
κ1

‖u− v‖V .

If the norm ‖ · ‖V is equal to the energy norm ‖ · ‖a, then

‖u− U‖a ≤ ‖u− v‖a, (241.12)

which expresses the optimality of Galerkin’s method in the energy norm.

Proof: The V -ellipticity and continuity of a together with Galerkin or-
thogonality implies that for all v ∈ Vh,

κ1‖u− U‖2V ≤ a(u− U, u− U) = a(u− U, u− U) + a(u− U,U − v)

= a(u− U, u− v) ≤ κ2‖u− U‖V ‖u− v‖V ,

which proves the desired result. �

241.2. Prove (241.12). Prove that the solution U of (241.10) satisfies the follow-
ing analog of (241.5): ‖U‖V ≤ κ3/κ1.

241.5 Applications

We now present some basic applications of the Lax-Milgram theorem. In
each case, we need to specify a, L and V and show that the assumptions of
the Lax-Milgram theorem are satsified. Usually, the main issue is to verify
the V -ellipticity of the bilinear form a. We illustrate some tools for this
purpose in a series of examples.
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241.5.1 A problem with Neumann boundary conditions

As a first example, we consider Poisson’s equation with an absorption term
together with Neumann boundary conditions as given in Problem 240.34,

{
−∆u+ u = f in Ω,

∂nu = 0 on Γ,
(241.13)

where Ω is a bounded domain in Rd with boundary Γ. This problem takes
the variational form (241.1) with

a(v, w) =

∫

Ω

(
∇v · ∇w + vw

)
dx, L(v) =

∫

Ω

fv dx, (241.14)

and

V =

{
v :

∫

Ω

(
|∇v|2 + v2

)
dx <∞

}
. (241.15)

The issue is to verify that the assumptions of the Lax-Milgram theorem
are satisfied with these choices.
Clearly, V has natural scalar product and norm

(v, w)V =

∫

Ω

(
∇v · ∇w + vw

)
dx, ‖v‖V =

(∫

Ω

(
|∇v|2 + v2

)
dx

)1/2

.

It turns out that V is complete, a fact ultimately based the completeness
of R, and therefore V is a Hilbert space. Further, we note that (241.2) and
(241.3) trivially hold with κ1 = κ2 = 1. Finally, to show (241.4), we note
that

|L(v)| ≤ ‖f‖L2(Ω)‖u‖L2(Ω) ≤ ‖f‖L2(Ω)‖u‖V ,
which means that we may take κ3 = ‖f‖L2(Ω) provided we assume that
f ∈ L2(Ω). We conclude that the Lax-Milgram theorem applies to (241.13).

241.5.2 The spaces H1(Ω) and H1
0 (Ω)

The space V defined in (241.15) naturally occurs in variational formulations
of second order elliptic differential equations and it has a special notation:

H1(Ω) =

{
v :

∫

Ω

(
|∇v|2 + v2

)
dx <∞

}
, (241.16)

while the scalar product and norm are denoted by

(v, w)H1(Ω) =

∫

Ω

(
∇v · ∇w + vw

)
dx,

and the associated norm

‖v‖H1(Ω) =
(∫

Ω

(
|∇v|2 + v2

)
dx
)1/2

.
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The space H1(Ω) is the Sobolev space of functions on Ω that are square
integrable together with their gradients, named after the Russian math-
ematician Sobolev (1908-1994). The index one refers to the fact that we
require first derivatives to be square integrable.
We also use the subspace H1

0 (Ω) of H
1(Ω) consisting of the functions in

H1(Ω) that vanish on the boundary Γ of Ω:

H1
0 (Ω) =

{
v ∈ H1(Ω) : v = 0 on Γ

}
.

We motivate below why this is a Hilbert space with the same norm and
scalar product as H1(Ω).

241.3. (a) Find r such that xr ∈ H1(0, 1) but xs 6∈ H1(0, 1) for any s < r. (b)
With Ω = {x : |x| ≤ 1} denoting the unit disk, find conditions on r such that
|x|r ∈ H1(Ω) but |x|s 6∈ H1(Ω) for any s < r.

241.4. Define H2(Ω) and find a function that is in H1(Ω) but not in H2(Ω)
where Ω is the unit disk.

241.5.3 Poisson’s equation with Dirichlet boundary conditions

The first elliptic problem in several dimensions we studied was Poisson’s
equation with homogeneous Dirichlet boundary conditions posed on a bounded
domain Ω ⊂ R2 with boundary Γ:

{
−∆u = f in Ω,

u = 0 on Γ.

This problem has the variational formulation (241.1) with V = H1
0 (Ω) and

a(v, w) =

∫

Ω

∇v · ∇w dx, L(v) =

∫

Ω

fv dx.

In this case the V -ellipticity of a does not follow automatically from the
definition of the norm in V = H1

0 (Ω) as above, because the bilinear form
a(v, v) in this case does not contain the term

∫
Ω v

2 dx contained in the
squared V norm. Further, we need to show that it makes sense to impose
the boundary condition v = 0 on Γ for functions v in V = H1(Ω), which is
the essential issue in proving that H1

0 (Ω) is a Hilbert space.
To verify the V -ellipticity we use the Poincaré-Friedrichs inequality,

which states that the L2(Ω)-norm of a function v ∈ H1(Ω) can be esti-
mated in terms of the L2(Ω)-norm of the gradient ∇v plus the L2(Γ)-norm
of the restriction of v to the boundary Γ. The corresponding theorem in
one dimension for an interval (0, 1) states that

‖v‖2L2(0,1)
≤ 2
(
v(0)2 + ‖v′‖2L2(0,1)

)
. (241.17)
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This inequality is proved easily by integrating the inequality

v2(x) =
(
v(0) +

∫ x

0

v′(y) dy
)2 ≤ 2

(
v2(0) +

∫ 1

0

(v′(y))2 dy
)

for 0 ≤ x ≤ 1, which is obtained by using Cauchy’s inequality and the fact
that (a+ b)2 ≤ 2(a2 + b2). The result for higher dimensions is

Theorem 241.4 There is a constant C depending on Ω such that for all
v ∈ H1(Ω),

‖v‖2L2(Ω) ≤ C
(
‖v‖2L2(Γ)

+ ‖∇v‖2L2(Ω)

)
. (241.18)

241.5. (a) Prove (241.18). Hint: Take ϕ = |x|2/(2d) where Ω ⊂ Rd, so ∆ϕ = 1
and use the fact that

∫

Ω

v2∆ϕdx =

∫

Γ

v2∂nϕds−
∫

Ω

2v∇v · ∇ϕdx. (241.19)

(b) Give a different proof for square domains of the form {x ∈ R2 : |xi| ≤ 1}
analogous to the proof in one dimension by directly representing u in Ω through
line integrals starting at Γ.

For functions v ∈ H1(Ω) with v = 0 on Γ, i.e., ‖v‖L2(Γ) = 0, Poincaré-
Friedrichs’ inequality implies

‖v‖2H1(Ω) = ‖∇v‖2L2(Ω) + ‖v‖2L2(Ω) ≤ (1 + C)‖∇v‖2L2(Ω) = (1 + C)a(v, v),

which proves the V -ellipticity (241.2) with κ1 = (1 + C)−1 > 0.
Since (241.3) and (241.4) follow exactly as in the case of Neumann bound-

ary conditions considered above, it now remains to show that the space
H1

0 (Ω) is a well defined Hilbert space, that is, we need to show that a func-
tion in H1

0 (Ω) has well defined values on the boundary Γ. We start noting
that it is in general impossible to uniquely define the boundary values of
a function v in L2(Ω). This is because by changing a function v ∈ L2(Ω)
only very close to the boundary, we can significantly change the boundary
values of v without much changing the L2(Ω) norm. This is reflected by
the fact that there is no constant C such that ‖v‖L2(Γ) ≤ C‖v‖L2(Ω) for
all functions v ∈ L2(Ω). However, if we change L2(Ω) to H1(Ω), such an
equality holds, and therefore a function v in H1(Ω) has well defined bound-
ary values, i.e., the trace of v ∈ H1(Ω) on the boundary Γ is well defined.
This is expressed in the following trace inequality:

Theorem 241.5 If Ω is a bounded domain with boundary Γ, then there is
a constant C such that for all v ∈ H1(Ω),

‖v‖L2(Γ) ≤ C‖v‖H1(Ω). (241.20)

241.6. Prove this. Hint: choose ϕ such that ∂ϕ = 1 on Γ and use (241.19).
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241.7. Prove that there is no constant C such that ‖v‖L2(Γ) ≤ C‖v‖L2(Ω) for
all v ∈ L2(Ω).

The trace inequality shows that a function v in H1(Ω) has well defined
boundary values and in particular the boundary condition v = 0 on Γ
makes sense, and it follows that H1

0 (Ω) is a Hilbert space.
Note that (241.18) implies that we may use the energy norm ‖∇v‖L2(Ω) =√
a(v, v) as an equivalent norm on V = H1

0 (Ω). As we said, choosing this
norm, (241.2) and (241.3) hold with κ1 = κ2 = 1.

241.8. Verify that the assumptions of the Lax-Milgram theorem are satisfied for
the following problems with appropriate assumptions on α and f :

(a)

{
−u′′ + αu = f in (0, 1),

u(0) = u′(1) = 0, α = 0 and 1.

(b)

{
−u′′ = f in (0, 1),

u(0)− u′(0) = u(1) + u′(1) = 0.

241.9. Verify that the assumptions of the Lax-Milgram theorem are satisfied for
the beam problem:

d4u

dx4
= f in (0, 1),

with the boundary conditions; (a) u(0) = u′(0) = u(1) = u′(1) = 0, (b) u(0) =
u′′(0) = u′(1) = u′′′(1) = 0, (c) u(0) = −u′′(0) + u′(0) = 0, u(1) = u′′(1) +
u′(1) = 0; under appropriate assumptions on f . Give mechanical interpretations
of the boundary conditions.

241.6 Remark

We saw earlier that if f ∈ L2(Ω) then (241.4) holds with V = H1(Ω) and
κ3 = ‖f‖L2(Ω). We may ask what is the weakest assumption on the right-
hand side f that allows (241.4) to hold with κ3 <∞. In true mathematical
style, we answer this by defining a weak H−1(Ω) norm of f ,

‖f‖H−1(Ω) = sup
v∈H1

0 (Ω)

(f, v)

‖v‖V
,

where V = H1
0 (Ω) using the equivalent norm ‖v‖H1

0(Ω) = ‖∇v‖L2(Ω). By
definition, (241.4) holds with κ3 = ‖f‖H−1(Ω). By (241.18), the norm ‖ ·
‖H−1(Ω) may be dominated by the L2(Ω) norm:

‖f‖H−1(Ω) ≤
‖f‖L2(Ω) ‖v‖L2(Ω)

‖∇v‖L2(Ω)
≤

√
C‖f‖L2(Ω);

In fact, the H−1(Ω) norm is weaker than the L2(Ω) norm, which allows us
to use right-hand sides f(x) in Poisson’s equation that do not belong to
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L2(Ω), such as the “near point load” used in the tent problem considered
in Chapter ??.

241.10. Show that Lax-Milgram applies to problem (241.13) with Ω = {x ∈
R2 : |x| < 1} and f(x) = |x|−1, although in this case f /∈ L2(Ω).

241.6.1 Non-homogeneous boundary data

Generally, nonhomogeneous boundary data is incorporated into the linear
form L along with the right-hand side f . For example, recalling the discus-
sion on Neumann/Robin boundary conditions in Chapter ??, we see that
the problem −∆u+u = f in Ω posed with nonhomogeneous Neumann con-
ditions ∂nu = g on Γ takes the variational form (241.1) with V = H1(Ω),
a(u, v) defined as in (241.14) and

L(v) =

∫

Ω

fv dx+

∫

Γ

gv ds.

The continuity of L(·) follows assuming f ∈ H−1(Ω) and g ∈ L2(Γ).

241.11. Prove the last claim.

241.12. Formulate the variational problem associated to Poisson’s equation with
non-homogeneous Dirichlet boundary conditions given by g on Γ.

241.13. Show that the Lax-Milgram theorem applies to the problem −∆u+αu =
f in Ω, ∂nu+ σu = g on Γ, for (a) α = 1 and σ = 0, (b) α = 0 and σ = 1. What
can be said in the case α = σ = 0.

241.6.2 A diffusion dominated convection-diffusion problem

The convection-diffusion problem
{
−ǫ∆u+ β · ∇u+ αu = f in Ω,

u = 0 on Γ,
(241.21)

where Ω is domain in Rd with boundary Γ, ǫ > 0 is constant, and β(x)
and α(x) are given coefficients, takes the variational form (241.1) with
V = H1

0 (Ω) and

a(u, v) =

∫

Ω

(
ǫ∇u · ∇v + β · ∇u v + αu v

)
dx, L(v) =

∫

Ω

fv dx.

In this case, a(·, ·) is not symmetric because of the convection term. To
guarantee ellipticity we assume recalling (247.9) that − 1

2∇ · β + α ≥ 0 in
Ω, which by (247.13) guarantees that for all v ∈ H1

0 (Ω),
∫

Ω

(
β · ∇v v + αv2

)
dx ≥ 0.
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It follows that a(v, v) ≥ 0 and the assumptions of the Lax-Milgram theorem
hold, but the stability estimate degrades with decreasing ǫ so that the
theorem is mostly relevant for diffusion-dominated problems.

241.14. Prove the preceding statement with specific focus on the dependence of
the constants on ǫ.

241.6.3 Linear elasticity in R3

No body is so small that it is without elasticity. (Leibniz)

As an example of a problem in R3, we let Ω be a bounded domain in R3 with
boundary Γ split into two parts Γ1 and Γ2 and consider the basic problem
of linear elasticity modeled by Cauchy-Navier’s elasticity equations: find
the displacement u = (ui)

3
i=1 and the stress tensor σ = (σij)

3
i,j=1 satisfying





σ = λdiv @, u I + 2µǫ(u) in Ω,

−div @, σ = f in Ω

u = 0 on Γ1,

σ · n = g on Γ2,

(241.22)

where λ and µ are positive constants called the Lamé coefficients, ǫ(u) =

(ǫij(u))
3
i,j=1 is the strain tensor with components

ǫij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
,

div @, σ =




3∑

j=1

∂σij
∂xj




3

i=1

and div @, u =
3∑

i=1

∂ui
∂xi

,

I = (δij)
3
i,j=1 with δij = 1 if i = j and δij = 0 if i 6= j, f ∈ [L2 (Ω)]

3

and g ∈ [L2 (Γ1)]
3
are given loads, n = (nj) is the outward unit normal to

Γ1, and (σ · n)i =
∑3

j=1 σijnj. For simplicity, we assume that λ and µ are
constant. The equations (241.22) express Hooke’s law connecting stresses
and strains and the equilibrium equation stating equilibrium of external
and internal forces.
The problem has the variational form (241.1) with the choices:

V =
{
v ∈

[
H1(Ω)

]3
: v = 0 on Γ1

}
,

a(u, v) =

∫

Ω

(λdiv @, u div @, v + 2µǫ(u) : ǫ(v)) dx,

L(v) =

∫

Ω

f · v dx+

∫

Γ1

g · v ds,
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where ǫ(u) : ǫ(v) =
∑3

i,j=1 ǫij(u)ǫij(v). We note that the bilinear form a
has the form of “virtual work”,

a (u, v) =

∫

Ω

σ(u) : ǫ(v) dx,

where σ(u) = λdiv @, u I + 2µǫ(u). To prove V -ellipticity, we use Korn’s
inequality. For simplicity, we assume that Γ1 = Γ.

Theorem 241.6 There is a constant c such that for all v ∈ [H1
0 (Ω)]

3,

3∑

i,j=1

∫

Ω

ǫij(v)ǫij(v)dx ≥ c

3∑

i=1

‖vi‖2H1(Ω).

Proof Using the notation vi,j = ∂vi/∂xj , vi,jl = ∂2vi/∂xj∂xl, etc.,

3∑

i,j=1

ǫij(v)ǫij(v) =
3∑

i,j=1

1

2
vi,jvi,j +

3∑

i,j=1

1

2
vi,jvj,i.

Integrating the second term on the right and then using integration by
parts, we get

3∑

i,j=1

∫

Ω

vi,jvj,i dx =

∫

Γ

vi,jvjni ds−
∫

Ω

vi,jivj dx

=

3∑

i,j=1

∫

Γ

vi,jvjni ds−
∫

Γ

vi,ivjnj ds+

∫

Ω

vi,ivj,j dx

=

3∑

i,j=1

∫

Ω

vi,ivj,j dx,

since v = 0 on Γ. We conclude that

3∑

i,j=1

∫

Ω

ǫij(v)ǫij(v) dx =
1

2

3∑

i,j=1

∫

Ω

(
vi,j
)2
dx+

1

2

∫

Ω

( 3∑

i=1

vi,i
)2
dx.

The desired inequality follows using Poincaré’s inequality to bound the L2

norm of vi in terms of the L2 norm of ∇vi. �

241.15. Provide the last details.

241.16. Solve the Cauchy-Navier elasticity equations for the cantilever beam
in two dimensions using Femlab. Compare with analytic solutions of the beam
equation.
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241.6.4 The Stokes equations

The Stokes equations for stationary incompressible creeping fluid flow with
zero velocity boundary conditions read: find the velocity u = (ui)

3
i=1, total

stress σ = (σij)
3
i,j=1, and the pressure p such that





σ = −pI + 2µǫ(u) in Ω,

−div @, σ = f in Ω,

div @, u = 0 in Ω,

u = 0 on Γ,

Eliminating the stress σ gives




−µ∆u+∇p = f in Ω,

div @, u = 0 in Ω,

u = 0 on Γ.

(241.23)

This can be formulated in variational form (241.1) with

V =
{
v ∈ [H1(Ω)]3 : div@, u = 0 in Ω

}
,

a(u, v) =

∫

Ω

3∑

i=1

∇ui · ∇vi dx, and L(v) =
∫

Ω

f · v dx.

The picture on the cover of the book shows streamlines of Stokes flow
around a sphere.

241.17. Prove that the assumptions of the Lax-Milgram theorem hold in this
case. this.

241.18. Extend the mechanical models of Section ?? to several dimensions.

Note that the stationary Navier-Stokes equations are obtained by adding
the term (∇ · u)u to the first equation in (241.23).

241.7 A strong stability estimate for Poisson’s
equation

We conclude this chapter by proving the strong stability estimate (240.6)
for solutions to Poisson’s equation that we used in the proofs of the L2

error estimates for elliptic and parabolic problems. The estimate shows
that the L2(Ω) norm of all second derivatives of a function v vanishing
on the boundary of a convex domain are bounded by the L2(Ω) norm of
the particular combination of second derivatives given by the Laplacian.
For simplicity, we consider the case of a convex domain in the plane with
smooth boundary.
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Theorem 241.7 If Ω is a bounded domain in R2 with smooth boundary Γ
then for all smooth functions v with v = 0 on Γ,

3∑

i,j=1

∫

Ω

(
D2v

)2
dx +

∫

Γ

1

R

( ∂v
∂n

)2
ds =

∫

Ω

(∆v)2 dx,

where R(x) is the radius of curvature of Γ at x ∈ Γ with R(x) ≥ 0 if Ω is
convex, see Fig. 241.1.

x 1

x 2

x 2
=g

(x 1
)

x=
(0

,0
)R(x

)

FIGURE 241.1. The radius of curvature and the local coordinate system near a
point x on Γ.

Proof: We use the notation v(i) = ∂v/∂xi, v(ij) = ∂2v/∂xi∂xj , etc.. As-
suming that v is smooth with v = 0 on Γ, integration by parts gives

∫

Ω

∆v∆v dx =

3∑

i,j=1

∫

Ω

v(ii)v(jj) dx

=

3∑

i,j=1

∫

Γ

v(i)v(jj)ni ds−
3∑

i,j=1

∫

Ω

v(i)v(ijj) dx

=

3∑

i,j=1

∫

Γ

(
v(i)v(jj)ni − v(i)v(ij)nj

)
ds+

3∑

i,j=1

∫

Ω

v(ij)v(ij) dx.

Recalling the definition of D2v from Chapter ??

∫

Ω

(
(∆v)2 − (D2v)2

)
dx =

3∑

i,j=1

∫

Γ

(
v(i)v(jj)ni − v(i)v(ij)nj

)
ds.

To evaluate the integrand on the right at a point x ∈ Γ, we use the fact that
the integrand is invariant under orthogonal coordinate transformations. We
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may assume that x = (0, 0) and that in a neighborhood of x, the graph
of Γ is described by the equation x2 = g(x1) in a local coordinate system,
see Fig. 241.1. Since v = 0 on Γ, we have v(x1, g(x1)) = 0 for x1 in some
neighborhood of 0 and thus by differentiation with respect to x1, we find
that

v(1) + v(2)g
′(x1) = 0,

v(11) + 2v(12)g
′(x1) + v(22)(g

′(x1))
2 + v(2)g

′′(x1) = 0.

Since g′(0) = 0 and, by the definition of the radius of curvature, g′′(0) =
1/R(0), we conclude that

v(1)(0, 0) = 0

v(11)(0, 0) = −v(2)(0, 0)/R(0).

At x = (0, 0), since n = (0,−1)⊤ at that point,

3∑

i,j=1

(
v(i)v(jj)ni − v(i)v(ij)nj

)
= −v(2)(v(1)1 + v(22)) + v(2)v(22)

= −v(2)v(11) =
(
v(2)
)2
/R =

(
∂v/∂n

)2
/R.

and the statement of the theorem follows. �

241.19. (A maximum principle). Prove that if u is continuous in Ω ∪ Γ, where
Ω is a domain with boundary Γ, and ∆u(x) ≥ 0 for x ∈ Ω, then u attains its
maximum on the boundary Γ. Hint: consider first the case that ∆u(x) > 0 for
x ∈ Ω and arrive at a contradiction by assuming a maximum is attained in Ω
that is not on Γ by using the fact that at such a point, the second derivatives
with respect to xi cannot be positive. Extend this to the case ∆u(x) ≥ 0 by
considering the function uǫ(x) = u(x) + ǫ|x − x̄|2, which for ǫ > 0 sufficiently
small also has an interior maximum.

241.20. Consider the problem





−(u(11) − u(12) + 2u(22)) + u(1) + u = f in Ω,

u = 0 on Γ1,

u(1)n1 − 1
2
u(1)n2 − 1

2
u(2)n1 + u(2)n2 + u = g on Γ2.

Give a variational formulation of this problem and show that the conditions in
the Lax-Milgram lemma (except symmetry) are satisfied.

Ein jeder Geist steht vor den ganzen Bau der Dinge,
Als ob die Fernung sich in einen Spiegel bringe,
Nach jeden Augenpunct, verdunckelt oder klar,
Er ist ein Bild, wie er ein Zweck der Schöpfung war
(Leibniz, at the funeral of Queen Sophie Charlotte, 1705)
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FIGURE 241.2. Queen Sophie Charlotte von Brandenburg, gifted student of Leib-
niz’s philosophy.
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242
Heat Equation Analysis

The simpler a hypothesis is, the better it is. (Leibniz)

Thus then, we are led to the conception of a complicated mech-
anism capable of a vast variety of motion... Such a mechanism
must be subject to the general laws of Dynamics, and we ought
to be able to work out all the consequences of its motion, pro-
vided we know the form of the relation between the motions of
the parts... We now proceed to investigate whether the proper-
ties of that which constitutes the electromagnetic field, deduced
from electromagnetic phenomena alone, are sufficient to explain
the propagation of light through the same substance. (Maxwell)

242.1 Introduction

In this chapter, we consider the numerical solution of the heat equation,
which is the prototype of a linear parabolic partial differential equation.
Recall that we originally derived the heat equation in Chapter ?? to model
heat flow in a conducting object. More generally, the same equation may
be used to model diffusion type processes. From a quite different point of
view, we begin this chapter by deriving the heat equation as a consequence
of Maxwell’s equations under some simplifying assumptions. After that, we
recall some of the properties of solutions of the heat equation, focussing on
the characteristic parabolic “smoothing” and stability properties. We then
proceed to introduce a finite element method for the heat equation, derive
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a posteriori and a priori error estimates and discuss adaptive error control.
The analysis follows the basic steps used in the analysis of the parabolic
model problem in Chapter ?? and of Poisson’s equation in Chapter ??.

242.2 Maxwell’s equations

We met in the previous chapter a special case of Maxwell’s equations in
the form of Poisson’s equation for an electric potential in electrostatics.
Here, we consider another special case that leads to a parabolic problem
for a magnetic potential, which in the simplest terms reduces to the heat
equation. Another important special case gives rise to the wave equation
studied in Chapter ??.
It is remarkable that the complex phenomena of interaction between

electric and magnetic fields can be described by the relatively small set of
Maxwell’s equations:





∂B

∂t
+∇× E = 0,

−∂D
∂t

+∇×H = J,

∇ · B = 0, ∇ ·D = ρ,

B = µH, D = ǫE, J = σE,

(242.1)

where E is the electric field, H is the magnetic field, D is the electric
displacement, B is the magnetic flux, J is the electric current, ρ is the
charge, µ is the magnetic permeability, ǫ is the dielectric constant, and σ
is the electric conductivity. The first equation is referred to as Faraday’s
law, the second is Ampère’s law, ∇ · D = ρ is Coulomb’s law, ∇ · B = 0
expresses the absence of “magnetic charge”, and J = σE is Ohm’s law.
Maxwell included the term ∂D/∂t for purely mathematical reasons and
then using calculus predicted the existence of electromagnetic waves before
these had been observed experimentally. We assume to start with that
∂D/∂t can be neglected; cf. Problem 242.1 and Problem 245.11.
Because∇·B = 0, B can be written as B = ∇×A, where A is a magnetic

vector potential. Inserting this into Faraday’s law gives

∇×
(
∂A

∂t
+ E

)
= 0,

from which it follows that

∂A

∂t
+ E = ∇V,

for some scalar potential V . Multiplying by σ and using the laws of Ohm
and Ampère, we obtain a vector equation for the magnetic potential A:

σ
∂A

∂t
+∇×

(
µ−1∇×A

)
= σ∇V.
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To obtain a scalar equation in two variables, we assume thatB = (B1, B2, 0)
is independent of x3. It follows that A has the form A = (0, 0, u) for some
scalar function u that depends only on x1 and x2, so that B1 = ∂u/∂x2
and B2 = −∂u/∂x1, and we get a scalar equation for the scalar magnetic
potential u of the form

σ
∂u

∂t
−∇ ·

(
µ−1∇u

)
= f, (242.2)

for some function f(x1, x2). This is a parabolic equation with variable co-
efficients σ and µ. Choosing σ = µ = 1 leads to the heat equation:





∂
∂tu(x, t)−∆u(x, t) = f(x, t) for x ∈ Ω, 0 < t ≤ T,

u(x, t) = 0 for x ∈ Γ, 0 < t ≤ T,

u(x, 0) = u0(x) for x ∈ Ω,

(242.3)

where Ω ⊂ R2 with boundary Γ, and we posed homogeneous Dirichlet
boundary conditions.

242.1. What equation is obtained if ∂D/∂t is not neglected, but the x3 indepen-
dence is kept?

242.2. Show that the magnetic field H around a unit current along the x3-axis

is given by 1
2π|x| (−x2, x1, 0), where |x| = (x2

1 + x2
2)

1
2 .

242.3 The basic structure of solutions of the heat
equation

The structure of solutions of the heat equation is closely related to the
properties of solutions of the initial value problems discussed in Chapter
212.1 and the boundary value problems discussed in Chapters ?? and ??.
For some domains the method of separation of variables can be employed

to find analytic solutions of the heat equation in terms of series expansions
into eigenfunctions. We illustrate this approach for the one-dimensional,
homogeneous heat equation





u̇(x, t)− u′′(x, t) = 0 for 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0 for t > 0,

u(x, 0) = u0(x) for 0 < x < π.

(242.4)

We start by seeking solutions of the differential equation and the boundary
conditions in (252.27) of the form u(x, t) = ϕ(x)ψ(t) with ϕ(0) = ϕ(π) = 0.
Substituting this into (252.27) and separating the functions depending on
x and t, gives

ψ̇(t)

ψ(t)
=
ϕ′′(x)
ϕ(x)

.
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Since x and t are independent variables, each fraction must be equal to the
same constant −λ ∈ R and we are led to the eigenvalue problem

{
−ϕ′′(x) = λϕ(x) for 0 < x < π,

ϕ(0) = ϕ(π) = 0,
(242.5)

and the initial value problem

{
ψ̇(t) = −λψ(t) for t > 0,

ψ(0) = 1,
(242.6)

where ψ(0) is normalized to 1. Thus, seeking solutions in the form of a prod-
uct of functions of one variable decouples the partial differential equation
into two ordinary differential equations. It is important to this technique
that the differential equation is linear, homogeneous, and has constant co-
efficients.
The problem (242.5) is an eigenvalue problem with eigenfunctions ϕj(x) =

sin(jx) and corresponding eigenvalues λj = j2, j = 1, 2, ... For each eigen-
value, we can solve (242.6) to get the corresponding solution ψ(t) = exp(−j2t).
We obtain a set of solutions {exp(−j2t) sin(jx)} of (252.27) with corre-
sponding initial data {sin(jx)} for j = 1, 2, .., which are called the eigen-
modes. Each eigenmode decays exponentially as time passes and the rate
of decay increases with the frequency j. We illustrate this in Fig. 252.8.
Any finite linear combination of eigenmodes

1 = e-t sin(x)

t0
1

2
3

x

0

.5

1

3 = e-9t sin(3x)

t0
1

2
3

x
0

-1

-.5

0

.5

1

FIGURE 242.1. The solutions of the heat equation corresponding to frequencies
j = 1 and j = 3.

J∑

j=1

aj exp(−j2t) sin(jx),
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with coefficients aj ∈ R, is a solution of the homogeneous heat equation
corresponding to the initial data

u0(x) =

J∑

j=1

aj sin(jx). (242.7)

More generally, if the initial data u0 has a convergent Fourier series,

u0(x) =

∞∑

j=1

u0,j sin(jx),

with Fourier coefficients given by u0,j = 2π−1
∫ π
0 u0(x) sin(jx) dx, then the

function defined by

u(x, t) =

∞∑

j=1

u0,j exp(−j2t) sin(jx), (242.8)

solves u̇ − u′′ = 0. This is seen by differentiating the series term by
term, which is possible because the coefficients u0,j exp(−j2t) decrease very
quickly with j as long as t > 0. Moreover u(0) = u(π) = 0, so to show that
u is a solution of (252.27), we only have to check that u(x, t) equals the
initial data u0 at t = 0. If we only require that u0 ∈ L2(0, π), then it is
possible to show that

lim
t→0

‖u(·, t)− u0‖ = 0. (242.9)

If u0 has additional smoothness and also satisfies the boundary conditions
u0(0) = u0(π) = 0 (which is not required if we only assume that u0 ∈
L2(0, π)), then the initial data is assumed in the stronger pointwise sense,
i.e.

lim
t→0

u(x, t) = u0(x) for 0 < x < π. (242.10)

Recalling that the rate at which a function’s Fourier coefficients tends to
zero reflect the smoothness of the function, we see from the solution formula
(252.30) that a solution u(x, t) of the homogeneous heat equation becomes
smoother with increasing time. This is known as parabolic smoothing. We
illustrate the smoothing in Fig. 242.2, where we plot the solution starting
with the discontinuous function

u0(x) =

{
x, 0 ≤ x ≤ π/2,

x− π, π/2 < x ≤ π,

at various times (the solution formula is given in Problem 242.3). This
corresponds well with intuition about a diffusive process in which sharp
features are smoothed out for positive time. Nonsmooth functions have
slowly decreasing Fourier coefficients, so that the Fourier coefficients of the
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x
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FIGURE 242.2. The evolution of discontinuous initial data for the heat equation.

high modes with j large are relatively large compared to those of smooth
functions. As soon as t > 0, these high modes are damped rapidly because
of the presence of the factor exp(−j2t), and the solution becomes smoother
as t increases.

242.3. Verify the following formulas for the solutions of the heat equation corre-
sponding to the indicated initial data:

1. u0(x) = x(π − x),

u(x, t) =
∞∑

j=1

8

(2j − 1)3
e−(2j−1)2t sin((2j − 1)x).

2. u0(x) =

{
x, 0 ≤ x ≤ π/2

π − x, π/2 < x ≤ π
,

u(x, t) =

∞∑

j=1

4(−1)j+1

π(2j − 1)2
e−(2j−1)2t sin((2j − 1)x).

3. u0(x) =

{
x, 0 ≤ x ≤ π/2

x− π, π/2 < x ≤ π
,

u(x, t) =

∞∑

j=1

(−1)j+1

j
e−4j2t sin(2jx).

242.4. Find a formula for the solution of (252.27) with the Dirichlet boundary
conditions replaced by the Neumann conditions u′(0) = 0 and u′(π) = 0. Hint: the
series expansion is in terms of cosine functions. Do the same with the boundary
conditions u(0) = 0 and u′(π) = 0.
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242.5. (a) Prove (242.10) assuming that
∑∞
j=1 |u0,j | < ∞. (b) Prove (242.9)

assuming that u0 ∈ L2(0, π), that is
∑∞
j=1 |u0,j |2 <∞.

242.6. (Strauss ([?])) Waves in a resistant

medium are described by the problem






ü(x, t) + cu̇(x, t)− u′′(x, t) = 0, 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0, t > 0,

u(x, 0) = u0(x), 0 < x < π,

where c > 0 is a constant. Write down a series expansion for the solution using
separation of variables. Can you say something about the behavior of the solution
as time passes?

242.7. Give the Fourier series formula for the solution of the homogeneous heat
equation (242.3) posed on the unit square Ω = (0, 1)× (0, 1). Hint: first use sepa-
ration of variables to get an ordinary differential equation in t and an eigenvalue
problem for the Laplacian in (x1, x2). Then, use separation of variables to de-
compose the eigenvalue problem for the Laplacian into independent eigenvalue
problems for x1 and x2. Hint: see Chapter ??.

242.8. Consider the backward heat equation






u̇(x, t) + u′′(x, t) = 0 for 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0 for t > 0,

u(x, 0) = u0(x) for 0 < x < π.

(242.11)

Write down a solution formula in the case u0 is a finite Fourier series of the
form (242.7). Investigate how the different components of u0 get amplified with
time. Why is the equation called the backward heat equation? Can you find a
connection to image reconstruction?

242.4 The fundamental solution of the heat
equation

The solution of the homogeneous heat equation

{
u̇−∆u = 0 in R2 × (0,∞),

u(·, 0) = u0 in R2,
(242.12)

with u0 equal to the delta function at the origin δ0, is called the fundamental
solution of the heat equation and is given by

u(x, t) = E(x, t) =
1

4πt
exp

(
−|x|2

4t

)
. (242.13)
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Direct computation shows that E(x, t) solves Ė −∆E = 0 for x ∈ R2 and
t > 0. Further E(·, t) approaches the delta function δ0 as t → 0+ since
E(x, t) ≥ 0,

∫
R2 E(x, t) dx = 1 for t > 0, and E(x, t) rapidly decays as

|x|/
√
t increases, so that the support of E(x, t) becomes more and more

concentrated around x = 0 as t→ 0+. In terms of a model of heat, E(x, t)
corresponds to choosing the initial conditions to be a “hot spot” at the
origin. In Fig. 242.3 we plot E(x, t) at three different times.

-1 0 1
10-1

0

2

4

6

8

-1 0 1
10-1

0

2

4

6

8

-1 0 1
10-1

0

2

4

6

8

t = .01 t = .05 t = .25

FIGURE 242.3. The fundamental solution E(x, t) at three times.

242.9. Show that E defined by (242.13) solves Ė−∆E = 0 for t > 0, and verify
that

∫
R
E(x, t) dx = 1.

242.10. Determine the fundamental solution of the heat equation in Rd, d=1,3.

242.11. Give the formula for the fundamental solution Eǫ(x, t) for the heat
equation u̇ − ǫ∆u = 0 in two space dimensions, where ǫ is a positive constant.
Determine, as a function of ǫ and t, the diameter of the set of points x outside
which Eǫ(x, t) is essentially zero.

The solution of (242.12) can be expressed in terms of the fundamental
solution and the initial data as follows:

u(x, t) =
1

4πt

∫

R2

u0(y) exp

(
−|x− y|2

4t

)
dy. (242.14)

242.12. Motivate this formula.

From the solution formula we see that the value u(x, t) at a point x ∈ R2

and t > 0 is a weighted mean value of all the values u0(y) for y ∈ Ω. The
influence of the value u0(y) on u(x, t) decreases with increasing distance
|x − y| and decreasing time t. In principle, information appears to travel
with an infinite speed of propagation because even for very small time t
there is an influence on u(x, t) from u0(y) for |x − y| arbitrarily large.
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However, the nature of the fundamental solution causes the influence to be
extremely small if t is small and |x− y| is large. In particular, the solution
formula shows that if u0 ≥ 0 is concentrated around x = 0, say u0(x) ≡ 0
for |x| ≥ d for some small d > 0, then u(x, t) “spreads out” over a disk of
radius proportional to

√
t for t > 0 and rapidly decays to zero outside this

disk.

242.13. (a) Write a code that inputs an x and t and then uses the composite
trapezoidal rule to approximate the integrals in (242.14) when u0(x) is 1 for
|x| ≤ 1 and 0 otherwise and use the code to generate plots of the solution at
several different times. (b) (Harder.) Verify the claim about the rate of spread of
the solution.

242.5 Stability

Throughout the book, we emphasize that the stability properties of parabolic
problems are an important characteristic. To tie into the previous stability
results for parabolic-type problems, we prove a strong stability estimate for
an abstract parabolic problem of the form: find u(t) ∈ H such that

{
u̇(t) +Au(t) = 0 for t > 0,

u(0) = u0,
(242.15)

where H is a vector space with inner product (·, ·) and norm ‖ · ‖, A is
a positive semi-definite symmetric linear operator defined on a subspace
of H , i.e. A is a linear transformation satisfying (Aw, v) = (w,Av) and
(Av, v) ≥ 0 for all v and w in the domain of definition of A, and u0 is the
initial data. In the parabolic model problem of Chapter 212.1, H = Rd and
A is a positive semi-definite symmetric d×d matrix. In the case of the heat
equation (242.3), A = −∆ is defined on the infinite-dimensional space of
functions v in L2(Ω) which are square integrable and satisfy homogeneous
Dirichlet boundary conditions.

Lemma 242.1 The solution u of (242.15) satisfies for T > 0,

‖u(T )‖2 + 2

∫ T

0

(Au(t), u(t)) dt = ‖u0‖2, (242.16)

∫ T

0

t‖Au(t)‖2 dt ≤ 1

4
‖u0‖2, (242.17)

‖Au(T )‖ ≤ 1√
2T

‖u0‖. (242.18)

Proof: The proof uses the same ideas used to show (??). Taking the inner
product of (242.15) with u(t), we obtain

1

2

d

dt
‖u(t)‖2 + (Au(t), u(t)) = 0,
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from which (242.16) follows.
Next, taking the inner product of the first equation of (242.15) with

tAu(t) and using the fact that

(u̇(t), tAu(t)) =
1

2

d

dt

(
t(Au(t), u(t))

)
− 1

2
(Au(t), u(t)),

since A is symmetric, we find after integration that

1

2
T (Au(T ), u(T )) +

∫ T

0

t‖Au(t)‖2 dt = 1

2

∫ T

0

(Au(t), u(t)) dt,

from which (242.17) follows using (242.16) and the fact that (Av, v) ≥ 0.
Finally, taking the inner product in (242.15) with t2A2u(t), we obtain

1

2

d

dt

(
t2‖Au(t)‖2

)
+ t2(A2u(t), Au(t)) = t‖Au(t)‖2,

from which (242.18) follows after integration and using (242.17).�

242.14. Assuming that there is an a > 0 such that A is strictly positive-definite,
so that (Av, v) ≥ a‖v‖2 for all v, show that the solution of u̇+Au = f , u(0) = u0,
satisfies

‖u(T )‖2 + a

∫ T

0

‖u(t)‖2 dt ≤ ‖u0‖2 + 1

a

∫ T

0

‖f‖2 dt.

Hint: use that |(v, w)| ≤ (4ǫ)−1‖v‖2 + ǫ‖w‖2 for any ǫ > 0.

In the case of a solution of the heat equation (242.3), these estimates
read

‖u(T )‖2 + 2

∫ T

0

(∇u(t),∇u(t)) dt ≤ ‖u0‖2, (242.19)

∫ T

0

t‖∆u(t)‖2 dt ≤ 1

4
‖u0‖2, (242.20)

‖∆u(T )‖ ≤ 1√
2T

‖u0‖. (242.21)

242.15. (a) Consider u and ũ solving (242.3) with initial data u0(x) and ũ0(x) =
u0(x)+ǫ(x) respectively. Show that the difference ũ−u solves (242.3) with initial
data ǫ(x). (b) Give estimates for the difference between u and ũ. (c) Prove that
the solution of (242.3) is unique.

Recall that we call these strong stability estimates because they provide
bounds on derivatives of the solution as well as the solution itself. Such
estimates are related to parabolic smoothing. For example, (242.21) implies
that the L2 norm of the derivative u̇(T ) = ∆u(T ) decreases (increases) like
1/T as T increases (decreases), which means that the solution becomes
smoother as time passes.
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242.16. Compute (exactly or approximately) the quantities on the left-hand
sides of (242.16), (242.17), and (242.18) for the solutions of (252.27) computed
in Problem 242.3. Compare to the bounds on the right-hand sides.

242.17. Prove the stability estimates of Lemma 242.1 applied to the one-
dimensional heat equation (232.41) using the Fourier series formula for the solu-
tion.
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243
Heat Equation FEM

Think for yourself, ’cause I won’t be with you. (George Harri-
son)

I see no essential difference between a materialism, which in-
cludes a soul as a complicated type of material particle, and a
spiritualism that includes particles as a primitive type of soul.
(Wiener)

243.1 Space-Time Discretization

The time discretization of the heat equation (242.3) is based on a partition
0 = t0 < t1 < · · · < tN = T of the time interval I = [0, T ] into sub-intervals
In = (tn−1, tn) of length kn = tn − tn−1. We divide each space-time slab
Sn = Ω × In into space-time prisms K × In, where Tn = {K} is a trian-
gulation of Ω with mesh function hn; see Fig. 243.1. Note that the space
mesh may change from one time interval to the next. We construct a finite
element method using approximations consisting of continuous piecewise
linear functions in space and discontinuous polynomials of degree r in time,

which we call the cG(1)dG(r) method. We define the trial spaceW
(r)
k to be

the set of functions v(x, t) defined on Ω × I such that the restriction v|Sn

of v to each space-time slab Sn is continuous and piecewise linear in x and
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x

t

tn-1

tn
Sn

FIGURE 243.1. Space-time discretization for the cG(1)dG(r) method.

a polynomial of degree r in t, that is, v|Sn
belongs to the space

W
(r)
kn =

{
v(x, t) : v(x, t) =

r∑

j=0

tjψj(x), ψj ∈ Vn, (x, t) ∈ Sn

}
,

where Vn = Vhn
is the space of continuous piecewise linear functions van-

ishing on Γ associated to Tn. The “global” trial space W
(r)
k is the space

of functions v defined on Ω× I, such that v|Sn
∈ W

(r)
kn for n = 1, 2, ..., N .

The functions in W
(r)
k in general are discontinuous across the discrete time

levels tn and we use the usual notation [wn] = w+
n − w−

n and w
+(−)
n =

lims→0+(−) w(tn + s).

243.1. Describe a set of basis functions for (a) W
(0)
kn and (b) W

(1)
kn .

The cG(1)dG(r) method is based on a variational formulation of (242.3)

as usual and reads: find U ∈W
(r)
k such that for n = 1, 2, . . . , N ,

∫

In

(
(U̇ , v) + (∇U,∇v)

)
dt+

(
[Un−1], v

+
n−1

)
=

∫

In

(f, v) dt

for all v ∈W
(r)
kn , (243.1)

where U−
0 = u0 and (·, ·) is the L2(Ω) inner product.

Using the discrete Laplacian ∆n, se (240.10), we may write (243.1)in the
case r = 0 as follows: find Un ∈ Vn:

(I − kn∆n)Un = PnUn−1 +

∫

In

Pnf dt, (243.2)

where we set Un = U−
n = U |In ∈ Vn, and Pn is the L2(Ω)-projection

onto Vn. Note that the “initial data” Un−1 ∈ Vn−1 from the previous time
interval In−1 is projected into the space Vn. If Vn−1 ⊂ Vn, then PnUn−1 =
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Un−1. In the case r = 1, writing U(t) = Φn + (t − tn−1)Ψn on In with
Φn, Ψn ∈ Vn, then (243.1) becomes





(I − kn∆n)Φn +
(
I − kn

2
∆n

)
Ψn = PnUn−1 +

∫

In

Pnf dt,

(1
2
I − kn

3
∆n

)
Ψn − kn

2
∆nΦn =

∫

In

t− tn−1

kn
Pnf dt,

(243.3)

which gives a system of equations for Φn and Ψn.

243.2. Verify (243.2) and (243.3).

243.3. Writing U(t) = Φn(tn − t)/kn + Ψn(t − tn−1)/kn on In with Φn, Ψn ∈
Vn, formulate equations for the cG(1)dG(1) approximation using the discrete
Laplacian.

243.2 Constructing the discrete equations

To construct the matrix equation that determines Un in the case r = 0
according to (243.2), we introduce some notation. We let {ϕn,j} denote the
nodal basis of Vn associated to the Mn interior nodes of Tn numbered in
some fashion, so Un can be written

Un =

Mn∑

j=1

ξn,jϕn,j ,

where the coefficients ξn,j are the nodal values of Un. We abuse notation
to let ξn =

(
ξn,j

)
denote the vector of coefficients. We define the Mn ×

Mn mass matrix Bn, stiffness matrix An, and again abusing notation, the
Mn × 1 data vector bn with coefficients

(Bn)ij = (ϕn,j , ϕn,i), (An)ij = (∇ϕn,j ,∇ϕn,i), (bn)i = (f, ϕn,i),

for 1 ≤ i, j ≤ Mn. Finally, we define the Mn ×Mn−1 matrix Bn−1,n with
coefficients

(Bn−1,n)ij = (ϕn,j , ϕn−1,i) 1 ≤ i ≤Mn, 1 ≤ j ≤Mn−1. (243.4)

The discrete equation for the cG(1)dG(0) approximation on In is

(Bn + knAn)ξn = Bn−1,nξn−1 + bn. (243.5)

The coefficient matrix Bn + knAn of this system is sparse, symmetric, and
positive-definite and the system can be solved using a direct or an iterative
method.
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243.4. Prove that Bn−1,nξn−1 = Bnξ̂n−1 where ξ̂n−1 are the coefficients of
PnUn−1 with respect to {ϕn,j}.

243.5. Specify the matrix equations for the cG(1)dG(1) method. Hint: consider
(243.3).

243.6. Assume that Ω = (0, 1)× (0, 1] and the standard uniform triangulation is
used on each time step. Compute the coefficient matrix in (243.5).

243.7. (a) Formulate the cG(1)dG(r) with r = 0, 1, for the heat equation in one
dimension with homogeneous Dirichlet boundary conditions. (b) Write out the
matrix equations for the coefficients of Un in the case of a uniform partition and
r = 0. (c) Assume that Tn is obtained by dividing each element of Tn−1 into two
intervals. Compute Bn−1,n explicitly. (d) Repeat (c) assuming that Tn−1 has an
even number of elements and that Tn is obtained by joining together every other
neighboring pair of elements.

243.8. Repeat Problem 243.7 for the modified heat equation u̇ − ∆u + u = f
with homogeneous Neumann boundary conditions.

243.3 The use of quadrature

In general it may be difficult to compute the integrals in (243.5) exactly, and
therefore quadrature is often used to compute the integrals approximately.
If K denotes an element of Tn with nodes NK,1, NK,2, and NK,3 and area
|K|, then we use the lumped mass quadrature for a function g ∈ Vn,

QK(g) =
1

3
|K|

3∑

j=1

g(NK,j) ≈
∫

K

g(x) dx.

For the integration in time, we use the midpoint rule,

g

(
tn + tn−1

2

)
kn ≈

∫ tn

tn−1

g(t) dt.

We define the approximations B̃n, B̃n−1,n, and b̃n by

(B̃n)ij =
∑

K∈Tn

QK(ϕn,iϕn,j), (B̃n−1,n)ij =
∑

K∈Tn

QK(ϕn,iϕn−1,j),

and (b̃n)i =
∑

K∈Tn

QK
(
f
(
· , (tn + tn−1)/2

)
ϕn,i(·)

)
kn,

for indices in the appropriate ranges. Note that the terms in the sums over
K ∈ Tn for B̃n and B̃n−1,n are mostly zero, corresponding to the near

orthogonality of the nodal basis functions. We find that ξ̃n, the vector of
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nodal values of the cG(1)dG(0) approximation computed using quadrature,
satisfies

(B̃n + knAn)ξ̃n = B̃n−1,nŨn−1 + b̃n. (243.6)

If we use the rectangle rule with the right-hand end point of In instead,
the resulting scheme is called the backward Euler-continuous Galerkin ap-
proximation.

243.9. Repeat Problem 243.6 using B̃n, B̃n−1,n, and b̃n instead of Bn, Bn−1,n,
bn respectively.

243.10. Repeat Problem 243.7 using B̃n, B̃n−1,n, and b̃n instead of Bn, Bn−1,n,
bn respectively.

243.11. Formulate the cG(1)dG(1) finite element method for the heat equa-
tion using the lumped mass quadrature rule in space and the two point Gauss
quadrature rule for the time integration over In.

243.12. (a) Formulate the cG(1)dG(0) finite element method for the non-
constant coefficient heat equation

u̇(x, t)− (a(x, t)u′(x, t))′ = f(x, t), (x, t) ∈ (0, 1) × (0,∞),

together with homogeneous Dirichlet boundary conditions and initial data u0,
using lumped mass quadrature rule in space and the midpoint rule in time to
evaluate Bn, Bn−1,n, and any integrals involving a and f . (b) Assuming that
a(x, t) ≥ a0 > 0 for all x and t, prove the modified mass and stiffness matrices are
positive definite and symmetric. (c) Write down the matrix equations explicitly.
(d) Assuming that the same space mesh is used for every time step, compute
explicit formulas for B̃n, Ãn, and b̃n.

243.4 Error estimates and adaptive error control

In this section, we state a posteriori and a priori error estimates for the
cG(1)dG(0) method (243.1) and discuss an adaptive algorithm based on
the a posteriori estimate. We also illustrate the performance of the algo-
rithm in an example. The proofs of the error estimates are presented in
the next section. For simplicity, we assume that Ω is convex so that the
strong stability estimate (240.37) of Lemma 240.6 with stability constant
S = 1 holds. We also assume that u0 ∈ V1; otherwise an additional term
accounting for an initial approximation of u0 appears in the estimates. We
define τ = minn τn, where τn is the minimal angle of Tn.
We begin by stating the a posteriori error estimate including residual

errors associated to space discretization, time discretization, and mesh
changes between space-time slabs. Here ‖ · ‖ denotes the L2(Ω)-norm and
‖v‖J = maxt∈J ‖v(t)‖.
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Theorem 243.1 There is a constant Ci only depending on τ such that for
N ≥ 1,

‖u(tN)− UN‖ ≤ LNCi max
1≤n≤N

(
‖h2nR2(U)‖In + ‖h2nf‖In

+‖[Un−1]‖+ ‖knf‖In +
∥∥h

2
n

kn
[Un−1]

∥∥∗),

where u(tN ) = u(·, tN ),

LN = 2 + max
1≤n≤N

max

{(
log
( tn
kn

))1/2

, log
( tn
kn

)
}
,

R2(U) =
1

2
max
S⊂∂K

h−1
K

∣∣[∂SU ]
∣∣ on K ∈ Tn,

and the starred term is present only if Vn−1 * Vn.

The two first terms on the right of (243.1) measure the residual error of
the space discretization with f the contribution from the element interiors
(there ∆U = 0), and R2(U) the contribution from the jumps in the normal
derivative [∂SU ] on elements edges S, cf. Chapter ??. The next two terms
measure the residual error of the time discretization and finally the last
term reflects the effect of changing from one mesh to the next. The case
Vn−1 * Vn occurs e.g. when Tn is obtained from Tn−1 by removing some
nodes, introducing the L2-projection PnUn−1 ∈ Vn of Un−1 ∈ Vn−1. The
starred term is of the same order as the time residual term ‖[Un−1]‖ if
h2n/kn is kept bounded by a moderate constant, which usually may be
arranged.

