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I. Introduction. 

In this paper we shall describe a stochastic model called maxima- 

scheme or ~-scheme: let X4, X9 , , . • be a sequence of inde- 

pendent random variables (i.r.v. 's.) from which the random sequence 

Z = ~d~],00 (X 4,,,., X~) is formed. This scheme is a peculiar analog 

of the summation scheme when the semigroup operation ~T~ (0~, ~) 

is regarded as an analog of the summing operation 0~ + 

Numerous facts related to the ~-scheme are gathered in the mo- 

nograph by J.Galambos [2] . In particular, it is shown (theorem 

3.10.2) that the class of the limit distributions for ( Z~- ~ ~  

where ~ and ~ are normalizing constants, ~}~> 0 , 

coincides with the class of the log-concare distribution functions. 

Galambos' theorem generalizes a well-known result due to Gnedenko [3] 

according to which in the case of independent identically distributed 

r.v.'s, only distributions of the types 

A(x)= e {-e }, a: Pv , 
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can appear as limit distributions in the ~-scheme. 

The meaning of any limit theorem for a random sequence {y~}~ 

is that it gives a sufficiently simple approximation to the distri- 

bution P (Y~I~ "~ ~C,) . Let 

-4 W 

PC6 CY~)~)--~ PCY ~ ~) ,  

-4 

where ~[,i (,gC) = ~ +  ~ , ~ is the inverse function of 

and--~ means weak convergence as ~ >OO If the 

limit distribution is continuous, then as a consequence we have the 

strong convergence, i.e. 

-4 

-4 

: y) ---# o .  

Since the metric Q is invariant with respect to strongly monoto- 

ne continuous transformations of r.v.'s., we have 

i.e. we receive a uniform approximation to P (Y~ • 0~) by 

means of some universal distribution of the r.v. y 

Such a view-point to the limit theorems deprives the traditionaly 

used linear transformations of their exclusiveness. Actually, the 

transformation 6~(~)=~ I~] 6~ sign ~ , ~}% , 6~ >0 , 
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will serve for constructing a simplified approximation if only one can 

prove a suitable limit theorem. 

Thus it makes sense to extend the class of normalizing transfor- 

mations G~(~) . The present paper continues the Gnedenko-Galam- 

bos investigations in the area of limit theorems for the random 

sequence Z n , preliminarily submitted toa strong monotone con- 

tinuous transform 60 (~) 

2. Characterization of the class ~m ~laws. 

Let X4,..., X~ be i.r.v.'s, taking on values in ~4 

We shall denote the corresponding distribution functions (d.f.'s) by 

F v (~), ~ = 4 , • • • , ~ • Assume that there exists a sequence 

[ 6~(~ of strongly monotone continuous transformations such 

that 

-4 W 

P(6 4, .... T > P ( x <  m), (i) 

where X is a nondegenerate r.v. with a d.f. F X 

X~ is said to Definition I .  The random sequence { }~ 

satisfy the uniformity assumption (u.a.) with respect to {G~(')~ 

if 

The u.a. is analogous to the assumption of uniform asymptotical 

negligibility of summands in the limit theorems for sums of i.r.v.'s. 

In both schemes the assumption means a closeness to the "semi-group 

unit", which is --OO for the ~-scheme, and 0 for the sum- 

mation. 
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Theorem I. Let the sequence 

Then (1) is true iff 

satisfy the u.a. 

11,->oo K=4 

(2) 

Furthermore, ~ (~) = ~ )  { --~/( ' ;~)} 
Consider the following condition 

T 
tl,-->oo K=4 K 

(3) 

for each sequence of integers {1,']~11.,} K such that 

> o o  - -  > X e ( O ,  4) (.) 
! I  9 • 

Definition 2. A nondegenerate d.f. F~ belongs to class ~L 

if it is a weak limit of ~I~0 ~i~ ,-~/~ ~ /  under the ~°'° 

u.a. and (3). 

If the u.a. is satisfied, then condition (3)is equivalent to the 

following one: 

exists and is a nondegenerate d.f. 
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Condition (3) is essential for the d.f. F X to belong to the 

class of self-decomposable laws, as it will be shown in Theorem 2. 

