
Provably Sound and Secure
Automatic Proving and
Generation of Verification
Conditions

DIDRIK LUNDBERG

Master in Computer Science
Date: December 6, 2018
Supervisor: Roberto Guanciale
Examiner: Johan Håstad
Swedish title: Tillförlitligt sund och säker automatisk generering
och bevisning av verifieringsvillkor
School of Electrical Engineering and Computer Science

iii

Abstract

Formal verification of programs can be done with the aid of an inter-
active theorem prover. The program to be verified is represented in an
intermediate language representation inside the interactive theorem
prover, after which statements and their proofs can be constructed.
This is a process that can be automated to a high degree. This the-
sis presents a proof procedure to efficiently generate a theorem stat-
ing the weakest precondition for a program to terminate successfully
in a state upon which a certain postcondition is placed. Specifically,
the Poly/ML implementation of SML is used to generate a theorem
in the HOL4 interactive theorem prover regarding the properties of
a program written in BIR, an abstract intermediate representation of
machine code used in the PROSPER project.

iv

Sammanfattning

Bevis av säkerhetsegenskaper hos program genom formell verifiering
kan göras med hjälp av interaktiva teorembevisare. Det program som
skall verifieras representeras i en mellanliggande språkrepresentation
inuti den interaktiva teorembevisaren, varefter påståenden kan kon-
strueras, som sedan bevisas. Detta är en process som kan automatise-
ras i hög grad. Här presenterar vi en metod för att effektivt skapa och
bevisa ett teorem som visar sundheten hos den svagaste förutsättning-
en för att ett program avslutas framgångsrikt under ett givet postvill-
kor. Specifikt använder vi Poly/ML-implementationen av SML för att
generera ett teorem i den interaktiva teorembevisaren HOL4 som be-
skriver egenskaper hos ett program i BIR, en abstrakt mellanrepresen-
tation av maskinkod som används i PROSPER-projektet.

Acknowledgements

First, I would like to thank Mads Dam and Roberto Guanciale for in-
troducing me to the research in the field of formal verification at KTH
Royal Institute of Technology. This was the avenue which led me to
write this thesis. Roberto then also took the time to supervise my
work, which I am very grateful for.

I would also like to acknowledge the assistance given from Johan
Håstad, Roberto Guanciale, Cathrine Bergh and Claudius Sundlöf in
the form of remarks on how to improve the writing in the thesis.

Finally, special thanks to Cathrine Bergh and my parents Lars-Johan
Lundberg and Lena Lundberg.

v

Contents

1 Introduction 1

2 Background 4
2.1 Related Work . 4
2.2 Preliminaries . 9

2.2.1 Interactive Theorem Prover 9
2.2.2 Hoare triples and verification 11
2.2.3 Proof procedure . 13
2.2.4 BIR . 13
2.2.5 The WP Predicate Transformer Semantics of BIR . 15
2.2.6 Passification and single assignment forms 19

3 Method 22
3.1 The Hoare triple . 23
3.2 The n-step Hoare triple . 26
3.3 Weakest precondition soundness theorems 27

3.3.1 Trivial WP soundness theorem 29
3.3.2 Assert WP soundness theorem 30
3.3.3 Assume WP soundness theorem 31
3.3.4 Halt WP soundness theorem 33
3.3.5 Jump WP soundness theorem 34
3.3.6 Conditional jump WP soundness theorem 35

3.4 Hoare triple composition theorems 37
3.5 Proof procedures . 38

3.5.1 Proving the HT of a BIR program 38
3.5.2 Proving the HT of a BIR program: Example 40
3.5.3 Proving the HT of a BIR block 41

3.6 Verification step . 45
3.7 Supporting tools . 46

vi

CONTENTS vii

3.7.1 Tactics . 46

4 Results 48
4.1 Example application: Verifying GCD 48

4.1.1 Memory Safety . 49
4.1.2 Functional Correctness 51

4.2 Performance evaluation 52

5 Conclusions 55
5.1 Future work . 57

Bibliography 59

A Lemmata 64
A.1 Lemmata on pre- and postconditions 64
A.2 Some lemmata on termination 65
A.3 Lemmata on Boolean BIR values 67
A.4 Lemmata on BIR variables 68
A.5 Lemmata on WPs of statements 70

A.5.1 Assert . 70
A.5.2 Assume . 72
A.5.3 Halt . 73
A.5.4 Jump . 74
A.5.5 Conditional Jump 75

A.6 Hoare triple composition theorems 77
A.6.1 n-step and halt Hoare triple composition theorem 78
A.6.2 Block transition and halt Hoare triple composi-

tion theorem . 80
A.6.3 Conditional Jump and two halt Hoare triples com-

position theorem 80

Chapter 1

Introduction

Ever since the first computer program was written, answering ques-
tions about the effect of execution of programs has been an important
topic. While this can be determined through symbolic execution as-
suming some specific initial state, the main subject in research is more
general properties. Consider the questions of whether (and how) a
program can enter exceptional states, or if there are memory leaks, a
particularly awful special case being leaks of confidential data in cryp-
tographic algorithms.

Specifically, what is needed for verification are predicates on which
initial states can lead to certain final states after execution. For an ar-
bitrary program this is of course undecidable, since it is impossible
to say if it will ever halt [49]. Indeed, even determining whether
an arbitrary program has decidable behaviour is also an undecidable
problem. Accordingly, either only specific comparatively simple cases
are considered, or heuristics are used to obtain acceptable running
times and memory consumption with the trade-off that false negatives
and/or false positives might be obtained. In this thesis, only loop-free
unstructured1 passified programs in dynamic single assignment form
which terminate after executing a finite sequence of statements will be
treated (explained further in Sections 2.2.4 and 2.2.6). However, pre-
vious results have extended methods similar to the ones used here to
also include loops [3][1].

1The structured programming paradigm forbids usage of jump statements such
as goto, while using syntactic constructs to achieve selection (if statements), iter-
ation (while statements) and procedure calling. While this eventually compiles to
unstructured binary code, readability is improved for the programmer.

1

2 CHAPTER 1. INTRODUCTION

The sub-field of logic as applied to computer science dealing with
the study of execution of programs is called formal verification, since
formal methods are used to verify that code fulfils contracts which en-
capsulate the intent of the programmer. However, it is impossible to
do any form of meaningful analysis without a representation of the ob-
ject of analysis which preferably also is tailored to the properties to be
proved. Formal specification aims to create representations of programs
and systems that are amenable to analysis.

In order to ensure the actual behaviour of the program under anal-
ysis is being verified, it is necessary to start out from the binary code,
the compiled version of the program. This in contrast to analyzing
a program in a higher-level language, which will be compiled to bi-
nary code before execution. The compiler might change the inner
workings of the program in subtle ways which might be utilized by
a potential adversary. In the worst case, the compiler has bugs or
has even been intentionally tampered with, as was the case with the
famous XCodeGhost malware which infected Objective-C compilers.
This resulted in malicious apps in Apple Store [47]. These infected
apps had the capability to open phishing websites, steal device in-
formation, read from and write to the clipboard. Apart from being
an embarrassment to companies developing these infected apps, this
breach had both potential economic and privacy repercussions for the
user. Verification of the high-level language code could not have pre-
vented this, but verification on the binary level could have. The wider
field of study of binary programs is called binary analysis, and includes
the formal methods described above, but also numerous heuristic ap-
proaches to achieve the same results.

Today, operating advanced industrial processes is typically reliant
on software. This means that any potential vulnerabilities in software
could be used to alter the function of the process, triggering a melt-
down of a nuclear reactor or releasing toxic compounds from chemical
plants. The most well-known example of such industrial sabotage was
the Stuxnet malware, which targeted and destroyed equipment in Ira-
nian uranium enrichment facilities [32]. Raising the investment thresh-
old for performing such an attack by using more rigorous software
verification means restricting usage of these methods to nations with
well-funded and highly specialized intelligence agencies. Removing
the ability of rogue actors to perform industrial sabotage, potentially
leading to ecological disasters, could be considered a way of contribut-

CHAPTER 1. INTRODUCTION 3

ing to a more robust and sustainable society.
Consider the program prog . The first requirement of formal veri-

fication is making, or obtaining, the syntax and semantics of the lan-
guage prog is written in. Secondly, a contract is defined - a formal spec-
ification of the property to be examined. It is then possible to prove
whether prog satisfies the contract or not. However, study of prog ex-
actly as-is might require taking into account a large syntax, which is
only there to provide syntactic sugar in the form of additional options
and abbreviations for the programmer. Therefore, the standard pro-
cedure is to transpile prog to a simplified (in terms of the size of the
syntax) intermediate language, preserving the properties of interest. This
transpilation can assure correctness by supplying a machine-checkable
proof for each transpiled output, as in the work by Metere, Lindner
and Guanciale [39].

The programs treated in this thesis are written in BIR - a language
defined inside the theorem prover HOL4. BIR is shorthand for “BAP
Intermediate Representation”, a language defined inside the ITP (in-
teractive theorem prover) HOL4 inspired by the internal representa-
tion of programs of the BAP (Binary Analysis Platform) toolkit [7]. In
Chapter 3, a method to automatically generate proven Hoare triples
using HOL4 for programs written in HOL4 BIR is described. This en-
ables verification by checking if the program fulfils contracts by com-
paring a generated Hoare triple to a contractual Hoare triple, using
HOL4 and possibly also an SMT (satisfiability modulo theories) solver
like Z3 [10]. These concepts will be described in more detail in the
following section.

Chapter 2

Background

2.1 Related Work

In 1910, the first part of the Principia Mathematica of Bertrand Russell
and Alfred North Whitehead was published [51]. This was a bold at-
tempt at describing a minimal set of axioms and inference rules, and
then deriving all of mathematics from them. Sadly, because of the un-
wieldiness of the work and the pace of development in the field of
logic at the time (in particular formal grammar, as noted by Kurt Gödel
[20]), it quickly grew out of relevance other than as a historical mile-
stone. It could be said the advent of the interactive theorem prover
is the next step on the quest to formalize all mathematical knowledge.
There are several important advancements: most importantly, the stor-
age of theorems in structured, digital formats allow for proof automa-
tion using the metalanguage of the ITP. In this thesis, the main contri-
bution to the sum of formalized knowledge stored for usage in ITPs
is a theory of weakest preconditions of BIR statements formulated as
Hoare triples.

Interactive theorem provers, also known as proof-checking pro-
grams and theorem proving assistants, have been in development since
Robin Milner developed the first version of the LCF (Logic for Com-
putable Functions) prover in 1972 [40] for the Stanford Artificial In-
telligence Project conducted under the auspices of NASA. As the LCF
prover quickly rose from verifying small hardware components to be-
come powerful enough to prove properties of complex algorithms, the
tool for assisting in single proofs evolved slowly over time to instead
systematically save and categorize theorems for later use [22]. In this

4

CHAPTER 2. BACKGROUND 5

way, modern theorem proving assistants have accumulated a wealth
of theories, all of which are built from definitions and axioms of the
foundational logic. The successor to LCF is known as HOL, and is
competing with a dozen other theorem proving assistants, of which
perhaps Coq (launched in 1989) [13], Isabelle (launched in 1986) [44]
and ACL2 (launched in 1996) [6] are the most well-known alternatives.

Theorem proving assistants have both been used to construct com-
pletely new and surprising proofs and to poke holes in existing ones.
In the 1930s, E.V. Huntington and Herbert Robbins suggested two dif-
ferent bases for Boolean algebra: while both included commutativity
and associativity they differed on a third equation describing the ac-
tion of the complement operation. The conjecture that Huntington’s
third equation could be derived from Robbins’ three became known as
the Robbins conjecture. Despite efforts by Robbins, Huntington and
Alfred Tarski, the Robbins conjecture was not proved until 1996 by
William McCune, using the EQP automated theorem prover [38]. The
original proof which was presented in a very human-unfriendly form
has since been summarized in a more readable format by other authors
[15][37], showing that even inscrutable computer-assisted proofs can
be arranged in a form understandable to humans with some effort.

In 1998, Thomas Hales announced a proof of the Kepler conjec-
ture [25] - a conjecture stating that the face-centred cubic and hexag-
onally close-packed lattices maximize the percentage of space filled
by equally-sized spheres. This proof relied on exhaustive computa-
tion performed by programs he had written in Java. Sadly, this proof
was not reasonable to verify for humans due to the massive amount
of output - the proof submitted for publication consisted of 250 pages
which summarized 3 GB of programs and results. The 12 referees ap-
pointed by the Annals of Mathematics could not in the space of four
years arrive at a certain conclusion with regard to the veracity of the
proof, but decided to allow it to be published anyway. In response
to this, Hales would depart on an even lengthier journey to formalize
his proof inside the Isabelle and HOL Light ITPs. This would yield
a proof checkable to agree with a small set of trusted axioms, infer-
ence rules and definitions, removing the need for human referees. In
2014, the formalized proof was complete [26]. However, in the process
of formalization Hales had discovered several errors in the reasoning
of his earlier proof, justifying the scepticism of the referees (but the
general proof strategy, originally suggested by Fejes Tóth in 1953 [48],

6 CHAPTER 2. BACKGROUND

still proved sound). As increasing power of computers enables math-
ematical proofs reliant on extensive combinatorial checking of cases,
ITPs have a larger role in safeguarding against errors where humans
cannot.

Due to their history of development by computer scientists, the
use of theorem proving assistants in areas of computer science such
as hardware and software verification is widespread: ITPs have been
used to verify aspects of commercial hardware as well as critical soft-
ware such as ECC algorithms since the early 1990s [28]. Usage of ITPs
in other areas heavy in mathematics, such as theoretical physics, is un-
known to the author.

The concept of the weakest precondition was first introduced by
Edsger Dijkstra in 1975 [12]. The most notable extensions to his sim-
ple predicate transformer semantics are extensions to loops using loop
invariants [23] and to concurrent programming [31].

The paper which perhaps was the foremost inspiration when writ-
ing this thesis describes a similar project using the theorem proving
assistant Coq [50]. The main difference lies in the two languages used
to represent the program being verified. The intermediate language
of Vogels et al. (here denoted simply by IL to preserve the terminol-
ogy in their paper) is on the extreme structured end of languages: it
does not feature any type of analogue to goto statements pointing
back in the program other than pure loops, in contrast to BIR with its
Jmp and CJmp statements. Languages like Java completely without
goto statements instead rely on function calls and other constructs to
mimic goto usage, something which is also absent in IL. This sim-
plification means that weakest preconditions generated by branching
statements become simpler (as do the proofs of their correctness). If
the intent would instead be to create an intermediate representation
for concrete, practical programs, an unstructured approach would pre-
vent the code duplication required to present arbitrary programs in a
structured form.

The tools for verification described in this thesis forms the final
step in a verification workflow together with the ARMv8 to BIR tran-
spiler of Metere, Lindner and Guanciale [39]. This means that this is
demonstrably useful for verification of actual ARMv8 binary code. In
contrast, the work of Vogels et al. is not connected to any particular
transpiler and could be used for proofs related to abstract algorithms
rather than concrete programs.

CHAPTER 2. BACKGROUND 7

There is also a fundamental difference in computation as the method
of Vogels et al. is verified - a function inside the proof assistant logic
- the method presented here is verifying, using the metalanguage to
compute the weakest precondition. While the end result is the equiv-
alent theorems, using hand-tailored metalanguage for computation
may increase efficiency, in particular with regards to time consump-
tion. However, Vogels et al. do not provide any quantitative hints to
the performance of their algorithms.

There also exist methods for program verification which use an en-
tirely different workflow compared to the one described in this thesis,
something which can be very advantageous in certain situations. Con-
sider the case of designing a program using some high-level language.
The program is required to have certain properties, but it is not criti-
cal exactly how the final binary looks as long as these properties can
be guaranteed. Then, verifying these properties using the compiled
binary might not be an ideal approach, since it can be difficult to un-
derstand what changes to make in the high-level language code based
on an analysis of the machine code.

A solution to this is to verify the properties in the high-level lan-
guage before it is compiled. Then, use a compiler which preserves
these properties. As a consequence of this workflow, it is not neces-
sary to bother with understanding how the source code relates to the
binary and trying to fine-tune the former using the latter. The draw-
back of this method is that it is not possible to use it for binaries written
in several languages - in particular, the combination of C and assem-
bly which is found in many drivers and hypervisors. In any case, when
trying to create a tool to verify C with in-line assembly the advantage
of working with the potentially well-structured high-level language
would be nullified, since all the intricacies of the assembly code would
have to be taken into account.

Figure 2.1 is a comparison between the BIR workflow and the one
described in the two paragraphs above, concretely exemplified by VCC
and CompCert. VCC is a tool for verification of C code launched by
Microsoft Research in 2009 [9]. VCC works by transpiling annotated
C code to the BoogiePL intermediate language and then letting the
program verifier Boogie [2] generate verification conditions which are
handed to the Z3 SMT solver. It has been used in practice to verify
aspects of the Hyper-V hypervisor [33] as well as parts of the PikeOS
kernel [4].

8 CHAPTER 2. BACKGROUND

C code
(verified by for example VCC)

Binary code

CompCert

(a) Source code verification, then
certified compilation.

Binary code

BIR code
(verified by tool presented in thesis)

BIR Transpiler

(b) Lifting, then verification of
intermediate representation.

Figure 2.1: Comparison between different workflows when verifying
binary code.

CompCert is a certified compiler for C to PowerPC, ARM, RISC-V
and x86 assembly. It is written inside Coq, using Coq proofs of the se-
mantic equivalence between C code and the resulting assembly code.
Currently, CompCert is compatible with almost all of ISO C99, and ex-
tending the amount of C syntax supported by CompCert is an ongoing
effort led by Xavier Leroy at INRIA [35].

