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Abstract

We test the functionality of FEniCS on the challenge of cotapanal ther-
modynamics in the form of the EG2 finite element solver of theEequations
expressing conservation of mass, momentum and energy. dMetblat computa-
tional solutions satisfy a 2nd Law formulated in terms ofétin energy, internal
(heat) energy, work and shock/turbulent dissipation, eithreference to entropy.
We show that the 2nd Law expresses an irreversible tranftanetic energy to
heat energy in shock/turbulent dissipation arising bes#ius Euler equations lack
pointwise solutions, and thus explains the occurence e¥aénsibility in formally
reversible systems as an effect of instability with blowefifculer residuals com-
bined with finite precision computation, without resort tatstical mechanics or
ad hoc viscous regularization. We simulate the classiadeJar Joule-Thompson
experiment of a gas expanding from rest under temperatopefdiowed by tem-
perature recovery by turbulent dissipation until rest ia touble volume. We
present the FENICS implementation of EG2 including apfibcs to bluff body
flow.

1 FEnICSasComputational Science

The goal of the FENICS project is to develop software for engted computational
solution of differential equations based on a finite elenmaathodology combining
generality with efficiency. Thermodynamics is a basic arfe@omtinuum mechanics
with many important applications, which however is feargdbth teachers, students
and engineers as being difficult to understand and to apphgipally because of the
apperance of turbulence. In this article we show that tenithermodynamics can be
made understandable and useful by automated computasimngibn, as a demonstra-
tion of the capability of FEniCS.

The biggest mystery of classical thermodynamicsis the Zawl&bout entropy and
automation cannot harbor any mystery. Expert systems gteresl for mysteries and
FENICS is not an expert system. Automation requires a continmechanics formu-
lation of thermodynamics with a transparent 2nd Law. We gmes formulation of
thermodynamics based on finite precision computation wigmé Law without ref-
erence to entropy, which we show can serve as a basis for atedroomputational
simulation of complex turbulent thermodynamics and thusagzen to new insight and
design, a main goal of FEnICS. In this setting the digitatéiglement model becomes



the real model of the physics of thermodynamics viewed asa fof analog finite
precision computation, a model which is open to inspectimhanalysis because solu-
tions can be computed and put on the table. This represem® &ind of science in
the spirit of Dijkstra [6] and Wolfram [29], which can be erpéd using FEnIiCS and
which we present in non-technical form in My Book of Knols 14

2 Thelst and 2nd Laws of Thermodynamics

Heat, a quantity which functions to animate, derives fronrgernal fire located
in the left ventricle. (Hippocrates, 460 B.C.)

Thermodynamicis fundamental in a wide range of phenomena from macroscopic
to microscopic scales. Thermodynamics essentially coiscre interplay between
heat energyndkinetic energyn agasor fluid. Kinetic energy, omechanical energy
may generate heat energy bgmpressioror turbulent dissipation Heat energy may
generate kinetic energy Bxpansionbut not through aeverseprocess of turbulent
dissipation. The industrial society of the 19th century Wwast on the use okteam
engines and the initial motivation to understand thermodynamase from a need
to increase the efficiency of steam engines for conversioheat energy to useful
mechanical energy. Thermodynamics is closely connectdtetdynamics oslightly
viscousandcompressiblgases, since substantial compression and expansion aan occ
in a gas, but less in fluids (and solids).

The development of classical thermodynamics as a ratiamiehse based on log-
ical deduction from a set of axioms, was initiated in the 1&htury by Carnot [4],
Clausius [3] and Lord Kelvin [20], who formulated the basiéaans in the form of
the 1st Lawand the2nd Lawof thermodynamics. The 1st Law states (for an isolated
system) that théotal energy the sum of kinetic and heat energy, is conserved. The 1st
Law is naturally generalized to include also conservatibmass and Newton’s law
of conservation of momentum and then can be expressed &utbeequationgor a
gas/fluid withvanishing viscosity

The 2nd Law has the form of an inequalify > 0 for a quantity nameeéntropy
denoted bysS, with dS denoting change thereof, supposedly expressing a basicdea
of real thermodynamic processes. The classical 2nd Laesstiaat the entropy cannot
decrease; it may stay constant or it may increase, but it eaarrdecrease (for an
isolated system).

