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Abstract— In a service robot scenario, we are interested in
a task of building maps of the environment that include au-
tomatically recognized objects. Most systems for simultaneous
localization and mapping (SLAM) build maps that are only
used for localizing the robot. Such maps are typically based
on grids or different types of features such as point and lines.
Here, we augment the process with an object recognition system
that detects objects in the environment and puts them in the
map generated by the SLAM system. During task execution,
the robot can use this information to reason about objects,
places and their relationships. The metric map is also split into
topological entities corresponding to rooms. In this way the user
can command the robot to retrieve an object from a particular
room or get help from a robot when searching for a certain
object.

I. I NTRODUCTION

During the past few years, the potential of service robotics
has been well established. The importance of robotic ap-
pliances is significant both in terms of economical and
sociological perspective regarding the use of robotics in
domestic and office environments, as well as help to elderly
and disabled. However, there are still no fully operational
systems that can operate robustly and long-term in everyday
environments. The current trend in development of service
robots is reductionistic in the sense that the overall problem
is commonly divided into manageable sub-problems. In rela-
tion, the overall problem remains largely unsolved: How does
one integrate these methods into systems that can operate
reliably in everyday settings.

In our work, we consider an autonomous robot scenario
where we also expect the robot to manipulate objects. There-
fore, the robot has to be able to detect and recognize objects
as well as estimate their pose. Although object recognition
is one of the major research topics in the field of computer
vision, in robotics, there is often a need for a system that
can locate certain objects in the environment - the capability
which we denote as ’object detection’. In this paper, we use
a method for object detection that is especially suitable for
detecting objects in natural scenes, as it is able to cope with
problems such as complex background, varying illumination
and object occlusion. The proposed method uses a repre-
sentation called Receptive Field Cooccurrence Histograms
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[1], where each pixel is represented by a combination of
its color and response to different image filters. Thus, the
cooccurrence of certain filter responses within a specific
radius in the image serves as information basis for building
the representation of the object. The specific goal for the
object detection is an on-line learning scheme that is effective
after just one training example but still has the ability to
improve its performance with more time and new examples.

Object detection is then used to augment a map that the
robot builds with objects’ locations. This is very useful in
service robot applications where many tasks will be of fetch-
and-carry type. We can see several scenarios here. While
the robot is building the map it will add information to the
map about the location of objects. Later, the robot will be
able to assist the user when he/she wants to know where
a certain object X is. As object detection might be time
consuming, another scenario is that the robot builds a map
of the environment first and then when it has nothing to do,
it moves around in the environment and searches for objects.

The same skill can also be used when the user instructs
the robot to go to a certain area to get object X. If the robot
has seen the object before and it already has it in the map,
the searching process is eliviated. By augmenting the map
with the location of objects we also foresee that we will be
able to achieve place recognition. This will provide valuable
information to the localization system that will greatly reduce
the problem of symmetries when using a 2D map. Further,
along the way by building up statistics about what type of
objects typically can be found in, for example, a kitchen the
robot might not only be able to recognize a certain kitchen
but also potentially generalize to recognize a room it has
never seen before as probably being a kitchen.

For the robot to recognize an object, the object must
appear large enough in the camera image. If the object is too
small, local features cannot be extracted. Global appearance-
based methods also fail, since the size of the object is small
in relation to the backround which commonly results in high
number of false positives. As shown in Figure 1, if the object
is too far away from the camera (left), no adequate local
information can be extracted. To cope with this problem, we
propose a system that uses a combination of appearance- and
feature-based methods for object recognition.

This paper is organized as follows: in Section II, our map



building system is summarized. In Section III we describe
the object recognition algorithm based on Receptive Field
Cooccurrence Histogram. The integration of the proposed
object detection and SLAM algorithms is then evaluated in
Section IV showing how we can augment our SLAM map
with the location of objects. Finally, Section V concludes the
paper.

Fig. 1. Left: The robot cannot recognize the cup located in the bookshelf.
Right: Minimum size of the cup required for robust recognition.

II. SIMULTANEOUS LOCALIZATION AND MAPPING

One key competence for a fully autonomous mobile robot
system is the ability to build a map of the environment
from sensor data. It is well known that localization and map
building has to be performed at the same time, which has
given this subfield its name, simultaneous localization and
mapping or SLAM. Many of todays algorithms for SLAM
have their roots in the seminal work by Smithet al. [2]
in which the stochastic mapping framework was presented.
With laser scanners such as the ones from SICK, indoor
SLAM in moderately large environments is not a big problem
today. In some of our previous work we have focused on
the issue of the underlying representation of features used
for SLAM [3]. The so called M-Space representation is
similar to the SP-model [4]. The M-Space representation is
not limited to EKF-based methods. In [5] it is used together
with graphical SLAM. In [3] we demonstrated how maps
can be built using data from a camera, a laser scanner or
combinations thereof. Fig. 2 shows an example of a map
where both laser and vision features are used. Line features
are extracted from the laser data. These can be seen as
the dark lines in the outskirts of the rooms. The camera
is mounted vertically and monitors the ceiling. From the
320x240 sized images we extract horizontal lines and point
features corresponding to lamps. The M-Space representation
allows the horizontal line features to be partially initialized
with only its direction as soon as it is observed even though
a full initialization has to wait until there is enough motion
to allow for a triangulation. Fig. 3 shows a closeup of a
small part of a map from a different viewing angle where
the different types of features are easier to make out.

