
Pliska Stud. Math. Bulgar. 22 (2015),
STUDIA MATHEMATICA
BULGARICA

ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS
UNDER POWER NORMALIZATION

E. I. Pancheva, A. Gacovska-Barandovska

Smirnov (1949) derived four limit classes of distributions for linearly nor-
malized central order statistics. In this paper we investigate the possible
limit distributions of the k-th upper order statistics with central rank using
regular power norming sequences and obtain twelve limit classes.

Keywords: k-th upper order statistic, Central rank, Power normalization,
Regular norming sequence.

AMS (2000) Subject Classification: 62G30, 62E20, 39B22 .

1. Introduction

Below {kn} is a sequence of integers such that kn
n → θ ∈ (0, 1) and Xkn,n is the

kn-th upper central order statistic (u.c.o.s.) from a sample of iid rv’s X1, ..., Xn

with a continuous df F , thus

Xn,n < ... < Xkn,n < ... < X1,n.

We denote by GMA the group of all max-automorphisms on R with respect to
the composition ”◦”. They are strictly increasing continuous mappings and hence
they preserve the max-operation ”∨” in the sense that L(X ∨Y ) = L(X)∨L(Y ).
Let Φ denote the standard normal df and F = 1−F . In Pancheva and Gacovska
(2013), abbreviated here as PG’13, the authors have proved the following
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Theorem 1. Let H be a non-degenerate df, kn
n → θ ∈ (0, 1) and {Gn} be a

sequence of norming mappings in GMA. Then

(1) Fkn,n (Gn(x)) := P
(
Gn
−1(Xkn,n) < x

) w−→
n
H(x)

if and only if

(2)
√
n · θ − F (Gn(x))√

θ(1− θ)
w−→
n
τ(x)

where τ(x) is a non-decreasing function uniquely determined by the equation

(3) H (x) =
1√
2π

τ(x)∫
−∞

e−
x2

2 dx = Φ (τ(x)).

Let A be the group of all affine transformations on R, α(x) = ax + b, a > 0, b
real and P be the group of all power transformations on R, p(x) = b|x|asign(x)
with a and b positive. We denote by lH = inf{x : H(x) > 0} the left endpoint of
the support of H and by rH = sup{x : H(x) < 1} the right endpoint.

Definition 1. A sequence {Gn} ⊂ GMA is a regular norming sequence on
(lH , rH)× (0,∞) if for all t ∈ (0,∞) there exists gt(x) ∈ GMA such that

(4) lim
n
G−1[nt] ◦Gn(x) = gt(x), x ∈ (lH , rH)

and the correspondence t → gt(x) is continuous 1-1 mapping. The last means
that s 6= t implies gs 6= gt, for s, t > 0.

Example 1. a) A norming sequence {αn} ⊂ A is regular iff ∀t > 0 and
n→∞

an
a[nt]

→ At > 0,
bn − b[nt]
a[nt]

→ Bt ∈ R,

thus

α−1[nt] ◦ αn(x) =
an
a[nt]

x+
bn − b[nt]
a[nt]

→ Atx+Bt.

b) A norming sequence {pn} ⊂ P is regular iff ∀t > 0 and n→∞

an
a[nt]

→ At > 0,

(
bn
b[nt]

)1/a[nt]

→ Bt > 0,
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then

p−1[nt] ◦ pn(x) =

(
bn|x|an
b[nt]

) 1
a[nt]

sign(x)→ Bt|x|Atsign(x).

Definition 2. A df F belongs to θ-normal domain of attraction of H (briefly
θ-NDA(H)) if (1) holds and (knn − θ)

√
n→ 0.

A basic result to characterize the class of limit df’s in (1) is the following theorem
proved in PG’13.

Theorem 2. If a df H has θ-NDA with respect to a regular norming sequence
{Gn} ⊂ GMA, then its corresponding function τ(x) satisfies for t ∈ (0,∞) the
following functional equation

(5)
√
t · τ(x) = τ (gt(x)) , x ∈ C (τ) .

Here C(τ) means the set of all continuity points of τ . Solving (5) with respect
to τ , given that gt ∈ A, Smirnov (1949) derived four different classes of limit df’s
H = Φ ◦ τ , namely

1. H1(x) =

{
0, x < 0
Φ (cxα) , x ≥ 0

; c > 0, α > 0.

