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Abstract This paper lists the continuous limit distributions for central order statis-
tics normalized by power transformations, and describes their domains of attraction.
One may argue that power transformations are the natural normalizations to use if
one wants to study the asymptotic behaviour of central order statistics. Power trans-
formations preserve the origin, which may be assumed to be the quantile to which the
order statistics converge. Our theory gives a nice extension of the theory developed
by Smirnov more than sixty year ago. For the continuous power limits treated below
the resemblance with the limit theory for extremes under linear transformations is
striking.
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1 Introduction

Order statistics are used in many situations. It is important to understand their
asymptotic behaviour as the sample size increases.

� Guus Balkema
a.a.balkema@uva.nl

1 University of Amsterdam, Amsterdam, Netherlands

2 Bulgarian Academy of Sciences, Sofia, Bulgaria

http://crossmark.crossref.org/dialog/?doi=10.1007/s10687-016-0265-1&domain=pdf
mailto:a.a.balkema@uva.nl


92 A.A. Balkema and E. Pancheva

We consider a fixed value p ∈ (0, 1) and a sequence of order statistics Xk:n with
k/n → p. Recall that the order statistics for a random variable X with distribution
function (df) F are the elements

X1:n ≤ · · · ≤ Xn:n,
of a sample of n independent observations from F arranged in increasing order. Of
particular interest is the case when the origin is a p-quantile,

F(0−) ≤ p ≤ F(0). (1.1)

We use the setting of Smirnov (1949) and call a sequence k with kn ∈ {1, . . . , n} a
Smirnov sequence if

k/n → p ∈ (0, 1) and
√

n(k/n − p) → μ ∈ R. (1.2)

In a more general approach one might consider two sequences k = (ki) and n =
(ni). If ni → ∞ and ni+1/ni → 1 one obtains the same results as the ones below.We
shall therefore stick to the classic Smirnov setting where n = 1, 2, . . . and k = (kn).

The transformations which we use to normalize the sequence Xk:n are strictly
increasing continuous mappings from the real line onto itself. Power transformations
are defined as

A : x �→ cx∧a = c|x|a sign(x) =
{

cxa x ≥ 0
−c|x|a x < 0

a, c > 0. (1.3)

We write P for the set of all power transformations. The set P is a group. It contains
the one-dimensional group S of scale transformations x �→ cx, c > 0.

The asymptotic behaviour of extremes is related to the tail behaviour of the
underlying distribution; the asymptotic behaviour of central order statistics to the
behaviour of the distribution at the corresponding quantile. For extremes, translations
and affine normalizations are appropriate normalizations. For central order statistics,
we use normalizations which preserve the p-quantile. Choose coordinates such that
the origin is a p-quantile. The appropriate normalizations then are scalings or power
transformations.

A non-constant variable W is a power limit of the sequence Xk:n if there exist
transformations An : x �→ cnx

∧an such that

Wn := A−1
n (Xk:n) ⇒ W, (1.4)

where ⇒ denotes convergence in distribution. This is the basic limit relation of the
paper. If it holds we say that F lies in the domain of attraction of W , or more briefly
in the domain ofW . IfXk:n has df Fk:n the power normed variableWn has dfGn(x) =
Fk:n(cnx

∧an) and (1.4) states that the dfs Gn converge weakly to the df of W . The
power limit W is continuous if its df is continuous.

A basic result in Smirnov (1949) is:

Theorem 1.1 (Smirnov) If Xk:n are order statistics from the uniform distribution on
(0, 1) and k is a sequence such that k → ∞, n − k → ∞ then

(Xk:n − bn)/an ⇒ N bn = k/n, an = √
bn(1 − bn)/n,

where N is standard normal.
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For a Smirnov sequence, see Eq. 1.2, and order statistics Uk:n from the uniform
distribution on (−p, 1 − p) this limit relation simplifies:

Mn := √
nUk:n ⇒ M = μ + σN σ = √

p(1 − p), (1.5)

where as above N is standard normal. The variable M will crop up in all our results.
If the underlying df F has a continuous density which is positive at the origin

and F(0) = p, the order statistics Xk:n for a Smirnov sequence k are asymptotically
normal. If the density has a jump at the origin the order statistics may be scaled to
converge to a variable which has a Gaussian density (with different scale constants)
on the positive and negative half line. The jump in the density of F is mirrored in a
jump in the density of the limit variable. For the normal variable M in Eq. 1.5 define

Mη = aM1{M>0} + qM1{M<0} a, q ≥ 0, a ∨ q = 1, η = a − q. (1.6)

The parameter η ∈ [−1, 1] measures the imbalance of the limit variable. Thus M0 =
M and M1 = M ∨ 0. Smirnov (1949) showed that under affine normalization the
continuous limit variables, properly normalized, are (Mη)

∧ρ , with η ∈ (−1, 1) and
ρ > 0. Up to a translation the limit variables have the form A(Mη) with A ∈ P
and η ∈ (−1, 1). For power transformations the set of limit variables is larger. The
continuous power limits may be written as A(Wη,τ ), A ∈ P , (η, τ ) ∈ (−1, 1) × R,
where Wη,τ = χτ (Mη) for a strictly increasing function χτ on R which satisfies
χτ (−u) = −χτ (u) and:

χτ (u) = euτ

τ > 0; χ0(u) = u; χτ (u) = e−uτ

τ < 0; u > 0.
(1.7)

The balance parameter η and the exponent τ determine the shape of the limit distribu-
tion. Because of symmetry one may restrict attention to η ≥ 0. Then Wη,τ = χτ (M)

on the set where M is positive and Wη,τ = χτ (qM) for q = 1 − η where M is neg-
ative. In particular for extreme imbalance, η = 1, the power limit W is non-negative
and its distribution has a jump of size P{M < 0} at the origin. Restriction to power
limits of moderate imbalance, |η| < 1, ensures continuity of the limit.

Note the similarity between the three kinds of power limits in Eq. 1.7 and the limit
variables for maxima normalized by affine transformations, where the three kinds
of limit variables, Weibull, Gumbel and Fréchet may be expressed in terms of the
standard exponential variable E as

Vτ = −Eτ τ > 0; V0 = − logE; Vτ = Eτ τ < 0. (1.8)

The resemblance is not fortuitous. For a df F in the domain of a power limit Wη,τ the
balance parameter η is determined by the value of the quotient (p−F(−x))/(F (x)−
p) for F(x) → p, the exponent τ by the rate at which F(x) − p tends to zero. The
vanishing function F(x)−p for x → 0 is related to the left tail of a df in the domain
of attraction for minima.

Power transformations yield more limit distributions then scaling. Domains are
also larger. The order statistics Xk:n from F may be scaled to converge to the
Gaussian variableM if and only if there is strict balance: (p−F(−x))/(F (x)−p) →
1 for x → 0+, and F(x) − p varies regularly for x → 0+ with exponent one. The
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power domain of M contains dfs F for which F −p vanishes on a neighbourhood of
the origin.

