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Abstract

Z. Fabian and M. Stehlik (2009) investigate a new estimator of
extreme value index of a distribution function with regularly varying
tail, the so called t-Hill estimator. We continue their work and obtain
the limit distribution of this estimator, when the rank k of the upper
order statistic is o(n). Then we normalize the estimator properly and
find its asymptotic normality.
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1 Introduction

Let Xy, Xa, ..., X,, be a sequence of i.i.d. random variables (r.v’s) with distri-
bution function (d.f.) F. We suppose that as x — oo, the survival function
F(z) =1— F(x) satisfies

F(z) ~ 27 L(x), (1)

where o« > 0 and L(x) is a slowly varying function. This class of d.f. is

denoted by RV_,. Let X, ) < X(—10) < ... < X(1,) be the corresponding

upper order statistics. In this paper we are concerned with one of the major

problems in extreme value theory - estimation of the extreme value index é
Hill (1975) proposes the following Hill estimator
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The asymptotic normality of this estimator is investigated e.g. by E. Heausler
et al. (1985). The Hill estimator it is not robust with respect to large ob-
servations. Fabian and Stehlik (2009) propose a robust and distribution
sensitive Hill-like method for estimating é, under condition (1). They de-
fine the following t-Hill estimator
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and obtain its weak consistency when k(n) is a sequence of integers with
k(n) — oo and k(n)/n — 0 as n — oo.

In Section 2 of this paper we obtain the limit distribution of the t-Hill
estimator, when the rank k of the upper order statistics is fixed and n — oo.
In Section 3 we prove that it is asymptotically normal for large sample of
Pareto distributed observations and k = 1,2,...,n — 1. If ¥ € RV_,, then
(2) is asymptotically normal for k(n) — oo and k(n)/n — 0 as n — oc.

2 Limit distribution of t-Hill estimator

It this section we suppose that £ is fixed and k < n.

Let Uy, U,, ..., U, be i.i.d. uniformly distributed r.v’s on (0,1) and let
Umn) < Upoin) < ... < Uy, be their upper order statistics.

It is not difficult to check that

{1 — U(@n),i =1,2,.., n} 4 {U(n—z‘+1,n),i 1,2, ’n} (4)
and -
—nzitln) d ‘ .
{ U i=1.2, ’k} {U(k—z+1,k)a2 1,2,...,k}. (5)

Recall, the probability quantile transform states that

(X i =1,2, 0,0} L {F (Ui)yi = 1,2,..,n}, (6)



where X1, Xs, ..., X,, are i.i.d. random variables with d.f. F' and
Fo(p) =inf{x e R: F(x) > p}, pe(0,1],

is the left-continuous inverse of F'.
Theorem 1. Let X, X5, ..., X,, be i.i.d. random variables with d.f. F
and F' € RV_,, a > 0. For fixed k and n — oo
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Proof: The probability quantile transform (6), (4) and (1) entail

(X i = 1,2, 0} L {F(Uppy),i = 1,2,...,n}
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The reciprocal of a uniformly distributed r.v. is a.s. greater than one.
Thus, the Karamata-representation for regularly varying functions implies

Ximi=12 .. nt<
(i)
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where c¢(z) = ¢y € (0,00) as © — 00, € : RT — R and £(t) — 0 as t — oc.
Then for Hx y, defined in (3) we have
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By (5), forn e Nand £k =1,2,...,n,
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If

A, 0, (8)
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then in distribution
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(cf. Th.4.1. of Billingsley (1977)).
We check (8). By the triangle inequality
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Now we have to show that the summands in the above expression converge
in probability to zero for n — oo. The function T'(x,y) = z.y is continuous
in the point (z,y) = (1,1). In order to use the continuity of composition we
have to check the following two convergences
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The function ¢ : Rt — R is such that ¢(z) — ¢y € (0,00) as © — 0.
U(n_i+17n)(5>' 0 and U(n_k,n)‘ff 0 as n — oo thus, (9) follows by continuity of

g($7y) = n (mvy) = (CO7CO>'
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Consider (10). U(n_iﬂ’n)ﬁ'o and U(n_k,n)‘fxo as n — o0o. In view of

