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Abstract. A family of spatio-temporal scale-spaces suitable for a mov-
ing observer is developed. The scale-spaces are required to be time causal
for being usable for real time measurements, and to be “velocity adapted”,
i.e. to have Galilean covariance to avoid favoring any particular motion.
Furthermore standard scale-space axioms: linearity, positivity, continu-
ity, translation invariance, scaling covariance in space and time, rota-
tional invariance in space and recursivity are used. An infinitesimal cri-
terion for scale-spaces is developed, which simplifies calculations and
makes it possible to define scale spaces on bounded regions. We show
that there are no temporally causal Galilean scale-spaces that are semi-
groups acting on space and time, but that there are such scale-spaces
that are semigroups acting on space and memory (where the memory is
the scale-space). The temporally causal scale-space is a time-recursive
process using current input and the scale-space as state, i.e. there is no
need for storing earlier input. The diffusion equation acting on the mem-
ory with the input signal as boundary condition, is a member of this
family of scale spaces and is special in the sense that its generator is
local.

1 Introduction

While “spatial” scale-space theory has become the more or less canonical theory
for low-level vision and its concepts, methods and algorithms now are part of the
common toolbox in computer vision, there is this far no theory that can serve
as a basis for low-level vision for moving images.

The spatio-temporal scale-space theory from Koenderink [11] is based on
spatio-temporal convolution on the past image sequence, which makes it compu-
tationally heavy and less attractive for practical applications. From a conceptual
point of view it is questionable to base a theory on spatio-temporal measure-
ment on the past signal, a real-time system can only have access to the past
measurements. The corresponding theory from Lindeberg [12] is more usable in
an application setting due to its recursive formulation. On the other hand it is
discrete in space-time, which makes it cumbersome to use analytical methods
like differential geometry, methods which has been used for deriving a large part
of the results in spatial scale-space theory. The spatio-temporal scale-space the-
ory that we propose is both continuous and has a recursive formulation, and
thus solves the problems described above.
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In the rest of the article we will start by defining a spatio-temporal scale-space
suitable for image motion measurements in the seemingly most natural way:
It should be a semigroup on space-time, time causal, covariant with respect to
spatial and temporal scale and Galilean boost [7]. We require Galilean covariance
as for a moving observer no particular motion or lack of motion should be treated
in a special way. It is relative motion that matters. This approach however
doesn’t work as we show that among the possible Galilean covariant, semigroups
on space-time, there are no time causal ones. To simplify proofs and anticipating
later needs we also develop infinitesimal criterion on scale-spaces.

After the failure of the “obvious” approach to time causal spatio-temporal
scale-space, we perform a deeper analysis of the nature of temporal measurement.
And observe that in addition to that a real time system cannot be dependent on
future information it cannot be directly dependent on past input either, only its
representation of past input, its memory [4]. Based on this insight, we instead
define a temporally causal spatio-temporal scale space as a semigroups in space
and memory, and derive a family of scale-spaces fulfilling this. If one requires
the generator of the scale-space to be local, there is a unique scale-space that is
generated by the heat equation.

2 Generalities

Our aim with defining a spatio-temporal scale-space is to develop a generic theory
about image motion measurements. A measurement is done over an extended
point (volume), it is covariant with the relevant symmetry group. It should
have the cascade property, i.e. a measurement of a measurement should also be
contained in the family of measurements [8]. As the structure of the Galilean
similarity group is more complicated than the similarity group that is used in
ordinary scale-space theory, some extra care is needed to handle the relation
between covariance and the cascade property.

An image is defined as an integrable functions u ∈ L1(Ω) = Σ over some
connected subset of an Euclidean base manifold Ω ⊂ M , M = Rd 3 x =
(x1, . . . , xd) for spatial images and M = Rd+1 3 x = (x0, x1, . . . , xd) for spatio-
temporal images, where x0 is a coordinate in the temporal direction.