2. H2(x) =

{
Φ (−c|x|α) , x < 0
1, x ≥ 0

; c > 0, α > 0.

3. H3(x) =

{
Φ (−c1|x|α) , x < 0
Φ (c2x

α) , x ≥ 0
; c1, c2 > 0, α > 0.

4. H4(x) =

 0, x < lH
1
2 , lH ≤ x < rH
1, x ≥ rH

.

Solving (5) , given that gt ∈ GMA, Pancheva and Gacovska (2013) obtained 13
possible types of limit df’s in (1). The aim of this note is to find the possible
solutions of (5) with respect to τ if gt ∈ P and to list the corresponding limit
laws H = Φ ◦ τ in (1).
Let us first make precise the notion ”type(H)” for a non-degenerate df H. We
say that G ∈ g-type(H) if there exists a mapping φ ∈ GMA such that G = H ◦φ
(where g stands for general). In order to distinguish the cases φ ∈ A and φ ∈ P
we define two subsets of the set g-type(H), namely
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α− type(H) = {G : ∃α ∈ A, G(x) = H(α(x))},
p− type(H) = {G : ∃p ∈ P, G(x) = H(p(x))}.
In section 2 we make a short overview of the properties of τ and gt, needed further
on and proved in PG’13. Then in section 3 we obtain 12 different p-types of limit
laws. In section 4 we discuss the results.

2. Preliminaries

In this section we cite without proof some of the main results of PG’13 needed
in section 3 below.

A. Properties of τ(x):

We introduce two important subsets of the interval S = (lH , rH), namely D =
{x : τ(x) 6= 0, τ(x) 6= −∞, τ(x) 6= +∞} and I = {x : τ(x) = 0}, D = S\I.
Functional equation (3) , H(x) = Φ(τ(x)), implies:

1. τ(x) is a non-decreasing function such that τ(x) = −∞ for x < lH and
τ(x) = +∞ for x > rH . For x ∈ I by definition τ(x) = 0, hence H(x) = 1/2.
Defining the median of H by mH = sup{x : H(x) < 1/2}, we reach uniqueness
of the median.

2. τ(x) is negative for x ∈ (lH ,mH) and τ(x) ≥ 0 for x ∈ (mH , rH).

Further, as a direct consequence of functional equation (5),
√
t · τ(x) =

τ (gt(x)), we observe that for any fixed x that belongs to the interior of D the
whole trajectory Γx = {gt(x) : t ∈ (0,∞)} belongs to D.

Now, it is not difficult to check the following

Proposition 1. τ(x) is continuous and strictly increasing on the interior of
D.

B. Properties of gt(x)

Observe that functional equation (5) gives no information for the value of gt in
the boundary cases t = 0 and t =∞. For thoroughly determining the trajectory
of gt through a point x in the interior of D we suppose that the following bound-
ary conditions hold.

BC 1. limt→0 gt(x) = mH .

BC 2. limt→∞ gt(x) =

{
lH , x < mH ,
rH , x > mH
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By (5), these conditions are fulfilled if τ is everywhere continuous. Hence, as
a consequence of the boundary conditions, every trajectory Γx starts from mH

and increases to rH if mH < x < rH , or decreases to lH if lH < x < mH .
Furthermore, limit relation (4) entails that the family {gt : t ∈ (0,∞)} forms a
continuous one-parameter group with respect to composition, with the half-group
property

(6) gt ◦ gs = gts

and identity element g1, g1(x) = x. Then g−1t = g1/t.

Denote by SuppH the support of the df H. For the subset I ⊂ S we state
the following possibilities:

Proposition 2. Either I = (mH , rH) or I = {mH}. In the first case lH =
mH and SuppH = [mH , rH) where H is the two jumps distribution with jump
high 1/2 , and in the second case SuppH = (lH , rH), lH < mH < rH .

P r o o f. Obviously the left endpoint of the interval I is mH . Assume the interval
is I = (mH , a), mH < a < rH . For arbitrary x ∈ I, by the functional equation
(5) it follows that τ(gt(x)) = 0 for all t > 0. Hence gt(x) < a for all t > 0 and
this contradicts the boundary condition BC2. Thus I = (mH , rH).
We still have to prove that lH = mH . For arbitrary fixed x ∈ I, limit relation (2)
implies√

n
[
θ − F (Gn(x))

]
−→ 0, n→∞.

