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Wrap Up
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Wrap Up

Last time

� Pointers
� Started with (struct)
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Wrap Up

Today

� Repetition pointers
� More on (struct)
� Memory
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Wrap Up

Pointer

� A pointer is a variable that holds the address of another variable
� Ex:
int a;
int* b = &a;

*b = 4;
� Will set a to be 4
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Wrap Up

Pointers to pointers

� Can have pointers to pointer
� “Address of the address to the value”
� Notation similar
� int a;
int *p = &a;
int **pp = &p;

� Example use: Change address of pointer in function
� Dereferencing:

� *pp to get pointer to a
� **pp to get value of a
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Wrap Up

void pointer

� Normal pointers point to a certain type like int
� The void pointer (void*) represents a general pointer that

can point to anything
� You can assign to and from a void * without a problem
� You can not dereference a void*
� The void pointer allows you to write code that can work with

addresses to any data type
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Wrap Up

NULL

� Bad idea to leave variables uninitialized
� This is true for pointers as well
� To mark that a pointer is not assigned and give it a well defined

value we use the NULL pointer.
� Ex:
int *p = NULL;

...

if (p != NULL) *p = 4;
� Testing if not NULL before using a pointer is good practice (and

setting it to NULL when unassigned)
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Wrap Up

Pointer to functions

� Just like in MATLAB you can work with pointers to functions
� In C you need to declare explicitly what the argument the

function has as input and output
� Ex: Pointer (fcn) to a function that returns an int and takes a
double as argument
int (*fcn)(double)
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Wrap Up

Arithmetic operations with pointers

� Comparison
� Let int *p1, *p2;
� What is the difference?

...
if (p1 == p2) ...
...
if (*p1 == *p2) ...

� Adding/subtracting pointer
� int *p1, *p2;
� What does p1+3 mean?
� What does p2-p1 mean?
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Wrap Up

Pointers and functions

� Functions can only have a single return type
� Scope of argument is local to function
� Use of pointers for multiple “output” from function
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Wrap Up

Task 0

� Write a set of void functions that exemplifies,
1. Change of argument value in function
2. Difference between arrays and pointers
3. Passing pointers to functions
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Wrap Up

struct

� So far we looked at basic data types and pointers
� It is possible to define your own types
� For this we use a struct
� Ex:
struct complex number {

double real;
double imag;

};
� The variables real and imag are called members of the
struct complex number.

� Declaring variables x,y of type complex number is done with
struct complex number x,y;
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Structures Continued
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Structures Continued

Assigning struct

� Can be assign similar to arrays
� struct complex number x = { 1.1, 2.4 };
� Will give the complex number x = 1.1 + 2.4i .
� One more example:
struct person {

int age;
int sibling ages[10];
char name[32];

};
struct person p1 = {1, {26, 33}, ‘‘Mr T’’};

� Will assign value to the ages of two siblings
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Structures Continued

Accessing members of a struct

� If you want to set/get the value of a member you use the “.”
operator

� Ex:
struct complex number {

double real;
double imag;

};
struct complex number x;
x.real = 1.1;
x.imag = 2.4;
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Structures Continued

typedef

� typedef can be used to give types a new name, like a
synonym

� Can introduce shorter names for things
� Ex:
struct position {
double x;
double y;

};
typedef struct position pos;

� Alternative:
typedef struct {
double x;
double y;

} pos;
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Structures Continued

Pointers and structures

� You can use pointers to structures
� Ex:
struct complex number x;
struct complex number *xptr = &x;

� To access a member using a pointer we use the “− >” operator
� Ex: xptr->real = 2;
� Same as (*xptr).real = 2;
� and x.real = 2;
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Structures Continued

Structures of structures

� You can have any number of levels of structures of structures
� Ex:
struct position {
double x;
double y;

};
struct line {
struct position start;
struct position end;

};
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Structures Continued

Structures of structures

� Continued. struct line l;
l.start.x = 4; l.start.y = 6;
l.end.x = 2; l.end.y = -1;
struct line *lp = &l;
l->start.y = 42;
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Structures Continued

Pointers to structures in structures

� Normally you need to declare a type before you use it.
� You can have a pointer to the structure you define
� Ex: struct person {

char name[32];
struct person *parent;

};
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Structures Continued

cast

� Some conversions between types are implicit
� Ex: double x = 4;
� In other cases you need to tell the compiler to do this
� Ex: double fraction = 3 / 4; will give 0
� Ex: double fraction = (double)3 / 4;
� We casted 3 from an int to a double
� Be careful when casting!
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Memory Allocation
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Memory Allocation

Dynamic allocation of memory

� Sometimes you do not know the size of arrays etc.
� Idea: Allocate memory dynamically
� This way you can allocate memory on runtime
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Memory Allocation

malloc

� Allocate memory with malloc
� Need to #include stdlib.h
� This function returns a pointer of type void*
� Ex: int *p = malloc(100*sizeof(int));
� Will allocate memory for 100 ints
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Memory Allocation

free

� You should free the memory that you no longer need!!!
� Ex:
int *p = (int *)malloc(100*sizeof(int));

...

free(p);
� If you do not free allocated memory you will get memory leaks
� Your program will crash eventually
� A big problem if you program should run a very long time
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Memory Allocation

Memory

� When you run your program the memory is divided between the
heap and the stack

� The stack:
� Memory allocated for all parameters and local variables of a

function
� Fast-allocation memory
� Current function at the top of the stack
� When a function returns its memory is removed from the stack

� The heap:
� Used for persistent data
� Dynamically allocated memory

From http://www.csl.mtu.edu/cs3090/www/lecture-notes/Memory Allocation.ppt
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Memory Allocation

Common mistakes

� Forgetting to free memory (memory leak!!!)
� Using memory that you have not initialized
� Using memory that you do not own
� Using more memory than you allocated
� Returning pointer to local variable (thus no longer existing)
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Memory Allocation

Tip when using dynamic memory allocation

� If you have a malloc think about where the corresponding
free is
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Tasks
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Tasks

Task 1

� Define a structure for a complex number
� Define functions to perform operations on the complex numbers
� Write a program that uses these functions to compute

� addition, multiplication, subtraction and division of two complex
numbers

� the magnitude
� the angle
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Tasks

Task 2

� Write a program that investigates how different numbers are
represented

� Define a set of variables short, int, unsigned int, . . . and
print the value of each byte in turn

� Does your computer use little-endian (least significant byte
(LSB) at the lowest address) or big-endian (MSB at the lowest
address) representation of numbers
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Tasks

Next Time

� Lecture 10-12 D32
� Continue with Memory
� File I/O
� C Project http://www.csc.kth.se/˜chek/teaching/
EL2310/coursework/c_project/c_project.html
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