The groupP of power transformationsA : x �→ cx∧a was introduced by Pancheva
in (1984) as an example of a finite-dimensional group of non-linear normaliza-
tions. Mohan, Ravi and Subramanya developed extreme value theory in Mohan and
Subramanya (1991) and Mohan and Ravi (1992) using these power transformations
rather than affine transformations to normalize the maxima. They observe:

• for positive variables one may use affine normalization of the logarithm instead
of power transformations of the original variable;

• there are different classes of limit laws for maxima depending on the value of the
upper endpoint of the df: negative, zero, positive or +∞;

• the domain of the central power limit (with parameter τ = 0) is rich. It contains
all dfs with regularly varying tail, and more.

These three observations also apply to central order statistics as we shall see below.
The present paper is a companion to Balkema (2013) which treats the theory of

power limits for extreme and intermediate order statistics. The theory for intermedi-
ate order statistics also applies to central order statistics with μ = ±∞ in Eq. 1.2.
Nigm (2006) developed the theory of power limits for central order statistics by using
affine transformations on the logarithm of Xk:n. He obtains power limits of the form
W = eZ and W = −e−Z , where Z is a limit variable of order statistics under
affine normalization. Nigm assumes the p-quantile to be non-zero. Barakat and Omar
(2011) realize that for central order statistics from a df for which the origin is a p-
quantile a different approach is needed. They show that for two-valued variables with
mass p in the left point there are seven power types and argue that these may all
occur as power limits. They conjecture that the power limits agree with Smirnov’s
affine limits in (1949). They use Smirnov’s approach via dfs and first develop a limit
theory for non-linear normalization. This approach is also used by Pancheva and
Gacovska-Barndovska who obtain all power limits whose df G is continuous and
strictly increasing on the interior of the interval {0 < G < 1} in their paper (Pancheva
and Gacovska-Barndovska 2015). Domains of attraction have been investigated by
Azzat in (2013), but only for the power limits W = eZ and W = −e−Z in Nigm
(2006).

The paper is organized as follows. Section 2 contains definitions and a basic result,
Proposition 1.1. The next section treats the continuous power limits. In Section 4 we
drop the condition that the origin is a p-quantile. We then present our conclusions.
The Appendix contains a limit theorem for point processes which sheds new light on
the relation between the limit theory for central order statistics presented below and
extreme value theory.

2 Basics

In this paper dfs are right-continuous but in general we do not distinguish between
two increasing functions which agree in their continuity points. Increasing functions
need not be strictly increasing.
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For any rv X there is an increasing function f on (−p, 1− p) such that X has the
same df as f (U) where U is uniformly distributed on (−p, 1−p). The function f is
a shifted quantile function, the inverse of F − p. The variables f (Uk:n) are the order
statistics of f (U). This observation allows us to link convergence of normalized
order statistics to weak convergence of increasing functions on R, i.e. convergence in
all continuity points of the limit function.

Proposition 2.1 Let An ∈ P . Let f be an increasing function on (−p, 1− p) and χ

an increasing function on R. Let k = (kn) be a Smirnov sequence and M the associ-
ated Gaussian variable in Eq. 1.5. SupposeU is uniformly distributed on (−p, 1−p).
Set X = f (U). Then

Wn := A−1
n (Xk:n) ⇒ W iff χn(w) := A−1

n f (w/
√

n) → χ(w) weakly on R.

(2.1)
The variables χ(M) and W have the same distribution.

Proof Since the normal variable M has a continuous distribution weak convergence
on the right implies A−1

n f (Mn/
√

n) ⇒ χ(M) for the variables Mn = √
nUk:n.

This is the left side with W = χ(M). Now assume the convergence on the left
and choose χ right-continuous and increasing such that W is distributed like χ(M).
The function χ is unique. The sequence of increasing functions χn on the right has
a subsequence which converges weakly to a right-continuous increasing function χ̃

fromR to [−∞, ∞]. By the first part of the proof it follows thatWn ⇒ χ̃ (M). Hence
χ̃ = χ and χn → χ weakly on R and χ is finite.

The transformations An may come from any group of increasing homeomor-
phisms of R. In Smirnov’s analysis they are affine transformations. We consider
power transformations.

We are interested in the limit relation on the left of Eq. 2.1 for a given Smirnov
sequence k and the associated variables p, μ and M in Eq. 1.5. What are the possible
limit laws? For a given power limit W for what dfs F can the sequence of order
statistics Xk:n be normalized by elements of P to converge in distribution to W?
Introduce the two sets of dfs

L(P, k, 0) D(W,P, k, 0) (2.2)

to describe the limit laws, and for a power limit W the domain of W , for the Smirnov
sequence k and for dfs which satisfy (1.1): F(0−) ≤ p ≤ F(0). Note that the df
of the power limit W = χ(M) depends on the sequence k, since it depends on M ,
but χ does not. The domain of W = χ(M) depends only on χ . The domain is
determined by the behaviour of the shifted quantile function f = (F − p)← at the
origin.

Lemma 2.2 If χ(M) is a limit variable (for the sequence An) then χ(cM) for c > 0
is a limit variable (for the sequence Bn = A[nc2]).
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Proof c2n = [nc2]/n → c2 implies B−1
n f (u/

√
n) = A−1

[nc2]f (cnu/
√

[nc2]) →
χ(cu) weakly on R.

An advantage of the approach via the function f on the right side of Eq. 2.1 over
the approach via dfs is that the power transformations act on the function values
rather than the argument.

Let us show how Proposition 1.1 allows one to obtain several existing results.
Replace the group P by the group S of scalings, x �→ cx, c > 0. One obtains the

limit relation f (u/
√

n)/cn → χ(u). The function f (u) varies regularly for u → 0+
or u → 0− with exponent τ ≥ 0 and satisfies a balance condition f (−u)/f (u) →
r = q/a ∈ [0, ∞] for u → 0+. This characterizes the domains D(W,S, k, 0). The
limit variables have the form

W = aMτ1{M>0} − q|M|τ1{M<0} a, q, τ ≥ 0. (2.3)

We have thus recovered Smirnov’s affine limit variables and their domains up to a
translation, see Smirnov (1949). If we replace P by the group {id} the limit relation
(2.1) becomes trivial. The limit variables are determined by x∗ = inf{F > p} =
f (0+) and x∗ = sup{F < p} = f (0−):

W = x∗1{M<0} + x∗1{M>0}. (2.4)

The inclusion L({id}, k) ⊂ L(S, k) ⊂ L(P, k) shows that Barakat’s seven two-
valued power types

i + 2 sign(M) i = −3, . . . , 3, (2.5)

all occur as power limits of central order statistics.