There are also more heuristically-oriented tools which aim to solve
similar problems but do so without producing exportable, indepen-
dently verifiable proofs. Valgrind [41] is a tool which can help detect
issues with memory safety. Angr is a newly-developed tool which uses
fuzzing and dynamic symbolic execution to detect actionable exploits
of programs [47]. Choosing heuristics over a theorem prover means
lowering the least needed time for detecting errors at the expense of
completeness. The trust base of a theorem prover with exportable, in-
dependently verifiable proofs is the axioms and inference rules (which
must be consistent), while the trust base of a heuristic tool is the pro-
grammer of the tool. This means that while descriptions of specific ex-
ploits are just as useful when they come from a heuristic, the absence
of exploits in the result of a heuristic cannot be considered reliable. The
approach suggested in this thesis is, therefore, to prefer over heuristics
when analysing critical but comparatively small code segments, such
as cryptographic algorithms, while tools such as Angr and Valgrind is
to prefer for obtaining concrete actionable exploits from large binaries,
rather than proofs of their absence.

CHAPTER 2. BACKGROUND 9

2.2 Preliminaries

Here, descriptions are given of a few central concepts this thesis re-
volves around.

2.2.1 Interactive Theorem Prover

Also known as a proof assistant, the interactive theorem prover (ITP) is a
program which assists with formal proofs. An automated theorem prover
is slightly different since it allows no guidance from the user during
the construction of the proof, but the end product is the same. At the
core of an interactive theorem prover is a formal system; it includes a
set of symbols, a grammar to decide whether formulae of these sym-
bols are well-formed or not, a set of axioms (and/or axiom schemata),
and inference rules which map premises onto conclusions. Building
on this very small core (around ten axioms and about as many prim-
itive inference rules), it is possible to make additional definitions and
prove properties of formulae constructed from these definitions. The
resulting theorems are then stored in theories, which are used in turn
to build new theories.

A theorem is a proven proposition. The well-formedness of propo-
sitions is guaranteed: propositions can only be formed according to
grammatic rules. Every proposition can be viewed as a syntax tree
consisting of variables and symbols as leaves, and every branching a
grammatically valid application of some operator.

A theorem is a similar derivation tree which can only have axioms
and definitions as leaves, and branches are inference rules instead of
grammar rules. An inference rule maps axioms, definitions and theo-
rems onto new theorems. When constructing a proof, inference rules
are successively applied until the resulting theorem is the one to be
proved. Of course, when doing so, the rich flora of already existing
theorems is utilized, minimizing the time it would take to prove ev-
erything from the raw foundations. An abstract example of a theorem
is shown in Figure 2.2. Actual theorems are far more complex, but the
figure conveys the basic notion of the theorem as a tree-like structure
with axioms and definitions as leaves.

Since different theorem provers use different formal systems, the-
orems are not trivially portable between them. However, recently de-
veloped tools like OpenTheory allow porting theorems between ITPs,

10 CHAPTER 2. BACKGROUND

Theorem

Inference Rule

Definition

Theorem

Inference Rule

Axiom

Axiom

Figure 2.2: Example structure of a theorem.

something which can increase the reliability of the usage of ITPs in
general, eliminating the reliance on a single ITP [29].

This thesis has used the ITP HOL4. The choice of HOL4 was solely
based on the fact that it is used in the local research group, and in the
group of Anthony Fox in Cambridge working in related areas. How-
ever, HOL4 is quite widespread and provided as free software, which
will enable others to easily build upon the work described in this the-
sis. The choice of ITP is mostly a practical matter. Throughout this
text, HOL4 will be referred to simply as “HOL”. HOL is an abbrevia-
tion standing for “Higher-Order Logic”, and using the same name for
the ITP and the type of logic it uses is a point of confusion inherited
from the predecessor of HOL, LCF (Logic of Computable Functions).

CHAPTER 2. BACKGROUND 11

Other logics, such as Zermelo-Fraenkel set theory, can be used with
other ITPs. A particularly important clarification is that if the reader
should explore any of the articles referenced in this thesis “HOL/Is-
abelle” does not mean “the proof assistant HOL or the proof assistant
Isabelle” but rather “the proof assistant Isabelle, using higher-order
logic”.

2.2.2 Hoare triples and verification

A Hoare triple (HT) is a logical abbreviation which is helpful when rea-
soning about the effect of execution of programs [17][27]. Consider
some formal language L with an accompanying small-step semantics
defining the effects of execution. Out of this language, construct a pro-
gram C: a list of statements in L. Furthermore consider two runtime
states S1 and S2, structures holding all information about the current
execution - most importantly, the status (is the state currently running,
or has it somehow terminated?), the program counter and the values
of initialized variables.

A Hoare triple can be written as

{P}C {Q} , (2.1)

meaning that execution of C from any state S1 for which P holds will
always end up in some state S2 for which Q holds. In addition, if P is
not only a precondition but the weakest precondition1 of C and Q, then
no state not fulfilling P can lead to S2 fulfilling Q by execution of C.

In program verification by means of the weakest precondition, the
programmer will formulate a contract Hoare triple

{Pp}C {Q} , (2.2)

which the goal is to prove. Given C and Q, the weakest precondition
WP is generated and

{WP}C {Q} (2.3)

is proved to hold. Then, the theorem stating the consequence rule is
used:

{WP}C {Q} =⇒
(Pp =⇒ WP) =⇒
{Pp}C {Q} ,

(2.4)

1If A⇒ B, then A is a stronger predicate implying the weaker predicate B.

12 CHAPTER 2. BACKGROUND

observing that as the first antecedent is already proved, it is left to
prove (Pp =⇒ WP), which would give the result that {Pp}C {Q}
holds.

Detailing how WP is computed, let the weakest-precondition pred-
icate transformer be a function wp mapping a statement stmt and one
postcondition Q for every statement execution of stmt can lead to onto
a weakest precondition WP .

To compute wp in general, weakest preconditions of the different
types of statements in L must be known, and also a rule of sequential
composition.

Commonly, a distinction is made between partial correctness and to-
tal correctness: total correctness is described in the Hoare triple defini-
tion above, and the weakest precondition is known as weakest conserva-
tive precondition (same as the wp in this thesis). Partial correctness only
requires that Q holds in S2 if execution of C terminates at all, and the
weakest precondition under that criterion is known as the weakest lib-
eral precondition. Since only loop-free programs are considered in this
thesis (and termination does not become an issue for computability),
this distinction is not relevant for the final resulting Hoare triple pro-
duced by the proof procedure, which technically will be referring to
total correctness. However, there are usages for the wlp even in loop-
free programs, such as in more efficiently generating weakest precon-
ditions for programs with conditional jumps [16]. There is a lot more
to say about how termination is treated in the HOL Hoare triple defi-
nitions later on in Section 2.2.4.

Note that since the starting point is a known postcondition from
which it is possible to reason about the potential states before execu-
tion, the above is a method which goes through the program back-
wards, in the opposite direction of execution. It is of course also pos-
sible to start with a known precondition, and reason about what is
the strongest postcondition after execution - the most specific, limiting
constraint on the final state S2 [11]. This is an equally legitimate way
of program verification, however using the weakest preconditions is
more common. Which one is preferred might depend on whether
the weakest precondition or strongest postcondition predicate trans-
former semantics is the easiest to state formally.

CHAPTER 2. BACKGROUND 13

2.2.3 Proof procedure

A proof procedure is a function which yields a theorem. Specifically, this
thesis will discuss verifying procedures, which are opposed to verified
procedures in the sense that the former use the metalanguage of an ITP,
while the latter are functions inside the logic of the ITP itself.

Using a verifying procedure instead of a verified procedure has the
advantage of being able to design the exact computation in detail, po-
tentially achieving greater efficiency and greater ease of integration
with other tools. However, also note that many ITPs can generate code
in functional languages from verified procedures inside the theorem
prover logic, a contemporary summary of which is given in [24].

2.2.4 BIR

BIR is shorthand for BAP Intermediate Representation2 and is an abstract
representation of programming language meant to be amenable to for-
mal analysis. In practice, no programs are originally written in BIR,
but rather programs written in other programming languages are com-
piled and then transpiled from machine code into BIR. The syntax and
semantics of BIR are defined in HOL as part of earlier work by Roberto
Metere and Thomas Türk. This means that it is possible to formally
describe properties regarding BIR programs in HOL, prove them and
treat them as any other HOL theorems.

A BIR program consists of a list of BIR blocks, where every block
consists of one BIR label (a block name in string format), one list of
basic BIR statements and one BIR end statement. Please note that in
general, a BIR block may have either a label with a string name or
an address consisting of an immediate value and any of these may be
used to jump to the block. In this thesis, only labels with block names
in string format will be considered.

The effects of execution are kept track of inside the BIR state, which
consists of a program counter, a variable environment with informa-
tion about declared variables and the current status (for example, whether
an assumption has been violated, if execution has failed or execution
is running along normally). The program counter points to the state-
ment about to be executed using a block label and a statement index.
Upon execution, if termination does not occur, the statement index of

2Binary Analysis Platform is a toolkit with heuristics for program verification [7].

14 CHAPTER 2. BACKGROUND

the program counter is incremented, or the label changed and the in-
dex set to 0 if a jump from the current block has occurred (for example,
while executing Jmp or CJmp).

The BIR variable environment is a map between string names of
variables to tuples of type and value. Values can be either memories
or immediate values.

All statuses apart from Running imply termination, which means
that further execution will have no effect on the state. These other sta-
tuses are used frequently in the report, so the prefixes used in their
formal definitions will be left out and they will instead be colloquially
referred to as just Failed, Halted, JumpOutside, and AssumptionVio-
lated. Their descriptions are given in Table 2.1.

Execution proceeds by applying the effects on the BIR state of the
basic BIR statements (Assume and Assert - there are more, but not
in the passified version of the language presented here) sequentially,
transitioning between blocks by means of the end statements (Halt,
Jmp and CJmp). Note that inside HOL (and inside HOL theorems re-
counted verbatim later on) these statements will be preceded by pre-
fixes, which are discarded in the main body of text of this thesis for
brevity. A BIR program might have several entry points, in the sense
that there are several blocks not pointed to by any other block, and it
might also have several endpoints (blocks ending with Halt).

Additionally, the Observe, Assign and Declare statements are
part of the BIR syntax but will not be treated here, since they are as-
sumed to have been removed through the passification process (de-
scribed in Section 2.2.6) before analysis of the BIR program starts.

Assert and Assume both take BIR expressions as arguments. A
BIR expression can be a range of typical arithmetic expressions with
values of varying types, as well as casts between types. These will be
glossed over in this report since they are only of indirect importance
when computing the WP, but two values require a special mention:
BIR True and BIR False, which are represented inside BIR as binary 1

and 0, respectively (henceforth only referred to as “True” and “False”
for brevity).

Assert will evaluate a BIR expression and set the state status to
Failed if the asserted BIR expression does not evaluate to True. Simi-
larly, Assume will evaluate a BIR expression and set the state status to
AssumptionViolated if the assumed BIR expression evaluates to False
(if it is neither True nor False, the status will be set to Failed).

CHAPTER 2. BACKGROUND 15

Status Description
Running (BST_Running) When in this status, execution

will proceed as normal.
Failed (BST_Failed) Will occur when the argument

to Assert does not evaluate to
True, or when any BIR expres-
sion provided as argument to
any statement is not well-typed
(not counting Halt).

Halted (BST_Halted) Will occur when executing the
Halt statement.

JumpOutside
(BST_JumpOutside)

Will occur when executing Jmp
or CJmp and being instructed to
jump to a label not found in the
program.

AssumptionViolated
(BST_AssumptionViolated)

Will occur when argument to
Assume evaluates to False.

Table 2.1: BIR statuses

There are four other ways evaluation of a BIR expression can change
state status when executing Assume or Assert: firstly, if the expres-
sion is not well-typed (types of the parameters of a binary operator
do not match as needed, for example, addition of a 1-bit number to
an 8-bit number) the resulting value will be BIR Unknown (henceforth
referred to as Unknown), and state status will always be set to Failed.
The same will happen if any variable is not correctly typed (the value
stored has a different type from the variable type) or if it has not yet
been initialized or declared. Declaration of variables normally hap-
pens through the Declare statement - in this thesis the precondition
of the Hoare triple will instead pass along a constraint that the encoun-
tered variables have already been declared and initialized earlier on in
the program.

2.2.5 The WP Predicate Transformer Semantics of BIR

Consider a BIR statement s. For every such statement, a function
wp(s,Q) can be defined which maps a statement s and a postcondi-

16 CHAPTER 2. BACKGROUND

tion Q onto the weakest precondition of the state satisfying Q under
the execution of s. The resulting weakest precondition P is, just like
Q, a condition on a state (specifically, a BIR expression which should
evaluate to True in the state): accordingly, it can be passed on in recur-
sion. As a result, for sequential concatenation of the statements s1 and
s2 the following must hold for wp:

wp(s1; s2, Q) = wp(s1, (wp(s2, Q))) . (2.5)

To resolve this recursion, it remains to discuss the WPs of the state-
ments themselves. These WPs are BIR expressions.

Assert

The Assert(e) basic statement in BIR has only one parameter, which
is the BIR expression e. In executing the Assert statement, e will be
evaluated at the current state. If e evaluates to True, the program ex-
ecution will continue without having affected the state other than in-
crementing the program counter. Otherwise, execution of the program
will immediately terminate with the state status set to Failed.

Consider the Hoare triple {P}C {Q}. Depending on which Hoare
triple variant is used, the postcondition will either say that the final
state S2 has status Halted, or that the program counter of S2 is pointing
to the statement after C (in the order of symbolic execution). Clearly, if
the code C inside the Hoare triple is Assert(e), it is a necessary pre-
condition that e evaluated to True, or else the program would have ter-
minated with a failure, setting state status to Failed and never reaching
the state fulfilling Q (which says that S2 must either be at the statement
after C, or be Halted). The only other requirement of the postcondition
is that Q itself must hold. Since Assert does not change the variables
in S1 in any way, if Q must hold in S2, then Q must also hold in S1.
The preconditions presented are not only necessary but also sufficient
since they will always lead to the postcondition being fulfilled in S2.
Thus, it must hold that

wp(Assert(e), Q) = e ∧Q , (2.6)

where the ∧ represents a BIR conjunction, making the right-hand side
a BIR expression.

CHAPTER 2. BACKGROUND 17

Assume

The Assume(e) basic statement is superficially similar to Assert. Se-
mantically, the difference between the two is that upon evaluation of
the BIR expression e, the status will be set to AssumptionViolated (not
Failed) if e evaluates to False. Accordingly, from the perspective of
symbolic execution, AssumptionViolated seems rather equivalent to
Failed - both will terminate if their argument does not evaluate to True
(with different state statuses). However, due to the way Hoare triples
are defined (in Section 3.1) the statuses are quite different from the
perspective of formal verification. Since the Hoare triples allow begin-
ning or ending in AssumptionViolated, this status effectively becomes
a pseudo-Running state, where every assertion holds: if status is As-
sumptionViolated in S1, that status will remain after execution of any
amount of steps and so remains in S2, which means the postcondition
will be fulfilled - there is never any need to consider any assumptions
or assertions in between, something which could be said to imply the
statement “every assertion holds”.

The Assume statement is nothing found in any actual program-
ming language - it is only used in formal analysis. Roughly speaking,
what the statement and the Hoare triple logic regarding it is convey-
ing is that e is introduced as an assumption for the rest of the current
execution path. Accordingly, if e evaluates to False in the state where
Assume(e) is executed, a contradiction has been introduced: it has
been assumed that False equals True. Since anything can be derived
from a contradiction, this implies that whether the postcondition Q

holds does not matter. In other words, only if e evaluates to true must
Q hold afterwards.

wp(Assume(e), Q) = (e⇒ Q) , (2.7)

Halt

The Halt(e) end statement is perhaps the simplest one to treat. Ex-
ecution of Halt(e) will just evaluate the expression e and then ter-
minate execution of the program by setting the status of the state to
Halted with the evaluation of e as an accompanying termination code.
The Halt statement can also never fail to terminate execution and end
up in a state with any status other than Halted. Accordingly, in the
related proofs there is no need to account for whether or not the vari-

18 CHAPTER 2. BACKGROUND

ables of e are initialized, or even if e is not well-typed. It follows that
the WP of the Halt statement is simply the postcondition Q.

wp(Halt(e), Q) = Q . (2.8)

Jump

The Jmp(l) end statement in BIR has as sole argument a BIR label l
of a BIR block. Upon execution of the Jmp statement, the program
counter will move to the first basic instruction of that block - if it ex-
ists, otherwise it will terminate with the status “JumpOutside l”. The
weakest precondition of Jmp is, like the Halt statement, trivial under
the assumption that there are no jumps to labels not in the program.

wp(Jmp(l), Q) = Q . (2.9)

Looking back at Equation 2.2.5, note that it is implicit that the next
statement after the Jmp is the first statement of the block with the label
l. Only programs with unique block labels will be treated in this thesis.
In practice, if there would exist multiple blocks with identical labels,
the BIR semantics will always just choose the first it finds.

Conditional Jump

The CJmp(e, l1, l2) end statement has three parameters: the expression
e and the two labels l1 and l2. Conditional jumps work in much the
same way as ordinary jumps, with the slight difference that the condi-
tional jump has different targets depending on the evaluation of e. If e
evaluates to True, then the target is l1, if False it is l2, and if Unknown
then status will be set to Failed and execution will terminate.

Intuitively, because of the two different execution branches pro-
ceeding from a CJmp statement, the WP actually must have two post-
conditions Q1 and Q2, corresponding to jumping to l1 and l2. Accord-
ingly the WP becomes

wp(CJmp(e, l1, l2), Q1, Q2) = ((e =⇒ Q1) ∧ (¬e =⇒ Q2)) . (2.10)

The fact that this has a different number of arguments from the
other WPs is no issue since any explicit WP function is never defined in
the formal proofs, nor in the proof procedures - if it eases the reader’s
mind the wp above can be thought of as a new function.