The role of the 2nd Law is to give a scientific basis to the malngeovations of
irreversibleprocesses, that is, processes which cannot be reversatkifike running
a movie backwards. Time reversal of a process with stricttydasing entropy, would
correspond to a process with strictly decreasing entropiclwvould violate the 2nd
Law and therefore could not occur. A perpetum mobile woulat@sent a reversible
process and so the role of the 2nd Law is in particular to eéxpidy it is imposssible
to construct a perpetum mobile, andhy time is moving forward in the direction an
arrow of timeg as expressed by Max Planck [26, 27, 28]ere it not for the existence
of irreversible processes, the entire edifice of the 2nd Lawldvcrumble

While the 1st Law in the form of the Euler equations expressionservation
of mass, momentum and total energy can be understood ansateation rational



grounds, the nature of the 2nd Law is mysterious. It doesagrhgo be a consequence
of the 1st Law, since the Euler equations seem to be time sibker and the role of
the 2nd Law is to explain irreversibility. Thus questions #&ning up: nif the 2nd
Law is a new independent law of Nature, how can it be justifiédiat is the physical
significance of that quantity named entropy, which Nature @aly get more of and
never can get rid of, like a steadily accumulating heap ofte&asWwhat mechanism
prevents Nature from recycling entropy? How can irrevditgilarise in a reversible
system? How can viscous dissipation arise in a system wittskiang viscosity? Why
is there naMaxwell demorj24]? Why can a gas by itself expand into a larger volume,
but not by itself contract back again, if the motion of the gadecules is governed by
the reversible Newton’s laws of motion? Why is there an aroéwme? This article
presents answers.

3 TheEnigma

Those who have talked of “chance” are the inheritors of amtiguperstition and
ignorance...whose minds have never been illuminated byafiscientific thought.
(T. H. Huxley)

These were the questions which confronted scientists itateel 9th century, after
the introduction of the concept of entropy by Clausius in3,&hd these showed to be
tough questions to answer. After much struggle, agony abdtdethe agreement of
the physics community has become to vigatistical mechanicbased on an assump-
tion of molecular chaoss developed by Boltzmann [1], to offer a rationalizatiothef
classical 2nd Law in the form of a tendency of (isolated) jtglprocesses to move
from improbable towards more probable states, or from edlér less ordered states.
Boltzmann’s assumption of molecular chaos in a dilute gasbifding molecules, is
that two molecules about to collide have independent viedsgiwhich led to théd-
theoremfor Boltzmann'’s equationstating that a certain quantity denoted Hycould
not decrease and thus could serve as an entropy definingam @frtime. Increasing
disorder would thus represent increasing entropy, andlgssical 2nd Law would re-
flect the eternal pessimistists idea that things always geemmessy, and that there is
really no limit to this, except when everything is as messi @an ever get. Of course,
experience could give (some) support this idea, but thévteds that it prevents things
from ever becoming less messy or more structured, and thysse®m a bit too pes-
simistic. No doubt, it would seem to contradict the many obstons ofemergencef
ordered non-organic structures (like crystals or wavescgebbns) and organic struc-
tures (like DNA and human beings), seemingly out of discedathaos, as evidenced
by the physics Nobel Laureate Robert Laughlin [21].

Most trained thermodynamicists would here say that emegeh order out of
chaos, in fact does not contradict the classical 2nd Lawalms it concerns “non-
isolated systems”. But they would probably insist that tim@/grse as a whole (isolated
system) would steadily evolve towards a “heat-death” witiximal entropy/disorder
(and no life), thus fulfilling the pessimists expectatiorheTquestion from where the
initial order came from, would however be left open.



