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Abstract. In this paper we discuss how to define a scale space suitable
for temporal measurements. We argue that such a temporal scale space
should possess the properties of: temporal causality, linearity, continuity,
positivity, recursitivity as well as translational and scaling covariance. It
is shown that these requirements imply a one parameter family of con-
volution kernels. Furthermore it is shown that these measurements can
be realized in a time recursive way, with the current data as input and
the temporal scale space as state, i.e. there is no need for storing ear-
lier input. This family of measurement processes contains the diffusion
equation on the half line (that represents the temporal scale) with the
input signal as boundary condition on the temporal axis. The diffusion
equation is unique among the measurement processes in the sense that it
is preserves positivity (in the scale domain) and is infinitesimally gener-
ated. A numerical scheme is developed and relations to other approaches
are discussed.

1 Introduction

An important difference between spatial and temporal observation is that while
all spatial directions basically can be treated in the same way there is certainly
a difference between moving forward and backward in time. We have no access
to future observations while we could have memorized earlier observations. A
temporal observer must respect causality.

Furthermore, if we consider a causal scale space as an idealized device for
performing real time measurement of a temporal signal the observer cannot ac-
cess the past, only its memory of the past. An important property of a theory
about real time temporal measurements is therefore that it has a time recursive
formulation.

There have been several proposals on how to define a causal scale space.
Koenderink [5] and Florack [3] map the half-line between current moment and
the infinite past to a line by a logarithmic transformation. They then apply
Gaussian scale space on the transformed signal. Lindeberg and Fagerström [7]
base their axiomatization on the non-creation of local extrema. The axioma-
tization leads to scale spaces where either time or scale must be discrete and
their scale spaces are not scale covariant. Salden et al. [11] derive the diffusion



equation from conservation principles. They adapt their theory to the temporal
domain by applying the diffusion equation on the past half-line, and by imposing
reflecting boundary conditions.

The causal scale space theories of Koenderink [5], Florack [3] and Salden et al.
[11] are formulated in terms of convolution against or diffusion on the past signal
and have to our knowledge, no time recursive realization. The causal scale space
theory of Lindeberg and Fagerström [7], has a time recursive formulation, but
its lack of continuous formulation and scale covariance makes it less convenient
to use as a basic theory about temporal observation.

In this article we will require a causal scale space to be temporally causal,
linear, continuous, positive, having translational and scaling covariance and hav-
ing a semigroup property. These requirements are the same as Pauwels et al. [8]
used for defining scale spaces appropriate for spatial measurements, except for
that we require temporal causality instead of reflectional symmetry. Each scale
in the causal scale space is generated by convolving the input signal with a causal
scale space kernel of a certain dilation. We show that there is a one parameter
family of convolution kernels, know from probability theory as extremal stable
density functions, that fulfills our requirements. We continue by showing that
there is a time recursive realization of the causal scale spaces, using only the
scale space it self as memory of earlier input. For only one of the parameter
values, the recursive realization is infinitesimally generated. For this parameter
the temporal scale space is given by the diffusion equation on the half line, a
numerical scheme is given for this special case. We conclude by a comparison
with earlier works.

2 Temporal Measurement

An temporal signal is usually thought about as a function from time coordinates
to scalar values, u(t). However, measurement of the instantaneous value of a
signal is physically impossible, each measurement must take a non vanishing
amount of time. Following the approach advocated by Florack [3] we instead
start by designing our measurement apparatus, our space of test functions φ ∈ ∆,
and try to make them as point like as possible . We then consider the temporal
signal as a “black box”, u ∈ Σ, that we can probe with our test functions, u(φ).
Even if we cannot measure the instantaneous value of the signal we still need to
associate each measurement with a certain moment, so that the measurement
can be said to be performed at time t. To accomplish this a measurement time:

π(φ) = t, π : ∆→ IR,

is defined for each test function, and the notation φt ∈ π−1(t), is used for de-
noting a test function applied at time t.

For a seeing system with a wide range of visual competences it seems reason-
able that the representation of the visual measurement as far as possible should
avoid semantic interpretation of the environment, it should be uncommitted [6].
The representation of the input should just embody general structure in the
environment.



2.1 Linearity

The measurement process is supposed to be linear,

u(αφ+ βψ) = αu(φ) + βu(ψ),

with α, β ∈ IR. We also require that the sensor functions are well behaved in the
following sense:

∆ ⊂ L1 ∩ C∞ ∩ {φ|φ(−∞) = φ(∞) = 0}.

