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Abstract. Convergence of a sequence of deterministic functions in the Skorohod topology d��0;?�� implies

convergence of the jumps. For processes with independent additive increments the ®xed discontinuities converge.

In this paper it will be shown that this is not true for processes with independent max-increments. The limit in

d��0;?�� of a sequence of stochastically continuous extremal processes may have ®xed discontinuities. Our

construction makes use of stochastically continuous extremal processes whose sample functions have only one

jump.
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1. Introduction

The similarity between the theory of maxima and that of sums is considerable. Concepts

like stability, decomposability, and in®nite divisibility have been successfully transferred

to the theory of maxima. Any max-id random variable (or vector) X with cdf F can be

embedded as Y�1� in a unique process Y with stationary independent max-increments.

Simpli®cations occur in the theory of maxima: The cdf of Y�t� for t4 0 is simply Ft; in the

univariate case every rv is max-id. In the theory of maxima the cdf takes over the role of

the characteristic function. As in the case of positive sums the max-id process is generated

by a Poisson point process on the half plane t4 0 whose mean measure is invariant for

translations along the time axis. This paper is concerned with extremal processes

corresponding to processes with independent increments for sums. No stationarity of the

increments is assumed. We restrict ourselves to non-negative variables (without loss of

generality).

The apparent simplicity of extremal processes hides a number of deeper lying

dif®culties. For multivariate extremal processes the distribution of the max-increments

need not be unique even if the process is stochastically continuous. This phenomenon of

blotting has been treated in Balkema and Pancheva (1996). In the present paper we shall

discuss a problem related to convergence. Continuous time processes may occur as limits



for triangular arrays of increments Xnk. One assumes that the increments in each row are

independent, and that the increments are asymptotically uniformly negligible. With the

nth row one associates the random step function on �0; 1� with jumps Xnk in the time

points k/n for k � 1; . . . ; n. Assume convergence of these random step functions in the

space d��0; 1�� with respect to the Skorohod topology. Convergence in this topology

implies that the jump in a ®xed discontinuity can not arise as the limit of a superposition

of smaller jumps. In the theory of processes with additive increments it is well known

that the sample functions of the limit process are continuous with probability one if the

size of the increments tends to zero uniformly. If one only assumes that the increment

Xnk tends to zero in probability for n� k?? then the sample functions of the limit

process may have jumps but the process is stochastically continuous.

In the case of max-increments this is no longer true. A sequence of stochastically

continuous extremal processes may converge in d��0;?�� to an extremal process with

®xed discontinuities. In the univariate case the stochastically continuous extremal

processes are dense in the space of all extremal processes. In the multivariate case we shall

formulate conditions on the distribution of the max-increments which ensure convergence

of the ®xed jumps. Let Yn be extremal processes for n � 0 and assume that Yn ) Y0 in

d��0;?��. Convergence of the ®xed jumps means: For each ®xed discontinuity t040 of

the limit process Y0 there exist time points tn?t0 so that

�Yn�tn ÿ 0�; Yn�tn�� ) �Y0�t0 ÿ 0�; Y0�t0�� n??: �1:1�

The construction of a sequence of stochastically continuous extremal processes

converging to a given discontinuous limit process is based on a simple and unexpected

observation: There exist stochastically continuous extremal processes with the property

that each sample function of the process either is constant on �0; 1� or has exactly one jump

in this time interval and is constant on the intervals on either side of the jump. Such a

process will be called a one-jump process. In order to ensure stochastic continuity different

sample functions have their jumps at different times. On the other hand one may not

violate the condition of independence of the max-increments: The occurrence of a jump in

an interval �t1; t2� should not involve the occurrence or not of a jump in the intervals �0, t1�
and �t2; 1�. The condition of having only one jump thus is quite severe. Additive processes

which satisfy these conditions are pathwise continuous.

For univariate extremal processes we have the following results:

Theorem 3.1: For any random variable X � 0 there exist a one-jump process Y so that
Y�0� � 0 and Y�1� is distributed like X.

Theorem 3.4: Any univariate extremal process is the limit in d��0;?�� of a sequence of
stochastically continuous extremal processes.

