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Abstract— We present a method for automatic grasp gen-
eration based on object shape primitives in a Programming
by Demonstration framework. The system first recognizes the
grasp performed by a demonstrator as well as the object it
is applied on and then generates a suitable grasping strategy
on the robot. We start by presenting how to model and
learn grasps and map them to robot hands. We continue
by performing dynamic simulation of the grasp execution
with a focus on grasping objects whose pose is not perfectly
known.

I. I NTRODUCTION

Robust grasping and manipulation of objects is one of
the key research areas in the field of robotics. There has
been a significant amount of work reported on how to
achieve stable and manipulable grasps [1], [2], [3], [4],
[5]. This paper presents a method for an initial grasp
generation and control for robotic hands where human
demonstration and object shape primitives are used in
synergy. The methodology in this paper tackles different
grasping problems but the main focus is on choosing the
object approach vector, which is dependent both on the
object shape and pose as well as the grasp type. Using
the proposed method, the approach vector is chosen not
only based on perceptional cues but also on experience that
some approach vectors will provide useful tactile cues that
finally result in stable grasps. Moreover, a methodology
for developing and evaluating grasp schemes is presented
where the focus lies on obtaining stable grasps under
imperfect vision.

The presented methodology is considered in a Pro-
gramming by Demonstration (PbD) framework [6], [7],
where the user teaches the robot tasks by demonstrating
them. The framework borrows ideas from the field of
teleoperation, that provides a means of direct transmission
of dexterity from the human operator. Most of the work
in this field focuses however on low-level support such as
haptic and graphical feedback and deals with problems
such as time delays [8]. For instruction systems that
involve object grasping and manipulation, both visual
and haptic feedback are necessary. The robot has to be
instructedwhat andhow to manipulate. If the kinematics
of robot arm/hand system is the same as for the human,
a one-to-one mapping approach may be considered. This
is, however, never the case. The problems arising are not
only related to the mapping between different kinematic

chains for the arm/hand systems but also to the quality of
the object pose estimation delivered by the vision system.
Our previous results related to these problems have been
presented in for example [9] and [10].

The contributions of the work presented here are:
i) A suitable grasp is related to object pose and shape and
not only a set of points generated along its outer contour.
This means that we do not assume that the initial hand
position is such that only planar grasps can be executed
as proposed in [4]. In addition, grasps relying only on a
set of contact points may be impossible to generate on-
line since the available sensory feedback may not be able
to estimate the exactly same points on the object’s surface
once the pose of the object is changed.
ii) The choice of the suitable grasp is based on the
experience, i.e. it is learned from the human by defining
the set of most likely hand preshapes with respect to
the specific object. A similar idea, also using the Barrett
hand [11], was investigated in [2]. Grasp preshapes are
generated based on recognition of human grasps. This is
of interest for humanoid robots where the current trend is
to resemble human behavior as closely as possible.
iii) Finally, we evaluate the quality of different grasp types
with respect to inaccuracies in pose estimation. This is an
important issue that commonly occurs in robotic systems.
The reasons may be that the calibration of the vision
system or hand-eye system is not exact or that a detailed
model of the object is not available. We evaluate how big
pose estimation error different grasp types can handle.

A. Related Work

The work on automatic grasp synthesis and planning
is relevant to the ideas presented here [2], [3], [4], [5]. In
automatic grasp synthesis, it is commonly assumed that the
position, orientation, and shape of the object is known [2].
Another assumption is that it is possible to extract the outer
contour of an object and then apply a planar grasp [4]. The
work on contact-level grasps synthesis concentrates mainly
on finding a fixed number of contact locations without
considering the hand design [1], [12].