A. Building the Map

Much of the work in SLAM focus just on creating a map
from sensor data and not so much on how this data is created
and how to use the map afterwards. In our work, we want to
use the map to carry out tasks that require communication

Fig. 2. A partial map of the our lab floor with both laser and vision
features. The dark lines are the walls detected by the laser and the lighter
ones that seem to be in the room are horizontal lines in the ceiling.

with the robot using common labels from the map. A natural
way to achieve this is to let the robot follow the user while
moving in the environment and allow the user to put labels
on certain things such as specific locations, areas or rooms.
A feature based map is rather sparse and does not contain
enough information for the robot to know how to move from
one place to another. Only structures that are modelled as
features will be placed in the map and there is thus no explicit
information about where there is free space such as in an
occupancy grid based approach. Here we use a technique as
in [6] and build a navigation graph while the robot moves
around. When the robot has moved a certain distance a node
is placed in the graph at the current position of the robot.
When the robot moves in areas where there already are
nodes close to its current position no new nodes will be
created. Whenever the robot moves between two nodes they
are connected in the graph. The nodes represent the free
space and the edges between them encode paths that the
robot can use to move from one place to another. The nodes
in the navigation graph can also be used as references for
certain important locations such as for example a recharging
station. Fig. 4 shows the navigation graph as connected stars.

B. Partitioning the Map

To be able to put a label on a certain area requires that the
map is partitioned. In this paper we use an automatic strategy
for partitioning the map that is based on detecting if the robot
passes through a narrow opening. Whenever the robot passes



Fig. 3. Close up of the map with both vision and laser features. The 2D
wall features have been extended to 3D for illustration purposes. Notice the
horizontal lines and the squares that denote lamps in the ceiling.

a narrow opening it is hypothesized that a door is passed.
This in itself will lead to some false doors in cluttered rooms.
However, assuming that there are very few false negatives in
the detection of doors we get great improvements by adding
another simple rule. If two nodes that are thought to belong
to different rooms are connected by the robot motion the door
that separated them into different rooms was not a door. That
is, it is not possible to reach another room without passing
a door. In Figure 4 the larger stars denote doors or gateways
between different areas/rooms.

III. O BJECTDETECTION AND OBJECTRECOGNITION

Object recognition algorithms are typically designed to
classify objects to one of several predefined classes assuming
that the segmentation of the object has already been per-
formed. Test images commonly show a single object centered
in the image and, in many cases, having a black background
[7] which makes the recognition task simpler. In general,
the object detection task is much harder. Its purpose is to
search for a specific object in an image not even knowing
before hand if the object is present in the image at all. Most
of the object recognition algorithms may be used for object
detection by scanning the image for the object. Regarding the
computational complexity, some methods are more suitable
for searching than others.

In general, object recognition systems can roughly be
divided into two major groups: global and local methods.
Global methods capture the appearance of an object and often
represent the object with a histogram over certain features
demonstrated in the training process, e.g., a color histogram
represents the distribution of object colors. In contrast, the
latter methods capture specific local details of objects such
as small texture patches or particular features. One of the
contributions in this paper is that we make use of both
approaches in a combined framework that let the methods
complement each other.

The work on object recognition is significant and we

refer just to a limited amount of work directly related
to our approach. Back in 1991, Swain and Ballard [8]
demonstrated how RGB color histograms can be used for
object recognition. Schieleet al. [9] generalized this idea to
histograms of receptive fields and computed histograms of
either first-order Gaussian derivative operators or the gradient
magnitude and the Laplacian operator at three scales. Mel
[10] also developed a histogram based object recognition
system that uses multiple low-level attributes such as color,
local shape and texture. Although these methods are robust
to changes in rotation, position and deformation, they cannot
cope with recognition in a cluttered scene. The problem is
that the background visible around the object confuses the
methods. In [11], Changet al. show how color cooccurrence
histograms can be used for object detection, performing bet-
ter than regular color histograms. We have further evaluated
the color cooccurrence histograms. In [12], we use them for
both object detection and pose estimation.