The signal space Σ is defined as the topologically dual space to the space of test
functions, Σ = ∆′ [14]. In many cases a signal u ∈ Σ can be represented, using
the Riesz representation theorem, as u(φ) =

∫
u′(t)φ(t) dt, for some function u′.

Differentiation in the signal space can be defined by

(∂tu)(φ) = −u(∂tφ). (1)

We don’t have to worry about the differentiability of the signals, it suffices to
have differentiable test functions. The action of a diffeomorphism f on a signal
can be defined as:

fu(φ) = u(|Jf−1 |φ ◦ f−1). (2)

Our main task is to define a minimal space of test functions, that suits the
needs of the observation task.

2.2 Causality

A temporal measurement should not involve any future information.

φt(t′) = 0,∀t′ > t (3)

This formalizes the differences between time and space that was discussed above.

2.3 Covariance

The structure of the sensor system should correspond to regularities in the en-
vironment. There is no a priori reason to believe that a certain moment of time,
or a certain span of time should posses properties different from all the rest.
This should be reflected in the measurement process: i.e. it should be transla-
tion covariant, the measurement process should be the same for each moment
of time, and it should be scaling covariant, all length of time spans should be
treated in the same way. To obtain translation and scaling covariance, a family
of test functions φ′t,τ : IRIR+ → ∆, indexed by time t and scale τ is needed.
Measurement at scale τ , is denoted by:

Φτu(t) = u(φ′t,τ ), Φτ : Σ → C∞. (4)



Measurement is translation covariant if

ΦτTa = TaΦτ , (5)

where Taf(x) = f(x− a). From the left hand side we get,

ΦτTau(t) = Tau(φ′t,τ ) = u(T−aφ′t,τ ),

by using equation (2), and from the right hand side we get,

TaΦτu(t) = Φτu(t− a) = u(φ′t−a,τ )

As this holds for all u we get,

Taφ
′
t,τ = φ′t+a,τ ,

and
φ′t,τ (t

′) = Ttφ
′
0,τ (t

′) = φ′0,τ (t
′ − t) = φ0,τ (t− t′),

where φt,τ (t) = φ′t,τ (−t). Using this in equation (4), we get,

Φτu(t) = u(φ0,τ (t− ·)) = u ∗ φ0,τ (t) = u ∗ φτ (t), (6)

where the convolution is in distribution sense and φτ = φ0,τ . We also note that
while convolution kernels are reflected compared to measurement functions, the
temporal causality requirement for convolution kernels becomes:

φτ (t) = 0,∀t < 0. (7)

Scaling covariance has a somewhat more complicated form:

ΦτSγ = SγΦψ(γ)τ , (8)

where Sγf(x) = f(γx) and ψ is an invertible function such that ψ(0) = 0. Scaling
up a signal and then applying measurement devices of a certain size corresponds
to using smaller measurement devices at the original signal and performing the
scaling afterward. Why there is a need for a coordinate change ψ on the rescaling
parameter γ, will be clear later. From the left hand side of equation (8), and
equation (2) we get

ΦτSγu(t) = Sγu ∗ φτ (t) = u(Dγφτ (t− ·)),

where Dγf(x) = (1/γ)f(x/γ), and from the right hand side we get,

SγΦψ(γ)τu(t) = Φψ(γ)τu(γt) = u(φψ(γ)τ (γt− ·)).

Combining these two expressions and setting t = 0 we have,

Dγφτ = φψ(γ)τ . (9)



2.4 Cascade Property

The result of a measurement of a signal can be considered to be a signal in
turn. It then seems reasonable that a measurement of a measurement should
correspond to single measurement. This can be formalized as:

ΦτΦτ ′ = Φτ+τ ′ , (10)

that is measurements form a semigroup. The semigroup property of measurement
means that the measurement kernels form a convolution algebra. From the left
hand side,

ΦτΦτ ′u = (Φτ ′u) ∗ φτ = (u ∗ φτ ′) ∗ φτ = u ∗ (φτ ′ ∗ φτ ),

and from the right hand side, Φτ+τ ′u = u ∗ φτ+τ ′ , and by combining these we
get,

φτ ∗ φτ ′ = φτ+τ ′ . (11)

2.5 Extended Point

As mentioned earlier a measurement should approach a pointwise value of the
signal. This could be described as:

lim
τ→0

φτ = δ, (12)

the measurement kernel approaches a Dirac pulse. We also want the measure-
ment kernel to have unit area: ∫

φτ = 1, (13)

and to be positive,
u ≥ 0 ⇒ u(φτ ) ≥ 0. (14)

3 Characterization of causal scale space kernels

We can now summarize the requirements on measurement kernels for a causal
scale space.

