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Abstract

This article presents a theory for multi-scale representation of temporal
data. Assuming that a real-time vision system should represent the in-
coming data at di�erent time scales, an additional causality constraint
arises compared to traditional scale-space theory|we can only use what
has occurred in the past for computing representations at coarser time
scales. Based on a previously developed scale-space theory in terms of non-
creation of local maxima with increasing scale, a complete classi�cation is
given of the scale-space kernels that satisfy this property of non-creation
of structure and respect the time direction as causal . It is shown that the
cases of continuous and discrete time are inherently di�erent.

For continuous time, there is no non-trivial time-causal semi-group
structure. Hence, the time-scale parameter must be discretized, and the
only way to construct a linear multi-time-scale representation is by (cas-
cade) convolution with truncated exponential functions having (possibly)
di�erent time constants. For discrete time, there is a canonical semi-group
structure allowing for a continuous temporal scale parameter. It gives rise
to a Poisson-type temporal scale-space. In addition, geometric moving aver-
age kernels and time-delayed generalized binomial kernels satisfy temporal
causality and allow for highly e�cient implementations.

It is shown that temporal derivatives and derivative approximations
can be obtained directly as linear combinations of the temporal channels in
the multi-time-scale representation. Hence, to maintain a representation of
temporal derivatives at multiple time scales, there is no need for other time
bu�ers than the temporal channels in the multi-time-scale representation.

The framework presented constitutes a useful basis for expressing a
large class of algorithms for computer vision, image processing and coding.

1 Introduction

The notion of multi-scale representation is essential when dealing with measured
data, such as images. Philosophically, this need arises from the fact that we per-
ceive real-world structures as meaningful entities only over certain ranges of
scale. Traditionally, multi-scale concepts such as pyramids (Burt 1981; Crowley
1981) and scale-space representation (Witkin 1983; Koenderink 1984; Yuille and
Poggio 1986; Koenderink and van Doorn 1992; Florack 1993; Lindeberg 1994)
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have been developed over a spatial domain, in which data are available in all
directions. Most works have avoided the constraints arising from the fact that
time runs in a special direction and a genuine real-time vision cannot access the
future|only what has occurred in the past can be used for generating represen-
tations at di�erent time scales. An early suggestion for how to treat time in a
multi-scale context was given by (Koenderink 1988), who proposed to transform
the time axis so as to map the present moment to the unreachable in�nity. In
the transformed domain, he then applied the traditional scale-space concept by
Gaussian convolution. The subject of this article is to reconsider the problem of
constructing a multi-time-scale representation from an axiomatic viewpoint.

2 Continuous and discrete scale-space kernels: Review

A fundamental requirement when constructing a multi-scale representation is
that the transformation from a �ne scale to a coarser scale should constitute a
simpli�cation in the sense that �ne-scale image structures should be successively
suppressed. In the literature on traditional (spatial) scale-space representation,
this property has been formalized in di�erent ways. A noteworthy coincidence is
that several di�erent ways of choosing scale-space axioms lead to the Gaussian
kernel as the unique choice.

In this article, we shall follow the scale-space formulation in (Lindeberg 1990,
1994) based on non-creation of local extrema (zero-crossings) with increasing
scale. As shown in the abovementioned references, the class of convolution oper-
ators satisfying this requirement can be completely classi�ed based on classical
results by (Schoenberg 1953) (see also (Karlin 1968)). Besides translation and
rescaling, there are two primitive types of linear and shift-invariant smoothing
transformations in the continuous case:

� convolution with Gaussian kernels,

h(�) = e��
2

; (1)

� convolution with truncated exponential functions,

h(�) =

�
e��=j�j � � 0;
0 � < 0;

h(�) =

�
e�=j�j � � 0;
0 � > 0;

(2)

Correspondingly, in the discrete case, there are besides rescaling and translation,
three primitive types of smoothing transformations (where fout = h � fin):