The methods mentioned so far areglobal methods, mean-
ing that for representing an object, an iconic approach is
used. In contrast, local feature-based methods only capture
the most representative parts of an object. In [13], Lowe
presents the SIFT features, which is a promising approach
for detecting objects in natural scenes. However, the method
relies on the presence of feature points and, for objects with
simple or no texture, this method is not suitable. We will
show that our method performs very well for both object
detection and recognition. Despite a cluttered background
and occlusion, it is able to detect the specific object among
several other similar looking objects. This property makes
the algorithm ideal for use on robotic platforms which are
to operate in natural environments.

A. Receptive Field Cooccurrence Histogram

A Receptive Field Histogram is a statistical representation
of the occurrence of several descriptor responses within an
image. Examples of such image descriptors are color inten-
sity, gradient magnitude and Laplace response, described in
detail in Section III-A.1. If only color descriptors are taken
into account, we have a regular color histogram.

A Receptive Field Cooccurrence Histogram (RFCH) is
able to capture more of the geometric properties of an
object. Instead of just counting the descriptor responses for
each pixel, the histogram is built frompairs of descriptor
responses. The pixel pairs can be constrained based on,
for example, their relative distance. This way, only pixel
pairs separated by less than a maximum distance,dmax are
considered. Thus, the histogram represents not only how
common a certain descriptor response is in the image but
also how common it is that certain combinations of descriptor
responses occur close to each other.

1) Image Descriptors:We use a histogram based object
detection using following image descriptors:

• Normalized Colors
The color descriptors are the intensity values in the
red and green color channels, in normalized RG-color
space, according tornorm = r

r+g+b andgnorm = g
r+g+b.



Fig. 4. A partial map of the 7th floor at CAS/CVAP. The stars are nodes in the navigation graph. The large stars denote door/gateway nodes that partition
the graph into different rooms/areas.

• Gradient Magnitude
The gradient magnitude is estimated from the spa-
tial derivatives (Lx, Ly): |∇L| =

√
L2

x +L2
y. The spatial

derivatives are calculated from the scale-space represen-
tation L = g∗ f obtained by filtering the original image
f with a Gaussian kernelg with standard deviationσ.

• Laplacian
The Laplacian is calculated from the spatial derivatives
(Lxx, Lyy) according to∇2L = Lxx+Lyy.

2) Image Quantization:The originally proposed multidi-
mensional receptive field histograms [9] have one dimension
for each image descriptor which makes the histograms huge.
For example, using 15 bins in a 6-dimensional histogram
means 156 (∼ 107) bin entries. This makes the histogram
very sparse and the problem with a cooccurrence histogram
is even more significant. Therefore, we perform dimension
reduction by first clustering the training data. Dimension
reduction is done using K-means clustering [14]. Each pixel
is quantized to one ofN cluster centers, whereN was
empirically evaluated to be 80. The cluster centers have a
dimensionality equal to the number of image descriptors
used. For example, if both color, gradient magnitude and
the Laplacian are used, the dimensionality is six (three
descriptors on two colors). As distance measure, we use the

Euclidean distance in the descriptor space. This requires all
input dimensions to be of the same scale, otherwise some
descriptors would be favored. Thus, we scale all descriptors
to the interval [0,255]. The clusters are randomly initialized,
and a cluster without members is relocated just next to the
cluster with the highest total distance over all its members.
After a few iterations, this leads to a shared representation of
that data between the two clusters. Each object ends up with
its own cluster scheme in addition to the RFCH calculated
on the quantized training image.

When searching for an object in a scene, the image is
quantized with the same cluster-centers as the cluster scheme
of the object being searched for. Quantizing the search image
also has a positive effect on object detection performance.
Pixels lying too far from any cluster in the descriptor space
are classified as the background and not incorporated in the
histogram. This is because each cluster center has a radius
that depends on the average distance to that cluster center.
More specifically, if a pixel has a Euclidean distanced to
a cluster center, it is not counted ifd > α ·davg, wheredavg

is the average distance of all pixels belonging to that cluster
center (found during training), andα is a free parameter. We
have usedα = 1.5 i.e., most of the training data is captured.
α = 1.0 corresponds to capturing about half the training data.

Figure 5 shows an example of a quantized search image,



when searching for a red, green and white Santa-cup.

Fig. 5. Example when searching for the Santa-cup, visible in the top
right corner. Left: The original image. Right: Pixels that survive the cluster
assignment.

The quantization of the image can be seen as a first step
that simplifies the detection task. To maximize detection
rate, each object should have its own cluster scheme. This,
however, makes it necessary to quantize the image once for
each object being searched for. If several different objects
are to be detected and a very fast algorithm is required, it is
better to use shared cluster centers over all objects known.
In that case, the image only has to be quantized once.