243.13. Draw examples in one space dimension that show a mesh coarsening in
which Vn−1 * Vn and a mesh refinement in which Vn−1 ⊆ Vn.

In the proof of the a priori error estimate, we use the following bounds on
the change of mesh size on consecutive slabs. We assume there are positive
constants γi, with γ2 sufficiently small, such that for n = 1, ..., N ,

γ1kn ≤ kn+1 ≤ γ−1
1 kn, (243.7)

γ1hn(x) ≤ hn+1(x) ≤ γ−1
1 hn(x) for x ∈ Ω, (243.8)

h̄2n ≤ γ2kn, (243.9)

where h̄n = maxx∈Ω̄ hn(x), and (243.9) only enters if Vn−1 * Vn. The a
priori error estimate reads as follows:

Theorem 243.2 If Ω is convex and γ2 sufficiently small, there is a con-
stant Ci depending only on τ and γi, i = 1, 2, such that for N ≥ 1,

‖u(tN)− UN‖ ≤ CiLN max
1≤n≤N

(
kn‖u̇‖In + ‖h2nD2u‖In

)
. (243.10)
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243.5 Adaptive error control

The a posteriori error bound can be used to estimate the error of a partic-
ular computation and also as the basis of an adaptive algorithm.
Suppose we seek an approximation U(t) satisfying

max
0≤t≤T

‖u(t)− U(t)‖ ≤ TOL,

for a given error tolerance TOL, while using the least amount of compu-
tational work. We try to achieve this goal by computing a sequence of
triangulations {Tn} and time steps {kn} so that for n = 1, ..., N, with
tN = T ,

CiLN max
1≤n≤N

(
‖h2nR2(Un)‖ + ‖[Un−1]‖

+‖(kn + h2n)f‖In + ‖h2nk−1
n [Un−1]‖∗

)
= TOL, (243.11)

while the total number of degrees of freedom is minimal. This is a nonlinear
constrained minimization problem that we try to solve approximately using
an iterative process based on the L2 equidistribution strategy for elliptic
problems described in Chapter ?? and the time step control described in
Chapter ??. From the current time level tn−1, we compute Un using a
predicted time step kn and predicted mesh size hn and then we check
whether (243.11) holds or not. If not, we compute a new time step kn and
mesh size hn using (243.11) seeking to balance the error contributions from
space and time. It is relatively rare for the error control to require more
than a few iterations.
We illustrate the adaptive error control using Femlab. We choose Ω =

(−1, 1)× (−1, 1) and approximate the solution of (242.3) with forcing

f(x, t) =

{
103, (x1 + .5− t)2 + (x2 + .5− t)2 < .1,

0, otherwise,

which in the context of a model of heat flow, amounts to swiping a hot
blowtorch diagonally across a square plate. We compute the approximation
using TOL=.05 and plot the results at the second, sixth, and tenth time
steps in Fig. 243.2-Fig. 243.4. The time steps used are k1 ≈ .017, k2 ≈ .62,
and kn ≈ .1 for n ≥ 3. In Fig. 243.2, we can see the refined region centered
around the heated region. At later times, we can see further refinement
in the direction that the hot region moves and mesh coarsening in regions
which have been passed by. Notice the shape of the refined region and the
solution at later times indicating residual heat.

243.14. Implement an error estimation block in a code for the heat equation
using the cG(1)dG(0) method. Construct several test problems with known so-
lutions and compare the error bound to the true error.
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FIGURE 243.2. The approximation and mesh at t ≈ .64.

FIGURE 243.3. The approximation and mesh at t ≈ 1.04.

243.6 A Posteriori Error Analysis

The proofs to follow are based on a combination of the techniques used to
prove the error estimates for the parabolic model problem in Chapter ??
and the Poisson problem of Chapter ??.
Let Pn be the L2 projection into Vn, and πk the L2 projection into the

piecewise constants on the time partition {tn}, that is, πkv on In is the
average of v on In. We use the following error estimate for Pn which is
analogous to the interpolation error estimates discussed in Chapter ??.

Lemma 243.3 There is a constant Ci only depending on τ such that if
ϕ = 0 on Γ, then for all w ∈ Vn,

|(∇w,∇(ϕ − Pnϕ))| ≤ Ci‖h2nR2(w)‖‖D2ϕ‖.
In particular, if Ω is convex, then for all w ∈ Vn,

|(∇w,∇(ϕ − Pnϕ))| ≤ Ci‖h2R2(w)‖‖∆ϕ‖. (243.12)

The proof of this lemma is a little technical, so we put it off until the
advanced book. Note that the second estimate follows from the first using
(240.37).
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FIGURE 243.4. The approximation and mesh at t ≈ 1.44.

We introduce the continuous dual problem





−ϕ̇−∆ϕ = 0 in Ω× (0, tN ),

ϕ = 0 on Γ× (0, tN ),

ϕN (·, tN ) = eN in Ω,

(243.13)

where eN = u(tN )− UN . By the definition,

‖eN‖2 = (eN , ϕN ) +

N∑

n=1

∫

In

(e,−ϕ̇−∆ϕ) dt,

with e = u−U and ϕN = ϕ(·, tN ). After integrating by parts in t over each
interval In and using Green’s formula in space, we get

‖eN‖2 =
N∑

n=1

∫

In

(ė, ϕ) dt+

N∑

n=1

∫

In

(∇e,∇ϕ) dt+
N∑

n=1

([en−1], ϕn−1).

Using the facts that u̇ −∆u = f , [un] = 0, U̇ ≡ 0 on each In, and U
−
0 =

u0 together with (243.1) with v = πkPhϕ ∈ W
(0)
k , we obtain the error

representation:

‖eN‖2 =

N∑

n=1

∫

In

(
∇U,∇(πkPhϕ− ϕ)

)
dt

+

N∑

n=1

(
[Un−1], (πkPhϕ)

+
n−1 − ϕn−1

)

+

∫ T

0

(f, ϕ− πkPhϕ) dt = T1 + T2 + T3.

This formula is analogous to the error representation for the model prob-
lem studied in Chapter ??. We now estimate the terms T1, T2 and T3 by



1786 243. Heat Equation FEM

repeatedly using the splitting πkPhϕ−ϕ = (πk− I)Phϕ+(Ph− I)ϕ, where
I is the identity, which is a way to split the time and space approximations.
First, noting that
∫

In

(
∇U,∇(πkPhϕ−Phϕ)

)
dt =

∫

In

(−∆hU, πkϕ−ϕ) dt = 0, 1 ≤ n ≤ N,

because U is constant on In, the term T1 reduces to

T1 =

N∑

n=1

∫

In

(
∇U,∇(Ph − I)ϕ

)
dt =

N∑

n=1

(
∇Un,∇(Pn − I)

∫

In

ϕdt

)
.

Recalling (243.12), we find that

|T1| ≤ Ci

N∑

n=1

‖h2nR2(Un)‖
∥∥∥∥∆
∫

In

ϕdt

∥∥∥∥

≤ Ci max
1≤n≤N

‖h2nR2(Un)‖
(∫ tN−1

0

‖∆ϕ‖ dt+ 2‖ϕ‖IN
)
,

where on the interval IN , we used the fact that

∆

∫

IN

ϕdt =

∫

IN

∆ϕdt =

∫

IN

ϕ̇ dt = ϕ(tN )− ϕ(tN−1).

To estimate T2, we again use (243.12) to get

|([Un−1], (Pn − I)ϕn−1)| ≤ Ci‖h2n[Un−1]‖∗‖∆ϕn−1‖,
where the star is introduced since the left-hand side is zero if Vn−1 ⊂ Vn.
Using the interpolation estimate ‖ϕn−1 − (πkϕ)

+
n−1‖ ≤ min

{∫
In

‖ϕ̇‖ dt,
‖ϕ‖In

}
combined with the stability estimate ‖Pnv‖ ≤ ‖v‖, we further have

∣∣([Un−1], ((πk − I)Phϕ)
+
n−1)

∣∣ ≤ ‖[Un−1]‖min
{∫

In

‖ϕ̇‖ dt, ‖ϕ‖In
}
,

and we conclude that

|T2| ≤ Ci max
1≤n≤N

‖h2n[Un−1]/kn‖∗
N∑

n=1

kn‖∆ϕn−1‖

+ max
1≤n≤N

‖[Un−1]‖
(∫ tN−1

0

‖ϕ̇‖ dt+ ‖ϕ‖IN
)
.

Finally to estimate T3, we have arguing as in the previous estimates

∣∣∣∣∣
N∑

n=1

∫

In

(f, Phϕ− πkPhϕ) dt

∣∣∣∣∣

≤ max
1≤n≤N

‖knf‖In
(∫ tN−1

0

‖ϕ̇‖ dt+ ‖ϕ‖IN
)
,
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∣∣∣∣∣
N−1∑

n=1

∫

In

(f, (I − Ph)ϕ) dt

∣∣∣∣∣

≤ Ci max
1≤n≤N−1

‖h2nf‖In
(∫ tN−1

0

‖∆ϕ‖ dt
)
,

and ∣∣∣∣
∫

IN

(f, (I − Ph)ϕ) dt

∣∣∣∣ ≤ ‖kNf‖IN‖ϕ‖IN .

To complete the proof, we bound the different factors involving ϕ in the esti-
mates above in terms of ‖eN‖ using the strong stability estimates (242.19)-
(242.21) applied to the dual problem (243.13) with time reversed.We obtain
with w = ϕ̇ = ∆ϕ,

∫ tN−1

0

‖w‖ dt ≤
(∫ tN−1

0

(tN − t)−1 dt

)1/2(∫ tN

0

(tN − t)‖w‖2 dt
)1/2

≤
(
log
( tN
kN

))1/2

‖eN‖,

N−1∑

n=1

kn‖wn−1‖ ≤
N−1∑

n=1

kn
tN − tn−1

‖eN‖

≤
∫ tN−1

0

(tN − t)−1 dt‖eN‖,

and
kN‖∆ϕN−1‖ ≤ ‖eN‖.

Together, the above estimates prove the a posteriori error estimate.

243.15. (a) Write out the details of the proof in the case of the heat equation
in one dimension with Ω = (0, 1) and r = 0. (b) (Hard.) Do the same for r = 1.

243.16. (Ambitious.) Formulate and prove an a posteriori error estimate for the
cG(1)dG(0) method that uses the lumped mass and midpoint quadrature rules
as described above. Less ambitious is to do the same for the method that uses
quadrature only to evaluate integrals involving f .

243.7 A Priori Error Analysis

The a priori analysis follows the same line as the a posteriori analysis, after
we introduce a discrete dual problem. The proof of the stability estimate
on the solution of the discrete dual problem simplifies if Vn ⊂ Vn−1, and in
particular, only assumption (243.7) is needed. We present this case below,
and leave the general case to a later time.
The discrete strong stability estimate reads.
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Lemma 243.4 Assume that Vn−1 ⊂ Vn and that (243.7) holds. Then there
is a constant C depending on γ1 such that the solution U of (243.1) with
f ≡ 0 satisfies for N = 1, 2, ...,

‖UN‖2 + 2

N∑

n=1

‖∇Un‖2kn +

N−1∑

n=0

‖[Un]‖2 = ‖U0‖2, (243.14)

N∑

n=1

tn‖∆nUn‖2kn ≤ C‖U0‖2, (243.15)

and
N∑

n=1

‖[Un−1]‖ ≤ C
(
2 +

(
log(

tN
k1

)
)1/2)‖U0‖. (243.16)

Proof: We recall the equation satisfied by U :

(I − kn∆n)Un = Un−1, (243.17)

where we used that Vn−1 ⊂ Vn. Multiplying by Un gives

‖Un‖2 + kn‖∇Un‖2 = (Un−1, Un)

or
1

2
‖Un‖2 + ‖Un − Un−1‖2 + kn‖∇Un‖2 =

1

2
‖Un−1‖2,

which upon summation proves (243.14).
Next, multiplying (243.17) by −tn∆nUn gives

tn‖∇Un‖2 + tn‖∆nUn‖2kn = tn(∇Un−1,∇Un),

that is

1

2
tn‖∇Un‖2 + tn‖∇(Un − Un−1)‖2 + tn‖∆nUn‖2kn

=
1

2
tn−1‖∇Un−1‖2 +

1

2
‖∇Un−1‖2kn.

Summing over n = 2, ..., N using that kn ≤ γ1kn−1 and (243.14) proves
(243.15) with the summation starting at n = 2. Finally, we note that

N∑

n=2

‖[Un−1]‖ =

N∑

n=2

‖∆nUn‖kn ≤
( N∑

n=2

tn‖∆nUn‖2kn
)1/2 ( N∑

n=2

kn
tn

)1/2

≤ C
(
log(

tN
k1

)
)1/2 ‖U0‖.

The term corresponding to n = 1 in (243.15) and (243.16) is estimated
using the equation (243.17) with n = 1 and the fact that ‖U1‖ ≤ ‖U0‖.
This concludes the proof.�.
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We can now complete the proof of the a priori error estimate. We first

estimate ‖Un − Ũn‖ where Ũn ∈ W
(0)
kn is the average elliptic projection of

u defined for n = 1, . . . , N , by

∫

In

(∇(u − Ũn),∇v) dt = 0 for all v ∈ W
(0)
kn ,

Using the estimate ‖ũn − Ũn‖ ≤ Ci‖h2nD2u‖In (see Chapter ??), where
ũn = πku|In is the average of u on In, together with the obvious estimate
‖u(tn)− ũn‖ ≤ kn‖u̇‖In , we obtain the desired estimate for ‖un − Un‖.
We let Φ ∈W

(0)
k be the solution of the discrete dual problem

−(Φn+1 − Φn)− kn∆nΦn = 0 for n = N, ..., 1,

where ΦN+1 = UN − ŨN . Multiplying by ẽn = Un− Ũn and summing over
n gives the error representation

‖ẽN‖2 = (ẽN ,ΦN+1)−
N∑

n=1

(ẽn,Φn+1 − Φn) +

N∑

n=1

(∇ẽn,∇Φn)kn

=
N∑

n=1

(ẽn − ẽn−1,Φn) +
N∑

n=1

∫

In

(∇ẽn,∇Φn) dt,

where we used a summation by parts formula and the assumption that
ẽ0 = 0.

243.17. Show that the last formula holds.

Using the fact that for all v ∈ W
(0)
kn

(un − Un − (un−1 − Un−1), v) +

∫

In

(∇(u− U),∇v) dt = 0,

the error representation takes the form

‖ẽN‖2 =

N∑

n=1

(ρn − ρn−1,Φn) +

N∑

n=1

∫

In

(∇ρn,∇Φn) dt

=
N∑

n=1

(ρn − ρn−1,Φn)

where ρ = u− Ũ and in the last step we used the definition of Ũ . Summing
by parts again, we get

‖ẽN‖2 = −
N∑

n=2

(ρn−1,Φn − Φn−1) + (ρN ,ΦN),
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using the assumption that ρ0 = 0. Applying Lemma 243.4 to Φ (after
reversing time) proves the desired result. Note that the assumption Vn ⊂
Vn−1 of the a priori error estimate corresponds to the assumption Vn−1 ⊂
Vn in the stability lemma, because time is reversed.

243.18. Consider the cG(1)dG(1) method for the homogeneous heat equation,
i.e. (243.1) with f ≡ 0, under the assumption that kn ≤ Ckn−1 for some constant
C. (a) Show that ‖U−

n ‖ ≤ ‖U−
0 ‖ for all 1 ≤ n ≤ N . (b) Show that ‖U‖In ≤ 5‖U−

0 ‖
for all 1 ≤ n ≤ N .

243.19. (Hard.) Referring to Problem 243.16, prove the corresponding a priori
error estimate.

Proposal for a wind-driven pump by Leibniz
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244
Wave Equation Analysis

244.1 Introduction

The wave equation is a basic prototype of a hyperbolic partial differential
equation, and models propagation of different types of waves such as elastic
waves in an elastic string, membrane, or solid, sound waves in a gas or
fluid, or electromagnetic waves. The simplest model of wave propagation
is an equation for transport in one direction, which we derive in the next
section. After that, we derive the wave equation by examining the familiar
model of the motion of a discrete system of masses and springs in the limit
as the number of masses increases. We then recall some of the properties
of solutions of the wave equation; contrasting their behavior to that of
solutions of the heat equation, which is the other basic example of a time
dependent partial differential equation. We continue with a discussion of the
wave equation in higher dimensions, emphasizing the important fact that
the behavior of solutions of the wave equation depends on the dimension.
Finally, we discuss the approximate solution of the wave equation using a
Galerkin finite element method.

244.2 Transport in 1D

The simplest model for wave propagation is in fact the simplest of all partial
differential equations. We model the convective transport of a pollutant
suspended in water that is flowing at constant speed c through a pipe of
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uniform cross section assuming that there is no diffusion of the pollutant.
We illustrate this in Fig. 244.1. Letting u(x, t) denote the concentration of

u(x,0) u(x,t)

x

ct

FIGURE 244.1. The transport of a pollutant suspended in a fluid flowing in a
pipe.

the pollutant at the point x in the pipe at time t, the conservation of mass
can be formulated in terms of integrals as

∫ x̄

0

u(x, t) dx =

∫ x̄+c(t̄−t)

c(t̄−t)
u(x, t̄) dx for x̄ > 0, t̄ ≥ t.

This equation states that the amount of pollutant in the portion of the fluid
occupying [0, x̄] at time t and [c(t̄ − t), x̄ + c(t̄ − t)] at time t̄ is the same.
To obtain a differential equation expressing the conservation of mass, we
first differentiate with respect to x̄ to get u(x̄, t) = u(x̄ + c(t̄ − t), t̄) and
then differentiate with respect to t̄ (or t) to get 0 = cu′(x, t)+ u̇(x, t), after
letting t̄→ t and x̄→ x.
Assuming that the pipe is infinitely long in order to avoid having to deal

with what happens at the ends, we obtain the initial value problem: Find
u(x, t) such that

{
u̇(x, t) + cu′(x, t) = 0 for x ∈ R, t > 0,

u(x, 0) = u0(x) for x ∈ R,
(244.1)

where c is a constant. The solution is u(x, t) = u0(x − ct), which simply
says that the solution at time t is the initial data u0 translated a distance
ct. The line x−ct = ξ is called a characteristic line and c is called the speed.
Since the value of the solution is constant, namely u0(ξ), at all points along
the characteristic, we say that information travels along characteristics.

244.1. (a) Verify this formula. (b) Plot the solution corresponding to u0(x) =
sin(x) at times t = 0, π/4, π/3, π/2, and 23π/2.

The transport problem (244.1) is the basic model of wave propagation.
Below, we will see that the wave equation, which describes the propagation
of vibrations in an elastic string, can be written as a system of transport
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equations. We will also meet the scalar transport model in the context of
convection-diffusion problems in Chapter ??, where we consider the addi-
tional effect of diffusion.
We point out an interesting fact: the solution formula u(x, t) = u0(x−ct)

is defined even if u0 is discontinuous, though in this case, u obviously
doesn’t satisfy the differential equation at every point. Such initial data
corresponds to a sharp signal, for example turning a light switch on and
off. We can use the variational formulation of (244.1) to make sense of the
solution formula when the data is nonsmooth, and we pick this up again
later.

244.2. Plot the solution corresponding to u0(x) = sin(x) for 0 ≤ x ≤ π and 0
otherwise at times t = 0, π/4, π/3, π/2, and 23π/2.

One important difference between parabolic equations like the heat equa-
tion and hyperbolic equations like the transport and wave equations lies in
the treatment of boundaries. It is natural to consider the transport equa-
tion with a boundary condition posed on the inflow boundary. If c > 0,
then the inflow boundary is on the left. Choosing the boundary to be at
x = 0 arbitrarily, we obtain





u̇(x, t) + cu′(x, t) = 0 for x > 0, t > 0,

u(0, t) = g(t) for t > 0,

u(x, 0) = u0(x) for x > 0,

(244.2)

where c is constant and g(t) gives the inflow of material. By direct compu-
tation, we can verify that the solution satisfies

u(x, t) =

{
g(t− x/c), x− ct ≤ 0,

u0(x− ct), x− ct > 0

and we illustrate this in Fig. 244.2.

244.3. (a) Plot the solution of (244.2) for u0(x) = sin(x) for 0 < x < π and
0 otherwise and g(t) = t at t = 0, π/6, π/4, π/3, and π/2. (b) What does such
boundary conditions mean interpreted in terms of the transport of a pollutant
down a pipe?

244.4. Show that the solution of (244.2) for g given for t ≥ 0 and u0 given for
x > 0 agrees with the solution of (244.1) corresponding to initial data ū0 defined
so that ū0(x) = u0(x) for x > 0 and ū0(x) = g(−x/c) for x ≤ 0 in the region
x ≥ 0, t ≥ 0.

244.5. Find a formula for the solution of the homogeneous wave equation posed
with a boundary condition on the left at a point x0.
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x-ct<0

x-ct>0
u=u0(x-ct)

u=g(t-x/c)

x=ct

FIGURE 244.2. Solving the transport equation with a boundary condition on the
inflow boundary when c > 0.

Note that once again the solution formula holds even though it may imply
that u is discontinuous across the line x = ct. We can resolve this difficulty
using the variational formulation as well.
The value of the solution at any outflow boundary, which is located on

the right when c > 0, is determined from the initial data and therefore we
cannot impose arbitrary values for the solution on an outflow boundary. In
general, a hyperbolic problem posed on a finite domain may have inflow,
outflow, or both kinds of boundaries and this is an important consideration
in the design of numerical methods. This is a sharp contrast to the situation
with the heat equation.

244.3 Wave Equation in 1D

We begin by describing a physical system consisting of N weights each of
mass m joined by N +1 springs with equal length and spring constant. We
choose coordinates so that the system occupies the interval (0, 1) and as-
sume that the springs at the ends are fixed and the masses are constrained
to move horizontally along the x axis without friction. The rest position of
the n’th weight is nh with h = 1/(N+1). We let un(t) denote the displace-
ment of the n’th weight from the rest position with un > 0 representing
a displacement to the right. We illustrate this in Fig. 244.3. Below, we

u3>0u3<0 u3=0

FIGURE 244.3. The coordinate system for a system of masses and springs.



244.3 Wave Equation in 1D 1795

want to compare the motion of systems with different numbers of weights
but totalling the same mass. Hence, we assume that m = h, so that as N
increases, the total mass of the system tends to one.
Hamilton’s principle states that the Lagrangian of the system, which is

equal to the difference between the kinetic and potential energies integrated
over an arbitrary time interval (t1, t2),

∫ t2

t1

(
N∑

n=1

m

2
(u̇n)

2 −
N+1∑

n=1

1

2
h−1(un − un−1)

2

)
dt,

where we set u0 = 0 and uN+1 = 0, is stationary at the trajectory followed
by the system. We assume that the spring constant is 1/h, since it should
scale with the length of the springs.
To obtain the differential equation for u = (un(t)), we add an arbitrary

small perturbation to un in the direction of v = (vn), with v0 = vN+1 = 0,
to get un + ǫvn for ǫ ∈ R. Differentiating with respect to ǫ and setting the
derivative equal to zero for ǫ = 0, which corresponds to the Lagrangian
being stationary at the solution u, and then varying v gives the following
system

ün − h−2(un−1 − 2un + un+1) = 0, t > 0, n = 1, ..., N, (244.3)

where u0 = 0 and uN+1 = 0. The differential equation (244.3) is supple-
mented by initial conditions specifying the initial position and velocity of
each weight.
We present an example with N = 5 in which the n’th weight is displaced

a distance .5h sin(nh) to the right of the rest position and the initial speed
is zero. We solve the system (244.3) using the Cards code keeping the error
below .06. We show the position of the weights for a few times in Fig. 244.4.

244.6. (a) Derive (244.3). (b) Change the system of equations (244.3) into a
first order system by introducing new unknowns vn = u̇n. (c) Solve the system
keeping the error below .05 for N = 5, 10, 15, ..., 55 and compare the solutions.
(d) Compute the solution for N = 5 where the masses start at the rest position
with initial velocities {sin(nh)} and plot the results for t = 0, .25, .5, .75, 1.0 and
1.25.

Letting the number of weights N tend to infinity (with a corresponding
decrease in the mass of each weight since m = h) in the discrete equation
(244.3), we formally obtain the wave equation in one dimension:





ü(x, t) − u′′(x, t) = 0 for 0 < x < 1 and t > 0,

u(0, t) = u(1, t) = 0 for t > 0,

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) for 0 < x < 1,

(244.4)
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t=0.00

t=0.25

t=0.50

t=0.75

t=1.00

t=1.25

FIGURE 244.4. The evolution of the discrete system of masses and springs.

where now with abuse of notation u0 and u̇0 are given initial data. This is
the initial value problem describing the longitudinal vibrations in an elastic
string. It turns out that the same equation describes also the transversal
vibration of an elastic string, like a string on a guitar.

244.4 Sound Waves in a Tube

The wave equation (244.4) is also used to model the propagation of sound
waves. We consider a long thin tube, represented by R, filled with gas of
density ρ, pressure p, and velocity u. The behavior of the gas is described
by a set of nonlinear equations that result from the conservation of mass
and Newton’s law relating the rate of change of momentum to the pressure:

{
ρ̇+ (uρ)′ = 0 in R× (0,∞),

ṁ+ (um)′ + p′ = 0 in R× (0,∞),
(244.5)

where m = ρu is the momentum. To derive a linear equation, we consider
small fluctuations ρ̄, ū and p̄ around a constant state of density ρ0, pressure
p0 and zero velocity, so that ρ = ρ0 + ρ̄, p = p0 + p̄ and u = 0 + ū. We
assume that p̄ = c2ρ̄, where c is a constant representing the speed of sound,
substitute the new variables into (244.5), and drop quadratic terms in the
resulting equation, since these are very small if the fluctuations are small,
to obtain {

˙̄ρ+ ρ0ū
′ = 0 in R× (0,∞),

ρ0 ˙̄u+ c2ρ̄′ = 0 in R× (0,∞).
(244.6)
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Eliminating either ρ̄ or p̄ leads to the wave equations ¨̄ρ − c2ρ̄′′ = 0 and
¨̄p− c2p̄′′ = 0.

244.7. (a) Verify the derivation of (244.6). (b) Show that (244.6) implies that ρ̄
and p̄ satisfy the wave equation under the assumptions of the derivation.

244.5 Structure of Solutions: d’Alembert’s Formula

The general initial value problem for the wave equation,

{
ü− u′′ = f in R× (0,∞),

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) for x ∈ R,
(244.7)

can be written as a system of transport equations by introducing the vari-
able w = u̇− u′ to get





ẇ + w′ = f in R× (0,∞),

u̇− u′ = w in R× (0,∞),

w(x, 0) = u̇0(x)− u′0(x), u(x, 0) = u0(x) for x ∈ R,

where the two transport equations in the new formulation correspond to
transport of signals in opposite directions with speed one.

244.8. Verify that the two problems have the same solution u.

It is therefore natural, following d’Alembert and Euler, to look for a solution
u(x, t) of (244.7) with f ≡ 0 of the form u(x, t) = ϕ(x− t)+ψ(x+ t), where
ϕ(x − t) corresponds to a wave propagating in the positive direction with
speed one and ψ(x+t) corresponds to a wave propagating with speed one in
the negative direction. It is easy to see that a function of this form satisfies
the wave equation ü− u′′ = 0.

244.9. Verify this claim.

Determining the functions ϕ and ψ from the initial conditions, we find
d’Alembert’s formula:

u(x, t) =
1

2
(u0(x− t) + u0(x+ t)) +

1

2

∫ x+t

x−t
u̇0(y) dy. (244.8)

244.10. Prove (244.8).

244.11. If the speed of the propagation of the waves is c > 0, then the corre-
sponding wave equation takes the form ü−c2u′′ = 0. Derive d’Alembert’s formula
for this case. Hint: seek a solution of the form u(x, t) = ϕ(x− ct) + ψ(x+ ct).
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Using d’Alembert’s formula, we can study the dependence of the solution
on the initial data. For example, if u0(x) is an approximate “point” source
supported in a small interval around x = 0 and u̇0 ≡ 0, then the solution
u(x, t) consists of two pulses propagating from x = 0 in the positive and
negative directions with speed ±1, see Fig. 244.5. This data corresponds
to an elastic string being released at time zero with a displacement con-
centrated at 0 and with zero velocity. The d’Alembert formula shows that
the solution u(x, t) at a given time t is influenced only by the value of the
initial data u0(x) at the points x ± t, i.e. as for the transport equation,
there is sharp propagation of the initial data u0. The effect of an initial

x

-2
-1

0
1

2

t

x

-2
-1

0
1

2

t

FIGURE 244.5. The evolution of solutions of the wave equation corresponding
to an approximate “point” source in u0 together with u̇0 ≡ 0 on the left and an
approximate “point” source in u̇0 together with u0 ≡ 0 on the right.

impulse in the derivative data u̇0 is different, as illustrated in Fig. 244.5. If
u̇0 has support in a small interval centered at x = 0 and u0 ≡ 0 then u(x, t)
is constant in most of the region [x − t, x + t] and zero outside a slightly
larger interval.

244.12. Define g(x) = 108(x− .1)4(x+ .1)4 if |x| < .1 and 0 otherwise and show
that g has continuous second derivatives. (a) Compute an explicit formula for the
solution if u0(x) = g(x) and u̇0 ≡ 0 and plot the results for a few times. (b) Do
the same if u0 ≡ 0 and u̇0(x) = g(x). (c) Referring to (b), given t > 0, determine
the intervals on which u is constant.

The extension of the d’Alembert’s formula to the nonhomogeneous prob-
lem (244.7) with f 6= 0 is

u(x, t) =
1

2

(
u0(x+ t) + u0(x− t)

)

+
1

2

∫ x+t

x−t
u̇0(y) dy +

1

2

∫∫

∆(x,t)

f(y, s) dy ds, (244.9)

where ∆ = ∆(x, t) = {(y, s) : |x− y| ≤ t− s, s ≥ 0} denotes the triangle of
dependence indicating the portion of space-time where data can influence
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(x,t)

(x-t,0) (x+t,0)

(x,t)

t t

x
x

FIGURE 244.6. On the left, we show the triangle of dependence ∆ of the point
(x, t). On the right, we show the triangle of influence.

the value of the solution at the point (x, t), see Fig. 244.6. Turning the
triangle of dependence upside-down gives the triangle of influence {(y, s) :
|x− y| ≤ s− t} indicating the points (y, s) which can be influenced by the
values of the data at (x, t).

244.13. Prove (244.9).

We can handle problems with boundaries by modifying d’Alembert’s
formula. For example, to find a formula for the homogeneous wave equa-
tion ü − u′′ = 0 for x > 0, t > 0 together with the boundary condition
u(0, t) = 0 for t > 0 and initial conditions u0(x) and u̇0(x) as above, we use
d’Alembert’s formula for the solution of the wave equation ẅ −w′′ = 0 on
R× (0,∞) together with odd initial data w0 and ẇ0, where w0 is defined
by

w̄0(x) =





−u0(−x), x < 0,

0, x = 0,

u0(x), x > 0,

and ẇ0 is defined similarly. It is easy to verify that the solutions of the two
problems agree in the region x > 0, t > 0. Using d’Alembert’s formula and
tracing the characteristic lines to their intersections with the x axis, see
Fig. 244.7, we find that

u(x, t)

=





1

2

(
u0(x+ t) + u0(x − t)

)
+

1

2

∫ x+t

x−t
u̇0(y) dy, x > t

1

2

(
u0(t+ x)− u0(t− x)

)
+

1

2

∫ t+x

t−x
u̇0(y) dy, x ≤ t.

(244.10)

244.14. (a) Verify (244.10). (b) Find a formula for the solution of the homoge-
neous wave equation posed with the Neumann boundary condition u′(0, t) = 0.
Hint: extend the data to be even functions on R.
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(x,t)

x-t x+t

x=t (x,t)

t-x x+t
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x-t

t
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t
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FIGURE 244.7. The two cases for applying d’Alembert’s formula to the wave
equation posed with a boundary at x = 0. We plot the characteristic lines for
(x, t) with x > t on the left and x < t on the right. Note the reflection in the t
axis of the point x− t to t− x.

244.15. Use d’Alembert’s formula to construct the solution of the homogeneous
wave equation posed on (0, 1) with periodic boundary conditions.

244.16. Give a d‘Alembert solution formula for the vibrating string problem
(244.4). Hint: extend u0 and u̇0 to be functions on R.

The existence of the triangles of dependence and influence and the sharp
propagation of the data are the result of the finite speed of propagation of
solutions of the wave equation. This contrasts to the behavior of solutions of
the heat equation, where the value of the solution at one point depends on
the data at every point (although the exponential decay of the fundamental
solution implies that the dependence is very small from point far away) and
the diffusion of the data as time passes. One consequence is that it is more
difficult to send recognizable signals by heating a conducting wire than
sending sound waves down a pipe.

244.6 Separation of Variables and Fourier’s
Method

The technique of separation of variables and Fourier’s method can be used
to write the solution of the wave equation as a Fourier series. To simplify
the notation, we pose (244.4) on (0, π) instead of (0, 1). In this case, the
solution is

u(x, t) =

∞∑

n=1

(an sin(nt) + bn cos(nt)) sin(nx), (244.11)
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where the coefficients an and bn are determined from the Fourier series of
the initial conditions:

u0(x) =

∞∑

n=1

bn sin(nx), u̇0(x) =

∞∑

n=1

nan sin(nx).

Note that the time factor, an sin(nt) + bn cos(nt), in the Fourier series of
the solution of the wave equation does not decrease exponentially as time
increases like the corresponding factor in the Fourier series of a solution of
the heat equation. Therefore, the solution of the wave equation generally
does not become smoother as time passes.

244.17. Verify the solution formula (244.11) formally.

244.18. Compute the solution for (a) u0(x) = x(π − x), u̇0(x) ≡ 0, (b) u̇0(x) =
x(π − x), u0(x) ≡ 0.

244.7 Conservation of Energy

We saw that a solution of the heat equation tends to dissipate as time
passes, with a corresponding decrease in the energy. In contrast, the total
energy (the sum of kinetic and potential energies) of the solution u of the
homogeneous wave equation (244.4) remains constant in time:

‖u̇(·, t)‖2 + ‖u′(·, t)‖2 = ‖u̇0‖2 + ‖u′0‖2 for t ≥ 0,

where ‖ · ‖ denotes the L2(0, 1) norm as usual. To prove this, we multiply
(244.12) by 2u̇, integrate over (0, 1), and then integrate by parts to get

0 =
∂

∂t

(∫ 1

0

(
u̇(x, t)2 + u′(x, t)2

)
dx

)
.

244.19. Provide the details of this derivation.

244.20. (a) Show that the only solution of (244.4) with u0 ≡ u̇0 ≡ 0 is u ≡ 0.
(b) Suppose that w solves (244.4) with initial data w0 and ẇ0. Estimate u− w,
where u solves (244.4).

244.8 The wave equation in higher dimensions

Situations modelled by the wave equation in higher dimensions include the
vibrations of a drum head and the propagation of sound waves in a volume
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of gas. Letting Ω denote a domain in Rd, d = 2 or 3, with boundary Γ, the
initial-boundary value problem for the wave equation is





ü−∆u = f in Ω× (0,∞),

u = 0 on Γ× (0,∞),

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) for x ∈ Ω,

(244.12)

where f , u0, and u̇0 are given functions. The wave equation is also posed
on all of Rd in some models.
Before turning to the approximation of (244.12), we recall some of the

properties of the solutions. We emphasize the important fact that the be-
havior of solutions of the wave equation depends on the dimension, and in
particular, the behavior in two dimensions is significantly different that in
three dimensions.

244.9 Symmetric Waves

We begin by considering solutions of the homogeneous wave equation in
Rd that are symmetric through the origin since this effectively reduces
the problem to one dimension in space. In R3, these are called spherically
symmetric waves. For simplicity, we assume that u̇0 ≡ 0. The wave equation
(244.12) in spherical coordinates, assuming the solution depends only on
r, i.e. the distance to the origin, reads

ü− urr −
2

r
ur = 0 for r > 0, t > 0, (244.13)

where ur = ∂u/∂r. Note the important factor two in the third term; by
introducing the new unknown v = ru, this equation transforms into the
one-dimensional wave equation,

v̈ − vrr = 0 for r > 0, t > 0. (244.14)

This equation is posed together with the boundary condition v(0, t) = 0
for t > 0 and initial conditions v(r, 0) = ru0(r) and v̇(r, 0) = 0 for r > 0.
Using (244.10) to write a formula for v and then changing back to u, we
find that

u(r, t)

=
1

2





(
u0(r + t) + u0(r − t)

)
+
t

r

(
u0(r + t)− u0(r − t)

)
, r ≥ t,

(
u0(t+ r) + u0(t− r)

)
+
t

r

(
u0(t+ r) − u0(t− r)

)
, r < t,

(244.15)
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where we take u(0, ·) = limr→0+ u(r, ·). From this, we conclude that the
initial data propagates sharply outwards in the positive r direction as time
passes. In particular, if u0 has support in the ball {x : |x| ≤ ρ} for some
ρ > 0, then at any point x with x > ρ, u(x, t) is zero for t < x−ρ, then the
solution is non-zero with values determined by u0 for 2ρ time units, and
finally after that the solution is once again zero.

244.21. Compute explicit formulas for the spherically symmetric solution cor-
responding to u0 ≡ 1 for |x| ≤ 1 and 0 otherwise and u̇0 ≡ 0. Hint: there are
six regions in the (r, t) plane that have to be considered. Plot the solution as a
function of the radius at several times.

We can also look for symmetric solutions of the wave equation in R2.
Unfortunately in this case, the wave equation reduces to

ü− urr −
1

r
ur = 0 for r > 0, t > 0, (244.16)

and there is no simple change of variables that reduces this problem to the
wave equation in one dimension.

244.22. Verify (244.13), (244.16), and (244.14).

244.23. (a) Verify (244.15). (b) Treat the problem where u̇0 is not assumed to
be zero.

244.10 Finite Speed of Propagation

As suggested by the spherically symmetric case, there is a finite speed
of propagation of information in solutions of the wave equation in higher
dimensions. By this, we mean that the value of u(x, t) depends only on the
values of the data given in the cone of dependence

∆(x, t) := {(y, s) ∈ Rd × R : |y − x| ≤ t− s, s ≥ 0}.

The cone of dependence is the multi-dimensional counterpart to the triangle
of dependence. Specifically, for any proper subdomain ω of Ω, we may define
the enlarged region ω(t) = {x ∈ Rd : dist(x, ω) < t} assuming for simplicity
that t ≥ 0 is not too large so that ω(t) is also contained in Ω, see Fig. 244.8.
Then we prove the following estimate on the value of u in ω at time t in
terms of the values of the data in ω(t):

Theorem 244.1 For any proper subdomain ω of Ω and t > 0 such that
ω(t) ⊂ Ω, the solution u of the homogeneous wave equation satisfies

‖u̇(·, t)‖2L2(ω)
+ ‖∇u(·, t)‖2L2(ω)

≤ ‖u̇0‖2L2(ω(t))
+ ‖∇u0‖2L2(ω(t))

.
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(t)

x

t

FIGURE 244.8. The generalized cone of dependence ∆(ω, t) and enlarged region
ω(t) associated to a subdomain ω of Ω.

Proof: We define the generalized cone of dependence ∆ = ∆(ω, t) =
{∪x∈ω∆(x, t)}, which is the union of all the cones of dependence ∆(x, t)
with x ∈ ω. Under the assumption on t, ∆ is contained in the cylinder
Ω̄× [0, t]. We denote the exterior unit space-time normal to the boundary
S of ∆ by n = (nx, nt), where nx denotes the space components of n. To
obtain the desired estimate, we multiply (244.12) by 2u̇, integrate over ∆,
and then integrate by parts to obtain

0 =

∫

∆

(ü −∆u)2u̇ dx dt

=

∫

∆

(2üu̇+ 2∇u · ∇u̇) dx dt −
∫

S

nx · ∇u2u̇ ds

=

∫

∆

d

dt
((u̇)2 + |∇u|2) dx dt −

∫

S

nx · ∇u2u̇ ds

=

∫

S

nt((u̇)
2 + |∇u|2) ds−

∫

S

nx · ∇u2u̇ ds.

On the “sloping” sides of S, we have nt = |nx| = 1/
√
2 and thus by

Cauchy’s inequality, nt((u̇)
2 + |∇u|2) − nx · ∇u2u̇ ≥ 0. We can therefore

estimate the integral over the top part of S (with nt = 1 and nx = 0)
corresponding to ω, in terms of the integral over the base of S corresponding
to ω(t), and thus obtain the desired result. �.

244.24. Write out the details of the last estimate.

244.25. Derive a version of Theorem 244.1 for the solution of (244.12) with
f ≡ 0 without the restriction on t that keeps ∆ inside the cylinder Ω̄ × [0, t].
Hint: define a generalized cone that includes part of the boundary of Ω̄ × [0, t]
when t is large.

244.26. Generalize the result of Lemma 244.1 to the case f 6= 0.
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244.11 Conservation of Energy

Along with a finite speed of propagation, a solution u of (244.12) with
f = 0 satisfies

‖u̇(·, t)‖2 + ‖∇u(·, t)‖2 = ‖u̇0‖2 + ‖∇u0‖2, t > 0,

where ‖ · ‖ denotes the L2(Ω) norm.

244.27. Prove this by modifying the proof in one dimension.

244.11.1 Kirchhoff’s formula and Huygens’ principle

The generalization of d’Alembert’s solution formula to the homogeneous
wave equation (244.12) with f = 0 and Ω = R3 is called Kirchhoff’s for-
mula, and was first derived by Poisson,

u(x, t) =
1

4πt

∫

S(x,t)

u̇0 ds+
∂

∂t

(
1

4πt

∫

S(x,t)

u0 ds

)
, (244.17)

where S(x, t) = {y ∈ R3 : |y − x| = t} is the sphere with radius t centered
at x. This formula shows sharp propagation at speed one of both the initial
data u0 and u̇0, since the integrals involve only the surface S(x, t) of the
ball B3(x, t) = {y ∈ R3 : |y− x| ≤ t}, which is the set of points in R3 from
which a signal of speed one may reach x within the time t. In other words,
only the values of the data on the surface of the cone of dependence actually
have an influence on the value at a point. The sharp wave propagation in
three dimensions is referred to as Huygens’ principle.

244.28. Use (244.17) to write a formula for the solution of the wave equation
with the data used in Problem 244.21.

A formula for the solution of the wave equation in two dimensions can
be derived from (244.17) by considering the function to be a solution of the
wave equation in three dimensions that happens to be independent of x3.
For x ∈ R2, we let B2(x, t) = {y ∈ R2 : |y− x| ≤ t}, which may be thought
of as the projection of B3(x, t) onto the plane {x : x3 = 0}. The solution is
given by

u(x, t) =
1

2π

∫

B2(x,t)

u̇0(y)(
t2 − |y − x|2

)1/2 dy

+
∂

∂t

(
1

2π

∫

B2(x,t)

u0(y)(
t2 − |y − x|2

)1/2 dy
)
.
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Note that this formula involves integration over the entire ball B2(x, t) and
not just the surface as in three dimensions. As a result, wave propagation
in two dimensions is not as sharp as in three dimensions. If we strike a
circular drumhead at the center, the vibrations propagate outwards in a
circular pattern. The vibrations first hit a point a distance d from the center
at time t = d and that point continues to vibrate for all time afterwards.
The amplitude of the vibrations decays roughly like 1/t. We illustrate this
in Fig. 245.2 where we show a finite element approximation to a related
problem. See Strauss ([?]) for more details on wave propagation.

244.29. Write down a formula for the solution of the homogeneous wave equation
in two dimensions corresponding to u0 = 1 for |x| ≤ 1 and 0 otherwise, and
u̇0 ≡ 0.
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245
Wave Equation FEM

245.1 Reformulation as System

To discretize (244.12), we first rewrite this scalar second order equation
as a system of first order equations in time using the notation of Chapter
212.1 setting u1 = u̇ and u2 = u: find the vector (u1, u2) such that





u̇1 −∆u2 = f in Ω× (0,∞),

−∆u̇2 +∆u1 = 0 in Ω× (0,∞),

u1 = u2 = 0 on Γ× (0,∞),

u1(·, 0) = u̇0, u2(·, 0) = u0 in Ω.

(245.1)

We choose this formulation, and in particular write ∆u1 = ∆u̇2 instead of
u1 = u̇2, because this brings (245.1) into a form that is analogous to the
hyperbolic model problem of Chapter 212.1 with the positive coefficient a
corresponding to −∆. Thus, we can use the same trick of cancellation that
we used for the analysis of the hyperbolic model problem. In particular
when f ≡ 0, if we multiply the first equation by u1 and the second by
u2 and add, the terms −(∆u2, u1) and (∆u1, u2) cancel, leading to the
conclusion that ‖u1‖2+ ‖∇u2‖2 is constant in time. In other words, we get
energy conservation very easily.
The finite element functions we use to approximate the solution of (245.1)

are piecewise linear polynomials in space and time that are continuous
in space and “nearly” continuous in time. By nearly, we mean that the
approximation is continuous unless the mesh changes from one time level
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to the next. We call this the cG(1) method. We discretize Ω× (0,∞) in the
usual way, letting 0 = t0 < · · · < tn < · · · denote a partition of (0,∞) and
to each time interval In = (tn−1, tn] of length kn = tn − tn−1, associate
a triangulation Tn of Ω with mesh function hn and a corresponding finite
element space Vn of continuous piecewise linear vector functions in Ω that
vanish on Γ. For q = 0 and 1, we define the space

W
(q)
kn =

{
(w1, w2) : wj(x, t) =

q∑

r=0

trv
(r)
j (x), v

(r)
j ∈ Vn, j = 1, 2

}

on the space-time slab Sn = Ω × (tn−1, tn) and then the space W
(q)
k of

piecewise polynomial functions (v1, v2) such that (v1, v2)|Sn
∈ W

(q)
kn for

n = 1, 2, ..., N . The functions in W
(q)
k are forced to be continuous in space,

but may be discontinuous in time.
The cG(1) method for (244.12) is based on the variational formulation

of (245.1) as usual and reads: Find U = (U1, U2) ∈ W
(1)
k such that for

n = 1, 2, . . . ,





∫ tn

tn−1

(
(U̇1, w1) + (∇U2,∇w1)

)
dt =

∫ tn

tn−1

(f, w1) dt,

∫ tn

tn−1

(
(∇U̇2,∇w2)− (∇U1,∇w2)

)
dt = 0,

U+
1,n−1 = PnU

−
1,n−1, U+

2,n−1 = πnU
−
2,n−1,

(245.2)

for all w = (w1, w2) ∈ W
(0)
kn , where U−

1,0 = u̇0, U
−
2,0 = u0, and

Uj(x, t)|Sn
= U−

j,n(x)
t − tn−1

kn
+ U+

j,n−1(x)
t− tn
−kn

, j = 1, 2.

Further, πn is the elliptic projection into Vn defined by (∇πnw,∇v) = (∇w,
∇v) for all v ∈ Vn. Note that πnw ∈ Vh is the Galerkin approximation
of the solution w of Poisson’s equation on Ω with homogeneous Dirichlet
boundary conditions.
Note that if the mesh is unchanged across tn−1, i.e. Tn = Tn−1, then both

Pn and πn reduce to the identity and the approximation U is continuous
across tn−1. If Vn−1 ⊂ Vn, which occurs for example when the mesh is
refined using the customary strategies, then the coefficients of U+

j,n−1, j =

1, 2, can be found by straightforward interpolation of U−
j,n−1, i.e., for j=1,2,

U+
j,n−1(Nn,i) = U−

j,n−1(Nn,i),

where {Nn,i} is the set of nodes in Tn.

245.1. Prove this last claim.
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In this case, the components Uj are continuous across tn−1 in the sense
that

lim
t→t−n−1

Uj(x, t) = lim
t→t+n−1

Uj(x, t) for all x ∈ Ω.

However, when the mesh is changed so Vn−1 6⊂ Vn, which typically happens
when the mesh is coarsened, then Uj will in general be discontinuous across
tn−1. We illustrate this in Fig. 245.1.

0 .25 .50 .75 1

U-
n-1

0 .25 .50 .75 1.65

n

U+
n-1

Pn, n

n-1

U-
n-1

n

0 .25 .75 1

n

U+
n-1

0 .25 .75 1.50

n-1

FIGURE 245.1. The effect of πn in two cases of mesh changes. On the left, the
mesh is refined so Vn−1 ⊂ Vn and πn and Pn correspond to nodal interpolation.
On the right, the mesh is coarsened and Uj is discontinuous across tn−1.

245.2. Compute U+
n−1 = πnU

−
n−1 for the example on the right in Fig. 245.1

assuming that U−
n−1(.25) = 1/2, U−

n−1(.5) = 1/3, and U−
n−1(.75) = 1.

We use Bn and An to denote the Mn ×Mn mass and stiffness matrices
associated to the nodal basis {ϕi,n} for Vn with dimensionMn, and further
An−1,n to denote the Mn ×Mn−1 matrix with coefficients

(
An−1,n

)
i,j

= (∇ϕi,n,∇ϕj,n−1), 1 ≤ i ≤Mn, 1 ≤ j ≤Mn−1,

and let Bn−1,n be defined by (243.4). Finally ξ−j,n and ξ+j,n−1 denote the

vectors of coefficients with respect to {ϕi,n} of U−
j,n and U+

j,n−1 for j = 1, 2.
With this notation, (245.2) is equivalent to the set of matrix equations





Bn
(
ξ−1,n − ξ+1,n−1

)
+ knAn

(
ξ−2,n + ξ+2,n−1

)
/2 = Fn,

An
(
ξ−2,n − ξ+2,n−1

)
− knAn

(
ξ−1,n + ξ+1,n−1

)
/2 = 0,

Bnξ
+
1,n−1 = Bn−1,nξ

−
1,n−1, Anξ

+
2,n−1 = An−1,nξ

−
2,n−1,

(245.3)

where Fn is the data vector with coefficients

(
Fn
)
i
=

∫ tn

tn−1

(f, ϕi,n
)
dt, 1 ≤ i ≤Mn.
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245.3. Prove (245.3) is correct.

245.4. In the case the space mesh Tn does not change, show that (245.3) reduces
to {

B(ξ1,n − ξ1,n−1) + knA(ξ2,n + ξ2,n−1)/2 = Fn,

A(ξ2,n − ξ2,n−1)− knA(ξ1,n + ξ1,n−1)/2 = 0,

where we have dropped the superscripts + and − on the coefficient vectors ξi,n
and the subscript n on A and B since U is continuous.

245.5. Formulate the cG(1) finite element method that uses the lumped mass
quadrature rule in space and the midpoint rule in time to evaluate the inte-
grals giving the approximation. Write out the discrete matrix equations for the
approximation.

245.2 Energy Conservation

One reason that we use the cG(1) method (245.2) is that the approximation
conserves the total energy when f ≡ 0 provided Vn−1 ⊂ Vn for all n. To
prove this, we choose wj = (U+

j,n−1 + U−
j,n)/2 in (245.2) and add the two

equations to get

∫ tn

tn−1

(U̇1, U1) dt+

∫ tn

tn−1

(∇U̇2,∇U2) dt = 0,

because of the terms that cancel. This gives

‖U−
1,n‖2 + ‖∇U−

2,n‖2 = ‖U−
1,n−1‖2 + ‖∇U−

2,n−1‖2. (245.4)

In other words, the total energy of the cG(1) approximation is conserved
from one time step to the next, just as holds for the solution of the contin-
uous problem. When the mesh is changed so Vn−1 6⊂ Vn, then the energy is
only approximately conserved because each projection onto the new mesh
changes the total energy.

245.6. Provide the details of the proof of (245.4).

245.7. Compute the change in energy in U in Problem 245.2.

245.3 A Posteriori Error Estimates and Adaptivity

In this section, we present an a posteriori error analysis under some simpli-
fying assumptions. The analysis of the cG(1) method for (245.1) is analo-
gous to the analysis of the cG(1) method for the hyperbolic model problem
in Chapter 212.1, but there are new technical difficulties in the case of the
partial differential equation.
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The adaptive error control is based on an a posteriori error estimate as
usual. We prove the estimate under the assumptions that Ω is convex and
the space mesh is kept constant, which simplifies the notation considerably.
We use Th to denote the fixed triangulation of mesh size h(x) and we denote
the corresponding finite element space by Vh. We use Ph to denote the L2

projection into Vh and ∆h to denote the discrete Laplacian on Vh. We use
Pk to denote the L2 projection into the set of piecewise constant functions
on the partition {tn}, and R2, to denote the space residual associated to
the discretization of the Laplacian as defined in Chapter ??. Finally, since
U is continuous, we set Uj,n−1 = U+

j,n−1 = U−
j,n−1. We shall prove the

following a posteriori error estimate assuming that Ω is convex so that
Theorem 240.6 applies.