Theorem 2. Let the sequence { X~ ]~ satisfy the conditions 

(I), u.a. and (3). Then for every ~ , ~ e (0~) , there exist 

a d.f. F~ (~) and a function ~(06) such that: 

(4) 

Here FX C')  is the limit d.f .  in (I) and ~ ( ~ )  

termined by the following iemma. 

Lemma I. Under the conditions of Theorem 2 the limit 

is de- 

(5) 

exists and satisfies the following functional equation 

05 [ gx ] =gs.x (=)' S,k 

at each continuity point ~ of FX (0~) 

if for each ~ the function ~ (~) , considered as a 

function of A , is solvable (i.e. each equation Of the form 

~ (...,qC..) = ~ for given ~ and ~ has a unique solution 

= ~ (~0~) ) , then the solution of the functional equation (6) 

has the following form 

(7) 
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D 
where ~ ( ' )  is an invertible continuous function (see Theorem 

20 in [1] ). 

Throughout this paper we shall consider only such normalizing 

transformations G~(0~) that the limit function (5) is solvable 

with respect to X 

Let us denote by ~O the composition of two functions, i.e. 

~0 ~(0~) == ~ [ g (~)] " Then we may write ~ [~(00)] = 

=~o A 4 [ ~(~)- ~ X]. 
Lemma 2. Under the conditions of Theorem 2 the function 

~ ( FX 0 ~-~(~) is concave. 
Now, it is easy to prove that the function Fi (0~) in Theo- 

i% 
ram 2 is a d.f., i.e. the limit ~ is self-decomposable in the 

sence that it may be represented in the form (4). It turns out that 

the converse is also true: 

Theorem 3. Let a nondegenerate d.f. ~ have the decompo- 

sition 

for each ~ ~ (0,4) , where F~(06) is a d.f. and @~(~) 

is a solution of (6). Then FX belongs to the class ~L . More 

, )~ (of strongly mono- precisely there exist two sequences { G~(0~ 

{ } tone continuous transformations) and XZI, 
tisfying u.a. and (3) such that 

The last two theorems imply that the class of ~L-laws coincides 

with the class of self-decomposable laws (in the sence of (4)). 
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The scheme of the proof of Theorem 3 is the following: ~ (0~) 

is a d.f.; this yields the log-concavity of ~ o , which 

leads to the existence of { 6~]~ and { X~]~ such that (I) 

holds. This proof emphasizes the role of the log-concavity of FX0 ~ -4 

as a characteristic property of the class ~g 

3. The class ~5 of max-stable laws. 

Let X4 ' .... X~ be i.r.v.'s with a nondegenerate d.f. F 
Denote by X a r.v. with the same d.f. F 

Definition 3. F is said to be max-stable if for each positive 

integer ~ there exists a strongly monotone continuous transfor- 

mations 8~ (~) such that 

Q [ )-I = g X 

means coincidence in distribution), i.e. for each 

holds the equality 

{8) 

Clearly, from Definition 3 it follows that each max-stable d.f. 

may be considered as the limit of the d.f. of the normalized maximum 

of i.i.d.r.v.'s. The converse is formulated as Corollary I of Theorem 

4. 

{ 6 ~I~)} ~ such Suppose now that there exists a sequence ( 

that the weak convergence holds 

Q E ma,z,(X4,...,X,,)q- X, 

where X is a nondegenerate r.v. with a d.f. H , i.e. 
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F ~ [ 6 ( m ) ]  ~ H(m) (9) 

The relation (9) means, as usual, that F belongs to the 

domain of attraction ~( H ) of the d.f. H 

Obviously, conditions (3) and u.a. of Section 2 are fulfilled in 

case of i.i.d.r.v.'s if (9) is assumed. The characteristic decompo- 

sition (4) of the limit distribution m is reduced here to the 

following functional equation 

H(m) = H(~,~(m))' H(%_x(z)) • (10) 

Now, Theorem 2 could be formulated in a more simple way: 

Theorem 4. If the weak convergence (9) holds, then the limit 

distribution m has the form 

where ~'1' (0~') is the invertible continuous function from (7). 

