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Abstract
We analyze a phenomenon of near-resonance in an oscillator with small

damping and make connections to blackbody radiation and the acoustics
of string instruments. We find that near-resonance with small damping is
characterized by an efficiency index E ≈ 1 as the quotient of the damping
energy and the forcing energy, as a result of a phase shift of a quarter of a
period beween forcing and velocity. Near-resonance is used in tuning the
three string of a piano tone with an offset of about 0.5 Hz to generate longer
sustain and a singing quality to the piano.

1 Resonance in Forced Damped Oscillators
The problem of resonance is of fundamental importance in the physics of ab-
sorption and emission of light/radiation and in the acoustics of string instruments.
The analysis of blackbody radiation [3] shows the basic role of a phenomeon of
near-resonance in a resonator with small damping. The basic phenomenon can
be illustrated for a damped harmonic oscillator modeled by

ü(t) + ν2u(t) + γu̇(t) = f(t), −∞ < t < ∞, (1)

where u̇ = du
dt

, ü = d2u
dt2

, ν is a given moderate to large frequency, γ > 0 is a
damping parameter and f(t) is a periodic forcing. We seek periodic solutions and
measure the relation between the forcing and the damping by the efficiency E = F

R

with
F =

∫
f 2(t) dt, R =

∫
γu̇2(t) dt , (2)
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with integration over a time period. If the forcing f(t) is periodic with the res-
onance frequency ν, referred to as perfect resonance, then u̇(t) = 1

γ
f(t), which

gives E = γ with u̇ in phase with f(t).
We shall distinguish two basic different cases with the forcing f(t) balanced

by the harmonic oscillator term ü(t) + ν2u(t) and the damping term γu̇(t) in two
different ways:

1. γ ≈ 1 with γu̇ ≈ f(t) and |ü(t) + ν2u(t)| << |f(t)|,

2. γν < 1 with |γu̇(t)| << |f(t)| and ü(t) + ν2u(t) ≈ f(t),

with the case 2. representing near-resonance with small damping, as the case
of most interest. We shall define near-resonance at a given frequency ν by flat
spectrum centered at ν of width 1. A spectrum of width γ << 1 would then
correspond to sharp resonance (with γ not very small this is sometimes referred
to as broad resonance).

In case 1. the damping is large and the force f(t) is balanced by the damping
γu̇(t) with u̇ in phase with f(t). In this case trivially E ≈ 1.

In case 2. with near resonance and small damping, f(t) is balanced by the
oscillator with u̇ out-of-phase with f(t), and we shall see that also in this case
E ≈ 1. The case of near-resonance is to be compared with the case of perfect
resonance with f(t) again balanced by γu̇, with now u̇(t) in phase and E = γ.

If γ is small there is thus a fundamental difference betwen the case of near-
resonance with E ≈ 1 and the case of perfect resonance with E = γ << 1.

In applications to blackbody radiation we may view F as input and R as out-
put, but it is also possible to turn this around view R as the input and F as the
output, with E = F

R
then representing an efficiency index. In the case of small

damping we then have E ≈ 1 in the case of near-resonance and E << 1 in the
case of perfect resonance.

In the case of near-resonance the force f(t) is balanced mainly by the excited
harmonic oscillator with a small contribution from the damping term, which gives
E ≈ 1.

In the case of perfect resonance the oscillator does not contribute to the force
balance, which requires a large damping term leading to small efficiency.

The above discussion concerns time-periodic (equilibrium) states attained af-
ter a transient start-up phase, with the forcing now F in-phase with the velocity u̇,
in contrast to out-of-phase in equilibrium.

The discussion in this note connects to apects of wave vs particle modeling of
light and sound [4, 1, 2, 7, 8, 9, 11].



2 Fourier Analysis of Near-Resonance
Although (3) is a maybe the most studied model of all of physics, it appears that
the phenomenon of near-resonance has received little attention. We use Fourier
transformation in t of (3), writing

u(t) =

∫ ∞

−∞
û(ω)eiωtdω, with û(ω) =

1

2π

∫ ∞

−∞
u(t)e−iωt dt,

to get
(−ω2 + ν2)û(ω) + iγωû(ω) = f̂(ω).