The standard presentation of thermodynamics based on thantis2nd Laws,
thus involves a mixture of deterministic models (Boltzmarequations with the H-
theorem) based on statistical assumptions (moleculars3iraaking the subject ad-
mittedly difficult to both learn, teach and apply, despitestrong importance. This is
primarily because the questiarhynecessarilylS > 0 and neverlS < 0, is not given
a convincing understandable answer. In fact, statistiedhanics allowglS < 0, al-
though it is claimed to be very unlikely. The basic objectietatistical mechanics as
the basis of classical thermodynamics, thus is to (i) gieedghtropy a physical mean-
ing, and (ii) to motivate its tendency to (usually) increaBefore statistical mechanics,
the 2nd Law was viewed as an experimental fact, which couldearationalized the-
oretically. The classical view on the 2nd Law is thus eitteaatatistical law of large
numbers or as a an experimental fact, both without a ratidetrministic mechanis-
tic theoretical foundation. The problem with thermodynesyin this form is that it is
understood by very few, if any:

e Every mathematician knows it is impossible to understandlementary course in ther-
modynamics(V. Arnold)

e ...no one knows what entropy is, so if you in a debate use timsept, you will always
have an advantagdvon Neumann to Shannon)

e As anyone who has taken a course in thermodynamics is weleatee mathematics
used in proving Clausius’ theorem (the 2nd Law) is of a vepcsd kind, having only the
most tenous relation to that known to mathematicigBs Brush [2])

e Where does irreversibility come from? It does not come foewtdn’s laws. Obviously
there must be some law, some obscure but fundamental equgiohaps in electricty,
maybe in neutrino physics, in which it does matter which wag goes(Feynman [9])

e For three hundred years science has been dominated by a Nieawtearadigm presenting
the World either as a sterile mechanical clock or in a statdegieneration and increasing
disorder...It has always seemed paradoxical that a theaseld on Newtonian mechanics
can lead to chaos just because the number of particles i®Jaagd it is subjectivly de-
cided that their precise motion cannot be observed by humanghe Newtonian world
of necessity, there is no arrow of time. Boltzmann found aavahidden in Nature’'s
molecular game of roulettéPaul Davies [5])

e The goal of deriving the law of entropy increase from stat#tmechanics has so far
eluded the deepest thinkefkieb [22])

e There are great physicists who have not understoo(Hinstein about Boltzmann’s sta-
tistical mechanics)

4 Computational Foundation

In this note we present a foundation of thermodynmaicshérrélaborated in [12, 16],
where the basic assumption of statistical mechanics ofentdechaos, is replaced by
deterministic finite precision computatiomore precisely by &ast squares stabilized
finite element methofbr the Euler equations, referred to Bsler General Galerkin
or EG2 In the spirit of Dijkstra [6], we thus view EG2 as the physiczodel of
thermodynamics, that is the Euler equations together witbraputational solution



procedure, and not just the Euler equations without coasteisolution procedure as
in a classical non-computational approach.

Using EG2 as a model of thermodynamics changes the questimhanswers and
opens new possibilities of progress together with new ehgkes to mathematical anal-
ysis and computation. The basic new feature is that EG2ieakiire computed and
thus are available to inspection. This means that the aisalysolutions shifts frona
priori to a posteriorj after the solution has been computed it can be inspected.

Inspecting computed EG2 solutions we find that theytarteulentand haveshocks
which is identified by pointwise large Euler residuals, retfleg that pointwise solu-
tions to the Euler equations are lacking. The enigma of theymamics is thus the
enigma of turbulence (since the basic nature of shocks ienstmbd). Computational
thermodynamics thus essentially concerns computationaliience. In this note and
[16] we present evidence that EG2 opens to a resolution oéiigama of turbulence
and thus of thermodynamics.

The fundamental question concemmsliposednesi the sense of Hadamard, that
is what aspects autputsof turbulent/shock solutions are stable under perturhatiio
the sense that small perturbations have small effects. \0e #iat wellposedness of
EG2 solutions can be tested a posteriori by computatiosallying adual linearized
problem through which the output sensitivity of non-zero Euleridaals can be es-
timated. We find that mean-value outputs such as drag andrittotal turbulent
dissipation are wellposed, while point-values of turbuféow are not. We can thus a
posteriori in a case by case manner, assess the quality o5&Gtons as solutions of
the Euler equations.