B. Histogram Matching

The similarity between two normalized RFCHs is com-
puted as the histogram intersection:

µ(h1,h2) =
N

∑
n=1

min(h1[n],h2[n]) (1)

wherehi [n] denotes the frequency of receptive field combi-
nations in binn for imagei, quantized intoN cluster centers.
The higher the value ofµ(h1,h2), the better the match
between the histograms. Prior to matching, the histograms
are normalized with the total number of pixel pairs.

IV. EXPERIMENTAL EVALUATION

The experimental platform is a PowerBot from Active-
Media. It has a non-holonomic differential drive base with
two rear caster wheels. The robot is equipped with a 6DOF
robotic manipulator, SICK laser scanner, sonar sensors and a
Canon VC-C4 camera. For a detailed evaluation of the object
detection system we refer to [1].

Fig. 6. The experimental platform: ActiveMedia’s PowerBot.

A. Augmenting SLAM with Object Detection

We are using the scenario where the robot moves around
after having made the map and adds the location of objects
to it. It performs the search using the navigation graph
presented in Section II-A. Each node in the graph is visited
and the robot searches for objects from that position. As the
nodes are partitioned into rooms each found object can be
referenced to the room of the node. In the experiments we
limited the search to nodes that are not node doors or directly
adjacent to doors as the robot will be in the way if it stops
there.

1) Searching with the Pan-Tilt-Zoom Camera:The pan-
tilt-zoom camera provides a much faster way to search for
objects than moving the robot around. The location of our
camera is such that the robot itself blocks the view backwards
and we cannot get a full 360 degree view. Therefore the robot
turns around once in the opposite direction at each node. The
pan-tilt-zoom camera has a 16x zoom which allows it too
zoom in on an object from several meters to get a view as if
it is right next to the object. The search for the objects starts
with the camera zoomed out maximally. A voting matrix
is built and the camera zooms in in steps on the areas that
are most interesting. To get an idea of distance to the objects
the data from the laser scanner is used. With this information
appropriate zoom values can be chosen. To get an even lower
level of false positives than with the RFCH method alone a
verification step based on SIFT features is added at the end.
That is, a positive result from the RFCH method when the
object is zoomed in is cross checked using matching of SIFT
features between the current image and the training image.
An example different zooming levels is shown in Fig. 7.

Fig. 7. An example search for the zip-disk packet. Left: Far zoom level.
Center: Intermediate zoom level. Right: Close-up zoom level.

2) Finding the Position of the Objects:When an object
is detected the direction to it based on its position in the
image and the pose of the camera1 is stored. Using the
approximate distance information from the laser we get an
initial guess about the position of it. This distance is often
very close to the true distance when the object is placed in
for example a shelf where the laser scanner will get a good
estimate. However, it can be quite wrong when the object is
on a table for example where the laser measures the distance
to something else behind the table. If the same objects is
detected from several camera positions the location of the
object can be improved by triangulation.

1Given by the pan-tilt-angles of the camera and its relative position to
the robot and the pose of the robot



3) Experimental Results:In Figure 8 a part of the map
in Figure 2 with two rooms is shown. The lines that have
been added to the map mark the direction from the camera
to the object when from the position of the camera when
it was detected. Both of the two objects placed in the two
rooms where detected. The four images in Figure 9 show
the images in which objects where detected in the left of the
two rooms.

Fig. 8. Example from our living room experiment: the robot has found a
soda can and a rice package in the shelf. Each object has been detected from
more than one robot position which makes the detection more reliable and
also allows for triangulation thus providing an estimate of objects position
in the map. In the right image the triangulation correctly gives a can position
inside the bookshelf.

Fig. 9. The images in which objects were found in the left room in Figure 8.
Notice that the rice package is detected from three different positions which
allows for triangulation.

V. CONCLUSION

In this paper, we have presented a SLAM system that
builds a navigation graph, partitions this graph into different
rooms and augments the system with an object detection
scheme based on Receptive Field Cooccurrence Histograms.
The representation is invariant to translation and rotation
and robust to scale changes and illumination variations. The
algorithm is able to detect and recognize many objects with
different appearance, despite severe occlusions and cluttered
backgrounds. The performance of the method depends on

a number of parameters but the algorithm performs very
well with a wide variety of parameter values. The strength
in the algorithm lies in its applicability to object detection
for robotic applications. There are several object recognition
algorithms that perform very well on object recognition
image databases assuming that the object is centered in the
image on a uniform background. The algorithm is fast and
fairly easy to implement. Training of new objects is a simple
procedure and only a few images are sufficient for a good
representation of the object. The initial results on how a
SLAM built map can be augmented with object detection
are very promising. This information can be used when
performing fetch-and-carry types tasks and to help in place
recognition. It will also allow us to determine what type of
objects are typically found in certain types of rooms which
can help recognizing the function of a room that the robot
has never seen before such as a kitchen or a workshop.
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