Introduce the following notations: 

r : =  r ~ t H = ~ p { m :  H(m)<4] , 

(11) 

6: = ~,'~t, H = b¢~ H=b~  {m:H(m)>oJ. 

Since H(O~) is a d.f., we have 
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E,~ ~,(~;)=oo, E~ ~(:~)=-~ 
00---> r ~ - >  ~' 

(in case of nonidentically distributed i.r.v.'s 

~ ~ ( ~ )  = C > -- O 0  is also possible). 

Corollary I. Each limit distribution (11) is max-stable. 

Actually, consider independent copies X 4 ~.. 0 ~ X~ 

X with the d-f- H ( ~ ) =  ~ p  {-6~(~)  } 
malizing transformations 

the relation 

of a r.v. 

and choose the nor- 

as follows: 

-4 

Then H[6,(~)~ = ~ {- ~ # } ,ie 

H (~(~)] = H(~) • Here the tail of the distribution H 

the asymptotic behaviour: 

6 = - ~ 9 , H ( : ~ ) = - ~  E4-(4- H(Dc))-I= 

has 

= [,I+ 0(,1)-] E4-H(sc)], ~ --> r .  

Corollary 2. Each strongly monotone continuous distribution 

is max-stable. 

In fact, we have in this case 

F 

4 
~ , ( :~ )= -~ ,  ~o~, F(~,) 

Now, consider a non-max-stable d-f- F which belongs to G(H) 
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where H is a max-stable d.f. The construction of the normalizing 

transformations G~ (') and the asymptotic of the tail of 

F are given in the following theorem. 

Theorem 5. A nondegenerate d.f. F belongs to O'(H) iff 

, a s  rc F , 

where L (~) is a regularly varying function. The normalizing 

transformations can be chosen as 

(13) 

This result is not surprising. Roughly speaking, the operation 

~TO~O0 ( X4 ~..', X~) attracts the "mass" of the distri- 

bution to rext F . This explains why translation plays decisive 

role in construction of the normalizing transformations. For the same 

reason the asymptotic behaviour of the normalized maximum is completely 

determined by the behaviour of the tail of the distribution only for 

> rext F 

for 

and 

• and does not depend on the behaviour of F 

> lext F 

Note here that the three distributions ~ (0~) 

A (~) may be reduced to only one A (k(0~)) 

is an invertible continuous function, since 

, 

, where 
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We denote by ~ the class of invertible continuous functions 

on ~4 Theorem 4 shows that by the normalization 6~ ~ 

~& , ~ }~ of the three distribution theelass { A 
, although types expands to the class {~- } ~ ~ 

all limit distributions are of the same double exponent type. 

4. Applicatio n of main results. 

A. Derivation of Gnedenko's distributions. 

Under the linear normalization < ( ~ )  = ~ + ~  ~ ~>0 

we get 

h e (0,4) • 

Then the form of the limit function 

where 

A = 

O,~ - C I , ~  . 

From these asymptotic relations the following equations can be ob- 

tained: 

which yield two possible solutions (cf. [2] , § 3.10): 
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i) A =4 and ~= ~ ~ ~ 

9x and 4) 

Thus, the concrete form of the limit distribution H (~) 

on the parameters ~ and 

The function ~(~) corresponding to ~(~) = ~ + ~ ~0~ 

can be obtained as a solution of the functional equation 

depends 

namely ~4/(,..OC,) - -  "~ " t~4,z 4 " -~- (~) . Since for each 

~ <~) > ~ (a consequence of the representation (7)) then 

~ ~f 0 . The corresponding max-stable distribution 

{ _ ~-~4 (~) } obviously cone ides with A (~) 

for ~=-4 
The other possible form of ~ (~) , namely ~ (~) ~- 

----- ~ (~ + ~) -- ~ , leads to the functional equation 

(14) 