Theorem 245.1 There is a constant Ci such that for N = 1, 2, ...,

‖u2(tN )− U2,N‖

≤ Ci

(
‖h2R2(U2,N )‖+ ‖h2R2(U2,0)‖

+

∫ tN

0

(
‖h(f − Phf)‖+ ‖h2R2(U1)‖

)
dt

+

∫ tN

0

(
‖k(f − Pkf)‖+ ‖k∆h(U2 − PkU2)‖

+ ‖k∇(U1 − PkU1)‖
)
dt

)
.

Note that the first four quantities on the right arise from the space dis-
cretization and the last three quantities arise from the time discretization.
The integrals in time implies that errors accumulate at most linearly with
time, as expected from the analysis of the model hyperbolic problem.

Proof: The proof is based on using the continuous dual problem to get
an error representation formula. The dual problem is: For N ≥ 1, find
ϕ = (ϕ1, ϕ2) such that





−ϕ̇1 +∆ϕ2 = 0 in Ω× (0, tN ),

∆ϕ̇2 −∆ϕ1 = 0 in Ω× (0, tN ),

ϕ1 = ϕ2 = 0 on Γ× (0, tN),

−∆ϕ2(·, tN ) = e2,N in Ω,

ϕ1(·, tN ) = 0 in Ω,

(245.5)

where e2 = u2 − U2. We multiply the first equation in (245.5) by e1 =
u1−U1, the second by e2, add the two together, integrate over Ω× (0, tN),
integrate by parts, and finally use the Galerkin orthogonality of the ap-
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proximation, to obtain

‖e2,N‖2 =

N∑

n=1

((
f − U̇1, ϕ1 − PkPhϕ1

)
n

−
(
∇U2,∇(ϕ1 − PkPhϕ1)

)
n
−
(
∇(U̇2 − U1),∇(ϕ2 − PkPhϕ2)

)
n

)
,

where (·, ·)n denotes the L2(Sn) inner product. The goal is to distinguish
the effects of the space and time discretizations by using the splitting v −
PkPhv = (v − Phv) + (Phv − PkPhv) and the orthogonalities of the L2

projections Ph and Pk to obtain

‖e2,N‖2

=

N∑

n=1

((
f − Pkf, Phϕ1 − PkPhϕ1

)
n
+
(
f − Phf, ϕ1 − Phϕ1

)
n

−
(
∇U2,∇(ϕ1 − Phϕ1)

)
n

−
(
∇(U2 − PkU2),∇(Phϕ1 − PkPhϕ1)

)
n

−
(
∇(U̇2 − U1),∇(ϕ2 − Phϕ2)

)
n

−
(
∇(U̇2 − U1),∇(Phϕ2 − PkPhϕ2)

)
n

)
.

Finally, using the fact that ϕ1 = ϕ̇2 and integrating by parts in t, we obtain

‖e2,N‖2 =

N∑

n=1

((
f − Pkf, Phϕ1 − PkPhϕ1

)
n
+
(
f − Phf, ϕ1 − Phϕ1

)
n

−
(
∇(U2 − PkU2),∇(Phϕ1 − PkPhϕ1)

)
n

+
(
∇U1,∇(ϕ2 − Phϕ2)

)
n

+
(
∇(U1 − PkU1),∇(Phϕ2 − PkPhϕ2)

)
n

)

−
(
∇U2,N ,∇(ϕ2,N − Phϕ2,N )

)
+
(
∇U2,0,∇(ϕ2,0 − Phϕ2,0)

)
.

To complete the proof, we use (243.3) and a standard estimate for v−Pkv
together with the following stability result for the dual problem (245.5).�

Lemma 245.2 If Ω is convex, then the solution ϕ of (245.5) satisfies

‖ϕ̈2‖[0,tN ] + ‖Dϕ̇2‖[0,tN ] + ‖D2ϕ2‖[0,tN ] ≤ C‖e2,N‖. (245.6)

Proof: Multiplying the first equation in (245.5) by ∆ϕ1 and the second by
∆ϕ2 and adding, after using Greens formula, we obtain

d

dt
(‖∇ϕ1‖2 + ‖∆ϕ2‖2) = 0.
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It follows using the initial conditions that

‖∇ϕ1‖2 + ‖∆ϕ2‖2 = ‖e2,N‖2.

The desired conclusion results from using the elliptic regularity estimate
(240.6) and the fact that ϕ̈2 = ∆ϕ2. �

245.8. (a) Fill in the details of the above proof. (b) (Hard!) Extend the a
posteriori error estimate to the case Tn varies with n.

245.4 Adaptive Error Control

Following the ideas in the previous chapters, we can formulate an algorithm
for adaptive error control by using the a posteriori error bound in Theorem
245.1 to give an estimate of the error on a given space-time mesh. We
illustrate the use of the a posteriori error bound in two examples.1

In the first example, we compute the effects of a sharp strike at the
center of a large square drumhead. We can model the problem for small
amplitude vibrations by posing the wave equation on a finite domain Ω =
[0, 1]× [0, 1] with homogeneous Neumann boundary conditions. We assume
the drumhead is initially at rest, i.e. u(·, 0) = u̇(·, 0) = 0 and we model the
strike by a source f located at the center of the square defined by

f(x, t) =

{
sin2(πt/T ), for t ≤ .1, |x− (.5, .5)| ≤ .1,

0, otherwise.

We plot the finite element approximation at time t ≈ .7 in Fig. 245.2. We
compute with a fixed time step kn ≡ .01 for a relatively short time so
that the error due to time discretization is remains small. The space mesh
is adapted according to the error control algorithm based on using an a
posteriori error bound to equidistribute the error across the elements. The
a posteriori analysis presented above can be changed to cover Neumann
boundary conditions in a straightforward way.
The second example is a computation on a model of wave propagation

in an inhomogeneous, linear elastic, viscously damped solid. We assume
that the displacements are small and perpendicular to the (x1, x2) plane
and that the solid is relatively long in the x3 direction, which reduces
the model to a scalar, two-dimensional wave equation for the shear waves
propagating in the (x1, x2) plane.

1These computations are provided courtesy of M. G. Larson and A. J. Niklasson. See
Adaptive finite element methods for elasto-dynamics, preprint, Department of Mathe-
matics, Chalmers University of Technology, S41296 Göteborg, Sweden, for further de-
tails.
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FIGURE 245.2. Plot of the finite element approximation and the corresponding
space mesh for the model of the drumhead struck sharply at the center. In the
plot of the displacement, a 15 level grey scale is used with black representing the
largest and white the smallest displacement. The mesh on the right was adapted
from an initial uniform mesh based on an a posteriori error bound.

In the specific example we present, the domain Ω = (0, 1) × (0, 1) is
composed of two isotropic materials joined along the line x2 = .59. The
material in the upper portion has a shear modulus that is five times larger
than the material in the lower portion, so that the wave speed is five times
greater in the upper portion of Ω. This gives the equation ü − a∆u = f ,
where

a(x) =

{
1, x2 ≤ .59,

5, x2 > .59.

We assume homogeneous Neumann (stress-free) boundary conditions and
an approximate point source that is active for small time, so we define

f(x, t) =

{
sin2(πt/.07), |x− (.4, .4)| ≤ .1 and t ≤ .14,

0, otherwise.

This is the kind of forcing that might be found in nondestructive ultrasonic
testing and seismology. The a posteriori error bound used to control the
adaptivity is derived using techniques similar to those used to prove Theo-
rem 245.1. We show contour plots of the approximation and the associated
space meshes at times t = .05, .15, .25, and .4 in Fig. 245.3–Fig. 245.6. The
material interface is marked with a horizontal line, and the difference in
wave speed in the two materials is clear.

245.5 A Priori Error Estimate

We state an a priori error estimate for the cG(1) method in the case Tn is
constant and assuming that Ω is convex.
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FIGURE 245.3. Density plot of the finite element approximation and the cor-
responding space mesh for the wave equation on an inhomogeneous material at
time t = .05. The forcing has not reached maximum strength yet.
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FIGURE 245.4. t = .15

Theorem 245.3 There is a constant Ci such that if U satisfies (245.2),
then for N = 1, 2, ...,

‖u2(·, tN )− U2,N‖ ≤ Ci

∫ tN

0

(
‖k2∇ü2‖+ ‖k2ü1‖+ ‖h2D2u̇2‖

)
dt.

We note that the a priori error estimate is of order O(h2 + k2) and like the
a posteriori estimate, the integral in time corresponds to a linear rate of
accumulation of errors.

Proof: To simplify the analysis, we only analyze the time discretization.
This corresponds to setting Vn equal to the space of functions with square-
integrable gradients on Ω and that vanish on Γ. We use û to denote the
piecewise linear time interpolant of u. Since we already know how to esti-
mate ρ = u− û, we only have to estimate e = û− U .
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FIGURE 245.5. t = .25
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FIGURE 245.6. t = .40

To this end, we use the discrete dual problem: Find (Φ1,Φ2) ∈ W
(1)
k that

satisfies for n = N,n− 1, ..., 1,

{
−(v1, Φ̇1)n − (∇v1,∇Φ2)n = 0,

−(∇v2,∇Φ̇2)n + (∇v2,∇Φ1)n = 0,
(245.7)

for all (v1, v2) ∈ W
(0)
kn , where Φ1,N ≡ 0 and −∆Φ2,N = e2,N with e2 =

û2 − U2. Because the test functions v1 and v2 are piecewise constant, we
may replace Φ1 and Φ2 in the second terms in each equation by their mean
values Φ̄i,n := (Φi,n−1 + Φi,n)/2 on In. After this, we can replace the test

functions v1 and v2 by arbitrary piecewise linear functions, because both Φ̇i
and Φ̄i are piecewise constant. In particular, replacing v1 by e1 = û1 − U1

and v2 by e2, adding the resulting equations and summing over n, and then
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integrating by parts in time, we obtain the error representation

‖e2,N‖2

=

N∑

n=1

((
∇ė2,∇Φ2

)
n
+
(
∇e2,∇Φ̄1

)
n
+
(
ė1,Φ1

)
n
−
(
∇e1,∇Φ̄2

)
n

)

=

N∑

n=1

((
ė1, Φ̄1

)
n
+
(
∇e2,∇Φ̄1

)
n
+
(
∇ė2,∇Φ̄2

)
n
−
(
∇e1,∇Φ̄2

)
n

)

= −
N∑

n=1

((
ρ̇1, Φ̄1

)
n
+
(
∇ρ2,∇Φ̄1

)
n

+
(
∇ρ̇2,∇Φ̄2

)
n
−
(
∇ρ1,∇Φ̄0

)
n

)
.

We also replaced Φj by their mean values Φ̄j and then used Galerkin or-
thogonality to replace U by u. Since the terms involving ρ̇i, i = 1, 2 vanish,
we arrive at the following error representation

‖e2,N‖2 = −
N∑

n=1

((
∇ρ2,∇Φ̄1

)
n
−
(
ρ1,∆Φ̄2

)
n

)
.

Choosing v1 = −∆Φ̄1 and v2 = −∆Φ̄2 in (245.7), we obtain the stability
estimate:

‖∇Φ1,n‖2 + ‖∆Φ2,n‖2 = ‖e2,N‖2 for all n ≤ N.

Combining this with the error representation and then using standard esti-
mates for the interpolation error ρ, we obtain the a priori error estimate.�

245.9. Supply the details of the proof.

245.10. Show that assuming the solution u(x, t) of the wave equation ü−∆u = f
has the form u(x, t) = exp(iωt)w(x), where f(x, t) = exp(iωt)g(x) and ω > 0 is a
given frequency, leads to the stationary Helmholtz’s equation −∆w−ω2w = g for
the amplitude w(x). Show that a fundamental solution of Helmholtz’s equation in

R3 is given by exp(iω|x|)
4π|x| . Solve Helmholtz’s equation using Femlab on a bounded

two-dimensional domain with suitable boundary conditions in a configuration of
physical interest.

245.11. Derive the wave equation from Maxwell’s equations under suitable as-
sumptions.
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FIGURE 245.7. Particle motion in deep and shallow water waves.
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246
Stationary Convection-Diffusion
Analysis

I have always found it difficult to read books that cannot be
understood without too much meditation. For, when following
one’s own meditation, one follows a certain natural inclination
and gains profit along with pleasure; but one is enormously
cramped when having to follow the meditaton of others. (Leib-
niz)

246.1 Introduction

In this chapter and the next, we consider a linear model for a problem
that includes the effects of convection, diffusion, and absorption, which is
an example of a multi-physics problem coupling several physical phenom-
ena. We begin by deriving the model and discussing the basic properties of
solutions. In this chapter, we continue by considering the discretization of
the stationary case, starting with a discussion that explains why a straight-
forward application of Galerkin’s method yields disappointing results for
a convection dominated problem. We then present a modified Galerkin
method that resolves the difficulties, that we call the streamline diffusion
finite element method or Sd method. We continue with the time dependent
case in the next chapter. The material of these two chapters lay the foun-
dation for the application of the finite element method to incompressible
and compressible fluid flow including reactive flow, multi-phase flow and
free-boundary flow, developed in the advanced companion volume.
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246.2 A basic model

We consider the transport of heat in a current flowing between two regions
of a relatively large body of water, for example from a warm region to a cold
region, taking into account the dissipation of the heat, the advection of the
heat by the current, and the absorption of heat into the air. An example
of such a physical situation is the North American Drift flowing from New-
foundland, where it continues the Gulf Stream, to the British Isles, where
it splits into two branches. The North American Drift is responsible for
the warm climate of Western Europe. Our interest is focused on the water
temperature in the Drift at different locations at different times. The full
problem takes place in three space dimensions, but we simplify the model
to two dimensions assuming all functions are independent of the depth.
The model is a time-dependent scalar convection-diffusion-absorption

problem posed on a space-time domain Q = Ω × I, where Ω is a polyg-
onal domain in R2 with boundary Γ and I = (0, T ), of the form





u̇+∇ · (βu) + αu−∇ · (ǫ∇u) = f in Q,

u = g− on (Γ× I)−,

u = g+ or ǫ∂nu = g+ on (Γ× I)+,

u(·, 0) = u0 in Ω,

(246.1)

where u represents the temperature, β = (β1, β2), α and ǫ > 0 are functions
of (x, t) representing the convection velocity, absorption coefficient, and
diffusion coefficient, respectively. Further, f(x, t), u0, g, and u0 are given
data, and

(Γ× I)− = {(x, t) ∈ Γ× I : β(x, t) · n(x) < 0},
(Γ× I)+ = {(x, t) ∈ Γ× I : β(x, t) · n(x) ≥ 0},

where n(x) is the outward normal to Γ at point x, are the inflow and outflow
parts of the space-time boundary Γ× I, respectively. We illustrate this in
Fig. 246.1.

246.1. Let Ω = (0, 1) × (0, 1), I = (0, 1), and β =
(
cos
(
π
2
t + π

4

)
, sin

(
π
2
t + π

4

))
.

Identify the inflow and outflow boundaries of Q.

The model is the result of expressing conservation of heat as

∂

∂t
(λu) +∇ · q + αu = f,

where q is the heat flow and λ the heat capacity, and assuming that the
constitutive law is the following generalization of Fourier’s law (232.3)

q = βλu − ǫ∇u.
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t=t3

t=t2

( I)-

( I)+

x

t

t=t1

FIGURE 246.1. The space time domain Q indicating the inflow and outflow
boundaries. The inflow boundary is shaded in the figure on the right.

Setting the heat capacity λ = 1, gives (246.1). This model is a natural
extension of the model for heat flow considered in Chapter ?? with the
addition of terms corresponding to convection of heat with the current β
and absorption of heat at the rate α.
Using the identity

∇ · (βu) = β · ∇u+ (∇ · β)u,

we may replace the convection term ∇ · (βu) by β · ∇u by modifying the
term αu to (α +∇ · β)u.
The model (246.1) models a variety of phenomena with the variable u

representing a quantity subject to convection, diffusion and absorption.
Another example is the evolution of a contaminant dropped into fluid run-
ning in a pipe, see Fig. 246.2, where u represents the concentration of the
contaminant in the fluid. A system of the form (246.1) may also serve as
a simple model for fluid flow described by the Navier-Stokes equations, in
which case u represents mass, momentum and energy. Thus, (246.1) is a
fundamental model.

246.2. The motion of the rotor of an electrical motor gives rise to an additional
contribution to the electric field E of the form β × B where β is the velocity
and B the magnetic flux. Show that introducing this term into the derivation of
(242.2) leads to the convection-diffusion equation

σ
∂u

∂t
+ σβ · ∇u−∇ ·

( 1
µ
∇u
)
= f.
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x

u

t=0

x

u

t>0

FIGURE 246.2. The convection and diffusion of a dye inside a water pipe. u(x, t)
represents the concentration of the dye at (x, t).

246.3 The stationary convection-diffusion problem

We begin by considering the stationary convection-diffusion-absorption prob-
lem associated to (246.1),





β · ∇u+ αu −∇ · (ǫ∇u) = f in Ω,

u = g− on Γ−,

u = g+ or ǫ∂nu = g+ on Γ+,

(246.2)

with all functions independent of time, and α modified to include ∇ · β
as indicated above. In this case, the definitions of the inflow and outflow
boundaries Γ− and Γ+ are given by

Γ− = {x ∈ Γ : β(x) · n(x) < 0} and Γ+ = {x ∈ Γ : β(x) · n(x) ≥ 0},

see Fig. 246.3. We first discuss basic features of solutions of the problem

n(x)

n(x)
n(x)

n(x)

n(x)- +

specify u

specify u or nu
if >0

FIGURE 246.3. The notation for a stationary convection-diffusion problem.

(246.2) and then consider the computation of approximate solutions using
finite element methods. Special care has to be taken in the design of the
finite element method, because direct application of Galerkin’s method to
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(246.2) when the convection is the dominant feature leads to numerical
solutions with spurious oscillations, which is illustrated in Problem 246.6
below.

246.3.1 Convection versus diffusion

Generally, the relative size of ǫ and β govern the qualitative nature of
(246.2). If ǫ/|β| is small, then (246.2) is convection dominated and has hy-
perbolic character. If ǫ/|β| is not small, then (246.2) is diffusion dominated
and has elliptic character. Thus, the problem (246.2) changes character
from hyperbolic to elliptic as ǫ/|β| increases. In the diffusion dominated
case the material on elliptic problems in Chapter ?? is applicable since the
convection terms are dominated by the diffusion terms.
We now focus on the convection-dominated hyperbolic case and then

first consider the extreme case with ǫ = 0.

246.3.2 The reduced problem

The reduced problem with ǫ = 0 takes the form
{
β · ∇u + αu = f in Ω,

u = g− on Γ−,
(246.3)

where u is specified only on the inflow boundary Γ−. The reduced problem
couples convection and absorption.
The streamlines associated to the stationary convection velocity field

β(x) are curves x(s), parametrized by s ≥ 0, satisfying




dx

ds
= β(x(s)) for s > 0,

x(0) = x̄,
(246.4)

for the streamline starting at x̄, see Fig. 246.4. This is the path followed by
a particle starting at x̄ that is convected with velocity β(x). In this inter-
pretation, s is time and dx/ds represents the particle velocity. A streamline

x(s)

x

-

FIGURE 246.4. A streamline has tangent vector β(x(s)) at every point x(s).

is closed if the particle returns to the point of departure, i.e. x(s) = x̄ for



1824 246. Stationary Convection-Diffusion Analysis

some s > 0. A problem with closed streamlines requires special care, so we
assume for now that there aren’t any. The reduced equation becomes an
ordinary differential equation along a streamline since by the chain rule,

d

ds
u(x(s)) + α(x(s))u(x(s)) = (β · ∇u+ αu)(x(s)) = f(x(s)), s > 0,

where the inflow data g−(x̄) at x̄ ∈ Γ− gives the “initial data” u(x(0)). The
solution of the reduced problem (246.3) therefore can be found by solving
for each streamline x(s) an ordinary differential equation of the form (??):

v̇(s) + a(s)v(s) = f̄(s), s > 0, v(0) = g−(x(0)),

where v(s) = u(x(s)), a(s) = α(x(s)) and f̄(s) = f(x(s)), corresponding
to “solving along streamline starting at inflow”. We note that the case of
non-negative absorption with α(x) ≥ 0 corresponds to the parabolic case
with a(s) ≥ 0.
We conclude that in the reduced problem without diffusion information

is propagated sharply along streamlines from the inflow boundary to the
outflow boundary. We see in particular that if there is a discontinuity in the
inflow data at some point x̄ on the inflow boundary Γ−, then the solution of
(246.3) will in general be discontinuous across the entire streamline staring
at x̄. As an example, the solution of the problem





∂u

∂x1
= 0 in x ∈ Ω,

u(0, x2) =

{
0, 0 < x2 < 1/2,

1, 1/2 ≤ x2 < 1,

corresponding to (246.2) with β = (1, 0), α = 0 and Ω = [0, 1] × [0, 1], is
given by

u(x1, x2) =

{
0, 0 < x2 < 1/2, 0 < x1 < 1,

1, 1/2 ≤ x2 < 1, 0 < x1 < 1,

with a discontinuity across the streamline x(s) = (s, 1/2).

246.3. Suppose β = (1, 1 − x1) and Ω = [0, 1] × [0, 1]. (a) Plot Ω and identify
the inflow and outflow boundaries. (b) Compute the streamlines corresponding
to each point on the inflow boundary (Hint: there are two cases). Plot enough of
the streamlines so that you can describe the “flow” over Ω.

246.4. Solve the problem x1
∂u
∂x1

+ x2
∂u
∂x2

= 0 on Ω = {x : 1 < x1, x2 < 2}, with
some choice of inflow data.

246.3.3 Layers of difficulty

The features of the reduced problem with ǫ = 0 are present also in the
hyperbolic case with ǫ/|β| small positive but now the presence of positive
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diffusion makes the solution continuous and “spreads out” a discontinuity
over a layer in the solution, which is a narrow region where the solution
changes significantly. For example, a discontinuity across a streamline be-
comes a characteristic layer of width O(

√
ǫ), see Fig. 246.5. Further, if

Dirichlet boundary conditions are specified on the outflow boundary Γ+ in
the case ǫ > 0, then in general the solution u of (246.2) has an outflow
boundary layer of width O(ǫ) close to Γ+ where u changes rapidly to meet
the boundary condition; see Fig. 246.5.

g+=0

+

-

u(x1,x2)

O( )

g-=1

g-=0

u(x1,x2)

O
1/2

-
+

FIGURE 246.5. Illustrations of an outflow (on the left) and a characteristic layer
caused by a discontinuity in g− (on the right).

To give a concrete example of an outflow layer we consider the one-
dimensional analog of (246.2), which takes the form

{
−(ǫu′)′ + βu′ + αu = f for 0 < x < 1,

u(0) = 0, u(1) = 0,
(246.5)

in the case of homogeneous Dirichlet boundary conditions. We present com-
putational results in Fig. 246.6 for the case ǫ = 0.02, β = 1, α = 0 and
f = 1 using L2 norm error control on the tolerance level .02. The flow is
from left to right with inflow at x = 0 and outflow at x = 1. Note the
outflow layer in u in the boundary layer near x = 1 resulting from the
convection in the positive x direction and how the mesh is refined in that
region.

246.5. Show that the width of an outflow layer is approximately of order ǫ by
explicitly solving the one-dimensional convection-diffusion problem −ǫu′′+u′ = 0
for 0 < x < 1 with u(0) = 1, u(1) = 0.

We now present a problem showing that Galerkin’s method may go
berserk under certain conditions. We urge the reader to do this problem
before continuing.

246.6. Consider the continuous Galerkin cG(1) method for the one-dimensional
problem −ǫu′′ + u′ = 0 in (0, 1) with u(0) = 1, u(1) = 0. (a) Write down the
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FIGURE 246.6. Solution, error, and meshsize for (246.5) with ǫ = .02, β = 1,
α = 0, f = 1, and TOL=.02.

discrete equations for the cG(1) approximation computed on a uniform mesh with
M interior nodes. (b) With ǫ = 0.01, compute the approximation for M = 10
and M = 11 and compare to the true solution. (c) Compute the approximation
with M ≈ 100 and compare with the exact solution. (d) Write out the discrete
equations when ǫ = h/2. Explain why this scheme is called the upwind method
for the reduced problem. How is the convection term approximated by Galerkin’s
method? Compare with the upwind method. Compare the nature of propagation
of effects (in particular the outflow boundary condition) in Galerkin’s method
with ǫ > 0 much smaller that h and the upwind method.
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247
Stationary Convection-Diffusion FEM

247.1 The Streamline Diffusion Method

Convection dominated problems present difficulties for computation that
are not present in diffusion dominated problems, mainly because the sta-
bility properties of convection dominated problems cause the standard
Galerkin finite element method to be non-optimal compared to interpo-
lation. Recall that Galerkin methods are typically optimal for elliptic and
parabolic problems, and in general for diffusion dominated problems. How-
ever, the standard Galerkin method for convection dominated problems
may be far from optimal if the exact solution is nonsmooth, in which case
the Galerkin approximations contain “spurious” oscillations not present in
the true solution. This is illustrated in Problem 246.6. The oscillations oc-
cur whenever the finite element mesh is too coarse to resolve layers, which
typically is the case in the early stages of an adaptive refinement process.
The oscillations result from a lack of stability of the standard Galerkin
finite element method for convection dominated problems, and may have
disastrous influence on the performance of an adaptive method leading to
refinements in large regions where no refinement is needed.
We conclude that it is important to improve the stability properties of

the Galerkin finite element method. However, this has to be done cleverly,
because additional stability is often obtained at the price of decreased accu-
racy. For example, increasing artificially the diffusion term (e.g. by simply
setting ǫ = h) will increase the stability of the Galerkin method, but may
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also decrease accuracy and prevent sharp resolution of layers. Thus, the
objective is to improve stability without sacrificing accuracy.
We consider two ways of enhancing the stability of the standard Galerkin

finite element method:

(a) introduction of weighted least squares terms

(b) introduction of artificial viscosity based on the residual.

We refer to the Galerkin finite element method with these modifications
as the streamline diffusion, or Sd-method, and motivate this terminology
below. The modification (a) adds stability through least squares control
of the residual and the modification (b) adds stability by the introduction
of an elliptic term with the size of the diffusion coefficient, or viscosity,
depending on the residual with the effect that viscosity is added where
the residual is large, i.e., typically where the solution is nonsmooth. Both
modifications enhance stability without a strong effect on the accuracy
because both modifications use the residual.

247.1.1 Abstract formulation

We begin by describing the Sd-method for an abstract linear problem of
the form

Au = f, (247.1)

for which the standard Galerkin finite element method reads: compute U ∈
Vh such that

(AU, v) = (f, v) for all v ∈ Vh, (247.2)

where A is a linear operator on a vector space V with inner product (·, ·)
and corresponding norm ‖ · ‖, and Vh ⊂ V is a finite element space. Typi-
cally, A is a convection-diffusion differential operator, (·, ·) is the L2 inner
product over some domain Ω. We assume that A is positive semi-definite,
i.e. (Av, v) ≥ 0 for all v ∈ V.
The least squares method for (247.1) is to find U ∈ Vh that minimizes

the residual over Vh, that is

‖AU − f‖2 = min
v∈Vh

‖Av − f‖2.

This is a convex minimization problem and the solution U is characterized
by

(AU,Av) = (f,Av) for all v ∈ Vh. (247.3)

We now formulate a Galerkin/least squares finite element method for
(247.1) by taking a weighted combination of (247.2) and (247.3): compute
U ∈ Vh such that

(AU, v) + (δAU,Av) = (f, v) + (δf, Av) for all v ∈ Vh, (247.4)
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where δ > 0 is a parameter to be chosen. Rewriting the relation (247.4) as

(AU, v + δAv) = (f, v + δAv) for all v ∈ Vh, (247.5)

we can alternatively formulate the Galerkin/least squares method as a
Petrov-Galerkin method, which is a Galerkin method with the space of
test functions being different from the space of trial functions Vh. In our
case, the test functions have the form v + δAv with v ∈ Vh.
Adding the artificial viscosity modification (b) yields (with a typical

choice of diffusion operator) the Sd-method in abstract form: find U ∈ Vh
such that

(AU, v + δAv) + (ǫ̂∇U,∇v) = (f, v + δAv) for all v ∈ Vh, (247.6)

where ǫ̂ is the artificial viscosity defined in terms of the residual R(U) =
AU − f through

ǫ̂ = γ1h
2|R(U)|, (247.7)

with γ1 a positive constant to be chosen, and h(x) the local mesh size of
Vh.
Choosing v = U in (247.6) we see that the modifications improve the

stability of the approximation as compared to (247.2).

247.1. Assume (Av, v) ≥ c‖v‖2 for some positive constant c. (a) Choose v = U
in (247.6) and derive a stability result for U . (b) Compare the result from (a) to
the stability result obtained by choosing v = U in (247.2). How does the stability
result from (a) depend on δ and γ1?

247.1.2 The streamline diffusion method for a
convection-diffusion problem

We now formulate the streamline diffusion method for (246.2) with con-
stant ǫ and homogeneous Dirichlet boundary conditions using the standard
space of piecewise linear functions Vh ⊂ V = H1

0 (Ω) based on a triangula-
tion Th of Ω: compute U ∈ Vh such that

(AU, v + δAv) + (ǫ̂∇U,∇v) = (f, v + δAv) for all v ∈ Vh, (247.8)

where (·, ·) is the L2(Ω) inner product,

Aw = β · ∇w + αw, δ =
1

2

h

|β| ,

ǫ̂(U, h) = max
{
ǫ, γ1h

2|f − (β · ∇U + αU)|, γ2h3/2
}
,

where the γj are positive constants to be specified. We obtain (247.8) by
multiplying the terms in (246.2) that appear in the reduced equation by
the modified test function v+ δ(β · ∇v+αv), which corresponds to a least
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squares modification of the convection/absorption terms, while multiplying
the diffusion term in (246.2) by v after replacing ǫ by ǫ̂. If ǫ is variable
or higher order polynomials are used, then the diffusion term should be
included in the least squares modification.
In general, ǫ̂ depends on U and the discrete problem (247.8) is nonlinear,

even though the continuous problems (246.2) and (246.3) are linear. When
iterative methods are used to solve the discrete equations, the additional
complication in solving the discrete equations due to the nonlinearity in-
troduced by ǫ̂ has little effect on the computational overhead. The artificial
viscosity ǫ̂ is proportional to |f − (β · ∇U + αU)|, which plays the role of
the residual. For simplicity, the jump terms related to the diffusion term
has been left out; see the statement of Theorem 247.5.
The size of the artificial viscosity ǫ̂ relative to the mesh size h (assuming

ǫ ≤ h) gives a measure of the smoothness of the exact solution u. In regions
where u is smooth, ǫ̂ ≈ h3/2, while in outflow layers in general ǫ̂ = γ1h

2|f−
(β · ∇U +αU)| ∝ h, because there |f − (β · ∇U +αU)| ∝ h−1 on a general
mesh. In characteristic layers, typically |f − (β ·∇U +αU)| ≈ h−1/2 so that
again ǫ̂ ∝ h3/2. Thus, we distinguish two basic cases:

(a) u is “smooth” with ǫ̂ ∝ h3/2, including characteristic layers,

(b) u is non-smooth with ǫ̂ ∝ h, typically resulting in outflow layers.

We assume for the sake of simplicity that ǫ̂ = ǫ, which can be guaranteed
during a computation by adding this requirement to the stopping criterion
in the adaptive algorithm. The case ǫ̂ > ǫ typically occurs in initial stages
of adaptive refinements when the mesh is coarse. We focus on the case with
h2 ≤ ǫ ≤ h. If ǫ is larger than h then all layers are resolved by the mesh,
and if ǫ is smaller than h2 then the mesh is much too coarse.
In Fig. 247.1, we present the results of a computation using the adaptive

streamline diffusion method on the convection-diffusion problem with Ω =
(0, 1) × (0, 1), β = (2, 1), α = 0, ǫ = 0.01, and discontinuous inflow data
u(0, y) ≡ 1, 0 ≤ y ≤ 1 and u(x, 0) ≡ 0, 0 < x < 1. Note the form and
thickness of the layers and the corresponding shape of the adapted mesh.

247.2. Plot Ω for this computation and identify the streamlines and the inflow
and outflow boundaries.

247.2 A framework for an error analysis

We describe the basic ingredients of the analysis of the streamline diffusion
method. The goal is an a posteriori error estimate that can be used to
guide the mesh adaptivity in order to control the error. After presenting
the general points, we analyze a specific case in the following section.
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FIGURE 247.1. A surface plot with the mesh indicated and associated level curves
of the approximate solution obtained using the streamline diffusion method for
a convection-diffusion problem with both outflow and characteristic layers.

247.2.1 Basic stability estimates

We assume that

α− 1

2
∇ · β ≥ c > 0, (247.9)

for some constant c. In the case of non-closed streamlines this condition
may be satisfied by a change of variable; cf. Problem 247.4. The weak
stability estimate for the solution u of (246.2) has the form:

‖√ǫ∇u‖+ ‖u‖ ≤ C‖f‖, (247.10)

with C = (
√
c+2)/(2c), and ‖ ·‖ denotes the L2(Ω) norm. In what follows,

the exact value of C changes, but it is always a constant that depends on
the constant c in (247.9). The estimate (247.10) follows after multiplying
the differential equation in (246.2) by u, integrating over Ω, and using the
fact that (β · ∇u, u) = − 1

2 (∇ · β u, u).
A corresponding stability estimate for the discrete problem (247.8) is

obtained by choosing v = U , which gives

‖
√
ǫ̂∇U‖+ ‖

√
δ(β · ∇U + αU)‖ + ‖U‖ ≤ C‖f‖. (247.11)

We note that the control of the ‖
√
δ(β · ∇U + αU)‖ term results from the

least squares modification of the streamline diffusion method, and that the
artificial viscosity ǫ̂ is present in the gradient term. The ‖U‖ term allows the
‖
√
δ(β ·∇U+αU)‖ term to be replaced by ‖

√
δβ ·∇U‖, yielding a weighted

control of the streamline derivative β · ∇U . This control corresponds to
adding diffusion in the streamline direction with coefficient δ, and this is
the motivation for the name “streamline diffusion method”.
Below, we also use an analog of the stability estimate (247.11) with

ǫ̂ = ǫ = 0 that has the following form: for piecewise continuous functions
w with w = 0 on Γ−,

‖
√
δAw‖2 + c‖w‖2 ≤ (Aw,w + δAw), (247.12)
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where as above A = β · ∇w+αw. This estimate follows from the following
version of Green’s formula after noting that the boundary term is guaran-
teed to be non-negative if w = 0 on Γ−, because β · n ≥ 0 on Γ+.

Lemma 247.1

(β · ∇w,w) = −1

2
(∇ · β w,w) + 1

2

∫

Γ

w2β · n ds. (247.13)

We note that the stability estimate (247.12) requires w to be specified (to
be zero) on the inflow boundary Γ−. The estimate gives a motivation why
it is natural to specify data on Γ−, rather than on Γ+, in the case ǫ = 0.

247.3. Provide the details in the derivations of (247.10), (247.11), (247.12) and
(247.13).

247.4. Show that the equation u′(s) = f(s), where s ∈ R, takes the form v′(s)+
v(s) = exp(−s)f(s) using the change of dependent variable v(s) = exp(−s)u(s).

247.2.2 A strong stability estimate

In addition to the weak stability estimate (247.10), we also use the following
estimate for a dual continuous problem which can be written in the form
(246.2) with Neumann outflow boundary conditions:

‖β · ∇u+ αu‖+ ‖ǫD2u‖ ≤ C‖f‖, (247.14)

where C is a moderately sized constant that does not depend in a significant
way on ǫ if Ω is convex. We refer to this estimate as a strong stability
estimate because second derivatives are bounded, in addition to the control
of the term β · ∇u + αu. The “price” of the second derivative control is a
factor ǫ−1, which is natural from the form of the equation. Since ǫ is small,
the “price” is high, but nevertheless there is a net gain from using this
estimate, because the presence of the second derivatives brings two powers
of h to compensate the ǫ−1 factor.
We are not able to prove the analog of the strong stability estimate

(247.14) for the discrete problem, which would be useful in deriving a priori
error estimates. Instead, we use (247.11) as a substitute, yielding a weighted
control of β · ∇U + αU with the weight

√
δ.

We summarize the effects of the two modifications used to create the
streamline diffusion method: the least squares modification gives added
control of the derivative in the streamline direction with a weight

√
δ, while

the artificial viscosity modification gives control of the gradient ∇U with
the weight

√
ǫ̂.
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247.2.3 Basic forms of the error estimates

Assuming that ǫ̂ = ǫ, the a posteriori error estimate for the streamline
diffusion method (247.8) has the form:

‖u− U‖ ≤ CiSc

∥∥∥∥
h2

ǫ
R(U)

∥∥∥∥, (247.15)

where Sc ≈ 1 and R(U) is the residual of the finite element solution U
defined in terms of the differential equation in a natural way. We note the
presence of the factor h2/ǫ that results from combining strong stability with
Galerkin orthogonality. In many cases, we have h2/ǫ << 1. For example if
ǫ ≈ h3/2, which corresponds to a “smooth” exact solution such as a solution
with a characteristic layer, then (247.15) reduces to

‖u− U‖ ≤ C‖h1/2R(U)‖.

If ǫ ≈ h, which corresponds to a “non-smooth” exact solution such as a
solution with an outflow layer, then (247.15) reduces to

‖u− U‖ ≤ C‖hR(U)‖.

To understand the gain in (247.15), compare it to the “trivial” a posteriori
error estimate

‖u− U‖ ≤ C‖R(U)‖ (247.16)

that follows directly from the weak stability estimate and even holds for
non-Galerkin methods. This estimate is almost useless for error control in
the case the exact solution is non-smooth, because the right-hand side in
general increases with decreasing mesh size until all layers are resolved.
The a priori error estimate takes the form

‖h1/2R(U)‖+ ‖u− U‖ ≤ CiSc,h‖h3/2D2u‖,

where Sc,h ≈ 1. In the case of a smooth solution, the a posteriori and a
priori error estimates match and both are non-optimal with a loss of h1/2,
while in the non-smooth case with ǫ̂ = h, the a posteriori estimate appears
in optimal form.

247.5. Prove (247.16). Assuming that R(U) ≈ h−1 in an outflow layer of width of
order h, estimate ‖R(U)‖ and discuss what would happen if an adaptive method
tried to control ‖u− U‖ by using (247.16). Do the same in the case of a charac-
teristic layer assuming R(U) ≈ h−1/2 in a layer of width h1/2.
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247.3 A posteriori error analysis in one dimension

We consider the one-dimensional convection-diffusion-absorption problem
(246.5) with β = 1, α = 1 and ǫ a small positive constant:

{
−ǫu′′ + u′ + u = f in (0, 1),

u(0) = u(1) = 0.
(247.17)

This problem in general has an outflow layer of width O(ǫ) at x = 1 where
the solution rapidly changes to adjust to the imposed outflow boundary
value u(1) = 0.
For simplicity, we consider the streamline diffusion method for (247.17)

without the artificial viscosity modification, which takes the form : Com-
pute U ∈ Vh such that

(U ′ + U, v + δ(v′ + v)) + (ǫU ′, v′) = (f, v + δ(v′ + v)) for all v ∈ Vh,
(247.18)

where δ = h/2 when ǫ < h and δ = 0 otherwise, Vh is the usual space
of continuous piecewise linear functions that vanish at x = 0, 1, and (·, ·)
the L2(Ω) inner product. We note that the streamline diffusion method
is essentially obtained by multiplication by the modified test function v +
δ(v′ + v). The modification has a stabilizing effect, which is manifested by
the presence of the positive term (U ′+U, δ(U ′+U)), obtained by choosing
v = U in (247.18). If δ is increased, the stability is improved but at the cost
of accuracy. If δ is decreased, then the reverse is true. Choosing δ ≈ h/2
gives the best compromise and results in a satisfactory combination of
stability and accuracy.
We now prove an L2 a posteriori error estimate for the streamline dif-

fusion method (247.18). For simplicity, we consider a case with h ≤ ǫ and
δ = 0.

Theorem 247.2 There is a constant C independent of ǫ and h such that
the solution U of (247.18) satisfies the following estimate for all ǫ ≥ 0

‖u− U‖ ≤ Ci
∥∥h

2

ǫ∗
(f − Ux)

∥∥+ |ǫu′(0)|+ |ǫU ′(0)|,

where ǫ∗(x) = h1/2ǫ on the interval of the subdivison underlying Vh with
left-hand endpoint x = 0, ǫ∗ = ǫ elsewhere, and ‖ · ‖ denotes the L2(Ω)
norm

Proof: Let ϕ be the solution of the dual problem

{
−ǫϕ′′ − ϕ′ + ϕ = g for 0 < x < 1,

ϕ′(0) = 0, ϕ(1) = 0,
(247.19)
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with the direction of the convection from right to left, which is opposite to
that of (247.17). We pose the dual problem with Dirichlet inflow boundary
condition at the inflow at x = 1 and it is convenient to choose a Neumann
outflow condition at the outflow at x = 0. Choosing g = u−U in (247.19),
multiplying by u−U and integrating by parts, we get and using the Galerkin
orthogonality,

‖u− U‖2 =

∫ 1

0

(f − U ′ − U)(ϕ− πhϕ) dx

−
∫ 1

0

ǫU ′(ϕ− πhϕ)
′ dx + ǫu′(0)ϕ(0),

where πhϕ ∈ Vh interpolates ϕ at the interior mesh points. Using the
following stability result this proves the desired result, up to the small
modification of ǫ required because in general ϕ(0) 6= 0, while πhϕ(0) = 0.
�

Lemma 247.3 There is a constant C such that if ϕ solves (247.19), then

|ϕ(0)| ≤ ‖g‖ and ‖ǫϕ′′‖ ≤ ‖g‖. (247.20)

Proof: Multiplication with ϕ and integration gives
∫ 1

0

(ǫϕ′)2 dx+

∫ 1

0

ϕ2 dx+
1

2
ϕ(0)2 ≤ 1

2

∫ 1

0

g2 dx+
1

2

∫ 1

0

ϕ2 dx,

which proves the estimate for |ϕ(0)|. Next, multiplication with −ǫϕ′′ gives
∫ 1

0

(ǫϕ′′)2 dx+

∫ 1

0

ϕ′ǫϕ′′ dx+

∫ 1

0

ǫ(ϕ′)2 dx = −
∫ 1

0

gǫϕ′′.

Since

2

∫ 1

0

ϕ′ϕ′′ dx = ϕ′(1)2 ≥ 0,

this proves the desired estimate for ǫϕ′′ by Cauchy’s inequality. �

247.6. Determine the Green’s function gz(x) for the boundary value problem
{
−ǫu′′ + bu′ = f, 0 < x < 1,

u(0) = u(1) = 0,
(247.21)

where b is constant. This is the function gz(x) defined for 0 < z < 1 that satisfies
{
−ǫg′′z − bg′z = δz, 0 < x < 1,

gz(0) = gz(1) = 0,

where δz denotes the delta function at z. Prove the representation formula

u(z) =

∫ 1

0

gz(x)f(x) dx, 0 < z < 1, (247.22)

where u(x) is the solution of (247.21). Consider first the case ǫ = 1 and b = 0,
and then the case ǫ > 0 and b = 1, paying particular attention to the limit ǫ → 0.
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y = y0

FIGURE 247.2. The model problem.

247.4 Error analysis in two dimensions

We prove error estimates for a model problem of the form (246.2) with
β = (1, 0), α = 1, ǫ constant and Ω = (0, 1) × (0, 1). For convenience, we
denote the coordinates in R2 by (x, y), and we write

ux = ∂u/∂x = β · ∇u = (1, 0) · ∇u,

and formulate the model problem (see Fig. 247.2) as follows:
{
ux + u− ǫ∆u = f in Ω,

u = 0 on Γ.
(247.23)

This problem is a direct extension of the one-dimensional model problem
(246.5) to two dimensions. Solutions of (247.23) can have an outflow layer
of width O(ǫ) along Γ+ and also characteristic layers of width O(

√
ǫ) along

characteristics {(x, y) : y = y0} that do not occur in the corresponding
one-dimensional problem.

247.4.1 Strong stability analysis

We use the following strong stability estimate for the associated dual
problem with homogeneous Neumann outflow boundary data.

Lemma 247.4 The solution ϕ of the dual problem




−ϕx + ϕ− ǫ∆ϕ = g, in Ω,

ϕ = 0, on Γ+,

ϕx = 0, on Γ−,

(247.24)

satisfies the stability estimates

(
‖ϕ‖2 + 2‖ǫ1/2∇ϕ‖2 +

∫

Γ−

ϕ2 ds

)1/2

≤ ‖g‖, (247.25)

‖ǫD2ϕ‖ ≤ ‖g‖. (247.26)
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Proof: Multiplying (247.24) by 2ϕ and integrating, we obtain (247.25)
after using the fact that −2(ϕx, ϕ) =

∫
Γ−
ϕ2ds. Next, multiplying (247.24)

by −ǫ∆ϕ and integrating, we obtain

‖ǫ∆ϕ‖2 + (ǫ∇ϕ,∇ϕ) + (ǫϕxx, ϕx) + (ǫϕyy, ϕx) = (f,−ǫ∆ϕ).

Since ϕx = 0 on Γ−, we have

2(ϕxx, ϕx) =

∫

Γ+

ϕ2
x ds.

On the two sides of Ω with y = 0 and 1, ϕx = 0, while ϕy = 0 on Γ+. This
gives

2(ϕyy, ϕx) = −2(ϕy, ϕxy) =

∫

Γ−

ϕ2
y ds.

We conclude that

‖ǫ∆ϕ‖2 ≤ (f,−ǫ∆ϕ) ≤ ‖f‖‖ǫ∆u‖.

The desired estimate follows using the elliptic regularity result ‖D2ϕ‖ ≤
‖∆ϕ‖, see (240.37). �

247.4.2 The a posteriori error estimate

We prove an a posteriori error estimate in the case δ = 0 and ǫ̂ = ǫ constant.
The proof when δ ≈ h is obtained by a simple modification.

Theorem 247.5 There is a constant C such that

‖u− U‖ ≤ C

(∥∥∥∥
h2

ǫ∗
R(U)

∥∥∥∥+ ‖ǫ∂nu‖Γ− + ‖ǫ∂nU‖Γ−

)
, (247.27)

where R(U) = R1(U) +R2(U) with

R1(U) = |f − Ux − U |

and

R2(U) =
ǫ

2
max
S⊂∂K

h−1
K |[∂SU ]| on K ∈ Th, (247.28)

where [∂Sv] denotes the jump across the side S ⊂ ∂K in the normal deriva-
tive of the function v in Vh, and ǫ

∗ = ǫh1/2 on K if K ∩Γ− 6= 0 and ǫ∗ = ǫ
otherwise.

Proof: Letting ϕ denote the solution of the dual problem (247.24) with
g = e = u − U , we obtain the following error representation by using
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Galerkin orthogonality and the equations defining u and U ,

‖e‖2 = (e,−ϕx + ϕ− ǫ∆ϕ)

= (ex + e, ϕ) + (ǫ∇e,∇ϕ)
= (ux + u, ϕ) + (ǫ∇u,∇ϕ)− (Ux + U,ϕ)− (ǫ∇U,∇ϕ)

= (f, ϕ) +

∫

Γ−

ǫ ∂nuϕds− (Ux + U,ϕ)− (ǫ∇U,∇ϕ)

= (f − Ux − U,ϕ− πhϕ)− (ǫ∇U,∇(ϕ− πhϕ)) +

∫

Γ−

ǫ ∂nuϕds,

from which the desired estimate follows by standard interpolation error
estimates and Lemma 247.4.

247.7. Supply the details to finish the proof.

247.8. Prove a similar result when δ ≈ h.

We note that the ∗ modification of ǫ is required to deal with the incom-
patibility of boundary conditions for ϕ and functions in Vh on Γ−. �

247.4.3 The a priori error estimate

We prove the a priori error estimate (247.6) in the simplified case that
ǫ = ǫ̂ = 0. The Dirichlet boundary condition is specified only on the inflow
boundary. Using Galerkin orthogonality in the analog of (247.12) for the
error e = u− U with A = ∂

∂x + I, we get

‖
√
δAe‖2 + c‖e‖2 ≤ (Ae, e+ δAe) = (Ae, u− πhu+ δA(u− πhu))

≤ 1

2
‖
√
δAe‖2 + ‖δ−1/2(u− πhu)‖2 + ‖

√
δA(u − πhu)‖2,

where as usual πhu denotes the nodal interpolant of u. Choosing δ = h and
using standard interpolation results, yields

1

2
‖
√
hAe‖2 + c‖e‖2 ≤ C2

i ‖h3/2D2u‖2.

We state the final result, which extends directly to the case with ǫ small,
as a theorem.

Theorem 247.6 If α− 1
2∇ · β ≥ c > 0 and ǫ ≤ h, then

‖u− U‖ ≤ CCi‖h3/2D2u‖.
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247.4.4 The propagation of information

It is possible to prove a “local” form of an a priori error estimate for the
streamline diffusion method in which the L2 error over a domain Ω1 ⊂ Ω
that excludes layers is estimated in terms of the L2 norm of h3/2D2u over
a slightly larger domain Ω2 that also excludes layers. The upshot is that
the presence of e.g. an outflow layer where the error may be locally large
if ǫ is small, does not degrade the accuracy away from the layer. This is
because in the streamline diffusion method, effects are propagated more or
less along streamlines from inflow to outflow in the direction of the “wind”
β just as effects are propagated in the continuous problem. In particular,
the streamline diffusion method does not have the spurious propagation in
the opposite direction to the wind that occurs in the standard Galerkin
method.

247.9. (a) Consider the problem −ǫu′′ + u′ + u = f for 0 < x < 1, together
with u(0) = 1, u(1) = 0. Let ψ(x) be a positive weight function on I such that
0 ≤ −ψ′ ≤ Cψ/ǫ, with C a suitable constant. Prove a stability estimate of the
form ‖√ψu‖ ≤ C‖√ψf‖. Use this estimate to draw a conclusion on the decay of
information in the “upwind” direction. Hint: multiply by ψu. (b) (Hard) Extend
to the streamline diffusion method. Hint: multiply by πh(ψU) and estimate the
effect of the perturbation ψU − πh(ψU).
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247.5 79 A.D.

The figure below, adapted with the permission of the National Geographic
Society, shows the ash fall resulting from the eruption of Mount Vesuvius
in 79 A.D. This is an example of a full scale convection-diffusion problem
with the convection velocity corresponding to a wind from north-west and
an approximate delta function source. The level curves of the ash downfall
(levels at 0.1, 1 and 2 meters are faintly shaded) give a measure of the
concentration of ash in the atmosphere in various directions from the crater.
Note the pronounced propagation of ash in the direction of the wind due
to convection. The propagation against the wind due to diffusion is much
smaller.
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248
Time Dependent Convection-Diffusion
Analysis

The fact that in nature “all is woven into one whole”, that space,
matter, gravitation, the forces arising from the electromagnetic
field, the animate and inanimate are all indissolubly connected,
strongly supports the belief in the unity of nature and hence in
the unity of scientific method. (Weyl)

248.1 Introduction

We return to the time-dependent problem (246.1), considering mainly the
convection dominated case with ǫ/|β| small since the case when ǫ/|β| is
not small can be analyzed by extending the results for the heat equation
presented in Chapter ??.
The cG(1)dG(r) method for the heat equation, using cG(1) in space

and dG(r) in time on space-time slabs, can be applied to (246.1) with
modifications like those used to create the streamline diffusion method for
stationary convection diffusion problems (246.2). We discuss this approach
briefly in Section 249.3. However, it turns out that using space-time meshes
that discretize space and time independently is not optimal for convection
dominated problems. It is better to use a mesh that is oriented along char-
acteristics or space-time particle paths. We illustrate this in Fig. 248.1. We
refer to a finite element method using oriented meshes as a characteristic
Galerkin method, or a chG method.
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tn-1

tn

tn-1

tn

non-oriented mesh oriented mesh

tn-1

tn

streamlines and velocity field evolution of a solution

Sn Sn

Sn

t

FIGURE 248.1. The upper figures show the space-time domain with the flow field
in space-time, the space-time streamlines, and an illustration of the evolution
of a solution. The two lower figures show non-oriented and oriented space-time
meshes.