Definition 1. For any u, v ∈ Σ(= L1(Ω)) and α, β ∈ R, Φ : Σ → C∞(Ω) is a
point measurement operator if it fulfills:

linearity Φ(αu + βv) = αΦ(u) + βΦ(v)
gray level invariance ‖Φu‖L1

= ‖u‖L1

positivity u ≥ 0 ⇒ Φu ≥ 0
point There is a sequence of operators R+ 3 s 7→ Φs s.t. lims→0 Φsu = u

Image measurement should respect basic symmetries in the world that is
measured. This is described in terms of Lie groups acting on images. Let g ∈ G,
where G is a Lie group, then the group act on the base space as g 7→ g ·x = Tgx,
where Tg : Diff(Ω), (i.e a diffeomorphism on Ω) and on images and measurements
like Tgu(x) = u(g · x).
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Ideally we would like point measurement operators that are invariant, ΦTg =
Φ, with respect to the group but for many groups (e.g. the scaling group) that
is not possible. We have to be content with requiring covariance, i.e. we have a
family H 3 h 7→ Φh of measurement operators, fulfilling,

TgΦh = Φg·hTg. (1)

Definition 2. We call such a family of point measurement operators a G-covariant
point measurement space.

From the definition it can easily be shown that the action G × H 3 (g, h) 7→
g · h = σ(g, h) = σg(h) ∈ H is a Lie group action on the set H . As a smaller
set of measurement operators is easier to manage we prefer measurement spaces
that are invariant to as large subgroup as possible.

For the spatio-temporal scale-space we will require covariance with respect to
the (n+1)-dimmensional Galilean similarity group that in matrix form becomes:

(

t′

x′

)

=

(

τ 0
v σR

)(

t
x

)

+ a (2)

where x, v ∈ Rn, t ∈ R, R ∈ SO(n), σ, τ ∈ R+ and a ∈ Rn+1.
Now we have a family of measurement devices Φh that is covariant under

the chosen Lie group. But we still don’t know how the actual measurements,
Φhu are related. Considering that the result of a measurement can be measured
in turn it is natural to require the family of measurements to be closed under
composition,

Φh1
Φh2

u = Φh1·h2
u, (3)

where H × H 3 (h1, h2) 7→ h1 · h2 ∈ H , is an abstract Lie semigroup. Although
there is a rich modern theory about Lie semigroups, it will for our needs be
enough to consider Lie semigroups H ⊂ G that are subsets of a Lie group (G, ·)
and closed under composition but not necessarily under inversion. A simple
example is (R+, +).

From (3) it can be seen that {Φh|h ∈ H} is an operator semigroup and
furthermore as H 3 h 7→ Φh is a Lie semigroup homomorphism, the operator
semigroup must be a Lie semigroup as well. Combining G-covariance with the
cascade property we finally get:

Definition 3. A G scale-space is a minimal semigroup of G-covariant point
measurements, i.e. a family of operators H 3 h 7→ Φh : L(Σ, C∞(Ω)) fulfilling

TgΦhTg−1 = Φg·h, (4)

a slight reorganization of (1) to emphasize how G act on the semi group of
operators and (3), and where G is an abstract Lie group and H an abstract Lie
semigroup.

It can be seen that G × H 3 (g, h) 7→ g · h = σ(g, h) ∈ H is both a group
homomorphism in the first argument and a semigroup homomorphism in the
second. When the homomorphism is trivial in the first argument we have an
invariant operator, TgΦhTg−1 = Φh.
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3 Infinitesimal generators

In preparation for later needs we derive infintesimal conditions for a G scale-
space. There are several advantages in doing that. It is more realistic in the sense
that we mainly care for local symmetries. It allows for more general boundary
conditions, e.g. for a bounded sensor and it simplifies calculations as it linearizes
the problem.

The infinitesimal object that corresponds to a Lie group G is a Lie algebra,
LG = g, which is the linear space of infinitesimal generators of the group at
identity together with an anti-commutative bilinear operator g × g 3 (v, w) 7→
[v, w] ∈ g, the Lie bracket (see e.g. [14] for details). The transformation group
g 7→ Tg corresponds to the Lie algebra of infinitesimal generators g 3 v 7→ Av =
A(v) where A = dT (e) : g → L(Σ, Σ). Choosing a base {v1, . . . , vn} ⊂ g for
g the corresponding base for the infinitesimal generators of the transformation
group is {A1, . . . , An} where Aj = Avj

For a Lie semigroup H the infinitesimal object is a Lie wedge, LH = h, and is
a closed cone in a Lie algebra. The properties for Lie algebras mentioned above
also holds for Lie wedges with the restriction that it is not necessary for both
[v, w] and [w, v] for v, w ∈ h to be members of the wedge [9]. Only Lie semigroups
that are generated by their Lie wedge will be considered, i.e. exp(R+h) = H .