� two-point weighted averaging or generalized binomial smoothing ,

fout(x) = fin(x) + �i fin(x� 1) (�i � 0);

fout(x) = fin(x) + �i fin(x+ 1) (�i � 0);
(3)

� moving average or �rst-order recursive �ltering ,

fout(x) = fin(x) + �i fout(x� 1) (0 � �i < 1);

fout(x) = fin(x) + i fout(x+ 1) (0 � i < 1);
(4)
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� in�nitesimal smoothing described by the generating function

Hsemi�group(z) = et(az
�1+bz): (5)

In the symmetric case, a = b = �=2, this transformation corresponds to
convolution with the discrete analogue of the Gaussian kernel ,

T (n; �2) = e���
2

In(��
2); (6)

where In are the modi�ed Bessel functions of integer order.

Among these scale-space kernels, we recognize the continuous Gaussian kernel
g(x; �2) and its discrete analogue T (n; �2), which arise as unique symmetric
choices if the scale parameter is required to be continuous and a semi-group
structure is imposed (Lindeberg 1990, 1994). The generalized binomial kernels
provide a natural basis for constructing pyramid representations (Burt 1981;
Crowley 1981), whereas recursive �lters can be used for e�cient implementations
of smoothing operations (Deriche 1987).

3 Time-causal scale-space kernels

The review in the previous section is general and does not take the speci�c
nature of the time direction into account. For scale-space kernels treating the
time direction as causal, an obvious requirement is that only function values in
the past can be accessed. Hence, the kernels must satisfy h(t) = 0 when t < 0.
Here, we shall analyse the implications of imposing this constraint on scale-space
kernels in the continuous and discrete domains.

Continuous time. An immediate consequence of the classi�cation of semi-groups
of continuous scale-space kernels (the Gaussian kernel is unique) is that we can-
not preserve a continuous semi-group structure with respect to the time-scale
parameter if the time direction is to be treated as causal. Hence, the only choice
is to discretize the time-scale parameter. The only primitive scale-space kernels
with one-sided support are the truncated exponential functions. After normal-
ization to unit L1-norm they can be written

hexp(t; �) =
1

�
e�t=� (t > 0): (7)

By varying �, we obtain �rst-order �lters having di�erent time constants. The
classi�cation of continuous scale-space kernels implies that a kernel is a time-
causal scale-space kernel if and only if it can be decomposed into a sequence of
convolutions with such �lters. Hence, the architecture on a time-scale representa-
tion imposed by this construction is a set of �rst-order recursive �lters in cascade,
each having a (possibly) di�erent time constants �i. Such a �lter has mean value
M (hcomposed(�; �)) =

P1
i=1 �i, variance � = V (hcomposed(�; �)) =

P1
i=1 �i, and

a (bilateral) Laplace transform of the form

Hcomposed(s; �) =

Z 1

t=�1

(�1i=1hexp(t; �i)) e
�st dt =

1Y
i=1

1

1 + �is
: (8)
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If we in analogy with a semi-group requirement, require the transformation from
any �ne-scale representation to any coarser-scale representation to be a scale-
space transformation, then the only possibility is that all the (discrete) scale
levels in the multi-time scale representation can be generated by a cascade of
such truncated exponential �lters.

Discrete time. For discrete time sampling, the discrete analogue of the trun-
cated exponential �lters are the �rst-order recursive �lters (4). With normaliza-
tion to unit l1-norm, and � = �=(1��), their generating functions can be written

Hgeom(z) =
1

1� � (z � 1)
; (9)

Computationally, these �lters are highly e�cient, since only few arithmetic op-
erations and no additional time bu�ering are required to compute the output at
time t+1 given the output at time t. In normalized form, the recursive smoothing
operation is

fout(t) � fout(t � 1) =
1

1+ �
(fin(t)� fout(t� 1)): (10)

In analogy with the case of continuous time, a natural way to combine these
�lters into a discrete multi-time-scale representation is by cascade coupling. The
mean and variance of such a composed �lter are M (hgeom(�; �)) =

P1
i=1 �i

and � = V (hgeom(�; �)) =
P1

i=1 �
2
i + �i. In the case of discrete time, we can

also observe that the generalized binomial kernels (3) indeed satisfy temporal
causality, if combined with a suitable time delay. In this respect, there are more
degrees of freedom in the case of discrete time sampling.