Let us assume that there exists a unique solution xθ of F (x) = θ. This assumption
is in fact not restrictive, since we can always transform the initial model so that
xθ falls into an interval where the continuous df F is strictly increasing. Now the
limit relation above can be rewritten as√

n
[
F (xθ)− F (Gn(x))

]
−→ 0, n→∞, x ∈ I

and it is equivalent to
i) Gn(x)−→xθ for F - almost all x ∈ I and n→∞.
Consequently for ε > 0 and n > n0(ε)

xθ − ε < Gn(x) < xθ + ε.
On the other hand, as known from the theory of central u.o.s
ii) Xkn,n

a.s.−→xθ, n→∞,
implying P (xθ − ε < Xkn,n < xθ + ε)−→ 1.
Moreover, both sequences {Gn} and {Xkn,n} are comparable in the sense that

iii) G−1n (Xkn,n)
d−→Y , where Y has df H.

The latter is equivalent to
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P (G−1n (Xkn,n) < x)−→Φ ◦ τ(x) = 1
2 , for x ∈ I.

On the base of i) and ii), for arbitrary ε > 0 one may choose n0 = n0(ε),
ε1 = ε1(ε), ε2 = ε2(ε), and εi → 0 as ε→ 0, such that for n > n0

P (Gn(x− ε1) ≤ Xkn,n < Gn(x+ ε2)) ≥ 1
2 .

Indeed, by i) we obtain G−1n (xθ − ε) < x < G−1n (xθ + ε). Hence one may choose
ε1 = ε1(ε), ε2 = ε2(ε) such that

x− ε1 < G−1n (xθ − ε) < x < G−1n (xθ + ε) < x+ ε2.
Then by ii)

P (Gn(x− ε1) < Xkn,n < Gn(x+ ε2)) ≥ P (xθ − ε < Xkn,n < xθ + ε)−→ 1.
Hence for n large enough, n > n0(ε) we have

P (Gn(x− ε1) < Xkn,n < Gn(x+ ε2)) ≥ 1
2 .

Applying iii) we conclude that
1
2 ≤ P (Gn(x− ε1) < Xkn,n < Gn(x+ ε2))

= P (G−1n (Xkn,n) < x+ ε2)− P (G−1n (Xkn,n) < x− ε1)
−→1

2 − Φ(τ(x− ε1)), since x+ ε2 ∈ I.
It is clear that Φ(τ(x− ε1)) = 0 hence x− ε1 < lH .
Consequently mH ≤ x < lH + ε1 for ε1 arbitrary small. The last statement is a
contradiction, hence lH = mH . �

The first case in proposition 2 we call ”singular” since the support of H consists
of the two endpoints only: lH and rH . Further on, we consider only the non
singular case I = {mH}.

Proposition 3. The three points lH , mH , rH are the only possible fixed
points of the continuous one-parameter group {gt : t ∈ (0,∞)}.

Assume the functional equation (5) holds,
√
t · τ(x) = τ (gt(x)). Obviously it

implies:

a) τ(x) < 0 for x ∈ (lH ,mH), thus gt is decreasing in t. Moreover gt is
repulsive for t ∈ (0, 1) , i.e. gt(x) > x, and gt is attractive for t > 1, i.e.
gt(x) < x.

b) τ(x) > 0 for x ∈ (mH , rH), thus gt is increasing in t. Moreover gt is
attractive for t ∈ (0, 1) and gt is repulsive for t > 1.

Our next aim is to solve the half - group property (6) rewritten as functional
equation g(t, g(s, x)) = g(ts, x).

Proposition 4. Let {gt : t ∈ (0,∞)} be a continuous one-parameter group in
GMA. If gt : (lH , rH) → (lH , rH) satisfies a) and b), then there exist continuous
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and strictly increasing mappings h : (lH ,mH) → (−∞,∞) and l : (mH , rH) →
(−∞,∞) such that for t > 0:

gt(x) =

{
h−1 (h(x)− log t) , x ∈ (lH ,mH)
l−1 (l(x) + log t) , x ∈ (mH , rH)

.