The multivariate situation is different. Complications in the multivariate case arise when

the initial distribution vanishes on a neighborhood of the origin. This may happen even if
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the univariate marginals are strictly positive on �0, ?�. If the initial vector of an extremal

process has a distribution F which is not strictly positive on �0;?�d then FG � FH does

not imply G � H. The distribution of the max-increment is blotted out on the set where F
vanishes. This phenomenon of blotting is peculiar to multivariate extreme value theory. It

is not well understood.

One-jump processes exist in the multivariate case but only if the initial and ®nal

distributions are related: F1 � F0
~H, where the distribution ~H is totally dependent. The

concept of total dependence was introduced by FreÂchet (1951) in his investigation of

multivariate distributions with given marginals. If for each discontinuity point of an

extremal process the distributions on either side of the discontinuity are related by the

equation above then this process is the limit in d��0;?�� of a sequence of stochastically

continuous extremal processes.

These results raise the issue of formulating conditions which ensure that ®xed

discontinuities converge in the sense of (1.1). This question is studied in Sections 6 and 7.

Relation (1.1) breaks down if the ®xed discontinuity in the limit process corresponds to

two ®xed discontinuities in the approximating process which occur in quick succession

and which between them only yield one jump in the limit. In order to study such behavior

we introduce the discrete counterpart of the one-jump process. This is the one-jump triple:

�Z0; Z1; Z2� � �Z0; Z0VW1; Z1VW2� �1:2�

where Z0;W1;W2 are independent vectors with the property that the events fZ1 6� Z0g and

fZ2 6� Z1g are exclusive and have positive probability. So there a.s. is only one jump. For

any o either Z1�o� � Z0�o� or Z2�o� � Z1�o�. In addition for technical reasons it is

assumed that Z0 has lower endpoint in the origin. It is natural to ask what max-increments

can not be broken down by a one-jump triple. A distribution H is called one-jump prime if

there does not exist a one-jump triple �Z0; Z1; Z2� with cdfs F0;F1;F2 so that F2 � F0H.

We shall characterize these distributions.

There is a different approach to the issue of convergence of ®xed discontinuities. To

explain that we need the concept of weight. The weight of an extremal process Y is a

decreasing function y, which is de®ned as

y�t� � Eeÿ Y�t� t � 0: �1:3�

The weight keeps track of the ®xed discontinuities of the process. Thus (1.1) implies that

the weights satisfy: yn�tn ÿ 0�?y0�t0 ÿ 0� and yn�tn�?y0�t0�. For a multivariate process

the weight may be taken as the sum of the weights of the component processes.

Convergence of the weights then ensures convergence of the jumps.

Theorem 8.6: Let Yn : �0;?�?�0;?�d be extremal processes for n � 0. Suppose
Yn ) Y0 in d��0;?��. Then the ®xed discontinuities converge in the sense of (1.1) if and
only if the weights converge in d��0;?��.
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The occurrence of ®xed discontinuities in the limit process is a sign of degeneracy. For

multivariate processes such discontinuities are irreparable; for univariate extremal

processes it is possible to obtain a stochastically continuous limit process by a judicious

choice of time changes. This will be shown in a forthcoming paper.

We now give a brief overview of the contents. Section 2 contains the necessary

background on univariate extremal processes. Section 3 introduces one-jump extremal

processes and shows how they can be used to approximate extremal processes with ®xed

discontinuities by stochastically continuous extremal processes. Sections 4 to 7 investigate

the multivariate situation. They may be skipped by readers who are only interested in the

univariate theory.

In the multivariate situation the concept of a one-jump triple plays the central role. For

one-jump processes and one-jump triples starting in the origin the theory is simple. This

theory is presented in Section 4 and applied to the convergence of ®xed discontinuities in

Section 6. Section 7 treats one-jump prime distributions. Section 5 describes the

distribution of a multivariate one-jump process X. We prove:

Theorem 5.6: The distribution of a multivariate one-jump process is determined by the
distribution of the initial vector and the distributions of the univariate marginal processes.