Time-causal semi-group structure exists only for discrete time. The case of
discrete time it also special in the sense that a semi-group structure is, indeed,
compatible with temporal causality. If we let q�1 = 0 and q1 = � in (5) and
multiply by the normalization factor exp(��), we obtain a generating function
of the form P (z; �) = e�(z�1) (Lindeberg 1996) with associated �lter coe�cients

p(n; �) = e��
�n

n!
: (11)

This �lter corresponds to a Poisson distribution and the kernel p will be referred
to as the Poisson kernel . Intuitively, it can be interpreted as the limit case of
repeated convolution of kernels of the form (9) with time constants � = �=m:

lim
m!1

�
Hgeom(z;

�

m
)

�m

= lim
m!1

1

(1� �
m
(z � 1))m

= P (z; �): (12)

Such a kernel has mean M (p(�; �)) = �, and variance V (p(�; �)) = �. From the

ratio p(n+1; �)
p(n; �) = �

n+1 , it can be seen for � < 1 the �lter coe�cients decrease

monotonically for n � 0, while for � > 1 there is a local maximum at the
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smallest integer less than �: n = [�] > 0. Similarly, there are two inexion
points at n � � + 1

2 � (� + 1
4)

1=2. Concerning the qualitative behaviour, it also
well-known from statistics that the Poisson distribution approaches the normal
distribution with increasing standard deviation (see �gure 1).
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Figure 1: Graphs of the Poisson kernels for � = 0:9, 3:9 and 15:9.

Under variations of �, the Poisson kernel satis�es @�p(n; �) = �(p(n; �)�p(n�
1; �)). Thus, if we de�ne a multi-time-scale representation L : R�R+! R of a
discrete signal f : R! R, having a continuous time-scale parameter , by

L(t; �) =
1X

n=�1

p(n; �) f(t � n); (13)

this representation satis�es the �rst-order semi-di�erential equation @�L = ���L,
where �� denotes the backward di�erence operator ��L(t; �) = L(t; �)�L(t�
1; �). Hence, in contrast to multi-scale representations of the spatial domain,
for which derivatives with respect to scale are related to second-order deriva-
tives/di�erences in the spatial domain, temporal scale derivatives are here re-
lated to �rst-order temporal di�erences.

Note that a corresponding time-causal structure does not exist for continuous
signals. If we apply the same way of reasoning and compute the limit case of
primitive kernels of the form (8) for which all �i are equal, we obtain the trivial
semi-group corresponding to translations of the time axis by a time delay �.

4 Temporal scale-space and temporal derivatives

So far, we have shown how general constraints concerning non-creation of local
extrema with increasing scale combined with temporal causality restrict the
class of operations that can be used for generating multi-scale representations
corresponding to temporal integration over di�erent time scales. When to use
these results in practice, an obvious issue concerns how to distribute a (�nite)
set of discrete scale levels over scales and how to compute temporal derivatives
(or derivative approximations) at di�erent time scales.

Distribution of scale levels. A useful property of the Poisson-type scale-space
(13) is that there is no need for selecting scale levels in advance. If we have access
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to all data in the past, we can compute the temporal scale-space representation
at any scale. Assuming that a vision system is to operate at a set of K temporal
scales, a natural a priori distribution of these scale levels �k between some
minimum scale �min and some maximum scale �max is according to a geometric
series �k = k �min where K = �max=�min.

