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Abstract

We test the functionality of FEniCS on the challenge of computational ther-
modynamics in the form of the EG2 finite element solver of the Euler equations
expressing conservation of mass, momentum and energy. We show that computa-
tional solutions satisfy a 2nd Law formulated in terms of kinetic energy, internal
(heat) energy, work and shock/turbulent dissipation, without reference to entropy.
We show that the 2nd Law expresses an irreversible transfer of kinetic energy to
heat energy in shock/turbulent dissipation arising because the Euler equations lack
pointwise solutions, and thus explains the occurence of irreversibility in formally
reversible systems as an effect of instability with blow-upof Euler residuals com-
bined with finite precision computation, without resort to statistical mechanics or
ad hoc viscous regularization. We simulate the classical Joule or Joule-Thompson
experiment of a gas expanding from rest under temperature drop followed by tem-
perature recovery by turbulent dissipation until rest in the double volume. We
present the FEniCS implementation of EG2 including applications to bluff body
flow.

1 FEniCS as Computational Science

The goal of the FEniCS project is to develop software for automated computational
solution of differential equations based on a finite elementmethodology combining
generality with efficiency. Thermodynamics is a basic area of continuum mechanics
with many important applications, which however is feared by both teachers, students
and engineers as being difficult to understand and to apply, principally because of the
apperance of turbulence. In this article we show that turbulent thermodynamics can be
made understandable and useful by automated computationalsolution, as a demonstra-
tion of the capability of FEniCS.

The biggest mystery of classical thermodynamics is the 2nd Law about entropy and
automation cannot harbor any mystery. Expert systems are required for mysteries and
FEniCS is not an expert system. Automation requires a continuum mechanics formu-
lation of thermodynamics with a transparent 2nd Law. We present a formulation of
thermodynamics based on finite precision computation with a2nd Law without ref-
erence to entropy, which we show can serve as a basis for automated computational
simulation of complex turbulent thermodynamics and thus can open to new insight and
design, a main goal of FEniCS. In this setting the digital finite element model becomes
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the real model of the physics of thermodynamics viewed as a form of analog finite
precision computation, a model which is open to inspection and analysis because solu-
tions can be computed and put on the table. This represents a new kind of science in
the spirit of Dijkstra [6] and Wolfram [29], which can be explored using FEniCS and
which we present in non-technical form in My Book of Knols [14].

2 The 1st and 2nd Laws of Thermodynamics

Heat, a quantity which functions to animate, derives from aninternal fire located
in the left ventricle. (Hippocrates, 460 B.C.)

Thermodynamicsis fundamental in a wide range of phenomena from macroscopic
to microscopic scales. Thermodynamics essentially concerns the interplay between
heat energyandkinetic energyin a gasor fluid. Kinetic energy, ormechanical energy,
may generate heat energy bycompressionor turbulent dissipation. Heat energy may
generate kinetic energy byexpansion, but not through areverseprocess of turbulent
dissipation. The industrial society of the 19th century wasbuilt on the use ofsteam
engines, and the initial motivation to understand thermodynamics came from a need
to increase the efficiency of steam engines for conversion ofheat energy to useful
mechanical energy. Thermodynamics is closely connected tothe dynamics ofslightly
viscousandcompressiblegases, since substantial compression and expansion can occur
in a gas, but less in fluids (and solids).

The development of classical thermodynamics as a rational science based on log-
ical deduction from a set of axioms, was initiated in the 19thcentury by Carnot [4],
Clausius [3] and Lord Kelvin [20], who formulated the basic axioms in the form of
the1st Lawand the2nd Lawof thermodynamics. The 1st Law states (for an isolated
system) that thetotal energy, the sum of kinetic and heat energy, is conserved. The 1st
Law is naturally generalized to include also conservation of mass and Newton’s law
of conservation of momentum and then can be expressed as theEuler equationsfor a
gas/fluid withvanishing viscosity.

The 2nd Law has the form of an inequalitydS ≥ 0 for a quantity namedentropy
denoted byS, with dS denoting change thereof, supposedly expressing a basic feature
of real thermodynamic processes. The classical 2nd Law states that the entropy cannot
decrease; it may stay constant or it may increase, but it can never decrease (for an
isolated system).