The inequality 

+ ~ ~ 0 and 

In this case ~41 < 0 

is a solution of_ (14) . For 

d f } 

& = -  4-- > 0 .  
trl ,  

Let now ~ + ~ ~ 0 

~ (~) > ~ gives two other cases: 

~ + ~ ~ 0 . Let ~ + ~ >/ 0 

and the function ~(~)=- !~(~+~) 

~ = 0 the corresponding max-stable 

coincides with ~ (5) , 

In this case ~ > 0 and a 
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solution of (14) is 

4 

bution e ; ~  { -- } 
Note that the parameter 

the max-stable d.f. and 

B. Description of 

Let now ~6 (,~) 

= 0~ I~1 ~ sign 0~ 

k = 0 , then the max-stable distri- 

If we set 

coincides with ~ (0~) 

determines the power ~ of 

k is connected with its support. 

~5 -laws for power normalization. 

be of the power type, namely ~(~) ~- 

with ~ ' ~M/ > O . In this case 

where A= 

> k E ( 0 , 4 )  

As in Subsection A we obtain two possibilities for the coefficients 

and , namely 

i) ~ = 4 and 'o~ = ~ 

where 9~/ and k 

0~ (~ )  = ~ka> 

distributions ~o~ (,90) 

are constants. In the case i) we have 

and this again leads to the known limit 

and 
In the second case the function ~.~ g'x ( x )  - 

---- 6@ { ~/(k~--4) }[ ~I~/00 leads to the following functional 

equation 

(15) 

For simplicity we suppose C =4 . According to the cases ~ 4  

or 0 ~ ~ ~ 4 , or - 4  ~ ~ ~ < 0  , or ~ < - 4  

we obtain four solutions of (15) . In addition, the sign of ~ is 
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determined by the inequality ~A(O0) > ~ . Finally, for the 

corresponding max-stable distributions we obtain the following fun- 

ctions with ~ = ~(~) > 0 : 

H ( ~ ) = ~ p { - I % l ~ l l  ], - , 1 ~ o  
3,d, 

H4, ~ (m) =¢o~p {-(~o~ l~cl) ] ,  m ~ -4 

Hence, the class of the max-stable laws for the power normali- 

zation ~ I~0 I u~ sign ~ contains six distribution types: 

( ~ ( ' . . ~ )  ~ "~d, (~,')~. H, I , ,~( , .~)  ~, • • , ,,, Hzt ,  ~ ( , ,~ )  . Notice that 

the last four distributions are examples of distributions which are 

max-stable under power normalization, and not max-stable under linear 

normalization. 

5. Proofs of the results. 

Proof of Theorem I. Set Z CX~ X~) F~(m) ' ~,,,~ 

I I  F x (~)  ,~ro~u.a. 
K----4 K 

0 ~ 4 ,  arld the Taylor expansion of the function ~)~'C4-~), 
it follows at once 
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= -E 4 * 0(4)3 
K = 4  

for ~ --> Oo 

Obviously, both convergences (I) and (2) either hold simultaneously 

or not, what to be proved. 

Proof of Lemma I. The conditions (3) and u.a. 

gence F x > 5(~,) 
K ~ 4  w 

imply the conver- 

where 

14, 

-4 -4 

On the other hand, under assumption (I) we have 

-4 

If we use the corresponding modification of Khinchin's theorem (see 

Lemma 2.2.3 in E 2] ), then the last two equalities yield the existence 

of the limit functions (5) and the equality 

= F x c16  
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The transformations { 6.1~ C') ~.1~ 
nuous and consequently such is ~ (~C,) 
0~ (o@ is nondecreasing in O0 

are monotone and conti- 

In addition 

because the function 

-4 

is a limit of nondecreasing functions. Let 

the definition of ~A (~) we have 

5 e ( o , 4 )  

-4 

-4 -4 

• Then by 

In Khinchin's theorem the limit normalizing function is uniquely de- 

termined, therefore 

and this is exactly what was to be proved. 