Concerning the multi-time scale representations having a discrete time-scale
parameter, let us assume that a minimal design is chosen, in the sense that
the transformation between adjacent scales is always of the form (7) or (9).
Since variances are additive under convolution, it follows that the time constants
between adjacent scales should satisfy �k = �k�1+�k for continuous signals and
�k = �k�1 + �k + �2k for discrete signals.

Temporal scale-space derivatives in the continuous case. Given a continuous
signal f , assume that a level k in a time-scale representation

L(�; �k) = (�ki=1hexp(t; �i)) � f (14)

has been computed at some temporal scale �k by cascade �ltering with a set of
k truncated exponential �lters with time constants �i. From this representation,
a temporal scale-space derivative of order r at scale �k is de�ned by

Ltr (�; �k) = @trL(�; �k) =
�
@tr(�

k
i=1hexp(t; �i))

�
� f; (15)

and the Laplace transform of the composed (equivalent) derivative kernel is

H
(r)
composed(s; �k) = sr

kY
i=1

1

1 + �i s
: (16)

For this kernel to have a net integration e�ect (well-posed derivative operators),
an obvious requirement is that the total order of di�erentiation should not exceed
the total order of integration. Thereby, r < k is a necessary requirement. As a
consequence, the transfer function must have �nite L2-norm.

A useful observation in this context is that these temporal scale-space deriva-

tives can be equivalently computed from di�erences between the temporal chan-

nels. Assume, for simplicity, that all �i are di�erent in (16). Then, a decompo-

sition of H
(r)
composed into a sum of r such transfer functions at �ner scales

H
(r)
composed(s; �k) =

kX
i=k�r

BiHcomposed(s; �i) (17)

shows that the weights Bi are given as the solution of a triangular system of
equations provided that the necessary condition r < k is satis�ed

(�1)r

�ri

kY
j=i+1

1

(1� �j=�i)
= Bi +

kX
�=i+1

B�

�Y
j=i+1

1

(1� �j=�i)
(k � r � i � k):
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Hence, each temporal derivative can be computed as a linear combination of
the representations at �ner time scales. Moreover, the Laplace transforms of the
equivalent derivative computation kernels satisfy the recurrence relation

H
(r)
composed(s; �k) = �

1

�k

�
H

(r�1)
composed(s; �k) �H

(r�1)
composed(s; �k�1)

�
: (18)

In other words, higher-order temporal derivatives can be computed as �nite
di�erences of lower-order derivatives (analogous to �nite di�erence operators in
the spatial domain). Derivative computations will thus be highly e�cient.

Temporal derivative approximations in the discrete case. In (Lindeberg and
Fagerstr�om 1996) it is shown that a corresponding structure holds in the discrete
case, for multi-scale temporal derivative approximations obtained by applying
(either symmetric or non-symmetric) central di�erence operators to the discrete

� = 16, k = 1 � = 16, k = 4 � = 16, k = 16
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Figure 2: Graphs of equivalent smoothing kernels and �rst-order derivative (approxi-
mation) kernels in the continuous and discrete cases, respectively, for k cascade coupled
smoothing steps in which all the primitive time constants �i are equal. (Here, �i have
been determined from k such that the variance � is the same for all smoothing kernels.)
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multi-time-scale representation constructed by cascade convolution with �rst-
order recursive �lters of the form (10).

Temporal derivatives from linear combinations of temporal channels This spe-
cial structure is highly useful for practical purposes, since it makes explicit con-
struction of temporal derivative kernels unnecessary. In other words, no other
time bu�ers are necessary for computing temporal scale-space derivatives than
the actual channels in the multi-time-scale representation. An intuitive explana-
tion of why this is possible is that the di�erent temporal channels, which repre-
sent the incoming data at di�erent time-scales, have di�erent e�ective temporal
delays. Besides the primary e�ect of producing an integrated representation over
a certain time-scale, each such channel serves as a temporal bu�er.

Kernel graphs and trade-o� issues. Figure 2 shows graphs of equivalent (con-
tinuous and discrete) convolution kernels for a few combinations of the number
of recursive �lters in cascade, k, and the individual time constants, �i.