2.1 Two limit relations

Now return to the limit relation (2.1) for power transformations An and power limits
W = χ(M) with continuous dfs.

The origin is a p-quantile of F , F(0−) ≤ p ≤ F(0), if and only if f vanishes
in the origin, f (0−) ≤ 0 ≤ f (0). If f vanishes on a neighbourhood of the origin
then only the constant limit χ ≡ 0 is possible. If f vanishes on an interval (0, ε) for
some ε > 0 the limit function χ , if it exists, vanishes on (0, ∞). If f vanishes on
(−ε, 0) then so does χ on (−∞, 0). In either case the limit distribution has a jump
at the origin. For a continuous limit distribution the df F has to be continuous in the
origin. If F is continuous in the origin then f is positive on (0, ∞) and negative on
(−∞, 0) and one may introduce the finite functions

ĝ(u) = log f (u) ḡ(u) = − log f (−u) u > 0. (2.6)

The two functions ĝ and ḡ on (0, ∞) determine the df F and allow us to
replace convergence of the order statistics Xk:n normalized by power transforma-
tions by two simple analytic limit relations. The limit relation (1.4) is equivalent to
f (u/

√
n)∧1/an/cn → χ(u) weakly on R and hence to

(ĝ(u/
√

n) − bn)/an → ĥ(u) (ḡ(u/
√

n) − bn)/an → h̄(u) weakly on (0, ∞),

(2.7)
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where cn = ebn and χ(u) = eĥ(u), χ(−u) = −eh̄(u) for u > 0. We have transformed
the basic limit relation A−1

n (Xk:n) ⇒ W for power limits of central order statistics
into a pair of simple analytic limit relations of the form (g(u/

√
n)−bn)/an → h(u).

This limit relation is well-known, see Resnick (1987), Section 0.4.3 or Balkema and
Embrechts (2007), Section 18.3. The only real-valued limit functions are powers and
logarithms. The limit functions h assumes the value −∞ if and only if the function χ

vanishes in a point u �= 0. By monotonicity χ vanishes on the interval between u and
zero, and the df of χ(M) has a discontinuity at zero. Hence if W has a continuous df
the limit functions ĥ and h̄ are finite. Collecting these results we obtain:

Proposition 2.3 Suppose the df of the power limit in Eq. 2.1 is continuous in x = 0.
Then so is F . The functions ĝ and ḡ in Eq. 2.6 then are well-defined and finite and
convergence in Eq. 2.1 holds if and only if there exist finite increasing functions ĥ

and h̄ on (0, ∞) for which (2.7) holds.

We are confronted with the following questions:

• What are the possible finite limit functions h in the limit relation

hn(u) := (g(u/
√

n) − bn)/an → h(u) weakly on (0, ∞), (2.8)

and how does one characterize the increasing functions g for a given limit h?
• If Eq. 2.8 for given affine transformations x �→ anx +bn holds for two functions

ĝ and ḡ, what is the relation between these functions, and between the limits ĥ

and h̄?

If hn → h weakly on (0, ∞) then hn(cnu) → h(u) weakly for any sequence
cn → 1. Hence one may define b(r) and a(r) as bn and an on (1/

√
n, 1/

√
n − 1],

n ≥ 1, and replace (2.7) by

(g(ur) − b(r))/a(r) → h(u) r → 0+; u > 0. (2.9)

A log-transform, setting u = e−s , r = e−t and ϕ(s) = −g(u) yields the additive
form:

(ϕ(s + t) − d(t))/c(t) → ψ(s) t → ∞.

2.2 Limit relations and regular variation

The remainder of the section is devoted to the limit relation (2.9) and its application
in extreme value theory, and may be skipped on first reading. We begin with a simple
lemma.

Lemma 2.4 The set 
 of increasing functions of the form b+auτ for τ > 0, b−auτ

for τ < 0 and b + logu for τ = 0, is closed in the space of increasing non-constant
functions on (0, ∞) with weak convergence. The subspace 
 is homeomorphic to R3

and the exponent τ is continuous on 
.
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Proof The exponent τ is determined by the quotient

(ϕ(ru) − ϕ(u))/(ϕ(u) − ϕ(u/r)) = rτ r, u > 0, ϕ ∈ 
, (2.10)

hence continuous. Set ψτ (u) = (uτ − 1)/τ for τ �= 0 and ψ0(u) = logu by conti-
nuity. Then (a, b, τ ) �→ b + aψτ is a homeomorphism of (0, ∞) ×R

2 onto 
. Now
suppose ϕn → ψ weakly. Let D be the countable set of discontinuities of ψ . If u0
does not lie in the countable set E = ⋃

k∈Z 2kD then ψ is continuous in the points
uk = 2ku0, k ∈ Z. The quotient in Eq. 2.10 for u = uk , r = 2 and ϕ = ϕn con-
verges to (ψ(2uk) − ψ(uk))/(ψ(uk) − ψ(uk/2)) =: 2τ and τn → τ ∈ [−∞, ∞].
If τ = −∞ then ψ(2uk) = ψ(uk). This holds for all k. Hence ψ is constant. Sim-
ilarly τ = ∞ implies ψ(uk) = ψ(uk/2) for all k. Hence τn → τ ∈ R, and if we
write ϕn = bn + anψτn then convergence τn → τ implies bn → b and an → a, and
ψ = b + aψτ ∈ 
.

Theorem 2.5 Assume (2.8) holds for increasing functions g and h on (0, ∞) with
values in [−∞, ∞), and suppose h is non-constant. Then g is real valued. If h is real
valued then h ∈ 
. Else h = b − ∞1(0,c).

Proof The result is well known for finite limit functions, see for instance (Balkema
and Embrechts 2007), Section 18.3. For infinite values see Balkema (2013),
Theorem 4.1.

If g(u/
√

n) may be normalized by affine transformations to converge we write

g ∈ D(τ) (2.11)

where τ is the exponent of the limit function h if h is finite and τ = −∞ else. One
may think of D(τ) as the domain of h. There is a relation with regular variation.

• g ∈ D(−∞) if and only if g(0) = −∞ and g varies rapidly at zero:
g(ur)/g(r) → 0 for u > 1;

• g ∈ D(τ) and τ < 0 if and only if g(0) = −∞ and g varies regularly at zero
with exponent τ ;

• g ∈ D(τ) and τ > 0 if and only if g(0) is finite and g(u) − g(0) varies regularly
at zero with exponent τ ,

• g ∈ D(0) if and only if the function g̃ : u �→ −g(1/u) lies in the de Haan class
�. See Resnick (1987) for an analysis of � and its relation to extreme value
theory.

For τ ∈ R there is a simple relation with limit laws for sample minima. Let
Dmin(V ,A) denote the domain of the limit variable V for minima under affine
normalization.