Taking into account hand kinematics anda-priori
knowledge of the feasible grasps has been acknowledged
as a more flexible and natural approach towards automatic
grasp planning [13], [2]. In [13], a method for adapting
a given prototype grasp of one object to another object,



such that the quality of the new grasp would be at least
75% of the quality of the original, was developed. This
process however, required a parallel algorithm running
on supercomputer to be computed in reasonable time.
This clearly shows the need to reduce the solution space
for grasping problems in order to reach solutions in an
acceptable time. The method proposed in [2] presents a
system for automatic grasp planning for a Barrett hand
by modeling objects as sets of shape primitives; spheres,
cylinders, cones, and boxes. Each primitive is associated
with a set of rules to generate a set of candidate pre-grasp
hand positions and configurations. Examples of robotic
manipulation include [14], [15], and [16].

II. SYSTEM DESCRIPTION

In our work, robotic grasping is performed by com-
bining a PbD framework with semi-autonomous grasping
and performance evaluation. We assume that a task such
as (pick up/move/put down) an object is first demonstrated
to the robot. The robot recognizes which object has been
moved as well as where using visual feedback. The mag-
netic trackers on the human hand, provide information that
enables the robot to recognize the human grasp. The robot
then reproduces the action [9]. The approach is evaluated
using a modified and extended version of the robot grasp
simulator GraspIt! [17] to allow for repetitive experiments
and statistical evaluation. In the simulation experiments,
we use the Barrett hand and a hybrid force/position control
framework. It is shown how dynamic simulation can be
used for building grasp experience, for the evaluation of
grasp performance, and to establish requirements for the
robot system.
The current components in our PbD system are:

1) Object Recognition and Pose Estimation: Estimating
the pose of an object before and after an action
enables the system to identifywhichobject has been
movedwhere. For object recognition and pose esti-
mation, Receptive Field Co-occurrence Histograms
is used [18], [19]. It is assumed that the objects
are resting on a table and can be represented by
parameters (x, y andφ).

2) Grasp Recognition: A data-glove with magnetic
trackers provides hand postures for the grasp recog-
nition system [10].

3) Grasp Mapping: An off-line learned grasp mapping
procedure maps human to robot grasps as presented
in Section II-A.

4) Grasp Planning: The robot selects a suitable grasp
controller. The object will be approached from the
direction that maximize the probability of reaching
a successful grasp. This is presented in more detail
in Section IV.

5) Grasp Execution: A semi-autonomous grasp con-
troller is used to control the hand from the planned
approach position until a force closure grasp is
reached, Section III.

Fig. 1. Mapping a selection of grasps from Cutkosky’s grasp hierarchy
to three Barrett grasps. The robot hand configurations shown are the
initial joint positions.

A. Grasp Mapping

It has been argued that grasp preshapes can be used
to limit the large number of possible robot hand con-
figurations. This is motivated by the fact that – when
planning a grasp – humans unconsciously simplify the
grasp choice by choosing from a limited set of prehen-
sile postures appropriate for the object and task at hand
[20]. Cutkosky [21] classified human grasps and evaluated
how the task and object geometry affect the choice of
grasp. The work on virtual fingers generalized the existing
grasp taxonomies [22]. Based on the above work and
as described in previous work [10], the current grasp
recognition system can recognize ten different grasp types.
The human grasps are mapped to the robot as shown in
Fig. 1. The grasps refer not only to hand postures, but
to grasp execution schemes that include initial position,
approach vector, and hand controller.

III. G RASPCONTROL

The grasp control algorithm has to be able to cope with
occlusion and limited accuracy of the vision system. The
controller presented here copes with the above without
exploiting the wrist or arm motion. It is assumed that there
are three touch sensors mounted on the distal links of the
hand and that these can detect the normal force. This type
of touch sensors are available at a low cost and are easy
to mount to an existing robot hand as shown in previous
work [23]. Considerations on different tactile sensors are
put in to perspective in [24], [25], and [26].

The hybrid force/position controller uses these tactile
sensors for control of the grasp force. Position control us-
ing joint encoders maintain the desired finger configuration
and hence object position. Here, an effort is made to bring
the object towards the center of hand during grasping. The
need of this can be exemplified by the Barrett hand for



Fig. 2. Execution of a sample task where corrective movements are
used to center the object.