Definition 1. φτ (t) is called a causal scale space kernel if it possesses the prop-
erties of: Continuity, Positivity (Eq. 14), Unit area (Eq. 13), Temporal causality
(Eq. 7), Dilation covariance (Eq. 9), Convolution semigroup (Eq. 11)

Pauwels et al [8] used the same axioms, with temporal causality replaced by
reflection symmetry, to characterize spatial scale spaces (see Weickert et al. [15],
for comparison between different scale space axiomatizations).

We now derive the form of causal scale space kernels in a sequence of lemmas.



Lemma 1 (Convolution semigroup). Let φτ (t) be an absolutely integrable
causal function, then it is a convolution semigroup iff its Laplace transform
φ̃τ (s) = e−g(s)τ , where g(s) ∈ IR for s ∈ IR.

Proof. From absolute integrability it can be conclude that the Laplace transform
of φτ exists and is given by

φ̃τ (s) = L[φτ (·)] =
∫ ∞

0

e−stφτ (t) dt.

In the Laplace transform domain the convolution semigroup property becomes
φ̃τ1 φ̃τ2 = φ̃τ1+τ2 . This is an instance of Cauchy’s functional equation f(x +
y) = f(x)f(y). For continuous real functions it has the unique solution f(x) =
e−cx, c ∈ IR, (see e.g. [1]) and hence

φ̃τ (s) = e−g(s)τ , (15)

where g(s) ∈ IR.

Now we will use the dilation covariance to further restrict the form of φτ .

Lemma 2 (Dilation covariant convolution semigroup). Let φτ (t) be an
absolutely integrable causal function, then it is a dilation covariant convolution
semigroup iff its Laplace transform φ̃τ (s) = φ̃α,τ (s) = e−s

ατ , for s ≥ 0 and
α > 0.

Proof. The Laplace transform of the dilation covariant equation is

φ̃τ (γs) = φ̃ψ(γ)τ (s). (16)

Substituting (15) in (16) one obtains

e−g(γs)τ = e−ψ(γ)g(s)τ (17)

and, since the exponential function is invertible,

g(γs) = ψ(γ)g(s) (18)

must hold. Without loss of generality one can assume that g(1) = 1, and by
inserting s = 1 in (18), we get ψ(γ) = g(γ), and (18) becomes

g(γs) = g(γ)g(s). (19)

By setting g(t) = f(log(t)), we can see that (19) is another form of Cauchy’s
functional equation, and that g must have the form g(s) = sα, α ∈ IR. Substi-
tuted into (15), we get

φ̃α,τ (s) = e−s
ατ . (20)

From the proof above we also get the form for the function ψ(γ) = γα, for
the dilation covariance property (9)



Corollary 1. Let {φτ |τ ≥ 0} be a convolution semigroup, where φτ are abso-
lutely integrable causal functions, then the functions are dilation covariant iff

Dγφτ = φγατ . (21)

We still need to determine for what values of the parameter α that φ̃τ is a
Laplace transform of a normalizing non negative function. To be able to do this
we need a few facts from Laplace transform theory.

Definition 2. A function f on IR+ is called completely monotone (see e.g. [2]),
if it has derivatives of all orders and fulfill

(−1)nf (n)(s) ≥ 0, s > 0. (22)

Theorem 1 (Bernstein). A function f on IR+ is the Laplace transform of a
non negative normalizing function, iff it is completely monotone and f(0) = 1,
(see e.g. [2]).

More specifically a function e−f is completely monotone if f is a positive
function with a completely monotone derivative.

From this we can prove our main theorem:

Theorem 2 (The form of causal scale space kernels). φα,τ (t) is a causal
scale space kernel iff

φα,τ (t) = L−1[e−s
ατ ] (23)

for a fixed 0 < α < 1.