CHAPTER 2. BACKGROUND 19

Assign (y, x+ x)

Assign (z, y + y)

Figure 2.3: A BIR code snippet suitable for passification.

Typically, in other predicate transformer semantics, the equivalent
of the CJmp statement is illustrated by a “choice” statement which
takes two sub-programs as parameters and executes both. The logic
of the condition can then be modelled with assumptions of e and ¬e
in the two branches, respectively, which is logically equivalent to a
conditional jump.

2.2.6 Passification and single assignment forms

Consider the WP predicate transformer semantics described in Section
2.2.5. The semantics is missing any means to set the value of a variable,
or to declare the type of a variable - the Declare and Assign state-
ments exist in the full BIR, but not in the passive subset treated in this
thesis. Passive statements are the subset of statements which do not
affect the variable environment. Passification is the process in which a
program is rewritten to a passive form which is equivalent from the
perspective of Hoare triples. To motivate why passification is useful,
it is first required to understand the weakest precondition of Assign.

Since Assign (var , exp) changes the value of the variable var to
the evaluation of exp in the current state, when generating the weakest
precondition for an Assign statement all instances of evaluations of
var in the WP must be replaced by exp. Now consider the code snippet
in Figure 2.3 with the postcondition z. Generating the weakest precon-
dition would yield y + y in the first step, and then x + x + x + x - an
exponential increase in size.

The solution to this issue is to change all Assign statements to
equivalent Assume statements. It is perhaps closest at hand to com-
pare Assign (var , exp) to Assume var = exp. Using the example
code snippet in Figure 2.3, the weakest precondition would instead
be y = x + x =⇒ (z = y + y =⇒ z), adding the now passified as-
signments as assumptions to the weakest precondition in accordance
with the WP predicate transformer semantics outlined in Section 2.2.5.

20 CHAPTER 2. BACKGROUND

Assign (z, 2)

Assign (z, z + 2)

Figure 2.4: A BIR code snippet not suitable for passification.

If these assumptions are used to substitute their left-hand side in the
postcondition directly, the same WP is obtained as for Assign. Sud-
denly there is now only a linear growth of the generated WP.

As it turns out, passification is not so easy. Consider the example
in Figure 2.4. Again starting out from the postcondition z = 4, the gen-
erated weakest precondition can be described as WP¬pass ≡ 4 = 4 ≡
True for the non-passified program, but after passification, instead it is
obtained that WPpass ≡ z = 2 =⇒ (z = z + 2 =⇒ z = 4), which is a
nonsensical precondition. Since z = z + 2 is a contradiction, it is pos-
sible to show that WPpass ≡ True regardless of the other components.
This would yield the WP True for all programs with incrementation of
variables. How is it possible to deal with this issue?

The solution is called single-assignment form: if every variable is as-
signed to only once, there will be no contradictions like z = z+2 in the
weakest precondition, and also never different choices for which value
to substitute for a variable. There are several types of single assign-
ment form, the simplest of which is static single assignment (SSA) [45]
- meaning that every variable is assigned to at most once anywhere
in the code. In dynamic single assignment (DSA) [14], every variable
is assigned to at most once on each execution path. Transformations
to single assignment forms were first introduced in the field of com-
piler optimization around 1990 and found their way to formal verifi-
cation of software a decade later. The most recent single-assignment
technique was introduced in 2005 [1], which further helped reduce the
number of variable versions.

What are the other issues with regard to computation? None of
the expressions takes a lot of time to compute, so any improvements
to reduce time complexity seems unlikely, however, the size of the
generated weakest precondition WP may also grow exponentially for
nested CJmp statements. This is the worst-case situation for the size
of WP : none of the other passive statements can produce exponential
growth of WP , so by reducing the growth of WP due to CJmp to linear,

CHAPTER 2. BACKGROUND 21

it would be possible to make the size complexity of WP linear overall.
As shown by Flanagan and Saxe in 2001 [16], this is actually possible,
if the program for which the WP is generated is passified.

Assume a program to verify in passified form. Every symbolic ex-
ecution step can either end up in an exceptional state3, at which point
regular execution further on is not guaranteed, or in a non-exceptional
state. At this point, it is necessary to introduce the different concepts
of weakest conservative precondition (wp) and weakest liberal precondition
(wlp). The wlp(C,Q) is a predicate on a state preceding execution of C
which describes exactly all states which upon execution ends up obey-
ing Q, possibly becoming exceptional along the way. The weakest con-
servative precondition does not allow for exceptional states; for exam-
ple, a program which always enters an exceptional state will simply
have the weakest conservative precondition of False. Now, it clearly
holds that

wp(s,Q) = wp(s,True) ∧ wlp(s,Q) , (2.11)

since wp(s,True) evaluates to True or False depending on whether or
not s can enter an exceptional state, and wlp(s,Q) encapsulates the
predicate on the preceding states regardless of exceptionality. This is
the first step, but obviously not enough, since the exponential increase
will remain in the wlp.

Consider the equation

wlp(s,Q) = wlp(s,False) ∨Q . (2.12)

If this held, in combination with Equation 2.11, it is obtained that

wp(s,Q) = wp(s,False) ∧ (wlp(s,False) ∨Q) (2.13)

which would be very useful, since Q is not duplicated when comput-
ing the weakest precondition of statements which can be preceded by
several statements. However, this is not true for all statements s. Those
statements which modify the state upon which Q is a predicate do not
obey this equation: the declarations and assignments, which modify
the value of a state variable. Accordingly, this simplification can be
used in passified programs [16] [34].

3For example, through the assignment of malformed expressions. This is how-
ever dependent on the semantics of the language in question, which will not be ex-
amined in greater detail here.

Chapter 3

Method

This chapter describes the specific implementation of the theoretical
concepts outlined previously, and how this is used to verify actual pro-
grams. Sections 3.1 and 3.2 describe the implementation of the Hoare
triple first introduced in Section 2.2.2.

First, weakest precondition soundness theorems for all individual
statements are proved (Section 3.3). They relate an arbitrary postcon-
dition Q to the corresponding weakest precondition WP for the state-
ment. Note that only a soundness theorem and not a completeness the-
orem is provided. Thus, it is proved that what is claimed as a weakest
precondition WP is a sound precondition, but it is not proved formally
in HOL that WP is also the actual weakest precondition - the theoreti-
cal arguments are however given in Section 2.2.5.

When the WP soundness theorems (WPSTs) of all statements are
proved, the next step is to prove composition theorems for the dif-
ferent Hoare triple variants (Section 3.4). Assume the program C1;C2

and two Hoare triples {P}C1 {Q} and {Q}C2 {R}. These Hoare triples
are called adjacent, since the first describes execution ending in a state
where the second begins execution. The composition theorems show
how to obtain a single HT {P}C1;C2 {R}which describes the joint exe-
cution of the code in both previous HTs. As a technical aside, note that
the WPST for the CJmp statement is actually modelled as a conjunction
of two Jmp WPSTs, thus also making the corresponding composition
theorem somewhat of an exception to the others.

After these theorems have been proved, there remains to construct
a function which takes a concrete BIR program, a concrete postcon-
dition in the form of a BIR expression, and then computes a concrete

22

CHAPTER 3. METHOD 23

HT for the entire program. In fact, several HTs might be computed
- one for each block - since the entry point of a BIR program is an
arbitrary block. This function is the proof procedure get_ht_of_-
program (Section 3.5).

The last part is the actual verification step: at this point, the goal
is to prove that the contractual Hoare triple provided by the verifier
holds, given the HT proved by get_ht_of_program. This is done
in the same fashion as described previously in Section 2.2.2. The HOL
theorem used for this purpose is described in Section 3.6.

3.1 The Hoare triple

As explained in Section 2.2.2, a Hoare triple {P}C {Q} is a predicate
on the effect of execution of the code segment C, and can be translated
into natural language as “if the precondition P holds before execution
of C, then the postcondition Q holds after execution of C”. When trans-
lating the Hoare triple to HOL, the natural first step is to formulate the
requirement of the precondition holding, as seen in Figure 3.2.

Since this is the first HOL definition shown, some explanation re-
garding how they are presented might be necessary. HOL definitions
are, in general, stated in a form where arguments to the term to be
defined are universally quantified, then the term (given the univer-
sally quantified arguments) is stated to be equivalent to its definition
- an expression which can feature additional quantifiers. While the
dot after universal and existential quantification is just a separator, a
dot after variables followed by an entry name means that the vari-
able is in fact a record (a tuple with named fields), with the dot pick-
ing out the record entry with the name on its right-hand side. For
the BIR state described in Section 2.2.4, bst_pc is the program counter,
bst_status is the status and bst_environ the variable environment. The
program counter in turn has the entries bpc_label for the block label
and bpc_index for the index.

First, it is required by bir_ht_precond_holds that the precon-
dition P holds in the initial state S1 of the Hoare triple. This is captured
with the statement

bir_prop_true P S1.bst_environ . (3.1)

There is actually one other case which should be accepted: the state
where an assumption has been violated, the “top” exceptional state >.

24 CHAPTER 3. METHOD

In a state with status AssumptionViolated, every proposition can be
considered to hold.

Then, any other status than Running or AssumptionViolated (Failed,
JumpOutside or Halted) is explicitly forbidden by bir_is_valid_-
status (shown in Figure 3.1), since this would make the program ter-
minate. It is also required that variables be initialized (through bir_-
env_vars_are_initialised) and that the environment is well-typed
(through bir_is_well_typed_env). The use of passing along ini-
tialized variables will first be made clear in Sections 3.3.3 and 3.6, but
note already that there is a separate set of variables for those from the
initial postcondition.

` ∀ state.
bir_is_valid_status state ⇐⇒
state.bst_status 6= BST_Failed ∧
(∀ l. state.bst_status 6= BST_JumpOutside l) ∧
∀ v. state.bst_status 6= BST_Halted v

Figure 3.1: bir_is_valid_status

` ∀S1 P vars postcond_vars.
bir_ht_precond_holds S1 P vars postcond_vars ⇐⇒
((S1.bst_status = BST_AssumptionViolated) ∨
bir_prop_true P S1.bst_environ ∧ bir_is_valid_status S1) ∧
bir_is_well_typed_env S1.bst_environ ∧
bir_env_vars_are_initialised S1.bst_environ postcond_vars ∧
bir_env_vars_are_initialised S1.bst_environ vars

Figure 3.2: bir_ht_precond_holds

The postcondition is handled similarly to the precondition, as seen
in Figure 3.3.

For the purposes of proving the HTs of individual statements, and
for composing them, it is not necessary to keep track of variable ini-
tialization. However, to perform the verification step - to prove the
middle antecedent in the theorem shown in Figure 3.14 on page 46 the

CHAPTER 3. METHOD 25

` ∀S2 Q vars postcond_vars.
bir_ht_halt_postcond_holds S2 Q vars postcond_vars ⇐⇒
((S2.bst_status = BST_AssumptionViolated) ∨
bir_prop_true Q S2.bst_environ ∧
∃ hcode. S2.bst_status = BST_Halted hcode) ∧
bir_is_well_typed_env S2.bst_environ ∧
bir_env_vars_are_initialised S2.bst_environ postcond_vars ∧
bir_env_vars_are_initialised S2.bst_environ vars

Figure 3.3: bir_ht_halt_postcond_holds

set of initialised variables is used to translate BIR disjunctions to HOL
disjunctions.

One could question the requirement of variables to be initialized in
the postcondition. Note that BIR does not contain any mechanism to
un-initialize variables - the requirement is therefore always fulfilled.
Variables being initialized after execution is used in the proofs of the
theorems on combination of adjacent Hoare triples - the choice be-
tween having a lemma on impossibility of un-initialization and keep-
ing a predicate on variable initialization in the definitions is cosmetic,
but the current approach is more robust with regards to future inclu-
sion of a Havoc statement undoing initialization of variables.

Another approach which could be used in place of variable initial-
isation would be to keep track of which variables must not evaluate
to Unknown inside the Assume and CJmp expressions. This would
require a theorem stating that if a variable does not evaluate to Un-
known, it also would not evaluate to Unknown in a previous execution
state - a property which clearly holds for a passified program.

Using the definitions in Figure 3.2 and 3.3, the regular Hoare triple -
here named bir_ht_halt_n_holds - is defined as seen in Figure 3.4
for the BIR program prog , the precondition p, the postcondition q, the
program counter pc and the sets of variables vars and postcond_vars.
The pre- and postconditions p and q are both BIR expressions1. The

1Note that it is not explicitly required that p and q be Boolean expressions at this
point: If they are not, then the definition would hold just as well, since anything
can be derived from the contradiction resulting from the assertion inside bir_ht_-
precond_holds that they must be True. The restriction to Boolean expressions will

26 CHAPTER 3. METHOD

` ∀ prog P Q pc vars postcond_vars.
bir_ht_halt_n_holds prog P Q pc vars postcond_vars ⇐⇒
∀S1 S2.
(S1.bst_pc = pc) ⇒
bir_ht_precond_holds S1 P vars postcond_vars ⇒
∃n.

(S2 = bir_exec_step_n_state prog S1 n) ⇒
bir_ht_halt_postcond_holds S2 Q vars postcond_vars

Figure 3.4: bir_ht_halt_n_holds

program counter points to where in prog C from the Hoare triple starts
- C then ends wherever execution reaches a Halted state (which can
only happen through termination with the Halt statement). Note that
this allows for execution to end at multiple different points, which can
be the case after a conditional jump.

In summary, bir_ht_precond_holds summarizes the pre-
condition holding and bir_ht_halt_postcond_holds the post-
condition holding, while S1.bst_pc = pc and the application of
bir_exec_step_n_state determine the execution of C.

3.2 The n-step Hoare triple

Other than execution which ends whenever a Halted state is reached,
it is of interest to consider the execution of specific numbers of steps
inside blocks and out from blocks for use in the proof procedures. The
Hoare triple shown in Figure 3.5 represents execution of exactly n steps
from the statement with index i1 in block l1 to the statement with index
i2 in block l2. bir_ht_postcond_holds is defined in Figure 3.6 and
differs from the halt Hoare triple in Section 3.1 firstly in that it does
not require non-failing execution to end in termination by Halt (in fact,
halting is explicitly forbidden by bir_is_valid_status), secondly
by the constraint on the program counter which must end up on the
position determined by l2 and i1 after n execution steps.

only first come into play inside the weakest precondition theorems for the individual
statements.

CHAPTER 3. METHOD 27

` ∀ prog P Q l1 i1 l2 i2 vars postcond_vars n.
bir_ht_n_holds prog P Q l1 i1 l2 i2 vars postcond_vars n ⇐⇒
∀S1 S2.
(S1.bst_pc = <|bpc_label := l1; bpc_index := i1|>) ⇒
bir_ht_precond_holds S1 P vars postcond_vars ⇒
(S2 = bir_exec_step_n_state prog S1 n) ⇒
bir_ht_postcond_holds S2 Q l2 i2 vars postcond_vars

Figure 3.5: bir_ht_n_holds

` ∀S2 Q l2 i2 vars postcond_vars.
bir_ht_postcond_holds S2 Q l2 i2 vars postcond_vars ⇐⇒
((S2.bst_status = BST_AssumptionViolated) ∨
bir_prop_true Q S2.bst_environ ∧ bir_is_valid_status S2 ∧
(S2.bst_pc.bpc_index = i2) ∧ (S2.bst_pc.bpc_label = l2)) ∧
bir_is_well_typed_env S2.bst_environ ∧
bir_env_vars_are_initialised S2.bst_environ postcond_vars ∧
bir_env_vars_are_initialised S2.bst_environ vars

Figure 3.6: bir_ht_postcond_holds

3.3 Weakest precondition soundness theo-
rems

After the previous section has provided the tools to formulate Hoare
triples, the next step is to relate concrete post- and preconditions to
specific BIR statements. This section will examine all the statements
in a passified BIR program and formulate theorems stating the sound-
ness of their weakest preconditions as presented in Section 2.2.5.

A theorem stating soundness of a precondition expresses that the
precondition holding in the initial state implies the postcondition
holding in the final state, after execution. A completeness theorem, on
the other hand, would state that the precondition implies all other
sound preconditions. This terminology is borrowed from terms ap-
plied to proof or type systems in logic. In more general terms, sound-

28 CHAPTER 3. METHOD

ness can be thought of as the property guaranteeing no false positives
(no contradiction presented as truth), while the completeness property
guarantees no false negatives (no truth presented as a contradiction).

Consider the effects of these properties on the verification step:
without soundness, the generated WP in the HT would allow for ini-
tial states from which execution would not lead to states fulfilling the
postcondition. If the contractual precondition is sound, this would not
make any difference. However, it would be possible to also supply
unsound preconditions and prove contract HTs which in fact do not
hold. For example, the result that some program is functionally cor-
rect when it is not, or that forbidden areas of memory are untouched
when they are not. Lack of completeness would yield the opposite
problem: some contracts would be impossible to prove when they in
fact hold. This would at worst cause delays (until the error is found)
or cancellations of work, while the former situation might lead to the
deployment of unsafe systems. In addition, the weakest precondition
soundness theorems of the individual statements are used by the proof
procedures when constructing Hoare triples for entire programs.

The proofs have mostly been split up on the basis of properties,
meaning they are easier to follow for humans but might require more
lines in HOL compared to a proof which directly uses the totality of
the effect of execution.

Although the proofs are different for each statement, this is the gen-
eral outline: first rely on showing that the postcondition of the HT
holds using the preconditions as assumptions, and then use the se-
mantics of the statements themselves to see how properties of the ini-
tial state carry over to the final state. Figure 3.3 and 3.6 give an idea of
what is needed to prove.