We formulate &nd Lawfor EG2 without the concept of entropy, in terms of the
basic physical quantities of kinetic ener@y, heat energy®, rate ofwork W and
shock/turbulent dissipatio® > 0. The new 2nd Law reads

K=W-D, E=-W+D, (1)

where the dot indicates time differentiation. Slightly agsis flow always develops
turbulence/shocks with > 0, and the 2nd Law thus expresses an irreversible transfer
of kinetic energy into heat energy, while the total enefgy K remains constant.

With the 2nd Law in the form (1), we avoid the (difficult) maiask of statisti-
cal mechanics of specifying the physical significance ofagy and motivating its
tendency to increase by probabilistic considerationsdase(tricky) combinatorics.
Thus usingdckham'’s razof25], we rationalize a scientific theory of major importance
making it both more understandable and more useful. The melLaw is closer to
classical Newtonian mechanics than the 2nd Law of stagistiechanics, and thus can
be viewed to be more fundamental.

The new 2nd Law is a consequence of the 1st Law in the form oEthier equa-
tions combined with EG2 finite precision computation effesly introducing viscosity
and viscous dissipation. These effects appear as a comssxjoithe non-existence of
pointwise solutions to the Euler equations reflecting ipidias leading to the develop-
ment shocks and turbulence in which large scale kineticggrisrtransferred to small
scale kinetic energy in the form of heat energy. The viscassightion can be inter-
preted as a penalty on pointwise large Euler residualsarisishocks/turbulence, with



the penalty being directly coupled to the violation follaia principle of criminal law
exposedin [11]. EG2 thus explains the 2nd Law as a conseguéitice non-existence
of pointwise solutions with small Euler residuals. Thisepff an understanding to the
emergence of irreversible solutions of the formally rel@esEuler equations. If point-
wise solutions had existed, they would have been reversiltloout dissipation, but
they don't exist, and the existing computational solutibage dissipation and thus are
irreversible.

5 Viscosity Solutions

An EG2 solution can be viewed as particw@scosity solutiorof the Euler equations,
which is a solution ofegularized Euler equationsugmented by additive terms mod-
eling viscosity effects with small viscosity coefficienfBhe effective viscosity in an
EG2 solution typically may be comparable to the mesh size.

For incompressible flow the existence of viscosity solwjamith suitable solution
dependent viscosity coefficients, can be proved a priorigistandard techniques of
analytical mathematics. Viscosity solutions are poinénsslutions of the regularized
equations. But already the most basic problem with consiaabsity, the incompress-
ible Navier-Stokes equations for a Newtonian fluid, preséethnical difficulties, and
is one of the open Clay Millennium Problems.

For compressible flow the technical complications are everersevere, and it is
not clear which viscosities would be required for an anaesitproof of the existence
of viscosity solutions [8] to the Euler equations. Furthere) the question of well-
posedness is typically left out, as in the formulation of Neier-Stokes Millennium
Problem, with the motivation that first the existence prableas to be settled. Al-
together, analytical mathematics seems to have little fier @ priori concerning the
existence and wellposedness of solutions of the compiedSilter equations. In con-
trast, EG2 computational solutions of the Euler equati@esrsto offer a wealth of
information a posteriori, in particular concerning wekganess by duality.

An EG2 solution thus can be viewed as a specific viscositytismluwvith a spe-
cific regularization from the least squares stabilizatiomarticular of the momentum
equation, which is necessary because pointwise momentlandsais impossible to
achieve in the presence of shocks/turbulence. The EG2siigaman be viewed to be
the minimal viscosity required to handle the contradictie@hind the non-existence of
pointwise solutions. For a shock EG2 could then be directgrpreted as a certain
physical mechanism preventing a shock wave from turning, @l for turbulence as
a form of automatic computational turbulence model.