In particular, we study the chG(0) method obtained applying the cG(1)dG(0)
method on a mesh oriented along particle paths in space and time inside
each slab. In its most elementary form, the chG(0) method reduces on each
space-time slab to an L2 projection from the previous mesh onto the current
mesh followed by an exact transport in the directions of the characteristics.
The main computational work is spent on the L2 projections. However for
the purpose of analysis, it is more useful to view the chG method as a
Galerkin method on a space-time mesh oriented in space-time along space-
time particle paths. In addition, this opens the way to generalizations in
which the space-time meshes are oriented in different ways.
We begin by describing the two fundamental ways to represent solutions

of a convection problem, called respectively Euler coordinates and Lagrange
coordinates.

248.2 Euler and Lagrange coordinates

We describe the coordinates systems in the context of measuring the tem-
perature in the North Atlantic stream. Dr. Euler and Dr. Lagrange each
lead a team of assistants provided with boats and thermometers. Dr. Eu-
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ler’s assistants anchor their boats at specific locations and measure the
temperature of the water continuously as it flows past their positions. Dr.
Lagrange’s assistants, on the other hand, drift with the current while mea-
suring the temperature. An assistant to Dr. Euler measures the temperature
of the water as it is affected by the current in contrast to an assistant to
Dr. Lagrange who measures the temperature of the same “piece” of water,
albeit at different positions. In order to correlate the measurements of the
two groups, it is necessary to record the stationary positions of Dr. Euler’s
assistants and to keep track of the changing positions of Dr. Lagrange’s
assistants.
To simplify the mathematical description of the two sets of coordinates,

we consider the model problem,





u̇+ β · ∇u− ǫ∆u = f in Q = R2 × (0,∞),

u(x, t) → 0 for t > 0 as |x| → ∞,

u(·, 0) = u0 in R2,

(248.1)

where we assume that β is smooth, f and u0 have bounded support, which
means that they are zero outside some bounded set, and ǫ ≥ 0 is constant.
This means in particular that we avoid here discussing complications rising
from boundaries in space.

248.2.1 Space-time particle paths

The space-time particle paths, or characteristics, corresponding to the con-
vection part u̇+ β · ∇u of (248.1) are curves (x, t) = (x(x̄, t̄), t(t̄)) in space
and time parameterized by t̄, where x(x̄, t̄) and t(t̄) satisfy





dx

dt̄
= β(x, t̄) for t̄ > 0,

dt

dt̄
= 1 for t̄ > 0,

x(x̄, 0) = x̄, t(0) = 0.

(248.2)

This is analogous to the stationary case with the operator β · ∇ replaced
by 1 · ∂/∂t+ β · ∇, where the coefficient of the time-derivative is one and
t acts as an extra coordinate. Here, the time coordinate has a special role
and in fact t = t̄. The projection of the space-time particle path into space
is given by the curve x(x̄, t̄) satisfying





dx

dt̄
= β(x, t̄) for t̄ > 0,

x(x̄, 0) = x̄
(248.3)

which is the time-dependent analog of the particle path in the stationary
case and gives the path in space of a particle moving with speed β(x, t).
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Note that for time-dependent velocity fields, it is important to distin-
guish between particle paths and streamlines, unlike the case of stationary
velocities when the two concepts are the same. Streamlines are related to a
time-independent velocity, for instance we may “freeze” the velocity β(x, t)
for t = t̂ and consider the streamlines of β(x, t̂ ) that solve dx/dt̄ = β(x, t̂ ).
The streamlines are therefore different from the particle paths, which sat-
isfy dx/dt̄ = β(x, t̄), if β(x, t̄) depends on t̄.
It is also important to distinguish between a space-time particle path

(x(x̄, t̄), t̄) and its projection into space x(x̄, t̄). Space-time particle paths
are essential for the construction of the oriented space-time mesh we de-
scribe below.

248.1. Compute and plot the space-time particle paths if (a) β = (x1, 1). (b)
β = (−x2, x1). (c) β = (sin(t), cos(t)).

248.2.2 Changing from Lagrange to Euler coordinates

The solution of (248.2) defines a map (x̄, t̄) → (x, t) by setting (x, t) =
(x(x̄, t̄), t̄) where x(x̄, t̄) is the position at time t̄ of a particle starting at x̄
at time zero. Because particle paths fill up space-time and cannot cross, the
map is invertible. We illustrate this in Fig. 248.2. We refer to (x, t) as the

(x,0)

(x, t )
( (x, t ),1)

t

FIGURE 248.2. The vector field (β, 1) and the corresponding streamlines define
a map between the Euler and Lagrange coordinate systems.

Euler coordinates and (x̄, t̄) as the Lagrange coordinates. An observer using
Euler coordinates is anchored at a fixed location x in space and observes
the change of some quantity, such as the temperature at x, as time passes,
where the change may be caused by the convection bringing new “particles”
to the point x. On the other hand, the Lagrange coordinate system moves
with the velocity field so that there is no convection relative to the moving
coordinate system. The coordinate x̄ then acts as a “label” or “marker”
attached to “particles” moving along streamlines, where the x̄ denotes the
position of a particle at time zero, and x = x(x̄, t̄) is its position at time t̄.
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In the context of the Dr. Euler and Dr. Lagrange’s assistants, the mapping
describes the positions of the Dr. Lagrange’s crew as they are transported
by the current.

248.2. Compute the coordinate map between Euler and Lagrange coordinates
corresponding to β in Problem 248.1.

Given a function u(x, t) in Euler coordinates, we define a corresponding
function ū(x̄, t̄) in Lagrange coordinates by ū(x̄, t̄) = u(x(x̄, t̄), t̄). By the
chain rule,

∂ū

∂t̄
=
∂u

∂t
+ β · ∇u,

since
dx

dt̄
= β(x, t̄) and t = t̄. Thus, the convection equation

∂u

∂t
+ β · ∇u = f (248.4)

in the Euler coordinates (x, t), which is (248.1) with ǫ = 0, takes the simple
form

∂ū

∂t̄
= f̄ (248.5)

in the global Lagrange coordinates (x̄, t̄), where f̄(x̄, t̄) = f(x(x̄, t̄), t̄). We
conclude that in global Lagrange coordinates, the convection term disap-
pears and the original partial differential equation (248.4) reduces to a
set of first order ordinary differential equations with respect to t̄ indexed
by the “marker” x̄. In particular, if f = 0 then ū(x̄, t̄) is independent of
time. This makes the job easy for a Lagrange assistant in the sense that if
f = 0 then it is sufficient to measure the temperature at time equal to zero
since the temperature following particles is constant. The Euler assistants
on the other hand have to measure the temperature continuously at their
fixed location since it may vary even though f = 0. Of course, the Lagrange
assistants have to keep track of their positions as time passes.

248.3. Compute the solution of u̇+ xu′ = f for x ∈ R and t > 0 with

f(t) =

{
t(1− t), 0 ≤ t ≤ 1,

0, 1 < t
and u0(x) =

{
0, |x| > 1,

1, |x| ≤ 1.

by computing the characteristics and changing to Lagrange coordinates.

248.4. Compute the solution of u̇+ (x1, t) · ∇u = 0 for (x1, x2) ∈ R2 and t > 0
with

u0(x) =

{
1, (x1, x2) ∈ [0, 1]× [0, 1],

0, otherwise.

by computing the characteristics and changing to Lagrange coordinates.
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Because of the simplicity of (248.5), it is tempting to use Lagrange coor-
dinates. But there is a hook: the Lagrange coordinates have to be computed
by solving (248.2) and this is as difficult to solve as the original convection-
diffusion problem formulated in Euler coordinates. However, using a kind of
“local” Lagrange coordinates, we can avoid solving the equations (248.2)
for the global characteristics, while keeping the advantage of the simple
form (248.5) in the Lagrange description. The Lagrange coordinates asso-
ciated to (248.1) underlie the construction of the space-time mesh on each
slab Sn used in the chG(0) method in the sense that the space-time mesh
in the chG(0) method is oriented approximately along the characteristics
of the flow locally on Sn, as shown in Fig. 248.1.
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249
Time-Dependent Convection-Diffusion
FEM

249.1 The characteristic Galerkin method

The characteristic chG(0) method is based on piecewise constant approxi-
mation along space-time characteristics and piecewise linear approximation
in space. As usual we let {tn} be an increasing sequence of discrete time
levels and associate to each time interval In = (tn−1, tn) a finite element
space Vn of piecewise linear continuous functions on a triangulation Tn of
R2 with mesh function hn. We use Sn to denote the space-time slab R2×In.

249.1.1 Approximate particle paths

We let βhn ∈ Vn denote the nodal interpolant of βn = β(·, tn−1) and in-
troduce the approximate space-time particle path (xn(x̄, t̄), t̄) in Sn, where





dxn
dt̄

= βhn(x̄) in In,

xn(x̄, tn−1) = x̄,

or
xn(x̄, t̄) = x̄+ (t̄− tn−1)β

h
n(x̄) for t̄ ∈ In. (249.1)

The approximate particle path (xn(x̄, t̄), t̄) is a straight line segment with
slope βhn(x̄) starting at x̄. We illustrate this in Fig. 249.1.

249.1. Suppose that β = (x1, 1). Plot some of the particle paths and corre-
sponding approximate particle paths for 0 ≤ t ≤ .1 associated to mesh points on
the standard uniform triangulation of the square.
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tn-1

tn

Sn

x

xn(x, t n)x(x, t n)

FIGURE 249.1. Exact and approximate particle paths in Sn.

249.1.2 The coordinate mapping

We introduce the coordinate map Fn : Sn → Sn defined by

(x, t) = Fn(x̄, t̄) = (xn(x̄, t̄), t̄) for (x̄, t̄) ∈ Sn,

where the coordinates (x̄, t̄) acts like local Lagrange coordinates on Sn. We
illustrate this in Fig. 249.2. We call βhn the tilting velocity for Fn. Note

t n-1

t n

tn-1

tn
Fn

x

t

x

t xn(x, t n)

FIGURE 249.2. The map Fn between local Lagrange and Euler coordinates takes
a non-oriented grid in (x̄, t̄) to an oriented grid in (x, t).

that these coordinates are similar but not the same as the global Lagrange
coordinates unless β is constant.
Denoting the Jacobian with respect to x̄ by ∇, we have from (249.1)

∇xn(x̄, t̄) = I + (t̄− tn−1)∇βhn(x̄),

where I denotes the identity, It follows from the inverse function theorem
that the mapping Fn : Sn → Sn is invertible if

kn‖∇βhn‖L∞(R2) ≤ c, (249.2)

with c a sufficiently small positive constant. This condition guarantees that
approximate particle paths don’t cross in Sn.
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249.2. Give an argument showing that Fn is invertible under the condition
(249.2)

249.1.3 The finite element spaces for chG(0)

We introduce the space-time finite element space

W kn = {v̄ : v̄(x̄, t̄) = w̄(x̄), (x̄, t̄) ∈ Sn for some w̄ ∈ Vn}.

To each function v̄(x̄, t̄) defined on Sn, we associate a function v(x, t) on
Sn by

v(x, t) = v̄(x̄, t̄) for (x, t) = Fn(x̄, t̄).

The analog of W kn in (x, t) coordinates is

Wkn =
{
v : v(x, t) = v̄(x̄, t̄), (x, t) = Fn(x̄, t̄) ∈ Sn for some v̄ ∈ W kn

}
.

(249.3)
A function v belongs to Wkn if the limit v+n−1 is a continuous piecewise
linear function on Tn and v(x, t) is constant on the straight lines x =
x̄+ (t− tn−1)β

h
n(x̄) for t in In. The corresponding space-time mesh on Sn

consists of the elements

T β
n = {K : K = Fn(K̄ × In) for some K̄ ∈ Tn},

which are prisms in space-time “tilted” in the direction of βhn illustrated in
Fig. 249.3. We use Wk to denote the space of functions v on Q such that

( n
h,1)

Fn

FIGURE 249.3. The normal and the tilted prism elements.

v|Sn
∈Wkn for n = 1, 2, ....

249.3. Assume that β = (x1, 1) and that the standard triangulation is used to
discretize the square. Draw a few of the “tilted prisms” for S1 = Ω× [0, k1].

There are two space meshes associated to each time level tn−1: the mesh
Tn associated to Sn, that is the “bottom mesh” on the slab Sn, and T −

n =
{Fn−1(K̄ × {tn−1}); K̄ ∈ Tn−1}, that is the“top mesh” on the previous
slab Sn−1, which results from letting the previous “bottom mesh” Tn−1

be transported by the flow. The two meshes Tn and T −
n may or may not
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coincide. In case they do not match, the L2 projection is used to interpolate
a function on T −

n into Vn. Depending on the regularity of the velocity field
β, it is possible to maintain matching meshes over a certain length of time
simply by choosing Tn = T −

n , until the mesh T −
n is so distorted that this

becomes infeasible. At the other extreme, we may use the same mesh Tn
for all slabs Sn and perform the projection from T −

n to Tn at every time
step. We illustrate this in Fig. 249.4.

identityL2 projection

identityL2 projection
-

n

-
n+1

n= n-1= n-2 n-1= -
n-1,

t

tn

tn-1

n

-
n-1

n-1

n-2

-
n

-
n+1

n

-
n-1

n-1

n-2

n= -
n

FIGURE 249.4. Two possibilities for constructing grids on succeeding slabs Sn.

249.1.4 The characteristic Galerkin method

The characteristic Galerkin method chG(0) reads: Compute U ∈ Wk such
that for n = 1, 2, ...,

∫

In

(L(U), v) dt + ([Un−1], v
+
n−1) +

∫

In

(ǫ̂∇U,∇v) dt

=

∫

In

(f, v) dt for all v ∈ Wkn, (249.4)

with

L(U) = U̇ + β · ∇U on Sn,

ǫ̂ = max
{
ǫ, γ1h

2R(U), γ2h
3/2
}

on Sn,

R(U) = |L(U)− f |+ |[Un−1]|/kn on Sn,

where γ1 and γ2 are non-negative constants to be specified and [Un−1] is
extended to Sn as a constant along the characteristics xn(x̄, ·). We have
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chosen the streamline diffusion parameter δ = 0 because, as we shall see,
the use of tilted elements effectively reduces the convection term, so that
no streamline diffusion is needed unless β is non-smooth.
Rewriting (249.4) in local Lagrange coordinates on Sn displays the effect

of the orientation. Extending βhn to Sn by setting βhn(x, t) = βhn(x̄) if (x, t) =
Fn(x̄, t̄), the chain rule implies

∂v

∂t
+ β · ∇v =

∂v

∂t
+ βhn · ∇v + (β − βhn) · ∇v

=
∂v̄

∂t̄
+ (β̄ − β̄hn) · J−1

n ∇v̄

=
∂v̄

∂t̄
+ ᾱ · ∇v̄,

where Jn(x̄, t̄) =
∂x

∂x̄
(x̄, t̄) and ᾱ = J−T

n (β̄− β̄hn). Now, (249.2) implies that

there is a constant C such that

|ᾱ| ≤ C|β̄ − β̄hn| on Sn,

so that |ᾱ| ≤ C(kn+h
2
n) if β is smooth. Reformulated in (x̄, t̄)-coordinates,

the characteristic Galerkin method takes the form: for n = 1, 2, ..., compute
Ū = Ū |Sn

∈ W̄kn such that,

∫

In

(∂Ū
∂t̄

+ ᾱ ·∇Ū , v̄|Jn|
)
dt + ([Ūn−1], v̄

+
n−1|Jn|)+

∫

In

(ǫ̂∇̂Ū , ∇̂v̄|Jn|) dt

=

∫

In

(f̄ , v̄|Jn|) dt for all v̄ ∈ W̄kn, (249.5)

where ∇̂ = J−1
n ∇.

Comparing (249.4) and (249.5), we see that using the oriented space-time
elements transforms the original problem with velocity β on each slab Sn to
a problem with small velocity ᾱ to which the cG(1)dG(0) method is applied
on a tensor-product mesh in (x̄, t̄) coordinates with no tilting. Thus, the
tilting essentially eliminates the convection term, which both improves the
precision and facilitates the solution of the corresponding discrete system.
The price that is payed is the L2 projection at mesh changes.

249.2 Extension

The chG(0) method directly extends to the higher order chG(r) method
with r ≥ 1 by using an approximate velocity βhn on Sn defined by

β̄hn(x̄, t̄) =

r∑

j=0

t̄jβhnj(x̄)
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where βhnj(x̄) ∈ Vn. The corresponding approximate characteristics are

given by x(x̄, t̄) = x̄+
∑r+1
j=1

(t̄−tn−1)
j

j βhnj(x̄).

249.4. Prove the last statement.

249.3 The streamline diffusion method on an Euler
mesh

The cG(1)dG(r) method for the heat equation extends to (246.1) using the
streamline diffusion and artificial viscosity modifications of Section 246.3.
This corresponds to using a non-oriented space-time mesh. The corespond-
ing cG(1)dG(r) streamline diffusion method is based on the space W r

k of
functions on Q which on each slab Sn belong to the space W r

kn defined by

W r
kn = {v : v(x, t) =

r∑

j=0

tjvj(x), vj ∈ Vn, (x, t) ∈ Sn}.

The method takes the form: compute U ∈ W r
k such that for n = 1, 2, . . .,

and for v ∈W r
kn,

∫

In

(
L(U), v + δL(v)

)
dt+

∫

In

(ǫ̂∇U,∇v) dt + ([Un−1], v
+
n−1)

=

∫

In

(f, v + δL(v)) dt (249.6)

where

L(w) = wt + β · ∇w,

δ =
1

2
(k−2
n + h−2

n |β|2)−1/2,

ǫ̂ = max
{
ǫ, γ1h

2R(U), γ2h
3/2
}
,

R(U) = |L(U)− f |+ |[Un−1]|/kn on Sn,

for positive constants γi. Note that the streamline diffusion modification
δL(v) only enters in the integrals over the slab Sn.

249.3.1 Two examples

We present two examples to illustrate the advantages gained in using the
chG method, that is the Sd method on an oriented space-time mesh, as
compared to the Sd method on a non-oriented space-time mesh. These
examples bring up the point that comparing numerical results purely by
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comparing the errors in the L2 norm may not give a complete picture. This
is obvious after a moment of thought since a norm does not contain as much
information about a function as a picture of the function. In the following
examples, we compare results using the Sd method on non-oriented and
oriented space-time meshes in computations with roughly the same accu-
racy in the L2 norm. We will see, that the quality in the “picture norm”
differs considerably.
The first example is a common quite difficult test problem with pure

convection. The initial data consisting of a cylinder with a slit shown in
Fig. 249.5, which is rotated counterclockwise by β = (sin(t), cos(t)) until
time t = π, or a rotation of 180 degrees. We first plot in Fig. 249.6 the

FIGURE 249.5. The initial data for the first example.

results obtained by using the cG(1)dG(1) method on a non-oriented space-
time grid reaching one half rotation after 251 constant time steps. Next,

FIGURE 249.6. The approximation and associated level curves from the
cG(1)dG(1) streamline diffusion method on a fixed space-time grid applied to
the data shown in Fig. 249.5.

in Fig. 249.7 we plot the solution obtained using the chG(0) method. The
mesh was tilted in space-time according to the rotating velocity field locally
on each space-time slab and an L2 projection back to a fixed uniform space
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mesh was performed at each time step, following the principle illustrated
to the left in Fig. 249.4. The solution after a half revolution, is visibly much
better than the previous computation, and also computationally much less
expensive, because only 21 constant time steps were used and piecwise
constants in time where used instead of piecewise linears.

FIGURE 249.7. The approximation and associated level curves from the charac-
teristic Galerkin chG(0) method applied to the data shown in Fig. 249.5.

The next problem, called the Smolarkiewicz example, is a very demand-
ing test problem. The initial data is a cone of height 1 and base radius 15
centered in the rectangular region Ω = (25, 75)× (12.5, 87.5). The cone is
convectively “folded” in the velocity field

β =
8π

25

(
sin
(πx
25

)
sin
(πx
25

)
,
(
cos
(πx
25

)
cos
(πx
25

))
,

which is periodic in x and y with six “vortex cells” inside Ω. We illustrate
this in Fig. 249.8. We compute the approximations using 1000 fixed time

FIGURE 249.8. The initial data for the Smolarkiewicz problem. We also plot the
convective vortex cells.

steps to reach the final time t = 30. In the first case, we use the chG(0)
method without mesh change according to the principle on the right of
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Fig. 249.4 with T −
n = Tn, so that no L2 projections from changing the

space mesh at a discrete time level were required. We plot the result in
Fig. 249.9. Note the extreme mesh distortion that develops as a result of
avoiding projections into new, less distorted space meshes. In the second
computation, shown in Fig. 249.10, the mesh was changed into a new uni-
form mesh every one hundred time steps. This limits the mesh distortion
but introduces L2 projection errors at the mesh changes that gradually
destroy sharp features of the solution.

249.4 Error analysis

We analyze the chG(0) method applied to the model problem





ut + β · ∇u− ǫ∆u = f in R2 × (0,∞),

u(x, t) → 0 for t > 0 as |x| → ∞,

u(·, 0) = u0 on R2,

(249.7)

where β = (β1, β2) and ǫ ≥ 0 are constant, and f and u0 are given data
with bounded support.

FIGURE 249.9. The approximation, level curves, and mesh resulting from the
characteristic Galerkin chG(0) method applied to the Smolarkiewicz problem at
t = 30. In this computation, the mesh passively follows the flow for all times and
no L2 projections are used.

The transformation between the Euler (x, t) and Lagrange coordinates
(x̄, t̄) is simply (x, t) = (x̄ + t̄β, t̄) in this case. Reformulating (249.7) in
Lagrange coordinates for ū(x̄, t̄) = u(x, t), after noting that

∂ū

∂t̄
=

∂

∂t̄
u(x̄+ t̄β, t̄) =

∂u

∂t
+ β · ∇u,
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FIGURE 249.10. The approximation, level curves, and mesh resulting from the
characteristic Galerkin chG(0) method applied to the Smolarkiewicz problem at
t = 30. In this computation, an L2 projection into a uniform mesh is used every
one hundred time steps to limit the mesh distortion.

we obtain 



∂ū

∂t̄
− ǫ∆ū = f̄ in R2 × (0,∞),

ū(x̄, t̄) → 0 for t̄ > 0 as |x̄| → ∞,

ū(x̄, 0) = u0(x̄) x̄ ∈ R2.

(249.8)

We see that the Lagrange formulation (249.8) is the familiar heat equation
with constant diffusion coefficient ǫ and the characteristic Galerkin chG(0)
method for (249.7) is simply the cG(1)dG(0) method for (249.8).
Before presenting the analysis, we write out the chG(0) method for

(249.7) explicitly. By construction, the functions v in Wkn are constant
in the direction β so that vt + β · ∇v = 0 for v ∈ Wkn. Thus, the chG(0)
method for (249.7) reduces to: compute U ∈ Wk such that

([Un−1], v
+
n−1) +

∫

In

(ǫ̂∇U,∇v) dt =
∫

In

(f, v) dt for all v ∈ Wkn, (249.9)

where

ǫ̂ = max
{
ǫ, γ1h

2(|[Un−1]|/kn + |f |), γ2h3/2
}

on Sn,

with h(x, t) = hn(x − (t − tn−1)β), where hn is the mesh function for Vn,
and [Un−1] is similarly extended. If f = 0 (and ǫ is small), then (249.9) can
be written: compute U+

n−1 ∈ Vn such that

∫

R2

U+
n−1v dx+

∫

R2

ǫ̃∇U+
n−1 · ∇v dx =

∫

R2

U−
n−1v dx for all v ∈ Vn,

(249.10)
with ǫ̃ = γ1h

2
n|[Un−1]| and U−

0 = u0.
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249.4.1 Projection and transport

This leads to an alternate formulation of the chG(0) method. Introduc-
ing the translation operator τn : τnv(x) = v(x − knβ) and the nonlinear
projection P̃n into Vn defined by

(P̃nw, v) + (ǫ̃∇P̃nw,∇v) = (w, v) for all v ∈ Vn,

where ǫ̃ = γ1h
2
n|w − P̃nw|, we can write (249.10) using the notation Un =

U−
n as

Un = τnP̃nUn−1, (249.11)

and U0 = u0.

249.5. Assuming that γ1 = 0, show that (249.11) reduces to

Un = τnPnUn−1, (249.12)

where Pn is the L2-projection into Vn.

Thus, the chG(0) method in the simplest case may be viewed as an algo-
rithm of the form “projection then exact transport”. This view is useful
for understanding some properties of the chG(0) method, but the chG(0)
method is not derived from this concept because this complicates the ex-
tension to more complex situations with β variable and ǫ positive.

249.4.2 A direct a priori error analysis in a simple case

We first derive an a priori error estimate for the chG(0) method in the
simple case with f = ǫ = 0, where the solution of (249.8) is simply given
by ū(x̄, t) = u0(x̄) and that of (249.7) by

u(x, t) = u0(x− tβ).

Using the formulation (249.12), we write the error as

un − Un = τn(un−1 − PnUn−1) = τn(un−1 − Pnun−1 + Pn(un−1 − Un−1)).

Using the facts ‖τnv‖ = ‖v‖ and ‖Pnv‖ ≤ ‖v‖, we obtain by Pythagoras’
theorem

‖un − Un‖2 = ‖un−1 − Pnun−1‖2 + ‖Pn(un−1 − Un−1)‖2

≤ ‖un−1 − Pnun−1‖2 + ‖un−1 − Un−1‖2.
Iterating this inequality and using a standard error estimate for the L2

projection, we obtain

‖uN − UN‖ ≤
( N∑

n=1

‖un−1 − Pnun−1‖2
)1/2

≤ Ci

( N∑

n=1

‖h2nD2un−1‖2
)1/2

≤ Ci
√
Nh2,
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provided u is smooth and we set h = maxn hn. This estimate is slightly
sub-optimal because of the factor

√
N . In the generic case with kn ≈ h, we

conclude that
‖uN − UN‖ ≤ Cih

3/2. (249.13)

An optimal result can be derived if the viscosity is positive, as we show in
the next section.

249.6. Assuming that the time steps are constant kn = k = T/N , prove that

‖uN − UN‖ ≤ Ci
√
N/T ‖(I − P )u‖L2(Q), (249.14)

where P = Pn on Sn. This result is also sub-optimal in comparison with the
accuracy of the L2 projection.

249.4.3 Orientation of Space-Time Mesh

The orientation of the space-time mesh in the characteristic Galerkin method
is chosen according to the flow velocity. In general, we could choose an ar-
bitrary mesh translation velocity. We refer to this variant as the oriented
streamline diffusion method. For example, if the solution is constant in time,
this suggests an orientation with zero velocity, which in general is different
from orientation along the flow velocity.

249.4.4 An error analysis based on error estimates for
parabolic problems

The a priori and a posteriori results for the cG(1)dG(0) method for the heat
equation apply to the chG(0) method for (249.7) written in the Lagrange
form (249.5). We write out the a priori and a posteriori error estimates,
which translate to corresponding optimal estimates for the chG(0) method
immediately.

Theorem 249.1 If µknǫ ≥ h2n, µ sufficiently small, ᾱ = 0 and ǫ̂ = ǫ, then

‖ū(·, tN )− ŪN‖ ≤ LNCi max
1≤n≤N

(
kn

∥∥∥∥
∂ū

∂t̄

∥∥∥∥
In

+ ‖h2nD2ū‖In
)
, (249.15)

and

‖ū(·, tN )− ŪN‖ ≤ LNCi max
1≤n≤N

(
‖kR0k(Ū)‖In + ‖ h

2
n

ǫkn
[Ūn−1]‖⋆

+‖h2nR(Ū)‖In
)
, (249.16)

where LN = (max((log(tN/kN ))1/2, log(tN/kN ))+2, R0k(Ū) = |f |+|[Ū ]|/k,
R(Ū) = 1

ǫ |f |+R2(Ū) with R2 defined by (247.28), and a star indicates that
the corresponding term is present only if Vn−1 * Vn.
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The assumption that
knǫ ≥ h2n

means that ǫ > 0 is needed to get optimal estimates. In the case kn = h
and ǫ ≈ h

3
2 , the estimates reduce to (249.13) if ∂ū/∂t̄ is small. In the case

of pure convection with f = 0, when ∂ū
∂t̄ = 0, (249.15) reduces to

‖uN − UN‖ ≤ Ci‖(I − P )u‖[0,tN ],

where (I − P )u = (I − Pn)u on In. This shows that the chG(0) method
in the convection dominated case is optimal compared to projection if the
viscosity is not too small, cf. (249.14).

249.7. Prove Theorem 249.1.

Leibniz’s spirit of inquiry is apparent even in his report to the
Académie des Sciences in Paris about a talking dog. Leibniz
describes the dog as a common middle-sized dog owned by a
peasant. According to Leibniz, a young girl who heard the dog
make noises resembling German words decided to teach it to
speak. After much time and effort, it learned to pronounce ap-
proximately thirty words, including “thé”, “caffé”, “chocolat”,
and “assemblée”- French words which had passed into German
unchanged. Leibniz also adds the crucial observation that the
dog speaks only “as an echo”, that is. after the master has pro-
nounced the word; “it seems that the dog speaks only by force,
though without ill-treatment”. (The Cambridge Companion to
Leibniz)
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FIGURE 249.11. Leibniz’ calculator.
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250
The Eigenvalue Problem for an
Elliptic Operator

For since the fabric of the universe is most perfect and the work of
a most wise Creator, nothing at all takes place in the universe in
which some rule of maximum or minimum does not appear. (Euler)

In this chapter, we briefly consider the eigenvalue problem of finding non-
zero functions ϕ and real numbers λ ∈ R such that

{
−∇ · (a∇ϕ) + cϕ = λϕ in Ω,

ϕ = 0 on Γ,
(250.1)

where Ω ⊂ Rd, Γ is the boundary of Ω, and a = a(x) > 0 and c = c(x) are
given coefficients. We refer to ϕ as an eigenfunction corresponding to the
eigenvalue λ. Recall that we discussed the eigenvalue problem in reference
to Fourier’s method in Chapter ??. It turns out that the eigenvalues of
(250.1) may be arranged as a sequence λ1 ≤ λ2 ≤ · · · ≤ λn → ∞ with one
eigenfunction ϕn corresponding to each eigenvalue λn. The eigenfunctions
corresponding to different eigenvalues are orthogonal with respect to the
L2(Ω) scalar product and the eigenfunctions corresponding to the same
eigenvalue form (together with the zero function) a finite dimensional vector
space called the eigenspace. The eigenfunctions {ϕn}∞n=1 may be chosen as
an orthonormal basis in L2(Ω). In particular, any function v ∈ L2(Ω) can
be represented as a series v =

∑
n vnϕn, where vn =

∫
Ω
v ϕn dx are called

the generalized Fourier coefficients. See Strauss ([?]) for more information
on these results.
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With a = 1 and c = 0, we obtain the eigenvalue problem for the Laplace
operator with Dirichlet boundary conditions

{
−∆ϕ = λϕ in Ω,

ϕ = 0 on Γ.
(250.2)

We recall that in the corresponding problem in one dimension with Ω =
(0, π), the eigenfunctions are (modulo normalization) ϕn(x) = sin(nx) cor-
responding to eigenvalues λn = n2, n = 1, 2, ... In the case d = 2 and
Ω = (0, π)×(0, π), the eigenfunctions are ϕnm(x1, x2) = sin(nx1) sin(mx2),
n,m = 1, 2, ..., with eigenvalues λnm = n2 + m2. In the first case, all of
the eigenspaces have dimension one, but in higher dimensions, all of the
eigenspaces except for the eigenspace corresponding to the smallest eigen-
value have dimension larger than one.

250.1. Prove that eigenvalues of (250.2) are positive and that eigenfunctions
corresponding to different eigenvalues are orthogonal in L2(Ω).

The drum and the guitar

The motion of an elastic membrane supported at the edge along a curve
Γ in the plane bounding the domain Ω, is described by the homogeneous
wave equation





ü−∆u = 0 in Ω× (0, T ),

u = 0 on Γ× (0, T ),

u(0) = u0, u̇(0) = u̇0 in Ω,

(250.3)

where u(x, t) represents the transversal deflection of the membrane. If ϕn is
an eigenfunction with corresponding eigenvalue λn of the eigenvalue prob-
lem (250.2), then the functions sin(

√
λnt)ϕn(x) and cos(

√
λnt)ϕn(x) satisfy

the homogeneous wave equation (250.3) with specific initial data. These
functions are called the normal modes of vibration of the membrane. A
general solution u of the homogeneous wave equation (250.3) with initial
values u(0) and u̇(0) can be expressed as a linear combination of the normal
modes sin(

√
λnt)ϕn(x) and cos(

√
λnt)ϕn(x). This is the Fourier’s solution

of the wave equation on Ω × (0, T ), which is analogous to the solution in
one dimension given by (244.11).
If Ω is a circular disc, then (250.3) describes the vibrations of a drum

head. The smallest eigenvalue corresponds to the basic tone of the drum.
This can be changed by changing the tension of the drum head, which
corresponds to changing the coefficient a in the generalization (250.1).
In Fig. 250.1, we show contour plots for the first four eigenfunctions,

corresponding to λ1 ≈ 38.6, λ2 ≈ 83.2, λ3 ≈ 111., and λ4 ≈ 122., computed
using Femlab in a case where (250.2) describes the vibrations of the lid of a
guitar with Dirichlet boundary conditions on the outer boundary, described
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as an ellipse, and Neumann boundary conditions at the hole in the lid,
described as a circle.1 The distribution of the eigenvalues determine the
sound produced by the guitar lid and the computational results could be
used to find good shapes of a guitar lid.

(a) (b)

(d) (c)

FIGURE 250.1. Contour plots of the first four eigenfunctions of the guitar lid
corresponding to (a) λ1 ≈ 38.6, (b) λ2 ≈ 83.2, (c) λ3 ≈ 111., and (d) λ4 ≈ 122..
These were computed with Femlab with a fixed mesh size of diameter .02.

Often the smaller eigenvalues are the most important in considerations of
design. This is the case for example in designing suspension bridges, which
must be built so that the lower eigenvalues of vibrations in the bridge are
not close to possible wind-induced frequencies. This was not well under-
stood in the early days of suspension bridges which caused the famous
collapse of the Tacoma bridge in 1940.

1Computations provided courtesy of Marten Levenstam. The eigenvalues were com-
puted in Femlab using a filtered k-step Arnoldi method as described in D.C. Sorensen,
SIAM J. Matrix Anal. Appl. 13 (1992), pp. 357–385.
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250.0.5 The Rayleigh quotient

The variational form of the eigenvalue problem (250.1) is to find λ ∈ R and
a non-zero ϕ ∈ V such that

(a∇ϕ,∇ψ) + (cϕ, ψ) = λ(ϕ, ψ) for all ψ ∈ V, (250.4)

where

V =

{
v :

∫

Ω

(a|∇v|2 + v2) dx <∞, v = 0 on Γ

}
,

and (·, ·) as usual denotes L2(Ω) inner product. Setting ψ = ϕ gives a
formula for the eigenvalue corresponding to ϕ,

λ =
(a∇ϕ,∇ϕ) + (cϕ, ϕ)

(ϕ, ϕ)
.

Introducing the Rayleigh quotient

RQ(ψ) =
(a∇ψ,∇ψ) + (cψ, ψ)

(ψ, ψ)
for ψ ∈ V,

the previous equality can be rewritten as λ = RQ(ϕ), or in words: the
Rayleigh quotient of an eigenfunction is equal to the corresponding eigen-
value.
We can turn this argument around and consider how RQ(ψ) varies as ψ

varies in V . In particular, there is a function ϕ1 ∈ V that minimizes the
Rayleigh quotient over all functions in V and this function is the eigen-
function corresponding to the smallest eigenvalue λ1:

λ1 = min
ψ∈V

RQ(ψ) = RQ(ϕ1). (250.5)

More generally, the eigenfunction ϕj minimizes the Rayleigh quotient over
all functions in V orthogonal to the eigenfunctions ϕi, i = 1, 2, ...j− 1, and
λj = RQ(ϕj).

250.2. State and prove the analog of the Rayleigh quotient minimum principle
for a diagonal matrix.

250.3. Suppose ϕ1 ∈ V minimizes the Rayleigh quotient. Prove that ϕ1 is the
eigenfunction corresponding to a smallest eigenvalue λ1 satisfying (250.4) with
λ = λ1. Hint: Define the function f(ǫ) = RQ(ϕ+ ǫψ), where ψ ∈ V and ǫ ∈ R,
and use that f ′(0) = 0.

250.4. Consider the problem of finding the smallest interpolation constant Ci in
an error estimate of the form ‖v−πv‖L2(0,1) ≤ Ci‖v′‖L2(0,1), where πv ∈ P1(0, 1)
interpolates v(x) at x = 0, 1. Hint: show first that it suffices to consider the
case v(0) = v(1) = 0 with πv = 0. Then rewrite this problem as a problem of
determining the smallest eigenvalue and show that Ci = 1/π. Show similarly that
the best constant Ci in the estimate ‖v − πv‖L2(0,1) ≤ Ci‖v′′‖L2(0,1) is equal to
1/π2.
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250.1 Computation of the smallest eigenvalue

We consider the computation of the smallest eigenvalue in the eigenvalue
problem (250.2) for the Laplacian by minimizing the Rayleigh quotient over
the usual finite element subspace Vh ⊂ V consisting of continuous piecewise
linear functions vanishing on Γ,

λh1 = min
ψ∈Vh

RQ(ψ). (250.6)

The difference between λ1 given by (250.5) and λh1 given by (250.6) is that
the minimization in (250.6) is over the finite dimensional vector space Vh
instead of V . Since Vh ⊂ V , we must have λh1 ≥ λ1. The question is thus
how much larger λh1 is than λ1. To answer this question, we prove an a priori
error estimate showing the error in the smallest eigenvalue is bounded by
the square of the energy norm interpolation error of the eigenfunction ϕ1.
This result extends to approximation of larger eigenvalues λj with j > 1,
but the proof is more subtle in this case. We comment on computation of
larger eigenvalues in the next section and in the companion volume.

Theorem 250.1 There is a constant Ci such that for h sufficiently small,

0 ≤ λh1 − λ1 ≤ Ci‖hD2ϕ1‖2. (250.7)

Assume ϕ satisfies (250.2) with ‖ϕ‖ = 1 with corresponding eigenvalue
λ = RQ(ϕ) = ‖∇ϕ‖2. We shall use the following identity for all v ∈ V
with ‖v‖ = 1, which follows from the definition of ϕ

‖∇v‖2 − λ = ‖∇(ϕ− v)‖2 − λ‖ϕ− v‖2.

250.5. Prove this identity.

Using this identity with v ∈ Vh, λ = λ1 and ϕ = ϕ1, and recalling the
characterization (250.6), we obtain

λh1 − λ1 ≤ ‖∇v‖2 − λ1 ≤ ‖∇(ϕ1 − v)‖2. (250.8)

We now take v ∈ Vh to be a suitable approximation of ϕ1 such that ‖∇(ϕ1−
v)‖ ≤ C‖hD2ϕ1‖, which may put a condition on the size of h because of
the restriction ‖v‖ = 1, and the desired result follows.

250.6. Verify that it is possible to find the approximation v to ϕ1 required in
the proof of (250.7).

250.7. Derive an a posteriori error error estimate for λh1 − λ1. Hint: mul-
tiply the equation −∆ϕ1 − λ1ϕ1 = 0 satisfied by the continuous eigenfunc-
tion ϕ1 corresponding to λ1, by the discrete eigenfunction Φ1 ∈ Vh satisfying
(∇Φ1,∇v) = λh1 (Φ1, v) for all v ∈ Vh, to get

(λ1 − λh1 )(ϕ1,Φ1) = (∇Φ1,∇(ϕ1 − πhϕ1)− λh1 (Φ1, ϕ1 − πhϕ1),
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where ϕ1 and Φ1 are normalized to have L2 norm equal to one. Assuming that
(ϕ1,Φ1) ≥ c > 0, where c is a positive constant, derive an a posteriori error esti-
mate in the usual way. (see M. Larsson, A posteriori error estimates for eigenvalue
problems, to appear).

250.2 On computing larger eigenvalues

We give an example illustrating the approximation of the larger eigen-
values. In principle, larger eigenvalues and their associated eigenfunctions
could be computed in the same fashion as the first eigenpair by finding
the stationary points of the Rayleigh quotient over the appropriate finite
element space. However, since the eigenfunctions corresponding to larger
eigenvalues generally oscillate at larger frequencies, we expect the accu-
racy of the approximations on a fixed mesh to deteriorate with increasing
eigenvalues. In fact, the eigenvalues of the continuous problem tend to in-
finity, while those of the finite element approximation are finite, so some
of the eigenvalues of the continuous problem cannot be captured in the
approximation no matter how small we choose the mesh size.
As an example, we consider a finite element discretization of the weak

form of the eigenvalue problem (250.2) with Ω = (0, π), which reads: com-
pute Φ ∈ Vh and λh ∈ R such that

(Φ′, ψ′) = λh(Φ, ψ) for all ψ ∈ Vh, (250.9)

where Vh is the space of continuous piecewise linear functions, vanishing
at x = 0, π, on a uniform discretization of (0, π) into M + 1 elements with
meshsize h = π/(M + 1) and nodes xj = jh. We also use lumped mass
quadrature to evaluate the integral on the right-hand side of (250.9). This
gives the matrix eigenvalue problem

Aξ = λξ, (250.10)

where ξ denotes the vector of nodal values of Φ and the coefficient matrix
A is the product of the inverse of the diagonal lumped mass matrix and the
stiffness matrix; cf. Section 240.5. Let ξn, n = 1, 2, ...,M be the eigenvectors
of (250.10) and Φn the corresponding finite element approximations.

250.8. Compute the finite element approximation of (250.9) using lumped mass
quadrature and derive (250.10).

We know that the eigenvalues of the continuous problem are n2, n = 1, 2, ...,
with corresponding eigenfunctions ϕn(x) = sin(nx). It turns out in this very
special case that the nodal values of the discrete eigenfunctions Φn agree
with the nodal values of the exact eigenfunctions sin(nx) for n = 1, ...,M ,
that is Φn(jh) = sin(njh), n, j = 1, 2, ...,M .
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250.9. Prove by substitution that Φn is an eigenvector satisfying (250.10) with
eigenvalue λhn = 2(1− cos(nh))/h2 for n = 1, 2, ..., N .

When n is small the discrete eigenvalue λhn is a good approximation of the
continuous eigenvalue λn since by Taylor’s theorem

2(1− cos(nh))

h2
≈ n2 +O(n4h2), (250.11)

However, despite the interpolation property of the discrete eigenfunctions
the L2 norm of the error ‖Φn−ϕn‖, or even worse the energy norm of the
error ‖Φ′

n − ϕ′
n‖, becomes large when n gets close to M , see Fig. 250.2. In

this case,
2(1− cos(nh))

h2
≈ 4

h2
− (M − n)2

2
, (250.12)

which is not close to n2. In Fig. 250.3 we show the first 100 continuous
and discrete eigenvalues for M = 100. We conclude that eigenvalues corre-
sponding to eigenfunctions that oscillate with a wavelength on the order of
the meshsize and smaller are not well approximated.

x
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0
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1

0

FIGURE 250.2. sin(10x) and Φ10(x) for M = 10.

250.10. Verify estimates (250.11) and (250.12).

250.11. Define f(x) = 1002 sin(100x) (i.e. f(x) = λ100ϕ100). Use Femlab to
solve −u′′ = f on (0, π) together with u(0) = u(π) = 1. Plot the approximation
together with the true solution. How many elements did Femlab use to get an
accurate approximation? Explain the significance of this for the discussion above.

This can have a strong consequences for the time behavior of a discrete
approximation to a time dependent problem such as the heat equation or
the wave equation. The following problem is an interesting illustration.

250.12. Consider the initial-boundary value problem for the wave equation:





ü− u′′ = 0, x ∈ [0, π], t > 0,

u(0, t) = u(π, t) = 0, t > 0,

u(x, 0) = u0(x), u̇(x, 0) = 0, x ∈ [0, π].

(250.13)
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FIGURE 250.3. The continuous and discrete eigenvalues with M = 100.

Let U denote the continuous piecewise linear semi-discrete finite element approx-
imation computed on a uniform mesh on [0, π]. Compare the time behavior of U
to that of u when the initial data u0 is nonsmooth. Can you say something about
the time behavior of a finite element approximation that is discrete in time and
space? Hint: discretize (250.13) in space using the finite element method on a
uniform mesh as indicated. Now use separation of variables to get a scalar ordi-
nary differential equation in time and a matrix eigenvalue problem in space, then
solve both problems. Nonsmooth functions are characterized by large Fourier co-
efficients in the higher modes, so choose the data to be the discrete eigenfunction
ΦM . Compare the solution of (250.13) to the solution of the system of ordinary
differential equations as time passes. Plot the two solutions.

250.13. Consider the finite element approximation of (250.2) with Ω = (0, π)×
(0, π) computed using the standard triangulation and continuous piecewise linear
functions. (a) Compute the discrete eigenvalues and eigenfunctions. Hint: use
separation of variables and Problem 250.9. (b) Estimate the convergence rate of
the Jacobi iterative method for solving Aξ = b.

250.3 The Schrödinger equation for the hydrogen
atom

It does not require much imagination to see an analogy between
the mirroring activity of the Leibniz monad, which appears to our
confused vision like a casual activity, emanating from one monad
and impinging on the other, and the modern view in which the chief
activity of the electrons consists in radiating to one another. (Wiener)

The quantum mechanical model of a hydrogen atom consisting of one elec-
tron orbiting around one proton at the origin, takes the form of the follow-
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ing eigenvalue problem in Ω = R3:



−∆ϕ− 2

rϕ = λϕ in Ω,∫

Ω

ϕ2 dx = 1.
(250.14)

The eigenfunction ϕ is a wave function for the electron describing the po-
sition of the electron in the sense that the integral

∫
ω
ϕ2dx represents the

probability that the electron is in the domain ω ⊂ R3. In fact, (250.14) is
the eigenvalue problem associated with the Schrödinger equation

iϕ̇−∆ϕ− 2

r
ϕ = 0

describing the motion of the electron.
The Rayleigh quotient for the eigenvalue problem (250.14) is given by

RQ(ψ) =

∫
Ω |∇ψ|2 dx− 2

∫
Ω ψ

2/r dx∫
Ω
ψ2 dx

, (250.15)

and is defined for ψ ∈ V = {ψ :
∫
R3(|∇ψ|2 + ψ2/r)dx < ∞}. The quantity∫

Ω
|∇ψ|2 dx represents the kinetic energy of an electron with wave function

ψ and −2
∫
Ω ψ

2/r dx represents the potential energy corresponding to the
attractive Coulomb force between the proton and electron. The equation
(250.14) is one of the few equations of quantum mechanics that can be
solved analytically and this is due to the spherical symmetry. The eigenval-
ues are λn = −1/n2, for integers n ≥ 1, called the principal quantum num-
ber and represent energy levels. There are n2 eigenfunctions corresponding
to each energy level λn, of which one depends only on the radius, see Strauss
([?]). The eigenfunctions are called the bound states and the unique eigen-
function corresponding to the smallest eigenvalue is called the ground state
since it is the bound state “closest” to the proton with the smallest en-
ergy. As soon as more than one electron or proton are involved, that is for
all atoms except the hydrogen atom, analytical solution of Schrödinger’s
equation is practically impossible and a variety of approximate solution
methods have been developed.
Among other things, the model (250.14) predicts that the electron may

jump from one state with eigenvalue λi to another with eigenvalue λj by
emitting or absorbing a corresponding “quantum” of energy λi − λj as
was observed in the famous experiments of Bohr. Note that the fact that
λi ≥ −1 implies that the hydrogen atom is stable in the sense that the
electron does not fall into the proton.
We note that the domain in (250.14) is the whole of R3. Looking for solu-

tions in a space V of functions that are square integrable functions means
that we exclude certain oscillating solutions of the Schrödinger equation
corresponding to free states of the electron. This is related to the exis-
tence of solutions u(x, t) of the problem iu̇ − u′′ = 0 in R× R of the form
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u(x, t) = exp(iλ2t) exp(iλx) for any λ ≥ 0. The value λ belongs to the
“continuous spectrum” for which the corresponding “eigen-functions” are
not square integrable. The eigenvalues with eigenfunctions in V belong to
the “discrete spectrum”.
To discretize the Schrödinger eigenvalue problem (250.14) in R3, we gen-

erally truncate the domain to be finite, say {x : |x| < R} for some R > 0,
and impose suitable boundary conditions, such as Dirichlet boundary con-
ditions, on the boundary {x : |x| = R}. The relevant choice of R is related
to the eigenvalue/eigenfunction being computed and the tolerance level.

250.14. (For amateur quantum physicists) Prove that the hydrogen atom is
stable in the sense that the Rayleigh quotient (250.15) satisfies

min
ψ∈V

RQ(ψ) ≥ −4,

showing that the electron does not fall into the proton. Hint: estimate
∫
Ω
ψ ψ
r

using Cauchy’s inequality and the following Poincaré inequality for functions
ψ ∈ V : ∫

Ω

ψ2

r2
dx ≤ 4

∫

Ω

|∇ψ|2 dx. (250.16)

This shows that the potential energy cannot outpower the kinetic energy in the
Rayleigh quotient. To prove the last inequality, use the representation

∫

Ω

ψ2

r2
dx = −

∫

Ω

2ψ∇ψ · ∇ ln(|x|) dx.

resulting from Green’s formula, together with Cauchy’s inequality.

250.15. (a) Show that the eigenvalue problem (250.14) for the hydrogen atom for
eigenfunctions with radial dependence only, may be formulated as the following
one-dimensional problem

− ϕrr − 2

r
ϕr − 2

r
ϕ = λϕ, r > 0, ϕ(0) finite,

∫

R

ϕ2r2 dr <∞, (250.17)

where ϕr =
dϕ

dr
. (b) Show that ψ(r) = exp(−r) is an eigenfunction corresponding

to the eigenvalue λ = −1. (b) Is this the smallest eigenvalue? (c) Determine λ2

and the corresponding eigenfunction by using a change of variables of the form
ϕ(r) = v(r) exp(− r

2
). (d) Solve (250.17) using Femlab.

250.16. Formulate a two-dimensional analog of (250.14) of physical significance
and compute approximate solutions using Femlab.

250.4 The special functions of mathematical
physics

The one-dimensional analog of (250.1) is called a Sturm-Liouville problem.
Such eigenvalue problems occur for example when separation of variables is
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used in various coordinate systems, and the corresponding eigenfunctions
are the classical special functions of mathematical physics. We list some
of these functions below together with the corresponding Sturm-Liouville
problem.

Bessel’s equation

The eigenfunctions un(x) and eigenvalues λn of Bessel’s equation
{
−
(
xu′
)′
+ x−1m2u = λxu for 0 < x < 1,

|u(0)| <∞, u(0) = 1,
(250.18)

are given by un(x) = Jm(λ
1/2
n x) and λn = µ2, where µ is a zero of the Bessel

function Jm satisfying (250.18) with λ = 1 for x ∈ R and |u(0)| <∞.

Legendre’s equation

The eigenfunctions un(x) and eigenvalues λn of Legendre’s equation
{
−((1− x2)u′)′ + (1− x2)−1m2u = λu for 0 < x < 1,

|u(−1)| <∞, |u(1)| <∞,
(250.19)

are given by λn = n(n+ 1) and

un(x) =
1

2nn!
(1 − x2)m/2

dm+n((x2 − 1)n)

dxm+n
.

Tchebycheff’s equation

The eigenfunctions un(x) and eigenvalues λn of Tchebycheff’s equation
{
−
(
(1 − x2)1/2u′

)′
= (1− x2)−1/2λu for 0 < x < 1,

|u(−1)| <∞, |u(1)| <∞,
(250.20)

are given by λn = n2 and un(x) = 2−(n−1) cos
(
n cos−1 x

)
.

250.17. Use the method of separation of variables to solve the Poisson equation
on the disc {x ∈ R2 : |x| < 1} with homogeneous Dirichlet boundary conditions.
Hint: use polar coordinates and the eigenfunctions of Bessel’s equation with m =
0.