From a G scale-space, using Φ(h)(x) = Φh(x), for emphasizing the depen-
dency on the semigroup H , the corresponding infinitesimal operator is B =
dΦ(e) : h → L(Σ, Σ), h 3 w 7→ Bw = B(w). Choosing a base {w1, . . . wm} ⊂ h

for the Lie wedge a corresponding base, {B1, . . . , Bm} where Bk = Bwk
, of the

Lie wedge of infinitesimal generators for the semi group is given.

3.1 Covariant generators

The infinitesinal form of the covariance equation (4) is,

[Av , Bw] = BC(v,w), (5)

where g × h 3 (v, w) 7→ C(v, w) ∈ h is the differential of σ (from (4)) with
respect to both arguments. This can be shown by calculating the differential
to the equation both with respect to the group G and the semigroup H . An
operator Bw fullfilling such an equation is called a covariant tensor operator [1]
in mathematical physics. The operator C is denoted the covariance tensor and is
a Lie algebra representation in the first argument and a Lie wedge representation
in the second.

In coordinate form the infinitesimal covariance equation becomes:

[Aj , Bk] =
∑

l

Cj,klBl, (6)

where C(vj , wk) = Cj(wk) =
∑

l Cj,klwl. For an infinitesimally invariant op-
erator, [Av , Bw] = 0. Note that requiring an operator Bw to be infinitesimally
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invariant with respect to an action Av means for the covariance tensor that
C(v, w) = 0.

Now we take a look at the semigroup generated by a set of covariant tensor
operators. A one-parameter Lie semigroup is generated by an element in the
corresponding Lie wedge w ∈ h by R+ 3 s 7→ exp(sw) = hw(s) ∈ Hw ⊂ H . Let
u : H × Ω → R and set h 3 w 7→ uw(s, x) = u(hw(s), x),

{

∂suw = Bwuw

uw(e, x) = f(x),
(7)

where f ∈ Σ. For an abstract Cauchy problem, like (7), the solution can be
described in terms of a semigroup uw(s, x) = exp(sBw)f(x) = Φhw(s)f(x). And
given that we have chosen semigroups h ∈ H , such that h = exp(sw) for some
s ∈ R+, w ∈ h, we have [9],

u(h, x) = Φhf(x). (8)

Reconnecting to the G scale-space axioms, Definition 3, the Cauchy problem
(7) for a g tensor operator generates a G-covariant semigroup. Furthermore,
looking at Definition 1, the semigroup will be linear as long as the infinitesimal
generator Bw is independent of the evolution parameter (s in (7)). Also the
point property follows from the boundary condition in (7). What is left to give
an infinitesimal characterization of is the positivity and gray level invariance
properties.

3.2 Pseudo differential operators

For being able to continue we must be more concrete about the form of the
operators in (5). The infinitesimal generators of the transformation group are
on the form:

∑

j≤n aj(x)∂j , where aj : M → R. In earlier work in scale-space
theory the infinitesimal generator have been the inverse Fourier transform of
some smooth function. By using pseudodifferential operators, ΨDO, [3] we get a
large enough class of operators to embed both of them. ΨDO’s are defined by

Au(x) = (2π)−n

∫

eix·ξa(x, ξ)ũ(ξ)dξ, (9)

where ũ(ξ) =
∫

e−ix·ξu(x)dx and a(x, ξ) =
∑

|α|≤m aα(x)ξα, and is called the

symbol of A. The corresponding operator is denoted a(x, D).
The composition of two symbols is:

c(x, ξ) = a(x, ξ) ◦ b(x, ξ) =
∑

α

1

α!
[∂α

ξ a(x, ξ)] · [Dα
x b(x, ξ)], (10)

where Dj = i−1∂j and the commutator determines a Lie algebra structure on
the symbols.