Proposition 2.6 Let Y have df G and suppose the quantile function G← agrees
with g in Eq. 2.9 on an interval (0, ε). Then g ∈ D(τ) for τ ∈ R if and only if
G ∈ Dmin(Vτ ,A) where, compare (1.8),

Vτ = Eτ (τ > 0); V0 = log(E); Vτ = −Eτ (τ < 0) (2.12)

for a standard exponential variable E.
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Proof Let U be uniform on (0, 1) and let g = G←. The minimum of n independent
copies of Y is distributed like g(U1:n). Observe that En := nU1:n ⇒ E, where E is
standard exponential. As for Proposition 1.1 one proves that (Y1:n − bn)/an ⇒ W if
and only if (g(w/n) − bn)/an → h(w) weakly on (0, ∞), and W is distributed like
h(E).

Lemma 2.7 Let f be an increasing function on (0, c)with f (0) > 0. Then f ∈ D(0)
with scale function r �→ a(r) if and only if

(f (ur)/f (r))f (0)/a(r) → u r → 0+; u > 0.

Proof Let rn → 0+ and u > 0. Set an = a(rn). Take logarithms to find

f (0)

an

log
f (rn) + an logun

f (rn)
= f (0)

an

log

(
1 + an logun

f (rn)

)
→ logu

if and only if f (rnu) − f (rn) = an logun for un → u.

3 The continuous limit distributions

Recall the assumptions: We look at the asymptotic behaviour of central order statis-
tics Xk:n from a df F where k = kn satisfies the Smirnov conditions k/n → p ∈
(0, 1) and

√
n(k/n − p) → μ ∈ R, and F(0−) ≤ p ≤ F(0). Write X = f (U)

with f increasing and U uniformly distributed on (−p, 1 − p). By Smirnov’s The-
orem Mn = √

nUk:n ⇒ M = μ + σN , see Eq. 1.5, with N standard normal and
σ = √

p(1 − p). In this section we assume that there are sequences an > 0 and
cn > 0 such that

(Xk:n/cn)
∧1/an ⇒ W (3.1)

for a random variable W with a continuous df. By Proposition 1.1 this means that
there exists a strictly increasing function χ onR such that W is distributed like χ(M)

and moreover that (f (x/
√

n)/cn)
∧1/an → χ(x) weakly on R. Since P{W = 0} = 0

one may take logarithms and (3.1) is equivalent to two limit relations of the form

(g(u/
√

n) − bn)/an → h(u) u ∈ (0, ∞),

for the functions ĝ(u) = log f (u) and ḡ(u) = log(−f (−u)) where ĥ and h̄ are finite
and determine χ , see Eq. 2.7. The normalization constants an and bn should be the
same for ĝ and ḡ. This will be the case if ĝ ≡ ḡ on an interval (0, u0).

Definition 1 For increasing functions f on R define

f ∗(x) = −f (−x) x ∈ R. (3.2)

The function f is ∗-symmetric if f ∗ = f .
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3.1 The continuous power limits

We claim that the continuous power limits have the form A(χτ (Mη)) with A ∈ P ,
Mη as in Eq. 1.6 for the normal variable M in Eq. 1.5 and χτ a ∗-symmetric function
whose restriction to (0, ∞) has the simple form χτ = exp(hτ ) where

hτ (x) = xτ τ > 0; h0(x) = log x; hτ (x) = −xτ τ < 0. (3.3)

Conditions on g0 which ensure convergence of (g0(u/t) − b(t))/a(t) for t → ∞
are related to regular variation and the de Haan theory for maxima and have been
treated in Section 2.2. The question which we have to address now is: What condi-
tions should g1 satisfy in order that the limit relation also holds for g1 with the same
normalizations? We saw above that it suffices that g1 and g0 agree on an interval
(0, u0), but will asymptotic equality also suffice? And what is the relation between
the limit functions h0 and h1?

Lemma 3.1 Let g0 and g1 be increasing functions on (0, ∞). Suppose At are affine
transformations such that A−1

t g0(x/
√

t) → h0(x) weakly on (0, ∞) for a strictly
increasing function h0. If A−1

t g1(1/
√

t) → h0(r) for some r > 0 then for any
r1 < r < r2 there exists δ > 0 such that

g0(r1x) < g1(x) < g0(r2x) x ∈ (0, δ). (3.4)

Proof The conditions imply that A−1
t g0(r1/

√
t) < A−1

t g1(1/
√

t) < A−1
t g0(r2/

√
t)

for t > t0. This yields the desired relation for δ = 1/
√

t0.

Corollary 3.2 The conditions of the lemma imply convergence A−1
t g1(x/

√
t) →

h0(rx).

We conclude that h̄(x) = ĥ(rx) for some r > 0 and that ḡ and ĝ are related by
the inequalities (3.4). By Theorem 1.5 any non constant real valued limit function h

of A−1
n g(x/

√
n) on (0, ∞) has the form h(x) = b + ahτ (x) with h0(x) = log x and

hτ a power for τ �= 0, see Eq. 3.3. This yields a description of the set Lc(P, k, 0) of
continuous limit laws.

Theorem 3.3 Let Xk:n be central order statistics from a df F which satisfies the
quantile condition (1.1). Suppose the Smirnov setting holds, see Eq. 1.2. If there exist
power transformations An(y) = cny

∧an such that A−1
n (Xk:n) ⇒ W for a random

variable W with a continuous df then W has one of the following three forms:

W = ce(aM)τ 1{M>0} − ce|qM|τ 1{M<0} a, q, c > 0; τ > 0.

W = (aM)c1{M>0} − |qM|c1{M<0} a, q, c > 0; τ = 0.

W = ce−(aM)τ 1{M>0} − ce−|qM|τ 1{M<0} a, q, c > 0; τ < 0.

Here M = μ + σN is the normal random variable defined in Eq. 1.5. The balance
parameter for these continuous power limits W is defined by η = (a − q)/(a ∨ q).
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The structure of Lc(P, k, 0) is clear. Power limits have the form W = χ(M),
χ ∈ X, where the set X does not depend on the sequence k. Alternatively one may
write the power limits as W = χ(μ/σ + N), χ ∈ X, where N is standard normal.

Corollary 3.4 Every df G ∈ Lc(P, k, 0) satisfies G(0) = 
(−μ/σ) with 
 the
standard normal df.

Corollary 3.5 If k and k′ are Smirnov sequences the sets Lc(P, k′, 0) and
Lc(P, k, 0) are equal if p′(1 − p′)/μ′2 = p(1 − p)/μ2 and else disjoint.

If
√

n(k/n−p) → 0 then F is said to belong to the normal domain of p-attraction
of the power limit, see Smirnov (1949). In that case μ = 0, G(0) = 1/2 and the
value of p does not affect the limit.