Proof of Lemma 2. Since 

p [  ~ >  CX.%+4 , . . . .  X~) < 6~(m) ] =  

-4 -4 
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then under the conditions of Theorem 2 there exists the limit fun- 

ction 

FX (.m) : = 

Fx(~) 

4,'" .,× )<6 (~c)]- Fx(@x@c) ) (17) 

As a limit of nondecreasing functions F~ (~) is also of the 

same type. Hence, for ~4 < ~ we have the inequality 

Fx (@z(¢)) Fx (o~x (o%)) 
(18) 

From (7) it is clear that for X ~ (0,"I) 4 , ~)~ ( ~/) > 

and (18) turns into 

• W e  

-4 -I 

4 4 

inequality means that the funct ion - - ~ ( F .  o--#-4) then the last 
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is concave. This completes the proof. 

Proof of Theorem 2. The decomposition (4) was already obtained 

by Lemma I and the formula (17). Now, we still have to show that 

F~ (~) is a d.f.. The properties 

al 0 ~ F x (~C)4 'I , 

bl F x (O~) i s  a nondecreasing in 0~ function, 

e~ ~ F x (~)= , I  
0O-.-> o0 

are evident. Thus, we have to prove only 

dl ~ *  F x ( ~ )  = 0 .  
~--> - c o  

n 4,. f l . .  19 

T . e  p r o p e r t y  dl i s  o~v ious in  the  case ~ r  x = > - o o .  

Let Us consider the case ~ F~ -- OO . If 

(~) --'9' C > - OO for ~ --~ -- (DO , then d) is obvious 

again. Hence, in the sequel we shall dwell on the case ~(~6) ) --OO 

for ~ ) --O0 . Then the relations 

hold. The first factor tends to + OO for 0~ > --OO , the 

second is negative. Thus, property d) follows at once, i.eo ~(~) 

is a d.f. The proof is complete. 

Proof of Theorem 3. Note that from the facts that F k (~) is 

¢ (~) = ~ [ ~(~)~X] it follows that a d.f. and 
~A 

0 the function ~ / (O0) is log-concave and nondee- 

teasing, 
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~--> oo 

We construct the desired sequences 

{ < L  ~s ~o~ows. 

and 

F (m): = X 
K 

~ ~ . We shall prove that the so defined function for all 

F~ (~) is a d.f.: 
K 

al 0-~ F x ( x )  -~ 4 , which is obvious. 
K 

b) F x (~) is nondecreasing. In fact, if ~4 < ~ , then 

~4 -- ~ K K< ~4 -- ~@ ( ~- ~ ) < ~2 -- ~( ~- ~ ) and there exist p 

@ E (0,4) such that % - ~(~-J)=p(~4-~<)+@(~2-~(~-4)), 
4 

We choose X~ so that p = ¢ ----- ~ , i.e. ~ = 

~-~4--~~. Then it is clear from the log-concavity of FX0 ~ 4 

that the inequality 

(FxO£) ~ [~ (~- ~)+~ (~-~-~))] >~ 

-4 -4 

holds. This is equivalent to 



C FxO fi4) [ ~¢ b~,CK-4):] 
-4 

C Fxo ~, ) 8:%-5d K-~)] 
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-4 

) 

C) 6~4~ F x (~)= 4 , which is clear 

K ~-~O0 
made at the beginning of the proof. 

d~ #~ F x (X) =0  
~6-~ - c o  

is clear. 

and it is obvious that 

from the remark 

• Indeed, for ~= 4 it 

Let ~ = 6~3~/t F x be finite or infinite. If 

~(~)---)C >-OO for ~ ---> 6 , then we determine ~14 / , 

from the asymptotic relation ~ (~) > ~ + ~ ~z 

~>6 , 

for  

> ~ Then 

for ~ ---> ~ , 

~4 E t(~)- ~H(~-4)]-~ ~ (c+ ~ jq  )>-~, 

(;~) > 0 for  ~v ) ~v Consequent ly, FXz# ~v 

Let now ~ (~) ...... > --OO for ~ > 

in the proof of Theorem 2) we have 

• i e ~  FxC~ ~ 

For ~ >/ ~ (as 
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~(¢o 9 Fxo k )C~ , ( :~ ) -~o~ , (< -4 )?"  - ~ - ~ ,  :~ > t, .  