In this paper we will only consider translation invariant scale-spaces which
further restricts the form of the symbol. A base for the Lie algebra of translations
is, t(n) = {∂1, . . . , ∂n}, and the corresponding symbols are, ∂j ∼ i−1ξj .
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Lemma 1. Translation invariant symbols are position independent, b(x, ξ) =
b(ξ).

Proof. An infinitesimally translational invariant symbol b fulfills, [i−1ξj , b(x, ξ)] =
0, for j ≤ n. Leading to, ∂xj

b(x, ξ) = 0, for all j ≤ n, i.e. the symbol is indepen-
dent of x.

We can also see that any two translationally invariant symbols bi(ξ), bj(ξ) com-
mutes, [bi(ξ), bj(ξ)] = 0, which means that cones of translation invariant symbols
automatically becomes Lie wedges.

3.3 Positivity and gray level invariance

A positive translation invariant linear operator has a positive kernel. It can
be shown that a kernel Ω 3 x 7→ φ(x), is positive iff its Fourier transform is
positive definite, i.e. for each k ∈ N and each set of ξ1, . . . , ξk ∈ Rd the matrix
(φ̃(ξi−ξj))i,j=1,...,k is positive Hermitian, (e.g. [10]). Furthermore for kernels that

generate a semigroup R+ 3 s 7→ φs, their Fourier transform is φ̃s(ξ) = e−sb(ξ),
where Rd 3 ξ 7→ b(ξ) ∈ C.

Definition 4. A symbol Rd 3 ξ 7→ b(ξ) ∈ C is negative definite if the matrix
(b(ξi) + b(ξj)− b(ξi − ξj))i,j=1,...,k is positive Hermitian for any choice of k ∈ N

and each set of ξ1, . . . , ξk ∈ Rd.

A kernel is positive definite iff its symbol is negative definite [10]. For negative
definite symbols b(ξ), b(0) ≥ 0 and they have at most quadratic growth at ∞
i.e. |b(ξ)| ≤ kb(1 + |ξ|2) for some kb ∈ R+.

For gray level invariance we use an adaption of a theorem from [10].

Theorem 1. For a gray level invariant semigroup Φs generated by the B with
symbol b the following holds: Φs1 = 1 for all s ≥ 0, B1 = 0 and b(0) = 0 where
Ω 3 x 7→ 1(x) = 1.

A generator such that B1 = 0 is said to be conservative.

3.4 Infinitesimal G scale-space

Combining our results about infinitesimal generators of a G scale-space, we can
now state:

Definition 5. A g scale-space wedge, is a minimal Lie wedge of negative definite
conservative operators h 3 w 7→ Bw : L(Σ, Σ), that is a covariant tensor operator
(5), with respect on the Lie algebra action g 3 v 7→ Av : L(Σ, Σ) and the Lie
algebra and Lie wedge representation (v, w) 7→ C(v, w).

Summarizing the discussion above:

Theorem 2. A G scale-space is generated (using (7)) by its corresponding g

scale-space wedge.
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4 Scale-space generators

Now we have the tools we need for being able to study infinitesimal G-scale
spaces. We will apply these tools for the affine line, Euclidean similarity spaces,
and Galilean spaces with scaling in time and space.

4.1 The affine line

A one dimensional scale space measurement is invariant with respect to trans-
lation and covariant with respect to scaling. The affine line has the infinitesimal
generators,

gl(1) = t(1) ∪ {x∂x}, (11)

commutator [∂x, x∂x] = ∂x, and the symbol for scaling is, i−1xξ.

Lemma 2. Translation invariant symbols b : R → C covariant with gl(1) are
on the form, b(ξ) = kξα for any k ∈ C and α ∈ R.

Proof. From translation invariance, the covariance tensor must obviously be
trivial for the translation generator, for scaling the simplest non-trivial rep-
resentation is C(x∂x) = α, for any α ∈ R. Combining this with, (5) we have,
[i−1xξ, b(ξ)] = αb(ξ), for the symbol b(ξ). Using (10), we get ξb′(ξ) = αb(ξ)
which has solutions on the form given in the lemma.