Proof. sα is a positive function if α ≥ 0 and it is completely monotone if 0 ≤
α ≤ 1. φ0,τ = δ(t) and φ1,τ = δ(t− τ) respectively, and thus continuity implies
that α 6= 0 and α 6= 1. For 0 < α < 1 φα,τ (t) is continuous for t ≥ 0.

There does not seem to be any known closed form of φα,τ , but a series
expansion is possible.

φα,τ (t) = L−1[e−s
ατ ] (24)

=
∞∑
k=0

L−1[
(−sατ)k

k!
] (25)

=
1
t

∞∑
k=0

(−τ)k

k!Γ (−kα)
t−kα. (26)

Remark 1. For the particular case α = 1/2 an explicit form of the causal scale
space kernel is known to be

φ1/2,τ (t) =
τ√
4π

exp(−τ2/4t)
t3/2

= −2∂τkt(τ), t ≥ 0 (27)

where kσ is the Gaussian function

kσ(x) =
e−x

2
/4σ√

4πσ
(28)



Fig. 1. φα,1(t) for α = {0.3, 0.4,0.5, 0.6, 0.7, 0.8, 0.9}, where larger α corresponds to
functions peaking further to the right and the thicker line corresponds to α = 0.5.

4 Stable Density Functions

The one parameter family of causal scale space kernels derived above, is well
known in the field of probability theory as extremal stable density functions (the
results from probability theory reviewed here can be found in e.g. [2]). These
functions were one of the findings from the various attempts to generalize the
central limit theorem during the first half of the 20:th century. The central limit
theorem basically states that if X1, X2, . . . are mutually independent one dimen-
sional random variables with zero mean and finite variance, the distributions of
the normalized sums

Sn = Fn(X1 + . . .+Xn),

where Fn is a normalization function with appropriate properties, tend to a
normal distribution as n→∞.

P. Levy generalized the central limit theorem by removing the requirements
on zero mean and finite variance. For this generalization, the densities of the limit
sums of stochastic variables are denoted stable density functions, which is a two
parameter family of functions. One sided (causal) stable density functions forms
a one parameter subfamily called extremal stable density functions, the same
family of functions that we derived from the causal scale space kernel axioms
in Definition 1. Symmetric stable density functions also form a one parameter
subfamily of stable density functions, with the Cauchy and the Gaussian densities
as notable members. The one parameter family of symmetric scale space kernel
found by Pauwels et al. [8] is identical to the symmetric stable density functions.

Some of the relation between the generalized limit theorem and the causal
scale space axioms (Definition 1) can roughly be sketched as follows: Density
functions have unit area and are positive. Addition of stochastic variables cor-
respond to convolution of their density functions. The dilation covariance re-
quirement corresponds to properties of the normalization function in the limit
theorems.

The stable density functions that are neither extremal nor symmetric can be
said to lie between these two families and are more or less skew. If we were to
define scale spaces (from the axioms in Definition 1 or the axioms in [8]), but
without requiring causality or symmetry, the scale space kernels of those scale
spaces would precisely correspond to the family of stable density functions.

4.1 Scaling Properties

All stable density functions except the Gaussian density function have infinite
variance and the extremal stable density functions also have infinite mean. Stable



density functions are also known to be unimodal. From causality and unimodality
we can draw the conclusion that a temporal measurement gives the highest
weight to values of the input signals that occurred a while ago, (which can also
be seen in Figure 1. This can be described as that there is a certain delay for each
measurements, and this delay will be larger for measurement at larger scales. The
delay cannot be described in terms of the mean as the mean is infinite for causal
scale space kernels. The mode i.e. the maximum of the density function can be
used instead. For φ1/2,τ the mode tm(τ) easily can be shown to be

tm(τ) =
τ2

6
,

by solving (d/dt)φ1/2,τ (t) = 0, for t. For general causal scale space kernels it
seems harder to find the mode, but we can at least derive how the mode is a
function of scale modulo a constant.

Proposition 1. Let Tα,m = tα,m(1) then

tα,m(τ) = Tα,mτ
1/α. (29)

Proof. By setting γατ = 1 that is γ = τ−1/α in Equation 21 we get

φα,1(Tα,m) =
1
γ
φα,τ (

Tα,m
γ

) =
1
γ
φα,τ (tα,m(τ))

and therefore
tα,m(τ) =

Tα,m
γ

= Tα,mτ
1/α.