Plowhand has been my name
seems like a thousand years or more
I ain’t gonna pick no more cotton,
I declare I ain’t gonna plant no more corn.
If a mule wants to run away with the world
oooh Lord, I’ll let it go it on.
I wouldn’t tell a mule to get up,
Naah, if he sit down in my lap.
I’m through with plowin’
cause it killed my old grandpap. (R. Howard)
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(From Applied Mathematics Body and Soul, Vol 3, Springer 2003, coauthored
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251
Analytic Functions

A mathematician of the first rank, Laplace quickly revealed himself
as only a mediocre administrator, from his first work we saw we
had been deceived. Laplace saw no question from its true point of
view, he sought subtleties everywhere, had only doubtful ideas, and
finally carried the spirit of the infinitely small into administration.
(Napoleon)

We arrive at truth, not by reason only, but also by the heart. (Pascal)

In this chapter we give a short account of analytic functions, that is,
differentiable functions f : C → C, taking complex arguments and having
complex values. We use heavily the material developed above on Calculus
in Rd, d = 1, 2, including, the definition of derivative of a function f : Rd →
Rd, and Green’s formulas in R2.

251.1 The Definition of an Analytic Function

We recall that we can write each complex number z ∈ C in the form
z = x+ iy, with x, y ∈ R and i the imaginary unit, and we can identify C
with R2 by identifying x+ iy ∈ C with (x, y) ∈ R2. In particular, i = (0, 1),
and |z| = (x2 + y2)1/2.
Let f : Ω → C be a complex-valued function of a complex variable

z = x + iy ∈ Ω, where x, y ∈ R and Ω is an open domain of the complex
plane. Decomposing into real and imaginary parts, we can write

f(z) = f(x+ iy) = u(x, y) + iv(x, y),
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where u : R2 → R and v : R2 → R are the real and imaginary parts of
f(z), that is, u(x, y) = Re f(z) and v(x, y) = Im f(z), where we thus view
u(x, y) and v(x, y) as functions of (x, y) ∈ R2 with values in R.
We say that f : Ω → C is differentiable at z0 ∈ Ω with derivative

f ′(z0) ∈ C, if for z close to z0, we have

|f(z)− f(z0)− f ′(z0)(z − z0)| ≤ Kf(z0)|z − z0|2, (251.1)

where Kf(z0) is a non-negative real constant depending on f and z0. This
is a direct extension of the corresponding definition of the derivative of a
function f : R → R to a function f : C → C, and the usual rules for
differentiation of sums, products and quotients directly extend.
We recall that differentiability of a function f : R → R at a point x0

means that f(x) is well approximated (up to a quadratic term) by the linear
function c0 + c1(x − x0) = f(x0) + f ′(x0)(x − x0) for x close to x0, where
c0 = f(x0) and c1 = f ′(x0) are real constants. Similarly, differentiability of
a function f : C → C at a point z0 means that f(z) for z close to z0 is well
approximated by the linear function c0 + c1(z − z0) = f(z0) + f ′(z0)(z −
z0), involving a translation and multiplication by a complex constant. We
conclude that differentiability of a function f : C → C at a point z0 means
that f(z) in a neighborhood of z0 acts like a combination of a translation,
rotation and change of modulus, see Fig. 251.1
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Re w

Im w

−1

z − i
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FIGURE 251.1. Linear approximation of a function f(z) near z = z0, with z0 = i
and w = f(z) = z2 approximated by f(z0) + f ′(z0)(z − z0) = i2 + 2i(z − i).

We say that f : Ω → C is analytic in the open domain Ω of the complex
plane if f(z) is differentiable at all z0 ∈ Ω with derivative f ′(z0). The
derivative f ′ of an analytic function f : Ω → C is again a function f ′ : Ω →
C. We shall shortly prove the surprising fact that if f : Ω → C is analytic,
then also f ′ : Ω → C is analytic with derivative f ′′ : Ω → C, which is also
analytic, and so on. An analytic function f : Ω → C thus has derivatives of
all orders f (n) : Ω → C, n = 1, 2, ..., which are all analytic. We recall that a
differentiable function f : R → R need not have a differentiable derivative,
and therefore does not have this very special property in general.
We can view a function f : C → C alternatively as a function f : R2 → R2

if we identify C and R2 as indicated. The Jacobian f ′(x, y) of a function f :
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R2 → R2 is a 2×2-matrix consisting of 4 real numbers, while the derivative
f ′(z) ∈ C of a function f : C → C is supposed to be a complex number
being represented by 2 real numbers. We conclude that differentiability of a
complex-valued function f : C → C, is a more stringent requirement than
differentiability of the corresponding function f : R2 → R2, which only
requires the partial derivatives of the real and imaginary parts u(x, y) and
v(x, y) of f(z) to exist. In fact, we shall see that the partial derivatives of
the real and imaginary parts of an analytic function must be coupled in
a specific way, which is expressed through the Cauchy-Riemann equations
stated below.

251.2 The Derivative as a Limit of Difference
Quotients

Note that (251.1) implies that if z 6= z0, then

|f(z)− f(z0)

z − z0
− f ′(z0)| ≤ Kf (z0)|z − z0|,

which we can write in the form

lim
z→z0

f(z)− f(z0)

z − z0
= f ′(z0), (251.2)

by which we mean, of course, that

|f(z)− f(z0)

z − z0
− f ′(z0)|

is as small as we please if we only choose |z − z0| small enough (respecting
that z 6= z0). In view of (251.2) we write as usual dfdz = f ′.

251.3 Linear Functions Are Analytic

We consider the function f : C → C given by f(z) = az+ b, where a and b
are given complex numbers. We have for all z and z0 ∈ C that

f(z)− f(z0)− a(z − z0) = 0,

and thus f(z) is analytic in C with derivative f ′(z) = a.

251.4 The Function f(z) = z2 Is Analytic

If f(z) = z2, then

f(z)− f(z0)− 2z0(z − z0) = z2 − z20 − 2z0z + 2z20 = (z − z0)
2,
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and thus f ′(z0) = 2z0 for z0 ∈ C.

251.5 The Function f(z) = zn Is Analytic for
n = 1, 2, ...

Consider the function f : C → C, where f(z) = zn and n = 1, 2, ..., is
a natural number, which may be viewed as an extension of the function
f : R → R with f(x) = xn. By a direct extension of the proof in the case
f(x) = xn, we find that

f ′(z) = nzn−1. (251.3)

We conclude that zn is differentiable in the whole of C, with derivative
nzn−1. We just gave the proof in the case n = 1, 2.

251.6 Rules of Differentiation

As we said, the usual rules for differentiation of sums, products and quo-
tients valid for functions f : R → R extend to functions f : C → C. In
particular we have if f(z0) 6= 0 and g(z) = 1

f(z) , that

g′(z0) = − f ′(z0)
f2(z0)

. (251.4)

Further, the composition of two analytic functions is also analytic and the
Chain rule for differentiation holds: if g(z) is differentiable at z0 and f(z)
is differentiable at g(z0), then the composite function h(z) = f(g(z)) is
differentiable at z0 with derivative h′(z0) = f ′(g(z0))g′(z0). The proof is a
direct extension of the corresponding proof for real-valued functions of a
real variable.

251.7 The Function f(z) = z−n

Applying the rule (251.4), we see that f(z) = z−n with n = 1, 2, ..., is
differentiable for z 6= 0 and

f ′(z) = −nz−n−1, for z 6= 0. (251.5)

We can summarize by stating that if f(z) = zn with n = ±1,±2, ..., then
f ′(z) = nzn−1, where we assume that z 6= 0 if n < 0.
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251.8 The Cauchy-Riemann Equations

We shall now derive the so-called Cauchy-Riemann equations connecting
the partial derivatives of the real part u(x, y) and the imaginary part v(x, y)
of a complex-valued function f(z) = u(x, y)+ iv(x, y) of a complex variable
z = x + iy at a point z0 = x0 + iy0 with x0, y0 ∈ R, such that (251.1) is
satisfied. Writing f ′(z0) = a+ ib, with a, b ∈ R, we can express (251.1) as

|u(x, y) + iv(x, y)− u(x0, y0)− iv(x0, y0)− (a+ ib)(x− x0 + i(y − y0))|
≤ Kf (z0)|z − z0|2.

Separating into real and imaginary parts, we conclude (recalling (91.7))
that

|u(x, y)− u(x0, y0)− a(x − x0) + b(y − y0)| ≤ Kf (z0)|z − z0|2,
|v(x, y)− v(x0, y0)− a(y − y0)− b(x− x0)| ≤ Kf(z0)|z − z0|2.

(251.6)

Recalling the definition of the partial derivatives of u(x, y) and v(x, y)
at (x0, y0) from Chapter Vector-valued functions of several variables, we
conclude that

a =
∂u

∂x
(x0, y0), b = −∂u

∂y
(x0, y0),

a =
∂v

∂y
(x0, y0), b =

∂v

∂x
(x0, y0),

and we thus find that

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0),

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0). (251.7)

These are the Cauchy-Riemann equations for u(x, y) and v(x, y) at the
point (x0, y0).
We conclude that if f(z) = u(x, y) + iv(x, y) is analytic in the open

domain Ω of the complex plane, then the real and imaginary parts u(x, y)
and v(x, y) satisfy the Cauchy-Riemann equations in Ω, that is,

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
, in Ω. (251.8)

Note that we can write the Cauchy-Riemann equations in the form ∇v =
−∇× u, recalling that ∇× u = (∂u∂y ,−∂u

∂x ).

Example 251.1. The analytic function f(z) = z2 = (x+ iy)2 = x2 −
y2+2ixy with u(x, y) = x2−y2 and v(x, y) = 2xy satisfies ∂u∂x = 2x = ∂v

∂y

and ∂u
∂y = −2y = − ∂v

∂x .



1880 251. Analytic Functions

We have seen that the Cauchy-Riemann equations (251.8) follow from
the analyticity of the complex valued function f = u+ iv. In other words,
the Cauchy-Riemann equations represents a necessary condition for the
analyticity of f = u+ iv. The Cauchy-Riemann equations also represent a
sufficient condition: given a pair of functions u(x, y) and v(x, y) satisfying
the Cauchy-Riemann equations, the function f = u+ iv is analytic. To see
this, we note that if u(x, y) and v(x, y) are differentiable functions satisfying
(251.8), then (251.6), and thus also (251.1) holds. That is, f = u + iv is
analytic.

Example 251.2. We consider the functions u(x, y) = x + 2xy and
v(x, y) = y−x2+y2 and find that ∂u∂x = 1+2y = ∂v

∂y and ∂u
∂y = 2x = − ∂v

∂x ,
that is, u and v satisfy the Cauchy-Riemann equations and we thus
conclude that the function f(z) = u(x, y)+iv(x, y) must be analytic. In
fact, f(z) = u+iv = x+2xy+i(y−x2+y2) = x+iy−i(x+iy)2 = z−iz2,
and the analyticity is obvious.

We may summarize as follows:

Theorem 251.1 The function f(z) = u(x, y) + iv(x, y) is analytic if and
only if the Cauchy-Riemann equations (251.8) are satisfied.

251.9 The Cauchy-Riemann Equations and the
Derivative

Using the limit definition (251.2) of the derivative f ′(z0), we can write,
varying first only x:

f ′(z0) = lim
x→x0

f(z)− f(z0)

x− x0
=
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0), (251.9)

where z = x+ iy0, and then only y:

f ′(z0) = lim
y→y0

f(z)− f(z0)

i(y − y0)
=

1

i

∂u

∂y
(x0, y0) +

∂v

∂y
(x0, y0),

where z = x0 + iy, from which the Cauchy-Riemann equations follow by
equating the real and imaginary parts of f ′(z0) using that 1

i = −i.

Example 251.3. In the last example we found that u(x, y) = x+2xy
and v(x, y) = y − x2 + y2 satisfy the Cauchy-Riemann equation. Ac-
cording to (251.9), the derivative of the corresponding analytic function
f = u + iv is given by f ′ = ∂u

∂x + i ∂v∂x = 1 + 2y + i(−2x) which agrees
with our observation that f(z) = z − iz2 with f ′(z) = 1 − 2iz =
1− 2i(x+ iy) = 1 + 2y − 2ix.
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Example 251.4. By direct verification using the Cauchy-Riemann
equations one finds that f(z) = ez = ex(cos(y) + i sin(y)) is analytic
in C, and d

dze
z = ez. It follows that also sin(z) = 1

2i(e
iz − e−iz) and

cos(z) = 1
2 (e

iz + e−iz) are analytic in C, and d
dz sin(z) = cos(z) and

d
dz cos(z) = − sin(z). See Problem 251.1

251.10 The Cauchy-Riemann Equations in Polar
Coordinates

The Cauchy-Riemann equations take the following form in polar coordi-
nates z = reiθ:

∂u

∂r
=

1

r

∂v

∂θ
,

∂v

∂r
= −1

r

∂u

∂θ
. (251.10)

Example 251.5. The function Log(z) = log(|z|) + iArg z is analytic
in {z ∈ C : z 6= 0, 0 ≤ arg z < 2π}. This follows from the Cauchy-
Riemann equations in polar coordinates. We recall that log(z)
= log(|z|)+ i arg z is multi-valued since arg z is multivalued. The func-
tion log(z) with arg z restricted to 0 ≤ arg z < 2π, however, is single-
valued analytic.

251.11 The Real and Imaginary Parts of an
Analytic Function

We shall now prove that the Cauchy-Riemann equations (251.8) imply that
both u(x, y) and v(x, y) are harmonic in Ω, that is,

∆u = 0 and ∆v = 0 in Ω.

In fact, this follows directly by differentiating (251.8) with respect to x and
y, if we assume that u(x, y) and v(x, y) are twice differentiable, since

∂2u

∂x2
=

∂2v

∂x∂y
=

∂2v

∂y∂x
= −∂

2u

∂y2
in Ω (251.11)

and thus ∆u = 0 in Ω , and similarly ∆v = 0 in Ω.
Now, one can show that solutions of the Cauchy-Riemann equations in-

deed must be twice differentiable, and thus the real and imaginary parts of
an analytic function are harmonic. We sum up in the following theorem:

Theorem 251.2 If f : Ω → C is analytic, where Ω is an open domain of
the complex plane C, then the real part u(x, y) = Re f(z) and the imaginary
part v(x, y) = Im f(z) are harmonic in Ω.
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251.12 Conjugate Harmonic Functions

Suppose u(x, y) is harmonic in a simply connected domain Ω in R2. We
shall now prove that there exists a harmonic function v(x, y), uniquely
determined up to a constant, such that f(z) = u(x, y)+ iv(x, y) is analytic
in Ω. We say that the function v(x, y) is conjugate to u(x, y). To prove
this, we simply solve the Cauchy-Riemann equations ∇v = −∇ × u with
u given using the basic result of the Chapter Potential fields, noting that
∇× (−∇ × u) = ∆u = 0, that is, −∇ × u is irrotational, and thus is the
gradient of some function v. See also Problem 251.10.

Example 251.6. For the harmonic function u(x1, x2) = x1x2, the con-
jugate v(x1, x2) satisfies

∂v
∂x2

= ∂u
∂x1

= x2, that is, v = 1
2x

2
2 + C(x1) for

some function C, and from ∂v
∂x1

= − ∂u
∂x2

= −x1, that is C′(x1) = −x1,
we conclude that C(x1) = − 1

2x
2
1 +D, for some arbitrary constant D.

We note that also v is harmonic, and conclude that u and its con-
jugate v are the real and imaginary parts of the analytic function
f(z) = x1x2 + i(12x

2
1 − 1

2x
2
2) = − 1

2z
2.

251.13 The Derivative of an Analytic Function Is
Analytic

Assume that f(z) is analytic in the open domain Ω of the complex plane.
This means that the derivative f ′(z) exists as a complex-valued function
for z ∈ Ω, and one may ask if f ′(z) itself has a derivative in Ω, that is,
if f ′(z) is analytic in Ω. The plain answer is YES, which we prove below.
Thus, if f(z) is analytic in Ω, then also f ′(z) is analytic in Ω, and thus also
the derivative of f ′(z), that is the second derivative f ′′(z) is analytic, and
so on. We conclude that an analytic function has derivatives of all orders.
This is a remarkable property of an analytic function.
To answer the question posed, it is sufficient to notice that if u(x, y) and

v(x, y) satisfy the Cauchy-Riemann equations, then so do all derivatives of
u(x, y) and v(x, y), in particular ∂u

∂x and ∂v
∂x , and thus f ′ = ∂u

∂x + i ∂v∂x is
analytic in Ω. We state this important result as a theorem:

Theorem 251.3 If f : Ω → C is analytic, where Ω is an open domain of
the complex plane C, then all the derivatives f (n)(z), n = 1, 2, ..., of f(z)
are analytic in Ω.

We recall that if f : R → R is a real-valued function of a real variable,
then the analogous statement may be wrong: even if f ′(x) exists, it is not
clear that f ′′(x) exists.
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251.14 Curves in the Complex Plane

Let Ω be an open domain in the complex plane C, and let γ : I → Ω, where
I = [a, b] is an interval of R, be a Lipschitz continuous function. We say
that Γ = Range of γ = {γ(t) : t ∈ I}, is a curve in C parameterized by
γ(t). For example γ(t) = exp(it) where 0 ≤ t < 2π is a parametrization of
the unit circle.

a b
t

t
Re z

Im z

z = γ(t)

FIGURE 251.2. A curve z = γ(t)

We say that Γ is a differentiable curve if the corresponding parametriza-
tion γ : I → C is differentiable on I in the sense that the related function
γ : I → R2 is differentiable. In other words, decomposing γ(t) = x(t)+iy(t)
into real and imaginary parts x : I → R and y : I → R, we have that γ(t)
is differentiable on I if x(t) and y(t) are differentiable on I. We also say
that γ : I → C is Lipschitz continuous on I if the corresponding function
γ : I → R2 is Lipschitz continuous. There are thus no surprises in this
context.
A curve Γ with parametrization γ : [a, b] → C is said to be closed and

simple if γ(s) 6= γ(t) for s < t, unless s = a and t = b.
We say that a domain Ω in C which is bounded by a simple closed curve,

is simply connected. A simply connected domain does not have any “holes”.

251.15 Conformal Mappings

Let f : Ω → C be analytic where Ω is an open domain in C. We shall
now prove that the mapping z → w = f(z) is conformal in Ω in the sense
that angles are preserved under the mapping w = f(z). This is a direct
consequence of the Chain rule and the analyticity of f(z), as we now show.
Let then γ : I → C, where I = [−δ, δ] with δ > 0, be a curve through
z0 ∈ Ω with γ(0) = z0. Consider the curve κ(t) = f(γ(t)) which is the
image of γ(t) under the transformation w = f(z). By the Chain rule we
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Re z

Im z

z = γ(t)

FIGURE 251.3. A simply connected domain with boundary curve z = γ(t), to
the left, and a multiply connected domain with one hole to the right with the
boundary consisting of two simple closed curves

have
dκ

dt
=
df

dz

dγ

dt
,

and we thus see, recalling that the argument of the product of two complex
numbers is the sum of the arguments of the numbers, that

arg
dκ

dt
(0) = Arg f ′(z0) + Arg

dγ

dt
(0),

where we assume that f ′(z0) 6= 0. Since f(z) is analytic at z0, we have that
f ′(z0) is independent of the curve γ, and thus the tangent direction dκ

dt (0)

differs from that of dγdt (0) by the constant value Arg f ′(z0), independent of
γ. We conclude that the angle between two curves passing through z0 is the
same as the angle between the corresponding transformed curves passing
through f(z0). This means that the mapping w = f(z) is conformal at z0:
angles are preserved locally.

Re z

Im z

Re w

Im w

γ1(t)

γ2(t)

κ1(t)

κ2(t)

FIGURE 251.4. An analytic mapping conforms angles.
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Note that since

lim
z→z0

|f(z)− f(z0)

z − z0
| = |f ′(z0)|,

the mapping w = f(z) changes the length scale locally by the factor
|f ′(z0)| 6= 0. Thus although the mapping w = f(z) is locally conformal,
the image of a large figure may be considerably distorted because of the
change of scale.

Re z

Im z

Re w

Im w

FIGURE 251.5. A conformal mapping with large deformations.

We now present some basic analytic functions w = f(z) and the corre-
sponding conformal mappings of f : C → C.

251.16 Translation-rotation-expansion/contraction

The linear transformation:

w = f(z) = az + b

where a, b ∈ C, corresponds to a rotation with Arg a and an expan-
sion/contraction with |a|, and a translation with b, see Fig. 251.6

1

i

Re z

Im z

Re w

Im w

FIGURE 251.6. The mapping w = az + b with a = 1
2
i and b = 1 + i.
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251.17 Inversion

The mapping

w = f(z) =
1

z
,

is referred to as inversion. We now prove that an inversion maps every
straight line or circle in the complex plane into a circle or straight line.
Indeed, a circle or straight line in R2 can be written

A(x2 + y2) +Bx+ Cy +D = 0

with A,B,C,D real, and A = 0 corresponding to a straight line. In terms
of z = x+ iy and z̄ = x− iy, the equation takes the form

Azz̄ +B
z + z̄

2
+ C

z − z̄

2i
+D = 0,

and substitution of z = 1
w gives (after multiplication with ww̄)

A+B
w̄ + w

2
+ C

w̄ − w̄

2i
+Dww̄ = 0,

which represents a circle or straight line.

Re z

Im z

Re w

Im w

FIGURE 251.7. The mapping w = 1/z

251.18 Möbius transformations

A mapping of the form

w = f(z) =
az + b

cz + d
,

where a, b, c, d ∈ C, is said to be a Möbius transformation. We have

f ′(z) =
ad− bc

(cz + d)2
,
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and we are thus led to assume that ad − bc 6= 0 to guarantee conformity.
Evidently, the inversion w = 1

z is a special case of a Möbius transformation.
One can prove that a Möbius transformation maps every straight line or
circle in the complex plane into a circle or straight line, see Problem 251.6.

−2 0 2
−3

−2

−1

0

1

2
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−2 0 2
−3

−2

−1

0

1

2

3

z

Re z Rew

Im
z

Im
w

w = 1/z

FIGURE 251.8. Further illustration of the map f(z) = 1/z. Note that the unit
circle is mapped onto itself, while a circle through the origin is mapped onto a
straight line. Note also that the straight line y = ax with a 6= 0 passing through
the origin is mapped onto its conjugate line y = −ax, while other lines are
mapped onto circles.

Example 251.7. (Disc onto disc) The function

w = f(z) = eiα
z − z0
1− z̄0z

where α ∈ R and z0 ∈ C with |z0| < 1, maps the closed unit disc
{|z| ≤ 1} onto the closed unit disc {|w| ≤ 1} in a one-to-one fashion
with f(z0) = 0. For the verification it suffices to verify that the circle
{|z| = 1} is mapped onto the circle {|w| = 1}.

Example 251.8. (Half-plane onto unit disc) The function

w = f(z) = eiα
z − z0
z − z̄0

where α ∈ R and Im z0 > 0, maps the upper half-plane {Im z > 0}
onto the open unit disc {|w| < 1} with f(z0) = 0.

251.19 w = z1/2, w = ez, w = log(z) and
w = sin(z)

We describe in a couple of examples basic aspects of the mapping properties
of some elementary functions.
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Example 251.9. The function

w = f(z) = z1/2 =
√
|z|e i

2Arg z,

maps the wedge {0 ≤ arg z < θ} where 0 ≤ θ < 2π onto the wedge
{0 ≤ arg w < θ

2}.

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

Re z Rew

Im
z

Im
w

z w = z1/2

FIGURE 251.9. Illustration of the map f(z) = z1/2.

Example 251.10. The function w = ez maps the strip {z = x + iy :
x ∈ R, 0 ≤ y < 2π} onto the complex plane C minus the origin. The line
{x+ iy : x ∈ R} with y fixed is mapped onto the halfline {(r, θ) : r > 0}
with θ = y using polar coordinates.

Example 251.11. The function w = Log(z) maps C minus the origin
onto the strip {w ∈ C : 0 ≤ Im(w) < 2π}.

Example 251.12. The function

w = f(z) = sin(z) =
1

2i
(ei(x+iy) − e−i(x+iy))

= sin(x) cosh(y) + i cos(x) sinh(y) = u(x, y) + iv(x, y),

maps the strip {z = x + iy : −π
2 < x < π

2 , y ∈ R} onto {w = u + iv :
v 6= 0 if |u| > 1}, which is the whole plane minus the two half-lines
{u + iv : |u| > 1, v = 0}. The level curves of u and v are hyperbolas
and ellipses, respectively. See Fig. 251.10.

251.20 Complex Integrals: First Shot

We make a direct extension of the integral of a differentiable function F :
R → R to the integral of an analytic function F : C → C, paralleling closely
the presentation in Chapter The Integral.
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z w = sin(z)

FIGURE 251.10. Illustration of the map f(z) = sin(z).

Let F (z) be analytic in the domain Ω of the complex plane, with Lipschitz
continuous derivative f(z) = F ′(z). Let Γ be a differentiable curve in Ω
parameterized by γ : [a, b] → C, connecting the point za = γ(a) with the
point zb = γ(b), and let za = z0, z1, ..., zn = zb be a sequence of points on
Γ connecting za and zb , see Fig. 251.11. We assume that zk 6= zk−1 for
k = 1, ..., n.

Re z

Im z

Re w

Im w

Γ zk
zk−1

F (zk)
F (zk−1)

FIGURE 251.11. A curve Γ with sample points zk and corresponding function
values F (zk).

We can write

F (zb)−F (za) =

n∑

k=1

(F (zk)−F (zk−1)) =

n∑

k=1

F (zk)− F (zk−1)

zk − zk−1
(zk − zk−1).

(251.12)
Letting maxk=1,...,n |zk − zk−1| tend to zero, we are led to write

F (zb)− F (za) =

∫

Γ

f(z) dz, (251.13)

where we replace F (zk)−F (zk−1)
zk−zk−1

by the derivative F ′(zk−1) = f(zk−1) and

zk − zk−1 by dz.



1890 251. Analytic Functions

We note that the integral
∫
Γ
f(z) dz, being equal to F (zb) − F (za), is

thus independent of the choice of the curve Γ connecting za and zb. As a
special case we note that if Γ is closed, corresponding to choosing zb = za,
then ∫

Γ

f(z) dz = 0. (251.14)

Recalling that f(z) is analytic if F (z) is analytic, we have found a reason to
believe in Cauchy’s theorem stating that the integral of an analytic function
f : Ω → C around a simple closed curve in Ω enclosing a region contained
in Ω, is zero. This is a corner-stone of the theory of analytic functions.
Below we give a proof of Cauchy’s theorem using a Green’s formula.

251.21 Complex Integrals: General Case

Let Ω be an open domain in the complex plane and let Γ be a differentiable
curve in C parameterized by γ = (x, y) : [a, b] → C. Let f = u+ iv : Γ → C
be Lipschitz continuous and define

∫

Γ

f(z) dz =

∫ b

a

(
u(x(t), y(t)) + iv(x(t), y(t))

)
(ẋ(t) + iẏ(t)) dt, (251.15)

where thus formally dz = dx+ idy = ẋdt+ iẏdt = (ẋ+ iẏ) dt. The integral
is defined if u(x, y) and v(x, y) are Lipschitz continuous in (x, y) and ẋ(t)
and ẏ(t) are Lipschitz continuous in t. As in the Chapter Curve Integrals,
we see that the integral is independent of the parametrization.
We can express the integral as a limit of Riemann sums in the usual way:

∫

Γ

f(z) dz = lim
n→∞

n∑

k=1

f(zk−1)(zk − zk−1), (251.16)

where za = z0, z1, ..., zn = zb is a sequence of points along Γ with
maxk=1,...,n |zk − zk−1| tending to zero as n tends to infinity.
Below we use also ζ as a complex variable and thus write in particular

∫

Γ

f(z) dz =

∫

Γ

f(ζ) dζ.

Example 251.13. Let Γ be a circle around the origin of radius one
oriented counter-clockwise and parameterized by γ(t) = eit = cos(t) +
i sin(t) = (cos(t), sin(t)) with 0 ≤ t < 2π. Let f(z) = zn with n an
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integer. We have for n 6= −1, since dz = (− sin(t)+ i cos(t)) dt = ieit dt,

∫

Γ

f(z) dz =

∫

Γ

zn dz =

∫ 2π

0

eint(− sin(t) + i cos(t)) dt

= i

∫ 2π

0

einteit dt = i

∫ 2π

0

ei(n+1)t dt

=
i

n+ 1
[sin((n+ 1)t)− i cos((n+ 1)t)]2π0 = 0.

This conforms with Cauchy’s theorem for n = 0, 1, 2, ..., since then f(z)
is analytic in C. For n = −1 with f(z) = 1

z , we get

∫

Γ

1

z
dz =

∫

Γ

dz

z
=

∫ 2π

0

ieit

eit
dt = 2πi. (251.17)

Note the counter-clockwise orientation of Γ. The function f(z) = 1
z is not

analytic in the domain enclosed by Γ, since 1
z is not differentiable for z = 0,

and thus the integral
∫
Γ
dz
z may be non-zero. We shall see below that the

derivative of log(z) is equal to 1
z , but log(z) is not uniquely defined for

z 6= 0, and thus
∫
Γ
dz
z may be non-zero.

The functions f(z) = zn with n = −2,−3, .. are all derivatives of analytic
functions and thus

∫
Γ
f(z) dz = 0 if Γ is a closed curve which does not pass

through 0.

251.22 Basic Properties of the Complex Integral

The complex integral has properties analogous to those of the usual real
integral such as linearity, additivity over subintervals and integration by
parts. For example, we have if |f(z)| ≤M for z ∈ Γ:

|
∫

Γ

f(z) dz| ≤M

∫

Γ

ds =ML(Γ), (251.18)

where L(Γ) is the length of Γ:

L(Γ) =

∫ b

a

(ẋ2(t) + ẏ2(t))1/2 dt.

This follows by taking absolute values in (251.16) and then passing to the
limit:

|
∫

Γ

f(z) dz| ≤
∫

Γ

|f(z)| |dz| =
∫

Γ

|f(z)| ds ≤ML(Γ),

where formally |dz| = ds, and thus the estimate may be viewed as a gen-
eralized triangle inequality.
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251.23 Taylor’s Formula: First Shot

If f : Ω → C is analytic and Γ is a straight line in Ω connecting z0 and z,
then we can write

f(z) = f(z0) +

∫

Γ

f ′(ζ) dζ = f(z0) +

∫

Γ

f ′(ζ)
d

dζ
(ζ − z0) dζ,

and thus by partial integration (the usual rules hold)

f(z) = f(z0) + f ′(z0)(z − z0)−
∫

Γ

f ′′(ζ)(ζ − z0) dζ.

Continuing, writing (ζ − z0) =
1
2
d
dζ (ζ − z0)

2, we get

f(z) = f(z0) + f ′(z0)(z − z0) +
f ′′(z0)

2
(z − z0)

2 +

∫

Γ

f (3)(ζ)
(ζ − z0)

2

2
dζ.

We conclude that for z in a neighborhood of z0, we have

f(z) = f(z0) + f ′(z0)(z − z0) +
f ′′(z0)

2
(z − z0)

2 + Ef (z, z0), (251.19)

where

|Ef (z, z0)| ≤ K

∫

Γ

|ζ − z0|2
2

|dζ| = K

6
|z − z0|3,

and we assume that |f (3)(ζ)| ≤ K for ζ ∈ Γ. More generally, we have the
following Taylor’s formula:

Theorem 251.4 If f : Ω → C is analytic in Ω with |f (n+1)(z)| ≤ K for
z ∈ Ω, then we have for z, z0 ∈ Ω (with the straight line connecting z and
z0 contained in Ω):

f(z) = f(z0)+f
′(z0)(z−z0)+ ....+

f (n)(z0)

n!
(z−z0)n+Rn(z, z0), (251.20)

where |Rn(z, z0)| ≤ K
(n+1)! |z − z0|n+1.

251.24 Cauchy’s Theorem

We shall now prove that if f(z) is analytic in Ω and Γ is a simple closed
curve in Ω enclosing a domain ΩΓ contained in Ω, then

∫

Γ

f(z) dz = 0.
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To see this we write
∫

Γ

f(z) dz =

∫ b

a

(u(x(t), v(t)) + iv(x(t), y(t)))(ẋ(t) + iẏ(t)) dt,

where γ(t) = (x(t), y(t)) with a ≤ t ≤ b a parametrization of Γ. Taking the
real part, we get

Re(

∫

C

f(z) dz) =

∫ b

a

(u(x(t), y(t))ẋ(t)− v(x(t), y(t))ẏ(t) dt

=

∫ b

a

(u(x, y),−v(x, y)) · (ẋ, ẏ)) dt.

By the Cauchy-Riemann equations, we have

∇× (u,−v) = ∂u

∂y
+
∂v

∂x
= 0 in ΩΓ,

which proves, recalling Stokes’ theorem (57.13), that

∫ b

a

(u(x, y),−v(x, y)) · (ẋ, ẏ) dt =
∫

Γ

(u(x, y),−v(x, y)) · ds

=

∫

ΩΓ

∇× (u,−v)dxdy = 0.

We conclude that Re(
∫
Γ f(z) dz) = 0, and similarly we see that

Im(
∫
Γ
f(z) dz) = 0 and we have thus proved Cauchy’s theorem:

Theorem 251.5 (Cauchy’s theorem) If f(z) is analytic in Ω and Γ is
a simple closed curve in Ω enclosing a domain contained in Ω, then

∫

Γ

f(z) dz = 0.

Note that Γ is not allowed to enclose “holes” of Ω where f(z) is not
analytic. For example, we saw above that

∫
Γ

1
z dz = 2πi 6= 0, where Γ is a

circle around the origin. This is because Γ encloses the point z = 0 where
1
z is not analytic.

251.25 Cauchy’s Representation Formula

We prove that if f(z) is analytic in an open domain Ω, and Γ is a simple
closed curve in Ω oriented counter-clockwise and bounding the open domain
ΩΓ contained in Ω, then for z0 ∈ ΩΓ,

f(z0) =
1

2πi

∫

Γ

f(z)

z − z0
dz, (251.21)
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which is Cauchy’s representation formula. Note the counter-clockwise ori-
entation. Further, note that z0 is not allowed to lie on the curve Γ; we
assume that z0 lies inside Γ. Cauchy’s formula (251.21) shows that the val-
ues of f(z) on Γ alone, determine the values of f(z) in all of ΩΓ. This shows
that an analytic function is not allowed to bring surprises: if we know f(z)
on Γ, then we know f(z) in the whole domain ΩΓ bounded by Γ. The proof
follows from realizing that the function

g(z) =
f(z)− f(z0)

z − z0
for z 6= z0, g(z0) = f ′(z0),

is analytic in Ω, because g(z) is clearly differentiable if z 6= z0 and using a
Taylor expansion of f(z), it follows that g(z) is differentiable also at z = z0

with derivative g′(z0) =
f ′′(z0)

2 . Indeed, recalling (251.19) we have

g(z)− g(z0) =
f(z)− f(z0)− f ′(z0)(z − z0)

(z − z0)
=
f ′′(z0)

2
(z − z0) + Ef (z, z0)

with |Ef (z, z0)| ≤ K
6 |z − z0|2 and K a bound for |f (3)(z)|, which proves

the desired result. We conclude that
∫

Γ

f(z)− f(z0)

z − z0
dz = 0,

and using that

∫

Γ

f(z0)

z − z0
dz = f(z0)

∫

Γ

1

z − z0
dz = 2πi f(z0),

we obtain the desired result (251.21). We summarize:

Theorem 251.6 (Cauchy’s representation formula) If f(z) is ana-
lytic in an open domain Ω, and Γ is a simple closed curve in Ω oriented
counter-clockwise and enclosing the open domain ΩΓ contained in Ω, then
for z0 ∈ ΩΓ,

f(z0) =
1

2πi

∫

Γ

f(z)

z − z0
dz. (251.22)

Differentiating with respect to z0 we obtain the following generalized
representation formula:

Theorem 251.7 (Cauchy’s generalized representation formula) If
f(z) is analytic in an open domain Ω, and Γ is a simple closed curve in
Ω oriented counter-clockwise and enclosing an open domain ΩΓ in Ω, then
for z0 ∈ ΩΓ and n = 0, 1, 2, ...,

f (n)(z0) =
n!

2πi

∫

Γ

f(z)

(z − z0)n+1
dz. (251.23)



251.26 Taylor’s Formula: Second Shot 1895

We note that if z0 lies outside the region bounded by Γ, then

1

2πi

∫

Γ

f(z)

z − z0
dz = 0,

simply because
∫
Γ

1
z−z0 dz = 0 in this case as a consequence of the fact

that 1
z−z0 is analytic in a domain containing Γ. Choosing z0 ∈ Γ leads

to a divergent integral because of the singularity of the factor 1
z−z0 , and

to define a proper value of the integral in this case leads to the so called
Cauchy principal value, which we discuss below.

251.26 Taylor’s Formula: Second Shot

By using Cauchy’s formula we now give another version of Taylor’s formula
for a function f(z) which is analytic in a neighborhood Ω of a point z0 ∈ C.
We start writing Cauchy’s formula in the form

f(z) =
1

2πi

∫

Γ

f(ζ)

ζ − z
dζ, (251.24)

where for definiteness we choose Γ to be a counter-clockwise oriented circle
around z0 of radius r contained in Ω. Using the identity

1

1− q
= 1 + q + q2 + ....+ qn +

qn+1

1− q
,

where q ∈ C satisfies |q| < 1, setting q = z−z0
ζ−z0 with z ∈ Ω and ζ ∈ Γ, we

can write

1

ζ − z
=

1

ζ − z0

[
1 +

z − z0
ζ − z0

+ ...+ (
z − z0
ζ − z0

)n
]
+

1

ζ − z

(z − z0
ζ − z0

)n+1
,

where we used that

1

ζ − z
=

1

ζ − z0 − (z − z0)
=

1

ζ − z0

1

1− q
.

Insertion into (251.24) now gives

f(z) =
1

2πi

∫

Γ

f(ζ)

ζ − z0
dζ +

z − z0
2πi

∫

Γ

f(ζ)

(ζ − z0)2
dζ + ...

+
(z − z0)

n

2πi

∫

Γ

f(ζ)

(ζ − z0)n+1
dζ +Rn(z),

where

Rn(z) =
(z − z0)

n+1

2πi

∫

Γ

f(ζ)

(ζ − z0)n+1(ζ − z)
dζ. (251.25)

Using Cauchy’s representation formulas we thus obtain the following Taylor
formula:
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Theorem 251.8 If f(z) is analytic in a neigborhood Ω of a z0 ∈ C, then

f(z) = f(z0) + f ′(z0)(z − z0) + ....+
f (n)(z0)

n!
(z − z0)

n +Rn(z), (251.26)

where the remainder Rn(z) is given by (251.25) with Γ a circle around z0.

If limn→∞Rn(z) = 0 for z in a neighborhood Ω of z0, then we obtain
the following power series representation of f(z) for z ∈ Ω:

f(z) =

∞∑

n=0

f (n)(z0)

n!
(z − z0)

n. (251.27)

We conclude by proving that indeed limn→∞Rn(z) = 0 for z in a neighbor-
hood of z0. We then assume that the disc Dr(z0) = {z ∈ C : |z − z0| ≤ r}
is contained in the domain Ω of analyticity of f(z) and we assume that
|f(z)| ≤ M for z ∈ Dr(z0). Assuming that |z − z0| < r

2 , we obtain by in-
serting absolute values in (251.25) using that |ζ − z| ≥ r

2 and L(Γ) = 2πr:

|Rn(z)| ≤ (
|z − z0|

r
)n+12M,

which proves that limn→∞Rn(z) = 0 for |z − z0| ≤ r
2 . We can extend the

argument to z satisfying |z − z0| < r, and we summarize as follows:

Theorem 251.9 (Taylor’s formula) If f : Ω → C is analytic and Dr(z0) =
{z ∈ C : |z − z0| ≤ r} is contained in Ω and f is bounded on Dr(z0),
then f(z) can be represented as the convergent power series (251.27) for
|z − z0| < r.

Power series representations of analytic functions of the form (251.27)
play an important role and we devote the next section to this topic starting
with the case z0 = 0.

251.27 Power Series Representation of Analytic
Functions

Consider a series of the form

∞∑

m=0

amz
m (251.28)

where the coefficients am ∈ C and we assume z ∈ C. The concepts of
convergence and absolute convergence for (251.28) are direct analogs of the
corresponding concepts for series with am and z being real, see Chapter
Series. In particular we say that

∑∞
m=0 amz

m is absolutely convergent if
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∑∞
m=0 |amzm| is convergent, and note that an absolutely convergent series

is convergent.
Each term of the series (251.28) is analytic in C and each partial sum

n∑

m=0

amz
m

is thus analytic in C. Suppose now that the series (251.28) is convergent for
a particular z = ẑ with |ẑ| = r. Since the terms bm of a convergent series∑∞
m=0 bm must tend to zero, there is a constant C such that

|anẑn| = |an|rn ≤ C n = 0, 1, 2, ...

Suppose now that |z| < r. We then have

∞∑

n=0

|anzn| =
∑

n

|anrn||
z

r
|n ≤ C

∞∑

n=0

|z
r
|n <∞,

because | zr | < 1. This proves that
∑∞

n=0 anz
n is absolutely convergent for

|z| < r and is thus convergent for |z| < r.
We say that the radius of convergence of

∑∞
n=0 anz

n is equal to r, if∑∞
n=0 anz

n is convergent for |z| < r but not convergent for some z with
|z| ≥ r.
One can (easily) show that inside its radius of convergence r a series∑∞
n=0 anz

n is differentiable with

(

∞∑

n=0

anz
n)′ =

∞∑

n=1

nanz
n−1,

where the termwise differentiated series
∑∞
n=1 nanz

n−1 is also convergent
for |z| < r.
More generally, we consider power series of the form

∞∑

m=0

am(z − z0)
m, (251.29)

where we made a shift of variable from z to z − z0 with z0 ∈ C given.
The notion of convergence and radius of convergence extend in the obvious
way. Of course, (251.29) connects to the Taylor series of f(z) at z0 with

am = f(m)(z0)
m! .

Example 251.14. The series

∞∑

n=0

zn

n!
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is convergent for any fixed z ∈ C, since n! = 1 · 2 · 3 · · ·n grows much
quicker than rn for any r > 0. We can thus differentiate termwise and
we get

(
∞∑

n=0

zn

n!
)′ =

∞∑

n=1

zn−1

(n− 1)!
=

∞∑

n=0

zn

n!
,

which shows that
∑∞
n=0

zn

n! satisfies the differential equation u′(z) =
u(z) with the “initial” condition u(0) = 1. It follows that

exp(z) =

∞∑

n=0

zn

n!
. (251.30)

Alternatively, this follows by noting that this is the Taylor series repre-
sentation of f(z) = exp(z) around z0 = 0, noting that f (n)(z) = exp(z)
for n = 1, 2, ..., .

Using that cos(z) = 1
2 (exp(iz) + exp(−iz)) and sin(z) = 1

2i(exp(iz) −
exp(−iz)), we obtain the following Taylor series representations valid
for z ∈ C:

cos(z) =

∞∑

n=0

(−1)n
z2n

(2n)!
, sin(z) =

∞∑

n=0

(−1)n
z2n+1

(2n+ 1)!
.

Example 251.15. Another basic example is given by

log(1 + z) =
∑

n=1

(−1)n−1

n
zn for |z| < 1,

which is readily obtained differentiating log(1 + z).

251.28 Laurent Series

Consider a series of the form

∞∑

m=1

bmz
−m, (251.31)

obtained by replacing z by 1
z in a power series

∑∞
m=1 bmz

m with radius
of convergence r. The series (251.31) will thus converge for |z| > r. More
generally we may consider a Laurent series of the form

f(z) =

∞∑

m=0

amz
m +

∞∑

m=1

bmz
−m, (251.32)
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which we assume to be convergent in an annulus {r1 < |z| < r2}. The
function f(z) defined by (251.32) is analytic in the annulus {r1 < |z| < r2}.
Conversely, if f(z) is analytic in the annulus {r1 < |z| < r2}, then f(z)
admits the Laurent series expansion (251.32) with the coefficients am and
bm being given by

am =
1

2πi

∫

Γ

f(ζ)

ζm+1
dζ, bm =

1

2πi

∫

Γ

f(ζ)ζm−1 dζ, (251.33)

where Γ is a simple closed counter-clockwise oriented curve in the annu-
lus encircling the origin. The formula for the coefficients is obtained by
multiplying by a proper power of z and integrating around Γ.
We may generalize to shifts of the origin to a given point z0 replacing z

by z − z0.

Example 251.16. We have

1

1− z
=

∞∑

m=0

zm for |z| < 1,

1

1− z
=

−1

z(1− z−1)
=

∞∑

m=1

z−m for |z| > 1.

251.29 Residue Calculus: Simple Poles

Let f(z) be analytic in a simply connected open domain Ω, except at an
isolated point z0 ∈ Ω, and let Γ be a simple closed curve in Ω oriented
counter-clockwise with z0 contained in the open domain ΩΓ bounded by Γ.
We say that the simple closed curve Γ surrounds z0 counter clockwise. In
general the integral ∫

Γ

f(z) dz

will then not be zero, but the integral will have the same value for any such
simple closed curve Γ surrounding z0 clockwise. To see this we consider
two such curves Γ1 and Γ2 and introduce the two coinciding curves Γ±

3

with opposite orientation joining Γ1 and Γ2 according to Fig. 251.12, and
by joining the curves Γ1, Γ

+
3 , −Γ2 (Γ2 backwards) and Γ−

3 we obtain a
single closed curve enclosing a domain where f(z) is analytic (that is, not
containing z0 in its interior) over which the integral of f(z) vanishes because
of Cauchy’s theorem. Thus, noting that the integrals over Γ+

3 and Γ−
3 cancel,

we have

0 =

∫

Γ1

f(z) dz +

∫

−Γ2

f(z) dz =

∫

Γ1

f(z) dz −
∫

Γ2

f(z) dz
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z0

Γ1

−Γ2

Γ3
−Γ3

FIGURE 251.12. Two simple curves Γ1 and −Γ2 (Γ2 backwards), surrounding
z0, adjoined by curves Γ±

3 to form one simply connected curve not surrounding
z0.

where we used that the orientation of −Γ2 and Γ2 are reversed. It follows
that the integral over Γ1 is equal to the integral over Γ2.
Suppose now that f(z) has the form

f(z) =
g(z)

z − z0
,

where g(z) is analytic in Ω and z0 ∈ Ω. We then say that f(z) has a simple
pole at z = z0. We have by Cauchy’s representation formula with Γ a simple
closed curve surrounding z0 counter-clockwise,

∫

Γ

f(z) dz =

∫

Γ

g(z)

z − z0
dz = 2πig(z0).

The value g(z0) is called the residue of f(z) at z0, which we denote by
Res f(z0), and thus

Res f(z0) = g(z0) = lim
z→z0

(z − z0)f(z).

Example 251.17. Let f(z) = z
z−1 and let Γ be the circle γ(t) =

(cos(t)−1, sin(t)) with 0 ≤ t ≤ 2π, surrounding (1, 0) counter-clockwise.
By the Residue Theorem, we have since obviously Res f(1) = 1

∫

Γ

z

z − 1
dz = 2πi.

Example 251.18. To evaluate
∫
Γ
f(z) dz, where f(z) = 1

ez−1 and Γ is
a circle centered at the origin and oriented counter-clockwise, we note
that

f(z) =
z

ez − 1

1

z
=
g(z)

z
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with
1

g(z)
=
ez − 1

z
= h(z).

Since limz→0 h(z) = 1, we have Res f(0) = g(0) = 1, and thus∫
Γ
f(z) dz = 2πi.

251.30 Residue Calculus: Poles of any Order

Suppose now f(z) has a (multiple) pole of order n = 2, 3, ..., at z0, that is,
f(z) is of the form

f(z) =
g(z)

(z − z0)n
,

with g(z) analytic in a neighborhood of z0. By Cauchy’s generalized rep-
resentation formula we have if Γ is a simple closed curve surrounding z0
counter-clockwise:

∫

Γ

f(z) dz =

∫

Γ

g(z)

(z − z0)n
dz =

2πi

(n− 1)!
g(n−1)(z0).

We now extend the definition of the residue Res f(z0) to a pole of order
n = 1, 2, ..., by setting

Res f(z0) =
g(n−1)(z0)

(n− 1)!
,

and thus we have again

∫

Γ

f(z) dz = 2πiRes f(z0).

Example 251.19. The function

f(z) =
1

(z − 1)2(z − 3)

has a pole of order 2 at z = 1 and order 1 at z = 3. We compute
Res f(3) = 1

4 , and further Res f(1) = − 1
4 since d

dz
1
z−3 = − 1

(z−3)2 = − 1
4

if z = 1.

251.31 The Residue Theorem

We now prove the following basic result of residue calculus:
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Theorem 251.10 (The Residue Theorem) Let f(z) be analytic in a
simply connected open domain Ω, except at finitely many isolated points
z1, z2,...,zn in Ω where f(z) has simple or multiple poles, and let Γ be a
simple closed curve in Ω surrounding all the zm counter-clockwise. Then

∫

Γ

f(z) dz =
n∑

m=1

2πiRes f(zm).

The result follows by surrounding each of the zm with a little circle = Γm
inside Γ oriented counter-clockwise. By Cauchy’s theorem we then have

∫

Γ

f(z) dz +

n∑

m=1

∫

−Γm

f(z) dz = 0,

arguing as in the Section on Residue Calculus: simple poles, from which
follows that

∫

Γ

f(z) dz =

n∑

m=1

∫

Γm

f(z) dz = 2πi

n∑

m=1

Res f(zm),

which proves the desired result.

Example 251.20. We compute

I =

∫

Γ

4− 3z

z2 − z
dz =

∫

Γ

4− 3z

z(z − 1)
dz

where Γ is a simple closed curve surrounding counter-clockwise the two
simple poles z = 1 and z = 0 of 4−3z

z2−z and get I = 2πi(−4+ 1) = −6πi.

Re z

Im z

Γ

Γi

zi

FIGURE 251.13. A curve Γ and curves Γi, surrounding poles of f(z).



251.32 Computation of
∫ 2π

0
R(sin(t), cos(t)) dt 1903

251.32 Computation of
∫ 2π

0 R(sin(t), cos(t)) dt

Consider an integral of the form

∫ 2π

0

R(sin(t), cos(t)) dt

where R(x, y) is a rational function of x, y ∈ R. By the substitution

z = eit, dz = ieitdt = iz dt

cos(t) =
eit + e−it

2
=

1

2
(z +

1

z
)

i sin(t) =
eit − e−it

2
=

1

2
(z − 1

z
),

the integral is converted into

∫

|z|=1

R(
z2 − 1

2iz
,
z2 + 1

2z
)
dz

iz
,

which can be evaluated using residue calculus, provided the integrand has
no poles on |z| = 1.

Example 251.21. We compute

I =

∫ 2π

0

dt

a+ cos(t)
,

where a > 1 is a constant. Using the transformation just indicated we
get

I = −2i

∫

|z|=1

dz

z2 + 2az + 1
= −2i

∫

|z|=1

dz

(z − α)(z − β)
,

where α = −a +
√
a2 − 1 and β = −a −

√
a2 − 1. Since |α| < 1 and

|β| > 1, the residue at α is 1
α−β and thus I = 2π√

a2−1
.

251.33 Computation of
∫∞
−∞

p(x)
q(x)

dx

Integrals of the form ∫ ∞

−∞
f(x) dx (251.34)

can be evaluated using residue calculus under the assumption that the
extended function f(z) with z ∈ C has no poles on the real axis and that
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|f(z)| ≤ M |z|−2 for |z| large. We start out showing how to use residue
calculus to compute the integral

I =

∫ ∞

−∞

1

1 + x2
dx,

(thus without using that arctan(x) is a primitive function of 1
1+x2 ). We

write

I = lim
R→∞

∫ R

−R

1

1 + x2
dx = lim

R→∞

∫

ΓR

f(z) dz,

where f(z) = 1
1+z2 and ΓR is the boundary of the semi-disc |z| ≤ R with

Re z = x ≥ 0. This follows from the fact that

lim
R→∞

∫

Γ+
R

f(z) dz = 0,

where Γ+
R is the upper part of the semi-circle with Re z = x > 0. By the

Residue theorem we have
∫

ΓR

f(z) dz = 2πi
1

2i
= π

since the residue of f(z) = 1
(z−i)(z+i) inside ΓR is equal to 1

z+i with z = i.