Next we substitute the explicit form of gt(x) in (5) and solve it with respect
to τ(x). Denote S1 = (lH ,mH) and S2 = (mH , rH).

Proposition 5. Let {gt : t ∈ (0,∞)} be the continuous one-parameter group
from Proposition 4. Suppose τ satisfies

√
t · τ(x) = τ(gt(x)) for t ∈ (0,∞) and

x ∈ (lH , rH), given that τ(x) > 0 on S2 and τ(x) < 0 on S1. Then:

τ(x) =

{
τ1(x) = −c1e−h(x)/2, c1 > 0, on S1
τ2(x) = c2e

l(x)/2, c2 > 0, on S2
.

After obtaining the explicit form of τ(x) we now state the characterization theo-
rem for the limit distribution H = Φ ◦ τ .

Theorem 3. The non-degenerate df H in the limit relation (1) may take one
of the following four explicit forms:

1. H1(x) =


0, x < mH = lH
1
2 , x = mH = lH
Φ (τ2(x)) , x ∈ (mH , rH)
1, x ≥ rH

2. H2(x) =


0, x ≤ lH
Φ (τ1(x)) , x ∈ (lH ,mH)
1
2 , x = mH = rH
1, x > mH = rH

3. H3(x) =


0, x ≤ lH
Φ (τ1(x)) , x ∈ (lH ,mH)
Φ (τ2(x)) , x ∈ (mH , rH)
1, x ≥ rH
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4. H4(x) =


0, x < lH
1
2 , x ∈ (lH , rH)
1, x ≥ rH .

Note, in theorem 3 above, we use the notion ”form” of H having in mind
”limit class” H.

3. Power normalization

In this section we suppose that there exists a sequenceGn(x) = bn|x|ansign(x), an
and bn positive, to normalize the upper c.o.s. Xkn,n in theorem 1 so that

(7) Fkn,n( bn|x|ansign(x) )
w−→ H(x), n→∞ .

We observe that

G−1n (y) =

(
|y|
bn

)1/an

sign(y) ,

thus

G−1[nt] ◦Gn(x) =

(
bn
b[nt]

)1/a[nt]

|x|an/a[nt] · sign(x) .

Hence, if ∀t > 0

an
a[nt]

→ αt > 0, (
bn
b[nt]

)1/a[nt] → βt > 0 ,

then {Gn} is a regular sequence and

(8) G−1[nt] ◦Gn(x)→ gt(x) = βt|x|αtsign(x) ∈ GMA.

Proposition 6. If {Gn} is a regular norming sequence in P, then the family
{gt : t ∈ (0,∞)} defined in (8) forms a continuous one-parameter group with
respect to composition with identity element g1, g1(x) = x.

P r o o f. Obviously α1 = β1 = 1, so g1 is the identical mapping. Then g−1t = g1/t.
We have to check the half-group property gt ◦ gs = gts ∀t, s > 0. Indeed:

gt(gs(x)) = βtβ
αt
s |x|αsαtsign(x) ,
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gts(x) = βts|x|αtssign(x) .

Hence (6) is true if equivalently

(9) βts = βt.β
αt
s = βαs

t .βs and αts = αt.αs

hold and this is easy to be seen:

αtαs ←
an
a[nt]

an
a[ns]

=
an
a[nts]

a[nts]

a[nt]

an
a[ns]

→ αts ,

βts ←
(

bn
b[nts]

)1/a[nts]

=

[(
bn
b[ns]

)1/a[ns]

]a[ns]/a[nts]

.

(
b[ns]

b[nts]

)1/a[nts]

→ βαt
s βt

�
Let us look at (9) as functional equations for αt and βt. There are two

possibilities, namely

i) αt = 1 and βt = tb , b 6= 0.

or

ii) αt = ta , a 6= 0 and βt = ec
∗(1−ta) , c∗ real.

Consequently, in case i) the mapping gt(x) = tbx is affine without translation and
in case ii) gt(x) = c|xc |

tasign(x) , c = ec
∗
> 0, is a power mapping.

We consider separately both cases.

Case i). gt(x) = tbx, b 6= 0.

The fixed points of {gt : t ∈ (0,∞)} are the points −∞, 0, +∞. On the other
hand lH , mH , rH are the only possible fixed points, thus there are three
possibilities for the SuppH:
(−∞ = lH , rH = mH = 0], [0 = lH = mH , rH = +∞) and (−∞ = lH , rH =
+∞).