Fig. 3. Grasp controllers is performed in x-space: total grasp force,
stability, centering, and spread. The distal links have thin tactile sensors
mounted to them (red).

which the grasp is typically of higher quality when all
fingers have approximately the same closing angle, rather
than when the object is far from the palm center. This
behavior can be seen in the example task shown in Fig. 2.
Here, the Barrett hand is modeled such that the two joint
angles of each finger have a fixed relation. All control is
performed using Matlab. Alternative low-level controllers
have been investigated in e.g. [27].

A. Controller Design

To enable a more intuitive formulation of the controller
– as opposed to decentralized control of reference trajecto-
ries and/or torques – a linear transformT is used to relate
the original joint anglesq to new more intuitive control
variablesx; x = Tq, see Fig. 3 and [28] for more detail.

Controlling spread(x1) separately and the force, cen-
tering and stability according to Fig. 3, the transform
becomes:

T =


1 0 0 0
0 1/2 1/2 1
0 1/2 1/2 −1
0 1 −1 0

 . (1)

The control forcesf are computed using a P-controller
f = De whereD contains controller gains ande is an
error vector with force and position errors. The joint
torques used to control the hand in simulation become
F = TT f = TTDe. The errore is computed using the
desired [des] and actual [act] variable values as

e =
[
e1 e2 e3 e4

]T

e1 =
[

1 0 0 0
]
ex

e2 =
[

0 1 0 0
]
ef

e3 =
[

0 0 1 0
]
ex (2)

e4 =
[

0 0 0 1
]
ex

ef = fdes − fact = fdes − T−TFact

ex = xdes − xact = xdes − Tqact.

IV. GRASPPLANNING

Each object is represented by its appearance (textural
properties) for recognition and itsshape primitivefor grasp

Fig. 4. Up: The real objects. Mid: The modeled objects. Down: The
object primitives used for training.

planning, Fig. 4. Recent progress presented in [29] shows
a promising method for retrieving shape primitives using
vision, although the method is restricted to objects with
uniform color. The planning is performed using a simple
search technique where many different approach vectors
are tested on the object. The training can be performed on
either the primitive object model or the full object model,
and in the experiments we have evaluated both methods.

Two approaches were used for planning. ForPower
Graspsthe hand was moved along an approach vector until
or just before contact, and then the controller is engaged.
For Precision Graspsthe approach is the same, but with
the addition that the hand is retracted a certain distance
a number of times. After each retraction, the controller is
engaged with the goal of reaching a fingertip (precision)
grasp.

For power grasps, the three parameters (θ, φ, ψ)
describing the approach direction and hand rotation are
varied. For precision grasps, a fourth parameterd describes
the retract increment. The number of evaluated values for
the variables areθ=9, φ=17, ψ=9, d=6. For the precision
grasps the search space was hence 8262 grasps which
required about an hour of training using kinematic sim-
ulation. For the power grasp simulations, 1377 approach
vectors were evaluated. The 5 s long grasping sequence is
dynamically simulated in 120 s (Intel P4, 2.5 GHz, Linux).
The quality measures for each grasp is stored in agrasp
experiencedatabase.

A. Grasp Quality Measures

To evaluate grasps, the 6-D convex hull spanned by the
forces and torques resistible by the grasp is analyzed using
GraspIt!. Theε-L1 quality measure is the smallest max-
imum wrench the grasp can resist and is used for power
grasps. For precision grasps, a grasp quality measure based
on the volume of the convex hull was used, volume-L1.
These grasp quality measures require full knowledge of
the world, and can thus only be used in simulation.



Fig. 5. Left: The human moves the rice box. The system recognizes
what object has been moved and which grasp is used. Right: The robot
grasps the same object using the mapped version of the recognized grasp.

B. Grasp Retrieval

At run-time, the robot retrieves the approach vector
for the highest quality grasp from the grasp experience
database. As the highest quality grasp is not necessarily
the most robust with respect to position and model errors,
the grasp should be chosen taking also those parameters
into account, see Sec. V-B. In a PbD scenario, the mapping
from human to robot grasp is many-to-one. But if the
robot acts autonomously, i.e.exploresthe environment and
performs grasp on unknown objects, the grasp type is not
defined and the best grasp can be chosen from among all
possible grasps.