The parameter values have been chosen such that the variance � of the
smoothing kernel is the same for all �lters. Hence, they represent di�erent ways
of computing the representation at a certain scale.

As can be seen, the kernels are discontinuous if r � k � 1, whereas the
degree of smoothness increases with k. To guarantee a certain minimum degree
of temporal smoothness at the �nest temporal scale, it can therefore (depending
on the external sampling conditions) be useful to precede the recursive temporal
multi-scale representations by a commonpre-smoothing step (such as a few steps
of recursive �ltering or time-delayed binomial smoothing). For a more detailed
analysis, including frequency properties, see (Lindeberg and Fagerstr�om 1996).

5 Spatio-temporal scale-space

When to combine these multi-time-scale representations with a spatial repre-
sentation for dealing with time-varying images, let us �rst treat space and time
as separable dimensions. This is a natural assumption in the absence of further
information (such as velocity information). The spatio-temporal scale-space rep-
resentation we then obtain is the Cartesian product of the spatial and temporal
scale-space representations, and is parameterized by a spatial scale parameter
�2 and a temporal scale parameter �.

Depending on whether the spatial domain Sis continuous or discrete, and
correspondingly for the temporal domain Tas well as the domains � and � of
the spatial and temporal scale parameters, we then obtain one out of twelve
possible types of spatio-temporal scale-space representations (see �gure 3).

Denote the transfer function of the spatial smoothing kernel by HS(u; �2)
and the transfer function of the temporal smoothing kernel by HT(v; �). Then,
the transfer function for mapping a spatio-temporal signal f : SN�T! R to its
spatio-temporal scale-space representation L : SN �T�� � �! R is given by

H(u; v; �2; �) = HS(u; �
2)HT(v; �): (19)
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Spatial domain S

Continuous Discrete

Spatial scale � Continuous Continuous Gaussian Discrete Gaussian

Discrete + Trunc. exp. + Binom. and geom. averaging

Temporal domain T

Continuous Discrete

Temporal scale � Continuous || Poisson kernel

Discrete Trunc. exp. + Binom. and geom. averaging

Figure 3: Scale-space kernels satisfying non-creation of local extrema with increasing
scale in the cases of a continuous/discrete domain, a continuous/discrete scale param-
eter, and a spatial/temporal domain without or with preferred direction.

When implementing this operation in practice, the linearity implies that the spa-
tial and temporal smoothing operators commute. For time-recursive temporal
smoothing, it will therefore be more e�cient to compute the spatial scale-space
representation at the �nest temporal scale, and then apply subsequent temporal
smoothing to each spatial scale layer in this representation. If there is a common
temporal smoothing component for all temporal scales (such as time-delayed bi-
nomial smoothing to reduce temporal aliasing due to poor temporal sampling),
it will be computationally more e�cient to apply such �lters before constructing
the spatial scale-space representation. Concerning temporal derivatives, it was
shown that these can be computed by linear combinations of the temporal chan-
nels at each spatial scale. Before or after this step, �nite di�erence operators can
be applied to compute spatial derivative approximations (see �gure 4).

In summary, this spatio-temporal scale-space concept leads to a visual front-
end model, which at every time moment outputs a set of spatio-temporal deriva-
tives at di�erent spatio-temporal scales. Concerning time bu�ering, there is es-
sentially no need for the visual front-end to represent the past in any other ways
than as the temporal channels in the multi-time-scale representation. Hence,
for two-dimensional image data, we obtain a visual front-end, which over time
maintains a four-dimensional representation of the current (delayed) moment.
This data set constitutes one time slice of the �ve-dimensional spatio-temporal
representation of the complete history of the visual observer.

Figure 5 shows an example of multi-scale spatio-temporal image descriptors
computed in this way. It shows second-order temporal derivatives computed
from an image sequence for a number of di�erent values of the spatial and
temporal scale parameters. Observe how qualitatively di�erent types of responses
are obtained at the di�erent spatio-temporal scales.