Case i1). Let Supp H = (−∞ = lH , rH = mH = 0].

Here τ < 0 and gt(x) = −tb|x| is decreasing in t , hence b > 0. There is a
continuous and strictly increasing h : (lH ,mH) ↔ (−∞,+∞) such that gt(x) =
h−1(h(x) − log t). The solution of the functional equation h(−tb|x|) = h(x) −
log t, x < 0 is h(x) = −1

b log |x| and consequently τ1(x) = −c1e−h(x)/2 =

−c1|x|1/2b, c1 some positive constant, and

H1(x) = Φ(−c1|x|α), α = 1
2b > 0, c1 > 0, x ≤ 0.

Case i2). Now Supp H = [lH = mH = 0, rH =∞).
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Here τ2(x) = c2e
l(x)/2 > 0 , gt(x) = l−1(l(x) + log t) = tbx , l : (mH , rH) →

(−∞,+∞). The functional equation l(tbx) = l(x) + log(x) entails the solution
l(x) = 1

b log x. Thus 0 < τ2(x) = c2e
l(x)/2 = c2x

α , α = 1
2b , c2 > 0 , x > 0

and gt(x) is increasing in t, hence b > 0, attractive for t ∈ (0, 1) and repulsive for
t > 1. Consequently,

H2(x) = Φ(c2x
α), α > 0, c2 > 0, x ≥ 0

has a jump 1/2 at lH = mH = 0.

Case i3). Take Supp H = (lH = −∞, rH = +∞).

In the same way as above one obtains for some positive constants c3 and c∗3

H3(x) =

{
Φ(−c3|x|α), x < 0
Φ(c∗3x

α), x ≥ 0

i.e. H3 is continuous and strictly increasing on (−∞,+∞), mH = 0, H3(0) =
1/2.

Remark. In case i) the affine mapping gt(x) = tbx =: Atx + Bt has coefficients
At 6= 1 and Bt = 0. Thus the two jumps Smirnov’s distribution does not appear
here as limiting df.

Case ii). gt(x) = c|xc |
tasign(x) , c > 0 , a 6= 0.

We observe that:

1) the fixed points of the group {gt(x) : t ∈ (0,∞)} are the 5 points:
−∞, −c, 0, +c, +∞;

2) the equation chain τ(x) = τ(c|xc |
tasign(x)) = 0 implies that the median

mH ∈ {−c, 0, +c};
3) in view of Proposition 3 the support of the limit df H may be one of the

7 intervals (−∞,−c), (−c, 0), (0, c), (c,∞), (−∞, 0), (−c, c), (0,∞);

4) in view of functional equation (5) gt(x) is repulsive for x ∈ (lH ,mH), t ∈
(0, 1) and also for x ∈ (mH , rH), t > 1; gt(x) is attractive for x ∈ (mH , rH), t ∈
(0, 1) and also for x ∈ (lH ,mH), t > 1; gt(x) is decreasing in t if x ∈ (lH ,mH)
and increasing in t if x ∈ (mH , rH).

Having in mind these properties we consider the different cases for SuppH
separately. Assume below c = 1 for simplicity, without loss of generality.

Case ii1). SuppH = (lH = −∞,mH = rH = −1] and gt(x) = −|x|ta .

The boundary condition mH = limt→0−|x|t
a

= −1 implies a > 0. Recall, for
x ∈ (lH ,mH) gt(x) = h−1(h(x) − log t), so we have to solve the functional
equation h(−|x|ta) = h(x)− log t. It has the solution h(x) = − 1

a log log |x| where
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h : (−∞,−1)→ (−∞,+∞) is strictly increasing. Then

τ4(x) = −c4e−h(x)/2 = −c4(log |x|)α , α = 1
2a > 0 , c4 > 0

and the corresponding limit df has the explicit form

H4(x) = Φ(−c4(log |x|)α) , x ≤ −1 , H4(−1) = Φ(0) = 1/2.

Case ii2). SuppH = (−1, 0) and gt(x) = −|x|ta .