Parameterizing k as k = ceiθπ/2, where c, θ ∈ R and disregarding the, in this
context, uninteresting scaling parameter c, we have:

Definition 6. The Feller fractional derivative [17] is defined as,

Dα
θ (ξ) = −eiθπ/2ξα = −|ξ|αei sign(ξ)θπ/2, (12)

where 0 < α ≤ 2, α 6= 1 and |θ| ≤ α for 0 < α < 1 and |θ| ≤ 2−α for 1 < α ≤ 2.
The symmetric part Dα

0 = Dα ∼ |ξ|α is called the Riesz fractional derivative.
For ξ ∈ Rd the notation −(−∆)α/2 = Dα, is also used for emphasizing that the
derivative can be seen as a generalization of the Laplacian.

Decomposed as a linear combination of the two one sided operators, Dα
θ (ξ) =

−c+(α, θ)Dα
+(ξ)−c−(α, θ)Dα

−(ξ), the operator Dα
+ (Dα

−) is called the left (right)
sided Riemann Liouville fractional derivative and is given by,

Dα
±(ξ) = (∓iξ)α = |ξ|αe∓i sign(ξ)απ/2, c±(α, θ) =

sin[(α ∓ θ)π/2]

sin(απ)
. (13)

It can be shown that the Feller derivative is negative definite and conservative
for the values of α, θ given in the definition. And from this we have:

Theorem 3. A gl(1) scale-space wedge is generated by a Feller fractional deriva-
tive Dα

θ with parameters according to the definition. The subspace of reflec-
tion symmetric wedges are generated by Riesz fractional derivatives Dα with
0 < α ≤ 2 and temporally causal wedges by left sided Riemann Liouville frac-
tional derivatives Dα

+ with 0 < α < 1.
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The three parameter family of functions generated of the Feller derivative are
called stable densities [5] and appear in generalizations of the central limit
theorem. The stable density for α = 2, θ = 0 is the normal distribution, for
α = 1, θ = 0 it is the Cauchy distribution and for α = θ = 1/2 is the solution
of the signaling equation, i.e. diffusion on the half line with the signal as input
at the end. Symmetric stable densities, θ = 0 was the result of the scale space
axiomatization in [15, 2]. The maximally asymmetric, extremal stable density
functions are one sided for 0 < α < 1 and θ = ±α, these where the result of an
axiomatization of scale spaces with temporal causality in [4].

In [15, 2] these result are extended to the Euclidean similarity group, which
on R

2 consists of translation in the plane, rotation and scaling.

Theorem 4. A Euclidean similarity es(2) = t(2)∪s(2)∪so(2) scale-space wedge
is generated for any 0 < α ≤ 2 by the Riesz fractional derivative −(−∆)α/2.

Where s(2) = {x1∂1+x2∂2} is the scaling generator is and so(2) = {x2∂1−x1∂2}
is the rotation generator.

4.2 Galilean Similarity

The 1 + 1 dimensional Galilean similarity group, i.e. translation invariance in
space and time, separate scaling in space and time and Galilean boost in space
time, have the following set of infinitesimal generators,

γs(2) = t(2) ∪ s(1) ⊕ s(1) ∪ γ(1), (14)

where γ(1) = {γ = x0∂1} is the Galilean boost that “skew” space-time and
s(1)⊕s(1) is a direct sum of the scaling generator in space and time respectively.
The non-zero commutators are [∂j , xj∂j ] = ∂j , [∂0, γ] = ∂1, [x0∂0, γ] = γ and
[x1∂1, γ] = −γ.

Theorem 5. A γs(2) scale-space wedge is generated by {∂2
0 , ∂0∂1, ∂

2
1}.

Proof. Requiring our Lie wedge separately covariant with respect to scaling
booth in space and time and using the results from scale space on the affine line
we can see that any wedge must contain two generators on the form bj(ξ0, ξ1) =
kjξ

αj

j , j = 0, 1. Applying the Galilean boost, which has the symbol γ = i−1x0ξ1

on these the spatial generator disappears [γ, k1ξ
α1

1 ] = 0, while repeated applica-
tion of the Galilean boost on the temporal generator gives, ad(i−1x0ξ1)

l(k0ξ
α0

0 ) =

k0(
∏l−1

j=0 α0−j)ξα0−l
0 ξl

1, where ad(a)(b) = [a, b]. To get a finite base of generators
we must have α0 ∈ Z+, furthermore to generate a positive semigroup α0, α1 ≤ 2.
For α0 = 2 we get the set of symbols, {ξ2

0 , ξ0ξ1, ξ
2
1}, k0 ∈ R for α = 2 (then only

θ = 0 is allowed). This set of generators are booth closed under the Galilean
similarity group and complete by choosing α1 = 2, k1 = 1 for the spatial gener-
ator.