EG2 thermodynamics can be viewed as form of deterministtmshwhere the
mechanism is open to inspection and can be used for predic®m the other hand,
the mechanism of statistical mechanics is not open to ingpeand can only be based
on ad hoc assumption, as noted by e.g. Einstein [7]. If Badizn’s assumption of
molecular chaos cannot be justified, and is not needed, wisider it at all, [23]?
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Figure 1: Joule’s 1845 experiment

6 Joule's 1845 Experiment

To illustrate basic aspects of thermodynamics, we recalelexperiment from 1845
with a gas initially at rest, or in equilibrium, at a certagmniperature and density in
a certain volume immersed into a container of water, see Eig.At initial time a
valve was opened and the gas was allowed to expand into theedeniume while the
temperature change in the water was carefully measuredlyg.Jio the great surprise
of both Joule and the scientific community, no change of thptrature of the water
could be detected, in contradiction with the expectatiat the gas would cool off
under expansion. Moreover, the expansion was impossibieverse; the gas had no
inclination to contract back to the original volume.

We simulate Joule’s experiment computationally using E&4nitial time a valve
is opened in a channel connecting two cubical chamberst aefa right chamber,
filled with gas of the same temperature but different defmigssure with high den-
sity/pressure in the left and low in the right chamber. Figan2l 3 displays the time-
evolution of mean temperature, density, kinetic energy aredsure in the left and
right chambers, while Fig. 4 and 5 give snapshots of theidigton of temperature
and speed at an intermediate time.

We see that temperature drop in the left chamber as the gas@swith heat en-
ergy transforming to kinetic energy with a maximal temperatdrop in the channel.
When the cool expanding gas hits the wall opposite to thertlanlet in the right
chamber, it is heated in recompression and returns alongahginto a vortical turbu-
lent flow with additional heating from turbulent dissipatioThe net effect is that the
mean temperature in the right chamber increases. The megpetature thus drops in
the left chamber and increases in the right and after a slgfdunce settles to a re-
maining density/temperature gap as the gas comes to réstheisame pressure in the
left and right chambers and the same total heat energy aset®{pansion. Joule mea-
sured the total heat energy of the initial and final equilibristates and found them to



be equal. Joule did not seek to measure the dynamics of tkeggonor the remaining
temperature/density gap.

From the 1st Law alone there are many different possible &tdsswith varying
gaps in density/temperature. It is the 2nd Law which deteesithe size of the gap,
which relates to the amount of turbulent/shock dissipaitiotine left and right cham-
bers, which is determined by the dynamics of the procesadiirg the distribution of
turbulence/shock dissipation.

Classical thermodynamics focussing on equiblium states dot tell which from
a range of possible equlibrium end states with varying gapkactually be realized,
because the true end state depends on the dynamics of tresgrdtanything, clas-
sical thermodynmics would predict an end state with zerq géyich we have seen is
incorrect. In short, classical equilibrium thermodynasrégcluding dynamics cannot
correctly predict equlibrium end states, and thus has litthctical value.
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Figure 2: Density and temperature in left and right chambers
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The 2nd Law states that reversal of the process with the gatsamting back to
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the original small volume, is impossible because the only tha gas can be put into
motion without external forcing is by expansion: Self-expian is possible, but not
self-constraction.

We are thus able to analyze and understand the dynamics dbthe experiment
using the 1st and the new form of the 2nd law. The experimepiays the expansion
phase of a compression refrigerator with heat being movedxpansion from the
left chamber in contact with the inside of the refrigeratotp the right chamber in
contact with the outside. The cycle is closed by recompoessnder outside cooling.
The efficiency connects to the temperature drop in the ledtrdber and the gap, with
efficiency suffering from rebounce to small gap.

7 TheEuler Equations

We consider the Euler equations for an inviscid perfect gatosed in a volumé in

R3 with boundaryl™ over a time interval = (0, 1] expressing conservation afass
densityp, momentumn = (m;, ms, ms) andinternal energye: Find 4 = (p, m,e)

depending oz, t) € Q = Q x I such that

Ry(@)=p+V-(pu) = 0 ingQ,
Ru(i)=m+V-(mu+p) = f inQ,
R.(t)=¢é+ V- (eu)+pV-u = g inQ, 2)
u-n = 0 onI'x/
a(-,0) = 4% inQ,

whereu = % is the velocity,p = (v — 1)e with v > 1 agas constantf is a given
volume forceg a heat source/sink arid a given initial state. We here express energy
conservation in terms of the internal eneegy: pT', with 7' the temperature, and not as
conservation of theotal energy = e + k with k£ = % thekinetic energyin the form
é+ V - (eu) = 0. Because of the appearance of shocks/turbulence, the &ylations
lack pointwise solutions, except possible for short tinme] eegularization is therefore
necessary. For a mono-atomic gas- 5/3 and (2) then is @arameter-free modgthe
ideal form of mathematical model according to Einstein...