For the median mH = limt→0−|x|t
a

we obtain mH = −1 for a > 0 and mH = 0
for a < 0. Thus this case gives rise to two different limit df’s H5 and H6:

a) SuppH5 = [lH = mH = −1, rH = 0) and gt(x) = −|x|ta , a > 0.

Recall, that τ(x) > 0 in the interval (mH , rH) and gt(x) = l−1(l(x) + log t), l :
(−1, 0) → (−∞,+∞). Now the solution of the functional equation l(−|x|ta) =
l(x) + log t , a > 0 is l(x) = 1

a log | log |x||. Hence

τ5(x) = c5e
l(x)/2 = c5| log |x||α , α = 1

2a > 0 , c5 > 0
and the corresponding limit df has the explicit form

H5(x) = Φ(c5| log |x||α) , x ∈ (−1, 0) , H5(−1) = Φ(0) = 1/2.

b) SuppH6 = (lH = −1, mH = rH = 0] and gt(x) = −|x|ta , a < 0.

In the interval (lH = −1, mH = 0) τ < 0 and gt(x) = h−1(h(x) − log t). We
have to solve the functional equation h(−|x|ta) = h(x) − log t where a < 0 and
x ∈ (−1, 0). Its solution is h(x) = 1

|a| log | log |x|| . We observe that indeed

h : (−1, 0)→ (−∞,+∞) is strictly increasing. Then

τ6(x) = −c6e−h(x)/2 = −c6| log |x||−α , α = 1
2|a| > 0 , c6 > 0

and correspondingly

H6(x) = Φ(−c6| log |x||−α) , x ∈ (−1, 0) , H6(0) = Φ(0) = 1/2.

Case ii3). SuppH = (0, 1) and gt(x) = xt
a
.

For the median mH = limt→0 x
ta we obtain mH = 1 for a > 0 and mH = 0 for

a < 0. Thus also this case gives rise to another two different limit df’s H7 and
H8:

a) SuppH7 = [lH = mH = 0, rH = 1) and gt(x) = xt
a
, a < 0.

In this interval τ(x) > 0 and gt(x) = l−1(l(x) + log t) is increasing in t. As
a solution of the functional equation l(xt

a
) = l(x) + log t we obtain l(x) =

− 1
|a| log | log x|. Then



12 E. I. Pancheva, A. Gacovska-Barandovska

τ7(x) = c7e
l(x)/2 = c7| log x|−α > 0 , α = 1

2|a| > 0 , c7 > 0
and

H7(x) = Φ(c7| log x|−α) , x ∈ (0, 1) , H7(0) = Φ(0) = 1/2 , H7(1) = Φ(∞) = 1.

b) SuppH8 = (lH = 0, mH = rH = 1] and gt(x) = xt
a
, a > 0.

Here τ < 0 and gt(x) = h−1(h(x)− log t). The solution of the functional equation
h(xt

a
) = h(x)− log t is now h(x) = − 1

a log | log x|. Then

τ8(x) = −c8e−h(x)/2 = −c8| log x|α , α = 1
2a > 0 , c8 > 0

and

H8(x) = Φ(−c8| log x|α), x ∈ (0, 1), H8(0) = Φ(−∞) = 0, H8(1) = Φ(0) = 1/2.

Case ii4). SuppH = [1,∞) and gt(x) = xt
a
.

The median mH = limt→0 x
ta in this case is mH = 1, hence a > 0. In the interval

(lH = mH = 1, ∞) τ(x) is positive, hence gt(x) = l−1(l(x) + log t) and we
have to solve l(xt

a
) = l(x) + log t for x > 1, a > 0, t > 0. The solution is

l(x) = 1
a log(log x). Then

τ9(x) = c9e
l(x)/2 = c9(log x)α > 0, α = 1

2a > 0, c9 > 0,
and

H9(x) = Φ(c9(log x)α), x ∈ (1,∞), H9(1) = Φ(0) = 1/2, H9(∞) = Φ(∞) = 1.