Two of the properties necessary to prove are required by all post-
condition variants and true under execution for all statements in BIR:
that well-typedness is kept over execution, and that initialization of
variables is kept as well. This means that in BIR, there is no way
to uninitialize variables, nor to make the variable environment badly
typed through execution. These theorems are found in Figure A.9 (on
page 69).

Then there is one property which is required by all postcondition
variants, but which holds only under execution of any passive state-
ments: that all expressions evaluating to True needs to keep holding
under execution. This property holds for all passive statements since

CHAPTER 3. METHOD 29

they cannot change the variable environment, which could make an
expression previously evaluating to True evaluate to False. This theo-
rem is shown in Figure A.10 (on page 70).

Having accounted for those properties, the proofs start to diverge.
For the WP soundness theorem of Halt it is required that the final
state always has status Halted. For the others a valid status is re-
quired (as defined by bir_is_valid_status_def) - Running or
AssumptionViolated. In addition, Assume requires explicitly that sta-
tus of final state be set to AssumptionViolated if Assume argument
evaluates to False.

Assert and Assume require the program counter to move to the
next statement in the block if the status of the initial state was Running
and the argument of the statement evaluates to True. Jmp requires the
program counter to point to the start of the target block of the jump if
initial state status was Running, and CJmp similarly requires the pro-
gram counter to point to two different blocks depending on whether
the condition evaluates to True or False.

3.3.1 Trivial WP soundness theorem

This theorem describes execution of zero steps, and is used when gen-
erating Hoare triples for empty blocks.

Theorem 3.3.1 (bir_0_step_wp). The Hoare triple bir_ht_n_holds
is always true for 0 execution steps, unaltered program counter and precon-
dition equal to postcondition:

` ∀ prog P l1 i1 vars postcond_vars.
bir_ht_n_holds prog P P l1 i1 l1 (i1 + 0) vars

postcond_vars 0

Figure 3.7: bir_0_step_wp

Proof. The Hoare triple definition bir_ht_n_holds is expanded. Ex-
ecution of zero steps yields a final state equal to the initial state.
Then, for the same state (and corresponding program counter), con-
dition, sets of initialized variables, and making zero execution steps,
the precondition holding implies the postcondition holding (as stated

30 CHAPTER 3. METHOD

by bir_ht_pre_impl_post in Figure A.1 on page 65), which com-
pletes the proof.

3.3.2 Assert WP soundness theorem

This theorem is used when generating Hoare triples for Assert state-
ments. The proof is structured around lemmata of required properties
of the Assert statement.

Theorem 3.3.2 (bir_assert_wp). If the current statement is Assert
exp and the postcondition is Q, then the one-step Hoare triple holds with the
precondition exp ∧Q:

` ∀Q exp l1 i1 vars postcond_vars prog.
(bir_get_current_statement prog

<|bpc_label := l1; bpc_index := i1|> =
SOME (BStmtB (BStmt_Assert exp))) ⇒
bir_ht_n_holds prog (BExp_BinExp BIExp_And exp Q) Q l1 i1

l1 (i1 + 1) vars postcond_vars 1

Figure 3.8: bir_assert_wp

Proof. The Hoare triple and Hoare precondition definitions is ex-
panded, and bir_and_equiv (Figure A.6, page 67) is used for equiv-
alence between the BIR conjunction and HOL conjunction.

Then, consider the cases of two statuses of the initial state S1:
AssumptionViolated and not AssumptionViolated. In case the sta-
tus is AssumptionViolated, then by bir_exec_step_n_state_-
unchanged (in Figure A.4 on page 66) it remains so in S2, and so the
conclusion is proved by expanding the Hoare triple postcondition and
seeing that the AssumptionViolated clause is fulfilled.

If status of S1 is not AssumptionViolated, then by the principle of
exclusion it must be Running, since the current assumption that the
status of S1 is valid forbids all other cases. Refer to the HT postcondi-
tion (as defined in Figure 3.6) to see exactly what properties must be
proved.

1. Variables remain initialized: Given by bir_varinit_-
invar_n in Figure A.8 on page 69.

CHAPTER 3. METHOD 31

2. Environment remains well-typed: Given by bir_-
welltypedness_invar_n in Figure A.9 on page 69.

3. Q keeps holding: Given by bir_prop_true_invar_pass_n1
in Figure A.11 on page 70.

4. Valid status is preserved: Given by bir_assert_valid_-
status in Figure A.12 on page 71.

5. pc is incremented by one, and stays in the same block: Given
by bir_assert_pc in Figure A.13 on page 71.

With these properties proved, the postcondition in the goal holds,
and the proof is complete.

3.3.3 Assume WP soundness theorem

This theorem is used when generating Hoare triples for Assert state-
ments. The proof structure is similar to that of Assert, apart from the
consequences of there being three possibilities for next status when
evaluating exp.

Theorem 3.3.3 (bir_assume_wp). If the current statement is Assume
exp and the postcondition is Q, and if exp is a Boolean expression, then the
one-step Hoare triple holds with the precondition exp =⇒ Q:

` ∀Q exp l1 i1 vars postcond_vars prog.
(bir_get_current_statement prog

<|bpc_label := l1; bpc_index := i1|> =
SOME (BStmtB (BStmt_Assume exp))) ⇒
bir_is_bool_exp exp ⇒
bir_ht_n_holds prog

(BExp_BinExp BIExp_Or (BExp_UnaryExp BIExp_Not exp) Q) Q

l1 i1 l1 (i1 + 1) vars postcond_vars 1

Figure 3.9: bir_assume_wp

Proof. First, expand the Hoare triple and Hoare triple precondition
definitions.

32 CHAPTER 3. METHOD

In case the status of the initial state is AssumptionViolated, the
proof follows along the same lines as the Assert WP soundness the-
orem in Section 3.3.2.

If status of S1 is not AssumptionViolated, then by the principle of
exclusion it must be Running, since the current assumption that the
status of S1 is valid forbids all other cases. Refer to the HT postcondi-
tion (as defined in Figure 3.6) to see what properties must be proved.

Three of these properties can be proved directly:

1. Variables remain initialized: Given by bir_varinit_-
invar_n in Figure A.8 on page 69.

2. Environment remains well-typed: Given by bir_-
welltypedness_invar_n in Figure A.9 on page A.9.

3. Valid status is preserved: Using the fact that all subsets of the
set of initialized variables are also initialized, the proof is given
by bir_assume_valid_status in Figure A.14 on page 72.

It remains to show that for all possible cases, either execution
ends up in AssumptionViolated, or Q keeps holding and the program
counter is incremented by one. To proceed, consider the different val-
ues of exp in the initial state as they relate to execution and the WP:

1. ¬exp: status will be set to AssumptionViolated by execution,
and proof follows by bir_assume_violated (Figure A.16,
page 74).

2. exp: since exp =⇒ Q also holds in the initial state, Q

must hold there as well. Then, proof follows by bir_prop_-
true_invar_pass_n1 (Figure A.11) and bir_assume_pc
(Figure A.15, page 73).

Note that considering only the values True and False of exp and
not Unknown is possible since the antecedents in bir_assume_wp
state that exp is a Boolean expression, and furthermore the precondi-
tion states that a disjunction of ¬exp and Q holds, which together with
the assumption of well-typedness of the environment implies that exp

cannot evaluate to Unknown.

CHAPTER 3. METHOD 33

3.3.4 Halt WP soundness theorem

This theorem is used when generating Hoare triples for Halt state-
ments. The proof differs significantly from the previous ones since it
states that the bir_ht_halt_n_holds HT holds, and not the bir_-
ht_n_holds HT as before.

Theorem 3.3.4 (bir_halt_wp). If the current statement is Halt, then the
Hoare triple bir_ht_halt_n_holds holds for the pre- and postcondition
Q:

` ∀Q exp pc vars postcond_vars prog.
(bir_get_current_statement prog pc =
SOME (BStmtE (BStmt_Halt exp))) ⇒
bir_ht_halt_n_holds prog Q Q pc vars postcond_vars

Figure 3.10: bir_halt_wp

Proof. Expand the Hoare triple and Hoare triple precondition defini-
tions, and specify the existentially quantified step number in the def-
inition of bir_ht_halt_postcond_holds (Figure 3.3) as 1 - with
the current statement being Halt, only one step is needed to fulfil the
postcondition.

In case the status of the initial state is AssumptionViolated, the
proof follows along the same lines as the Assert WP soundness the-
orem in Section 3.3.2.

If status of S1 is not AssumptionViolated, then by the principle of
exclusion it must be Running, since the current assumption that the
status of S1 is valid forbids all other cases. Refer to the HT postcondi-
tion (as defined in Figure 3.3) to see what properties must be proved.

1. Variables remain initialized: Given by bir_varinit_-
invar_n in Figure A.8 on page 69.

2. Environment remains well-typed: Given by bir_-
welltypedness_invar_n in Figure A.9 on page 69.

3. Q keeps holding: Given by bir_prop_true_invar_pass_n1
in Figure A.11 on page 70.

34 CHAPTER 3. METHOD

4. Halt always halts: Given by bir_halt_halts in Figure A.17
on page 74.

3.3.5 Jump WP soundness theorem

This theorem is used when generating Hoare triples for Jmp state-
ments. The proof differs from the previous ones since it involves tran-
sitions between blocks. It is also important to note that while the ar-
gument to Jmp can in general be either a block label or an expression
evaluating to a block address, only the former is considered in this
thesis.

Theorem 3.3.5 (bir_jmp_wp). If the current statement is Jmp pointing to
a block with label label , and if there is a block in the program with label label ,
then the one-step Hoare triple holds for the pre- and postcondition Q with the
final program counter pointing to the first statement in the block with label
label :

` ∀Q l1 i1 vars postcond_vars prog label.
(bir_get_current_statement prog

<|bpc_label := l1; bpc_index := i1|> =
SOME (BStmtE (BStmt_Jmp (BLE_Label label)))) ⇒
MEM label (bir_labels_of_program prog) ⇒
bir_ht_n_holds prog Q Q l1 i1 label 0 vars postcond_vars 1

Figure 3.11: bir_jmp_wp

Proof. Expand the Hoare triple (Figure 3.5) and Hoare triple precondi-
tion definitions.

In case the status of the initial state is AssumptionViolated, the
proof follows along the same lines as the Assert WP soundness the-
orem in Section 3.3.2.

If status of S1 is not AssumptionViolated, then by the principle of
exclusion it must be Running, since the current assumption that the
status of S1 is valid forbids all other cases. Refer to the HT postcondi-
tion (as defined in Figure 3.6) to see what properties must be proved.

CHAPTER 3. METHOD 35

1. Variables remain initialized: Given by bir_varinit_-
invar_n in Figure A.8 on page 69.

2. Environment remains well-typed: Given by bir_-
welltypedness_invar_n in Figure A.9 on page 69.

3. Q keeps holding: Given by bir_prop_true_invar_pass_n1
in Figure A.11 on page 70.

4. Valid status is preserved: Given by bir_jmp_valid_status
in Figure A.18 on page 75.

5. Jump reaches target: Given by bir_jmp_target in Figure A.19
on page 75.

3.3.6 Conditional jump WP soundness theorem

This theorem is used when generating Hoare triples for CJmp state-
ments. The proof differs significantly from the previous ones since the
conclusion states that a conjunction of bir_ht_n_holds HTs hold,
one for each target block of the CJmp statement.

Consider the different forms the weakest precondition of a CJmp
statement might take. Since for Boolean values A, B and C it holds
that

(A ∧B) ∨ (¬A ∧ C) ≡ (¬A ∨B) ∧ (A ∨ C) ,

it would be possible to write the CJmp statement weakest precondition
(with C as the jump condition, and B and C as the preconditions of the
Hoare triples whose execution starts at the jump targets) as either the
right-hand or left-hand side of the above equation. Now, the proofs of
soundness for these weakest preconditions would actually be similar
in difficulty. If a case-split is performed on A, it is left to prove B with
A as an assumption and C with ¬B as an assumption in either case. In
the theorem shown in Figure 3.12, a disjunction of conjunctions is the
chosen form of writing the weakest precondition of a CJmp statement.

Theorem 3.3.6 (bir_cjmp_wps). If the current statement is a CJmp with
Boolean condition cond , first label label1 and second label label2, and if cond

is a Boolean expression, and if both labels are are in the program prog , then

36 CHAPTER 3. METHOD

both the 1-step Hoare triple bir_ht_n_holds with a precondition consist-
ing of a BIR conjunction of cond and Q1, the postcondition Q1 and the jump
target label label1 and the 1-step Hoare triple bir_ht_n_holds with the
precondition consisting of a BIR conjunction of ¬cond and Q2, the postcon-
dition Q2, and the jump target label label2 hold:

` ∀ vars postcond_vars Q1 Q2 l1 i1 prog cond label1 label2.
(bir_get_current_statement prog

<|bpc_label := l1; bpc_index := i1|> =
SOME

(BStmtE
(BStmt_CJmp cond (BLE_Label label1)

(BLE_Label label2)))) ⇒
bir_is_bool_exp cond ⇒
MEM label1 (bir_labels_of_program prog) ⇒
MEM label2 (bir_labels_of_program prog) ⇒
bir_ht_n_holds prog (BExp_BinExp BIExp_And cond Q1) Q1 l1

i1 label1 0 vars postcond_vars 1 ∧
bir_ht_n_holds prog

(BExp_BinExp BIExp_And (BExp_UnaryExp BIExp_Not cond) Q2)
Q2 l1 i1 label2 0 vars postcond_vars 1

Figure 3.12: bir_cjmp_wps

Proof. Expand the Hoare triple (Figure 3.5) and Hoare triple precondi-
tion definitions. Then, use bir_and_equiv to convert the BIR con-
junctions to HOL conjunctions.

Since the conclusion is a conjunction, it is necessary to prove that
both of the HTs hold. The first part of the proofs for the two HTs is
similar:

In case the status of the initial state is AssumptionViolated, the
proof follows along the same lines as the Assert WP soundness the-
orem in Section 3.3.2.

If status of S1 is not AssumptionViolated, then by the principle of
exclusion it must be Running, since the current assumption that the
status of S1 is valid forbids all other cases. Refer to the HT postcondi-
tion (as defined in Figure 3.6) to see what properties must be proved.

CHAPTER 3. METHOD 37

1. Variables remain initialized: Given by bir_varinit_-
invar_n in Figure A.8 on page 69.

2. Environment remains well-typed: Given by bir_-
welltypedness_invar_n in Figure A.9 on page 69.

3. Valid status is preserved: Given by bir_cjmp_valid_status
in Figure A.20 on page 76.

From this point on, the proofs diverge. For the first HT, it is re-
quired that Q1 keeps holding and that CJmp always jumps to the block
with label label1 if the condition holds. For the second one, it is re-
quired that Q2 keeps holding and that CJmp always jumps to the block
with label label1 if the condition does not hold:

1. Q1 or Q2 keeps holding: Given by bir_prop_true_invar_-
pass_n1 in Figure A.11 on page 70.

2. Conditional jump always hits correct target: Given by bir_-
cjmp_target1 (in Figure A.21, page 77) and bir_cjmp_-
target2 (in Figure A.22, page 78).

3.4 Hoare triple composition theorems

In the previous section, proof sketches have been given - tracing the
lines of the proofs in HOL - for theorems stating the soundness of
weakest preconditions of individual statements. However, the topic
of interest is entire programs, and so the following theorems, which
prove the soundness of Hoare triples composed out of combinations
of already proven adjacent Hoare triples, are needed. The notion of ad-
jacency here means that the program counter in one of the HTs points
to the place where it ends up after the execution described in the other
one. The composition theorems are written so that the pre-existing
Hoare triples to be composed are simply antecedents with the result-
ing Hoare triple being the conclusion, making for simple usage later
on in the proof procedures.

First, recall the two different Hoare triple variants: n-step Hoare
triples describing n execution steps and halt Hoare triples describing

38 CHAPTER 3. METHOD

execution until Halt is reached. The end product of the proof proce-
dure proving HTs will be one halt HT for every block in the program,
which describes execution from the start of that block until termina-
tion by Halt. The following composition theorems are used in the
process:

1. n-step and halt Hoare triple composition theorem (described
in Appendix A.6.1): Result of composition is one halt HT. Used
when building the halt HT for a block ending in Halt, or when
generating a HT for the complete block after one of the following
two composition theorems for end statements of a block has been
used.

2. Jump and halt Hoare triple composition theorem (described in
Appendix A.6.2): Result of composition is one halt HT. Used to-
gether with Jmp WPST and halt HT of Jmp target block to start
generating HT for jump blocks.

3. Conditional jump and halt Hoare triple composition theorem
(described in Appendix A.6.3): Result of composition is one halt
HT. Used together with CJmp WPST and halt HTs of CJmp target
blocks to start generating HT for conditional jump blocks. Note
that since the CJmp WP is a conjunction of two HTs, this theorem
technically composes two HTs with one halt HT.

3.5 Proof procedures

All of the previous theorems can be thought of as building blocks.
There is still to describe the procedures which obtain the Hoare triples
for actual programs and postconditions, using these building blocks.
These procedures are written in SML - the metalanguage of HOL.
“Metalanguage” here means that while HOL is the language the theo-
rems are stated in, SML is the language used to combine and manipu-
late the theorems with axioms and definitions to prove further results,
based on the primitive inference rules of HOL.

3.5.1 Proving the HT of a BIR program

Recall that a BIR program is a list of BIR blocks, which in turn consist
of a list of basic statements and one ending statement. To prove HTs

CHAPTER 3. METHOD 39

for an entire program, the proof procedure get_ht_of_program is used.
To prove a Hoare triple for execution of a block b, a postcondition

is also needed. Specifically, to construct a halt HT of the type seen
in Figure 3.4, it is also required that b ends with a Halt statement.
Alternatively, a HT stating the effect of execution from the start of b
until termination could be proved. This would require another HT
stating the effect of execution from after b until Halt is reached for all
execution paths, in which case the precondition of this HT becomes
the postcondition supplied when proving the HT for b, after which the
two are combined using a composition theorem.