Proposition 3.6 Suppose F is continuous at zero, 0 < F(0) < 1 and
√

n(k/n −
F(0)) → 0. If there exist positive constants an and cn such that Fk:n(cnx

∧an) →
G(x) weakly for a continuous df G then there are constants a, q, c > 0 and τ ∈ R

such that G = Gτ , where

G0(x) =
{


(−|x|c/q) x < 0

(|x|c/a) x > 0,

and, writing κ(x) = | log |x/c||1/τ for τ �= 0,

Gτ (x)=

⎧⎪⎪⎨
⎪⎪⎩


(−κ(x)/q) x < −c

1/2 −c < x < 0
1/2 0 < x < c


(κ(x)/a) x > c

τ >0; Gτ (x)=

⎧⎪⎪⎨
⎪⎪⎩

0 x < −c


(−κ(x)/q) −c<x <0

(κ(x)/a) 0 < x < c

1 x > c

τ <0.

Proof In the expressions above for the power limit W one may replace M = σN

by N and write W = χ(N) adapting the positive constants a and q. Then G(x) =

(χ←(x)).

The dfs G0 were shown to be limit distributions in Barakat and Omar (2011), the
dfs Gτ , τ ≤ 0, in Pancheva and Gacovska-Barndovska (2015).

3.2 Domains of attraction

The two limit relations in Eq. 2.7 describe the domain of attraction. There are two
conditions:

i) The function ĝ belongs to D(τ) where τ is the exponent of the limit function ĥ,
and

ii) there should be a certain balance between the functions ĝ and ḡ at zero.

The condition ĝ ∈ D(τ) is only a reformulation of the limit relation for ĝ in Eq. 2.7.
For τ < 0 it states that ĝ varies regularly at zero with exponent τ and that one may
take bn ≡ 0 in Eq. 2.7; for τ > 0 it states that one may take bn ≡ ĝ(0) and that



102 A.A. Balkema and E. Pancheva

ĝ(u) − ĝ(0) varies regularly for u → 0+ with exponent τ ; for τ = 0 the function
ĝ varies regularly with exponent τ = 0 and satisfies an additional condition, u �→
−ĝ(1/u) belongs to �. The theory in Section 2.2 introduces a certain simplification
for the limit relations in Eq. 2.7 for τ �= 0. The reason for including that section is to
embed the limit relations (2.7) in a theory - regular variation - which has been well
investigated in the past century.

There is a nice relation with extreme value theory. The limit variables for minima are

Vτ = eτV0 , τ > 0 V0 and Vτ = −eτV0 , τ < 0,

where −V0 has a standard Gumbel distribution, P{V0 > v} = exp(−ev). A df G lies
in the domainDmin(τ ) of Vτ if and only if the quantile function g = G← lies inD(τ).
The inverse of ĝ is the function t �→ Ĝ(t) = F(et ) − p. The function Ĝ = ĝ← is a
df except for the fact that Ĝ(∞) = 1− p. So we see that ĝ satisfies the limit relation
in Eq. 2.7 with limit ĥ = logχτ if and only if the df t �→ (F (et )−p)/(1−p), or any
df G which agrees with F(et ) − p on a right neighbourhood of its lower endpoint
inf{G > 0}, lies in Dmin(τ ).

The convergence condition i) has been translated into a condition on the behaviour
of F(x) − p for x ↓ x∗ = inf{F > p}. Let us now consider condition ii) linking
the behaviour of ĝ and ḡ at the origin, or, alternatively, linking the behaviour of
F(x)−F(0) and F(0)−F(−x) for F(x) → F(0). The imbalance η was introduced
initially to handle a jump at zero in the density of X. We shall say that the balance
condition holds and write F ∈ B(η) if {F = F(0)} = [−x∗, x∗] for some x∗ ≥ 0 and

F(0) − F(−x)

F (x) − F(0)
→ R ∈ (0, ∞) x ↓ x∗ = inf{F > F(0)} η = R − 1

R ∨ 1
.

(3.5)
To belong to the domain D(W,P, k, 0) of a continuous power limit the df F has

to be continuous in zero with value p ∈ (0, 1). The quantile set has to be closed and
symmetric, {F = p} = [−x∗, x∗] for some x∗ ≥ 0, and F has to be continuous in
the endpoints ±x∗. Convergence of the order statistics depends on the behaviour of
F on a neighbourhood of the quantile set. These statements are obvious in terms of
the functions ĝ and ḡ. In terms of ĝ and ḡ the domain is determined by the condition
ĝ ∈ D(τ) and the balance condition (3.4) linking the asymptotic behaviour of ĝ − c∗
and ḡ − c∗ at the origin. This balance condition then also holds for f : For positive r1
and r2 with r1 < r < r2 there exists δ > 0 such that f (r1u) < −f (−u) < f (r2u)

holds for u ∈ (0, δ). In terms of the inverse f ← = F −F(0) the condition simplifies
to Eq. 3.5 with R = 1/r .

LetD0(η, τ ) denote the power domain of Wη,τ and write F ∈ D+(τ ) if F(0) = p

and if there exists a df G ∈ Dmin(τ ) such that G(t) = F(et ) − F(0) on a neigh-
bourhood of t∗ = inf{t | F(et ) > F(0)}. Then F ∈ D+(τ ) if and only if
ĝ ∈ D(τ). Define D−(τ ) similarly as the set of dfs F with F(0−) = p such that
t �→ G(t) = (F (−e−t ) − p)/p lies in the domain of attraction Dmax(τ ) of the
extreme value limit variable Vτ in Eq. 1.8. The result of the arguments above may
now be recapitulated as:

D0(η, τ ) = B(η) ∩ D+(τ ) = B(η) ∩ D−(τ ) (3.6)

This is the fundamental result of the paper. Here is the proof:



Power limits for central order statistics: I. Continuous limit laws 103

Theorem 3.7 Let A−1
n (Xk:n) ⇒ W for a sequence of power transformations An and

a sequence of order statistics from a df F . Assume p ∈ (0, 1), F(0−) ≤ p ≤ F(0), k
is a Smirnov sequence, see Eq. 1.2, and W has a continuous df. Then F is continuous
at zero. The power limit W has parameters τ (exponent) and η (imbalance), see
Theorem 2.3 above, if and only if F ∈ B(η)∩D+(τ ) if and only if F ∈ B(η)∩D−(τ ).

Proof Convergence A−1
n (Xk:n) ⇒ W under the conditions above is equivalent to

convergence of ĝ and ḡ in Eq. 2.7. Since the normalizations are the same Lemma 2.1
applies and ĥ(u) = h̄(ru) for some r > 0 by Corollary 2.2. Hence ĝ and ḡ belong
to the same set D(τ) in Eq. 2.11. Relation (3.4) in Lemma 2.1 holds for ĝ and ḡ.
Equivalently the balance condition B(η) holds for F with η = (r − 1)/(r ∨ 1) as in
Eq. 3.5. Since ĝ ∈ D(τ) is equivalent to F ∈ D+(τ ) and by symmetry ḡ ∈ D(τ) to
F ∈ D−(τ ) convergence of ĝ and ḡ in Eq. 2.7 is equivalent to F ∈ B(τ ) ∩ D+(τ )

and to F ∈ B(τ ) ∩ D−(τ ).