5 Recursive Formulation

A theory about temporal measurement must respect causality, the observer can-
not access the future. Furthermore, the observer cannot access the past. The
only way the observer can use information from its past is through its memory
of past measurements, the observer must embody its past. That is, some kind
of memory must be involved in the model and an important property for a tem-
poral measurement theory is its memory model. From the result above, where
the temporal measurement is described in terms of a convolution of a kernel
with the past signal, it might seem like the memory must contain the whole past
signal. However, we will show that all information about the past that is needed
is contained in the temporal scale space at the current moment. The scale space
can be described in terms of an integrodifferential equation, where the temporal
scale space evolves over time with the input signal as boundary condition.

5.1 Fractional Derivatives

The evolution equation involves fractional derivatives so we start by defining
them.



Definition 3. Dp
x,+, is called the p-order left sided Riemann-Liouville fractional

derivative [12] in x and is defined as,

Dp
x,+f(x) =

1
Γ (k − p)

(∂x)k
∫ x

0

(x− y)k−p−1f(y) dy, (k − 1 ≤ p < k) (30)

= (∂x)k(
xk−p−1

+

Γ (k − p)
∗ f(x)), (31)

where x+ is equal to x for x > 0 and zero for x ≤ 0.

Fractional order derivatives are generalizations of ordinary derivatives. They
are linear operators, satisfy a generalization of the Leibniz rule and integer order
fractional derivatives are equivalent to ordinary derivatives.

Different families of fractional derivatives can be created by integrating over
other intervals than in equation (30) [12]. We will also use left sided fractional
derivatives in the sequel.

Definition 4. Dp
x,−, is called the p-order right sided Riemann-Liouville frac-

tional derivative [12] in x and is defined as,

Dp
x,−f(x) =

1
Γ (k − p)

(−∂x)k
∫ ∞

x

(y − x)k−p−1f(y) dy, (k − 1 ≤ p < k).

(32)

5.2 Infinitesimal Generator

Now we can state a partial integrodifferential equation that generates the causal
scale spaces.

Theorem 3. The temporal scale space u(t, x) = (φα,x ∗ f)(t), 0 < α < 1, is the
unique solution to the partial integrodifferential equation{

∂xu = −Dα
t,+u

limx→0 u(t, x) = f(t) (33)

Proof. A semigroup T , that fulfills a certain continuity requirement, strong con-
tinuity, is the unique solution to the abstract Cauchy problem, (see e.g. [4]){

∂tu = Au
limt→0 u(t) = f

(34)

A is denoted the infinitesimal generator of the semigroup, and is defined as
A = limh→0+Ah, where Ah = (T (h)− I)/h. A semigroup is strongly continuous
if, for all f , T (t)f is continuous in t on IR+.

φα,τ is strongly continuous as a consequence of the continuity axiom (Defi-
nition 1). Its infinitesimal generator is readily found in the Laplace domain,

L[Ahu] = L[(Φα,hu− u)/h] =
1
h

(e−s
αh − 1)L[u], (35)



and
L[A] = lim

h→0+

1
h

(e−s
αh − 1) = −sα. (36)

This is the Laplace transform of the left sided Riemann-Liouville fractional
derivative of order α:

L[Dα
t,+u] = L[(∂x)(

x−α+

Γ (1− α)
∗ u(x))] (37)

= sL[
x−α+

Γ (1− α)
∗ u(x)]−

(
x−α+

Γ (1− α)
∗ u(x)

)
x=0

(38)

= sL[
x−α+

Γ (1− α)
]L[u(x)] (39)

= ss−(1−α)L[u(x)] (40)
= s−αL[u(x)] (41)

(42)

It should be noted that we still lack a time recursive formulation, as the
fractional operator Dα

t,+ for 0 < α < 1 applied on the temporal signal is non-
local, (it has in fact support on the whole half axis).

5.3 Evolution Equation

Interestingly enough, the partial integrodifferential equation from Theorem 3
above can be transformed to an partial integrodifferential equation that only
applies a first derivative on the temporal signal.

Theorem 4. The temporal scale space u(t, x) = (φα,x ∗ f)(t), 0 < α < 1, is the
unique solution to the partial integrodifferential equation∂tu = D

1/α
x,−u

limx→0 u(t, x) = f(t)
u(0, x) = 0.