We then use Parseval’s formula, to seek a relation between the mean value of u2(t)
and f 2(t), assuming f̂(ω) is support around ω = ν:

u2 ≡
∫ ∞

−∞
|u(t)|2 dt = 2π

∫ ∞

−∞
|û(ω)|2 dω = 2π

∫ ∞

−∞

|f̂(ω)|2 dω
(ν − ω)2(ν + ω)2 + γ2ω2

≈ 2π

ν2

∫ ∞

−∞

|f̂(ω)|2 dω
4(ν − ω)2 + γ2

=
2π

γν2

∫ ∞

−∞

|f̂(ν + γω̄)|2) dω̄
4ω̄2 + 1

,

where we used the change of integration variable ω = ν + γω̄.
We now assume that |f̂(ω)|2 ∼ f 2 for |ν − ω| ≤ 1

π
as an expression of near-

resonance, and that |f̂(ω)| is small elsewhere. With this assumption we get

γu̇2 ∼ γν2u2 ∼ f 2,

that is R ∼ F and thus E ∼ 1, with a constant of proportionality ≈ 1 independent
of ν and γ. Here, we use that in near resonance |u̇| ≈ |νu|.

3 Application to Blackbody Radiation
The model of blackbody radiation studied in [3] is the following variant of (3)

ü(t) + ν2u(t)− γ
...
u(t) = f(t), −∞ < t < ∞, (3)

with the damping term γu̇ replaced by −γ
...
u . The analysis is analogous and shows

in the case of near resonance an efficiency E = F
R
∼ 1 with now R =

∫
γü2(t) dt,

which gives the Rayleigh-Jeans Radiation Law, and Planck’s Radiation Law with
a finite precision cut-off [5, 6, 4].



4 Application to Acoustical Resonance
A musical string instrument consists in principle of a vibrating string and a res-
onating body or soundboard, where we model the resonator with input from the
string, as the force f during start-up and as a viscous force in equlibrium.

In the case of near resonance in equilibrium the input from the vibrating string
is amplified by the resonator to an efficiency index E ∼ 1, while perfect resonance
would give E << 1, with small damping.

During start-up we consider the forcing f to be given by the vibrating string
(without damping) and acting in-phase with the velocity u̇ thus is pumping vi-
brational energy from the string into the body. Once equilibrium is reached, we
shift view and consider f as the output from the body, which is sustained by a
still vibrating string generating the viscous force. This mean that during both
start-up and equilibrium the string vibrates in-phase with the body, by pumping
energy into the body during start-up, and sustaining the output from the body in
equilibrium.

The importance of near-reonance forcing is well-known to a piano-tuner, who
tunes the three strings of a tone (except single stringed bass tones) at slightly
different pitches (of about 0.5 Hz), which gives a longer sustain and a singing
quality to the piano.

5 Computational Resonance
We show in Fig. 1-5 some computations with γ = 0.001, ν = 20 and ν = 100
with the following near-resonance forcing:

f(t) =
5∑

k=−5,k ̸=0

sin((n+
k

10
)t) 0.1 (4)

starting with the intial data u(0) = 0 and u̇(0) = 15 and computing for t > 0.
The efficiency index is computed as the mean value over the entire time interval.
We see as expected from the Fourier analysis that the efficiency index E ≈ 1 and
that the forcing is out-of-phase with the damping, as the main characteristics of
near-resonance with small damping.



Figure 1: Position x = u, velocity v = u̇ and forcing f with n = 20 over scaled
time.

Figure 2: Position x = u, velocity v = u̇ and efficiency f = E with n = 20 over
scaled time.



Figure 3: Position x = u, velocity v = u̇ and forcing f = E with n = 20 over
ahort time. Notice a time lag of a quarter of a period between u̇ and forcing f ,
representing out-of-phase forcing.



Figure 4: Position x = u, velocity v = u̇ and efficiency f = E with n = 100 over
scaled time.

Figure 5: Position x = u, velocity v = u̇ and forcing f = E with n = 100 over
short time.
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