Section 8 treats the problem of break down of stochastic continuity in the more general

framework of increasing processes and weak convergence. It is shown how convergence

of the weight functions controls convergence of the processes: Stochastic continuity is

preserved in the limit if one imposes the extra condition that the weight functions converge

in d��0;?��.

2. Extremal processes

An extremal process Y : �0;?�?�0;?� is a stochastic process with right-continuous

increasing sample functions and with independent max-increments in the following sense:

For each ®nite set of time points 0 � t05t15 � � �5tm there exist independent non-

negative rv's U0; . . . ;Um so that the following equality in distribution holds:

�Y�t0�; . . . ; Y�tm���d �V0; . . . ;Vm� Vi � U0V . . .VUi; i � 0; . . . ;m:

The multivariate distributions of an extremal process are completely determined by the

cdf's Ft of the rv's Y�t� since these determine the cdf's of the max-increments Ui above: If

Y�t� s� � Y�t�VU with U and Y�t� independent then the cdf H of U is just the quotient

H � Ft� s=Ft. One has to be a little careful if Ft�x� vanishes for certain x40. Hence de®ne

C�t� � inffx � 0jFt�x�40g. This is the lower endpoint of the cdf Ft, and the curve

C : �0;?�?�0;?� is the lower curve of the process Y. It is not dif®cult to see that C is

increasing and right-continuous. The df H of the max-increment U above is unique if we

impose the condition U � C�t� a.s.
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Since all rv's are max-id the extremal process Y can be described in terms of its lower

curve and a Poisson point process N on the set above the lower curve:

Y�t� � C�t�V supfXkjTk � tg

where �Tk;Xk� are the points of N. The mean measure m of the point process N is

determined by the cdf's Ft: For x4C�t�

Ft�xÿ 0� � PfY�t�5xg � PfN��0; t�6�x;?�� � 0g � eÿm��0;t�6�x;?��:

It is convenient to introduce the set S � �0;?�6�0;?� which consists of the points

�t; x� above the lower curve, x4C�t�, including x �?. Then m is a Radon measure on the

locally compact space S and the measure m lives on the set of points whose coordinates are

®nite. Any increasing right-continuous function C : �0;?�?�0;?� and any such Radon

measure m on S determine an extremal process and vice versa.

The weight of the extremal process Y is the function t ° y�t� � Eeÿ Y�t�. It plays the role

which the variance plays for additive processes. It is monotone (decreasing) and shows up

the ®xed discontinuities of the process Y. Thus t40 is a ®xed discontinuity of the extremal

process Y if and only if it is a discontinuity of the weight function y. The weight is constant

on an interval �t1; t2� if and only if the extremal process is motionless on this interval.

For more details on extremal processes see Balkema and Pancheva (1996). That paper

will from now on be referred to as BP (1996). The corresponding multivariate de®nitions

may also be found there.

De®nition 2.1: A one-jump process is an extremal process X : �0; 1� : ?�0;?� which is
stochastically continuous, and whose sample functions have at most one jump and are
constant on either side of the jump. (The process X may be extended to time points t41 by
setting X�t� � X�t61�:)

For increasing functions convergence in d��0;?�� may be formulated simply in terms

of sequences: Let jn : �0;?�?�0;?� be increasing right continuous functions for n � 0.

Then jn?j0 in d��0;?�� if jn?j0 weakly, if jn�0�?j0�0�, where

jn�0� � limt;0 jn�t� for n � 0 by de®nition, and if for each discontinuity point t040 of

j0 there is a sequence tn?t0 so that jn�tn�?j0�t0� and jn�tn ÿ 0�?j0�t0 ÿ 0�.

3. Constructions

We start off with a very simple example of a one-jump process.

Example 3.1: Let N be the Poisson point process on �0;?� with intensity 1. The

corresponding additive process is the standard integer valued Poisson counting process

with exponential holding times between jumps to the next integer. The corresponding
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extremal process is a process with one jump. Since the jump occurs at the ®rst point of N,

and this time point has an exponential distribution, the extremal process is stochastically

continuous. It has stationary max-increments.