The role of the 2nd Law is to give a scientific basis to the many observations of
irreversibleprocesses, that is, processes which cannot be reversed in time, like running
a movie backwards. Time reversal of a process with strictly increasing entropy, would
correspond to a process with strictly decreasing entropy, which would violate the 2nd
Law and therefore could not occur. A perpetum mobile would represent a reversible
process and so the role of the 2nd Law is in particular to explain why it is imposssible
to construct a perpetum mobile, andwhy time is moving forward in the direction an
arrow of time, as expressed by Max Planck [26, 27, 28]:Were it not for the existence
of irreversible processes, the entire edifice of the 2nd Law would crumble.

While the 1st Law in the form of the Euler equations expressing conservation
of mass, momentum and total energy can be understood and motivated on rational
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grounds, the nature of the 2nd Law is mysterious. It does not seem to be a consequence
of the 1st Law, since the Euler equations seem to be time reversible, and the role of
the 2nd Law is to explain irreversibility. Thus questions are lining up: nIf the 2nd
Law is a new independent law of Nature, how can it be justified?What is the physical
significance of that quantity named entropy, which Nature can only get more of and
never can get rid of, like a steadily accumulating heap of waste? What mechanism
prevents Nature from recycling entropy? How can irreversiblity arise in a reversible
system? How can viscous dissipation arise in a system with vanishing viscosity? Why
is there noMaxwell demon[24]? Why can a gas by itself expand into a larger volume,
but not by itself contract back again, if the motion of the gasmolecules is governed by
the reversible Newton’s laws of motion? Why is there an arrowof time? This article
presents answers.

3 The Enigma

Those who have talked of “chance” are the inheritors of antique superstition and
ignorance...whose minds have never been illuminated by a ray of scientific thought.
(T. H. Huxley)

These were the questions which confronted scientists in thelate 19th century, after
the introduction of the concept of entropy by Clausius in 1865, and these showed to be
tough questions to answer. After much struggle, agony and debate, the agreement of
the physics community has become to viewstatistical mechanicsbased on an assump-
tion of molecular chaosas developed by Boltzmann [1], to offer a rationalization ofthe
classical 2nd Law in the form of a tendency of (isolated) physical processes to move
from improbable towards more probable states, or from ordered to less ordered states.
Boltzmann’s assumption of molecular chaos in a dilute gas ofcolliding molecules, is
that two molecules about to collide have independent velocities, which led to theH-
theoremfor Boltzmann’s equationsstating that a certain quantity denoted byH could
not decrease and thus could serve as an entropy defining an arrow of time. Increasing
disorder would thus represent increasing entropy, and the classical 2nd Law would re-
flect the eternal pessimistists idea that things always get more messy, and that there is
really no limit to this, except when everything is as messy asit can ever get. Of course,
experience could give (some) support this idea, but the trouble is that it prevents things
from ever becoming less messy or more structured, and thus may seem a bit too pes-
simistic. No doubt, it would seem to contradict the many observations ofemergenceof
ordered non-organic structures (like crystals or waves andcyclons) and organic struc-
tures (like DNA and human beings), seemingly out of disordered chaos, as evidenced
by the physics Nobel Laureate Robert Laughlin [21].

Most trained thermodynamicists would here say that emergence of order out of
chaos, in fact does not contradict the classical 2nd Law, because it concerns “non-
isolated systems”. But they would probably insist that the Universe as a whole (isolated
system) would steadily evolve towards a “heat-death” with maximal entropy/disorder
(and no life), thus fulfilling the pessimists expectation. The question from where the
initial order came from, would however be left open.
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The standard presentation of thermodynamics based on the 1st and 2nd Laws,
thus involves a mixture of deterministic models (Boltzmann’s equations with the H-
theorem) based on statistical assumptions (molecular chaos) making the subject ad-
mittedly difficult to both learn, teach and apply, despite its strong importance. This is
primarily because the questionwhynecessarilydS ≥ 0 and neverdS < 0, is not given
a convincing understandable answer. In fact, statistical mechanics allowsdS < 0, al-
though it is claimed to be very unlikely. The basic objectiveof statistical mechanics as
the basis of classical thermodynamics, thus is to (i) give the entropy a physical mean-
ing, and (ii) to motivate its tendency to (usually) increase. Before statistical mechanics,
the 2nd Law was viewed as an experimental fact, which could not be rationalized the-
oretically. The classical view on the 2nd Law is thus either as a statistical law of large
numbers or as a an experimental fact, both without a rationaldeterministic mechanis-
tic theoretical foundation. The problem with thermodynamics in this form is that it is
understood by very few, if any:

• Every mathematician knows it is impossible to understand anelementary course in ther-
modynamics.(V. Arnold)

• ...no one knows what entropy is, so if you in a debate use this concept, you will always
have an advantage.(von Neumann to Shannon)

• As anyone who has taken a course in thermodynamics is well aware, the mathematics
used in proving Clausius’ theorem (the 2nd Law) is of a very special kind, having only the
most tenous relation to that known to mathematicians.(S. Brush [2])

• Where does irreversibility come from? It does not come form Newton’s laws. Obviously
there must be some law, some obscure but fundamental equation. perhaps in electricty,
maybe in neutrino physics, in which it does matter which way time goes.(Feynman [9])

• For three hundred years science has been dominated by a Newtonian paradigm presenting
the World either as a sterile mechanical clock or in a state ofdegeneration and increasing
disorder...It has always seemed paradoxical that a theory based on Newtonian mechanics
can lead to chaos just because the number of particles is large, and it is subjectivly de-
cided that their precise motion cannot be observed by humans... In the Newtonian world
of necessity, there is no arrow of time. Boltzmann found an arrow hidden in Nature’s
molecular game of roulette.(Paul Davies [5])

• The goal of deriving the law of entropy increase from statistical mechanics has so far
eluded the deepest thinkers.(Lieb [22])

• There are great physicists who have not understood it. (Einstein about Boltzmann’s sta-
tistical mechanics)

4 Computational Foundation

In this note we present a foundation of thermodynmaics, further elaborated in [12, 16],
where the basic assumption of statistical mechanics of molecular chaos, is replaced by
deterministic finite precision computation, more precisely by aleast squares stabilized
finite element methodfor the Euler equations, referred to asEuler General Galerkin
or EG2. In the spirit of Dijkstra [6], we thus view EG2 as the physical model of
thermodynamics, that is the Euler equations together with acomputational solution
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procedure, and not just the Euler equations without constructive solution procedure as
in a classical non-computational approach.

Using EG2 as a model of thermodynamics changes the questionsand answers and
opens new possibilities of progress together with new challenges to mathematical anal-
ysis and computation. The basic new feature is that EG2 solutions are computed and
thus are available to inspection. This means that the analysis of solutions shifts froma
priori to a posteriori; after the solution has been computed it can be inspected.

Inspecting computed EG2 solutions we find that they areturbulentand haveshocks,
which is identified by pointwise large Euler residuals, reflecting that pointwise solu-
tions to the Euler equations are lacking. The enigma of thermodynamics is thus the
enigma of turbulence (since the basic nature of shocks is understood). Computational
thermodynamics thus essentially concerns computational turbulence. In this note and
[16] we present evidence that EG2 opens to a resolution of theenigma of turbulence
and thus of thermodynamics.

The fundamental question concernswellposednessin the sense of Hadamard, that
is what aspects oroutputsof turbulent/shock solutions are stable under perturbations in
the sense that small perturbations have small effects. We show that wellposedness of
EG2 solutions can be tested a posteriori by computationallysolving adual linearized
problem, through which the output sensitivity of non-zero Euler residuals can be es-
timated. We find that mean-value outputs such as drag and liftand total turbulent
dissipation are wellposed, while point-values of turbulent flow are not. We can thus a
posteriori in a case by case manner, assess the quality of EG2solutions as solutions of
the Euler equations.

We formulate a2nd Lawfor EG2 without the concept of entropy, in terms of the
basic physical quantities of kinetic energyK, heat energyE, rate ofwork W and
shock/turbulent dissipationD > 0. The new 2nd Law reads

K̇ = W − D, Ė = −W + D, (1)

where the dot indicates time differentiation. Slightly viscous flow always develops
turbulence/shocks withD > 0, and the 2nd Law thus expresses an irreversible transfer
of kinetic energy into heat energy, while the total energyE + K remains constant.

With the 2nd Law in the form (1), we avoid the (difficult) main task of statisti-
cal mechanics of specifying the physical significance of entropy and motivating its
tendency to increase by probabilistic considerations based on (tricky) combinatorics.
Thus usingOckham’s razor[25], we rationalize a scientific theory of major importance
making it both more understandable and more useful. The new 2nd Law is closer to
classical Newtonian mechanics than the 2nd Law of statistical mechanics, and thus can
be viewed to be more fundamental.