It should be noted that the generated scale-space is symmetric booth in time
and space and thus no time causal scale-spaces are given with this axiomatiza-
tion. And as γs(n), n ≥ 2 have γs(2) as a sub algebra, no time causal scale-spaces
are possible for them either.
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5 Time causal Galilean scale-spaces

This far we have seen that Galilean scale-spaces as we have defined them have
kernels that are symmetric in the temporal direction. This means that both the
past and the future signal is used for the measurement, this is a disappointment
if we want to use such a scale space for real time measurements.

Definition 7. The history at time t of the spatio-temporal signal R × Rd 3
(t, x) 7→ f(t, x) ∈ R is, f(t, s, x) = f(t − s, x) when s < t and 0 otherwise. A
time causal measurement operator only depends on the history at time t for a
measurement at t.

For a real time system temporal causality is obviously necessary. But as discussed
in [4] defining temporal measurement in terms of a convolution or a evaluation
equation on the history is to beg the question. It would require the measurement
device to already have access to what it is supposed to measure.

This conceptual problem can be resolved by involving a memory of the history
in the definition of temporal measurement. The measurement device should only
have access to the current signal and its memory of previous measurements. As
the memory is supposed to represent the history it is reasonable to make it as
similar to the history as possible. This can be done by requiring the memory to
be a half-space of the same dimensions as the history and subject to the same
symmetry requirements.

We apply these considerations on the pure time causal scale-space (with no
spatial dimensions).

Definition 8. A time causal scale-space on the affine line R × R+ 3 (t, τ) 7→
u(t, τ), where t is the temporal coordinate and τ the memory coordinate, is gen-
erated by the signaling problem,

{

∂tu = Bu
u(t, 0) = f(t),

(15)

where the operator B is independent of time and f : Σ is the input signal.
The measurement operator implicitly defined by u(t, τ) = Φτf(t) is a GL(1)
covariant point measurement operator (but not necessarily a semigroup) and the
infinitesimal generator B is a gl(1) scale-space wedge.

Theorem 6. A time causal scale-space on the affine line is generated by the
right sided Riemann Liouville fractional derivative Dα

τ−, with 1 < α ≤ 2 (where
the suffix τ denotes that it is applied on the memory domain).

Proof. The form of the generators of the gl(1) scale-space wedge is given in
Theorem 3. Of the generators given there, only B = Dα

τ−, 0 < α ≤ 2 are
translation invariant on the right (positive) half line, as all other generators
have support on the left half line as well (for non integer differentiation order).

In [4] it is shown that (15), with B = Dα
τ− is equivalent to ∂τu = −D

1/α
t+ u

with initial value u(t, 0) = f(t), where 0 < 1/α < 1 that is α > 1 for Φτ to be a
time causal scale space.
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It is worth noticing that the only local generator for this family of scale spaces
is D2

τ− = ∂2
τ , which means that in this case the scale space is generated by

the heat equation, although with different boundary conditions compared to
ordinary spatial scale space.

5.1 Galilean similarity

Now we extend these results to Galilean space-time. The time causal Galilean
scale-space is as discussed above a scale space on space and memory rather than
on space and time. Something new compared to the the previously discussed
scale-spaces is that for the generator of the scale space on memory ∂t = Dα

τ−,
the symmetry Lie algebra will not only act on the generator but on the time
derivative ∂t as well.

Definition 9. Let γs(d + 1) = es(d) ⊕ gl(1) ∪ γ(d). The d + 1-dimensional
time causal Galilean scale-space R+ × Rd × R+ × R × Rd 3 (σ, v, τ, t, x) 7→
u(σ, v, τ, t, x) ∈ R, where σ is spatial scale, v is velocity, τ is memory (and tem-
poral scale) is a γs(d+1)-covariant, point measurement space in space-time (t, x)
and a gl(1)-wedge in memory τ .