(43)

Proof. We need a linear operator Ax in x that satisfies:

∂tu = Axu. (44)

In the Laplace transform domain this becomes:

L[∂tu] = se−s
αxL[f ] = L[Axu] = AxL[u] = Ax[e−s

αx]L[f ], (45)

and thus Ax must satisfy,
Axe

−sαx = se−s
αx. (46)

A linear operator with this property is the right sided Riemann-Liouville frac-
tional derivative defined above, we have [12]:

Dβ
x,−e

−λx = λβe−λx, <λ > 0, (47)



setting β = 1/α and λ = sα, we can see that Ax = D
1/α
x,− satisfies (46). It is also

known that equations of the type (43) have a unique solution.

Theorem 4 shows that the temporal scale space can be described in terms
of an evolution equation on the half line where the position corresponds to
temporal scale and to older information, (larger scale gives higher weight to
older information). The input signal is fed to x = 0 where the evolution equation
only applies a local operation (the temporal first derivative) on the signal in the
present moment and as a consequence we have found a time recursive formulation
of the causal scale spaces. For this realization of causal scale spaces the temporal
scale space is the only needed memory of earlier input, and the content of the
memory diffuses over time.

For α = 1/2 we have D1/α
x,− = D2

x,− = ∂2
x and the evolution equation special-

izes to the signaling equation∂tu = ∂2
xu

limx→0 u(t, x) = f(t)
u(0, x) = 0.

(48)

The signaling equation describes how current is distributed in a semi infinite
conductor when an temporally modulated electrical signal is applied at its end. It
describes how heat is diffused in a semi infinite rod when a temporally modulated
heat source is applied at its end, as well.

Theorem 5. The signaling equation is unique among the evolution equations
for causal scale spaces in the sense that it possesses both locality and positivity
in the scale domain.

Proof. As already noted, equation (33) always uses a non local operator in the
temporal direction. The evolution equation (43), becomes a partial differential
equation for when 1/α, 0 < α < 1 is an integer i.e. for α = 1/k, k ≥ 2, where k
is an integer. The locally generated evolution equations therefore has the form
∂tu = ∂kxu, k ≥ 2. And this equation has only a positive Greens function for
k = 2, i.e. for α = 1/2.

6 Discretization of Causal Scale Spaces

Both the partial integrodifferential equations (33) and (43) can be numerically
implemented by using discretization of fractional derivatives from e.g. [9]. Dis-
cretizations of fractional derivatives need to be computed for quite a large num-
ber of grid points to achieve a reasonable low numerical error. The locally gener-
ated signaling equation (48) can be much more efficiently implemented and we
will focus on finding a numerical implementation for it.

An important step in finding a numerical implementation of the temporal
scale space is to find a suitable discretization of the problem. Florack [3] states
that the natural discretization of a space, is such that the grid steps are constant



in the natural parametrization of the Lie group that generates the space. As we
have decided that time is translation covariant we obtain constant intervals in
the temporal direction. The scale is considered to be scale covariant which leads
to a geometric progression of grid points in the scale direction.

6.1 Discrete Second Derivative on Log Spaced Grid

We need to derive a discretization of the second derivative operation for a grid
with geometrical progression to be able to compute the signaling equation on
such a grid.

We denote grid points by xi and use the following notation.

ui = u(xi)
∆i+1 = xi+1 − xi

Theorem 6 (Saulyev [13]). For general non uniform grids the second deriva-
tive becomes:

∂2ui
∂x2

=
2ui+1

∆i+1(∆i+1 +∆i)
+

2ui−1

∆i(∆i+1 +∆i)
− 2ui
∆i∆i+1

+ o(∆i), (49)

where the error term in general is of linear order in ∆i.

If we specialize the above theorem for a grid with geometric progression:

xi = x0h
i

where h > 1 we get an error term of order o((h− 1)2).

Theorem 7. For grids with geometric progression the second derivative becomes:

∂2ui
∂x2

=
2

x2
i (h− 1)(h− 1

h )
(ui+1 − (h+ 1)ui + hui−1) + o((h− 1)2), (50)

where the error term is of quadratic order in (h− 1), if (h− 1) is small enough.

Proof. For a grid with geometric progression we have that:

∆i+1 = xih− xi = xi(h− 1)

∆i = xi − xi/h = xi(1−
1
h

).