Just like a BIR program can have multiple endpoints where ter-
mination with Halt occurs, it can also have multiple entry points.
Strictly speaking, any block whatsoever may be the entry point of the
program: it is only dependent on where the initial program counter
points. BIR programs are represented as a list of blocks, whose order-
ing is entirely arbitrary2.

It is therefore ambiguous what is meant by “getting the HT of a pro-
gram”. In this context, it signifies proving the halt HTs of all blocks.
get_ht_of_program returns a dictionary between block labels and cor-
responding HTs. Then, the halt HT corresponding to the entry point
of interest can be obtained by looking up the label of the entry point
block.

get_ht_of_program first puts all the block labels in a list l1: for each
block label bl , the function will check if a Hoare triple has been gener-
ated for the block labels jumped to from the block bl . If not, bl is put
in another list l2 with block labels to check later on and go to the next
block label in l1. If yes, a new HT is generated for the bl block from
the one already describing execution to the end of the program from
immediately after the block bl , and l2 is concatenated to l1 forming
the new l1, after which l1 is searched again from the start in the same
fashion. Note that if a block ending in Halt is encountered, no other
previously obtained HTs are required to generate the block HT. Jmp
blocks require HT of one subsequent block, while CJmp often require
two HTs.

The generation of WPs and proof of HTs for different block types
is outsourced to functions get_ht_of_halt_block, get_ht_of_jmp_block
and get_ht_of_cjmp_block.

2Note that since the ordering of the list does not matter, and since programs with
duplicate BIR block labels are not considered, the list is functionally a set.

40 CHAPTER 3. METHOD

The dictionary returned by get_ht_of_program (as well as the set
representations used internally) uses applicative maps implemented
using Okasaki-style Red-Black trees [43], courtesy of Ken Friis Larsen.

3.5.2 Proving the HT of a BIR program: Example

Block 1
Basic stmts

CJmp

Block 2
Basic stmts

Jmp

Block 3
Basic stmts

Halt

Block 4
Basic stmts

Halt

Figure 3.13: Example BIR program

For a concrete example of get_ht_of_program showcasing usage of all
three composition theorems, consider applying get_ht_of_program on
the program in Figure 3.13 and some postcondition Q. Assume that in
the program - the list of blocks - the blocks are sorted by their numbers
in ascending order. As a consequence of this, first a Hoare triple for
block 3 would be generated since this is the first block in this order
which does not require any HTs to have been generated before.

Since block 3 is a block ending with Halt, get_ht_of_halt_block
(described in Section 3.5.3) is called. The WPST of Halt (shown in
Figure 3.10) is specialized and becomes the initial HT of only the end-
ing statement. After this, the n-step + halt HT composition theorem
(shown in Figure A.23 on page 79) is used to consecutively add execu-
tion of the basic statements in block 3 to the initial Hoare triple, one by
one. This results in HT 3, a Hoare triple describing execution from the
start of block 3 until termination by Halt.

CHAPTER 3. METHOD 41

Next, all the blocks would be searched again. Note that with only
HT 3 it is not yet possible to prove halt HTs for blocks 1 and 2, after
which block 4 remains. Block 4 has no prerequisites for proving a halt
HT (apart from Q, of course) and so a Hoare triple HT 4 is proved in
the exact same fashion as for block 3, using get_ht_of_halt_block.

Now looking at the blocks again, it becomes possible to prove a halt
HT for block 1, since HTs have been proved for every block reachable
after execution of block 1. This HT is generated by get_ht_of_cjmp_-
block (described in Section 3.5.3) first using the WPST of CJmp (shown
in Figure 3.12) to obtain a conjunction of two HTs, after which the con-
ditional jump + halt HT composition theorem (shown in Figure A.25
on page 82) is used together with HT 3 and HT 4 to obtain a halt HT
onto which the basic statements in block 1 are subsequently added, in
the same fashion as for blocks 3 and 4.

Now only block 2 remains, and the prerequisite for proving a halt
HT of block 2 is the halt HT of block 4, which is already computed.
get_ht_of_jmp_block (described in Section 3.5.3) is called, and the
WPST of Jmp is used to obtain a HT of the ending statement. This
is then composed with the halt HT of block 2 using the jump + halt
HT composition theorem (shown in Figure A.24 on page 81). The HTs
of the basic statements of the block are then consecutively added onto
this in the same fashion as for the other blocks.

At this point, computation is finished and the dictionary mapping
block labels to the halt HTs HT 1, HT 2, HT 3 and HT 4 is the return value
of get_ht_of_program.

3.5.3 Proving the HT of a BIR block

Here, the proof procedures for obtaining halt HTs of individual blocks
are described.

Note that while HTs for blocks ending in Halt can be proved using
only a postcondition Q, those ending in jumps require HTs to have
been proved already for every block the ending statement can jump
to.

get_ht_of_halt_block

This proof procedure returns a theorem stating the halt Hoare triple of
a block ending in Halt. It takes as arguments a postcondition postcond

(a BIR expression), a program prog and a block label bl . The weakest

42 CHAPTER 3. METHOD

precondition is generated along the way. The structure is roughly the
following:

1. Prove the halt Hoare triple halt_stmt_ht of the Halt statement
at the end of the block bl in prog (recall that the WP of Halt is
simply the postcondition).

2. Starting with the last basic statement, successively generate WPs
for and prove corresponding HTs for the basic statements of the
block bl . As the HTs are proved, compose them together with
halt_stmt_ht , using the composition theorem for n-step and halt
Hoare triples to ultimately form one halt HT describing execu-
tion of the entire block.

get_ht_of_jmp_block

This proof procedure returns a theorem stating the halt Hoare triple
HT Jmp of a block ending in Jmp. Note that this means that HT Jmp de-
scribes execution from the start of the block ending with a Jmp state-
ment until termination by Halt, which may involve an arbitrary num-
ber of blocks after the current one in order of execution. Accordingly,
the arguments of get_ht_of_jmp_block are a BIR program prog , the la-
bel of the jump block bl as well as a tuple of a halt HT halt_ht and a
variable set varset . The structure is roughly the following:

1. Prove the Hoare triple jmp_stmt_ht of the Jmp statement at the
end of the block bl in prog (recall that the WP of Jmp is simply
the postcondition). This is done with the aid of the bir_jmp_wp
theorem, and any of its antecedents which cannot be obtained
trivially are proved by the proof procedures is_label_member_-
eval and bir_get_current_statement_eval.

2. Compose jmp_stmt_ht and halt_ht using the bir_jmp_halt_-
comp_wp theorem into a new halt HT new_halt_ht , describing
execution from the Jmp statement until termination by Halt.

3. Starting with the last basic statement, successively generate WPs
for and prove corresponding HTs for the basic statements of the
block bl . As the HTs are proved, compose them together with
halt_stmt_ht , using the composition theorem for n-step and halt
Hoare triples to ultimately form one halt HT describing execu-
tion from the start of the block until termination by Halt.

CHAPTER 3. METHOD 43

get_ht_of_cjmp_block

This proof procedure returns a theorem stating the halt Hoare triple
HTCJmp of a block ending in CJmp. The arguments are a BIR program
prog , the block label bl of the conditional jump block and two tuples
of the halt HTs halt_ht1 (describing execution from the first jump tar-
get) and halt_ht2 (describing execution from the second jump target)
with their variable sets varset1 and varset2 . Note that the variable sets
are not HOL sets but set representations in SML, for more efficient set
operations. The structure is roughly the following:

1. Prove the Hoare triple cjmp_stmt_ht of the CJmp statement at the
end of the block in prog with the block label bl .

• Generate curr_stmt_thm, a theorem stating the effect of
bir_get_current_statement applied on prog and a program
counter pc pointing to the CJmp statement (by using bir_-
get_current_statement_eval).

• Construct the CJmp statement HT cjmp_hts by means
of modus ponens of the bir_cjmp_wps theorem with
curr_stmt_thm, is_bool_exp_cond_thm (a theorem stating
that the loop condition is a Boolean expression generated
by bir_is_bool_exp_pp) and theorems stating that the first
and second target labels of the CJmp statement exist in the
program.

2. Combine cjmp_hts , halt_ht1 and halt_ht2 through modus ponens
with the bir_cjmp_halts_comp_wp theorem into a new halt
HT new_halt_ht , describing execution from the CJmp statement
until termination by Halt.

• Generate theorems stating the variables in the constraints
on initialized variables in halt_ht1 and halt_ht2 are both
subsets of the variables in the variable constraint of
cjmp_hts .

• Finally, supply all of the arguments and generated theorems
to modus ponens of bir_cjmp_halts_comp_wp.

3. Generate HTs for all basic statements in the block, and succes-
sively combine them into new_halt_ht .

44 CHAPTER 3. METHOD

• This is accomplished by using the get_ht_of_bstmt_list
proof procedure with the precondition of new_halt_ht , prog ,
bl and a tuple of new_halt_ht and the corresponding varset
as arguments.

expand_bstmt_ht

expand_bstmt_ht looks at the block with label bl in the program prog .
There, it successively generates HTs for statements from the end of
the block to the start of the block and continuously merges them into
halt_ht .

When generating a Hoare triple for a list of basic BIR statements,
it is first necessary to check for the special case of an empty list of
basic BIR statements, which is not just a theoretical possibility but a
typical situation for BIR blocks representing branch instructions (since
the Jmp and CJmp statements are end statements, they cannot syntac-
tically be in the list of basic statements). This is represented by the
bir_0_step_wp theorem and the composition is achieved by modus
ponens with the bir_n_step_halt_comp_wp theorem.

In case of a non-empty list of basic statements, for every statement
the variables which at that point need to be initialized are obtained as
an SML red-black set of HOL terms, then the subset relation theorem
needed for the merge is constructed using is_subset_pp. The HTs for
the individual statements are obtained in separate functions, from the
theorems bir_assert_wp and bir_assume_wp.

Note that the Assume statement requires more computation than
the Assert statement since the Assume HT (bir_assume_wp) con-
tains an antecedent which must be proved by means of a proof proce-
dure: the booleanity of the assumed expression is proved via bir_is_-
bool_exp_pp.

The merge is finalized by obtaining the consequent of bir_n_-
step_halt_comp_wp through modus ponens with the antecedents
computed before.

Various other proof procedures

The previous section is not a full account of all the proof procedures,
but describes the most central ones to the results in this thesis. A few
more have been written to compare with the performance of the eval-
uation tools of HOL:

CHAPTER 3. METHOD 45

• bir_vars_of_exp_pp obtains the result of bir_vars_of_exp ap-
plied to the expression exp as a theorem,

• bir_is_bool_exp_pp decides whether an expression is Boolean or
not,

• is_member_set_pp obtains the theorem stating that the set con-
sisting of the element elem is a subset of the set elem ∪ superset

(and simplifies the union),

• is_subset_pp and is_subset_tm_pp (using union_subset_pp) ob-
tain the theorem stating that the set subset is the subset of the set
superset,

• and is_label_member_pp obtains the theorem stating that the
block label label is among the list of block labels in the program
prog

3.6 Verification step

The theorem in Figure 3.14 is used for the purposes of verification, as
described in Section 2.2.2. It is also known as the consequence rule for
precondition strengthening.

Theorem 3.6.1 (bir_verification). If the halt HT of program prog ,
precondition WP , postcondition Q , program counter pc and sets of variables
vars and postcond_vars holds, then if for all well-typed states s where the
variables in vars and vars_postcond are initialized and P holds WP holds,
then the halt HT of program prog , precondition P , postcondition Q , program
counter pc and sets of variables vars and postcond_vars holds:

Proof. Expand the halt HT definition and specialize the results with
the correct states. Move expressions from the goal to the assumptions,
and when the definition of the HT precondition is expanded, the con-
clusion of the middle antecedent of the original theorem can then be
obtained, which completes the proof.

46 CHAPTER 3. METHOD

` ∀ prog P WP Q pc vars postcond_vars.
bir_ht_halt_n_holds prog WP Q pc vars postcond_vars ⇒
(∀ s.

bir_is_well_typed_env s.bst_environ ⇒
bir_env_vars_are_initialised s.bst_environ vars ⇒
bir_env_vars_are_initialised s.bst_environ

postcond_vars ⇒
bir_prop_true P s.bst_environ ⇒
bir_prop_true WP s.bst_environ) ⇒

bir_ht_halt_n_holds prog P Q pc vars postcond_vars

Figure 3.14: bir_verification

3.7 Supporting tools

3.7.1 Tactics

A few tactics were also devised in order to automate the verification
step (proving that the contractual precondition implies the computed
weakest precondition) as much as possible.

First, the antecedents on initialized variables are merged with the
help of BIR_FIX_VARSETS_TAC. Then, the computed weakest precon-
dition WP is reduced to a list of HOL assumptions. For this purpose,
the following tactics were created:

• BIR_ASSUME_TAC simplifies the effects of an Assume state-
ment on the postcondition,

• BIR_CJMP_DISJ_TAC simplifies the effects of a CJmp statement
on the postcondition,

• and BIR_DISJ_TAC simplifies BIR Or in goal.

At this point, the various expressions assumed throughout the pro-
gram are in the list of assumptions of HOL. The proof strategy is to
translate these from BIR to something usable by a library for bitblast-
ing. This is not a matter of trivial translation, but rather requires some
manual trickery. Still, the following tactics pull the most of the weight:

CHAPTER 3. METHOD 47

• BIR_NOT_EQUIV_TAC simplifies BIR Not in goal and assump-
tions,

• BIR_EQ_EQUIV_TAC simplifies BIR Equal and MemEq in goal
and assumptions,

• BIR_LT_32_EQUIV_TAC simplifies BIR LessThan (between 32-
bit immediate values) in goal and assumptions,

• BIR_SLT_32_EQUIV_TAC simplifies BIR SignedLessThan (be-
tween 32-bit immediate values) in goal and assumptions,

• BIR_LOE_32_EQUIV_TAC simplifies BIR LessOrEqual (between
32-bit immediate values) in goal and assumptions,

• BIR_SLOE_32_EQUIV_TAC simplifies BIR SignedLessOrEqual
(between 32-bit immediate values) in goal and assumptions,

• BIR_ASM_DISJ_EQUIV_TAC simplifies BIR Or in assumptions
(note that this gives more subgoals),

• BIR_REWR_IMMEXP_TAC simplifies evaluation of BIR Den im-
mediate expressions to BIR Imm values using free variables
given tuples of names of variables and their sizes,

• BIR_REWR_IMMEXPS_TAC does the same as the above but for
lists of arguments,

• BIR_REWR_MEMEXP_TAC simplifies evaluation of BIR Den
memory expressions to BIR Mem values using free variables
given tuples of names of variables and their address and value
types,

• and BIR_REWR_MEMEXPS_TAC does the same as the above
but for lists of arguments.

after which it is possible to rewrite Load and Store expressions, and
translate the result to bit-blastable form.

Since the theorem stating equivalence between BIR and HOL con-
junctions does not have any antecedents, it does not really require
any corresponding tactic. The above tactics can only be guaranteed to
work if the expressions to be simplified are at the top level of goal and
assumptions - although they do a rudimentary search through consec-
utive conjunctions and equalities.

Chapter 4

Results

4.1 Example application: Verifying GCD

For evaluating the newly designed verification procedure, the loop
content of a common algorithm to compute the greatest common divi-
sor was chosen. The C code is shown in Figure 4.1. To ensure a prac-
tical, realistic example, actual ARM assembly code of the loop content
- shown in Figure 4.2 - of the GCD algorithm was translated into BIR
in passified DSA (dynamic single assignment) form. The 13 assembly
instructions translate into equally many BIR blocks, typically with one
basic statement and one end statement each, and finally, a block with
Halt was appended.

i n t gcd (i n t x , i n t y) {
while ((x >0) && (y>0) && (x != y)) {

i f (x > y)
x = x−y ;

e lse
y = y−x ;

}
return x ;

}

Figure 4.1: GCD function in C

In Figure 4.3, the individual boxes are different BIR blocks with
their names (corresponding to the ARM assembly program addresses)

48

CHAPTER 4. RESULTS 49

400580 : ldr w1, [s p , #12]
400584 : ldr w0, [s p , #8]
400588 : cmp w1, w0
40058c : ble 4005a4
400590 : ldr w1, [s p , #12]
400594 : ldr w0, [s p , #8]
400598 : sub w0, w1, w0
40059c : s t r w0, [s p , #12]
4005a0 : b 4005b4
4005a4 : ldr w1, [s p , #8]
4005a8 : ldr w0, [s p , #12]
4005ac : sub w0, w1, w0
4005b0 : s t r w0, [s p , #8]
4005b4 : .end

Figure 4.2: GCD loop content in ARM assembly language

in bold typeface. Below the name is a (possibly empty) list of basic
statements and at the bottom of the box an end statement. Arrows
correspond to possible jumps between the blocks triggered by the end
statements. [MEM]SP is a memory load operation, returning the imme-
diate value stored in the memory MEM at the address SP . [MEM]SP(i)

is a memory store operation, returning the memory obtained by stor-
ing the immediate value i in the memory MEM at the address SP .

Two properties were evaluated: memory safety and functional cor-
rectness, both with separate proofs for signed and unsigned integers.
The performance was evaluated on a 2010 laptop with a 2.4 GHz Intel
Core i3-M370 CPU.