Karamata-representation for regularly varying functions (t) — 0 as t — oc.
Consequently a.s. for €y > 0 there exists n., € N, such that for n > n,

Ul e(x) k) 1 Ui
| " —~dx |<€0|/ " —d$|—€0|l [(]n—z-l—l,n)|
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Let € > 0. By (5)
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The random variable In U_;11 k) does not depend on n and it is a.s.
finite, hence for £y — 0 we obtain that (10) is satisfied. Thus, for z > 0,
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Remark: If Xq,X,, ..., X, are i.i.d. random variables with Pareto d.f.
0 , v<l1
F(x)—{l_x_a s (11)

a > 0, then in view of (6),

{X(imyi=1,2,... n} {(1=Ugn)Vi=1,2,...,n}.

Definition (2) and (7) give directly
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3 Asymptotic normality of t-Hill estimator

In this section we consider the asymptotic distributions of the harmonic
mean X7, k() = H)_(}km and of the t-Hill estimator &,;(1”) .= X Ky — L

Proposition 2. Let X;,X,,...,X,, be i.id. rv’s with d.f. F(z) =
1 —27% 2 > 1 and let ® be the standard normal d.f. Then for k(n) — oo

and k(n) <n
k(”) (XI*{,k(n),n - l—fTa)

nh_}rrolo P( I - <z)=®(z), zek (12)
o a(a+2)
Proof: As noted above
(X =12, on} £ {(1 = Ug) Vi =1,2,..,n} .
Therefore
d 1 =) U( é
HX,k n)n=—7 7 N ( Ui ) U"
" k(n) Z k(n)+1,n) Z

i=1

It is easy to obtain that E(Ua) = a(a ) Uand D(Uz) = a(a +
1)"2(a +2)'. In view of the CLT, as k(n) —

k(n)(Hx knyn — 557) a k(”)(ﬁ ZZ ' Ua — o)

1 /o 1 /o
a+1 a+2 a+1 a+2

are weakly asymptotically standard normal.
For g(z) = %, g'(x) = —272 we apply the d-method and obtain

k(n)(X: — atl
lim P{ W)Xtk = o) <x} =d(z), xzeR.

n—o0 _ 1 ja(at1)?
a+1 at+2 a?

Now the symmetry of ® entails (12). U
Corrolary: Let X, Xy, ..., X,, be i.i.d. random variables with Pareto

d.f. F. Then for k(n) — oo and k(n) < n,
VR (s — 1)
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<z)=9®(zx), xR (13)




Theorem 3. Let X;, X, ..., X, beiid. r.v’s with F € RV_,,a > 0. If
k(n) — oo and k(n)/n — 0 as n — oo, then (12) and (13) hold.
Proof: We have already seen that
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Since (%)H () € RVi/q, then for € > 0 there exists ¢o(¢) such that for

t >to(e) and z > 1,

(7) ()
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(see de Haan (1970)).

By condition k(n) — oo and k(n)/n — 0 asn — oo, then U(_nlfk(n),n)(ffoo,
n — oo. This together with (14) gives, that for ¢ > 0 there exists ng, such
that for all n > ng, a.s.
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Then for e = k7' (n) we have U° — 1 a.s. as n — oo and
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The Central Limit Theorem implies lim sup,,_, o, Fx kn)n(2) < f
R. Analogously one concludes that liminf, . Fx pm)n(®) >
Hence limy, o FX kn)n(2) = ®(x), z € R.

Again we apply the d-method for g(z) = 1, ¢’(x) = —z~? and obtain

(\/M(X;Lk(n)ﬂ — %) < a:) = &(

1 o (a+1)2

lim P
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The symmetry of ® entails (12). Now (13) is an immediate consequence of
(12). .

Remark: In view of Proposition 2 and its corollary when the observed
random variable is Pareto distributed we do not need k(n) to be infinitely
small function of n. In this case it turns out that we do not need so large
sample to have a good t-Hill estimator.
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