We conclude that ∫ ∞

−∞
f(x) dx = π,

which of course conforms with the result obtained using that d
dx arctan(x) =

1
1+x2 .

The same technique can be used if f(x) = p(x)
q(x) is a rational function with

the degree of q(x) two units (or more) higher than that of the numerator
p(x). The same technique can be used to evaluate the Fourier transform

(cf below) of p(x)q(x) :

1

2π

∫ ∞

−∞

p(x)eiξx

q(x)
dx.

251.34 Applications to Potential Theory in R2

There is a strong coupling between analytic functions and potential theory
in R2, because if f(z) = u(x, y) + iv(x, y) is analytic in Ω, then the real
and imaginary parts u(x, y) and v(x, y) are harmonic in Ω, that is, ∆u =
∆v = 0 in Ω. Conversely, as we saw above, if u(x, y) is harmonic in a
simply connected domain Ω in R2, then there exists a harmonic conjugate
function v(x, y) uniquely determined up to a constant such that f(z) =
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u(x, y)+iv(x, y) is analytic in Ω, see Problem 251.10. The Cauchy-Riemann
equations state that ∇u = ∇× v:

∇u = (
∂u

∂x
,
∂u

∂y
) = ∇× v = (

∂v

∂y
,−∂v

∂x
).

from which follows that ∇u and ∇v are orthogonal:

∇u · ∇v =
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
=
∂v

∂y

∂v

∂x
− ∂v

∂x

∂v

∂y
= 0.

We conclude that the level curves of u(x, y) and its conjugate v(x, y) are
orthogonal. We note that level curves of u(x, y) and v(x, y) in the z = (x, y)-
plane correspond to the level lines u = constant and v = constant of the
analytic function w = u+ iv in the w = (u, v)-plane.
In fact, much of the interest in analytic functions comes from the con-

nection to potential theory in R2. Today, computational methods capable
of solving also problems in R3, have changed this picture and analytic func-
tions now play a less important role in areas of applications such as fluid
and solid mechanics.
Applications to fluid mechanics typically concern incompressible irrota-

tional flow in 2d with u(x, y) representing a velocity potential and v(x, y)
an associated so called stream function. The velocity U of the flow is then
given by U = ∇u = ∇× v

U = ∇u = (
∂u

∂x
,
∂u

∂y
) = ∇× v = (

∂v

∂y
,−∂v

∂x
).

We have ∇ · U = ∆u = 0 and ∇ × U = −∆v = 0 and thus U is in-
compressible and irrotational. The level curves of u(x, y) with normal ∇u
correspond to equi-potential curves, and the level curves of v with normal
∇v = −∇ × u will correspond to the streamlines followed by a fluid par-
ticle moving with the velocity U . We conclude that each analytic function
f(z) = u(x, y) + iv(x, y) may be associated to a particular stationary in-
compressible and irrotational fluid flow, and the level curves of u and v form
a mutually orthogonal set of curves with the level curves of v describing
the streamlines of the flow.
In applications to electromagnetics, u(x, y) represents an electric poten-

tial with ∇u an electric field, and the level curves of v(x, y) represent the
curves traced by electrically charged particles in the electric field.
In applications to heat flow u(x, y) may represent temperature and the

level curves for u thus become isolines for temperature and ∇u is propor-
tional to the heat flow.

Example 251.22. (Flow in a corner) The function w = u+ iv = z2

describes a certain flow in the quarter-plane {z = x + iy : x, y ≥ 0},
with corresponding potential u(x, y) = x2 − y2 and stream-function
v(x, y) = 2xy, see Fig. 251.14.
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level curves for Im(w) and Re(w)

FIGURE 251.14. Level curves of Im(w) = 2xy (solid) and Re(w) = x2 − y2

(dotted) for w = z2.

The equi-potential lines u(x, y) = constant and streamlines v(x, y) =
constant in the (x, y)-plane are the images of the lines u = constant
and v = constant under the mapping z = w1/2 from the halfplane
{w = u+ iv : v ≥ 0} onto the quarter-plane {z = x+ iy : x, y ≥ 0}.

Example 251.23. (The spinning tennis ball) We consider two
types of rotation-free incompressible flow around the unit disc {(x1, x2) :
x21 + x22 < 1} in two dimensions. The first flow is given by the function
f(z) = z + 1

z , which in polar coordinates with z = reiθ takes the form

f(z) = u(r, θ) + iv(r, θ) = (r +
1

r
) cos(θ) + i(r − 1

r
) sin(θ). (251.35)

This represents a symmetric flow with the velocity ≈ (1, 0) (far) away
from the disc, and the level curves of v(r, θ) give the streamlines of the
flow around the disc, see Fig. 251.15.

The second flow is a flow circulating around the disc given by

g(r, θ) = − iK
2π

log(z) =
K

2π
θ + i(−K

2π
log(r)) (251.36)

Consider now the flow given by f(z) + g(z) with stream-function (r −
1
r ) sin(θ) − K

2π log(r). We may consider this to be the flow around a
spinning tennis ball in a horisontal stream of air, see Fig. 251.16

We now recall Bernouilli’s law stating that for steady inviscid irrota-
tional flow, the quantity

p+
|U |2
2

is constant because ∇(p+ |U|2
2 ) = 0, which follows by direct computa-

tion, see Problem 251.13. We conclude that high velocity implies low
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FIGURE 251.15. Level curves of Im(w) for w = z + 1/z.
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FIGURE 251.16. Level curves of Im(w) for w = z + 1/z − i log(z).
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pressure. Now inspecting Fig. 251.16 we see that the velocity is high
below the ball (dense level curves of the stream function), and thus the
pressure is low below the ball and thus there will be a resulting force
downward, which is referred to as lift. This is the reason a top-spin in
tennis is so efficient in bringing down the ball inside the lines. The more
top spin the more curved path of the ball! Björn Borg was one of the
first to really exploit this law of mechanics. One can show that the lift
is proportional to the circulation given by

∫

Γ

u · ds,

where Γ is the unit circle oriented counter-clockwise. The circulation of
the flow given by (251.35) is equal to zero because of symmetry, while
the circulation of the flow given by (251.36) is equal to K. The lift of
the spinning tennis ball gives a hint to the mechanism behind flying. In
fact, the design of an airplane wing with non-symmetric cross section
and a sharp trailing edge creates a circulation around the wing which
causes a lift, see Fig. 251.17.
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flow around an airfoil

FIGURE 251.17. Potential flow around an airfoil.

The lifting clockwise circulation around the wing may be considered
compensated for by a counter-clockwise vortex in the turbulent layer
behind the wing, here localized to the line of discontinuity behind the
wing, because the total rotation of the flow must be zero.



251.34 Applications to Potential Theory in R2 1909

Example 251.24. (Flow through an aperture) The function

z = sin(w) =
1

2i
(ei(u+iv) − e−i(u+iv))

= sin(u) cosh(v) + i(cos(u) sinh(v)),

maps the strip {w = u + iv : −π
2 < u < π

2 , v ∈ R} onto {z = x +
iy : y 6= 0 if |x| > 1}, that is, the whole plane minus the two half-
lines {x + iy : |x| > 1, y = 0}. The corresponding inverse function
w = f(z) = arcsin(z) = sin−1(z) may be viewed as the potential for
flow through an aperture, see Fig. 251.18.
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FIGURE 251.18. Level curves of Im(w) (solid) and Re(w) (dotted) for
w = arcsin(z).

The streamlines are hyperbolas and the equipotential lines are ellipses.

Example 251.25. (Discontinuous electric potential) Consider the
function f(z) = u(x, y) + iv(x, y) = i log(z) = i log(|z|) − Arg z in the
right half-plane {z ∈ C : Re z ≥ 0}. We have u(x, y) = arctan( yx) and

v(x, y) = log(r) with r = (x2 + y2)1/2 and we plot the equi-potential
and level curves of the curves in Fig. 251.19.

Note that the potential u(x, y) approaches the value π
2 for x tending

to zero if y > 0 and the value −π
2 for x tending to zero if y < 0,

corresponding to discontinuous boundary values for x = 0.
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FIGURE 251.19. Level curves of Im(w) (solid) and Re(w) (dotted) for
w = ilog(z).

Chapter 251 Problems

251.1. (a) Prove that f(z) = ez is analytic and that f ′(z) = ez. (b) Prove that
sin(z) and cos(z) are analytic with derivatives cos(z) and − sin(z), respectively.

251.2. It is possible to view an analytic function f : C → C as a function
F : R2 → R2 if we set f(z) = u(x, y) + iv(x, y), z = x + iy and F (x, y) =
(u(x, y), v(x, y)). Explain the connection between the Jacobian F ′ of F (x, y) and
the derivative f ′, and motivate the Cauchy-Riemann equations this way.

251.3. What happens if we try to choose z0 ∈ Γ in Cauchy’s representation
formula?

251.4. Prove Liouville’s theorem stating that if f(z) is analytic in the whole
complex plane and bounded, then f(z) is constant. Hint: Use the representation
formula for f ′(z) with Γ a circle with large radius.

251.5. Prove Morera’s theorem stating that if f : Ω → C satisfies
∫
: Γf(z) dz =

0 for all sinmple closed curves in Ω, then f(z) is analytic in Ω. Hint: Define F (z) =∫
Γz
f(ζ) dζ, where Γz is a courve joining a fixed point z0 with the variable point

z ∈ Ω. Show independence of the specific choice of Γz and then that F ′(z) = f(z).

251.6. Prove that a Möbius transformation maps every straight line or circle in
the complex plane into a circle or straight line. Hint: write w = az+b

cz+d
in the form

w = − ad−bc
c

1
cz+d

+ a
c
.

251.7. Compute (a)
∫ 2π

0
dθ

5−3 sin(θ)
, (b)

∫∞
−∞

x
1+x4

dx.

251.8. Prove that
∫∞
−∞

sin θ
θ

= 2π.

251.9. Prove (251.10).
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251.10. Prove that if u(x, y) is harmonic in a simply connected domain Ω, then
there exists a function v such that u+ iv satisfies the Cauchy-Riemann equations
in Ω. Hint use the central result of Chapter Potential fields.

251.11. Construct your own examples of 2d irrotational potential flow, electro-
statics, and heat flow, by combining elementary functions such as zα, ez, log(z),
sin(z), sinh(z) and Möbius transformations.

251.12. Give a different proof of Cauchy’s representation theorem using that
g(z)
z−z0 is a analytic in the domain Ωǫ = {z ∈ Ω : |z−z0| > ǫ}, so that

∫
Γǫ

g(z)
z−z0 dz =

0, where Γǫ is the boundary of Ωǫ. Then let ǫ tend to zero.

251.13. Show that if the fluid velocity u = (u1, u2) defined in a domain Ω in
R2 satisfies ∇ · u = ∇ × u = 0 and solves the stationary momentum equation

(u · ∇)u+∇p−∆u = 0 in Ω, then ∇(p+ |u|2
2

) = 0 in Ω. This proves Bernouilli’s

Law stating that p + |u|2
2

is constant so that high velocity corresponds to low
pressure.

251.14. Determine the images the circle |z| = 1 and the unit disc |z| < 1 under

the mapping w = i(1−z)
1+z

. Use the result to determine the elektrostatic potential
ϕ(x, y), (z = x+ iy) in the unit disc |z| < 1 with boundary values

ϕ(x, y) =

{
P, om |z| = 1, x > 0, y > 0,
0, om |z| = 1, x < 0, eller y < 0.

251.15. Let T be a triangle with corners at 0, 1 and 1+ i. Determine the image
of T under the mapping w = z

1−z .

251.16. Determine a harmonic function ϕ(x, y) in the domain between the
hyoerbolas x2 − y2 = 1 and x2 − y2 = 4 with boundary values ϕ(x, y) = 2xy on
x2 − y2 = 1 and ϕ(x, y) = 4xy on x2 − y2 = 4.
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252
Fourier Series

Yesterday was my 21st birthday, at that age Newton and Pascal had
already acquired many claims to immortality. (Fourier 1787, age 21)

252.1 Introduction

We give in the following two chapters a short account of Fourier analysis
starting with Fourier series in this chapter and continuing in the next chap-
ter to Fourier transforms. The basic idea is to represent (or approximate)
given functions as linear combinations of trigonometric functions. We have
met the same general idea in the Chapter Piecewise linear approximation,
where we studied approximation of given functions as a linear combination
of piecewise polynomials. Fourier representations have particular properties
which are useful in for example signal/image processing with important ap-
plications to e.g. computer tomography. In recent years variants of Fourier
techniques referred to as Wavelets have been developed with applications
to for example compression of images. We touch this topic at the end of
the Chapter Fourier transforms.
Fourier (1768-1830), see Fig. 252.1 used trigonometric series in his famous

Théorie analytique de chaleur (1822) to study properties of solutions of the
heat equation. The idea of expressing a general function as a Fourier series
(or as a power series) has influenced the development of mathematical
analysis profoundly with the driving force being the formidable success of
these techniques for certain classes of problems, for example linear constant
coefficient differential equations. However, as any highly specialized tool or
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FIGURE 252.1. Fourier, Inventor of Fourier series: “Mathematics compares the
most diverse of phenomena and discovers the secret analogies between them”.

organism, these techniques have not been able to adapt to the needs of
a changing world with computational methods for nonlinear differential
equations taking over as work-horse in applications. Nevertheless, Fourier
analysis still plays a fundamental role for the basic understanding of many
phenomena.
We start with Fourier series in complex form and then pass to the real

form as a special case. Fourier series concern functions f : R → C which
are periodic with a certain period a > 0, that is f(x+ a) = f(x) for x ∈ R.
We often normalize to a = 2π and thus consider 2π-periodic functions
f : R → C satisfying f(x + 2π) = f(x) for x ∈ R. Usually we restrict
attention to real-valued functions f : R → R. Fourier transforms concern
non-periodic functions f : R → C.
We shall see that representing a given 2π-periodic function f(x) as a

Fourier series corresponds to expressing f(x) as a linear combination of a
certain set a trigonometric functions {em(x)}:

f(x) =
∑

m

cmem(x) (252.1)

with certain coefficients cm ∈ C. We thus view the functions em(x) as basis
functions and express a general function f(x) as a certain linear combi-
nation of basis functions. For example f(x) = 0.5 sin(2x) − 0.8 sin(7x) is
a linear combination of the two basis functions sin(2x) and sin(7x) with
coefficients 0.5 and 0.8, see Fig. 252.2.
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FIGURE 252.2. The functions sin(2x) and sin(7x), and the linear combination
0.5 sin(2x) + 0.8 sin(7x) of the two.

The trigonometric basis functions em(x) used in Fourier series are of the
form

sin(mx), cos(mx), m = 0, 1, 2, ..., (real Fourier series) (252.2)

or

eimx = cos(mx) + i sin(mx), m = 0,±1,±2, ..., (complex Fourier series).
(252.3)

Each basis function or “harmonic” sin(mx), cos(mx) or eimx, is periodic
with period 2π

|m| and (angular) frequency or wave number |m|. The larger

|m| is the higher is the frequency and the quicker do the basis functions
sin(mx), cos(mx) and eimx “oscillate”. The series (252.1) expresses f(x) as
a linear combination of basis functions of increasing frequencies. Since the
basis functions are all periodic with period 2π, so is their linear combination
f(x).
The basis functions (252.2) and (252.3) are orthogonal with respect to

the L2(−π, π) scalar product

(v, w) =

∫ π

−π
v(x)w(x) dx (252.4)

with w(x) the complex conjugate of w(x), with corresponding norm ‖v‖ =
(v, v)1/2. The orthogonality makes the coefficients cm directly computable
upon taking the L2(−π, π) scalar product of (252.1) with em to give

cm =
(f, em)

(em, em)
.

.
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252.2 Warm Up I: Orthonormal Basis in Cn

To prepare we consider an analogous situation in Cn: We recall that Cn

is the set of ordered n-tuples x = (x1, ..., xn) with xk ∈ C for k = 1, ..., n.
The scalar product (x, y) of two vectors x and y in Cn is defined by x · y =
(x, y) =

∑n
j=1 xjyj , with corresponding norm |x| = (x, x)1/2

Let now {g1, ..., gn} be a set of n vectors in Cn, that is each gk =
(gk1, ..., gkn) is a vector in Cn with components gkj ∈ C. We recall that
the set {g1, ..., gn} is an orthonormal basis in Cn if the gk are mutually
orthogonal and have norm equal to one, that is

(gk, gm) = 0 if k 6= m, and |gm| = 1 for m = 1, ...n.

If {g1, ..., gn} is an orthonormal basis, then we can express a given vector
u ∈ Cn as a linear combination of basis vectors in the form

u =
n∑

k=1

cmgm, where cm = (u, gm) for m = 1, ...n,

where the fact that cm = (u, gm) follows by taking the scalar product and
using the orthonormality.

252.3 Warm Up II: Series

We recall from Chapter Series that a series
∑∞
m=1 αm with coefficients

αm ∈ C, is said to be convergent if the sequence {sn}∞n=1 of partial sums
sn =

∑n
m=1 αm converges as n tends to infinity. The series is said to be

absolutely convergent if
∑∞
m=1 |αm| is convergent, which is the same as re-

quiring the sequence of partial sums ŝn =
∑n
m=1 |αm| to be bounded above,

that is ŝn ≤ K for n = 1, 2, ..., where K is a positive constant. For a series
with non-negative terms, the concepts of convergence and absolute con-
vergence coincide. A typical example of a positive (absolutely) convergent
series is given by

∑∞
m=1m

−2 . To see that sn =
∑n
m=1m

−2 is bounded
above, we use the fact that

sn ≤ 1 +
n∑

m=2

∫ m

m−1

x−2 dx ≤ 1 +

∫ n

1

x−2 dx ≤ 1 + [−x−1]n1 ≤ 2.

The same argument shows that
∑∞

m=1m
−α is convergent if α > 1.

We also recall that an alternating series of the form
∑∞

m=1(−1)mam,
with {am} a decreasing positive sequence tending to zero, is convergent.
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252.4 Complex Fourier Series

A series of the form

∞∑

m=−∞
cme

imx =

∞∑

1

c−me
−imx + c0 +

∞∑

1

cme
imx, (252.5)

where x ∈ R, is said to be a Fourier series with Fourier coefficients cm ∈ C,
m = 0,±1,±2, ... The corresponding truncated Fourier series

n∑

m=−n
cme

imx =

n∑

m=1

c−me
−imx + c0 +

n∑

m=1

cme
imx, (252.6)

where n = 1, 2, ..., may be viewed as a finite linear combination of the set
of basis functions

{1, e±ix, e±i2x, ..., e±inx}
with coefficients cm.
The orthogonality of the basis functions {eimx} is expressed by:

∫ π

−π
eimxe−ikxdx =

{
0 if k 6= m,

2π if k = m,
(252.7)

which follows by direct integration.
We shall typically consider cases with the Fourier coefficients cm satisfy-

ing for some positive constant K,

|cm| ≤ Km−2, m = ±1,±2, ... (252.8)

In this case the series (252.5) converges absolutely for all x, since

∞∑

−∞
|cmeimx| =

∞∑

−∞
|cm| ≤ |c0|+ 2K

∞∑

m=1

m−2 <∞,

and thus defines a function f : R → C represented by a converging Fourier
series:

f(x) =
∞∑

m=−∞
cme

imx. (252.9)

The series (252.9) gives a spectral decomposition of f(x) into harmonics eimx

with different amplitudes cm. The series (252.9) thus gives a description of
the function f(x) in terms of amplitudes of different harmonics included in
f(x). In musical terms we may think of f(x) as a “chord” built by a number
of “tones” cme

imx of different frequencies m and amplitudes cm. A spectral
decomposition of a “chord” f(x) would display the “tones” building the
“chord”, try The Sound of Functions in the Mathematics Laboratory for a
direct experience.
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We note that the basis functions {eimx} have global support, that is, each
basis function eimx is nonzero for all x ∈ R. The basis functions {eimx}
thus combines the following properties: orthogonality and global support.
We contrast this to the ‘hat functions’ which are the basis functions for
continuous piecewise linear approximation: the hat functions have local
support but are not (quite) orthogonal. The best combination would be
orthogonality together with local support. So-called wavelets introduced in
recent years combine these properties.
Suppose now that f(x) is defined by a converging Fourier series (252.9).

Multiplying by e−imx with m = 0,±1,±2, ... and integrating over the in-
terval [−π, π], and using the orthogonality properties (252.7), we find that

cm = cm(f) =
1

2π

∫ π

−π
f(x)e−imx dx, (252.10)

where we indicated the dependence of the Fourier coefficient cm = cm(f)
on the function f(x). We thus have the Fourier series representation

f(x) =
∞∑

m=−∞
cm(f)eimx, (252.11)

expressing f(x) as a linear combination of different harmonics eimx with
different frequencies, where the Fourier coefficients cm(f) are given by
(252.10).
Conversely, if f : R → C is a given 2π-periodic (Lipschitz continuous)

function and we define cm(f) by (252.10), then we may ask if f(x) can be
represented by its Fourier series (252.11) for all x. We shall prove below that
this is true if f(x) is 2π-periodic and differentiable. This is the basic result of
Fourier analysis stating that an arbitrary 2π-periodic differentiable function
can be given a spectral decomposition in the form of a Fourier series. This
result includes the “completeness” aspect of the basis functions {eimx},
that is, the fact that any differentiable function can be represented as a
Fourier series.

252.5 Fourier Series as an Orthonormal Basis
Expansion

Normalizing the basis functions eimx we obtain the orthonormal basis func-
tions em(x) = 1√

2π
eimx satisfying

(em, ek) = 0 if k 6= m, (em, em) = 1. (252.12)
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A Fourier series representation takes the following form in the normalized
basis:

f(x) =

∞∑

m=−∞
c̃m(f)

1√
2π
eimx, c̃m(f) =

1√
2π

∫ π

−π
f(x)e−imx dx.

Of course, it would be natural to work with the normalized basis functions
{ 1√

2π
eimx} and the corresponding renormalized Fourier coefficients c̃m(f)

thus distributing the 2π-factor into two
√
2π-factors, but we follow the

most common notation and include the 2π-factor in the Fourier coefficient
cm(f) coupled to the basis function eimx, which also simplifies notation
somewhat.

252.6 Truncated Fourier Series and Best
L2-Approximation

The truncated Fourier series

Snf(x) =

n∑

m=−n
cm(f)eimx

of a given function f(x) is a best approximation of f(x) in the sense that

‖f − Snf‖ ≤ ‖f − gn‖

for any function gn(x) =
∑n

m=−n dme
imx with dm ∈ C, m = 0,±1, ...,±n.

This is because, by the definition of the Fourier coefficients,

(f − Snf, em) = 0 for m = 0,±1, ...,±n,

and thus Snf(x) is the best approximation in the L2(−π, π) norm of f(x)
in the linear space spanned by the functions {1, e±ix, e±i2x, ..., e±inx}, com-
pare Chapter Piecewise Linear Approximation.

252.7 Real Fourier Series

Using that eimx = cos(mx) + i sin(mx) and cos(−mx) = cos(mx) and
sin(−mx) = − sin(mx), we can write (252.9) in the form

∞∑

m=−∞
cme

imx = c0 +
∞∑

m=1

am cos(mx) +
∞∑

m=1

bm sin(mx),

where
am = cm + c−m, bm = i(cm − c−m), m = 1, 2, ...
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If f(x) is real, that is f : R → R, then c̄m = c−m and thus am = cm+ c̄m =
2Re(cm) ∈ R and bm = i(cm − c̄m) = −2Im(cm) ∈ R, and

cm =
am
2

− i
bm
2
, c−m =

am
2

+ i
bm
2
, m = 0, 1, 2, ... (252.13)

The Fourier series of a real-valued 2π-periodic function f : R → R can
thus be written alternatively as a Sine and Cosine series of the form

f(x) =
a0
2

+

∞∑

m=1

am cos(mx) +

∞∑

m=1

bm sin(mx),

where am, bm ∈ R, are given by

am = am(f) =
1

π

∫ π

−π
f(x) cos(mx) dx for m = 0, 1, 2, ...,

bm = bm(f) =
1

π

∫ π

−π
f(x) sin(mx) dx for m = 1, 2, ...

We note that if f(x) is even, that is f(x) = f(−x), then bm = 0 for
m = 1, 2, ..., and thus f(x) has a Cosine series representation:

f(x) =
a0(f)

2
+

∞∑

m=1

am(f) cos(mx). (252.14)

Correspondingly, if f(x) is odd, that is f(x) = −f(−x), then am = 0 for
m = 0, 1, ..., and thus f(x) has a Sine series representation:

f(x) =
∞∑

m=1

bm(f) sin(mx). (252.15)

In the applications below we usually consider Cosine and Sine series for
real-valued functions f : R → R. The complex Fourier series is useful in
the analysis of convergence of Fourier series.
We now present a couple of examples with Fourier coefficients having

different rates of convergence to zero (as m−2, m−3 and m−1).

Example 252.1. Let f : R → R be a 2π-periodic function given by
f(x) = |x| for −π ≤ x ≤ π. The function f(x) is real-valued and even,
and thus has a Cosine series of the form (252.14). We compute using
integration by parts if m > 0:

a0(f) =
1

π

∫ π

−π
f(x) dx =

2

π

∫ π

0

x dx = π,

am(f) =
1

π

∫ π

−π
f(x) cos(mx) dx =

2

π

∫ π

0

x cos(mx) dx

=
2

π
[
x sin(mx)

m
]π0 − 2

π

∫ π

0

sin(mx)

m
dx =

2

π

(−1)m − 1

m2
.
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Since (−1)m − 1 = −2 if m is odd and (−1)m − 1 = 0 if m is even, the
Fourier series representation of f(x) = |x| takes the form

|x| = π

2
− 4

π

∞∑

k=1

cos((2k − 1)x)

(2k − 1)2
.

We plot the corresponding truncated series with summation over k =
1, ..., n for different values of n in Fig. 252.3:
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FIGURE 252.3. The sum of the first two and first six terms of the fourier series
of |x| (dotted).

Example 252.2. Let f : R → R be an odd 2π-periodic function
given by f(x) = x(π − x) for 0 ≤ x ≤ π. We compute its Sine series
coefficients:

bm(f) =
1

π

∫ π

−π
f(x) sin(mx) dx =

2

π

∫ π

0

x(π − x) sin(mx) dx

= − 2

π
[
x(π − x) cos(mx)

m
]π0 +

2

π

∫ π

0

(π − 2x) cos(mx)

m
dx

=
2

πm
[
(π − 2x) sin(mx)

m
]π0 +

2

πm2

∫ π

0

2 sin(mx) dx

=
4

πm3
(1− (−1)m).

Example 252.3. Define a 2π-periodic function f(x) by setting

f(x) =

{
1 for |x| < a,

0 for a < |x| ≤ π,

where 0 < a < π, see Fig. 252.4.
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FIGURE 252.4. The sum of the first 3 and first 19 terms of the fourier series of
a piecewise constant function (dotted).

This is a piecewise Lipschitz continuous 2π-periodic even function, and
we can compute its Fourier coefficients. We have bm(f) = 0 and, for
m > 0, 2cm(f)

= am(f) =
1

π

∫ π

−π
f(x) cos(mx) dx =

2

π

∫ a

0

cos(mx) dx =
2 sin(ma)

πm
,

(252.16)
while a0(f) =

2a
π . We thus expect that

f(x) =
a

π
+

2

π

∞∑

m=1

sin(ma)

m
cos(mx).

We shall return to this equality below, with particular focus on the
values x = ±a where f(x) has jump discontinuities.

252.8 Basic Properties of Fourier Coefficients

We now present some basic properties of the Fourier coefficients

cm(f) =
1

2π

∫ π

−π
f(x)e−imx dx m = 0,±1,±2, ...,

of a given 2π-periodic Lipschitz continuous function f : R → C.

Linearity

Fourier coefficients satisfy the following obvious linearity properties:

cm(f + g) = cm(f) + cm(g), cm(αf) = αcm(f),

where f and g are two functions with Fourier coefficients cm(f) and cm(g),
and α ∈ C.
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Fourier Coefficients of the Derivative Df = f ′

We now couple the Fourier coefficients of the derivative Df = df
dx of a 2π-

periodic function f : R → C to the Fourier coefficients of f . The trick is to
integrate by parts: Using the periodicity of f(x), we find that

cm(Df) =
1

2π

∫ π

−π
Df(x)e−imx dx = im

1

2π

∫ π

−π
f(x)e−imx dx = im cm(f),

and we have thus proved:

Theorem 252.1 If f : R → C is 2π-periodic and differentiable with
derivative Df , then for m = 0,±1,±2, ....

cm(Df) = im cm(f). (252.17)

This is one of the fundamental results of Fourier analysis, and translates
the operation of differentiation D = d

dx with respect to x to multiplication
of Fourier coefficients with im wherem is the frequency. This opens the way
of translating differential equations in the variable x to algebraic equations
in the frequency m, which may be very useful and illuminating in certain
applications.
We can directly generalize to

Theorem 252.2 If f : R → C is 2π-periodic and k times differentiable
with derivative Dkf , then for m = 0,±1,±2, ....

cm(Dkf) = (im)kcm(f). (252.18)

Example 252.4. Consider the differential equation Du(x) + u(x) =
f(x), where f(x) a given 2π-periodic function and we seek a 2π-periodic
solution u(x). This equation models, for example, a resistor and capac-
itor in series, with u(x) a primitive function of the current, f(x) an
applied voltage, and x representing time, see the Chapter Electrical
circuits. Alternatively, Du(x) + u(x) = f(x) models an inductor and
resistance in series with u(x) now the current, and again f(x) an applied
voltage. For the Fourier coefficients we have using Theorem 252.1

im cm(u) + cm(u) = cm(f),

and thus

cm(u) =
cm(f)

1 + im
=

(1− im)cm(f)

1 +m2
.

This shows that the indicated circuits act as so-called low-pass filters,
with the property of damping high-frequency components: we view f(x)
as the input and u(x) as the output and note that the Fourier coeffi-
cients of u(x) decay quicker than those of f(x).
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Example 252.5. Consider the differential equation −D2u(x)+u(x) =
f(x) with f(x) a given 2π-periodic function and we seek a 2π-periodic
solution u(x). Since cm(D2u) = (im)2cm(u), we obtain the following
algebraic equation for the Fourier coefficients:

(m2 + 1)cm(u) = cm(f) for m 6= 0.

We can thus express the solution u(x) of −D2u(x) = u(x) = f(x) as a
Fourier series

u(x) =

∞∑

−∞

cm(f)

m2 + 1
eimx,

if the data f(x) is given as a Fourier series: f(x) =
∑∞

−∞ cm(f)eimx.
Again, we see that the differential equation acts as a low-pass filter with
damping of high-frequency components of the data f(x).

Example 252.6. More generally, consider the following differential
equation p(D)u(x) = f(x), where p(D) =

∑q
k=0 akD

k is a differential
equation with constant coefficients ak ∈ C, the data f(x) is 2π-periodic
and we seek a 2π-periodic solution u(x). Arguing as above, we get the
following equation for the Fourier coefficients:

p(im)cm(u) =

q∑

k=0

ak(im)kcm(u) = cm(f),

that is, assuming p(im) 6= 0 (or cm(f) = 0 if p(im) = 0),

cm(u) =
cm(f)

p(im)
,

which gives the Fourier series for the solution, if the Fourier series for
the data f(x) is given.

The Fourier coefficients cm(f) tend to zero as |m| → ∞
As a direct consequence of the preceding result, we conclude that the
Fourier coefficients cm(f) of a 2π-periodic differentiable function f(x) with
integrable derivative Df , tend to zero as |m| tends to infinity: Since
|im cm(f)| = |cm(Df)|, we have

|cm(f)| = 1

|m| |cm(Df)| ≤ 1

2π|m|

∫ π

−π
|Df | dx→ 0 as |m| → ∞.

Similarly, if f(x) is 2π-periodic with integrable derivative Dkf of order
k > 1, then for m = ±1,±2, ...,

|cm(f)| ≤ 1

2π|mk|

∫ π

−π
|Dkf | dx.
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We conclude that the larger k is, the more rapid is the convergence of cm(f)
to zero.
We can also go in the direction of less regularity and ask if we can show

that the Fourier coefficients cm(f) tend to zero as |m| → ∞ under the
weaker assumption that f is Lipschitz continuous only. To this end we first
note that for any −π < a < b < π, we have

∫ b

a

e−imxdx =
1

−im [e−imx]ba → 0 as m→ ∞. (252.19)

This may be seen as a consequence of the rapid oscillations of e−imx with
|m| large, which causes a lot of cancellations in any integral of the form
(252.19) with the effect that the integrals decreases to zero as m increases
to infinity, see the following figure.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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FIGURE 252.5. An illustration of the fact that
∫ b
a
cos(mx)dx and

∫ b
a
sin(mx)dx

is small for m large.

The estimate (252.19) shows that if f(x) is piecewise constant on [−π, π],
that is a linear combination sum of functions equal to one on a certain
interval and zero elsewhere, then cm(f) → 0 as |m| → ∞.
Finally, a given Lipschitz continuous function f : [−π, π] → C can be

approximated by a piecewise constant function f̃(x), so that
∫ π

−π
|f(x)− f̃(x)|

is as small as we please, which leads to the famous

Theorem 252.3 (Riemann-Lebesgue lemma) If f : [−π, π] is Lips-
chitz continuous, then cm(f) → 0 as |m| → ∞.

The assumption can be relaxed to piecewise Lipschitz continuity.
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Convolution

Given two 2π-periodic functions f(x) and g(x), we define a new 2π-periodic
function f ∗ g by

(f ∗ g)(x) =
∫ π

−π
f(x− y)g(y) dy x ∈ R.

We say that f ∗ g is the convolution of f and g. Changing variables, setting
y = x− t, we find that

(f ∗ g)(x) =
∫ π

−π
f(t)g(x− t) dt =

∫ π

−π
f(y)g(x− y) dy x ∈ R,

and thus the integrand can take the form f(x− y)g(y) or f(y)g(x− y).
We shall now prove that

cm(f ∗ g) = 2π cm(f)cm(g). (252.20)

By direct computation, changing order of integration and using the change
of variable t = x− y, we have

cm(f ∗ g) = 1

2π

∫ π

−π
(f ∗ g)(x)e−imx dx

=
1

2π

∫ π

−π

∫ π

−π
f(x− y)g(y) dy e−imx dx

=

∫ π

−π
g(y)e−imy(

1

2π

∫ π

−π
f(x− y) e−im(x−y) dx)dy

=

∫ π

−π
g(y)e−imy(

1

2π

∫ π

−π
f(t) e−imt dt)dy

= cm(f)

∫ π

−π
g(y)e−imy dy = 2πcm(f)cm(g).

Example 252.7. Let g : R → R be a 2π-periodic function defined by

g(x) =
1

2a
for − a ≤ x ≤ a,

where 0 < a < π. For a small, we may view g(x) as an approximate
delta function. The convolution

(f ∗ g)(x) =
∫ π

−π
f(x− y)g(y) dy =

1

2a

∫ a

−a
f(x− y) dy

is an average of f(x) over the interval [x− a, x+ a]. Recalling (252.16),
and using (252.20), we get

cm(f ∗ g) = cm(f)
sin(ma)

ma
.
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We conclude that cm(f ∗g) is close to cm(f) ifma is small, and cm(f ∗g)
is much smaller than cm(f) if ma is large. The Fourier coefficients of
the average f ∗ g thus decay quicker than those of f , and thus f ∗ g
is a smoothed version of f : taking the average increases smoothness
reflected by quickly decreasing Fourier coefficients.

252.9 The Inversion Formula

We shall now prove that if f : R → C is 2π-periodic and differentiable,
then for all x ∈ R

lim
n→∞

n∑

−n
cm(f)eimx = f(x).

In other words, the function f(x) can be represented as a convergent Fourier
series:

f(x) =
∞∑

m=−∞
cm(f)eimx for x ∈ R.

We have

n∑

−n
cme

imx =
n∑

−n

1

2π

∫ π

−π
f(y)e−imy dy eimx

=

∫ π

−π
f(y)

1

2π

n∑

−n
eim(x−y) dy =

∫ π

−π
f(y)Dn(x− y) dy,

(252.21)

where, setting θ = x− y,

Dn(θ) =
1

2π

n∑

−n
eimθ =

1

2π
e−inθ

2n∑

m=0

eimθ

=
1

2π
e−inθ

1− ei(2n+1)θ

1− eiθ
=

1

2π

e−i
θ
2

e−i
θ
2

e−inθ − ei(n+1)θ

1− eiθ
=

1

2π

sin(nθ + θ
2 )

sin( θ2 )

is the so-called Dirichlet kernel. We here used that
∑2n
m=0 e

imθ is a finite
geometric series with factor eiθ. Using the convolution notation we can
write (252.21) in the compact form

n∑

−n
cme

imx = f ∗Dn(x).

In order for f ∗ Dn(x) to approximate f(x), we expect Dn to somehow
behave like the identity. We look at a plot of Dn(θ):



1928 252. Fourier Series

−4 −3 −2 −1 0 1 2 3 4
−2

0

2

4

6

8

10

θ

Dn(θ) for n = 5 (dotted) and n = 25 (solid)

FIGURE 252.6. A plot of Dn(θ).

We see thatDn(θ) oscillates and has a peak at θ = 0. IntegratingDn(θ) =
1
2π

∑n
−n e

imθ term by term over [−π, π] noting that all integrated terms
vanish but one, we see that the total area (with sign) under the graph of
Dn is equal to one, that is

∫ π

−π
Dn(θ) dθ = 1, (252.22)

which expresses one aspect of the idea that Dn behaves like the identity.
The other aspect of the approximate identity nature of Dn is the increasing
focussing of the peak of Dn at 0 as n increases.
Using (252.22), we can write

f(x)− f ∗Dn(x) =
1

2π

∫ π

−π
(f(x) − f(y))Dn(x− y) dy

=
1

2π

∫ π

−π
g(x, y) sin((n+

1

2
)(x − y)) dy

where

g(x, y) =
f(x)− f(y)

sin(x−y2 )
.

Now if f(x) is twice differentiable, then g(x, y) is differentiable with respect
to y for all y ∈ R with derivative Dg(x, y) (see the corresponding argument
in the proof of Cauchy’s formula). Integrating by parts we thus have

f(x)−Dn ∗ f(x) = − 1

2π

1

n+ 1
2

∫ π

−π
Dg(x, y) cos((n+

1

2
)(x − y)) dy → 0

as n → ∞. In case f(x) is differentiable with piecewise Lipschitz continu-
ous derivative, then Dg(x, y) is Lipschitz continuous in y, and by Riemann-
Lebesgue’ lemma, we find the same conclusion. We summarize in the fol-
lowing basic theorem:
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Theorem 252.4 If f : R → C is 2π-periodic with piecewise Lipschitz
continuous derivative, then f(x) may be represented by a convergent Fourier
series:

f(x) =

∞∑

m=−∞
cm(f)eimx for x ∈ R,

where the coefficients cm are given by (252.10).

The assumption on f(x) can be relaxed: it suffices to assume that f(x) is
piecewise differentiable with piecewise Lipschitz continuous derivative. At
a point x of discontinuity, the Fourier series converges to the mean value
of the left hand limit f−(x) = limy→x,y<x f(y) and the right hand limit
f+(x) = limy→x,y>x f(y):

∞∑

m=−∞
cm(f)eimx =

f−(x) + f+(x)

2
. (252.23)

Example 252.8. We have

∞∑

m=1

sin(ma)

πm
cos(mx) =





1 if |x| < a,
1
2 if |x| = a,

0 if |x| > a.

252.10 Parseval’s and Plancherel’s Formulas

Suppose f : R → C is 2π-periodic with a convergent Fourier series repre-
sentation:

f(x) =

∞∑

m=−∞
cm(f)eimx, (252.24)

where

cm(f) =
1

2π

∫ π

−π
f(x)e−imx dx.

Using the orthogonality (252.7) of the functions {eimx}, we find that

∫ π

−π
|f(x)|2 dx =

∫ π

−π
f(x)f(x) dx =

∫ π

−π
(

∞∑

m=−∞
cm(f)eimx)(

∞∑

k=−∞
ck(f)e

−ikx) dx

∞∑

m,k=−∞
cm(f)ck(f)

∫ π

−π
eimxe−ikx dx

= 2π

∞∑

m=−∞
|cm(f)|2.

We have now proved the celebrated:
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Theorem 252.5 (Parseval’s formula) If f(x) has a convergent Fourier
series representation, then

∫ π

−π
|f(x)|2 dx = 2π

∞∑

m=−∞
|cm(f)|2.

We can in an obvious way generalize to obtain:

Theorem 252.6 (Plancherel’s formula) If f(x) and g(x) have conver-
gent Fourier series representations, then

∫ π

−π
f(x)g(x) dx = 2π

∞∑

m=−∞
cm(f)cm(g).

252.11 Space Versus Frequency Analysis

We are now ready to lean back and reflect a bit about the nature of Fourier
series. Suppose that f(x) is a given 2π-periodic function. If we want to
describe the nature of the function f(x), that is the variation of f(x) with
x, we can try to give some kind of list of f(x) values for different values
of x. We may call this a physical description where we think of x as a
space or time variable. Now using Fourier series we can instead express
the function f(x) as a Fourier series, determined by the Fourier coefficients
{cm(f)}. Describing f(x) through its Fourier coefficients, may be viewed
as a frequency-description. In the physical description, we describe the
function f in terms of its function values f(x) for different values of x. In
the frequency description, we describe f in terms of the Fourier coefficients
cm(f) as a sum f(x) =

∑
m cm(f)eimx.

To describe a given function f(x) we may thus look at the variation of
f(x) with x, or the variation of cm(f) with m.
We have noted that the decay of cm(f) with m couples to the regularity

of f(x): if f(x) is highly regular with many derivatives, then the Fourier
coefficients cm(f) decay quickly with increasing m, and vice versa. If the
Fourier coefficients decay quickly, then only a few terms in the Fourier
series suffices to represent the function to high accuracy.

252.12 Different Periods

Suppose f : R → C is periodic with period 2π
ω with ω > 0. We considered

above the case ω = 1, and we now generalize to ω > 0. For example: the
functions sin(ωx), sin(2ωx), sin(3ωx)..., are periodic with period 2π

ω .
Defining g(x) = f( xω ), we have that g(x) is 2π-periodic since g(x+2π) =

f(x+2π
ω ) = f( xω + 2π

ω ) = f( xω ) = g(x), and a Fourier series representation
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of g(x):

g(x) =

∞∑

m=−∞
cm(g)eimx, cm(g) =

1

2π

∫ π

−π
g(y)e−imy dy

translates into the following Fourier series representation of f( xω ):

f(
x

ω
) =

∞∑

m=−∞
cm(g)eimx, cm(g) =

1

2π

∫ π

−π
f(
y

ω
)e−imy dy

which takes the following form changing variables from x
ω to x and y

ω to y:

f(x) =

∞∑

m=−∞
cm(f)eimωx, cm(f) =

ω

2π

∫ π
ω

− π
ω

f(y)e−imωy dy. (252.25)

252.13 Weierstrass Functions

Consider a series of the form

∞∑

m=1

a−m sin(bmx), (252.26)

where a > 1, b > a. This type of series was presented by Weierstrass as
an example of a Lipschitz continuous function that is not differentiable at
any point, see Fig. 252.7, where we plot the corresponding truncated series∑n
m=1 a

−m sin(bmx) with n = 10. We see that as n increases the series
oscillates increasingly wildly, and gives an irregular “chaotic” impression.
Since a > 1 the series (252.26) is absolutely convergent, and defines a

function f(x) =
∑∞

m=1 a
−m sin(bmx), but the series

∞∑

m=1

a−mbm cos(bmx)

obtained by termwise differentiation, does not converge since b
a > 1, which

indicates that f(x) is nowhere differentiable. The Weierstrass function, or
the corresponding truncated series, is an example of a function with a se-
quence of “microscales” 2π

bm , m = 1, 2, .... corresponding to the different
basis functions sin(bmx). The function f(x) thus has the same oscillating
nature on all scales and thus has a “fractal” nature. It is believed that phe-
nomena like turbulence also have a fractal nature, which may be useful in
attempts to model microscales which are not possible to model numerically.
Choosing b = 2 (or b any natural number > 1), gives a series of the form∑∞
m=1 a

−m sin(2mx), which is an example of a lacunary Fourier series, with
just very few Fourier coefficients being non-zero. A Weierstrass function
with b a natural number is thus a lacunary Fourier series.
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FIGURE 252.7. Plots of a truncated Weierstrass function.

252.14 Solving the Heat Equation Using Fourier
Series

We consider the 1d homogeneous heat equation:

u̇(x, t)− u′′(x, t) = 0 for 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0 for t > 0,

u(x, 0) = u0(x) for 0 < x < π,

(252.27)

where u0 is a given initial value. We observe that for m = 1, 2, ...,, the
function v(x, t) = vm(x, t) = e−m

2t sin(mx) satisfies

v̇(x, t)− v′′(x, t) = 0 for 0 < x < π, v(0, t) = v(π, t) = 0 for t > 0,

and thus any finite linear combination

u(x, t) =
J∑

m=1

bme
−m2t sin(mx)

with coefficients bm ∈ R, satisfies (252.27) with corresponding initial data

u0 =
∑J

m=1 bm sin(mx). Each term e−m
2t sin(mx) has the form of a prod-

uct of a function of x only, namely sin(mx) with frequencym, and a function

of t only, namely e−m
2t. We see that the factor e−m

2t decays with increas-
ing t and the rate of decay increases quickly with increasing frequency m.
We illustrate this in Fig. 252.8.
More generally, if the initial data u0 has a convergent Sine series (with

u0(x) extended as an odd function to [−π, π])

u0(x) =

∞∑

m=1

bm(u0) sin(mx), (252.28)
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FIGURE 252.8. The solutions vj(x, t) of the heat equation corresponding to fre-
quencies j = 1 and j = 3.

with Fourier coefficients

bm(u0) =
2

π

∫ π

0

u0(x) sin(mx) dx, (252.29)

then the function defined by

u(x, t) =

∞∑

m=1

bm(u0)e
−m2t sin(mx), (252.30)

solves the initial value problem (252.27).

252.15 Computing Fourier Coefficients with
Quadrature

To compute the Fourier coefficients

cm(f) =
1

2π

∫ 2π

0

f(x)e−imx dx,m = 0,±1,±2, ...

of a given 2π-periodic function f : R → C, we will in general have to use
quadrature. Using the quadrature points xn = 2πn

N , n = 0, ..., N − 1, with
weights ωn = 2π

N , corresponding to a left end-point quadrature formula
with N uniformly distributed points, we would approximate cm(f) by

cm(f) =
1

2π

∫ 2π

0

f(x)e−imx dx ≈ 1

2π

N−1∑

n=0

f(xn)e
−imxn ωn ≡ f̂(m),

We cannot expect this quadrature formula to be accurate for m > N since
then the variation of eimx would not be captured by the quadrature points
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2πn
N . We note that f̂(m) is periodic with periodN : that is f̂(m) = f̂(m+N),

and it is thus natural to consider f̂(m) for m = 0, ..., N − 1, or equivalently
with |m| ≤ (N−1)/2. We call (N−1)/2 the Nyquist cut-off frequency which
corresponds to at least 2 quadrature points on each period for frequencies
m with |m| ≤ (N − 1)/2. According to the inversion formula, we could
hope, assuming that the Fourier coefficients cm(f) are small enough for m
larger than cut-off, that

f(xn) ≈
N−1∑

m=0

f̂(m)eimxn for n = 0, ..., N − 1, (252.31)

which thus would represent an approximate discrete Fourier decomposition
for the selected values xn based on computing the Fourier coefficients cm(f)
by quadrature for m = 0, ..., N − 1. This leads us directly into the discrete
Fourier transform, which we now discuss.

252.16 The Discrete Fourier Transform

Suppose {fn}N−1
n=0 is a set of N given complex numbers. We define a corre-

sponding sequence {f̂m}N−1
m=0 by

f̂m =
1

N

N−1∑

n=0

fne
−2πimn/N , for m = 0, ..., N − 1.

We say that the sequence {f̂m}N−1
m=0 is the discrete Fourier transform of

the sequence {fn}N−1
n=0 . In the setting of the previous section we have fn =

f(2πnN ) and f̂m ≈ cm(f).
We find from the definitions

N−1∑

m=0

f̂(m)e2πimn/N =

N−1∑

m=0

1

N

N−1∑

k=0

fke
−2πimk/Ne2πimn/N

=
N−1∑

k=0

fk
1

N

N−1∑

m=0

e2πim(n−k)/N

and using that

1

N

N−1∑

m=0

e2πim(n−k)/N =

{
1 if k = n,

0 else,

we obtain the following inversion formula, to be compared with (252.31),

fn =

N−1∑

m=0

f̂(m)e2πimn/N , for n = 0, ..., N − 1. (252.32)
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To compute the discrete Fourier transform of {fn}N−1
n=0 , we would need

on the order of N2 operations (multiplications or additions). If N = 2k

for some natural number k, it is possible to organize the computation of
the discrete Fourier transform so that required operations would be of the
order N up to a logarithm. The corresponding transform referred to as the
Fast Fourier Transform FFT developed by Cooley and Tukey in the 1960s,
is one of the highlights of applied mathematics of modern time.

Chapter 252 Problems

252.1. Complete the details of the proof of (252.17) and (252.18).

252.2. Prove (252.23).

252.3. Show that the Sine series coefficients for the odd function f(x) = x3−π2x

for −π ≤ x ≤ π, are given by bm(f) = 12 (−1)m

m3 .

252.4. Show that the Cosine series coefficients for the even function f(x) =

x4 − 2π2x2 for −π ≤ x ≤ π, are given by a0 = 14π4

15
, am(f) = 48 (−1)m+1

m4 ,
m = 1, 2, ...

252.5. Prove that
∑∞
m=1

1
m4 = π4

90
.

252.6. Define a 2-periodic function f(x) by f(x) = (x + 1)2 for −1 < x <
1. Expand f(x) in a complex Fourier seriea. Find a 2-periodic solution to the
differential equation 2y′′ − y′ − y = f .

252.7. Expand the function cosx as a π-periodic Fourier sine series on the

interval (0, π
2
). Use the result to compute

∑∞
n=1

n2

(4n2−1)2
.

252.8. Determine the discrete Fourier transform f̂m of

fn =

{
1, 0 ≤ n ≤ k − 1,
0, k ≤ n ≤ N − 1.

}
,

and use a Parseval formula to compute

N−1∑

µ=1

1− cos 2πµk
N

1− cos 2πµ
N

.

252.9. Determine the discrete Fourier transform of fn = sin nπ
N

, n = 0, . . . , N−
1.
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253
Fourier Transforms

As the natural ideas of equality developed it was possible to conceive
the sublime hope of establishing among us a free government exempt
from kings and priests, and to free from this double yoke the long-
usurped soil of Europe. I readily became enamoured of this cause,
in my opinion the greatest and most beautiful which any nation has
ever undertaken. (Fourier 1793, joining a Revolutionary Committee
of the French Revolution)

Fourier series concern function f : R → C which are periodic. We now
consider functions f : R → C which are non-periodic and the analogous
concept is then the Fourier transform, which we will study in this chapter.
For a given (piecewise Lipschitz continuous) function f : R → C such that
f(x) is integrable over R, that is,

∫

R

|f(x)| dx <∞, (253.1)

we define for ξ ∈ R

f̂(ξ) =
1

2π

∫ ∞

−∞
f(x)e−iξx dx, (253.2)

noting that the integral is absolutely convergent and thus well defined under
the assumption (253.1). We say that the function f̂ : R → C defined by
(253.2) is the Fourier transform of f(x).
We shall now develop a calculus for the Fourier transform which is anal-

ogous to that developed for Fourier series in the previous chapter. In par-
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ticular we shall prove the inversion formula:

f(x) =

∫ ∞

−∞
f̂(ξ)eiξx dξ for x ∈ R,

under the assumption that f(x) is differentiable on R. As we go along the
analogy between Fourier series and Fourier transforms will be uncovered.
We compute the Fourier transform of some basic functions.

Example 253.1. If f(x) = e−|x| for x ∈ R, then

f̂(ξ) =
1

2π

∫ ∞

−∞
e−|x|−iξx dx

=
1

2π

∫ 0

−∞
ex−iξx dx+

1

2π

∫ ∞

0

e−x−iξx dx

=
1

2π

1

1− iξ
+

1

2π

1

1 + iξ
=

1

π

1

1 + ξ2
.