Case ii5). SuppH = (−∞, 0) and gt(x) = −|x|ta .
Here mH = limt→0−|x|t

a
= −1, hence a > 0. For x ∈ (−∞,−1) τ(x) is

negative, thus gt(x) = h−1(h(x)− log t) where h : (lH ,mH)→ (−∞,∞). For x ∈
(−1, 0) τ(x) is positive and so gt(x) = l−1(l(x) + log t) where l : (mH , rH) →
(−∞,∞).
The solutions of the functional equations h(−|x|ta) = h(x)−log t, x ∈ (−∞,−1)
and l(−|x|ta) = l(x) + log t, x ∈ (−1, 0) are: h(x) = − 1

a log log |x| , resp.
l(x) = 1

a log | log |x||. Then

τ10(x) = −c10e−h(x)/2 = −c10(log |x|)α for x ≤ −1, c10 > 0, α = 1
2a > 0

and
τ10(x) = c∗10e

l(x)/2 = c∗10| log |x||α for x ∈ (−1, 0), c∗10 > 0.
Consequently
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H10(x) =

{
Φ(−c10(log |x|)α), x ∈ (−∞,−1)
Φ(c∗10| log |x||α), x ∈ (−1, 0) .

Case ii6). SuppH = (−1, 1) and gt(x) = |x|tasign(x).

In this case lH = −1 < mH = 0 < rH = 1 and gt(x) has to be decreasing in
t for x ∈ (lH ,mH) and increasing in t for x ∈ (mH , rH). Hence a < 0. For
x ∈ (−1, 0) τ(x) < 0 and gt(x) = h−1(h(x) − log t). For x ∈ (0, 1) τ(x) > 0
and gt(x) = l−1(l(x) + log t). We have to solve the functional equations

h(−|x|ta) = h(x)− log t, x ∈ (−1, 0)
and

l(xt
a
) = l(x) + log t, x ∈ (0, 1).

The solutions are respectively h(x) = 1
|a| log | log |x|| and l(x) = − 1

|a| log | log x|.
Denote α = 1

2|a| > 0. Consequently:

τ11(x) = −c11e−h(x)/2 = −c11| log |x||−α for x ∈ (−1, 0) c11 > 0,
and

τ11(x) = c∗11e
l(x)/2 = c∗11| log x|−α for x ∈ (0, 1), c∗11 > 0.

Finally we obtain the explicit form of the limit distribution H11, namely

H11(x) =

{
Φ(−c11| log |x||−α), x ∈ (−1, 0)
Φ(c∗11| log x|−α), x ∈ (0, 1).

Case ii7). SuppH = (0,∞) and gt(x) = xt
a
.

Again, from the monotonicity properties of gt(x) we conclude that a > 0 and
mH = 1. As solutions of the corresponding functional equations

h(xt
a
) = h(x)− log t, x ∈ (0, 1)

and

l(xt
a
) = l(x) + log t, x ∈ (1,∞)

we obtain h(x) = − 1
a log | log x| and l(x) = 1

a log(log x) respectively. Put now
α = 1

2a > 0 and observe that

τ12(x) = −c12e−h(x)/2 = −c12| log x|α for x ∈ (0, 1), c12 > 0,
and

τ12(x) = c∗12e
l(x)/2 = c∗12(log x)α for x ≥ 1, c∗12 > 0.

Finally we obtain the explicit form of the last limit distribution H12, namely

H12(x) =

{
Φ(−c12| log x|α), x ∈ (0, 1)
Φ(c∗12(log x)α), x ≥ 1 .

At the end of this section let us gather all results concerning the model described
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above in the following

Theorem 4. Let F be a continuous df. Assume that the limit relation

Fkn,n (Gn(x)) = P
(
Gn
−1(Xkn,n) < x

) w−→
n
H(x)

holds for a non-degenerate df H, where
i) {Gn} is a regular norming sequence which corresponding function gt in (4)
satisfies the boundary conditions BC1 and BC2;
ii) {kn} is a sequence of integers satisfying the condition (knn − θ)

√
n → 0 for a

θ ∈ (0, 1).
Then the limit df H belongs to one of the following 12 limit classes:

H1(x) =

{
Φ(−c1|x|α), x < 0
1, x ≥ 0

; α > 0, c1 > 0.

H2(x) =

{
0, x < 0
Φ(c2x

α), x ≥ 0
; α > 0, c2 > 0.

H3(x) =

{
Φ(−c3|x|α), x < 0
Φ(c∗3x

α), x ≥ 0
; α, c3, c

∗
3 > 0.