8 Energy Estimatesfor Viscosity Solutions

For the discussion we consider the following regularizeiom of (2) assuming for
simplicity thatf = 0 andg = 0: Find4,,,, = @ = (p, m, e) such that

R,(@) = 0 inQ,

Ry (4) = —V-@Vu)+V(upV-u) inQ,

R(i) = v[VuP? ing, (3)
u = 0 onl' x I,

a(,0) = @ inQ,

wherer > 0 is ashear viscocityy >> v > 0if V-« > 0 in expansion (with
p=0if V-u < 0incompression), is a smdlulk viscosityand we use the notation
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|Vul? = 3, [Vu,|?. We shall see that the bulk viscosity is a safety featurenmmitt
limit to the workpV - « in expansion appearing in the energy balance.

We note that only the momentum equation is subject to viscegislariztion. Fur-
ther, we note that the shear viscosity term in the momenturateap multiplied by the
velocity v (and formally integrated by parts) appears as a positive hignd side in
the equation for the internal energy, reflecting that theigéion from shear viscos-
ity is transformed into internal heat energy. In contrast, dissipation from the bulk
viscosity represents another form of internal energy nobacted for as heat energy,
acting only as a safety feature in the sense that its cotitiioto the energy balance in
general will be small, while that from the shear viscositgéneral will be substantial
reflecting shock/turbulent dissipation.

Below we will consider instead regularization by EG2 witle tidvantage that the
EG2 solution is computed and thus is available to inspeptitiile @, , is not. We shall
see that EG2 regularization can be interpreted as a (mgsmndent) combination of
bulk and shear viscosity and thus (3) can be viewed as antar@diynodel of EG2 open
to simple form of analysis in the form of energy estimates.

As indicated, the existence of a pointwise solution= 4, , to the regularized
equations (3) is an open problem of analytical mathematiltekpugh with suitable
additional regularization it could be possible to settle Fortunately, we can leave this
problem aside, since EG2 solutions will be shown to existaigy@ri by computation.
We thus formally assume that (3) admits a pointwise solythoil derive basic energy
estimates which will be paralleled below for EG2. We thustheeegularized problem
(3) to illustrate basic features of EG2, including the 2neLa

We shall prove now that a regularized solutidis an approximate solution of the
Euler equations in the sense thag(a) = 0 and R.(4) > 0 pointwise, R, () is
weakly small in the sense that

1R (@)1 < %+\/ﬁ<< 1 @

where|| - || -1 denotes thd.5(I; H~1(2))-norm, and the following 2nd Law holds:
K<W-D, E=-W+D, (5)

where

K:/kdx, E:/edx, Wz/pv-ud:r, D:/V|Vu|2dw.
Q Q Q Q

Choosingr << p we can assure th§tR,,, (@, ,)||-1 is small. We can view the 2nd
Law as a compensation for the fact that the momentum equiationly satisfied in a
weak sense, and the equation for internal energy with irlégua

The 2nd Law (5) states an irreversible transfer of kinetiergy to heat energy in
the presence of shocks/turbulence witt> 0, which is the generic case. On the other
hand, the sign ofV is variable and thus the corresponding energy transfer roag g
either direction.
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The basic technical step is to multiply the momentum equdtipu, and use the
mass balance equation in the fOIL%F(p' + V- (pu)) =0, to get
k+V-(ku)+pV-u—V(upV-u)-u—V-(Vu)- u=0. (6)

By integration in space it follows thak < W — D, and similarly it follows that
E = —W + D from the equation foe, which proves the 2nd Law. Adding next (6) to
the equation for the internal energynd integrating in space, gives

K—|—E—|—/ pup(V -u)?dx =0,
Q
and thus after integration in time
K1)+ EQ1)+ / pp(V - u)? dzdt = K(0) 4+ E(0). (7)