V. EXPERIMENTAL EVALUATION

This section provides experiments that demonstrate
i) robot grasping given the current state of the environment
and thegrasp experiencedatabase, and ii) how errors in
pose estimation affect the grasp success. The objects were
placed on a table, Fig. 5 (left). Fig. 5 (right) shows the
results of object recognition and pose estimation process.
The human teacher, wearing a data-glove with magnetic
trackers, moves an object. The move is recognized by
the vision system and so is the grasp the teacher used.
This information is used to generate a suitable robot grasp
(grasp mapping) that controls the movement of the robot
hand in the simulator.

A. Dynamic Simulation

Grasping the rice box with a fingertip grasp was dy-
namically simulated using the controller from Sections
III and III-A. Of the 1377 approach vectors, 1035 were
automatically discarded because the hand interfered with
the table upon which the box is placed while approaching
the object, or that the object was obviously out of reach.
The remaining 342 initial robot hand positions were eval-
uated and resulted in 171 force closure grasps, 170 failed
grasp attempts, and one simulation error. The top three
hand initial positions and the resulting grasps are shown
in Fig. 6. Some sample data from the third best simulation,
Fig. 6 c) and f), is shown in Fig. 7. The desired grasping
force is set to 5 N. A low-pass filter is used for the tactile
sensor signal.

(a) Best grasp –
initial

(b) Second best
grasp – initial

(c) Third best
grasp – initial

(d) Best grasp –
final

(e) Second best
grasp – final

(f) Third best
grasp – final

Fig. 6. The top three approach positions and the final grasps for fingertip
grasping of the rice box. These results show that it is important to
consider the dynamics when designing grasp execution schemes and for
analyzing the grasp formation process. In several simulations the fingers
stop after contacting the box (as they should), but when the grasping
force is increased, the box slides on the low friction proximal links and
also on the resting surface until it comes in contact with the high friction
tactile sensors.
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Fig. 7. Data logged from the grasp simulation in Fig. 6 c) and f). The
first 1.3 seconds the fingers close under force control. The force at that
time is used as the start value for the force controller that ramps the
grasp force to 5 N. The joint angle values show that the joint angles are
getting closer to equal with time.

B. Introducing Errors in the Pose Estimation

To evaluate the performance under imperfect pose es-
timation, we have simulated errors in pose estimation by
providing an object pose with an offset. In the first sim-
ulation experiment, grasping the rice box with a fingertip
grasp, the object was translated a certain distance in a
random direction. As a result, the robot interpreted the
situation as if the object was in another position than that
for which the grasp was planned. This was repeated 50
times for five different vector lengths: 0, 1, 2, 3, and
4 cm. In total, 250 grasps from 201 positions. Figs. 9 and
10 show the grasp success rates for various grasps and
objects, under increasing error in position estimation. A
grasp is considered successful if it results in force-closure.

For the second experiment, the scenario was grasping a



Fig. 8. Grasp success as a function of initial bottle position. Grasp
success is here defined as reaching a force closure grasp. The (x,y)=(0,0)
position is right in front of the palm with a fraction of a millimeter of
space between the palm and bottle. The inset shows the final grasp from
(x,y)=(40,40).

bottle using a wrap grasp. In the initial position, the bottle
was centered with respect to the palm and a fraction of
a millimeter away. It was then re-positioned at positions
in a grid with 20 mm spacing and another grasp was
performed. For this scenario, the position of the bottle
does not to be highly accurate, see Fig. 8.

Using kinematic simulation, we have evaluated how an
error in rotation estimate affects the grasp formation. As
expected, for symmetric objects like the orange and the
bottle this type of error has no effect. Table I shows the
rotation tolerance for different objects and grasp types.
For grasping the mug, the rotation estimation is absolutely
crucial. Thus, this type of grasp should be avoided for this
object.