The new 2nd Law is a consequence of the 1st Law in the form of theEuler equa-
tions combined with EG2 finite precision computation effectively introducing viscosity
and viscous dissipation. These effects appear as a consequence of the non-existence of
pointwise solutions to the Euler equations reflecting instablities leading to the develop-
ment shocks and turbulence in which large scale kinetic energy is transferred to small
scale kinetic energy in the form of heat energy. The viscous dissipation can be inter-
preted as a penalty on pointwise large Euler residuals arising in shocks/turbulence, with
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the penalty being directly coupled to the violation following a principle of criminal law
exposed in [11]. EG2 thus explains the 2nd Law as a consequence of the non-existence
of pointwise solutions with small Euler residuals. This offers an understanding to the
emergence of irreversible solutions of the formally reversible Euler equations. If point-
wise solutions had existed, they would have been reversiblewithout dissipation, but
they don’t exist, and the existing computational solutionshave dissipation and thus are
irreversible.

5 Viscosity Solutions

An EG2 solution can be viewed as particularviscosity solutionof the Euler equations,
which is a solution ofregularized Euler equationsaugmented by additive terms mod-
eling viscosity effects with small viscosity coefficients.The effective viscosity in an
EG2 solution typically may be comparable to the mesh size.

For incompressible flow the existence of viscosity solutions, with suitable solution
dependent viscosity coefficients, can be proved a priori using standard techniques of
analytical mathematics. Viscosity solutions are pointwise solutions of the regularized
equations. But already the most basic problem with constantviscosity, the incompress-
ible Navier-Stokes equations for a Newtonian fluid, presents technical difficulties, and
is one of the open Clay Millennium Problems.

For compressible flow the technical complications are even more severe, and it is
not clear which viscosities would be required for an analytical proof of the existence
of viscosity solutions [8] to the Euler equations. Furthermore, the question of well-
posedness is typically left out, as in the formulation of theNavier-Stokes Millennium
Problem, with the motivation that first the existence problem has to be settled. Al-
together, analytical mathematics seems to have little to offer a priori concerning the
existence and wellposedness of solutions of the compressible Euler equations. In con-
trast, EG2 computational solutions of the Euler equations seem to offer a wealth of
information a posteriori, in particular concerning wellposedness by duality.

An EG2 solution thus can be viewed as a specific viscosity solution with a spe-
cific regularization from the least squares stabilization,in particular of the momentum
equation, which is necessary because pointwise momentum balance is impossible to
achieve in the presence of shocks/turbulence. The EG2 viscosity can be viewed to be
the minimal viscosity required to handle the contradictionbehind the non-existence of
pointwise solutions. For a shock EG2 could then be directly interpreted as a certain
physical mechanism preventing a shock wave from turning over, and for turbulence as
a form of automatic computational turbulence model.

EG2 thermodynamics can be viewed as form of deterministic chaos, where the
mechanism is open to inspection and can be used for prediction. On the other hand,
the mechanism of statistical mechanics is not open to inspection and can only be based
on ad hoc assumption, as noted by e.g. Einstein [7]. If Boltzmann’s assumption of
molecular chaos cannot be justified, and is not needed, why consider it at all, [23]?
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Figure 1: Joule’s 1845 experiment

6 Joule’s 1845 Experiment

To illustrate basic aspects of thermodynamics, we recall Joule’s experiment from 1845
with a gas initially at rest, or in equilibrium, at a certain temperature and density in
a certain volume immersed into a container of water, see Fig.1. At initial time a
valve was opened and the gas was allowed to expand into the double volume while the
temperature change in the water was carefully measured by Joule. To the great surprise
of both Joule and the scientific community, no change of the temperature of the water
could be detected, in contradiction with the expectation that the gas would cool off
under expansion. Moreover, the expansion was impossible toreverse; the gas had no
inclination to contract back to the original volume.

We simulate Joule’s experiment computationally using EG2:At initial time a valve
is opened in a channel connecting two cubical chambers, a left and a right chamber,
filled with gas of the same temperature but different density/pressure with high den-
sity/pressure in the left and low in the right chamber. Fig. 2and 3 displays the time-
evolution of mean temperature, density, kinetic energy andpressure in the left and
right chambers, while Fig. 4 and 5 give snapshots of the distribution of temperature
and speed at an intermediate time.

