
EL2310 – Scientific Programming
Lecture 11: Structures and Memory

Carl Henrik Ek
(chek@csc.kth.se)

Royal Institute of Technology – KTH

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Overview

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Wrap Up

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Wrap Up

Last time

� Pointers
� Started with (struct)

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Wrap Up

Today

� Repetition pointers
� More on (struct)
� Memory

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Wrap Up

Pointer

� A pointer is a variable that holds the address of another variable
� Ex:
int a;
int* b = &a;

*b = 4;
� Will set a to be 4

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Wrap Up

Pointers to pointers

� Can have pointers to pointer
� “Address of the address to the value”
� Notation similar
� int a;
int *p = &a;
int **pp = &p;

� Example use: Change address of pointer in function
� Dereferencing:

� *pp to get pointer to a
� **pp to get value of a

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Wrap Up

void pointer

� Normal pointers point to a certain type like int
� The void pointer (void*) represents a general pointer that

can point to anything
� You can assign to and from a void * without a problem
� You can not dereference a void*
� The void pointer allows you to write code that can work with

addresses to any data type

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Wrap Up

NULL

� Bad idea to leave variables uninitialized
� This is true for pointers as well
� To mark that a pointer is not assigned and give it a well defined

value we use the NULL pointer.
� Ex:
int *p = NULL;

...

if (p != NULL) *p = 4;
� Testing if not NULL before using a pointer is good practice (and

setting it to NULL when unassigned)

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Wrap Up

Pointer to functions

� Just like in MATLAB you can work with pointers to functions
� In C you need to declare explicitly what the argument the

function has as input and output
� Ex: Pointer (fcn) to a function that returns an int and takes a
double as argument
int (*fcn)(double)

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Wrap Up

Arithmetic operations with pointers

� Comparison
� Let int *p1, *p2;
� What is the difference?

...
if (p1 == p2) ...
...
if (*p1 == *p2) ...

� Adding/subtracting pointer
� int *p1, *p2;
� What does p1+3 mean?
� What does p2-p1 mean?

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Wrap Up

Pointers and functions

� Functions can only have a single return type
� Scope of argument is local to function
� Use of pointers for multiple “output” from function

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Wrap Up

Task 0

� Write a set of void functions that exemplifies,
1. Change of argument value in function
2. Difference between arrays and pointers
3. Passing pointers to functions

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Wrap Up

struct

� So far we looked at basic data types and pointers
� It is possible to define your own types
� For this we use a struct
� Ex:
struct complex number {

double real;
double imag;

};
� The variables real and imag are called members of the
struct complex number.

� Declaring variables x,y of type complex number is done with
struct complex number x,y;

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Structures Continued

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Structures Continued

Assigning struct

� Can be assign similar to arrays
� struct complex number x = { 1.1, 2.4 };
� Will give the complex number x = 1.1 + 2.4i .
� One more example:
struct person {

int age;
int sibling ages[10];
char name[32];

};
struct person p1 = {1, {26, 33}, ‘‘Mr T’’};

� Will assign value to the ages of two siblings

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Structures Continued

Accessing members of a struct

� If you want to set/get the value of a member you use the “.”
operator

� Ex:
struct complex number {

double real;
double imag;

};
struct complex number x;
x.real = 1.1;
x.imag = 2.4;

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Structures Continued

typedef

� typedef can be used to give types a new name, like a
synonym

� Can introduce shorter names for things
� Ex:
struct position {
double x;
double y;

};
typedef struct position pos;

� Alternative:
typedef struct {
double x;
double y;

} pos;

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Structures Continued

Pointers and structures

� You can use pointers to structures
� Ex:
struct complex number x;
struct complex number *xptr = &x;

� To access a member using a pointer we use the “− >” operator
� Ex: xptr->real = 2;
� Same as (*xptr).real = 2;
� and x.real = 2;

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Structures Continued

Structures of structures

� You can have any number of levels of structures of structures
� Ex:
struct position {
double x;
double y;

};
struct line {
struct position start;
struct position end;

};

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Structures Continued

Structures of structures

� Continued. struct line l;
l.start.x = 4; l.start.y = 6;
l.end.x = 2; l.end.y = -1;
struct line *lp = &l;
l->start.y = 42;

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Structures Continued

Pointers to structures in structures

� Normally you need to declare a type before you use it.
� You can have a pointer to the structure you define
� Ex: struct person {

char name[32];
struct person *parent;

};

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Structures Continued

cast

� Some conversions between types are implicit
� Ex: double x = 4;
� In other cases you need to tell the compiler to do this
� Ex: double fraction = 3 / 4; will give 0
� Ex: double fraction = (double)3 / 4;
� We casted 3 from an int to a double
� Be careful when casting!

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Memory Allocation

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Memory Allocation

Dynamic allocation of memory

� Sometimes you do not know the size of arrays etc.
� Idea: Allocate memory dynamically
� This way you can allocate memory on runtime

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Memory Allocation

malloc

� Allocate memory with malloc
� Need to #include stdlib.h
� This function returns a pointer of type void*
� Ex: int *p = malloc(100*sizeof(int));
� Will allocate memory for 100 ints

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Memory Allocation

free

� You should free the memory that you no longer need!!!
� Ex:
int *p = (int *)malloc(100*sizeof(int));

...

free(p);
� If you do not free allocated memory you will get memory leaks
� Your program will crash eventually
� A big problem if you program should run a very long time

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Memory Allocation

Memory

� When you run your program the memory is divided between the
heap and the stack

� The stack:
� Memory allocated for all parameters and local variables of a

function
� Fast-allocation memory
� Current function at the top of the stack
� When a function returns its memory is removed from the stack

� The heap:
� Used for persistent data
� Dynamically allocated memory

From http://www.csl.mtu.edu/cs3090/www/lecture-notes/Memory Allocation.ppt

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Memory Allocation

Common mistakes

� Forgetting to free memory (memory leak!!!)
� Using memory that you have not initialized
� Using memory that you do not own
� Using more memory than you allocated
� Returning pointer to local variable (thus no longer existing)

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Memory Allocation

Tip when using dynamic memory allocation

� If you have a malloc think about where the corresponding
free is

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Tasks

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Tasks

Task 1

� Define a structure for a complex number
� Define functions to perform operations on the complex numbers
� Write a program that uses these functions to compute

� addition, multiplication, subtraction and division of two complex
numbers

� the magnitude
� the angle

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Tasks

Task 2

� Write a program that investigates how different numbers are
represented

� Define a set of variables short, int, unsigned int, . . . and
print the value of each byte in turn

� Does your computer use little-endian (least significant byte
(LSB) at the lowest address) or big-endian (MSB at the lowest
address) representation of numbers

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Tasks

Next Time

� Lecture 10-12 D32
� Continue with Memory
� File I/O
� C Project http://www.csc.kth.se/˜chek/teaching/
EL2310/coursework/c_project/c_project.html

Carl Henrik Ek, Patric Jensfelt Royal Institute of Technology – KTH

EL2310 – Scientific Programming

http://www.csc.kth.se/~chek/teaching/EL2310/coursework/c_project/c_project.html
http://www.csc.kth.se/~chek/teaching/EL2310/coursework/c_project/c_project.html

	Overview
	Overview

	Content
	Lecture 11: Structures and Memory
	Wrap Up
	Structures Continued
	Memory Allocation

	Tasks
	Tasks
	Challenge