The special cases below are presented to flesh out the cryptic description of
D0(η, τ ) in Eq. 3.6.

For τ > 0 there are simple regular variation criteria for the domain D0(η, τ ): The
quantile set {F = p} is a closed symmetric interval [−q∗, q∗] for some q∗ > 0,
F(q∗ + x) − p varies regularly for x → 0+ with exponent 1/τ and B(η) holds. An
example should make this clear.

Example 1 Let F be the uniform distribution on (−1 − p, −1) ∪ (1, 2 − p). Then
F lies in D0(0, 1), the domain of the limit variable eM1{M>0} − e|M|1{M<0}. The
balance condition B(0) holds by symmetry and ĝ(u) = log(1+u) on (0, 1−p). The
asymptotic equality log(1+u) ∼ u for u → 0+ implies that ĝ varies regularly at 0+
with exponent τ = 1.

Gaussian power limits may occur even when the density vanishes on the interval
[−1, 1].

Proposition 3.8 If {F = p} = [−q, q] for some q > 0 and F satisfies the balance
condition B(η) for some η ∈ (−1, 1) then F ∈ D0(η, 0) if and only if F(q + x) −
F(q) ∼ e−ψ(x) for a C2 function which satisfies the von Mises condition

ψ ′(x) → ∞ (1/ψ ′)′(x) → 0 x → 0 + . (3.7)

Proof See Balkema and Embrechts (2007) Theorem 6.1 and Section 6.6 where it is
shown that Eq. 3.7 means that a df G which agrees with F − p on (0, q + δ) belongs
to Dmin(−V,A) for the Gumbel variable V . By Proposition 1.6 this is equivalent to
f 1(0,∞) ∈ D(0), and by Lemma 1.7 to ĝ ∈ D(0) since q is positive.

From the theory of power normalization for maxima it is known that the domain
of the limit distribution for τ = 0 is large. A good way to describe the difference
between the domain of M under scaling and under power transformations is via the
loglog transform. We assume {F = p} = {0} and F ∈ B(0). Define the increasing
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function L(t) = − log(F (e−t ) − p). The df F lies in D(M,S, k, 0) if and only if
F(x) − p varies regularly with exponent one for u → 0+. In terms of L this means
that there exists a C2 function L0 such that L(x) − L0(x) vanishes for x → ∞
and 1/L′

0 → 1. For F ∈ D(M,P, k, 0) the condition is weaker: (1/L′
0)

′(x) → 0
if x∗ = 0. All non-constant monic polynomials satisfy the latter condition, but only
those of degree one will satisfy the first condition.

It should be stressed that asymptotic equality of ḡ(x) and ĝ(x) or of f (x) and
−f (−x) for x → 0 does not imply exact balance, B(0), even when f (0) = 0. In the
example below ĝ(0) = ḡ(0) = −∞ and d(x) = ĝ(x) − ḡ(x) → 0. The function ĝ

may be normalized to converge to log x and hence F ∈ D+(0). The order statistics
may be normalized to converge, but the limit is not normal. There are two different
power limits with overlapping domains.

Example 2 Let ĝ(x) = − log | log x| and ḡ = ĝ−d where d(x) = 1/
√| log x|. Then

d(x) vanishes for x → 0+ which implies that −f (−x)/f (x) → 1. Set cn = log
√

n,
an = 1/cn, bn = log an. Then

ĝ(x/
√

n) = bn + an log x + o(an) d(x/
√

n) = √
an + o(an). (3.8)

It follows that (ĝ(x/
√

n) − bn)/an → log x and ḡ(x/
√

n) − bn)/an → −∞. If an is
replaced by

√
an one obtains the limits 0 and −1. The associated order statistics Xn:k

satisfy the two limit relations:

(cnXn:k)∧cn ⇒ M ∨ 0 (cnXn:k)∧
√

cn ⇒ 1{M>0} − 1{M<0}/e. (3.9)

How should we interpret this surprising result: the limit variable is M ∨ 0, the
positive part of the Gaussian variable M , but may also be a two-valued function of
M (Fig. 1).

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-0
.5

0.
0

0.
5

1.
0

Fig. 1 Sample points from M1{M>0} + 0.01M1{M<0} and their transforms
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The figure above depicts a hundred points on the graph of the power transfor-
mation A(x) = x∧0.1. The xi are sample points from the continuous power limit
W = M1{M>0} + 0.01M1{M<0} with p = 1/2 and μ = 0. The yi are sample points
from A(W), a continuous power limit with the same parameter (η, τ ) = (0.99, 0) as
W . The yi cluster around the two values 0.2 ± 0.7. For η → 1 one obtains the mys-
terious conjugacy between the power limit M ∨ 0 and the two-valued power limit in
Eq. 3.9 which is of the power type of 1 + 2 sign(M).

The example shows how our intuition for convergence of normalized probabil-
ity distributions breaks down for discontinuous power limits. There actually are two
more power limits in addition to Eq. 3.9. The sequence (cnXk:n)∧cθ

n converges to
sign(M) for θ ∈ (0, 1/2) and to 1{M>0} for θ ∈ (1/2, 1). This follows from Eq. 3.8.
The two new power limits exhibit a certain degeneracy. They are invariant under pure
power transformations, W∧a = W for a > 0. In the companion paper on discontinu-
ous limit distributions it will be shown that the domain of W = sign(M) contains all
dfs F which are continuous at the origin and satisfy F(0) = p, and that the domain
of W = 1{M>0} contains the domains of all non-negative power limits. It should be
clear that there is no convergence of types for power limits.

Theorem 3.9 (Convergence of power types) Let Xn ⇒ X0 and let Yn = cnX
∧an
n ⇒

Y0 for positive cn, an. Suppose X0 has a continuous df and Y0 is not a.s. zero. Then
cn → c > 0 and an → a ≥ 0, and Y0 = cX∧a

0 in distribution if a is positive and
Y0 = c sign(X0) if a = 0.

Proof Write Xn = fn(M0) for an increasing function fn where M0 is a normal
variable such that P{M0 < 0} = P{X0 < 0} if X0 assumes both positive and negative
values. Then f0 is strictly increasing and fn → f0 weakly as in Proposition 1.1. Let
Y0 = g0(M0) with g0 increasing and let u0 < u1 be non-zero continuity points of
g0 and f0. By symmetry we may assume that g0 is positive in these two points. Then
gn(ui) is positive eventually and hence so is fn(ui). We may set yni = log fn(ui)

and zni = log gn(ui) = bn + anyni for bn = log cn. Then

an = (zn1 − zn0)/(yn1 − yn0) → (z01 − z00)/(y01 − y00) =: a

and bn = zn0 − anyn0 → z00 − ay00 =: b. This yields the relation above between
X0 and Y0.