Q

We now need to show thd (1) > 0 (or more generally thak(t) > 0 for ¢ € I), and
to this end we rewrite the equation for the internal energipbews:

Dye +7eV - u = v|Vul?,

whereD,e = é + u - Ve is the material derivative of following the fluid particles
with velocity u. Assuming that(x,0) > 0 for z € Q, it follows thate(x, 1) > 0 for

x € Q, and thusF(1) > 0. AssumingK (0) + E(0) = 1 the energy estimate (7) thus
shows that

/Q/Lp(v cu)drdt <1, (8)

and also thatZ'(t) < 1 fort € I. Next, integrating (6) in space and time gives,
assuming for simplicity thak'(0) = 0,

1 1
K(1)+/ v(Au)?dzdt = / pV-udmdt—/ pp(V -u)?drdt < —/ pdxdt < —
Q Q Q rJe K

where we used thaff, pdzdt = (v — 1) [, edzdt < [; E(t)dt < 1. It follows that

/ v|Vul2dzdt < L (9)
Q H

By standard estimation (assuming tipas bounded), it follows from (8) and (9) that

| R (@)1 < cmﬂ%),

with C' a constant of moderate size, which completes the proof. disated)| R, (%) || -1
is estimated by computation, as shown below. The role of tiadysis is thus to ratio-
nalize computational experience, not to replace it.
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9 Compression and Expansion

The 2nd Law (5) states that there is a transfer of kineticggnterheat energy il < 0,
that is under compression witli - « < 0, and a transfer from heat to kinetic energy
if W > 0, that is under expansion wifi - » > 0. Returning to Joule’s experiment,
we see by the 2nd Law that contraction back to the originalma from the final rest
state in the double volume, is impossible, because the omythe gas can be set into
motion is by expansion. To see this no reference to entropgésied.

10 A 2nd Law witout Entropy

We note that the 2nd Law (5) is expressed in terms of the phlygigantities of ki-
netic energyK’, heat energy, work W, and dissipatiorD and does not involve any
concept of entropy. This relieves us from the task of findiqdpgsical significance of
entropy and justification of a classical 2nd Law stating #varopy cannot decrease.
We thus circumvent the main difficulty of classical thermodsnics based on statis-
tical mechanics, while we reach the same goal as statistieahanics of explaining
irreversibility in formally reversible Newtonian mechani

We thus resolvé.oschmidt’'s paradok23] asking how irreversibility can occur in
a formally reversible system, which Boltzmann attempteddtve. But Loschmidt
pointed out that Boltzmann’s equations are not formallyersible, because of the as-
sumption of molecular chaos that velocities are indepetefore collision, and thus
Boltzmann effectively assumes what is to be proved. Boltemand Loschmidt's met
in heated debates without conclusion, but after Boltzmatragic death followed by
the experimental verification of the molecular nature ofegad.oschmidt’s paradox
evaporated as if it had been resolved, while it had not. Faigtg molecular chaos still
amounts to assume what is to be proved.

11 Comparison with Classical Thermodynamics
Classical thermodynamics is based on the relation
Tds = dT' + pdv, (20)

whereds represents change of entropyer unit massdv change of volume andT’
denotes the change of temperatiir@er unit mass, combined with a 2nd Law in the
formds > 0. On the other hand, the new 2nd Law takes the symbolic form

dT' + pdv > 0, (12)

effectively expressing thaf'ds > 0, which is the same ags > 0 sinceT > 0. In
symbolic form the new 2nd Law thus expresses the same asdhsiadl 2nd Law,
without referring to entropy.
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Integrating the classical 2nd Law (10) for a perfect gas with (v — 1)pT and

dv =d(%) = -9, we get

p2 ’

AT p 1. dT d
=)= -

d
ST TT

and we conclude that with= pT",
_ &
s = log(Tp'™") = log(5) = log(e) —7log(p) (12)

up to a constant. Thus, the entropy= s(p, e) for a perfect gas is a function of the
physical quantitiep ande = pT, thus astate functionsuggesting thas might have
a physical significance, becaugseand e have. We thus may decide to introduce a
guantity s defined this way, but the basic questions remains: (i) Whtidghysical
significance ofs? (ii) Why is ds > 0? What is the entropy non-perfect gas in which
cases may not be a state function?