Example 253.2. If f(x) = e−
ax2

2 for x ∈ R, where a > 0 is a constant
then

f̂(ξ) =
1

2π

∫ ∞

−∞
e−

ax2

2 e−iξx dx =
1

2π
e−

ξ2

2a

∫ ∞

−∞
e
− 1

2 (
√
ax+i ξ√

a
)2
dx.

To evaluate the integral, we shall use Cauchy’s theorem for analytic

functions as follows: We note that the function g(z) = e
− 1

2 (
√
az+i ξ√

a
)2

is analytic in z, and we may thus shift the line of integration to obtain

f̂(ξ) =
1

2π
e−

ξ2

2a

∫ ∞

−∞
e−

1
2 (

√
ax)2 dx,

and recalling (224.25) we thus have

f̂(ξ) =
1

2π
e−

ξ2

2a

∫ ∞

−∞
e−

ax2

2 dx =
1√
2πa

e−
ξ2

2a

We note that as a tends to zero, the function f(x) tends to 1 for all x,

and f̂(ξ) tends to δ(0), the delta function at 0, see Fig. 253.1

Example 253.3. Defining f(x) by

f(x) = 1 for − a ≤ x ≤ a

where a > 0, we obtain (see Fig. 253.2

f̂(ξ) =
1

2π

∫ a

−a
e−iξx dx =

1

π

sin(ξa)

ξ
.
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253.1 Basic Properties of the Fourier Transform

We now present some basic properties of the Fourier transform

f̂(ξ) =
1

2π

∫ ∞

−∞
f(x)e−iξx dx, ξ ∈ R,

of given functions f : R → R which are integrable over R.

Linearity

The Fourier transform satisfies the following obvious linearity properties:

̂(f + g)(ξ) = f̂(ξ) + ĝ(ξ), (̂αf)(ξ) = αf̂(ξ).
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where f and g are two functions with Fourier transforms f̂ and ĝ, and
α ∈ C.

253.1.1 Scaling

Let g : R → R be integrable and define f(x) = g(ax), where a > 0 is a
constant. Then, changing variables setting y = ax, we have

f̂(ξ) =
1

2π

∫ ∞

−∞
g(ax)e−i

ξ
a
ax dx =

1

2π

∫ ∞

−∞
g(y)e−i

ξ
a
y 1

a
dy =

1

a
ĝ(
ξ

a
).

We conclude that if f(x) = g(ax), then f̂(ξ) = 1
a ĝ(

ξ
a ).

The Fourier Transform of the Derivative Df = df

dx

We now couple the Fourier transform of the derivative Df = df
dx of a

function f to the Fourier transform of f . The trick is to integrate by parts:

D̂f(ξ) =
1

2π

∫ ∞

−∞
Df(x)e−iξx dx = iξ

1

2π

∫ ∞

−∞
f(x)e−iξx dx = iξf̂(ξ).

We summarize in the following theorem:

Theorem 253.1 If f : R → C is integrable with integrable derivative Df ,
then for ξ ∈ R,

D̂f(ξ) = iξf̂(ξ) (253.3)

This is one of the fundamental results of Fourier analysis, and translates
the operation of differentiation D = d

dx with respect to x to multiplication
of Fourier transforms with iξ where ξ is the frequency. More generally we
have

ˆDkfξ = (iξ)kf̂(ξ). (253.4)

This opens the way of translating differential equations in the variable x
to algebraic equations in the frequency ξ, which may be very useful and
illuminating in certain applications.

Example 253.4. Consider the differential equation −D2u(x)+u(x) =
f(x) on R with f(x) a given integrable function and seeking an inte-

grable solution u(x). Since D̂2u(ξ) = (iξ)2û(ξ), we obtain the algebraic
equation

(ξ2 + 1)û(ξ) = f̂(ξ) for ξ 6= 0

and we can thus express the solution u(x) as a Fourier integral

u(x) =

∫

R

f̂(ξ)

ξ2 + 1
eiξx dξ,

in terms of the Fourier transform f̂(ξ) of the data f(x).
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253.2 The Fourier Transform f̂(ξ) Tends to 0 as
|ξ| → ∞

As a direct consequence of the preceding result, we conclude that the
Fourier transform f̂(ξ) of a differentiable function f(x) with integrable
derivative Df(x), tends to zero as |ξ| tends to infinity. This is simply be-
cause

|f̂(ξ)| = 1

|ξ|D̂f(ξ) ≤
1

2π|ξ|

∫ ∞

−∞
|Df | dx→ 0 as |ξ| → ∞.

This result can be extended to the case of f(x) being integrable, as in the
corresponding case of Fourier series.

253.3 Convolution

Given two functions f : R → R and g : R → R, we define a new function
f ∗ g : R → R by

(f ∗ g)(x) =
∫ ∞

−∞
f(x− y)g(y) dy.

We say that f ∗ g is the convolution of f and g. We shall prove that

f̂ ∗ g = 2πf̂ ĝ

By direct computation, changing order of integration and using the change
of variable t = x− y, we have

f̂ ∗ g(ξ) = 1

2π

∫ ∞

−∞
(f ∗ g)(x)e−iξx dx =

1

2π

∫ ∞

−∞

∫ ∞

−∞
f(x− y)g(y) dy e−iξx dx

=

∫ ∞

−∞
g(y)e−iξy(

1

2π

∫ ∞

−∞
f(x− y) e−iξ(x−y) dx)dy

=

∫ ∞

−∞
g(y)e−iξy(

1

2π

∫ ∞

−∞
f(t) e−iξt dt)dy

= f̂(ξ)

∫ ∞

−∞
g(y)e−iξy dy = 2πf̂(ξ)ĝ(ξ).

We summarize:

Theorem 253.2 We have f̂ ∗ g(ξ) = 2πf̂(ξ)ĝ(ξ) for ξ ∈ R.
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253.4 The Inversion Formula

We shall now prove that if f(x) is differentiable, then for all x ∈ R,

lim
n→∞

fn(x) = f(x),

where

fn(x) =

∫ n

−n
f̂(ξ)eiξx dξ

and thus for all x ∈ R, the function f(x) can be represented as a convergent
Fourier integral:

f(x) =

∫ ∞

−∞
f̂(ξ)eiξx dξ.

We have

fn(x) =

∫ n

−n
f̂(ξ)eiξx dξ =

1

2π

∫ ∞

−∞
f(y)

∫ n

−n
eiξ(x−y) dξdy

=

∫ ∞

−∞
f(y)Dn(x− y) dy,

(253.5)

where, setting θ = x− y,

Dn(θ) =
1

2π

∫ n

−n
eiξθ dξ =

1

π

sin(nθ)

θ

is the Dirichlet kernel for the Fourier transform. Using the convolution
notation we can write (253.5) in the compact form

fn(x) = f ∗Dn(x).

With experience from the Dirichlet kernel for Fourier series, we expect Dn

to be an approximate identity. Looking at a plot of Dn(θ) in Fig. 253.3,
we see that Dn(θ) oscillates with a peak at θ = 0, which gets sharper with
increasing n. One can prove that, see Problem 253.5,

∫ ∞

−∞
Dn(θ) dθ = 1 (253.6)

and we can thus write

f(x)− fn(x) =

∫ ∞

−∞
(f(x)− f(y))Dn(x − y) dy

=
1

π

∫ ∞

−∞
g(y) sin((n(x− y)) dy

where

g(y) =
f(x) − f(y)

x− y
.
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FIGURE 253.3. The function Dn(θ).

Now if f(x) is differentiable with integrable derivative, it follows with an
argument similar to that used in the case of Fourier series (integrating by
parts), that

f(x)− fn(x) → 0

as n→ ∞, which proves the following basic theorem.

Theorem 253.3 If f(x) is differentiable, then f(x) is given by a conver-
gent Fourier integral:

f(x) =

∫ ∞

−∞
f̂(ξ)eiξx dξ for x ∈ R.

253.5 Parseval’s Formula

Parseval’s formula takes the following form for the Fourier transform (for
a proof see Problem 253.3):

Theorem 253.4 If f(x) has a convergent Fourier series representation,
then ∫ ∞

−∞
|f(x)|2 dx = 2π

∫ ∞

−∞
|f̂(ξ)|2 dξ.

253.6 Solving the Heat Equation Using the Fourier
Transform

We consider the 1d homogeneous heat equation on R

u̇(x, t) − u′′(x, t) = 0 for x ∈ R, t > 0,

u(x, 0) = u0(x) for x ∈ R,
(253.7)
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where the initial value u0(x) is integrable over R and we seek a solution
u(x, t) which is integrable over R for all t > 0. Taking Fourier transforms
with respect to x, we are led to the following initial value problem for each
ξ ∈ R

d

dt
û(ξ, t) + ξ2û(ξ, t) = 0 for t > 0, û(ξ, 0) = û0(ξ)

with solution

û(ξ, t) = e−tξ
2

û0(ξ).

We thus obtain the following solution formula

u(x, t) =
1√
4πt

∫ ∞

−∞
e−

(x−y)2

4t u0(y) dy.

Here we used that û is the product of the Fourier transforms e−tξ
2

of√
π/te−

x2

4t and û0 of u0, the inverse transform of which thus is the convo-

lution of 1
4πte

− x2

4t and u0.

253.7 Fourier Series and Fourier Transforms

Suppose f : R → C is periodic with period 2π
ω with ω > 0 and has the

Fourier series representation

f(x) =
∞∑

m=−∞
cm(f)eimωx, cm(f) =

ω

2π

∫ π
ω

− π
ω

f(y)e−imωy dy,

which we write in the form

f(x) =
∞∑

m=−∞

1

2π

(∫ π
ω

− π
ω

f(y)e−imωy dy
)
eimωxω. (253.8)

We now compare with a Fourier transform representation of a non-periodic
function f : R → C according to the previous section:

f(x) =

∫ ∞

−∞

1

2π

(∫ ∞

−∞
f(y)e−iξy dy

)
eiξx dξ. (253.9)

We formally obtain (253.9) from (253.8) by replacing mω by ξ and ω by
dξ viewing the sum over m as a Riemann sum and letting ω tend to 0.
Note the normalization used in the definition of the Fourier transform

f̂(ξ) with the factor 1
2π , and the factor ω

2π in the definition of the Fourier
coefficients cm(f) of a function f with period 2π

ω .
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253.8 The sampling theorem

Let f : R → C be a given function with Fourier transform f̂(ξ), and suppose

that f̂(ξ) = 0 for |ξ| ≥ π. By Fourier’s inversion formula, we have

f(x) =

∫ π

−π
f̂(ξ)eixξ dξ.

We now expand f̂(ξ) in a Fourier series:

f̂(ξ) =

∞∑

m=−∞
cm(f̂)eimξ

with Fourier coefficients

cm(f̂) =
1

2π

∫ π

−π
f̂(η)e−imη dη.

Using that f̂(η) = 0 for |η| ≥ π, we can write

cm(f̂) =
1

2π

∫ ∞

−∞
f̂(η)e−imη dη =

1

2π
f(−m)

where we used Fourier’s inversion formula. We thus obtain the representa-
tion formula:

f(x) =

∫ π

−π

1

2π

∞∑

m=−∞
f(−m)eimξeixξ dξ

=
1

2π

∞∑

m=−∞
f(−m)

∫ π

−π
eimξeixξ dξ

=

∞∑

m=−∞
f(−m)

sin(x +m)

π(x +m)
=

∞∑

m=−∞
f(m)

sin(x−m)

π(x −m)

which gives a representation of f(x) for any value of x in terms of the values
{f(m)} with m integer. We have now prove the famous:

Theorem 253.5 (Sampling theorem)If f : R → C has a Fourier trans-

form f̂(ξ) such that f̂(ξ) = 0 for |ξ| ≥ π, then

f(x) =

∞∑

m=−∞
f(m)

sin(x−m)

π(x−m)

We conclude that sampling the values f(m) of the function f(x) for the
integer values m = 0,±1,±2, ..., gives information of all the values of f(x)

for any x ∈ R, under the assumption that f̂(ξ) = 0 for |ξ| ≥ π.
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Example 253.5. The Sampling theorem takes the following form for
a function f(x) such that f̂(ξ) = 0 for |ξ| ≥ aπ, where a > 0 is a
constant:

f(x) =

∞∑

m=−∞
f(
m

a
)
sin(ax−m)

π(ax −m)
.

This follows by applying the Sampling theorem to g(x) = f(xa ), re-

calling that ĝ(ξ) = af̂(aξ) and noting that ĝ(ξ) = 0 if |ξ| ≥ π since

f̂(ξ) = 0 for |ξ| ≥ aπ. We see that the larger the factor a gets, the
closer the sampling points m

a will be distributed. Of course this couples
to the Nyquist cut-off frequency.

253.9 The Laplace Transform

We give a brief account of the Laplace transform, which is closely related
to the Fourier transform. The Laplace transform is useful in solving certain
constant-coefficient linear initial value problems analytically with classical
applications in e.g. control theory.
For a given function f : [0,∞) → R, we define the Laplace transform

Lf : [0,∞) by

Lf(s) =

∫ ∞

0

e−stf(t) dt for s ∈ [0,∞).

We denote here the independent variable by t indicating typical applica-
tions with t representing time.

Example 253.6. If f(t) = e−at, then Lf(s) = 1
s+a .

Example 253.7. If f(t) = tn

n! then Lf(s) = 1
sn+1 . This follows by

repeated integration by parts.

Example 253.8. If f(t) = sin(mt) then Lf(s) = m
m2+s2 . If f(t) =

cos(mt) then Lf(s) = s
m2+s2 .

We note the following connection between the Laplace transform ofDf =
f ′ and f :

Lf ′(s) = sLf(s)− f(0) (253.10)

which follows by integration by parts.

Laplace Transforms and Constant-Coefficient Linear Initial
Value Problems

The typical application goes as follows: Consider the initial value problem
u′(t) + u(t) = f(t) for t > 0 with u(0) = 0. Taking Laplace transforms of
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both sides we get

sLu(s) + Lu(s) = Lf(s), or Lu(s) =
Lf(s)

s+ 1

For example, if f(t) = 1, then Lf(s) = 1
s and thus Lu(s) = 1

s(s+1) =
1
s − 1

s+1 and we conclude that u(s) = 1 − e−t. Having a catalogue of
Laplace transforms we may expect to be able to solve constant-coefficient
linear initial value problems.

253.10 Wavelets and the Haar Basis

We give a short introduction to wavelets in the simplest setting of 1d piece-
wise constant approximation using the Haar basis, which combines the fea-
tures of orthogonality and local support. We thus consider functions defined
on the unit interval [0, 1] and we let 0 = x0 < x1 < ... < xN = 1 be a uni-
form subdivision with xj = jhn, hn = 2−n and N = 2n for some natural
number n. A natural orthogonal basis for the space Vn of piecewise constant
functions on the subdivision 0 = x0 < x1 < ... < xN = 1 consists of the set
of functions {ϕn,k}Nk=0, where ϕn,k(x) = 1 for x ∈ In,k = (khn, (k + 1)hn)
and ϕn,k(x) = 0 else, that is, each basis function ϕn,k(x) is equal to 1 on
the subinterval In,k and vanishes elsewhere. We can express these functions
through scaling and translation of one single function in the form

ϕn,k = ϕ(2nx− k) for , k = 0, ..., N − 1,

where ϕ(x) = 1 for x ∈ (0, 1), and ϕ(x) = 0 else. We note that Vn−1 is a
subspace of Vn since the space Vn is built on a finer subdivision than Vn−1.
We shall now present a different orthogonal basis for Vn which displays

the “difference” between Vn and Vn−1, and which carries useful information
on the various scales in Vn. More precisely, we shall express each u ∈ Vn in
the form u = v+w with v ∈ Vn−1 and w ∈ Wn−1, where Wn−1 is spanned
by the functions ψn−1,k = ψ(2n−1x − k) for k = 1, ..., 2n−1, expressed
through scaling and translation of the single function ψ(x) given by

ψ(x) =

{
1 for 0 < x < 1

2 ,

−1 for 1
2 < x < 1,

and ψ(x) = 0 else. We note that (v, w) =
∫ 1

0 v(x)w(x) dx = 0 if v ∈ Vn−1

and w ∈ Wn−1. Further, the two functions ϕn−1,k and ψn−1,k obviously
span the two-dimensional space of functions on the interval In,k which are
piecewise constant on the two subintervals khn < x < khn + hn+1 and
khn+ hn+1 < x < khn+ hn of In,k. We thus have the following orthogonal
decomposition

Vn = Vn−1 ⊕Wn−1,



1948 253. Fourier Transforms

stating that each function u ∈ Vn can be expressed in the form u = v + w
with v ∈ Vn−1, w ∈Wn−1 and (v, w) = 0, see Fig. 253.4.

0.25 0.375 0.5

−1

−0.5

0

0.5

1

0.25 0.375 0.5

−1

−0.5

0

0.5

1

0.25 0.375 0.5

−1

−0.5

0

0.5

1

xxx

ϕ21 ψ21 −.2ϕ21 + .5ψ21

FIGURE 253.4. Illustration of the orthogonal decomposition Vn = Vn−1⊕Wn−1.

We can thus express Vn as an orthogonal sum:

Vn = V0 ⊕W0 ⊕W1 ⊕ ...⊕Wn−1

where each space ⊕Wj measures variations on the scale 2−j. The corre-
sponding basis functions comprise the so-called Haar basis for Vn:

{ϕ0 = ϕ, ψ1,1 = ψ, ψ2,1, ψ2,2, ψ3,1, ψ3,2, ψ3,3, ψ3,4, ..., ψn−1,1, ..., ψn−1,2n−1}

combining orthogonality and local support.

Chapter 253 Problems

253.1. Solve using Fourier series the differential equation −D2u(x) = f(x) with
f(x) a given 2π-periodic function with zero mean value and we seek a 2π-periodic
solution u(x) with zero mean value.

253.2. Model the following electrical circuits: (i) resistor 1 and inductor in series
over applied voltage (ii) resistor 1 and capacitor in series over applied voltage (iii)
resistor 2 coupled in series with resistor 1 and inductor in parallel over applied
voltage. Output voltage drop over resistor 1. Solve using Fourier series. Show
that (i) and (ii) correspond to low-pass filters and (iii) to high-pass filter.

253.3. Prove Parseval’s formula for the Fourier transform. Hint: Set ĝ(ξ) = f̂(ξ),
which is the same as setting g(−x) = f(x), and integrate over ξ:

∫ ∞

−∞
f(x)f(x) dx = f ∗ g(0) =

∫ ∞

−∞
f̂ ∗ g(ξ) dξ = 2π

∫ ∞

−∞
|f̂(ξ)|2 dξ,

and use Theorem 253.2.
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253.4. Prove that for a ∈ R, we have (i) ĝ(ξ) = e−iaξf̂(ξ) if g(x) = f(x − a),

(ii) ĝ(ξ) = f̂(ξ − a) if g(x) = eiaxf(x).

253.5. Prove (253.6).

253.6. Compute the Fourier transform of the functions a) x
(x2+a2)2

, b) 1
(x2+a2)2

,

c) x
(x2+1)(x2+2x+5)

, d) e−a|x| sin xt (a > 0, b > 0).

253.7. The function f(x) has the Fourier transform 1−iξ
1+iξ

sin ξ
ξ

. Compute∫∞
−∞ |f(x)|2dx.

253.8. Compute
∫∞
−∞

sinx
x(x2+1)

dx using the Fourier transform.

253.9. A function f(x) has the Fourier transform 1
|ξ|3+1

. Compute
∫∞
−∞ |f ∗

f ′|2 dx.

253.10. Compute the Fourier transform of the function f(x) =
∫ 2

0

√
ξ

1+ξ
eiξxdξ.

Then compute a)
∫∞
−∞ f(x) cos xdx, b)

∫∞
−∞ |f(x)|2dx.

253.11. Determine the solution f(t), t > 0, to the initial value problem

f ′′(t)− f ′(t) + f(t) + 6

∫ t

0

f(τ )dτ = 2et for t > 0,

with initial values f(0) = 1, f ′(0) = 0.
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254
Analytic Functions Tool Bag

254.1 Differentiability and analyticity

A function f : Ω → C is differentiable at z0 ∈ Ω with derivative f ′(z0) ∈ C,
if for z close to z0, we have

|f(z)− f(z0)− f ′(z0)(z − z0)| ≤ Kf(z0)|z − z0|2,

where Kf(z0) is a non-negative real constant depending on f and z0.
A function f : Ω → C is analytic in the open domain Ω of the complex

plane if f(z) is differentiable at all z0 ∈ Ω with derivative f ′(z0). If f : Ω →
C is analytic, then also f ′ : Ω → C is analytic with derivative f ′′ : Ω → C,
which is also analytic, and so on. An analytic function f : Ω → C thus has
derivatives of all orders f (n) : Ω → C, n = 1, 2, ..., which are all analytic.
The usual rules for differentiation of sums, products and quotients valid

for functions f : R → R extend to functions f : C → C.
The function f(z) = zn is analytic in C for n = 1, 2, ...
The function f(z) = z−n is analytic for z 6= 0 if n = 1, 2, ...

254.2 The Cauchy-Riemann Equations

If f(z) = u(x, y)+ iv(x, y) is analytic in the open domain Ω of the complex
plane, then the real and imaginary parts u(x, y) and v(x, y) satisfy the



1952 254. Analytic Functions Tool Bag

Cauchy-Riemann equations in Ω:

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

or in polar coordinates z = reiθ :

∂u

∂r
=

1

r

∂v

∂θ
,

∂v

∂r
= −1

r

∂u

∂θ
.

254.3 The Real and Imaginary Parts of an
Analytic Function

If f : Ω → C is analytic, where Ω is an open domain of the complex
plane C, then the real part u(x, y) = Re f(z) and the imaginary part
v(x, y) = Im f(z) are harmonic in Ω.

254.4 Conjugate Harmonic Functions

If u(x, y) is harmonic in a simply connected domain Ω in R2, then there
exists a harmonic function v(x, y), uniquely determined up to a constant,
such that f(z) = u(x, y) + iv(x, y) is analytic in Ω. The function v(x, y) is
conjugate to u(x, y).

254.5 Curves in the Complex Plane

A set Γ = Range of γ = {γ(t) : t ∈ I} in an open domain Ω in the complex
plane C parameterized by a Lipschitz continuous mapping γ : I → Ω,
where I = [a, b] is an interval of R, is said to be a curve. The unit circle is
a curve parameterized by the function γ(t) = exp(it) with 0 ≤ t < 2π. Γ
is a differentiable curve if the corresponding parametrization γ : I → C is
differentiable on I, that is, decomposing γ(t) = x(t) + iy(t) into real and
imaginary parts,that is, if x : I → R if x(t) and y(t) are differentiable on I.
A curve Γ with parametrization γ : [a, b] → C is said to closed and simple

if γ(a) = γ(b) and γ(s) = γ(t) only if a = b. A domain Ω in C which is
bounded by a simple closed curve, is simply connected. A simply connected
domain does not have any “holes”.
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254.6 An Analytic Function Defines a Conformal
Mapping

An analytic function f : Ω → C, where Ω is an open domain in C, is
conformal in Ω in the sense that angles are preserved under the mapping
w = f(z).

254.7 Complex Integrals

We define

∫

Γ

f(z) dz =

∫ b

a

(
u(x(t), y(t)) + iv(x(t), y(t))

)
(ẋ(t) + iẏ(t)) dt,

where Ω is an open domain in the complex plane, Γ is a differentiable curve
in C parameterized by γ = (x, y) : [a, b] → C, and f = u + iv : Γ → C
is Lipschitz continuous. Formally we have dz = dx + idy = ẋdt + iẏdt =
(ẋ+ iẏ) dt.

254.8 Cauchy’s Theorem

If f(z) is analytic in Ω and Γ is a simple closed curve in Ω enclosing a
domain contained in Ω, then

∫

Γ

f(z) dz = 0.

254.9 Cauchy’s Representation Formula

If f(z) is analytic in an open domain Ω, and Γ is a simple closed curve in
Ω oriented counter-clockwise and enclosing the open domain ΩΓ contained
in Ω, then for z0 ∈ ΩΓ,

f(z0) =
1

2πi

∫

Γ

f(z)

z − z0
dz,

and for n = 1, 2, ...,

f (n)(z0) =
n!

2πi

∫

Γ

f(z)

(z − z0)n+1
dz.
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254.10 Taylor’s formula

If f(z) is analytic in a neighborhood Ω of a z0 ∈ C, then

f(z) = f(z0) + f ′(z0)(z − z0) + ....+
f (n)(z0)

n!
(z − z0)

n +Rn(z),

where

Rn(z) =
(z − z0)

n+1

2πi

∫

Γ

f(ζ)

(ζ − z0)n+1(ζ − z)
dζ.

254.11 The Residue Theorem

If f(z) is analytic in a simply connected open domain Ω, except at finitely
many isolated points z1, z1,...,zn in Ω, where f(z) has simple or multiple
poles, and Γ is a simple closed curve in Ω surrounding all the zm counter-
clockwise, then ∫

Γ

f(z) dz =

n∑

m=1

2πiRes f(zm).
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255
Fourier Analysis Tool Bag

255.1 Properties of Fourier Coefficients

The Fourier coefficients cm(f) of a given 2π-periodic Lipschitz functionf :
R → C are defined by

cm(f) =
1

2π

∫ π

−π
f(x)e−imx dx m = 0,±1,±2, ...,

and satisfy

cm(f + g) = cm(f) + cm(g), cm(αf) = αcm(f), for α ∈ C,

cm(Dkf) = (im)kcm(f) for k = 0, 1, 2, ...,

If f : [−π, π] is Lipschitz continuous, then cm(f) → 0 as |m| → ∞
(Riemann-Lebesgue’ Lemma).

255.2 Convolution

Defining for 2π-periodic functions f(x) and g(x), the convolution f ∗ g by

(f ∗ g)(x) =
∫ π

−π
f(x− y)g(y) dy x ∈ R,

we have
cm(f ∗ g) = 2π cm(f)cm(g).
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255.3 Fourier Series Representation

If f : R → C is 2π-periodic with piecewise Lipschitz continuous derivative,
then f(x) may be represented by a convergent Fourier series:

f(x) =

∞∑

m=−∞
cm(f)eimx for x ∈ R.

255.4 Parseval’s Formula

If f(x) has a convergent Fourier series representation, then

∫ π

−π
|f(x)|2 dx = 2π

∞∑

m=−∞
|cm(f)|2.

255.5 Discrete Fourier Transforms

If {fn}N−1
n=0 is a sequence of N given complex numbers, then we may define

a corresponding sequence {f̂m}N−1
m=0 by

f̂m =
1

N

N−1∑

n=0

fne
−2πimn/N , for m = 0, ..., N − 1,

and we say that the sequence {f̂m}N−1
m=0 is the discrete Fourier transform

of the sequence {fn}N−1
n=0 . We have the following inversion formula:

fn =

N−1∑

m=0

f̂(m)e2πimn/N , for n = 0, ..., N − 1.

255.6 Fourier Transforms

For f : R → C piecewise Lipschitz continuous and integrable over R, we
define the Fourier transform of f(x) for ξ ∈ R by

f̂(ξ) =
1

2π

∫ ∞

−∞
f(x)e−iξx dx.

We have the inversion formula:

f(x) =

∫ ∞

−∞
f̂(ξ)eiξx dξ for x ∈ R,
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under the assumption that f(x) is differentiable on R with integrable
derivative.
If f(x) = e−|x| for x ∈ R, then

f̂(ξ) =
1

π

1

1 + ξ2
.

If f(x) = e−
ax2

2 for x ∈ R, where a > 0 is a constant, then

f̂(ξ) =
1

2
√
a
e−

ξ2

2a .

If f(x) = 1 for − a ≤ x ≤ a and f(x) = 0 else, where a > 0, then

f̂(ξ) =
sin(ξa)

ξ
.

255.7 Properties of Fourier Transforms

If f and g are two functions with Fourier transforms f̂ and ĝ, and α ∈ C,
then

̂(f + g)(ξ) = f̂(ξ) + ĝ(ξ), (̂αf)(ξ) = αf̂(ξ).

If g : R → R is integrable and f(x) = g(ax), then f̂(ξ) = 1
a ĝ(

ξ
a ).

If f : R → C is integrable with integrable derivative, then

D̂f(ξ) = iξf̂(ξ).

Defining for two integrable functions f : R → R and g : R → R, the
convolution f ∗ g by

(f ∗ g)(x) =
∫ ∞

−∞
f(x− y)g(y) dy,

we have
f̂ ∗ g(ξ) = 2πf̂(ξ)ĝ(ξ) for ξ ∈ R.

Parseval’s formula: ∫ ∞

−∞
|f(x)|2 dx = 2π

∫ ∞

−∞
|f̂(ξ)|2 dξ.

255.8 The Sampling Theorem

If f : R → C has a Fourier transform f̂(ξ) such that f̂(ξ) = 0 for |ξ| ≥ aπ,
where a > 0 is a constant, then

f(x) =

∞∑

m=−∞
f(
m

a
)
sin(ax−m)

π(ax −m)
.
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256
Lorenz and the Essence of Chaos*

I am convinced that chaos, along with its many associated concepts
- strange attractors, basin boundaries, period-doubling bifurcations
and the like - can readily be understood and relished by readers who
have no special mathematical or other scientific background...
(E. Lorenz, in Foreword to The Essence of Chaos)

256.1 Introduction

On December 29, 1972, the meteorologist Edward Lorenz presented in a
session on the Global Atmospheric Research Program at the 139th meeting
of the American Association for the Advancement of Science in Washington
D.C., a talk with the title Predictability: Does the Flap of a Butterfly’s
Wings in Brazil Set off a Tornado in Texas? The talk by Lorenz with its
“Butterfly effect” rocketed to fame a decade later during the development
of “Chaos Theory” that became a fashion in mathematics and physics
during the 80s, with the pretention of explaining a variety of phenomena
from turbulent fluid flow to collapsing stock markets sharing qualities of
unpredictability. A decade earlier, “Catastrophe Theory” played a similar
role, while today very few remember this intriguing subject. Of course,
unpredictability or “chaos” is a phenomenon that has long been familiar
to mankind. The word “chaos” comes from early Greek cosmology and
signifies the complete lack of order of the Universe before the creation of
Gaea and Eros (Earth and Desire).
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Lorenz’ question is connected to the obvious difficulty of making reason-
ably reliable predictions of the daily weather over longer time than a week.
A weather forecast is made by numerically solving an IVP modeling the
evolution of the atmosphere, including variables such as temperature, wind
speed and pressure. There are many sources of errors in a weather forecast
made this way: errors in the initial value, modeling errors and numerical
errors, and it seems that these errors are magnified at a rate that limits the
predictions, depending on the scale from a few hours in very local models
to weeks in global circulation models.
Lorenz’ Butterfly analogy indicates that in certain dynamical systems,

very small causes may have large effects after some time. We have already
met such a problem in the form of a pendulum being released starting
from the unstable top position: depending on the initial perturbation the
position of the pendulum will be vastly different after some time (one side
or the other). In meteorology, this corresponds to a situation where the
weather-man can’t say if a certain low pressure will take this way or that
way, and thus can’t be sure if it will rain in Göteborg tomorrow or not.
In his book, Lorenz gives other examples of unstable systems such as a
pinball machine, where very small changes in the action of the player can
change the outcome of the game completely. Of course there are many
other examples from real life of “small” causes having large effects, from
soccer games to the assassination of Archduke Francis Ferdinand by the
Serb nationalist Gavrilo Princip in Sarajevo on June 28 1914, initiating
the First World War.

256.2 The Lorenz System

Lorenz formulated an IVP of the form u̇ = f(u) with f : R3 → R3 given
by

f(u) = (−10u1 + 10u2, 28u1 − u2 − u1u3,−
8

3
u3 + u1u2),

which is the famous Lorenz system. Lorenz found that the solution of this
system is very sensitive to perturbations. The system has some vague con-
nection to a very simple model for fluid flow and has been given the role
of explaining properties of fluid motion, such as turbulence. This was not
Lorenz’ original idea, who just wanted to make a connection to the appar-
ent unpredictability and supposed sensitivity to perturbations of common
meteorological models. If the seemingly very harmless and innocent Lorenz
system could have unpredictable solutions, then there should be no surprise
that also the weather could be unpredictable.
More precisely, Lorenz found that two solutions of the Lorenz system

with very close initial data will stay close for some time but will eventually
move apart completely. The Lorenz system is therefore very difficult to
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solve accurately using a numerical method over times longer than say 30
units. The numerical solution will stay close the the exact solution for some
time, but will eventually move apart significantly. Of course there are many
IVP:s sharing this property of instability. Even the simple pendulum has
this property if the pendulum reaches the top position with small velocity.
It is thus remarkable that the Lorenz system seemed to present some kind of
surprise to the scientific world. But it did, and it has become quite popular
to explain all sorts of phenomena, from turbulence to politics, by referring
to the “strange attractor” supposedly being displayed in plots of solutions
of the Lorenz system.
The Lorenz system in component form reads:





u̇1 = −10u1 + 10u2,

u̇2 = 28u1 − u2 − u1u3,

u̇3 = − 8
3u3 + u1u2,

u1(0) = u01, u2(0) = u02, u3(0) = u03,

(256.1)

and u0 is a given initial condition. The system (256.1) has three equilibrium
points ū with f(ū) = 0: ū = (0, 0, 0) and ū = (±6

√
2,±6

√
2, 27). The

equilibrium point ū = (0, 0, 0) is unstable with the corresponding Jacobian
f ′(ū) having one positive (unstable) eigenvalue and two negative (stable)
eigenvalues. The equilibrium points (±6

√
2,±6

√
2, 27) are slightly unstable

with the corresponding Jacobians having one negative (stable) eigenvalue
and two eigenvalues with very small positive real part (slightly unstable)
and also an imaginary part. More precisely, the eigenvalues at the two
non-zero equilibrium points are λ1 ≈ −13.9 and λ2,3 ≈ .0939± 10.1i.
In Fig. 256.1, we present two views of a solution u(t) that starts at

u(0) = (1, 0, 0) computed to time 30 with an error tolerance of TOL = 0.5
using an adaptive IVP-solver of the form presented in Chapter Adaptive
IVP-solvers. We can think of u(t) = (x(t), y(t), z(t)) as the position at time
t of a particle that moves according to the equation u̇ = f(u). In Fig. 256.1
we thus plot the trajectory or path followed by the particle as the particle
moves with increasing time. The plotted trajectory is typical: the particle
is kicked away from the unstable point (0, 0, 0) and moves towards one
of the non-zero equilibrium points. It then slowly orbits away from that
point and at some time decides to cross over towards the other non-zero
equilibrium point, again slowly orbiting away from that point and coming
back again, orbiting out, crossing over, and so on. This pattern of some
orbits around one non-zero equilibrium point followed by a transition to
the other non-zero equilibrium point is repeated with a seemingly random
number of revolutions around each equilibrium point.
As noted by Lorenz, a close inspection of the trajectory in Fig. 256.1

reveals quite a bit of structure in the behavior of the solution. From the
path of the trajectory, it seems that, roughly speaking, there are two flat
“lobes” in which the orbits around the non-zero equilibrium points are
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FIGURE 256.1. Two views of a numerical trajectory of the Lorenz system over
the time interval [0, 30] starting at (1, 0, 0) computed with absolute error tolerance
0.5.

located. In each lobe, the spiraling segments of the trajectory seem to be
grouped in “bands” that are made up of parts of the trajectory that are
spiralling out from the equilibrium point and parts of the trajectory that
have just crossed over from the other lobe. Only the trajectories in the outer
band switch to the other equilibrium point. This causes a sharp separation
between trajectories located in the outer band and those located in the
next band inside as the trajectories approach the z-axis. We refer to this
as cutting through the action of a “razor” separating the trajectories in the
outer band. The trajectories in the outer band expand in width as they
approach the other equilibrium point, with trajectories near the outside of
the band ending up nearer to the fixed point. We refer to this as expansion
and flipping respectively. The position of initial approach of the trajectory
to an equilibrium point determines the number of orbits the trajectory
makes in that lobe before returning to the other equilibrium point. Finally,
we see that the orbits in one band come close to the next outer band
after one revolution, this repeats with every band of the trajectory, until
eventually they all end up in the outer band and leave towards the other
equilibrium point. We refer to this as interlacing. In short, we can describe
the dynamics of the Lorenz system as a never-ending process of cutting,
expansion, flipping, and interlacing.

256.3 The Accuracy of the Computations

The first task is to measure the reliability of the computed error bound
based on an a posteriori error estimate of the form presented in Chapter
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Adaptive IVP-solvers. Since we do not have the exact solution, we perform
the following experiment: Using the initial data (0, 1, 0), we compute twice
using residual tolerances 10−5 and 10−9 and approximate the error in the
less accurate computation by taking the difference between the values of the
less accurate and more accurate computations. In Fig. 256.2, we plot the
computed error bound and the approximate error. The error bound predicts
the size of the error quite well in spite of the sensitivity of the solution to
perturbations. Similar results are obtained for a variety of initial data.
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FIGURE 256.2. On the left, we plot the results of the reliability test for the
computed error bound with initial condition is (0, 1, 0). On the right, we plot the
effect of changing the residual tolerance on the accuracy in U1(t) component with
initial condition is (1, 0, 0).

To give some idea of the behavior of the error control, we plot the step
sizes used in a computation with absolute error tolerance 0.75 in Fig. 256.3.
The step sizes vary roughly by a factor of 6 over the interval of computation.
In Fig. 256.3, we also plot the product of the time step and the residual
for this computation. We note that these values are kept within 10% of a
constant value. With more computational work, the size of the variations
can be reduced, which produces a more smoothly-varying error bound.

256.4 Computability of the Lorenz System

Encouraged by these results we decrease the tolerance or, equivalently, the
time step, and try to compute an accurate solution to the Lorenz sys-
tem on an even longer time interval. Using the cG(1) method as described
in Chapter Adaptive IVP-solvers, we compute solutions with smaller and
smaller time steps, k = 0.01, k = 0.001 and k = 0.0001, and expect to
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FIGURE 256.3. Time steps and residual × time step versus time for a computa-
tion beginning at (1, 0, 0) with absolute error tolerance 0.75.

produce more and more accurate solutions. We plot the U1-component of
the solution in Fig. 256.4 where we also indicate the points at which the
solutions are no longer accurate. We see that even with 300, 000 time steps
the solution is not accurate beyond t = 26. Decreasing the time step with
a factor 10 or 100 will take us only a little further, but the computation
will take 10 or 100 times longer. We conclude that it is difficult to compute
the solution to the Lorenz system over long time intervals.
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FIGURE 256.4. The U1-component of the cG(1) solution for different time steps.
The small circles indicate the points at which the solutions are no longer accurate.
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To examine in detail the computability of the Lorenz system we return
to the error estimate that we derived for the error e(t) of the cG(1) method:

‖e(t)‖ ≤ Sc(T ) max
0≤t≤T

‖k(t)R(t)‖. (256.2)

Remember that the stability factor Sc(T ) for the Lorenz system is defined
in terms of the solution to the linearized dual problem as

Sc(T ) = max
ϕ0∈R3

∫ T
0
‖ϕ̇(t)‖ dt
‖ϕ0‖

.

Judging by the error estimate we should be able to reach as far as we want
if only the time step k(t) and the residual R(t) are small enough. However,
a little more careful analysis reveals an additional error contribution, which
is often ignored. Including also this term into our error estimate, we find:

‖e(t)‖ ≤ Sc(T ) max
0≤t≤T

‖k(t)R(t)‖+ S0(T ) max
0≤t≤T

ǫ/k(t), (256.3)

where ǫ is the machine precision of the computer, i.e. the smallest number
for which 1 + ǫ 6= 1 (in computer arithmetic) and S0(T ) is a new stability
factor. For a standard computer (in 2002) with so-called double-precision
arithmetic, the machine precision is ǫ ≈ 10−16. The stability factor S0(T )
is defined in terms of the dual solution as

S0(T ) = max
ϕ0∈R3

∫ T
0
‖ϕ(t)‖ dt
‖ϕ0‖

.

The additional term in our refined error estimate (256.3) accounts for the
round-off error made at every time step in the computation; when the new
value U(tn) for the cG(1) solution is computed in every time step, it is
unavoidable that we make a round-off error of size ǫ. As we shall see, it
is the second term that sets the limit for the computability of the Lorenz
system; the second term in (256.3) can be large even though the first term
is small.
The difficulty of computing accurate solutions to the Lorenz system be-

comes obvious if we plot the size of the stability factors. In Fig. 256.5 we
plot the size of the stability factor S0(T ) associated with round-off errors
as function of the final time T . Notice the logarithmic scale in this figure.
A simple approximation of the growth of this stability factor is

S0(T ) ≈ 10T/3,

and so the round-off error grows as Er = 10T/3 · 10−16/k = 10T/3−16/k.
Notice how the error grows larger if we decrease the time step! This is
natural (although unusual), since with a smaller time step we will have to
take a larger number of time steps and thus make a larger number of round-
off errors. To make the influence from round-off errors small we specify a
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FIGURE 256.5. The growth of the stability factor S0(T ) for the Lorenz problem.

large time step, say k = 0.1, for which the round-off error now grows as
10T/3−15. At time T = 3 · 15 = 45 the accumulated round-off error is then
Er = 1, which means that we cannot expect to compute much beyond time
T = 45, since then the round-off error will dominate anyway. Using the
cG(1) method, we will not even reach T = 45, since we have to use a time
step much smaller than k = 0.1 (as seen in Fig. 256.4) to make the first
term in the error estimate small.

256.5 The Lorenz Challenge

From the previous discussion it is now clear that the mysterious unpre-
dictability and “chaotic” behavior of the Lorenz system only means that
the stability factors grow quickly, making it difficult to compute accurate
solutions over long time intervals. The obvious challenge is now, using the
method of choice, to compute an accurate solution to the Lorenz system
over as long a time interval [0, T ] as possible.
We saw in the previous section that brute force is not the way to go. It

is not enough to use a very fast computer with very small and very many
time steps. Using the cG(1) method we cannot reach much further than
T = 30, no matter how small time steps we use since then the accumulated
round-off error will grow large. A solution to this problem would be if we
could design a method, similar to cG(1), which can be used with larger
time steps than what is possible with cG(1). As one can expect, there exist
corresponding methods cG(2), cG(3) and so on, which can be used with
larger time steps. It can be proved that for these cG(q) methods, the error
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grows as k2q, i.e. we have so called a priori error estimates of the type

‖e(T )‖ ≤ C(T )k2q,

where C(T ) is a constant (unknown!) depending on the exact solution u(t).
We say that the cG(q) method is of order 2q. The standard cG(1) method
is thus a second order method. (This is in agreement with (256.2) since
one factor k(t) is hidden inside R(t).) With a higher order method, i.e.
q > 1, we can thus obtain a smaller error with the same time step, which
makes it possible to compute the solution with larger time steps. This in
turn implies that with a higher order method, we can keep the round-off
error smaller and thus reach further than what is possible with the cG(1)
method. In Fig. 256.6 we plot the U1-components of solutions to the Lorenz
system, computed with time step k = 0.1, with a sequence of higher order
methods. We see that with high enough order, the solutions agree to a point
just beyond T = 45 as we predicted; the first term in our error estimate
(256.3) has been reduced by increasing the order of the method and so the
second term dominates. It is possible to reach beyond time T = 50, perhaps
to T = 100, but to do this we have to go from double-precision arithmetic
to quadruple-precision.
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FIGURE 256.6. The U1-component of cG(q) solutions for q = 11, 12, 13, 14, 15
with time step k = 0.1. Dashed lines indicate where the solution is no longer
accurate.
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Benjamin Kehlet and Anders Logg present in Long-Time Computation of the Lorenz System
accurate solutions for T = 1000 using cg(100) of order 200 computing with

http://home.simula.no/~logg/pub/papers/KehletLogg2010a.pdf
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420 correct decimals. This is the present World record. The contest contin-
ues...

Chapter 256 Problems

256.1. Verify that the three equilibrium points given in the text satisfy f(u) = 0.
Linearize the system around these equilibrium points, i.e. compute the eigenvalues
(and eigenvectors) for the Jacobian of f at the three equilibrium points.

256.2. Compute a solution to the Lorenz system and plot the orbit (x(t), y(t), z(t))
for t ∈ [0, T ]. Do you agree with the description of the dynamics of the Lorenz
system as never-ending process of cutting, expansion, flipping, and interlacing?

256.3. Repeat the experiment outlined in Section 256.4, i.e. compute solutions to
the Lorenz system using the cG(1) method with a sequence of smaller and smaller
time steps and examine the accuracy of the solutions (by comparing them to each
other). Can you reach beyond T = 25?

256.4. Try the same experiment as in the previous problem but now with the
lower order methods explicit Euler and implicit Euler. How far do you reach now?

256.5. Implement a simple version of the fourth-order cG(2) method given by

U(tn−1/2) = U(tn−1) +
∫ tn
tn−1

f(U(t), t) · (5− 6(t− tn−1)/kn)/4 dt,

U(tn) = U(tn−1) +
∫ tn
tn−1

f(U(t), t) dt,

where U(t) is the quadratic polynomial on [tn−1, tn] determined by the three
values U(tn−1), U(tn−1/2) and U(tn). How much further can you reach with this
method?

256.6. Give a motivation for the additional term in the refined error estimate
(256.3), starting from the estimate containing errors caused by using the wrong
initial condition as presented in Chapter Adaptive IVP-solvers.

256.7. Take on the Lorenz Challenge, i.e. compute an accurate solution over
[0, T ] with T as large as possible. No rules, all is allowed!

But Aristarchus has brought out a book consisting of certain hy-
potheses, wherein it appears, as a consequence of the assumptions
made, that the universe is many times greater than the ’universe’
just mentioned. His hypotheses are that the fixed stars and the sun
remain unmoved, that the earth revolves about the sun on the cir-
cumference of a circle, the sun lying in the middle of the orbit, and
that the sphere of fixed stars, situated about the same centre as the
sun, is so great that the circle in which he supposes the earth to
revolve bears such a proportion to the distance of the fixed stars
as the centre of the sphere bears to its surface. (Archimedes about
Aristharcus of Samos)
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257
The Solar System*

There is talk of a new astrologer who wants to prove that the earth
moves and goes around instead of the sky, the sun, the moon, just
as if somebody were moving in a carriage or ship might hold that he
was sitting still and at rest while the earth and the trees walked and
moved. But that is how things are nowadays: when a man wishes to
be clever he must needs invent something special, and the way he
does it must needs be the best! The fool wants to turn the whole art
of astronomy upside-down. However, as Holy Scripture tells us, so
did Joshua bid the sun to stand still and not the earth.
(Sixteenth century reformist M. Luther in his table book Tischreden,
in response to Copernicus’ pamphlet Commentariolus, 1514.)

257.1 Introduction

The problem of mathematical modeling of our Solar System including the
Sun, the 9 planets Venus, Mercury, Tellus (the Earth), Mars, Jupiter, Sat-
urn, Uranus, Neptune and Pluto together with a large number of moons and
asteroids and occasional comets, has been of prime concern for humanity
since the dawn of culture. The ultimate challenge concerns mathematical
modeling of the Universe consisting of billions of galaxies each one con-
sisting of billions of stars, one of them being our own Sun situated in the
outskirts of the Milky Way galaxy.
According to the geocentric view presented by Aristotle (384-322 BC) in

The Heavens and further developed by Ptolemy (87-150 AD) in The Great



1970 257. The Solar System*

System dominating the scene over 1800 years, the Earth is the center of the
Universe with the Sun, the Moon, the other planets and the stars moving
around the Earth in a complex pattern of circles upon circles (so-called
epicycles). Copernicus (1473–1543) changed the view in De Revolutionibus
and placed the Sun in the center in a new heliocentric theory, but kept the
complex system of epicycles (now enlarged to a very complex system of
80 circles upon circles). Johannes Kepler (1572–1630) discovered, based on
the extensive accurate observations made by the Swedish/Danish scientist
Tycho Brahe (1546–1601), that the planets move in elliptic orbits with
the Sun in one of the foci following Kepler’s laws, which represented an
enormous simplification and scientific rationalization as compared to the
system of epicycles.
In fact, already Aristarchus (310-230 BC) of Samos understood that the

Earth rotates around its axis and thus could explain the (apparent) motion
of the stars, but these views were rejected by Aristotle arguing as follows:
if the Earth is rotating, how is it that an object thrown upwards falls on
the same place? How come this rotation does not generate a very strong
wind? No one until Copernicus could question these arguments. Can you?
Newton (1642–1727) then cleaned up the theory by showing that the

motion of the planets could be explained from one single hypothesis: the
inverse square law of gravitation, see Chapter Newton’s nightmare below. In
particular, Newton derived Kepler’s laws for the two-body problem with one
(small) planet in an elliptic orbit around a (large) sun, see Chapter Lagrange
and the Principle of Least Action. Leibniz criticized Newton for not giving
any explanation of the inverse square law, which Leibniz believed could be
derived from some basic fact, beyond one of “mutual love” which was quite
popular. A sort of explanation was given by Einstein (1879–1955) in his
theory of General Relativity with gravitation arising as a consequence of
space-time being “curved” by the presence of mass. Einstein revolutionized
cosmology, the theory of the Universe, but relativistic effects only add small
corrections to Newton’s model for our Solar System based on the inverse
square law. Einstein gave no explanation why space-time gets curved by
mass, and still today there is no convincing theory of gravitation with its
mystical feature of “action at a distance” through some mechanism yet
to be discovered. In Chapter Laplacian Models below we give a derivation
of the inverse square law using a mathematical argument presented by
Laplace.
Despite the lack of a physical explanation of the inverse square law,

Newton’s theory gave an enormous boost to mathematical sciences and a
corresponding kick to the egos of scientists: if the human mind was capable
of (so easily and definitely) understanding the secrets of the Solar System,
then there could be no limits to the possibilities of scientific progress...
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FIGURE 257.1. Tycho Brahe: “I believe that the Sun and the Moon orbit around
the Earth but that the other planets orbit around the Sun”.

FIGURE 257.2. Johannes Kepler:“I believe that the planets are separated by
invisible regular polyhedra: tetrahedron, cube, octahedron, dodekahedron and
ikosahedron, and further that the planets including the Earth move in elliptical
orbits around the Sun”.
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257.2 Newton’s Equation

The basis of celestial mechanics is Newton’s second law,

F = m · a, (257.1)

expressing that a force F results in an acceleration of size a for a body of
mass m, together with the expression for the gravitational force given by
the inverse square law:

F = G
mma

r2
, (257.2)

where G ≈ 6.67 · 10−11Nm2/kg2 is the gravitational constant, ma is the
mass of the attracting body and r is the distance to the attracting body.
Together (257.1) and (257.2) give a set of differential equations for the

evolution of the Solar System. If we know the initial positions and velocities
for all bodies in the Solar System, we can solve the system of differential
equations, using the same techniques as presented above in Chapter Adap-
tive IVP-Solvers. We discuss this in detail below in Section 257.4. As a
preparation, we rewrite (257.1) and (257.2) in dimensionless form, which
will be convenient. The three fundamental units appearing in the equations
are those of space, time and mass, which are represented by the variables x
(or r), t andm. We now introduce new dimensionless variables, x′ = x/AU,
t′ = t/year and m′ = m/M , where 1 AU is the mean distance from the Sun
to Earth andM is the mass of the Sun. We can use the chain rule to obtain
the dimensionless acceleration, a′ = d

dt′
d
dt′x

′ = dt
dt′

d
dt

dt
dt′

d
dtx/AU = year2

AU a.
Combining (257.1) and (257.2) using our new dimensionless variables, we
then obtain

m′M
AU

year2
a′ = G

m′M ·m′
aM

r′2AU2 , (257.3)

or

a′ = G′m
′
a

r′2
, (257.4)

where the new gravitational constant G′ is given by

G′ =
G · year2M

AU3 . (257.5)

We leave it as an exercise to show that with suitable definitions of the units
year and AU, the new dimensionless gravitational constant G′ is given by

G′ = 4π2. (257.6)

257.3 Einstein’s Equation

In general relativity the basic concept is not force, as in Newtonian theory,
but instead the curvature of space-time. Einstein explains the motion of
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the planets in our Solar System in the following way: the planets move
through space-time along straight lines, geodesics, which appear as circular
(or elliptical) orbits only because space-time is curved by the large mass of
the Sun. We shall now try to give an idea of how this works.
The curvature of space-time is given by its metric. A metric defines the

distance between two nearby points in space-time. In Euclidean geometry
that we have studied extensively in this book, the distance between to
points x = (x1, x2, x3) and y = (y1, y2, y3) is given by the square root of
the scalar product dx · dx, where dx is the difference dx = x− y. With the
notation ds = |x− y| we thus have

ds =
√
dx · dx =

(
3∑

i=1

dx2i

)1/2

, (257.7)

or

ds2 =

3∑

i=1

dx2i . (257.8)

In the notation of general relativity, the Euclidean metric is then given by
the matrix (tensor)

g =




1 0 0
0 1 0
0 0 1


 , (257.9)

as

ds2 = dxT g dx. (257.10)

In space-time we include time t as a fourth coordinate and every event in
space-time is given by a vector (t, x1, x2, x3). In flat or Minkowski space-
time in the absence of masses, the curvature is zero and the metric is given
by

g =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , (257.11)

which gives

ds2 = −dt2 + dx21 + dx22 + dx23. (257.12)

In the presence of masses, we obtain a different metric which does not even
have to be diagonal.
From the metric g one can find the straight lines of space-time, which give

the orbits of the planets. The metric itself is determined by the distribution
of mass in space-time, and is given by the solution of Einstein’s equation,

Rij −
1

2
Rgij = 8πTij , (257.13)
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where (Rij) is the so-called Ricci-tensor, R is the so-called scalar curvature
and (Tij) is the so-called stress-energy tensor. Now (Rij) and R depend
on derivatives of the metric g = (gij) so (257.13) is a partial differential
equation for the metric g.
The solution for the orbits of the planets obtained from Einstein’s equa-

tion are a little different than the solution obtained from (257.4) given by
Newton. Although the difference is small, it has been verified in obser-
vations of the orbit of the planet Mercury which is the planet closest to
the Sun. We will not include these “relativistic effects” in the next section
where we move on to the computation of the evolution of the Solar System.