3.3 Parametrization

The set of continuous power limits W = A(χτ (Mη)) may be parametrized by
(η, τ, a, c) ∈ (−1, 1)×R×(0, ∞)2 where (a, c) describes the power transformation
A(x) = cx∧a . The continuous power limits form a subspace L(P, k, 0) of the space
of dfs on R with the topology of weak convergence. This subspace is homeomorphic
to (−1, 1)×R×(0, ∞)2, and hence toR4. This does not follow from the parametriza-
tion above, which is not continuous, see Eq. 3.3. For a good parametrization one
would like to select a power limit with dfGθ for each θ = (η, τ ) ∈ �0 = (−1, 1)×R

with disjoint domains D0(θ) such that θn → θ ∈ �0 if and only if Gθn → Gθ

weakly.
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One may ask: Is L(P, k, 0) a closed set in the space of continuous dfs? Is the
closure of L(P, k, 0) in the space of non-degenerate dfs the set of all power limits
(both continuous and not)? Does the good parametrization mentioned above extend to
a good parametrization of all non-degenerate power limits? Is the parameter (η, τ ) ∈
(−1, 1)×R a good parameter for the domains of attraction? Some of these questions
will be answered below, some in the companion paper.

Proposition 3.10 The map G �→ θ(G) which associates the parameter θ = (η, τ )

with η ∈ (−1, 1) (the balance) and τ ∈ R (the exponent) to the df G of a continuous
power limit is continuous.

Proof Let G denote the df of χ(M). Then Gn → G0 weakly if and only if χn → χ0
weakly on R if and only if ĥn → ĥ0 weakly on (0, ∞) and h̄n → h̄0. The latter
functions are elements of 
, see Lemma 1.4, and τ is continuous on 
 by Eq. 2.10.
Let ηn be the imbalance of Gn. By symmetry we may assume that ηn ≥ 0 infinitely
often and ηkn → η ∈ [0, 1]. Then h̄kn(u) = ĥkn((1 − ηkn)u). Convergence of h̄n and
ĥn implies h̄0(u) = ĥ0((1 − η)u). Hence η < 1 and η = η0, and ηn → η0.

Let Fθ for θ = (η, τ ) ∈ �0 = (−1, 1) × R denote the df of the power limit

Wθ =χθ (M)=eψτ (aM)1{M>0}−eψτ (q|M|)1{M<0} a, q >0, a∨q =1, a−q =η, τ ∈ R,

(3.10)

where ψτ ∈ 
, see Lemma 1.4, is ψτ (u) = sign(τ )uτ for |τ | ≥ 1, and

ψt(u) = uτ − 1

τ
+ τ 0 < |τ | ≤ 1; ψ0(u) = logu. (3.11)

Continuity of τ �→ ψτ implies continuity of θ �→ χθ in Eq. 3.10. This yields:

Theorem 3.11 Let k be a Smirnov sequence, see Eq. 1.2, and M the associated
Gaussian variable in Eq. 1.5. For θ = (η, τ ) ∈ �0 = (−1, 1) × R define Fθ as the
df of the power limit Wθ in Eq. 3.10. Then

• the map θ �→ Fθ is continuous;
• Fθ has domain D0(θ) for θ ∈ �0 and these domains are disjoint;
• every continuous power limit has df Fθ(A(x)) for some θ ∈ �0, A ∈ P .

Corollary 3.12 The space Lc(P, k, 0) is homeomorphic to R
4.

The Fθ form a continuous selection of dfs, one for each domain. If Gn → G0
are continuous power limits and we choose Fθn to have the same domain as Gn, then
Fθn → Fθ0 .

Theorem 3.13 The continuous power limits for central order statistics for a given
Smirnov sequence k and under the quantile condition (1.1) form a closed subset of
the set of all continuous dfs.



Power limits for central order statistics: I. Continuous limit laws 107

Proof Suppose Gn → G with G continuous and Gn ∈ Lc(P, k, 0). Then χn → χ

weakly where χ(M) has df G; χ is positive on (0, ∞) and negative on (−∞, 0)
by continuity of G. Hence h̄n and ĥn converge weakly on (0, ∞). By Lemma (1.4)
the limit functions h̄ and ĥ lie in 
. Continuity of τ implies that h̄ and ĥ have the
same exponent. The argument in the proof of Proposition 2.10 shows that h̄(u) =
ĥ((1 − η)u), where η ∈ (−1, 1) is the limit of the balance ηn of χn. It follows that
the pair (h̄, ĥ) determines a function χ and that χn → χ .

4 Power limits without quantile restrictions

F(0) < p implies a positive p-quantile. We may assume that inf{F > p} = 1 by
an initial scaling. The inequality F(0) < p implies F(δ) < p for some δ > 0 and
hence P{Xk:n > δ} → 1. Altering the df F on (−∞, δ) has no influence on the limit
distribution of the normalized order statistics. We may assume F(0) = 0. Then X is
positive and one may consider convergence (Yk:n − bn)/an ⇒ Z where Y = logX.
This is equivalent to (X

∧1/an

k:n )/ebn ⇒ W for a positive power limit W . There may be
non-negative power limits which charge zero, but we restrict attention to continuous
power limits. Thus we find:

Theorem 4.1 Let k be a Smirnov sequence and suppose A−1
n (Xk:n) ⇒ W for the

order statistics from a df F which satisfies F(0) < p. Then

W = ce(aM)τ 1{M>0} + ce|qM|τ 1{M<0} a, c, q, τ > 0; η = (a − q)/(a ∨ q).

(4.1)

The domains D1(η, τ ) of W = A(eM∧τ
η ) have been characterized by Smirnov. His

characterization is in terms of the df of log(X∨δ) for an appropriate δ > 0. It may be
translated into a condition on F . Alternatively writeX = f (U)where f is increasing
and U uniformly distributed on (−p, 1 − p). The assumption inf{F > p} = 1
implies that f (0+) = 1 and the assumption F(δ) < p for some δ > 0 implies that
f is positive on a neighbourhood of zero. Hence g = log f is well defined on a
neighbourhood of zero and vanishes in 0+. The condition that g(u/

√
n)−bn)/an →

h(u) on (0, ∞) and that h(0−) is finite imply that g varies regularly in 0+ with
exponent τ > 0.

Proposition 4.2 Suppose F(0) < p and inf{F > p} = 1. Then F ∈ D1(η, τ ) if and
only if the function F(1 + x) − p varies regularly for x → 0+ with exponent 1/τ ,
and F satisfies the balance condition (p−F(1−x))/(F (1+x)−p) → R ∈ (0, ∞)

where (R − 1)/(R ∨ 1) = η.