We see that temperature drop in the left chamber as the gas expands with heat en-
ergy transforming to kinetic energy with a maximal temperature drop in the channel.
When the cool expanding gas hits the wall opposite to the channel inlet in the right
chamber, it is heated in recompression and returns along thewalls into a vortical turbu-
lent flow with additional heating from turbulent dissipation. The net effect is that the
mean temperature in the right chamber increases. The mean temperature thus drops in
the left chamber and increases in the right and after a slightrebounce settles to a re-
maining density/temperature gap as the gas comes to rest with the same pressure in the
left and right chambers and the same total heat energy as before expansion. Joule mea-
sured the total heat energy of the initial and final equilibrium states and found them to
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be equal. Joule did not seek to measure the dynamics of the process, nor the remaining
temperature/density gap.

From the 1st Law alone there are many different possible end states with varying
gaps in density/temperature. It is the 2nd Law which determines the size of the gap,
which relates to the amount of turbulent/shock dissipationin the left and right cham-
bers, which is determined by the dynamics of the process including the distribution of
turbulence/shock dissipation.

Classical thermodynamics focussing on equiblium states does not tell which from
a range of possible equlibrium end states with varying gaps,will actually be realized,
because the true end state depends on the dynamics of the process. If anything, clas-
sical thermodynmics would predict an end state with zero gap, which we have seen is
incorrect. In short, classical equilibrium thermodynamics excluding dynamics cannot
correctly predict equlibrium end states, and thus has little practical value.
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Figure 2: Density and temperature in left and right chambers

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

 

 

0 5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Figure 3: Kinetic energy and pressure in left and right chambers

The 2nd Law states that reversal of the process with the gas contracting back to
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Figure 4: Distribution of gas temperature atT = 3

Figure 5: Distribution of gas speed atT = 3

9



the original small volume, is impossible because the only way the gas can be put into
motion without external forcing is by expansion: Self-expansion is possible, but not
self-constraction.

We are thus able to analyze and understand the dynamics of theJoule experiment
using the 1st and the new form of the 2nd law. The experiment displays the expansion
phase of a compression refrigerator with heat being moved byexpansion from the
left chamber in contact with the inside of the refrigerator,into the right chamber in
contact with the outside. The cycle is closed by recompression under outside cooling.
The efficiency connects to the temperature drop in the left chamber and the gap, with
efficiency suffering from rebounce to small gap.

7 The Euler Equations

We consider the Euler equations for an inviscid perfect gas enclosed in a volumeΩ in
R

3 with boundaryΓ over a time intervalI = (0, 1] expressing conservation ofmass
densityρ, momentumm = (m1, m2, m3) and internal energye: Find û = (ρ, m, e)
depending on(x, t) ∈ Q ≡ Ω × I such that

Rρ(û) ≡ ρ̇ + ∇ · (ρu) = 0 in Q,
Rm(û) ≡ ṁ + ∇ · (mu + p) = f in Q,

Re(û) ≡ ė + ∇ · (eu) + p∇ · u = g in Q,
u · n = 0 onΓ × I

û(·, 0) = û0 in Ω,

(2)

whereu = m
ρ

is the velocity,p = (γ − 1)e with γ > 1 a gas constant, f is a given

volume force,g a heat source/sink and̂u0 a given initial state. We here express energy
conservation in terms of the internal energye = ρT , with T the temperature, and not as
conservation of thetotal energyǫ = e + k with k = ρv2

2
thekinetic energy, in the form

ǫ̇ +∇ · (ǫu) = 0. Because of the appearance of shocks/turbulence, the Eulerequations
lack pointwise solutions, except possible for short time, and regularization is therefore
necessary. For a mono-atomic gasγ = 5/3 and (2) then is aparameter-free model, the
ideal form of mathematical model according to Einstein...

8 Energy Estimates for Viscosity Solutions

For the discussion we consider the following regularized version of (2) assuming for
simplicity thatf = 0 andg = 0: Find ûν,µ ≡ û = (ρ, m, e) such that

Rρ(û) = 0 in Q,
Rm(û) = −∇ · (ν∇u) + ∇(µp∇ · u) in Q,
Re(û) = ν|∇u|2 in Q,

u = 0 onΓ × I,
û(·, 0) = û0 in Ω,

(3)

whereν > 0 is a shear viscocityµ >> ν ≥ 0 if ∇ · u > 0 in expansion (with
µ = 0 if ∇ · u ≤ 0 in compression), is a smallbulk viscosity, and we use the notation
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|∇u|2 =
∑

i |∇ui|2. We shall see that the bulk viscosity is a safety feature putting a
limit to the workp∇ · u in expansion appearing in the energy balance.