257.4 The Solar System as a System of ODEs

To use the techniques developed in Chapter Adaptive IVP-Solvers to com-
pute the evolution of the Solar System, we need to rewrite the second-order
system of ODEs given by (257.4) in the standard form u̇ = f . We start
by introducing coordinates xi(t) = (xi1(t), x

i
2(t), x

i
3(t)) for all bodies in the

Solar System, including the nine planets, then Sun and the Moon. This
gives a total of n = 9 + 2 = 11 bodies and a total of 3n = 33 coordinates.
To rewrite the equations as the first-order system u̇ = f we need to include
also the velocities of all bodies, ẋi(t) = (ẋi1(t), ẋ

i
2(t), ẋ

i
3(t)), giving a total

of N = 6n = 66 coordinates. We collect all these coordinates in the vector
u(t) of length N in the following order:

u(t) = (x11(t), x
1
2(t), x

1
3(t), . . . , x

n
1 (t), x

n
2 (t), x

n
3 (t),

ẋ11(t), ẋ
1
2(t), ẋ

1
3(t), . . . , ẋ

n
1 (t), ẋ

n
2 (t), ẋ

n
3 (t)),

(257.14)

so that the first half of the vector u(t) contains the positions of all bodies
and the second half contains the corresponding velocities.
To obtain the differential equation for u(t), we take the time-derivative

and notice that the derivative of the first half of u(t) is equal to the second
half of u(t):

u̇i(t) = u3n+i(t), i = 1, . . . , 3n, (257.15)

i.e. for n = 11 we have u̇1(t) = ẋ11(t) = u34(t) and so on.
The derivative of the second half of u(t) will contain the second deriva-

tives of the positions, i.e. the accelerations, and these are given by (257.4).
Now (257.4) is written as a scalar equation and we have to rewrite it in
vector form. For every body in the Solar System, we need to compute the
contribution to the total force on the body by summing the contributions
from all other bodies. Assuming that we work in dimensionless variables
(but writing x instead of x′, mi instead of m′

i and so on for convenience)
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we then need to compute the sum:

ẍi(t) =
∑

j 6=i

G′mj

|xj − xi|2
xj − xi

|xj − xi| , (257.16)

where the unit vector xj−xi

|xj−xi| gives the direction of the force, see Figure
257.3.

m1

m2

mi

mj

xj − xi

FIGURE 257.3. The total force on body i is the sum of the contributions from
all other bodies.

Our final differential equation for the evolution of the Solar System in
the form u̇ = f is then given by

u̇(t) = f(u(t)) =




u3n+1(t)
...

u6n(t)∑
j 6=1

G′mj

|xj−x1|2
xj
1−x1

1

|xj−xi|
...

∑
j 6=n

G′mj

|xj−xn|2
xj
3−xn

3

|xj−xn|




, (257.17)

where we have kept the notation x1 = (x11, x
1
2, x

1
3) rather than (u1, u2, u3)

and so on in the right-hand side for simplicity. The evolution of our Solar
System can now be computed by the standard techniques developed in
Chapter Adaptive IVP-Solvers, using the initial data supplied in Table
257.1.
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Position Velocity Mass

M
e
r
c
u
r
y

x1(0) =
−0.147853935
−0.400627944
−0.198916163

ẋ1(0) =
7.733816715
−2.014137426
−1.877564183

1.0/6023600

V
e
n
u
s

x2(0) =
−0.725771746
−0.039677000
0.027897127

ẋ2(0) =
0.189682646
−6.762413869
−3.054194695

1.0/408523.5

E
a
r
t
h

x3(0) =
−0.175679599
0.886201933
0.384435698

ẋ3(0) =
−6.292645274
−1.010423954
−0.438086386

1.0/328900.5

M
a
r
s

x4(0) =
1.383219717
−0.008134314
−0.041033184

ẋ4(0) =
0.275092348
5.042903370
2.305658434

1.0/3098710

J
u
p
it
e
r

x5(0) =
3.996313003
2.731004338
1.073280866

ẋ5(0) =
−1.664796930
2.146870503
0.960782651

1.0/1047.355

S
a
t
u
r
n

x6(0) =
6.401404019
6.170259699
2.273032684

ẋ6(0) =
−1.565320566
1.286649577
0.598747577

1.0/3498.5

U
r
a
n
u
s

x7(0) =
14.423408013
−12.510136707
−5.683124574

ẋ7(0) =
0.980209400
0.896663122
0.378850106

1.0/22869

N
e
p
t
u
n
e

x8(0) =
16.803677095
−22.983473914
−9.825609566

ẋ8(0) =
0.944045755
0.606863295
0.224889959

1.0/19314

P
lu

t
o

x9(0) =
−9.884656563
−27.981265594
−5.753969974

ẋ9(0) =
1.108139341
−0.414389073
−0.463196118

1.0/150000000

S
u
n x10(0) =

−0.007141917
−0.002638933
−0.000919462

ẋ10(0) =
0.001962209
−0.002469700
−0.001108260

1

M
o
o
n

x11(0) =
−0.177802714
0.884620944
0.384016593

ẋ11(0) =
−6.164023246
−1.164502534
−0.506131880

1.0/2.674 · 107

TABLE 257.1. Initial data for the Solar System at 00.00 Universal Time (UT1,
approximately GMT) January 1 2000 for dimensionless positions and veloci-
ties scaled with units 1 AU = 1.49597870 · 1011 m (one astronomical unit),
1 year = 365.24 days and M = 1.989 · 1030 kg (one solar mass).
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257.5 Predictability and Computability

Two important questions that arise naturally when we study numerical
solutions of the evolution of our Solar System, such as the one in Figure
257.4, are the questions of predictability and computability.
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FIGURE 257.4. A numerical computation of the evolution of the Solar System,
including Earth, the Sun and the Moon.

The predictability of the Solar System is the question of the accuracy of
a computation given the accuracy in initial data. If initial data is known
with an accuracy of say five digits, and the numerical computation is exact,
how long does it take until the solution is no longer accurate even to one
digit?
The computability of the Solar System is the question of the accuracy in

a numerical solution given exact initial data, i.e. how far we can compute an
accurate solution with available resources such as method, computational
power and time.
Both the predictability and the computability are determined by the

growth rate of errors. Luckily, the error does not grow exponentially as we
saw for the Lorenz system. If we imagine that we displace Earth slightly
from its orbit and start a computation, the orbit and velocity of Earth will
be slightly different, resulting in an error that grows linearly with time.
This means that the predictability of the Solar System is quite good, since
every extra digit of accuracy in initial data means that the limit of pre-
dictability is increased by a factor ten. If now the solution is computed
using a numerical method, such as the adaptive cG(1) method, this will
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FIGURE 257.5. The growth of the numerical error in simulations of the Solar
System using different numerical methods. The two methods on the left conserve
energy, which results in linear rather than quadratic error growth.

result in additional errors. We can think of the error caused by a numeri-
cal method as a small perturbation introduced with every new time step.
Adding the contributions from all time steps we find that the numerical
error grows quadratically, see Problem 257.2.
As it turns out however, the error does not grow quadratically but only

linearly for the cG(1) method as shown in Figure 257.5. This pleasant
surprise is the result of an important property of the cG(1) method: it
conserves energy. As a result, the cG(1) method performs better on a long
time interval than the higher-order (more accurate) dG(2) method.

257.6 Adaptive Time-Stepping

If we compute the evolution of the Solar System using the adaptive cG(1)
method, we find that the time steps need to be small enough to follow the
orbit of the Moon (or Mercury if we do not include the Moon). This is
inefficient since the time scales for the other bodies are much larger: the
period of the Moon is one month and the period of Pluto is 250 years, and so
the time steps for Pluto should be roughly a factor 3,000 larger that the time
steps for the Moon. It has been shown recently that the standard methods
cG(q), including cG(1), and dG(q) can be extended to individual, multi-
adaptive, time-stepping for different components. In Figure 257.6 we show
a computation made with individual time steps for the different planets.
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Notice how the error grows quadratically, indicating that the method does
not conserve energy. (It is possible to construct also multi-adaptive methods
which conserve energy.)
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FIGURE 257.6. A computation of the evolution of the Solar System with indi-
vidual, multi-adaptive, time steps for the different planets.

257.7 Limits of Computability and Predictability

Using the multiadaptive cG(2) it appears that the limit of computability
of the Solar System (with the Moon and the nine planets) using double
precision, is of the order 106 years. Concerning the predictability of the
same system it appears that for every digit beyond 5 in the precision of
data we gain a factor of ten in time, so that for example predicting the
position of the Moon 1000 years ahead would require about 8 correct digits
in e.g. the initial positions and velocities, masses and gravitational constant.
We conclude that it appears that normally the precision in data would set
the limit for accurate simulations of the evolution of the Solar System, if
we use a high order multiadaptive solver.

Chapter 257 Problems
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257.1. Prove that with suitable definitions of the units year and AU the gravita-
tional constant is G′ = 4π2. Hint: assume that Earth is in a circular orbit where
the centripetal force mv2/r is balanced by the gravitational force GmM/r2.

257.2. Motivate the quadratic growth of the numerical error for the Solar Sys-
tem. Hint: Assume that an error of size ǫ is added to the velocity of a planet in
every time step.

257.3. (Hard! ) Prove that in general if an error in initial data grows as

|e(T )| ≤ S(T )|e(0)|,

for a specific initial value problem, then the error in a numerical solution of the
initial value problem grows as

|e(T )| / ǫ

∫ T

0

S(t) dt,

assuming that the additional error in every time step is kept below knǫ.

257.4. Prove that the cG(1) method conserves energy for a Hamiltonian system,
i.e. prove that for a system given by ẍ = F = −∇xP (x), the total energy

E(t) = K(ẋ(t)) + P (x(t)),

is conserved. Here P (x) is a given potential field, and K(ẋ) = ẋ2

2
is the kinetic

energy. Hint: Write as a first-order system for the vector [u, v] = [x, ẋ], take [v̇, u̇]
as the test function and use the chain rule.

257.5. Investigate numerically the predictability and computability of the Solar
System. Can you verify the linear error growth for the cG(1) method?



This is page 1981
Printer: Opaque this

258
Newton’s Nightmare*

God does not care about mathematical difficulties. He integrates
empirically. (Einstein)

Newton’s theory of gravitation states that the gravitational force field
F (x) generated by a point mass m at the origin is the potential field

F (x) = −m x

‖x‖3 = ∇(
m

‖x‖ ), (258.1)

corresponding to the potential ϕ(x) = m/‖x‖, in units where the gravita-
tional constant is one. This means the gravitational force from the mass m
at the origin on a unit point mass at position x is equal to F (x). Taking
norms gives

‖F (x)‖ =
m

‖x‖2 ,

which is known as Newton’s Inverse Square Law . More generally, the grav-
itational force field of a mass m a position y is given by

F (x) = −m x− y

‖x− y‖3 , (258.2)

with F (x) being the force on a unit point mass a position x and the corre-
sponding potential ϕ(x) = m/‖x− y‖.
Over a long period, Newton tried to show one consequence of his new

theory of gravitation: the gravitational force between two solid balls is the
same as if the total mass of each ball was concentrated at the center of
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FIGURE 258.1. Isaac Newton 1689: “I have not been able to discover the cause
of those properties of gravity from phenomena, and I frame no hypotheses; for
whatever is not deduced from the phenomena is to be called a hypothesis, and
hypotheses, whether metaphysical or physical, whether of occult qualities or me-
chanical, have no place in experimental philosophy”.

mass of each ball. This result has important practical implications. For
example, it would allow the modeling of the solar system as 9 small point
masses representing the planets orbiting around one fixed big point mass
representing the Sun, that is as a 9-body system. Without the simplifying
basic result, we would have to take into account the gravitational attraction
between the parts of each of the bodies and we would end up with a very
complicated model. The practicality of Newton’s gravitational theory could
easily be questioned by anyone having some interest in that direction, like
the Church. Lacking this basic result, Newton delayed the publication of
his monumental Principia Mathematica many years. Newton states that he
purposely made Principia difficult to read “to avoid being bated by little
smatterers of mathematics”. Newton did not like critics.
It fact, even a 9-body system of point masses may be far beyond com-

prehension or mathematical analysis. Luckily, the solar system is a very
special 9-body system in which the motion of each planet can be viewed to
good approximation as a 1-body system, i.e. as each planet orbiting undis-
turbed around one heavy Sun. Such 1-body systems have a full analytical
solution available, as we saw in the Chapter Lagrange and the Principle of
Least Action.
The basic result that Newton finally succeeded in proving can be phrased

as follows: Consider a thin spherical shell S of radius r and uniform thick-
ness centered at the origin and assume the total mass of the shell is m.
Let F (x) be the gravitational force field generated by the spherical shell
so that F (x) is the gravitational force of the shell on a unit point mass at
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position x outside the sphere. Newton proved that

F (x) = −m x

‖x‖3 for ‖x‖ > r,

which says that the gravitational field generated by the sphere on a point
outside the sphere is the same as the field generated by a point mass m at
the center of the sphere.
The gravitational field F (x) of the shell/sphere is the sum of the gravi-

tational fields of all the little pieces ds(y) of the surface of mass dm(y) at
position y making up the sphere S, that is

F (x) =

∫

S

f(y)ds(y),

where

f(y)ds(y) = −dm(y)
x− y

‖x− y‖3
is the gravitational field of the piece of surface ds(y) of mass dm(y) at
position y. We note that

dm(y) =
mds(y)

4πr2
,

since the area of the sphere is 4πr2 and the total mass is m, and thus

f(y) = − m

4πr2
x− y

‖x− y‖3 . (258.3)

Newton thus wanted to verify that
∫

S

f(y) ds(y) = −m x

‖x‖3 for ‖x‖ > r, (258.4)

where f(y) is given by (258.3). Once this basic result for a sphere is estab-
lished, the corresponding result for a solid ball follows by simply viewing
the ball as the union of a collection of thin spheres of varying radii. The
desired final result for two solid balls follows similarly.
We now prove (258.4) giving the gravitational field of a thin spherical

shell S of radius r and total mass m centered at the origin. We assume that
x = (R, 0, 0) with R > r. By symmetry, this covers the general situation.
We note that the components F2(x) and F3(x) of the gravitational force
vanish because the gravitational force is directed from (R, 0, 0) towards the
origin, and we have simply to verify that

F1(x) = − m

4πr2

∫

S

R− y1
‖x− y‖3 ds(y) = − m

R2
.

To compute the surface integral, we use spherical coordinates

y = (r cos(ϕ), r sin(ϕ) cos(θ), r sin(ϕ) sin(θ))
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with 0 ≤ ϕ ≤ π and 0 ≤ θ ≤ 2π, see Fig. 258.2, and recall from the Chapter
Surface integrals that

ds(y) = r2 sin(ϕ)dϕdθ.

rθ

ϕ x1

x2

x3

(R, 0, 0)

(r cos(ϕ), r sin(ϕ) cos(θ), r sin(ϕ) sin(θ))

FIGURE 258.2. Newtons nightmare:

We have according to Fig. 258.2,

F1(x) = − m

4πr2

∫

S

R − y1
‖x− y‖3ds(y)

= −m

4π

∫ π

0

∫ 2π

0

(R− r cos(ϕ)) sin(ϕ)

((R − r cos(ϕ))2 + (r sin(ϕ))2)3/2
dθdϕ

= −m
2

∫ π

0

(R− r cos(ϕ)) sin(ϕ)

((R − r cos(ϕ))2 + (r sin(ϕ))2)3/2
dϕ

where we performed the integration with respect to θ using the fact that
the integrand is independent of θ. We thus need to verify that

I =

∫ π

0

(R− r cos(ϕ)) sin(ϕ) dϕ

((R− r cos(ϕ))2 + (r sin(ϕ))2)3/2
=

2

R2
. (258.5)

To this end, we change variables to set t = cos(ϕ) and we use dt =
− sin(ϕ)dϕ to get

I =

∫ 1

−1

(R − rt) dt

(R2 + r2 − 2Rrt)3/2
=

1

R2

∫ 1

−1

(1− at) dt

(1 + a2 − 2at)3/2
,
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where a = r
R < 1. By a routine computation, we find that a < 1 implies

∫ 1

−1

(1− at) dt

(1 + a2 − 2at)3/2

=

∫ 1

−1

(1+a
2

2 − at) dt

(1 + a2 − 2at)3/2
−
∫ 1

−1

(1+a
2

2 − 1) dt

(1 + a2 − 2at)3/2

=
1

2a

[
− (1 + a2 − 2at)1/2

]1
−1

− a2 − 1

2a

[
(1 + a2 − 2at)−1/2

]1
−1

=
1

2a

(
1 + a− (1 − a)

)
− a2 − 1

2a

( 1

1− a
− 1

1 + a

)
= 1 + 1 = 2,

and the desired result follows:

F1(x) = − m

R2
if x = (0, 0, R), R > r.

Below, we give a much shorter proof of this result using some tools of
Calculus to be developed in the next chapters.

Chapter 258 Problems

258.1. Prove that the gravitational field from a thin sphere is equal to zero
inside the sphere.

258.2. Compute the gravitational field F (x) for x ∈ R3 of a solid ball of total
mass m and radius r centered at the origin

258.3. Compute the gravitational field of a “black hole” with mass density
exp(−r)

r
, r = ‖x‖.

258.4. Determine the gravitational field generated by a thin straight uniform
rod.

258.5. Determine the gravitational field generated by a thin circular flat (a)
ring (b) disc.

258.6. (a) Consider a particle cloud of uniform density in the form of a ball.
Assume the particles attract each other according to Newton’s Law of gravitation.
Compute the evolution of the cloud for t > 0 assuming the particles are at rest
at t = 0. (b) Do the same with a cloud in the form of the volume between two
concentric spheres. (c) Extend to clouds of variable density.
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259
Chemical Reactions*

We already know the laws that govern the behavior of matter un-
der all but the most extreme situations. In particular, we know the
basic laws that underlie all of chemistry and biology. Yet we have
certainly not reduced these objects to the status of solved problems;
we have, as yet, had little success in predicting human behavior from
mathematical equations. So even if we do find a complete set of basic
laws, there will still be in the years ahead the intellectual challeng-
ing task of developing better approximation methods, so that we can
make useful predictions of the probable outcomes in complicated and
realistic situations. (S. Hawking in A Brief History of Time)

It is especially difficult to find exact solutions of the equations, as
the equations (Einstein’s equations) are non-linear. (Einstein)

Inasmuch as a propagating flame may be considered as a wave of
chemical reactions sweeping across a flowing gas, it offers an excellent
proving ground for the analytical skills of a fluid dynamicist, a heat
and mass transfer specialist and a physical chemist, all put together
into a well-rounded applied mathematician. (M. Kanury)

259.1 Constant Temperature

We consider N different chemical species A1,..., AN , which participate in J
reactions with stoichiometric (positive) integer coefficients νn,j for species
n appearing as reactant in reaction j and λn,j for species n appearing as
product in reaction j (with the coefficients being zero if the species is not
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a reactant or product). This is commonly expressed as

N∑

n=1

νn,jAn →
N∑

n=1

λn,jAn for j = 1, ..., J. (259.1)

We say that the order of reaction j is equal to
∑N
n=1 νn,j. We denote the

molar concentration (expressed in moles per unit volume) of species An by
cn. The reaction rate rj of reaction j is supposed to be given by

rj = kj(T )

N∏

m=1

cνm,j
m ,

where the reaction coefficient or Arrhenius factor kj(T ) is given by

kj(T ) = BjT
αj exp(− Ej

RT
),

with Ej > 0 representing the activation energy, BjT
αj representing the

frequency factor, Bj and αj are positive constants, the absolute tempera-
ture T is assumed to be the same for all species, and R is the gas constant.
The basic idea behind the product formula

∏N
m=1 c

νm,j
m is that the reaction

rate is proportional to the molar concentrations of the reactants with each
reactant Am counted νm,j times. The Arrhenius factor is small if T is below

some threshold value corresponding to the quotient
Ej

RT being moderately
large.
The net production rate (moles per volume per unit time) of species An

in reaction j is given by αn,jrj , where

αn,j = λn,j − νn,j ,

and the total net production rate sn of species n is given by

sn =

J∑

j=1

αn,jrj .

We now assume that the temperature T is constant and is given, and we
seek the vector of concentration c(t) = (c1(t), ..., cN (t)) as a function of time
t describing the dynamics of the set of reactions for t > 0, assuming that
c(0) = c0, where c0 = (c01, ..., c

0
N ) is a given vector of initial concentrations.

Using the balance equation ċn = sn for each species n = 1, 2, ..., N , we ob-
tain the following initial value problem for a system of ordinary differential
equations: Find c(t) = (c1(t), ..., cN (t)) such that

{
ċn(t) =

∑J
j=1 αn,jkj(T )

∏N
m=1 cm(t)νm,j for t > 0, n = 1, ..., N,

c(0) = c0.

(259.2)
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This is an initial value problem of the form u̇(t) = f(u(t)) for t > 0,
u(0) = u0, where u(t) = c(t) and f : RN → RN is a given function.
An Equilibrium for a given temperature T corresponding to ċn(t) = 0 for

t > 0, n = 1, ..., N , is characterized by the algebraic system of equations

J∑

j=1

αn,jkj(T )
N∏

m=1

cνm,j
m = 0 n = 1, ..., N, (259.3)

corresponding to the equation f(u) = 0.

Example 259.1. The reaction

2NO + Cl2 → 2NOCl,

can be put in the form (259.1) with A1 = NO, A2 = Cl2, A3 = NOCl,
N = 3, J = 1, ν1,1 = 2, ν2,1 = 1, ν3,1 = 0, λ1,1 = 0, λ2,1 = 0, λ3,1 = 2,
α1,1 = −2, α2,1 = −1, and α3,1 = 2.

Example 259.2. The two reactions

2NO+ Cl2 →k1 2NOCl,

2NOCl →k2 2NO+ Cl2,

can be put in the form (259.1) with A1 = NO, A2 = Cl2, A3 = NOCl,
N = 3, J = 2, ν1,1 = 2, ν2,1 = 1, ν3,1 = 0, λ1,1 = 0, λ2,1 = 0, λ3,1 = 2,
α1,1 = −2, α2,1 = −1, α3,1 = 2, ν1,2 = 0, ν2,2 = 0, ν3,2 = 2, λ1,2 = 2,
λ2,2 = 1, λ3,2 = 0, α1,2 = 2, α2,2 = 1, and α3,2 = −2. Equilibrium is
characterized by

k1c
2
1c2 = k2c

2
3, or

c21c2
c23

=
k2
k1
.

Example 259.3. An ideal first order tank reactor is modeled by the
equation

qc0 − V kc = qc,

where c0 is the reactant concentration at inflow, c is the concentration
in the reactor, q is the inflow (= outflow) rate, V is the volume of the
reactor and k is a reaction coefficient. The equation expresses that the
(rate of) reactant inflow minus the reactant consumed in the reaction
is equal to the reactant outflow. Introducing τ = V

q , which is the time
the reactant stays in the reactor, we get

c =
c0

1 + τk
.

The efficiency of the reactor is given by

η =
c0 − c

c0
=

τk

1 + τk
=

1

1 + 1
τk

.

We see in particular that the efficiency decreases as τ decreases.
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Example 259.4. An ideal first order tube reactor occupying the inter-
val (0, 1), which may be viewed as a set of ideal first order tank reactors
coupled in series, is modeled by

qc(x)−A∆xkc(x) = qc(x+∆x) for 0 < x < 1,

where q is the (constant) flow rate, A the cross section of the tube, and
∆x is a small increment in x. Dividing by ∆x and letting ∆x tend to
zero leads to the initial value problem of finding the concentration c(x)
for 0 ≤ x ≤ 1 such that

dc

dx
= −τkc for 0 < x ≤ 1, c(0) = c0,

where τ = A
q . The solution is given by c(x) = c0e−τkx, and the efficiency

η = c0−c(1)
c0 = 1− e−τk. Using the fact that x

1+x < 1− e−x for x > 0, it
follows that the ideal tube reactor is more efficient than the ideal tank
reactor.

259.2 Variable Temperature

Suppose now that the temperature T (t) is variable with time t, and is
unknown along with the concentrations c1(t), ..., cN (t). The heat of reaction
of reaction j is given by

(−
N∑

m=1

αm,jhm)rj ,

where hm is the molar enthalpy of species Am. The heat of reaction is pos-
itive for an exothermic reaction and negative for an endothermic reaction.
The problem is now to find c(t) = (c1(t), ..., cN (t)) and T (t) for t > 0

such that




ċn =
∑J
j=1 αn,jkj(T )

∏N
m=1 c

νm,j
m , t > 0, n = 1, ..., N,

CpṪ =
∑J

j=1(−
∑N

m=1 αm,jhm)kj(T )
∏N
m=1 c

νm,j

j ,

c(0) = c0, T (0) = T 0,

(259.4)
where c0 = (c01, ..., c

0
N ) and T 0 are given initial concentrations and temper-

ature, and Cp is the specific heat of the mixture of species.

259.3 Space Dependence

Adding spacial dependence in a domain Ω in R3, we are led to the following
model: Find c(x, t) = (c1(x, t), ..., cN (x, t)) and T (x, t) for x ∈ Ω, t > 0,
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such that




ċn +∇ · (cnβ)−∇ · (ǫn∇cn)
=
∑J

j=1 αn,jkj(T )
∏N
m=1 c

νm,j
m for x ∈ Ω, t > 0, n = 1, ..., N,

CpṪ +∇ · (CpTβ)−∇ · (ǫ0∇T )
=
∑J

j=1(−
∑N
m=1 αm,jhm)kj(T )

∏N
m=1 c

νm,j
m for x ∈ Ω, t > 0,

c(x, 0) = c0, T (x, 0) = T 0 for x ∈ Ω,

(259.5)
where β(x, t) is a given convection velocity, and the ǫn are given diffu-
sion coefficients. The system is complemented by boundary conditions of
Dirichlet, Neumann or Robin type for each equation.

Example 259.5. A stationary one species constant temperature first
order reaction with constant diffusion and zero convection is modeled
in dimensionless form by the equation

∆u = ϕ2u in Ω,

together with Dirichlet, Neumann or Robin boundary conditions, where
ϕ is the Thiele modulus, and Ω is a domain in Rd, d = 1, 2, 3. A quan-
tity of interest as a function of Ω, the reaction coefficient ϕ2 and the
boundary conditions, is the total production

∫
Ω u(x) dx.

Example 259.6. A simple model for flame propagation in a channel
takes the form

{
u̇1 −∆u1 + β1

∂u1

∂x1
= u2f(u1) x ∈ Ω, t > 0,

u̇2 −∆u2 + β1
∂u2

∂x1
= −u2f(u1) x ∈ Ω, t > 0, x ∈ Ω,

(259.6)

together with appropriate boundary conditions, where Ω = R× (0, 1),
u1 represents temperature, u2 represents a reactant concentration, β1 is
the velocity of the reactant in the x1 direction, and u2f(u1) represents
a reaction rate with f : R+ → R+ given. With a proper choice of
β1 we may seek a stationary solution with u̇ = 0 corresponding to a
propagating flame front.

Example 259.7. A basic model for combustion in a domain Ω in R3

takes the form: Find the concentration c and temperature T such that:
{
ċ− ǫ1∆c = −B1e

− E
RT c, x ∈ Ω, t > 0,

Ṫ − ǫ0∆T = B0e
− E

RT c x ∈ Ω, t > 0,
(259.7)

together with, say, homogeneous Neumann boundary conditions, and
with B0 and B1 positive constants. Depending on the activation energy
E and initial conditions, the process may be fast or slow locally in space
and time.



1992 259. Chemical Reactions*

Axiom 1: All bodies are either in motion or at rest.
Axiom 2: Each single body can move at varying speeds.
Lemma 1: Bodies are distinguished from one another in respect of
motion and rest, quickness and slowness, and not in respect of sub-
stance.
Lemma 2: All bodies agree in certain respects.
Lemma 3: A body in motion or at rest must have been determined to
motion or rest by another body, which likewise has been determined
to motion or rest by another body, and that body by another, and
so ad infinitum.
...
Lemma 6: If certain bodies composing an individual thing are made
to change the existing direction of their motion, but in such a way
that they can continue their motion and keep the same mutual re-
lation as before, the individual thing will likewise preserve the same
mutual relation as before, the individual thing will likewise preserve
its own nature without change of form. (Spinoza 1632-1677, Ethica
II)



This is page 1993
Printer: Opaque this

260
Meteorology and Coriolis Forces*

Any teacher who stands up in front of a class and says that Coriolis
force determines which way the water flows from a sink or bathtub,
should not only read Fraser’s Bad Coriolis Web page
(www.ems.psu.edu/ fraser/Bad/BadCoriolis.html), but be required
to copy it on the blackboard 100 times. (Jack Williams, USA TO-
DAY)

260.1 Introduction

A common weather map shows the level curves of the air pressure p, the
so-called isobars. Intuition might suggest that the wind will blow from
high pressure to low pressure, i.e. in the opposite direction to the pressure
gradient ∇p and orthogonal to the isobars. However, this turns out to be
completely false. In fact, the wind circles around a center of low pressure in
a counter-clockwise direction on the North hemisphere and in a clockwise
direction on the Southern hemisphere, and in the opposite directions around
centers of high pressure. Thus the wind blows along the isobars, instead
of orthogonal to the isobars. This fact is well-known to sailors, making it
possible to easily and accurately predict the wind direction if the centers
of the low and high pressures are known. The reason is that the Earth is
rotating, which creates a force of acceleration called the Coriolis force. This
causes the wind to deviate to the right on the Northern hemisphere and to
the left on the Southern hemisphere (away from the equator). The effect is
that the wind circles around a center of low pressure in a counter-clockwise
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direction on the Northern hemisphere, as any weather map in a newspaper
indicates. The Coriolis force is felt on a turn-around when seeking to change
position in the radial direction, which causes an (unexpected) force in the
tangential direction.

260.2 A Basic Meteorological Model

We shall now derive a simple model for the motion of the atmosphere,
which predicts that the wind should revolve around centers of low and
high pressure. The model takes the form

∇p = ρ2ω × v, (260.1)

where p is the pressure, v is the wind velocity, ω ∈ R3 is the angular
velocity of the Earth, and ρ is the density of the atmosphere. The quantity
2ω × v is an approximation of the Coriolis acceleration and the equation
∇p = ρ2ω × v gives a balance of the pressure force ∇p and the Coriolis
force ρ2ω × v. Here ∇p represents the gradient in the plane of the surface
of the Earth and the model applies to “caps” on the Northern or Southern
away from the Equator, say above or below the 60 degree latitude, where
we can approximate the surface of the Earth by a flat disc, see Fig. 260.1,
that is, the “world” of the sailor and the wind is a big flat turn-around.
We see that (260.1) states that ∇p is orthogonal to the direction of the

wind. If we know p, we can determine the wind direction and speed from
(260.1).

260.3 Rotating Coordinate Systems and Coriolis
Acceleration

To derive the expression 2ω × v of the Coriolis force, we need to study
coordinate transformations from one fixed coordinate system to a rotat-
ing coordinate system. We thus let {e1, e2, e3} be a fixed orthonormal ref-
erence coordinate system for R3, and we let {ē1, ē2, ē3} be another or-
thonormal coordinate system with the same origin, which rotates around
the fixed vector ω ∈ R3 with the angular speed ‖ω‖. More precisely, if
x(t) = x1(t)e1 + x2(t)e2 + x3(t)e3 are the reference coordinates of a fixed
point in the rotating coordinate system, then according to Fig. 260.2 we
have

dx

dt
= ω × x, (260.2)

since dx
dt is perpendicular to both ω and x, and ‖ dxdt ‖ = ‖ω‖‖x‖ sin(θ), where

θ ∈ [0, π] is the angle between ω and x. In particular we have for the basis
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ω ω

v

ω × v

FIGURE 260.1. Northern Hemisphere Change w to ω

vectors of the moving coordinate system

dēi
dt

= ω × ēi, i = 1, 2, 3. (260.3)

Consider now a moving point with coordinates x(t) in the fixed reference
system and coordinates x̄(t) in the rotating system, so that

x(t) = x1(t)e1 + x2(t)e2 + x3(t)e3,

x̄(t) = x̄1(t)ē1(t) + x̄2(t)ē2(t) + x̄3(t)ē3(t),

and of course x(t) = x̄(t). In particular, we may this way seek the coor-
dinates of the basis vectors ēi(t) in the fixed system {e1, e2, e3}. We now
compute the velocity dx

dt by differentiating x(t) = x̄(t) with respect to t to
get

dx

dt
=

d

dt
x̄(t) =

dx̄1
dt

ē1 +
dx̄2
dt

ē2 +
dx̄3
dt

ē3 + x̄1
dē1
dt

+ x̄2
dē2
dt

+ x̄3
dē3
dt

=
dx̄1
dt

ē1 +
dx̄2
dt

ē2 +
dx̄3
dt

ē3 + x̄1(ω × ē1) + x̄2(ω × ē2) + x̄3(ω × ē3),

where we used (260.3). We can write this expression as

dx

dt
=
d̄x̄

dt
+ ω × x, (260.4)
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FIGURE 260.2. A vector x rotating with angular velocity ω.Change w to ω
and q to θ

if we agree to write

d̄x̄

dt
=
dx̄1
dt

ē1 +
dx̄2
dt

ē2 +
dx̄3
dt

ē3.

The velocity of x(t) = x̄(t) in the fixed reference system is dx
dt , while

d̄x̄
dt

is the velocity vs the rotating system involving the derivatives d̄
dt x̄i(t). In

particular, if the point is fixed in the rotating system so that d̄x̄
dt = 0, then

we retrieve (260.2) and (260.3).
We now seek a corresponding formula for the accelerations. We differen-

tiate with respect to t once more, and using (260.4) with x replaced by d̄x̄
dt ,

we get
d2x

dt2
=

d

dt

( d̄x̄
dt

+ ω × x
)
=

d

dt

( d̄x̄
dt

)
+ ω × dx

dt

=
d̄

dt

( d̄x̄
dt

)
+ ω × d̄x̄

dt
+ ω ×

( d̄x̄
dt

+ ω × x
)
.

We can write this as

d2x

dt2
=
d̄2x̄

dt2
+ 2ω × d̄x̄

dt
+ ω ×

(
ω × x

)
. (260.5)

Here, ω ×
(
ω × x

)
represents the centripetal acceleration and 2ω × d̄x̄

dt the

Coriolis acceleration, and d2x
dt2 is the acceleration vs the reference system

and d̄2x̄
dt2 the acceleration vs the rotating system.

By Newton’s Law F = ma, acceleration is directly coupled to force, and
thus both the centripetal and the Coriolis acceleration show up as forces
in the fixed reference system. Both these forces in fact have a somewhat
mysterious character; we have through massive daily experience become
quite familiar with the centripetal acceleration, while the Coriolis force
still presents surprises to most of us.
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If the rotation speed ‖ω‖ is relatively small, then we can neglect the
centripetal acceleration and we get

d2x

dt2
≈ d̄2x̄

dt2
+ 2ω × d̄x̄

dt
, (260.6)

which leads to the model (260.1). Note that we use the rotating coordinate

system in our “world”, and thus d̄x̄
dt is the relevant velocity.

Chapter 260 Problems

260.1. Motivate (260.1) using (260.6).

260.2. Inspect the isobars of a weather map and compute wind direction from
(260.1) and compare with the wind direction of the map.

260.3. Study the effect of the Coriolis acceleration at the Equator.

260.4. Show that the centripetal acceleration of a body moving in a circle with

radius r with speed v is equal to v2

r
.

260.5. The Gulf Stream is the reason Scandinavia is not deep frozen like Alaska.
Explain why the Gulf Stream bends over from North America to North Europe.

260.6. Consider a car driving East-West along a certain latitude. At what speed
is the Coriolis force on the car of the same size as the centripetal force? Deter-
mine this speed as a function of the latitude and find out at which latitudes the
minimum and maximum is attained.

260.7. A bucket of water is spinning around its center with angular velocity ω.
What is the shape of the water surface?

260.8. A pendulum of length l swings back and forth once every period of length
t =

√
l/g, where g is the acceleration of gravity. Compute the Coriolis force on

the pendulum at latitude θ (i.e. at an angle θ from the equator). This Coriolis
force makes the plane in which the pendulum swings rotate, i.e. if the pendulum
swings north–south at one instant, it will later swing west–east. Find the time T
after which the pendulum swings in the initial direction once again as function
of the latitude. What is the period on you latitude?
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261
The Crash Model*

On October 24, 1929, people began selling their stocks as fast as
they could. Sell orders flooded market exchanges. On a normal day,
only 750-800 members of the New York Stock Exchange started
the Exchange. However, there were 1100 members on the floor for
the morning opening. Furthermore, the Exchange directed all em-
ployees to be on the floor since there were numerous margin calls
and sell orders placed overnight and extra telephone staff was ar-
ranged at the members’ boxes around the floor. The Dow Jones
Industrial Index closed at 299 that day. October 29 was the be-
ginning of the Crash. Within the first few hours the stock market
was open, prices fell so far as to wipe out all the gains that had
been made in the previous year. The Dow Jones Industrial Index
closed at 230. Since the stock market was viewed as the chief in-
dicator of the American economy, public confidence was shattered.
Between October 29 and November 13 (when stock prices hit their
lowest point) over $30 billion disappeared from the American econ-
omy. It took nearly twenty-five years for many stocks to recover.
(www.arts.unimelb.edu.au/amu/ucr/student/1997/Yee/1929.htm)

261.1 Introduction

Why did the Wall fall on November 9 1989? Why did the Soviet Union
dissolve in January 1992? Why did the Stock market collapse in October
1929 and 1987? Why did Peter and Mary break up last Fall after 35 years
of marriage? What caused the September 11 attack? Why does the flow in
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the river go from orderly laminar to chaotic turbulent at a certain specific
point? All the situations behind these questions share a common feature:
Nothing particularly dramatic preceded the sudden transition from stable
to unstable, and in each case the rapid and dramatic change away from
normality came as big surprise to almost everyone.
We now describe a simple mathematical model that shows the same

behavior: the solution stays almost constant for a long time and then quite
suddenly the solution explodes.
We consider the following initial value problem for a system of two ordi-

nary differential equations: find u(t) = (u1(t), u2(t)) such that





u̇1 + ǫu1 − λu2u1 = ǫ t > 0,

u̇2 + 2ǫu2 − ǫu1u2 = 0 t > 0,

u1(0) = 1, u2(0) = κǫ,

(261.1)

where ǫ is a small positive constant of size say 10−2 or smaller and λ and
κ are positive parameters of moderate size ≈ 1. If κ = 0, then the solution
u(t) = (1, 0) is constant in time, which we view as the base solution. In
general, for κ > 0, we think of u1(t) as a primary part of solution with
initial value u1(0) = 1, and u2(t) as a small secondary part with an initial
value u2(0) = κǫ that is small because ǫ is small. Both components u1(t)
and u2(t) will correspond to physical quantities that are non-negative and
u1(0) = 1 and u2(0) = κǫ ≥ 0.

261.2 The Simplified Growth Model

The system (261.1) models an interaction between a primary quantity u1(t)
and a secondary quantity u2(t) through the terms −λu1u2 and −ǫu2u1. If
we keep just these terms, we get a simplified system of the form





ẇ1(t) = λw1(t)w2(t) t > 0,

ẇ2(t) = ǫw2(t)w1(t) t > 0,

w1(0) = 1, w2(0) = κǫ.

(261.2)

We see that the coupling terms are growth terms in the sense that both the
equation ẇ1(t) = λw1(t)w2(t) and ẇ2(t) = ǫw2(t)w1(t) say that ẇ1(t) and
ẇ2(t) are positive if w1(t)w2(t) > 0. In fact, the system (261.1) always blow
up for κ > 0 because the two components propel each other to infinity as t
increases in the sense that the right hand sides get bigger with w1(t)w2(t)
and this increases the growth rates ẇ1(t) and ẇ2(t), which in turn makes
w1w2(t) even bigger, and so on towards blow up, see Fig. 261.1.
We can study the blow up in (261.2) analytically assuming for simplicity

that λ = κ = 1. In this case, it turns out that the two components w1(t) and
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FIGURE 261.1. Solution of simplified growth model

w2(t) for all t are coupled by the relation w2(t) = ǫw1(t), that is w2(t) is
always the same multiple of w1(t). We check this statement by first verifying
that w2(0) = ǫw1(0) and then by dividing the two equations to see that
ẇ2(t)/ẇ1(t) = ǫ. So, ẇ2(t) = ǫẇ1(t), that is w2(t)−w2(0) = ǫw1(t)−ǫw2(0),
and we get the desired conclusion w2(t) = ǫw1(t) for t > 0. Inserting this
relation into the first equation of (261.2), we get

ẇ1(t) = ǫw2
1(t) for t > 0,

which can be written as

− d

dt

1

w1(t)
= ǫ for t > 0.

Recalling the initial condition w1(0) = 1, we get

− 1

w1(t)
= ǫt− 1 for t ≥ 0,

which gives the following solution formula in the case λ = κ = 1:

w1(t) =
1

1− ǫt
, w2(t) =

ǫ

1− ǫt
for t ≥ 0. (261.3)

This formula shows that the solution tends to infinity as t increases towards
1/ǫ, that is, the solution explodes at t = 1/ǫ. We notice that the time of
blow up is 1/ǫ, and that the time scale before the solution starts to increase
noticeably, is of size 1

2ǫ , which is a long time since ǫ is small. Thus, the
solution changes very slowly for a long time and then eventually blows up
quite a bit more rapidly, see Fig. 261.1.
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FIGURE 261.2. Solution of simplified decay model

261.3 The Simplified Decay Model

On the other hand, if we forget about the growth terms, we get another
simplified system:





v̇1 + ǫv1 = ǫ t > 0, t > 0,

v̇2 + 2ǫv2 = 0 t > 0,

v1(0) = 1 + δ, v2(0) = κǫ,

(261.4)

where we have also introduced a small perturbation δ in v1(0). Here the two
terms ǫv1 and 2ǫv2 are so called dissipative terms that cause the solution
v(t) to return to the base solution (1, 0) regardless of the perturbation,
see Fig. 261.2. This is clear in the equation v̇2 + 2ǫv2 = 0 with solution
v2(t) = v2(0) exp(−2ǫt), which decays to zero as t increases. Rewriting the
equation v̇1 + ǫv1 = ǫ as V̇1 + ǫV1 = 0, setting V1 = v1 − 1 = exp(−ǫt), we
find that v1(t) = δ exp(−ǫt)+1, and thus v1(t) approaches 1 as t increases.
We summarize: the solution (v1(t), v2(t)) of (261.4) satisfies

v1(t) = δ exp(−ǫt) + 1 → 1, v2(t) = κǫ exp(−2ǫt) → 0, as t→ ∞.

We say that (261.4) is a stable system because the solution always returns
from (1+δ, κǫ) to the base solution (1, 0) independently of the perturbation
(δ, κǫ) of (v1(0), v2(0).
We note that the time scale is again of size 1/ǫ, because of the presence

of the factors exp(−ǫt) and exp(−2ǫt).
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261.4 The Full Model

We can now sum up: The real system (261.1) is a combination of the unsta-
ble system (261.2) that includes only the growth terms only and whose the
solution always blows up, and the stable system (261.4) that excludes the
growth terms. We shall see that depending on the size of λκ the unstable or
stable feature will take over. In Fig. 261.3 and Fig. 261.4, we show different
solutions for different values of the parameters λ and κ with different initial
values u(0) = (u1(0), u2(0)) = (1, κǫ). We see that if λκ is sufficiently large,
then the solution u(t) eventually blows up after a time of size 1/ǫ, while if
λκ is sufficiently small, then the solution u(t) returns to the base solution
(1, 0) as t tends to infinity.
Thus, there seems to be a threshold value for λκ above which the initially

disturbed solution eventually blows up and below which the initially dis-
turbed solution returns to the base solution. We can view κ as a measure
of the size if the initial disturbance, because u2(0) = κǫ. Further, we can
view the factor λ as a quantitative measure of the coupling between the
growth components u2(t) and u1(t) through the growth term λu1u2 in the
evolution equation for u1.
Our main conclusion is that if the initial disturbance times the coupling is

sufficiently large, then the system will blow up. Blow up thus requires both
the initial disturbance and the coupling to be sufficiently large. A large
initial disturbance will not cause blow up unless there some coupling. A
strong coupling will not cause blow up unless there is an initial disturbance.
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FIGURE 261.3. Return to the base solution if λκ is small enough

We now investigate the qualitative behavior of (261.1) in a little more
detail. We see that u̇1(0)/u1(0) = λκǫ, while u̇2(0)/u2(0) = −ǫ, which
shows that initially u1(t) grows and u2(t) decays at relative rates of size ǫ.
Now, u1(t) will continue to grow as long as λu2(t) > ǫ, and further u2(t)
will start to grow as soon as u1(t) > 2. Thus, if u1(t) manages to become
larger than 2, before u2(t) has decayed below ǫ/λ, then both components
will propel each other to cause a blow up to infinity. This happens if λκ is
above a certain threshold.
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FIGURE 261.4. Blow up if λκ is large enough

We notice that the time scale for significant changes in both u1 and u2
is of size ǫ−1, because the growth rates are of size ǫ. This conforms with
the experience from the simplified models. The scenario is thus that the
primary part u1(t) grows slowly starting from 1 at a rate of size ǫ and
the secondary part u2(t) decays slowly at a rate of size ǫ2, over a time of
size 1/ǫ. If λκ is above a certain threshold, then u1(t) reaches the value 2,
at which point u2(t) starts to grow and eventually blow up follows on a
somewhat shorter time scale. If u1(t) does not reach the value 2 in time,
then (u1(t), u2(t)) returns to the base solution (1, 0) as t increases.
We hope the presented scenario is quite easy to grasp intuitively, and

conforms with every-day experiences of quit sudden blow-up, as a result of
an accumulation of small events over a long period.
We can give the Crash model very many interpretations in real life, such

as

• stock market (u1 stock prize of big company, u2 stock prize of small
innovative company),

• chemical reaction (u1 main reactant, u2 catalyst),

• marriage crisis (u1 main discontent, u2 small irritation factor),

• spread of infection (u1 infected people, u2 amount of germs),

• symbiosis (u1 main organism, u2 small parasite),

• population model (u1 rabbits, u2 vitalizing carrots),

and many others.
In particular, the model describes an essential aspect of the process of

transition from laminar to turbulent flow in for example a pipe. In this
case u1 represents a flow component in the direction of the pipe and u2
represents a small perturbation of the flow in the transversal direction.
The time to explosion corresponds to the time it takes for the flow to go
turbulent starting as laminar flow at the inlet. In the famous experiment
of Reynolds from 1888, ink is injected at the inlet of a transparent pipe
and the observer can follow the streamline traced by the ink, which forms
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a straight line in the laminar part and then successively becomes more
and more wavy until it breaks down to completely turbulent flow at some
distance from the inlet. The distance to breakdown varies with the flow
speed and viscosity and perturbations resulting from e.g. roughness of the
surface of the pipe or a heavy-weight truck passing by at some distance
from the experimental set-up.

Chapter 261 Problems

261.1. Develop the indicated applications of the Crash model.

261.2. Solve the full system (261.1) numerically for various values of λ and κ
and try to pin down the threshold value of λκ.

261.3. Develop a Theory of Capitalism based on (261.1) as a simple model of the
economy in a society, with u1 representing the value of a basic resource like land,
and u2 some venture capital related to the exploitation of new technology, with
(1, 0) a base solution without the new technology, and with the coefficient λ of the
u1u2 term in the first equation representing the positive interplay between base
and new technology, and the terms ǫui representing stabilizing effects of taxes
for example. Show that the possible pay-off u1(t) − u1(0) of a small investment
u2(0) = κǫ may be large, and that an exploding economy may result if λκ is large
enough. Show that no growth is possible if λ = 0. Draw some conclusions from
the model coupled to for example the role of the interest rate for controlling the
economy.

261.4. Interpret (261.1) as a simple model of a stock market with two stocks, and
discuss scenarios of overheating. Extend to a model for the world stock market,
and predict the next crash.

261.5. Consider the linear model

ϕ̇1 + ǫϕ1 − λϕ2 = 0 t > 0,
ϕ̇2 + ǫϕ2 = 0 t > 0,

ϕ1(0) = 0, ϕ2(0) = κǫ,
(261.5)

which is obtained from (261.1) by setting ϕ1 = u1 − 1 and ϕ2 = u2 and replacing
u1ϕ2 by ϕ2 assuming u1 is close to 1. Show that the solution of (261.5) is given
by

ϕ2(t) = κǫ exp(−ǫt), ϕ1(t) = λκǫt exp(−ǫt).
Conclude that

ϕ1(
1
ǫ
)

ϕ2(0)
= λ

exp(−1)

ǫ
,

and make an interpretation of this result.
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261.6. Expand the Crash model (261.1) to

u̇1 + ǫu1 − λu1u2 + µ1u
2
2 = ǫ t > 0,

u̇2 + 2ǫu2 − ǫu2u1 + µ2u
2
1 = 0 t > 0,

u1(0) = 1, u2(0) = κǫ,

with decay terms µ1u
2
2 and µ2u

2
1, where µ1 and µ2 are positive coefficients. (a)

Study the stabilizing effect of such terms numerically. (b) Seek to find values
of µ1 and µ2, so that the corresponding solution starting close to (1, 0) shows
an intermittent behavior with repeated periods of blow up followed by a decay
back to a neighborhood of (1, 0). (c) Try to find values of µ1 and µ2 so that
multiplication of the first equation with a positive multiple of u1 and the second
by u2, leads to bounds on |ǫu1(t)|2 and |u2(t)|2 in terms of initial data. Hint: Try
for example µ1 ≈ 1/ǫ, and µ2 ≈ ǫ2.

261.7. Study the initial value problem u̇ = f(u) for t > 0, u(0) = 0, where
f(u) = λu− u3, with different values of λ ∈ R. Relate the time-behavior of u(t)
to the set of solutions ū of f(u) = 0, that is, ū = 0 if λ ≤ 0, and ū = 0 or
ū = ±

√
λ if λ > 0. Study the linearized models ϕ̇ − λϕ + 3ū2ϕ = 0 for the

different ū. Study the behavior of the solution assuming λ(t) = t− 1.

261.8. Study the model

ẇ1 +w1w2 + ǫw1 = 0, t > 0,
ẇ2 − ǫw2

1 + ǫw2 = −γǫ, t > 0,
(261.6)

with given initial data w(0), where γ is a parameter and ǫ > 0. This problem
admits the stationary “trivial branch” solution w̄ = (0,−γ) for all γ. If γ > ǫ,
then also w̄ = (±√

γ − ǫ,−ǫ) is a stationary solution. Study the evolution of the
solution for different values of γ. Study the corresponding linearized problem,
linearized at w̄.
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