Theorem 7. A d+1-dimensional time causal Galilean scale-space (for d = 1, 2)
is generated by the evolution equation,







∂tu = −v · ∇xu + Dα0

τ−u

∂σu = −(−∆x)α/2u
u(0, 0, 0, t, x) = f(t, x),

(16)

where 1 < α0 ≤ 2, 0 < α ≤ 2, σ is the spatial scale direction, v ∈ R
d the velocity

vector, ∂s = ∂t + v · ∇x is the spatio-temporal direction, ∇x = (∂1, . . . , ∂d) is the
spatial gradient and ∆x is the spatial Laplacian.

The equation,






∂tu = −v · ∇xu + ∂2
τu

∂σu = ∆xu
u(0, 0, 0, t, x) = f(t, x),

(17)

is unique in the family of evolution equations as it is the only one that has local
generators.

Proof. First it is shown in Theorem 4 that the spatial part of the scale space is
generated by ∂σu = −(−∆x)α/2u, 0 < α ≤ 2 that besides being covariant with
es(2) is invariant with respect to temporal translation and scaling and spatio-
temporal Galilean boost. For the temporal part of the scale-space we know from
Theorem 6 that the generator ∂tu = Dα0

τ−u, 1 < α ≤ 2 is a gl(1)-wedge. As
Dα0

τ− is independent of space and time it is obviously invariant with the Galilean
similarity group. But ∂t is not checking for the commutation relations with
γs(d + 1) the non zero commutators are for scaling [∂t, t∂t] = ∂t and for the
Galilean boosts [∂t, t∂j ] = ∂j , i = 1, 2. Checking ∂j for all commutators no
further generators are added, so {∂t, ∂j} is closed under γs(d + 1). As a result,
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linear combinations of {∂j}, that is v ·∇x, v ∈ Rd must be added to the temporal
scale-space generator to make it closed under the required symmetries.

While there is no closed form for the general causal Galilean scale-space, it can
be shown that (17) have the solution

u(σ, v, τ, t, x) = φ(σ, v, τ, ·, ·) ∗ f(t, x), (18)

φ(σ, v, τ, t, x) =
τ exp(− τ2

4t − (x−tv)·(x−tv)
4σ )√

4πt3/2(4πσ)d/2
. (19)

.

Fig. 1. Causal Galilean scale-space: space vertically and time horizontally, from left to
right: two different velocity adaptations of u, then ux, uxx, ut, uxt, uxxt

.

6 Discussion

The main result of this article is that we have shown (Theorem 7), that there is a
reasonable spatio-temporal velocity adapted scale space for an active observer. It
is booth time causal and recursively generated, in the sense that it only depends
on current input and its memory, not the history of the input. The set of axioms
is very close to modern scale-space axiomatizations [18], but with the main
difference that we apply them on space and memory instead of space and time.

Comparing to earlier formulations of time causal Galilean scale spaces Lin-
deberg’s [12] is close in the sense that it is a recursive formulation, but the for-
mulation is discrete so covariances are only approximate and it is much harder
analyze the properties. The approach from Florack [6] is based on a Gaussian
Galilean scale-space that is made time causal by doing a logarithmic transforma-
tion of the time domain, it depends on the history of the signal and no recursive
formulation has been suggested. Salden [16] have proposed a time causal spatio-
temporal scale-space where the diffusion equation is applied (separately on the
spatial and temporal domain) on the history of the signal so it is obviously
dependent on history rather than recursive. Although the original formulation
is not Galilean, it could easily be, by using a Galilean transformation on the
generator.

For numerical implementation of the time causal Galilean scale-space the
heat equation scheme (17) is most attractive as the fractional derivatives are
integral operators and need to involve a much larger number of grid points for
getting satisfying precision. For the heat equation it should be noted that it
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consists of two independent heat equations one in space and one in space time.
The one in space can be computed with an explicit scheme for the heat equation
with sub sampling as described in [13]. For the spatio-temporal part the scheme
in [4] can be used. This makes the proposed scale-space highly efficient as only a
two or three point derivative kernel needs to be applied in the temporal direction
instead of a full temporal convolution kernel.
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