We note that only the momentum equation is subject to viscousregulariztion. Fur-
ther, we note that the shear viscosity term in the momentum equation multiplied by the
velocity u (and formally integrated by parts) appears as a positive right hand side in
the equation for the internal energy, reflecting that the dissipation from shear viscos-
ity is transformed into internal heat energy. In contrast, the dissipation from the bulk
viscosity represents another form of internal energy not accounted for as heat energy,
acting only as a safety feature in the sense that its contribution to the energy balance in
general will be small, while that from the shear viscosity ingeneral will be substantial
reflecting shock/turbulent dissipation.

Below we will consider instead regularization by EG2 with the advantage that the
EG2 solution is computed and thus is available to inspection, while ûν,µ is not. We shall
see that EG2 regularization can be interpreted as a (mesh-dependent) combination of
bulk and shear viscosity and thus (3) can be viewed as an analytical model of EG2 open
to simple form of analysis in the form of energy estimates.

As indicated, the existence of a pointwise solutionû = ûν,µ to the regularized
equations (3) is an open problem of analytical mathematics,although with suitable
additional regularization it could be possible to settle [8]. Fortunately, we can leave this
problem aside, since EG2 solutions will be shown to exist a posteriori by computation.
We thus formally assume that (3) admits a pointwise solution, and derive basic energy
estimates which will be paralleled below for EG2. We thus usethe regularized problem
(3) to illustrate basic features of EG2, including the 2nd Law.

We shall prove now that a regularized solutionû is an approximate solution of the
Euler equations in the sense thatRρ(û) = 0 andRe(û) ≥ 0 pointwise,Rm(û) is
weakly small in the sense that

‖Rm(û)‖−1 ≤
√

ν√
µ

+
√

µ << 1, (4)

where‖ · ‖−1 denotes theL2(I; H−1(Ω))-norm, and the following 2nd Law holds:

K̇ ≤ W − D, Ė = −W + D, (5)

where

K =

∫
Ω

k dx, E =

∫
Ω

e dx, W =

∫
Ω

p∇ · u dx, D =

∫
Ω

ν|∇u|2 dx.

Choosingν << µ we can assure that‖Rm(ûν,µ)‖−1 is small. We can view the 2nd
Law as a compensation for the fact that the momentum equationis only satisfied in a
weak sense, and the equation for internal energy with inequality.

The 2nd Law (5) states an irreversible transfer of kinetic energy to heat energy in
the presence of shocks/turbulence withD > 0, which is the generic case. On the other
hand, the sign ofW is variable and thus the corresponding energy transfer may go in
either direction.
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The basic technical step is to multiply the momentum equation by u, and use the

mass balance equation in the form|u|
2

2
(ρ̇ + ∇ · (ρu)) = 0, to get

k̇ + ∇ · (ku) + p∇ · u −∇(µp∇ · u) · u −∇ · (ν∇u) · u = 0. (6)

By integration in space it follows thaṫK ≤ W − D, and similarly it follows that
Ė = −W + D from the equation fore, which proves the 2nd Law. Adding next (6) to
the equation for the internal energye and integrating in space, gives

K̇ + Ė +

∫
Ω

µp(∇ · u)2 dx = 0,

and thus after integration in time

K(1) + E(1) +

∫
Q

µp(∇ · u)2 dxdt = K(0) + E(0). (7)

We now need to show thatE(1) ≥ 0 (or more generally thatE(t) > 0 for t ∈ I), and
to this end we rewrite the equation for the internal energy asfollows:

Due + γe∇ · u = ν|∇u|2,

whereDue = ė + u · ∇e is the material derivative ofe following the fluid particles
with velocityu. Assuming thate(x, 0) > 0 for x ∈ Ω, it follows thate(x, 1) > 0 for
x ∈ Ω, and thusE(1) > 0. AssumingK(0) + E(0) = 1 the energy estimate (7) thus
shows that ∫