4.1.1 Memory Safety

At the end of execution, it is usually desirable that memory stays un-
changed apart from a certain region that the program is allowed to
write to, for all possible executions. The contract (a Hoare triple) cor-

50 CHAPTER 4. RESULTS

0x400580
Assume w10 = [MEM 0]SP0+12

Jmp 0x400584

0x400584
Assume w00 = [MEM 0]SP0+8

Jmp 0x400588

0x400588
Assume Z = (w00 = w10)

Assume N = (w10 < w00)

Assume C = w00 ≤ w10
Jmp 0x40058c

0x40058c

CJmp Z = True ∨ ¬C = True 0x4005a4 0x400590

0x400590
Assume w11 = [MEM 0]SP0+12

Jmp 0x400594

0x400594
Assume w0=[MEM 0]SP0+8

Jmp 0x400598

0x400598
Assume w02 = w11 − w01
Jmp 0x4005a0

0x40059c
Assume [MEM 1] = [MEM 0]SP0+8(w02)

Jmp 0x4005a0

0x4005a0

Jmp 0x4005b4

0x4005a4
Assume w11 = [MEM 0]SP0+8

Jmp 0x4005a8

0x4005a8
Assume w01 = [MEM 0]SP0+12

Jmp 0x4005ac

0x4005ac
Assume w02 = w11 − w01
Jmp 0x4005b0

0x4005b0
Assume [MEM 1] = [MEM 0]SP0+8(w02)

Jmp 0x4005b4

0x4005b4

Halt

Figure 4.3: GCD loop content in BIR

responding to this property, which the goal then is to prove, is

{True} gcd_prog {((sp < uint_max (32)− 15)∧
(a < sp + 8 ∨ a > sp + 15)) =⇒
(mem ′(a) = mem(a))} ,

(4.1)

where SP is the stack pointer, UINT _MAX (32) is the maximum value
of an unsigned 32-bit word, and mem(a) means reading memory at
the address a. mem is the version of the memory at the start of the
program, and mem′ the version at the end.

CHAPTER 4. RESULTS 51

The first step is now to use get_ht_of_program on gcd_prog and the
postcondition in Equation 4.1. The resulting dictionary d is obtained in
four seconds, and in d the label of the entry point of gcd_prog is looked
up to obtain a HT computed_ht stating the effect of execution from the
start of gcd_prog until termination by Halt.

Then, modus ponens is used on bir_verification (shown in Figure
3.14) with computed_ht , the universally quantified variable p special-
ized as True. All that remains is now to prove the last antecedent of
bir_verification stating that the precondition provided in the contract
(True) implies the weakest precondition computed in computed_ht .
Unlike the generation of bir_verification this is not a step that is entirely
automated, the tactics introduced in Section 3.7 were created to trans-
late BIR expressions to equivalent word operations or generic Boolean
expressions.

The final parts of the proof consist of using rewrite theorems to
compute the effect of Load and Store expressions. At this point, it is
also necessary to do some renaming of variables automatically gener-
ated by HOL as well as final technical touching-up of the assumptions.
After this, it is possible to proceed to bit-blasting1.

The proof of the verification step is computed in 16 seconds.

4.1.2 Functional Correctness

Functional correctness means that the code computes what it is sup-
posed to. For this small example, functional correctness might seem re-
dundant, but for some larger programs, the functional correctness cri-
terion can be expressed much more succinctly compared to the code.
The contract is

{True} gcd_prog {((x0 > y0 =⇒
(x1 = x0 − y0) ∧ y1 = y0)∧
(x0 ≤ y0 =⇒
(y1 = y0 − x0 ∧ x1 = x0))} ,

(4.2)

where x and y are two memory addresses and the indexes their ver-
sion. In practice, they are offsets from the stack pointer in a versioned
BIR memory. Since DSA is used, the same second version can be used
for both if-cases.

1Bit-blasting means transforming a bit-vector formula to an equivalent proposi-
tional formula, trying to prove it using tools specialized for propositional formulae.

52 CHAPTER 4. RESULTS

The first parts of the proof, where the computed weakest precon-
dition is transformed into HOL assumptions, is identical to the proof
for memory safety since the proof is related to the same program. The
last part, related to fitting the parts into place for bit-blasting is entirely
different but only from a technical point of view, which does not merit
further description here.

4.2 Performance evaluation

For purposes of judging the efficacy of the approach using proof pro-
cedures, their performance with regard to computation time was eval-
uated. This was done by generating random BIR expressions and ran-
dom sets of variables as arguments to the proof procedures and taking
averages of computation times over 15 runs with newly randomized
arguments. In Figure 4.4, the performance evaluation of the bir_vars_-

1 2 3 4 5 6 7
Depth of expression

0

1

2

3

4

5

Ti
m

e
[s

]

PP
EVAL

Figure 4.4: Performance evaluation of bir_vars_of_exp_pp

of_exp_pp proof procedure is shown. This procedure provides a theo-
rem stating the set of variables in an expression. It is used in the verifi-
cation step, when proving equivalence between BIR and HOL expres-
sions. This computation becomes a bottleneck as expressions get very
large. The computation time of the proof procedure (PP) is compared

CHAPTER 4. RESULTS 53

0 10 20 30 40 50 60
Size of set

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
[s

]

PP
EVAL

Figure 4.5: Performance evaluation of is_subset_pp

with that of the in-built HOL tool for evaluating terms, EVAL. Figure
4.5 shows the performance evaluation of the is_subset_pp proof pro-
cedure. This is used once for Assume and two times for CJmp. The
time of computation increases as the constraint on initialized variables
grows larger. It is important to note that since is_subset_pp is only
ever used to prove the positive case (it is never asked whether A is
a subset of B, only for a proof of that being true), testing with com-
pletely random variable sets might skew the comparison. Therefore,
all comparisons are made when computing the positive case.

As for the other auxiliary proof procedures used in proving con-
crete HTs, only small gains were achieved over comparable solutions
which used the simplifier of HOL. However, these also have compu-
tation times around 1/100 of a second for feasible values while being
called about as often as the above, and so are less critical for computa-
tional time overall.

The performance of get_ht_of_program was also evaluated, which
is shown in Figure 4.6. This was done by generating random programs
without branching statements: a sequence of Jump blocks ending in a
Halt block, all with one Assume statement each assuming a Boolean
BIR expression of depth 3. The provided postcondition had depth
2. Variables were created using random 5-letter names, meaning they

54 CHAPTER 4. RESULTS

0 5 10 15 20 25 30
Number of blocks

0

2

4

6

8

10

Ti
m

e
[s

]
PP

Figure 4.6: Performance evaluation of get_ht_of_program

rarely occur multiple times. These conditions are likely more severe
than typical conditions of usage, apart of course from the absence of
conditional jumps.

The performance bottleneck when proving Hoare triples of pro-
grams is the Assume and CJmp statements. These involve the most
usage of proof procedures for antecedents.

When treating programs of the small sizes similar to the example
application in this chapter, memory is not an issue. An experiment
with calling get_ht_of_program on longer linear programs of length
100 (constructed as described in the previous paragraph) reveals that
maximum memory usage (according to casual inspection of htop) will
fluctuate up to 200 MiB above the maximum usage for programs of
length 10. Then, from length 100 to 200 another 500 MiB is added.
For this type of program, the feasible sizes treatable by a cheap laptop
likely range in the hundreds. For comparison, AES-128 can be imple-
mented in 560 assembly instructions [46].

Chapter 5

Conclusions

In this thesis, a new verifying procedure generating verification con-
ditions (VCs) for programs, as well as rudimentary tactics to automate
the proof of these VCs, have been presented. The resulting proofs are
exportable and independently verifiable. The new approach proved
feasible with regard to computation time. Even for examples more ad-
vanced than GCD, like cryptographic protocols, both the step obtain-
ing the HTs and the verification step should be possible to do almost
in real-time (even with the addition of loop invariants).

Relying on speed-up due to writing custom proof procedures in-
stead of relying on functions inside the theorem prover logic trades
off programmer time in order to gain computational efficiency. The
biggest gains can be found where the HOL representation of the ob-
jects involved in the computation is not performance-oriented, the best
example of which is the manipulation of sets. Where there is no ad-
vantage to be made by writing more efficient data structures in the
metalanguage, writing proof procedures by hand might even risk de-
creased performance.

The entire project - not counting signature files, Python scripts, data
et cetera - uses 12K physical lines of code. Of those, 3K are the man-
ual HOL proofs of GCD properties, which contain several similar parts
and comments. 4, 5K are all the proof procedures, while 4, 5K are the
theories themselves, half of which concern Hoare triples and weakest
preconditions, and half of which are lemmata used by the proof pro-
cedures and tactics. In particular, the proofs of the WPSTs and com-
position theorems could have been written in a much more compact
form, but are instead optimized for human-readability and robustness

55

56 CHAPTER 5. CONCLUSIONS

to changes in the underlying theories.
There exist two main performance limitations for extending this

work: firstly, the potentially exponential growth of the generated WP.
While Flanagan and Saxe [16] were able to reduce the worst-case size
complexity of the generated WP from exponential to polynomial, the
same is not as easy to do when generating WPs for BIR programs, due
to differences in the syntax of BIR to that of the language of Flanagan
and Saxe. While one could very well make WP size improvements for
branching segments in if-then-else format, the unstructured nature of
BIR makes it impossible to guarantee branching only takes this shape,
while this is implicit in the language of Flanagan and Saxe.

Secondly, bit-blasting expressions containing multiplication of two
variables can be very computationally costful: general multiplication
is limited to at most eight-bit words when using the bit-blasting library
of HOL4 [18]. The very last part of the proofs described in Chapter 4
is typically completed by bit-blasting. If that should fail for similar
proofs, the problem could be exported to an external SMT solver like
Z3 and imported back to HOL through an oracle, thus giving the re-
sulting theorem a tag showing it is obtained through a potentially un-
sound external tool. As this would increase the trust base of the re-
sult, it would slightly defeat the purpose of the approach suggested
in this thesis. However, it might suffice as a temporary solution when
HOL4 bit-blasting does not do the job. Another approach would be to
write a procedure to automatically reconstruct the proofs given by Z3
in HOL4, an approach which was developed by Böhme et al. in 2011
[5]. This would seem like the best of both worlds, however, the draw-
back is that the status of Z3 as a closed-source project makes automatic
reconstruction a very difficult endeavour - when the proofs given by
Z3 lack detail, the user has no way to obtain more information.

Mitigating the difficulty of bit-blasting general multiplication is a
current field of research, which the method in this thesis is dependent
upon for increasing the scope of application. Bryant at al. has sug-
gested a decision procedure which uses successive under- and over-
approximation of bit-vector formulae to demonstrably shorten compu-
tation times for problems involving multiplication [8]. In 2015, Fröh-
lich et al. presented a stochastic local search (SLS) method operating
directly on the bit vectors as an alternative to bit-blasting [19]. This
has later been integrated with bit-blasting into a sequential portfolio,
as well as extended with propagation-based move selection utilizing

CHAPTER 5. CONCLUSIONS 57

encountered formulae to decrease reliance on brute force [42]. Neither
of these approaches is in any way integrated with HOL4, other than in
the sense that they might be used as external oracles.

One bottleneck when using this type of method is programmer
time used in specification and proving steps. For this thesis, a series of
rudimentary re-usable tools were developed (as described in Section
3.7), which still leaves the proof requiring some human guidance. In
theory, the proving step could be automated to the ability of the best
SMT solvers and decision procedures, either by reconstructing proofs
inside HOL4, or by re-implementing them inside HOL4 logic or as
proof procedures. As for specification, there appears to be no obvious
way to save programmer time other than perhaps translating the BIR
specifications from some higher-level language or tool which is faster
to use. However, note that this translation would require additional
trust unless it is also proven correct in HOL4.

5.1 Future work

The inquiring reader might, of course, argue that it is useless to verify
programs as long as the hardware running the programs is not ver-
ified. Luckily, the work on verifying commercial microprocessors (to
the degree that is possible due to intellectual property restrictions) and
on top of that verifying the implementation of machine code instruc-
tions has been steadily going on since the 2000s [21]. The work by
Anthony Fox et al. at Cambridge in these areas is connected to this the-
sis in several ways, in particular since they originally developed some
HOL theories used. In order for this work to continue to have rele-
vance, reliance is placed also on verification of new hardware. The ex-
tension of the main proof procedure to correctly handle the Declare
statement if encountered should be trivial - it should allow removing
the variable declared from the set of variables required to be initialized
getting passed along the WP-generating procedure if this variable is
also assigned to before being used in any expressions.

Similarly, the Observe statement is even simpler to handle. Since
only passified programs are handled (where the the Assign state-
ments have been exchanged for the Assume statements via the passi-
fication procedure), the Assign statement is not necessary to handle.

The antecedent in the verification theorem stating that the con-

58 CHAPTER 5. CONCLUSIONS

tractual precondition implies the computed weakest precondition is
currently proved manually in HOL. This proof could instead be auto-
mated by means of a proof procedure, further decreasing reliance on a
user fluent in HOL. This has already been automated to a large degree,
but there are still improvements that could be made which would save
time for any user of the methods presented in this thesis.

The functionality of the tool could be extended by introducing sup-
port for loop invariants, which would enable dropping the restriction
on loop-free programs.

Leslie Lamport provided a predicate transformer semantics for
concurrent programs in 1990 [31]. As far as the author is aware,
this has yet to be implemented in a fully verified verification condi-
tion generator (although concurrent program verification tools such
as JPF which do not provide independently verifiable proofs are
widespread).

A Chinese group implemented a weakest-precondition-style predi-
cate transformer semantics for quantum computation in Isabelle/HOL
based on the quantum Hoare logic defined in 2011 by Mingsheng Ying
[52] [36]. Adding this to the current tool might prove an interesting
extension, which then could be used to verify properties of quantum
algorithms.

A weakest-precondition-style predicate transformer semantics for
probabilistic programs was used in 2016 to reason about bounds on
running times of probabilistic programs [30]. This might be a possible
future addition if one should be interested in analyzing probabilistic
programs and providing proofs for bounds of their running times.

Bibliography

[1] Mike Barnett and K Rustan M Leino. “Weakest-precondition of
unstructured programs”. In: ACM SIGSOFT Software Engineering
Notes. Vol. 31. 1. ACM. 2005, pp. 82–87.

[2] Mike Barnett et al. “Boogie: A modular reusable verifier for
object-oriented programs”. In: International Symposium on Formal
Methods for Components and Objects. Springer. 2005, pp. 364–387.

[3] S. K. Basu and R. T. Yeh. “Strong verification of programs”. In:
IEEE Transactions on Software Engineering 1 (Sept. 1975), pp. 339–
346. ISSN: 0098-5589. DOI: 10.1109/TSE.1975.6312858. URL:
doi.ieeecomputersociety.org/10.1109/TSE.1975.
6312858.

[4] Christoph Baumann et al. “Lessons learned from microker-
nel verification–specification is the new bottleneck”. In: arXiv
preprint arXiv:1211.6186 (2012).

[5] Sascha Böhme et al. “Reconstruction of Z3’s bit-vector proofs in
HOL4 and Isabelle/HOL”. In: International Conference on Certified
Programs and Proofs. Springer. 2011, pp. 183–198.

[6] Bishop Brock, Matt Kaufmann, and J Strother Moore. “ACL2
theorems about commercial microprocessors”. In: International
Conference on Formal Methods in Computer-Aided Design. Springer.
1996, pp. 275–293.

[7] David Brumley et al. “BAP: A binary analysis platform”. In:
International Conference on Computer Aided Verification. Springer.
2011, pp. 463–469.

[8] Randal E Bryant et al. “An abstraction-based decision procedure
for bit-vector arithmetic”. In: International journal on software tools
for technology transfer 11.2 (2009), pp. 95–104.

59

60 BIBLIOGRAPHY

[9] Ernie Cohen et al. “VCC: A practical system for verifying con-
current C”. In: International Conference on Theorem Proving in
Higher Order Logics. Springer. 2009, pp. 23–42.

[10] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient SMT
solver”. In: International conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer. 2008, pp. 337–340.

[11] L. Peter Deutsch. An interactive program verifier. Tech. rep. 1973.

[12] Edsger W Dijkstra. “Guarded commands, nondeterminacy and
formal derivation of programs”. In: Communications of the ACM
18.8 (1975), pp. 453–457.

[13] Gilles Dowek et al. The COQ Proof Assistant: User’s Guide: Version
5.6. INRIA, 1992.

[14] Paul Feautrier. “Dataflow analysis of array and scalar ref-
erences”. In: International Journal of Parallel Programming 20.1
(1991), pp. 23–53.

[15] Branden Fitelson. “Using Mathematica to understand the com-
puter proof of the Robbins Conjecture”. In: Mathematica in Edu-
cation and Research 7 (1998), pp. 17–26.

[16] Cormac Flanagan and James B Saxe. “Avoiding exponential ex-
plosion: Generating compact verification conditions”. In: ACM
SIGPLAN Notices. Vol. 36. 3. ACM. 2001, pp. 193–205.

[17] Robert W Floyd. “Assigning meanings to programs”. In: Mathe-
matical aspects of computer science 19.19-32 (1967), p. 1.

[18] Anthony CJ Fox. “LCF-style bit-blasting in HOL4”. In: Interna-
tional Conference on Interactive Theorem Proving. Springer. 2011,
pp. 357–362.

[19] Andreas Fröhlich et al. “Stochastic Local Search for Satisfiability
Modulo Theories.” In: 2015.

[20] Kurt Gödel. “Russell’s mathematical logic”. In: 1944 (1944),
pp. 123–153.

[21] MJC Gordon. “Formal Specification and Verification of ARM6”.
In: ().

[22] Mike Gordon. “From LCF to HOL: a short history.” In: Proof, Lan-
guage, and Interaction. 2000, pp. 169–186.

BIBLIOGRAPHY 61

[23] David Gries. “A note on a standard strategy for developing loop
invariants and loops”. In: Science of Computer Programming 2.3
(1982), pp. 207–214.