Now we shall show that the weak convergence (I) is valid. For 

every ~z 

p(&<~(~))= 
K=4 K 

f l ,  
o o (Fxx ~-~)~k(~)+~oo/~?... CF x ~-~)E£~)+ ~ ] 

--F (~) .  

In order to complete the proof we have still to show that the 

r.v.'s X}$ ~ ~ = ~, ~ ... with corresponding d.f.'s F x (0~) 

satisfy (3) and the u°a. The latter follows immediately from 

= 

K 

Under the u.a., for each sequence { ~}~ satisfying (*), we 
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get 

K=4 K K 

The last product however converges: 

.% 

K=4 

This concludes the proof. 

Proof of Theorem 4. As it was proved in Theorem 2 there exist the 

limits 

B~ P [~,m~CX~, .... X.~) <6 (~)]=H (~(~)) 

~ P [t,,m~ (X#4 , . .  .,X~)< 6~(m)]=H~ (~), 

H I ' , ,  
where F]~[D~] is a d.f. Now we obtain the form of H~(DC) in 

the case of i°i.d.r.v.'s : 

PE ~o~:~ (X~+4, . . . , X  ) < 6~ (.~)3 = 
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-4 
= P  E ~ CXT ,X~, ,,,,, ) < 6 (6 o 6 (~ ) ) ]  

> H (~)). 

The decomposition (4) of the limit distribution H is reduced to 

the functional equation (10). Putting T(~) : ~- H 0 ~-4 (~) 

we can rewrite it as 

T(BC~} )  = T  [ ~,(sO-~@X-1 T [  h,(~c)-b@C'l-)O], 

where ~ (~) is the invertible continuous function from the 

representation (7) of ~(~) . Let us now put T ( ~0~ ~) : = 

= ~(~) for the new variable V: = ~ ( ~(~)} , This 

leads to the well known functional equation 

whose solution has the form '~0" C'~') = ~ ( ~ ) where 

is a negative constant. Thus, we get as a solution of (10) 

H ( ~ ) = T  (£C~,)) = I,F(G) = ¢_/'.~ {-c e, }, (19) 
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where -~- --~ > 0 . If ~ = ~ + C , then 

-4 ~4 

i.e. in the representation (19) we can put G : ~ . Hence the 

proof is completed. 

Proof of Theorem 5. On account of Theorem I the necessary and 

sufficient oond±t±on for the convergence F (6~,()) ~ ,  H (~) 

has the form 

~¢ [,I-F(6~,(~c))]= F,l+ 0(,I)]~ (2o) 

We put ~ : 67~ (~C,) = ~I/ { F'I/(~) Jr ~0@ [ I/I/L (~/)] 1 . For 

4 = k-4 

It is easy to see, that the construction (13) is consistent with the 

convergence (5), i.e. for each sequence [~1~t~ ~ satisfying 

(*) we have 

4 4 m L ( ~0@ ~) 

because of the convergence 
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L(~og,~) 
>4 

11, 

, > 4 where ~ > 0 e'YI, "1"1, ' 

Since ~q" (DC,) > CO for 

~= 6~(~)-~F~o~ ~ > ~t F 

.owfor !~ >re.iF (201 becomes 

> ~ t  F , 
and also for ~4~-->00 . 

4- F(~) "-' ~ ¢ "" 

4 L (~o@ [nL(Fag,~r)J g-{ F~(~)- ~[#L (~n)l}, 

}{ere we used the asymptotic behaviour of the second term for ~-->00 : 

L(6og.~, [4 + ~g'L(~n)-I~ -J) 

L ( ~  n) 

L (e,,. e, og, ~) ~ 4  
L(~n) 

0 f% A 
where < ~ > "I Taking also into account that 
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[ 

L(~(tJ) + #o~ [ #L(~og#)]) = L( #l(tj)), 

we get finally: 

- ~(t#) ~---> r'¢~t F . 4 - F ( ~ )  .-'L (,~(~.)). 6 ~or 

Thus, the asymptotic equality (12) is true, which was to be established 
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