To further exhibit the connection between the classical rsawd forms of the 2nd
Law, we observe that by the chain rule,

1
T
since by mass conservatiéh,p = —pV-u. It follows that the entropy = ps satisfies

1
pDys = gD“,e—fyD“,p = —(Dye+vpTV - u) = T(Due—kev-u—k(fy— DpTV -u)

$4 V- (Su) = pDus = %(é+v () +pV - u) = %Re(a). (13)

A solution of the regularized Euler equations (3) thus satisfies
S+ V- (Su) = %|Vu|2 >0 ingQ, (14)

whereS = plog(ep~). In particular, in the case of the Joule experiment viith
the same in the initial and final states, we have ~log(V') showing an increase of
entropy in the final state with larger volume.

We sum up by noting that the classical and new form of the si:tam effectively
express the same inequalifly > 0 or T'ds > 0. The new 2nd law is expressed in
terms of the fundamental concepts of of kinetic energy, beatgy and work without
resort to any form of entropy and statistical mechanics witlits complications. Of
course, the new 2nd Law readily extends to the case of a Jayeera

12 EG2

EG2 in cG(1)cG(1)-form for the Euler equations (2), readsdR, = (p, m,¢) € V},
such that for allp, @, €) € W),

((Rp(), p)) + ((hu-Vp,u-Vp)) =
(R (@), @) + ((hu - Vm,u - V) + (VseVu, Vi)
((Re(@),€)) + ((hu - Ve,u - VE)) =

0,
0, (15)
0,
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whereV}, is a trial space of continuous piecewise linear functionsaspace-time
mesh of sizeh satisfying the initial conditioni(0) = 4° with u € V}, defined by
nodal interpolation of%, and W, is a corresponding test space of function which
are continuous piecewise linear in space and piecewisdatria time, all functions
satisfying the boundary conditian- n = 0 at the nodes oi. Further,((-,-)) denotes
relevantl,(Q) scalar products, and,. = h?|R,,(4)| is a residual dependeshock-
capturing viscositysee [16]. We here use the conservation equation for thiestodagy
e rather than for the internal energy

EG2 combines a weak satisfaction of the Euler equations avitveighted least
squares control of the residul(¢) = (R,(4), Rm (1), Re(%)) and thus represents
a midway between the Scylla of weak solution and Carybdi®a$t squares strong
solution.

13 The2nd Law for EG2

Subtracting the mass equation wjita nodal interpolant 011"“‘2—‘2 from the momentum
equation withu = w« and using the heat energy equation wite= 1, we obtain the
following 2nd Law for EG2 (up to a/h-correction controled by the shockcapturing
viscosity [18]):

K=W —Dy,, E=-W+Dy, (16)

where
Dy, = ((hpu - Vu,u - Vu)). a7)

For solutions with turbulence/shockB;, > 0 expressing an irreversible transfer of
kinetic energy into heat energy, just as above for reguddreolutions. We note that
in EG2 only the momentum equation is subject to viscous eg@ation, sinceD;,
expresses a penalty an Vu appearing in the momentum residual.

14 The Stabilization in EG2

The stabilization in EG2 is expressed by the dissipativa By, which can be viewed
as a weighted least squares control of the tetmVw in the momentum residual. The
rationale is that least squares control of a part of a residhich is large, effectively
may give control of the entire residual, and thus EG2 givesastl squares control
of the momentum residual. But the EG2 stabilization doescootespond to an ad
hoc viscosity, as in classical regularization, but to a fafpenalty arsing because
Euler residuals of turbulent/shock solutions are not pasg small. In particular the
dissipative mecahnism of EG2 does not correspond to a sisfygar viscosity, but
rather to a form of “streamline viscosity” preventing fluidrficles from colliding while
allowing strong shear.

15 EG2Implementation in FEnIiCS

FENICS code + short info on a posteroiri error control. To théead by Murtazo.
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