Let Fλ for λ = (η, τ ) ∈ �0 = (−1, 1) × (0, ∞) be the df of W = χλ(M) where

χλ(u) = e(au)τ1(0,∞)(u)+e|qu|τ 1(−∞,0)(u) a, q >0, a∨q =1, a−q =η, λ=(η, τ ).

(4.2)
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Recall that χ∗(u) = −χ(−u). The dfs of W = χ∗
λ (M) describe the power limits

when F(0−) > p.
Now drop the quantile condition. Let �0 be the disjoint union of the sets �0 =

(−1, 1) × R, �0 = (−1, 1) × (0, ∞) and �∗
0 = (−1, 1) × (0, ∞). Define Fγ as the

df of Wθ in Eq. 3.10 for θ ∈ �0, and as the df of χλ(M) or χ∗
λ (M) for λ ∈ � or

λ ∈ �∗ with χλ as in Eq. 4.2.

Theorem 4.3 Let k be a Smirnov sequence and let Lc(P, k) be the set of all con-
tinuous power limits for the sequence of order statistics Xk:n normalized by power
transformations. Then Lc(P, k) is the set of dfs Fγ (A(x)), γ ∈ �0, A ∈ P . The map
γ �→ Fγ is a homeomorphism. The domains D(Fγ ,P, k), γ ∈ �0, are disjoint.

5 Conclusion

Power limits give a substantial extension of the limit theory for central order statistics
developed by Smirnov (1949). This holds in particular for dfs F which satisfy the
quantile condition (1.1). There are more limit laws and domains are larger. Even
when the quantile is not unique, and the order statistics converge in distribution to
a two-valued limit without any normalization, power transformations may yield a
continuous limit law. This implies that a sequence of order statistics may have two
unrelated power limits. Continuous limit laws have disjoint domains, but in general
domains may overlap, or one domain may contain another as a proper subset.

If the order statistics converge in probability to a positive constant they may have
a continuous power limit. This power limit then has the form W = eZ where Z is a
limit variable in Smirnov’s theory. Normalizing by power transformations does not
add anything new here.

There exist finite dimensional extensions of the one-dimensional group S of scale
transformations apart from P . Our basic tool, Proposition 1.1, will work for any
extension of S which preserves the origin. A paper on the topic of finite-dimensional
normalization groups for extremes and order statistics is scheduled to appear next
year.
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Appendix: Extremes

In multivariate extreme value theory one may be interested in extremes of the sample
rather than coordinatewise maxima. It may be possible to scale samples from a ran-
dom vector X to converge weakly to a Poisson point process outside ε-balls centered
at the origin. What happens if one replaces scaling by power transformations?

x = rξ �→ craξ a, c > 0; r = ‖x‖ > 0.
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We consider the univariate case below.
The transformation x �→ −1/x is increasing apart from the discontinuity at the

origin. It maps points close to the origin into points far out and vice versa. For a
variable X with a df which is continuous at the origin with the value F(0) = p ∈
(0, 1) the asymptotic behaviour of F − p for F(x) → p is reflected in the tail
behaviour of the df of Y = −1/X. Power transformations are able to handle the
transformation Y = −1/X.

For a power transformation A : x �→ cx∧a define the conjugate transformation
Ā by

Ā(x) = x∧a/c. (5.1)

Conjugation is an automorphism: ĀB = ĀB̄. Moreover Ā(−1/x) = −1/A(x). This
implies:

Lemma 5.1 Suppose An ∈ P and Wn = A−1
n (Xn) ⇒ W0. Assume P{Wn = 0} = 0

for n ≥ 0. Then Yn = −1/Xn and Zn = −1/Wn are well defined and Zn =
Ā−1

n (Yn) ⇒ Z0.

Suppose X = f (U) has df F ∈ D0(η, τ ) in the notation of this paper. Then
{F = p} is a set [−x∗, x∗] with x∗ ≥ 0 and F is continuous in ±x∗. The point pro-
cess NX

n = {f (U1:n), . . . , f (Un:n)} is a sample from X. The corresponding samples
NU

n = {U1:n, . . . , Un:n} from U , inflated by a factor n converge: Nn := nNU
n ⇒ N

vaguely onR, whereN is the standard Poisson point process onR. Let k be a Smirnov
sequence and An power transformations such that A−1

n (Xk:n) ⇒ χ(M).

Proposition 5.2 Set Bn = An2 . Then B−1
n (NX

n ) ⇒ χ(N) weakly on [a, b] for any
closed interval [a, b] ⊂ (χ(−∞), χ(∞)).

Proof By Proposition 1.1 A−1
n f (u/

√
n) → χ(u) weakly on R. Hence χn(u) :=

B−1
n f (u/n) → χ(u) weakly on R. By Skorohod’s representation theorem one

may assume that NX
n → N a.s. vaguely on R. It follows that Kn := χn(Nn) →

χ(N) =: K a.s. vaguely on (χ(−∞), χ(∞)). This is equivalent to
∫

ϕdKn →∫
ϕdK for every bounded function which vanishes outside a compact interval in

(χ(−∞), χ(∞)) and which is κ-a.e. continuous for the mean measure κ of K , the
image of Lebesgue measure under χ . Since χ is strictly increasing κ is continuous
and ϕ = ψ1[a,b] is κ-a.e. continuous and bounded for any continuous function ψ on
[a, b].

The lemma above transforms this proposition into a result on extremes:

Theorem 5.3 Let Xk:n be order statistics from a df F for a Smirnov sequence k,
and let M be the Gaussian variable associated with k, see Eqs. 1.2 and 1.5. Assume
A−1

n (Xk:n) ⇒ W for a continuous power limit W = χ(M) and for a sequence of
power transformations An : x �→ cnx

∧an . Define Qn(x) = x∧a
n2 /cn2 . The df F is

continuous in zero and hence Y = −1/X is well-defined. Let NY
n = {Y1:n, . . . , Yn:n}
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be a sample of size n from Y . Let K be the image of the standard Poisson point
process N on R under the map x �→ −1/χ(x). Then

Q−1
n

(
NY

n

)
⇒ K weakly on R\J

for any open interval J which contains the two elements −1/χ(∞) < 0 and
−1/χ(−∞) > 0.

The condition F ∈ D0(η, τ ) may be formulated in terms of three conditions on the
df of Y . Let V be the standard Gumbel variable and Vσ = sign(σ )eσV for σ �= 0 and
V0 = V , let y∗ and y∗ be the lower and upper endpoint of the df of Y and c ∈ (0, y∗).
The three conditions are:

• (symmetric domain) y∗ = −y∗;
• (balance) P{Y > y}/P{Y < −y} → r ∈ (0, ∞) for y → y∗ − 0 with η =

(r − 1)/(r ∨ 1);
• (exponent) the df of log(Y ∨ c) lies in Dmax(Vσ ,A) for σ = −τ .
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