Q

µp(∇ · u)2 dxdt ≤ 1, (8)

and also thatE(t) ≤ 1 for t ∈ I. Next, integrating (6) in space and time gives,
assuming for simplicity thatK(0) = 0,

K(1)+

∫
Q

ν(∆u)2dxdt =

∫
Q

p∇·udxdt−
∫

Q

µp(∇·u)2dxdt ≤ 1

µ

∫
Q

pdxdt ≤ 1

µ
,

where we used that
∫

Q
pdxdt = (γ − 1)

∫
Q

edxdt ≤
∫

I
E(t)dt ≤ 1. It follows that

∫
Q

ν|∇u|2dxdt ≤ 1

µ
. (9)

By standard estimation (assuming thatp is bounded), it follows from (8) and (9) that

‖Rm(û)‖−1 ≤ C(
√

µ +

√
ν√
µ

),

with C a constant of moderate size, which completes the proof. As indicated,‖Rm(û)‖−1

is estimated by computation, as shown below. The role of the analysis is thus to ratio-
nalize computational experience, not to replace it.
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9 Compression and Expansion

The 2nd Law (5) states that there is a transfer of kinetic energy to heat energy ifW < 0,
that is under compression with∇ · u < 0, and a transfer from heat to kinetic energy
if W > 0, that is under expansion with∇ · u > 0. Returning to Joule’s experiment,
we see by the 2nd Law that contraction back to the original volume from the final rest
state in the double volume, is impossible, because the only way the gas can be set into
motion is by expansion. To see this no reference to entropy isneeded.

10 A 2nd Law witout Entropy

We note that the 2nd Law (5) is expressed in terms of the physical quantities of ki-
netic energyK, heat energyE, work W , and dissipationD and does not involve any
concept of entropy. This relieves us from the task of finding aphysical significance of
entropy and justification of a classical 2nd Law stating thatentropy cannot decrease.
We thus circumvent the main difficulty of classical thermodynamics based on statis-
tical mechanics, while we reach the same goal as statisticalmechanics of explaining
irreversibility in formally reversible Newtonian mechanics.

We thus resolveLoschmidt’s paradox[23] asking how irreversibility can occur in
a formally reversible system, which Boltzmann attempted tosolve. But Loschmidt
pointed out that Boltzmann’s equations are not formally reversible, because of the as-
sumption of molecular chaos that velocities are independent before collision, and thus
Boltzmann effectively assumes what is to be proved. Boltzmann and Loschmidt’s met
in heated debates without conclusion, but after Boltzmann’s tragic death followed by
the experimental verification of the molecular nature of gases, Loschmidt’s paradox
evaporated as if it had been resolved, while it had not. Postulating molecular chaos still
amounts to assume what is to be proved.

11 Comparison with Classical Thermodynamics

Classical thermodynamics is based on the relation

Tds = dT + pdv, (10)

whereds represents change of entropys per unit mass,dv change of volume anddT
denotes the change of temperatureT per unit mass, combined with a 2nd Law in the
form ds ≥ 0. On the other hand, the new 2nd Law takes the symbolic form

dT + pdv ≥ 0, (11)

effectively expressing thatTds ≥ 0, which is the same asds ≥ 0 sinceT > 0. In
symbolic form the new 2nd Law thus expresses the same as the classical 2nd Law,
without referring to entropy.
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Integrating the classical 2nd Law (10) for a perfect gas withp = (γ − 1)ρT and
dv = d( 1

ρ
) = − dρ

ρ2 , we get

ds =
dT

T
+

p

T
d(

1

ρ
) =

dT

T
+ (1 − γ)

dρ

ρ
,

and we conclude that withe = ρT ,

s = log(Tρ1−γ) = log(
e

ργ
) = log(e) − γ log(ρ) (12)

up to a constant. Thus, the entropys = s(ρ, e) for a perfect gas is a function of the
physical quantitiesρ ande = ρT , thus astate function, suggesting thats might have
a physical significance, becauseρ and e have. We thus may decide to introduce a
quantitys defined this way, but the basic questions remains: (i) What isthe physical
significance ofs? (ii) Why is ds ≥ 0? What is the entropy non-perfect gas in which
cases may not be a state function?