Object Grasp Type Rot. Err. Tolerance [degrees]

Zip Disc Box Wrap 3

Rice Box Wrap 17

Mug Wrap 12

Mug Precision Disc 0

Mug Two Finger Thumb 6

TABLE I

ROTATION ERROR TOLERANCES.

As expected, power grasps are more robust to position
errors than precision grasps. The precision grasps target
details of an object, e.g., the bottle cap or the ear of
the mug. Thus, the grasps are much more sensitive to
position inaccuracies. It is interesting to see that the
dynamic simulation and the controller previously outlined
yields significantly better results than that from purely
kinematic simulation. This is a motivation for continuing
the investigations on the dynamics of the grasp formation
process.

The bottle and the mug have been trained both using a
primitive model and using the real model. Training on the
primitive model does not decrease the grasp success rate
much, especially not for the bottle. However, the primitive
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(a) Grasping a bottle.
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(b) Grasping a mug.

Fig. 9. The effect of position errors on the grasp success rate. For
these results, the training and evaluation was performed using kinematic
simulation only.
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Fig. 10. The need for using dynamic simulation in grasp formation
analysis is obvious. The grasp is the same as seen in Fig. 6 c) and f).
(Due to some problems with the simulator, a limited number of samples
were used in the evaluation of dynamic grasping. For the 0, 1, 2, 3,
and 4 cm random displacement, the number of trials were 50, 14, 18,
18, and 12 respectively (instead of 50). Still, these samples were truly
random and we believe that the number of trials is high enough to draw
conclusions.)

model of the mug is, unlike the real mug, not hollow,
which causes problems for some of the precision grasps
trained on the primitive.

C. Discussion

The success rate of the presented system depends on
the performance of four subparts: i) object recognition,
ii) grasp recognition, iii) pose estimation of the grasped
object, and iv) grasp execution. As demonstrated in previ-
ous papers, [18], [10], the object recognition rate for only
five objects is around 100 %, and the grasp recognition
ratio is about 96 % for ten grasp types. Therefore, the
performance in a static environment may be considered
close to perfect with respect to the first steps. As the object
pose and possibly the object model is not perfectly known,
some errors were introduced that indicate the needed
precision in the pose estimation under certain conditions.
Initial results suggest that for certain tasks, grasping is
possible even when the object’s position is not perfectly
known.

If a high quality dynamic physical modeling is es-
sential, for example when grasping compliant objects or
for advanced contact models, other simulation tools than
GraspIt! may be more suitable, see e.g. [30].



VI. CONCLUSIONS

A framework for generating robot grasps based on
object models, shape primitives and/or human demon-
stration have been presented and evaluated. The focus
lies on the choice of approach vector which depends on
the object’s pose and grasp type. The approach vector is
based on perceptional cues and on experience that some
approach vectors will provide better tactile cues that result
in stable grasps. Another issue considered is obtaining
stable grasps under imperfect vision, something that has
not been thoroughly investigated in the literature.

Simulating results were necessary for generating insight
into the problem and for performing the statistical evalu-
ation for the grasp experience, since i) the world must be
reset after each grasp attempt, and ii) computing the grasp
quality measure requires perfect world knowledge. The
proposed strategies have been demonstrated in simulation
using tactile feedback and hybrid force/position control of
a robot hand. The functionality of the proposed framework
for grasp scheme design has been shown by successfully
reaching force closure grasps using a Barrett hand and
dynamic simulation.

Future work include further grasp execution scheme
development and implementation. Furthermore, to ensure
truly secure grasping outside the simulator, the grasping
scheme must also comprise a grasp quality evaluation
method that does not use information available in simula-
tion only. Preferably such a measure would also depend
upon the task at hand.

The grasp experience database contains not only a
record of success rates for different grasp controllers
but also the object-hand relations during an experiment.
In this way, we can specify under what conditions the
learned grasp strategy can be reproduced in new trials.
The results of the experimental evaluation suggest that the
outlined approach and tools can be of great use in robotic
grasping, from learning by demonstration to robust object
manipulation.
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