H4(x) =

{
Φ(−c4(log |x|)α), x < −1
1, x ≥ −1

; α > 0, c4 > 0.

H5(x) =


0, x < −1
Φ(c5| log |x||α), −1 ≤ x < 0
1, x ≥ 0

; α > 0, c5 > 0.

H6(x) =


0, x < −1
Φ(−c6| log |x||−α), −1 ≤ x < 0
1, x ≥ 0

; α > 0, c6 > 0.

H7(x) =


0, x < 0
Φ(c7| log x|−α), 0 ≤ x < 1
1, x ≥ 1

; α > 0, c7 > 0.

H8(x) =


0, x < 0
Φ(−c8| log x|α), 0 ≤ x < 1
1, x ≥ 1

; α > 0, c8 > 0.
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H9(x) =

{
0, x < 1
Φ(c9(log x)α), x ≥ 1

; α > 0, c9 > 0.

H10(x) =


Φ(−c10(log |x|)α), x < −1
Φ(c∗10| log |x||α), −1 ≤ x < 0
1, x ≥ 0

;α, c10, c
∗
10 > 0.

H11 =


0, x < −1
Φ(−c11| log |x||−α), −1 ≤ x < 0
Φ(c∗11| log x|−α), 0 ≤ x < 1
1, x ≥ 1

; α, c11, c
∗
11 > 0.

H12 =


0, x < 0
Φ(−c12| log x|α), 0 ≤ x < 1
Φ(c∗12(log x)α), x ≥ 1

; α, c12, c
∗
12 > 0.

In their paper (2011) Barakat and Omar wrote: ”... power normalization and
linear normalization of central order statistics are leading to the same families of
limit df’s”. The theorem above contains limit dfs for power normalization such
as the dfs H10, H11 or H12 which do not belong to the family of limit dfs for linear
normalization. We leave to the reader to check that the limit dfs in Theorem 4
have non-empty domain of attraction.

4. Conclusions

We have seen that the class of a limit law depends on the solution of functional
equation (5). Let us consider the possibilities for τ(x) = Φ−1 ◦H(x):
for x ∈ (lH ,mH) −∞ < τ(x) < 0 or τ(x) ≡ −∞;
for x ∈ (mH , rH) 0 < τ(x) <∞ or τ(x) ≡ 0 or τ(x) ≡ ∞.

Formally, these possibilities result in 6 different combinations, namely
1. −∞ < τ(x) < 0 for x ∈ (lH ,mH) and 0 < τ(x) <∞ for x ∈ (mH , rH),
2. −∞ < τ(x) < 0 for x ∈ (lH ,mH) and τ(x) ≡ ∞ for x ∈ (mH , rH),
3. τ(x) ≡ −∞ for x ∈ (lH ,mH) and 0 < τ(x) <∞ for x ∈ (mH , rH),
4. −∞ < τ(x) < 0 for x ∈ (lH ,mH) and τ(x) ≡ 0 for x ∈ (mH , rH),
5. τ(x) ≡ −∞ for x ∈ (lH ,mH) and τ(x) ≡ 0 for x ∈ (mH , rH),
6. τ(x) ≡ −∞ for x ∈ (lH ,mH) and τ(x) ≡ ∞ for x ∈ (mH , rH).

Let us go bottom-up. The last case 6 is of no interest for us since it corresponds
to a degenerate df H. Case 5 can not appear if using power normalization since
{gt} can not act as a translation group. In case 4 SuppH is a disconnected set,
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namely SuppH = (lH ,mH)+{rH} which case is impossible if using regular norm-
ing sequences. Case 3 results in a df H with jump 1/2 at lH = mH , continuous
and strictly increasing on (lH , rH). In case 2 the limit df H has a jump 1/2 at
rH = mH being continuous and strictly increasing on (lH , rH). Case 1 leads to
an everywhere continuous df H.

Note, with a power transformation p(x) = b|x|asign(x), a and b positive, one can
not transform e.g. SuppH5 = (−1, 0) to SuppH7 = (0, 1) although H5 and H7

both belong to case 3. On the other hand, there is always a mapping g ∈ GMA
which transforms into each other two distributions of the same form (case).

Consequently, the limit df’s of Theorem 4 give rise to 12 different limit classes.
They all belong to 3 different g-types described in cases 1, 2 and 3 above.
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