To further exhibit the connection between the classical andnew forms of the 2nd
Law, we observe that by the chain rule,

ρDus =
ρ

e
Due−γDuρ =

1

T
(Due+γρT∇·u) =

1

T
(Due+e∇·u+(γ−1)ρT∇·u)

since by mass conservationDuρ = −ρ∇·u. It follows that the entropyS = ρs satisfies

Ṡ + ∇ · (Su) = ρDus =
1

T
(ė + ∇ · (eu) + p∇ · u) =

1

T
Re(û). (13)

A solutionû of the regularized Euler equations (3) thus satisfies

Ṡ + ∇ · (Su) =
ν

T
|∇u|2 ≥ 0 in Q, (14)

whereS = ρ log(eρ−γ). In particular, in the case of the Joule experiment withT
the same in the initial and final states, we haves = γ log(V ) showing an increase of
entropy in the final state with larger volume.

We sum up by noting that the classical and new form of the second law effectively
express the same inequalityds ≥ 0 or Tds ≥ 0. The new 2nd law is expressed in
terms of the fundamental concepts of of kinetic energy, heatenergy and work without
resort to any form of entropy and statistical mechanics withall its complications. Of
course, the new 2nd Law readily extends to the case of a general gas.

12 EG2

EG2 in cG(1)cG(1)-form for the Euler equations (2), reads: Find û = (ρ, m, ǫ) ∈ Vh

such that for all(ρ̄, ū, ǭ) ∈ Wh

((Rρ(û), ρ̄)) + ((hu · ∇ρ, u · ∇ρ̄)) = 0,

((Rm(û), ū)) + ((hu · ∇m, u · ∇ū)) + (νsc∇u,∇ū)) = 0,

((Rǫ(û), ē)) + ((hu · ∇ǫ, u · ∇ǭ)) = 0,

(15)
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whereVh is a trial space of continuous piecewise linear functions ona space-time
mesh of sizeh satisfying the initial condition̂u(0) = û0 with u ∈ Vh defined by
nodal interpolation ofm

ρ
, andWh is a corresponding test space of function which

are continuous piecewise linear in space and piecewise constant in time, all functions
satisfying the boundary conditionu · n = 0 at the nodes onΓ. Further,((·, ·)) denotes
relevantL2(Q) scalar products, andνsc = h2|Rm(û)| is a residual dependentshock-
capturing viscosity, see [16]. We here use the conservation equation for the total energy
ǫ rather than for the internal energye.

EG2 combines a weak satisfaction of the Euler equations witha weighted least
squares control of the residualR(û) ≡ (Rρ(û), Rm(û), Re(û)) and thus represents
a midway between the Scylla of weak solution and Carybdis of least squares strong
solution.

13 The 2nd Law for EG2

Subtracting the mass equation withρ̄ a nodal interpolant of|u|
2

2
from the momentum

equation withū = u and using the heat energy equation withē = 1, we obtain the
following 2nd Law for EG2 (up to a

√
h-correction controled by the shockcapturing

viscosity [18]):
K̇ = W − Dh, Ė = −W + Dh, (16)

where
Dh = ((hρu · ∇u, u · ∇u)). (17)

For solutions with turbulence/shocks,Dh > 0 expressing an irreversible transfer of
kinetic energy into heat energy, just as above for regularized solutions. We note that
in EG2 only the momentum equation is subject to viscous regularization, sinceDh

expresses a penalty onu · ∇u appearing in the momentum residual.

14 The Stabilization in EG2

The stabilization in EG2 is expressed by the dissipative term Dh which can be viewed
as a weighted least squares control of the termρu · ∇u in the momentum residual. The
rationale is that least squares control of a part of a residual which is large, effectively
may give control of the entire residual, and thus EG2 gives a least squares control
of the momentum residual. But the EG2 stabilization does notcorrespond to an ad
hoc viscosity, as in classical regularization, but to a formof penalty arsing because
Euler residuals of turbulent/shock solutions are not pointwise small. In particular the
dissipative mecahnism of EG2 does not correspond to a simpleshear viscosity, but
rather to a form of “streamline viscosity” preventing fluid particles from colliding while
allowing strong shear.

15 EG2 Implementation in FEniCS

FEniCS code + short info on a posteroiri error control. To be added by Murtazo.
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Berlin, 1879.

[27] Max Planck, Vorlesungen über Thermodynamik, 1897.

[28] Max Planck, Acht Vorlesungen über Theoretische Physik, Fünfte Vorlesung: Wärmes-
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