[24] Florian Haftmann. “Code generation from specifications in
higher-order logic”. PhD thesis. München, Techn. Univ., Disser-
tation, 2009.

[25] Thomas C Hales. “A proof of the Kepler conjecture”. In: Annals
of mathematics (2005), pp. 1065–1185.

[26] Thomas Hales et al. “A formal proof of the Kepler conjecture”.
In: Forum of Mathematics, Pi. Vol. 5. Cambridge University Press.
2017.

[27] Charles Antony Richard Hoare. “An axiomatic basis for com-
puter programming”. In: Communications of the ACM 12.10
(1969), pp. 576–580.

[28] Warren A Hunt et al. “Industrial hardware and software veri-
fication with ACL2”. In: Phil. Trans. R. Soc. A 375.2104 (2017),
p. 20150399.

[29] Joe Hurd. “The OpenTheory standard theory library”. In: NASA
Formal Methods Symposium. Springer. 2011, pp. 177–191.

[30] Benjamin Lucien Kaminski et al. “Weakest precondition reason-
ing for expected run–times of probabilistic programs”. In: Euro-
pean Symposium on Programming Languages and Systems. Springer.
2016, pp. 364–389.

[31] Leslie Lamport. “win and sin: Predicate transformers for con-
currency”. In: ACM Transactions on Programming Languages and
Systems (TOPLAS) 12.3 (1990), pp. 396–428.

[32] Ralph Langner. “Stuxnet: Dissecting a cyberwarfare weapon”.
In: IEEE Security & Privacy 9.3 (2011), pp. 49–51.

[33] Dirk Leinenbach and Thomas Santen. “Verifying the Microsoft
Hyper-V hypervisor with VCC”. In: International Symposium on
Formal Methods. Springer. 2009, pp. 806–809.

[34] K Rustan M Leino. “Efficient weakest preconditions”. In: Infor-
mation Processing Letters 93.6 (2005), pp. 281–288.

62 BIBLIOGRAPHY

[35] Xavier Leroy. “Formal Verification of a Realistic Compiler”. In:
Commun. ACM 52.7 (July 2009), pp. 107–115. ISSN: 0001-0782.
DOI: 10.1145/1538788.1538814. URL: http://doi.acm.
org/10.1145/1538788.1538814.

[36] Tao Liu et al. “A theorem prover for quantum Hoare logic and
its applications”. In: arXiv preprint arXiv:1601.03835 (2016).

[37] Allen L Mann. “A complete proof of the Robbins conjecture”. In:
(2003).

[38] William McCune. “Solution of the Robbins problem”. In: Journal
of Automated Reasoning 19.3 (1997), pp. 263–276.

[39] Roberto Metere, Andreas Lindner, and Roberto Guanciale.
“Sound Transpilation from Binary to Machine-Independent
Code”. In: Brazilian Symposium on Formal Methods. Springer.
2017, pp. 197–214.

[40] Robin Milner. Logic for computable functions description of a machine
implementation. Tech. rep. DTIC Document, 1972.

[41] Nicholas Nethercote and Julian Seward. “Valgrind: a framework
for heavyweight dynamic binary instrumentation”. In: ACM Sig-
plan notices. Vol. 42. 6. ACM. 2007, pp. 89–100.

[42] Aina Niemetz, Mathias Preiner, and Armin Biere. “Propagation
based local search for bit-precise reasoning”. In: Formal Methods
in System Design 51.3 (2017), pp. 608–636.

[43] Chris Okasaki. “Red-black trees in a functional setting”. In: Jour-
nal of functional programming 9.4 (1999), pp. 471–477.

[44] Lawrence C Paulson. “Natural deduction as higher-order reso-
lution”. In: The Journal of Logic Programming 3.3 (1986), pp. 237–
258.

[45] Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck.
“Global value numbers and redundant computations”. In: Pro-
ceedings of the 15th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages. ACM. 1988, pp. 12–27.

[46] Peter Schwabe and Ko Stoffelen. “All the AES you need on
Cortex-M3 and M4”. In: International Conference on Selected Areas
in Cryptography. Springer. 2016, pp. 180–194.

BIBLIOGRAPHY 63

[47] Yan Shoshitaishvili et al. “SOK:(State of) The Art of War: Offen-
sive Techniques in Binary Analysis”. In: Security and Privacy (SP),
2016 IEEE Symposium on. IEEE. 2016, pp. 138–157.

[48] L Fejes Tóth. “On close-packings of spheres in spaces of constant
curvature”. In: Publ. Math, Debrecen 3 (1953), pp. 158–167.

[49] Alan Mathison Turing. “On computable numbers, with an appli-
cation to the Entscheidungsproblem”. In: Proceedings of the Lon-
don mathematical society 2.1 (1937), pp. 230–265.

[50] Frédéric Vogels, Bart Jacobs, and Frank Piessens. “A machine-
checked soundness proof for an efficient verification condition
generator”. In: Proceedings of the 2010 ACM symposium on Applied
Computing. ACM. 2010, pp. 2517–2522.

[51] A. N. Whitehead and B. Russell. Principia Mathematica. Vol. I. En-
glish. Cambridge: University Press. xv, 666 S. 4◦ (1910). 1910.

[52] Mingsheng Ying. “Floyd–hoare logic for quantum programs”.
In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 33.6 (2011), p. 19.

Appendix A

Lemmata

Here, some of the less central theoretical results are shown. While
the proofs in the thesis cannot be understood without the below, they
have been moved out of the way into an appendix to allow the reader
to more quickly access the more central results while still keeping the
details for reference.

Any theorems referenced in the below sections which cannot be
found in the theories written by the author can be found in the generic
BIR theories written by Roberto Metere and Thomas Türk.

A.1 Lemmata on pre- and postconditions

This theorem facilitates proving the trivial HT.

Theorem A.1.1 (bir_ht_pre_impl_post). If the Hoare triple precon-
dition holds in state S for the expression P and the sets of variables vars and
postcond_vars , the the Hoare triple postcondition holds in the same state for
P , the program counter of S, zero execution steps, and the sets of variables
vars and postcond_vars :

Proof. The two definitions are identical apart from the predicate on
the program counter in bir_ht_postcond_holds_def, but since
the number of steps is zero, it still holds.

This theorem helps merge two adjacent Hoare triples into one.

Theorem A.1.2 (bir_ht_post_impl_pre). If the Hoare triple postcon-
dition holds in the state S for the expression Q, the program counter pc, the
number of steps n and the sets of variables vars and postcond_vars , and if

64

APPENDIX A. LEMMATA 65

` ∀S P vars postcond_vars.
bir_ht_precond_holds S P vars postcond_vars ⇒
bir_ht_postcond_holds S P S.bst_pc.bpc_label

S.bst_pc.bpc_index vars postcond_vars

Figure A.1: bir_ht_pre_impl_post

vars ′ is a subset of vars , then the Hoare triple precondition holds in S for Q,
vars ′ and postcond_vars :

` ∀S P l i n vars vars ′ postcond_vars.
bir_ht_postcond_holds S P l i vars postcond_vars ⇒
vars ′ ⊆ vars ⇒
bir_ht_precond_holds S P vars ′ postcond_vars

Figure A.2: bir_ht_post_impl_pre

Proof. The definition of bir_ht_postcond_holds contains every-
thing needed from bir_ht_precond_holds apart from the con-
straint on initialized variables vars ′. bir_ht_postcond_holds also
says that the set of variables vars are initialized in S. With this, and
the antecedent saying that vars ′ ⊂ vars , it is possible to obtain that
vars must also be initialized in S, which completes the proof.

A.2 Some lemmata on termination

Theorem A.2.1 (bir_exec_step_n_terminated_unchanged). If
the BIR state S has terminated, then S is unchanged under further execu-
tion using bir_exec_step_n:

Proof. Proof follows directly through the semantics of bir_exec_-
step_n_state.

Theorem A.2.2 (bir_exec_step_n_state_unchanged). If the sta-
tus of BIR state S is AssumptionViolated, then S is unchanged under further
execution using bir_exec_step_n:

66 APPENDIX A. LEMMATA

` ∀ prog S1 n.
bir_state_is_terminated S1 ⇒
(bir_exec_step_n_state prog S1 n = S1)

Figure A.3: bir_exec_step_n_terminated_unchanged

` ∀ prog S1 n.
(S1.bst_status = BST_AssumptionViolated) ∨
(S1.bst_status = BST_Failed) ∨
(∃ v. S1.bst_status = BST_Halted v) ∨
(∃ l. S1.bst_status = BST_JumpOutside l) ⇒
(bir_exec_step_n_state prog S1 n = S1)

Figure A.4: bir_exec_step_n_state_unchanged

Proof. Proof follows modus ponens with the antecedent on bir_-
exec_step_n_terminated_unchanged, after expanding the def-
inition of bir_state_is_terminated.

Theorem A.2.3 (bir_running_by_exclusion). If the status of BIR
state S is valid (not JumpOutside, Failed or Halted), then if status of S is also
not AssumptionViolated, it must be Running:

` ∀S1.
bir_is_valid_status S1 ⇒
S1.bst_status 6= BST_AssumptionViolated ⇒
(S1.bst_status = BST_Running)

Figure A.5: bir_running_by_exclusion

Proof. Proof follows from the principle of exclusion: simply perform a
case split on the possible statuses of S and resolve all cases with the
given antecedents, giving either contradictions or the conclusion.

APPENDIX A. LEMMATA 67

A.3 Lemmata on Boolean BIR values

These theorems can be found in bir_bool_equivTheory, and relate to
translation between BIR and HOL logical connectives.

Theorem A.3.1 (bir_and_equiv). The BIR conjunction of two expres-
sions is True iff the HOL conjunction of the values of the two expressions is
True:

` ∀ env1 exp Q.
bir_prop_true exp env1 ∧ bir_prop_true Q env1 ⇐⇒
bir_prop_true (BExp_BinExp BIExp_And Q exp) env1

Figure A.6: bir_and_equiv

Proof. Consider the two directions of the equivalence: first, starting
from the assumption that the HOL conjunction holds. It follows that
the BIR conjunction holds by evaluation of the expression, using the
True values of the individual subexpressions.

If instead the starting point is that the BIR conjunction holds, then
the goal becomes the symmetrical task of proving individually that
this implies that both conjuncts hold. If all the possible values of the
subexpressions are considered, the only value which does not contra-
dict the BIR conjunction holding is True.

Theorem A.3.2 (bir_disj_impl). The BIR disjunction of two expres-
sions is True if the HOL disjunction of the values of the two expressions is
True:

` ∀ env exp1 exp2.
bir_prop_true (BExp_BinExp BIExp_Or exp1 exp2) env ⇒
bir_prop_true exp1 env ∨ bir_prop_true exp2 env

Figure A.7: bir_disj_impl

68 APPENDIX A. LEMMATA

Proof. The proof follows along similar lines to that of the second direc-
tion in the proof of bir_and_equiv. Considering the different cases
for the values of the subexpressions leads either to type contradictions
among assumptions or to a word expressions from which one can ob-
tain the goal through bitblasting.

A.4 Lemmata on BIR variables

In BIR, initializing a variable means declaring it (using Declare) and
then assigning a value to it.

bir_env_order is a preorder on the variable environments of BIR
states based on declared and initialized variables. There are three cri-
teria for the environment env 1 to relate to env 2:

1. Both environments need to be well-typed.

2. Every declared variable in env 1 also needs to be declared in env 2.

3. Every initialized variable in env 1 also needs to be initialized in
env 2.

bir_exec_step_ENV_ORDER is a lemma from the generic BIR
theories stating that the environment S1.bst_environ is related
to bir_exec_step_state prog S1 (bir_exec_step_ENV_ORDER
says the same for bir_exec_step_n_state), and bir_env_-
vars_are_initialised_ORDER states that if env 1 is related to env 2,
then if the set of variables vars are initialized in env 1, they are also ini-
tialized in env 2.

The below lemmata relate this concretely to variable initialization
and well-typedness.

Theorem A.4.1 (bir_varinit_invar_n). Variable initialization is in-
variant under n execution steps:

Proof. Similar to the above, but using bir_exec_step_n_ENV_-
ORDER and a technical lemma explicitly stating that bir_exec_-
step_n has a return value.

Theorem A.4.2 (bir_welltypedness_invar_n). Well-typedness of
variable environment is invariant under n execution steps:

APPENDIX A. LEMMATA 69

` ∀n S1 prog vars.
bir_env_vars_are_initialised S1.bst_environ vars ⇒
bir_env_vars_are_initialised

(bir_exec_step_n_state prog S1 n).bst_environ vars

Figure A.8: bir_varinit_invar

` ∀n S1 prog.
bir_is_well_typed_env S1.bst_environ ⇒
bir_is_well_typed_env

(bir_exec_step_n_state prog S1 n).bst_environ

Figure A.9: bir_welltypedness_invar_n

Proof. Similar to the proof of bir_varinit_invar_n (in Figure
A.8), but using bir_env_order_well_typed instead of bir_-
env_vars_are_initialised_ORDER.

The lemmata shown in Figure A.10 and A.11 summarize the
notion that since execution of passive statements do not change
the variable environment, they also do not affect the values
resulting from evaluating expressions. From the generic BIR
theories, bir_exec_stmt_assert_SAME_ENV, bir_exec_stmt_-
assume_SAME_ENV and bir_exec_stmt_observe_SAME_ENV say
that the corresponding basic statements leave the variable environ-
ment of the state unchanged. All BIR ending statements are also pas-
sive.

Theorem A.4.3 (bir_prop_true_invar_pass). Properties keep hold-
ing under an execution step, if the executed statement is passive:

Proof. Either S1 is terminated or not: if it is, then the con-
clusion holds since execution will not change the state in
any way. If it is not, then consider the different possi-
ble statements: among the basic statements, Assert, Assume
and Observe are passive. bir_exec_stmt_assert_SAME_-
ENV, bir_exec_stmt_assume_SAME_ENV and bir_exec_stmt_-

70 APPENDIX A. LEMMATA

` ∀Q S1 prog stmt.
(bir_get_current_statement prog S1.bst_pc = SOME stmt) ⇒
bir_is_passive_stmt stmt ⇒
bir_prop_true Q S1.bst_environ ⇒
bir_prop_true Q (bir_exec_step_state prog S1).bst_environ

Figure A.10: bir_prop_true_invar_pass

observe_SAME_ENV state this. Finally, consider the end statements,
all of which are passive (bir_exec_stmtE_env_unchanged).

Theorem A.4.4 (bir_prop_true_invar_pass_n1). Properties keep
holding under one execution step, if the executed statement is passive:

` ∀n Q S1 prog stmt.
(bir_get_current_statement prog S1.bst_pc = SOME stmt) ⇒
bir_is_passive_stmt stmt ⇒
bir_prop_true Q S1.bst_environ ⇒
bir_prop_true Q

(bir_exec_step_n_state prog S1 1).bst_environ

Figure A.11: bir_prop_true_invar_pass_n1

Proof. Here, the goal is instead a theorem saying that one execu-
tion step by bir_exec_step_n_state does not impact evalua-
tion of expressions. To solve this, the theorem stating equivalence
between one step of bir_exec_step_n_state and bir_exec_-
step_state (bir_exec_step_1_gen) is used together with bir_-
prop_true_invar_pass, which suffices to prove the theorem.

A.5 Lemmata on WPs of statements

A.5.1 Assert

Theorem A.5.1 (bir_assert_valid_status). If the current state-
ment in state S1 is Assert exp, exp holds in S1 and status of S1 is Running,

APPENDIX A. LEMMATA 71

then the state resulting from execution of one step from S1 has valid status:

` ∀ exp S1 prog.
(bir_get_current_statement prog S1.bst_pc =
SOME (BStmtB (BStmt_Assert exp))) ⇒
bir_prop_true exp S1.bst_environ ⇒
(S1.bst_status = BST_Running) ⇒
bir_is_valid_status (bir_exec_step_n_state prog S1 1)

Figure A.12: bir_assert_valid_status

Proof. When executing an Assert statement, only the evaluation of
exp can change the current status: if it is not True, status is set to Failed.
Since an assumption is that initial status is Running, and since another
assumption is that exp evaluates to True, the status will remain Run-
ning, which is a valid status. Thus, the proof follows by evaluating the
execution.

Theorem A.5.2 (bir_assert_pc). If the current statement in state S1

is Assert exp, exp holds in S1 and status of S1 is Running, then the state
resulting from execution of one step from S1 has its program counter incre-
mented by one:

` ∀ exp S1 prog.
(bir_get_current_statement prog S1.bst_pc =
SOME (BStmtB (BStmt_Assert exp))) ⇒
bir_prop_true exp S1.bst_environ ⇒
(S1.bst_status = BST_Running) ⇒
((bir_exec_step_n_state prog S1 1).bst_pc.bpc_index =
S1.bst_pc.bpc_index + 1) ∧
((bir_exec_step_n_state prog S1 1).bst_pc.bpc_label =
S1.bst_pc.bpc_label)

Figure A.13: bir_assert_pc

72 APPENDIX A. LEMMATA

Proof. Firstly, looking at the semantics there is no way that execution
of Assert can change the pc label, since only end statements can jump
to a different block. Secondly, the index of pc is always incremented
by one as long as the initial state is Running and execution of Assert
does not cause termination, which cannot happen if exp evaluates to
True in the current state. Thus, the proof follows by evaluating the
execution.