A more extensive treatment of this subject is presented in (Lindeberg 1996),
including scale-space properties, necessity results and the non-separable case.
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multiple spatial scales

�1 �2 �3 �4
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Figure 4: The composed architecture of the resulting spatio-temporal visual front-end
consists of the following types of processing steps. (i) Optional temporal preprocessing.
(ii) Spatial multi-scale representation, e.g. a pyramid or a scale-space representation.
(iii) One set of recursive temporal smoothing stages associated with each spatial scale.
(iv) Temporal derivatives from linear combinations of temporal channels. (v) Spatial
derivative approximations from �nite spatial di�erences (not shown in this �gure).

6 Summary and discussion

We have presented a theory for how the linear scale-space concept can be ex-
tended to the temporal domain. The theory is complete in the sense that it
provides a complete catalogue of all linear scale-space concepts that satisfy tem-
poral causality in the cases of continuous vs. discrete time as well as continuous
vs. discrete scale. Essentially, there are three main categories.

The construction started from similar scale-space axioms as have been used
for deriving the uniqueness of the Gaussian kernel in the spatial domain, namely
linearity, shift invariance, symmetry and non-creation of maxima (zero-crossings)
with increasing scale. In the case of a continuous scale parameter, the latter
assumption corresponds to a semi-group structure. Then, we replaced the sym-
metry condition by the essential requirement that the time direction should be
treated as causal, and only what has occurred in the past may be used as input
for computing representations at coarser time scales.

A kernel satisfying these properties was termed a time-causal scale-space
kernel, and a complete classi�cation was given for continuous and discrete time
domains. For continuous time, the only primitive time-causal kernels are trun-
cated exponential kernels corresponding to �rst-order integration over time. The
discrete correspondences to these are geometric moving average kernels. In the
discrete domain, also time-shifted binomial kernels satisfy temporal causality.

In the case of discrete time, and only in this case, there is a non-trivial time-
causal semi-group structure. It corresponds to convolution with Poisson kernels,
and can be regarded as the canonical model of a temporal scale-space, since it
is the only time-causal scale-space having a continuous scale parameter.
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grey-level image at t0 grey-level image at t0 � 3 grey-level image at t0 � 9

� = 2 � = 8 � = 32

�2 = 128

�
2 = 16

�2 = 2

Figure 5: Second-order temporal scale-space derivatives computed for a few combina-
tions of spatial scales and temporal scales. The top row shows three frames from the
image sequence, whereas the following rows show spatio-temporal data for �2 = 2, 16
and 128 (from the bottom to the top) and � = 2, 8 and 32 (from the left to the right).
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We analysed derivative operators and derivative approximations with respect
to their scale-space properties. Speci�cally, we made the important observation
that the temporal channels themselves contain su�cient information for com-
puting temporal derivatives at the current moment. Hence, there is no need for
additional time bu�ering as would be needed if computing temporal derivative
approximations by explicit �nite di�erences.

More generally, the time recursive properties of the smoothing kernels corre-
sponding to a discrete scale parameter imply that it is su�cient for the visual
front-end to maintain a representation over time that corresponds to a four-
dimensional slice of the entire �ve-dimensional spatio-temporal scale-space. This
dimensionality reduction is of crucial importance, since it substantially reduces
computational and hardware requirements.

An attractive property of the presented theory is that it leads to a concep-
tually very simple architecture (illustrated in �gure 4) and allows for computa-
tionally highly e�cient implementations. To update the temporal information to
the next time moment (according to equation (10)) it is su�cient to perform one
multiplication and two additions per pixel and spatio-temporal channel. Whereas
recursive �lters are common in signal processing and constitute a natural choice
on an ad hoc basis, an important result of this treatment is that this design can
be derived by necessity from �rst principles.
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