Inserting this in equation (49), we get:

δ2i u =
2ui+1

∆i+1(∆i+1 +∆i)
+

2ui−1

∆i(∆i+1 +∆i)
− 2ui
∆i∆i+1

=
2

∆i+1(∆i+1 +∆i)

(
ui+1 +

∆i+1

∆i
ui−1 −

∆i+1 +∆i

∆i
ui

)
=

2
x2
i (h− 1)(h− 1/h)

(
ui+1 +

h− 1
1− 1/h

ui−1 −
h− 1/h
1− 1/h

ui

)
=

2
x2
i (h− 1)(h− 1/h)

(
ui+1 + hui−1 − (h+ 1)ui

)
.



For the error term we have:

e(h− 1) =
∞∑
j=3

2
j!
∆j−1
i+1 + (−1)j∆j−1

i

∆i+1 +∆i

∂jui
∂xj

=
∞∑
j=3

2
j!

(h− 1)j−1 + (−1)j(1− 1/h)j−1

(h− 1) + (1− 1/h)
xj−2
i

∂jui
∂xj

=
∞∑
j=3

2(h− 1)j−2

j!
hj−1 + (−1)j

h+ 1
x0
∂jui
∂xj

=
∑

j=3,5,7,...

2(h− 1)j−1

j!

∑j−2
k=0 h

k

h+ 1
x0
∂jui
∂xj

+

=
∑

j=4,6,8,...

2(h− 1)j−2

j!
hj−1 + 1
h+ 1

x0
∂jui
∂xj

= o((h− 1)2).

7 Numerical Scheme for the Signaling Equation

Now we have what is needed for formulating a numerical scheme for the signaling
equation. First we recall that for an explicit solution of the diffusion equation,
∆t/∆

2
x < 1/2 must hold for the solution to be numerically stable (see e.g. [10]).

This is fairly unattractive for the causal scale space as it means that for a given
temporal sampling of the input signal there is a lower limit for how fine sampling
we can choose in the scale domain. It therefore seems to be better to use an
implicit numerical solution as it always is stable (see e.g. [10] for details about
implicit solutions of the heat equation) .

For the temporal derivation the discretization

δtu(t, x) = u(t, x) +
3
2
u(t−∆t, x)−

1
2
u(t− 2∆t, x),

is a good choice as it has quadratic stability e = o(∆2
t ) and only uses past grid

points. The proposed numerical scheme has second order stability both in time
and scale and can be implemented with four additions, four multiplications and
two divisions per grid point.

Fig. 2. Numerical experiment, the signal is in the foreground and the logarithm of the
scale increase away from the viewer. The time is directed to the right.



8 Discussion

If we require the measurement kernels to both respect temporal causality and
scale covariance, the maximum (or the mean if it exists) will move backwards
in time with increasing scale. Therefore we will never be able to measure what
happens at the current moment, a measurement on a fine scale will reflect an
event that happened just a short while ago while a measurement on a coarser
scale will describe something that happened further back in time. A temporal
measurement thus involves two different points in time: the one the measurement
is performed at, t0 and the one that has largest influence on the measurement
tm. The distance between these point is a function of scale t0 − tm = f(τ), the
influence curve. From scale covariance considerations f typically should be on
the form f(τ) = βτα for some α, β > 0. Compare this with the situation for
spatial measurements: reflectional or rotational symmetry means that the point
where the measurement is performed also is the point that has maximal influence
on the measurement.

Some earlier axiomatization of temporal scale spaces [5, 7] have required non-
creation of structure along the scale dimension. In Koenderink’s axiomatization
there were no solutions fulfilling temporal causality. He solved this by doing
a remapping of the temporal dimension before applying ordinary scale space.
In Lindeberg’s and Fagerström’s axiomatization there were solutions but they
lacked scale covariance and had to be discrete in either time or space. From
the above considerations about how larger scale leads to the measurement of
events earlier in time the requirement of non-creation of structure along the
scale dimension seems to be an unnecessarily strong. It might be more fruitful
to require non-creation of structure along the influence curve instead.

Koenderink motivates the logarithmic re-mapping of the time axis by analogy
to our memories: we have finer temporal resolution on events taking place seconds
ago than on events years ago. As already indicated, if we want the temporal scale
space theory to be about measurement, we have to make careful distinction
between the actual measurements and the memory of them. While a logarithmic
mapping of time in the memory domain seem to be good first approximation
of an uncommitted memory, we believe that the actual measurement process
should be the same at every instant of time, i.e. it should be translationally
invariant in time.
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