A.5.2 Assume

Theorem A.5.3 (bir_assume_valid_status). If the current state-
ment is Assume exp, exp is a Boolean expression, the BIR disjunction of
the negation of exp and Q holds, the environment of S1 is well-typed and sta-
tus of S1 is Running, then the state resulting from execution of one step from
S1 has valid status:

` ∀ exp Q S1 prog.
(bir_get_current_statement prog S1.bst_pc =
SOME (BStmtB (BStmt_Assume exp))) ⇒
bir_prop_true
(BExp_BinExp BIExp_Or (BExp_UnaryExp BIExp_Not exp) Q)
S1.bst_environ ⇒

bir_is_bool_exp exp ⇒
bir_is_well_typed_env S1.bst_environ ⇒
(S1.bst_status = BST_Running) ⇒
bir_is_valid_status (bir_exec_step_n_state prog S1 1)

Figure A.14: bir_assume_valid_status

Proof. Given the disjunction among the antecedents, it follows that
neither ¬exp nor Q can be Unknown. Since the environment is well-
typed and exp is a Boolean expression, exp also cannot be Unknown.
Then, it is possible to make a case split on the value of exp (True or
False) after which execution gives that the status can only be Running
or AssumptionViolated, both of which are valid, which completes the
proof.

Theorem A.5.4 (bir_assume_pc). If the current statement in state S1

is Assume exp, exp holds in S1 and status of S1 is Running, then the state

APPENDIX A. LEMMATA 73

resulting from execution of one step from S1 has its program counter incre-
mented by one:

` ∀S1 exp prog.
(bir_get_current_statement prog S1.bst_pc =
SOME (BStmtB (BStmt_Assume exp))) ⇒
bir_prop_true exp S1.bst_environ ⇒
(S1.bst_status = BST_Running) ⇒
((bir_exec_step_n_state prog S1 1).bst_pc.bpc_index =
S1.bst_pc.bpc_index + 1) ∧
((bir_exec_step_n_state prog S1 1).bst_pc.bpc_label =
S1.bst_pc.bpc_label)

Figure A.15: bir_assert_pc

Proof. Firstly, there is no way that execution of Assume can change
the pc label, since only end statements can jump to a different block.
Secondly, the index of pc is always incremented by one as long as the
initial state is Running and execution of Assume does not cause ter-
mination, which cannot happen if exp evaluates to True in the current
state. Thus, the proof follows by evaluating the execution.

Theorem A.5.5 (bir_assume_violated). If the current statement in
state S1 is Assume exp, the BIR negation of exp holds in S1 and status of S1

is Running, then the state resulting from execution of one step from S1 has
status AssumptionViolated:

Proof. When executing Assume, only evaluation of exp can change the
state status. If exp evaluates to False, status is set to AssumptionVio-
lated. Thus, the proof follows by evaluating the execution.

A.5.3 Halt

Theorem A.5.6 (bir_halt_halts). If the current statement in state S1is
Halt and status of S1 is Running, then status will be Halted in the state
resulting from execution of one step from S1:

Proof. When executing Halt from an initial state with status Running,
the status of the resulting state will always be Halted. Thus, the proof
follows by evaluating the execution.

74 APPENDIX A. LEMMATA

` ∀S1 exp prog.
(bir_get_current_statement prog S1.bst_pc =
SOME (BStmtB (BStmt_Assume exp))) ⇒

bir_prop_true (BExp_UnaryExp BIExp_Not exp)
S1.bst_environ ⇒

(S1.bst_status = BST_Running) ⇒
((bir_exec_step_n_state prog S1 1).bst_status =
BST_AssumptionViolated)

Figure A.16: bir_assert_pc

` ∀S1 exp prog.
(bir_get_current_statement prog S1.bst_pc =
SOME (BStmtE (BStmt_Halt exp))) ⇒

(S1.bst_status = BST_Running) ⇒
∃ hcode.

(bir_exec_step_n_state prog S1 1).bst_status =
BST_Halted hcode

Figure A.17: bir_halt_halts

A.5.4 Jump

Theorem A.5.7 (bir_jmp_valid_status). If the current statement in
state S1 is Jmp label , label is a block label of the program prog and status of
S1 is Running, then the state resulting from execution of one step from S1 has
valid status:

Proof. When executing a Jmp statement with a block label as argu-
ment, the current status can only be changed if label is not a label in the
program, in which case status is set to JumpOutside. Since an assump-
tion is that initial status is Running, and since another assumption is
that label can be found in the program prog , status will remain Run-
ning, which is a valid status. Thus, the proof follows by evaluating the
execution.

Theorem A.5.8 (bir_jmp_target). If the current statement in state S1

is Jmp label , label is a block label of the program prog and status of S1 is

APPENDIX A. LEMMATA 75

` ∀S1 prog label.
(bir_get_current_statement prog S1.bst_pc =
SOME (BStmtE (BStmt_Jmp (BLE_Label label)))) ⇒
MEM label (bir_labels_of_program prog) ⇒
(S1.bst_status = BST_Running) ⇒
bir_is_valid_status (bir_exec_step_n_state prog S1 1)

Figure A.18: bir_jmp_valid_status

Running, then the program counter of the state resulting from execution of
one step from S1 points to the first statement in the block with label label :

` ∀S1 prog label.
(bir_get_current_statement prog S1.bst_pc =
SOME (BStmtE (BStmt_Jmp (BLE_Label label)))) ⇒
MEM label (bir_labels_of_program prog) ⇒
(S1.bst_status = BST_Running) ⇒
((bir_exec_step_n_state prog S1 1).bst_pc =
<|bpc_label := label; bpc_index := 0|>)

Figure A.19: bir_jmp_target

Proof. When executing Jmp with a block label argument label from an
initial state with status Running, the existence of label in prog will be
evaluated. If label is found in prog - which in this case is given by an
assumption - the program counter of the next state will always point
to the first statement of the block labelled label . Thus, the proof follows
by evaluating the execution.

A.5.5 Conditional Jump

Theorem A.5.9 (bir_cjmp_valid_status). If the current statement
is CJmp, and if both jump target labels exist in the program prog , and if
either cond holds the the negation of cond , and if the status of S1 is Running,
then the state resulting from execution of one step from S1 has valid status:

76 APPENDIX A. LEMMATA

` ∀S1 cond prog label1 label2.
(bir_get_current_statement prog S1.bst_pc =
SOME

(BStmtE
(BStmt_CJmp cond (BLE_Label label1)

(BLE_Label label2)))) ⇒
bir_prop_true cond S1.bst_environ ∨
bir_prop_true (BExp_UnaryExp BIExp_Not cond)

S1.bst_environ ⇒
MEM label1 (bir_labels_of_program prog) ⇒
MEM label2 (bir_labels_of_program prog) ⇒
(S1.bst_status = BST_Running) ⇒
bir_is_valid_status (bir_exec_step_n_state prog S1 1)

Figure A.20: bir_cjmp_valid_status

Proof. When executing a CJmp statement, the current status can only
be changed if any of the target labels is not a label in the program, in
which case status is set to JumpOutside, or if the jump condition is
Unknown, in case status is set to Failed. Since an assumption is that
initial status is Running, and since another assumption rules out cond

evaluating to Unknown, and since it is also assumed that the jump
target labels can be found in the program prog , status will remain Run-
ning, which is a valid status. Thus, the proof follows by evaluating the
execution.

Theorem A.5.10 (bir_cjmp_target1). If the current statement is
CJmp, and if the first jump target label label1 exists in the program prog , and
if cond holds, and if the status of S1 is Running, then the program counter
resulting from execution of one step from S1 points to the first instruction in
the block with label label1:

Proof. When executing CJmpwith a jump condition that holds and first
jump target label label1 from an initial state with status Running, the
existence of label1 in prog will be evaluated. If label1 is found in prog

- which in this case is given by an assumption - the program counter
of the next state will always point to the first statement of the block
labelled label1. Thus, the proof follows by evaluating the execution.

APPENDIX A. LEMMATA 77

` ∀S1 l1 i1 cond prog label1 label2.
(S1.bst_pc = <|bpc_label := l1; bpc_index := i1|>) ⇒
(bir_get_current_statement prog

<|bpc_label := l1; bpc_index := i1|> =
SOME

(BStmtE
(BStmt_CJmp cond (BLE_Label label1)

(BLE_Label label2)))) ⇒
bir_prop_true cond S1.bst_environ ⇒
MEM label1 (bir_labels_of_program prog) ⇒
(S1.bst_status = BST_Running) ⇒
((bir_exec_step_n_state prog S1 1).bst_pc =
<|bpc_label := label1; bpc_index := 0|>)

Figure A.21: bir_cjmp_target1

Theorem A.5.11 (bir_cjmp_target2). If the current statement is
CJmp, and if the second jump target label label2 exists in the program prog ,
and if the negation of cond holds, and if the status of S1 is Running, then the
program counter resulting from execution of one step from S1 points to the
first instruction in the block with label label2:

Proof. When executing CJmp with a jump condition whose negation
holds and first jump target label label2 from an initial state with status
Running, the existence of label2 in prog will be evaluated. If label2 is
found in prog - which in this case is given by an assumption - the pro-
gram counter of the next state will always point to the first statement
of the block labelled label2. Thus, the proof follows by evaluating the
execution.

A.6 Hoare triple composition theorems

These theorems describe the rules for combining two adjacent - mean-
ing execution of one ends where execution in the other begins - Hoare
triples into one. These theorems typically consist of two antecedent
HTs, the latter of which is a halt HT, and a consequent halt HT. With
the WPSTs for the individual statements, these provide the requisite
tools to prove HTs for entire programs.

78 APPENDIX A. LEMMATA

` ∀S1 l1 i1 cond prog label1 label2.
(S1.bst_pc = <|bpc_label := l1; bpc_index := i1|>) ⇒
(bir_get_current_statement prog

<|bpc_label := l1; bpc_index := i1|> =
SOME

(BStmtE
(BStmt_CJmp cond (BLE_Label label1)

(BLE_Label label2)))) ⇒
bir_prop_true (BExp_UnaryExp BIExp_Not cond)

S1.bst_environ ⇒
MEM label2 (bir_labels_of_program prog) ⇒
(S1.bst_status = BST_Running) ⇒
((bir_exec_step_n_state prog S1 1).bst_pc =
<|bpc_label := label2; bpc_index := 0|>)

Figure A.22: bir_cjmp_target2

The general proof strategy is to first use the precondition and pro-
gram counter of the consequent HT to obtain the postcondition of the
first antecedent HT. Then, use a theorem giving the precondition this
postcondition implies for the same state. This, as well as splitting the
execution described in the consequent HT into two parts, gives the
postcondition of the antecedent halt HT which is identical to the post-
condition of the consequent HT apart from possibly some set of ini-
tialized variables (which then must be the ones initialized in the first
antecedent HT). The proof is then finally complete by the property of
variables to never be uninitialized.

A.6.1 n-step and halt Hoare triple composition theo-
rem

Theorem A.6.1 (bir_n_step_halt_comp_wp). The n-step Hoare
triple stated for n execution steps starting at the position in prog determined
by the program counter pc holds for the precondition p and postcondition q

and for the sets of initialized variables vars and postcond_vars , then if the
halt Hoare triple stated for execution starting at pc with index incremented
by n holds for the precondition q and postcondition r and the sets of variables

APPENDIX A. LEMMATA 79

vars ′ and postcond_vars , then if vars ′ is a subset of vars , the halt Hoare triple
stated for execution starting at the program counter pc holds for the precondi-
tion p and postcondition r and the sets of variables vars and postcond_vars .

` ∀ prog p q r l1 i1 vars vars ′ postcond_vars n.
bir_ht_n_holds prog p q l1 i1 l1 (i1 + n) vars

postcond_vars n ⇒
bir_ht_halt_n_holds prog q r

<|bpc_label := l1; bpc_index := i1 + n|> vars ′

postcond_vars ⇒
vars ′ ⊆ vars ⇒
bir_ht_halt_n_holds prog p r

<|bpc_label := l1; bpc_index := i1|> vars postcond_vars

Figure A.23: bir_n_step_halt_comp_wp

Proof. The definitions of bir_ht_n_holds (Figure 3.5) and bir_-
ht_halt_n_holds (Figure 3.4) are expanded. The consequent halt
HT is instantiated with the states S1 and S3, S2 is introduced via an
abbreviation as the result of executing n steps from S1, the n-step HT
is instantiated with S1 and S2, and the antecedent halt HT with S2 and
S3.

With this, the postcondition of the HT describing execution from
S1 to S2 can be obtained by modus ponens with existing assumptions
from the consequent HT. This postcondition and bir_ht_post_-
impl_pre (Figure A.2) - the usage of which requires the antecedent
with the subset relation - directly provide the precondition of the HT
describing execution from S2 to S3. Now expanding the postcondition,
the program counter of the S2 to S3 HT is obtained (the disjunction in
the postcondition also gives the case status of S2 is AssumptionVio-
lated, which proves the goal directly).

The existentially quantified number of execution steps in the S2 to
S3 HT can now be written as a new free variable n′, and following this
n′ + n is given as witness to the existentially quantified number of ex-
ecution steps in the consequent HT. Splitting the resulting execution
up in two parts of n′ and n steps finally yields the postcondition of

80 APPENDIX A. LEMMATA

the S2 to S3 HT. This is exactly to goal to prove, apart from the set of
initialized variables vars ′ (and not vars). However, bir_varinit_-
invar_n (Figure A.8) gives that vars , which were initialized in S1 ac-
cording to the HT stating execution from S1 to S3 is still initialized,
which completes the proof.

A.6.2 Block transition and halt Hoare triple composi-
tion theorem

Note that this theorem only features one step of execution. Since Jmp
does not involve evaluating any expression (and potentially setting
the state status to Failed if any variables are not initialized), it is never
needed to add new variables to the set of initialized variables when
computing HTs for Jmp statements. This means that for the special
case of one step, it is possible to have the same set of initialized vari-
ables for both HT and eliminate the computation of one subset relation
in the proof procedures for HTs.

Theorem A.6.2 (bir_jmp_halt_comp_wp). If the Hoare triple stated
for one execution step starting at the position in prog determined by the pro-
gram counter pc and ending at the first position in the bloc with label label

holds for the precondition p and postcondition q and for the sets of initial-
ized variables vars and postcond_vars , then if the halt Hoare triple stated
for execution starting at the first position in the block with label label holds
for the precondition q and postcondition r and the sets of variables vars and
postcond_vars , the halt Hoare triple stated for execution starting at the pro-
gram counter pc holds for the precondition p and postcondition r and the sets
of variables vars and postcond_vars .

Proof. This proof is very similar to the proof of bir_n_step_halt_-
comp_wp. The difference is that there is now a HT with execution start-
ing in one block and ending in another, and there is no vars ′ involved.
This means that there is no need to use bir_varinit_invar_n.

A.6.3 Conditional Jump and two halt Hoare triples
composition theorem

Theorem A.6.3 (bir_cjmp_halts_comp_wp). If the Hoare triple stated
for one execution step starting at pc and ending at the beginning of the block
with label label1 holds for the precondition cond∧q1, postcondition q1 and the

APPENDIX A. LEMMATA 81

` ∀ prog p q r l1 i1 vars postcond_vars label.
bir_ht_n_holds prog p q l1 i1 label 0 vars postcond_vars

1 ⇒
bir_ht_halt_n_holds prog q r

<|bpc_label := label; bpc_index := 0|> vars

postcond_vars ⇒
bir_ht_halt_n_holds prog p r

<|bpc_label := l1; bpc_index := i1|> vars postcond_vars

Figure A.24: bir_jmp_halt_comp_wp

sets of initialized variables vars and postcond_vars , then if the Hoare triple
stated for one execution step starting at pc and ending at the beginning of the
block with label label2 holds for the precondition ¬cond ∧q2, postcondition q2
and the sets of variables vars and postcond_vars , then if the halt Hoare triple
stated for execution starting at the beginning of the block with label label1
holds for the precondition q1, the postcondition r and the sets of initialized
variables vars1 ′ and postcond_vars , then if the halt Hoare triple stated for
execution starting at the beginning of the block with label label2 holds for
the precondition q2, the postcondition r and the sets of initialized variables
vars2 ′ and postcond_vars , then if both vars1 ′ and vars2 ′ are subsets of vars ,
then the halt Hoare triple stated for execution starting at pc holds for the
precondition (cond ∧ q1) ∨ (¬cond ∧ q2), the postcondition r and the sets of
initialized variables vars and postcond_vars .

Proof. This proof follows along similar lines to that of bir_jmp_-
halt_comp_wp. The difference is that the BIR disjunction in the con-
sequent HT must be translated to a HOL one (using bir_disj_impl
shown in Figure A.7), yielding two symmetrical cases to prove. A
subset relation between the variable sets in the different HTs is also
needed, since CJmp might introduce new variables via the condition,
something which is treated the same way as in the proof of bir_n_-
step_halt_comp_wp.

82 APPENDIX A. LEMMATA

` ∀ prog q1 q2 r vars l1 i1 vars ′1 vars ′2 postcond_vars label1
label2 cond.
bir_ht_n_holds prog (BExp_BinExp BIExp_And cond q1) q1 l1

i1 label1 0 vars postcond_vars 1 ∧
bir_ht_n_holds prog

(BExp_BinExp BIExp_And (BExp_UnaryExp BIExp_Not cond) q2)
q2 l1 i1 label2 0 vars postcond_vars 1 ⇒

bir_ht_halt_n_holds prog q1 r

<|bpc_label := label1; bpc_index := 0|> vars ′1
postcond_vars ⇒

bir_ht_halt_n_holds prog q2 r

<|bpc_label := label2; bpc_index := 0|> vars ′2
postcond_vars ⇒

vars ′1 ⊆ vars ⇒
vars ′2 ⊆ vars ⇒
bir_ht_halt_n_holds prog

(BExp_BinExp BIExp_Or (BExp_BinExp BIExp_And cond q1)
(BExp_BinExp BIExp_And (BExp_UnaryExp BIExp_Not cond)

q2)) r <|bpc_label := l1; bpc_index := i1|> vars

postcond_vars

Figure A.25: bir_cjmp_halts_comp_wp