Theorem 3.2 (Existence): For any rv X � 0 there exists a one-jump process Y on �0; 1�
so that Y�0� � 0 and Y(1) is distributed like X.

Proof: There exists a decreasing function c : (0, 1) ? �0;?� so that X is distributed like

c�U� with U uniform on (0, 1). The function c is the generalised inverse function of the

decreasing points. See Resnick (1987, Section 0.2) for details.

Let m be the image of the measure dt=�1ÿ t� on the interval �0; 1� under the map

t ° �t;c�t�� from �0; 1� to �0; 1�6�0;?�. Let N be the Poisson point process on the graph

of c with mean measure m and points �Tk;Xk�. The points Tk form a Poisson point process

on �0; 1� with mean measure dt=�1ÿ t� and hence they can be numbered so that

T15T25 � � � Then

PfT14ug � PfN�f0 � t � ug� � 0g � expÿ
Z u

0

dt

1ÿ t
� 1ÿ u:

This means that the ®rst point X1 � c�T1� is distributed like X (by construction of c ).

Since the function c is decreasing and the sequence �Tn� increasing the points �Tk;Xk�
with k41 have no in¯uence on the value of the extremal process Y generated by N. Also

Y�0� � 0 a.s.

For each o the sample path Y�o� has a jump X1�o� � 0 in Y�1� � Y�1ÿ 0�. Then

Y�1� � Y�T1� � X1 is distributed like X. &

Proposition 3.3 (Uniqueness): Set q � EeÿX. The process Y in Theorem 3.1 can be
chosen so that EeÿY�t� � qt for t [ �0; 1�. This normalization makes the process Y unique.

Proof: Assume that p � PfX40g � 1ÿ H�0� is positive. Else Y:0 and the result is

trivial. The weight y : �0; 1�? �0; 1� of the extremal process Y constructed in Proposition

3.1 is continuous and strictly decreasing on �0; p� since Y is nowhere motionless. Hence

there is a unique time change t : �0; p�? �0; 1� so that the extremal process V � Y � t has

weight v�t� � y�t�t�� � qt for 0 � t � 1.

In the construction above the lower curve C�t� of V vanishes on �0; 1� since

PfV�t� � 0g � PfT14tÿ 1�t�g40 t51:

Now let Y be a one-jump process which satis®es the conditions of Theorem 1 with lower

curve C:0 on �0; 1�. Stochastic continuity implies that the extremal process Y is generated

by a Poisson point process N whose mean measure m does not charge vertical lines. The

condition of not more than one jump implies that the points of N lie on a decreasing curve
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y � j�t�, and X is distributed like j�T1�. If we choose the time scale so that T1 is

uniformly distributed on �0; 1� then j � c in all continuity points of c on �0; 1�. &

A one-jump process Y : �0; 1�?�0;?� may be decomposed as

Y�t� � Y�0�VU�t� t [ �0; 1�

where U is a one-jump process starting in the origin. We assume here and henceforth that

the underlying probability space is suf®ciently rich, see BP (1996, Section 7).

So the distribution of Y may be described by the boundary distributions F0 � F and

F1 � FH of Y�0� and Y�1� respectively and the rate function

r�t� � PfU�t� 6� 0g t [ �0; 1� �3:1�

which describes the rate at which the jump occurs. Then Y�t� has cdf Ft � FHt where Ht is

the cdf of U�t�, which has the form

Ht�u� � H�u�V�1ÿ r�t�� u � 0; t [ �0; 1�; �3:2�

since fU�t� � ug � fT1 � tg [ fU�1� � ug and U�1� � j�T1�. A univariate one-jump

process is completely characterized by the triple �F;H; r�. Conversely such a triple

determines a one-jump process. A one-jump process may be described in terms of two

independent variables.

Theorem 3.4: Let F and H be cdfs on �0;?�, and let r : �0; 1�?�0; 1� be continuous and
increasing. Suppose r�0� � 0; r�1� � H�0� � 1 and F�x�40 for all x40. Let c : �0; 1�?
�0;?� be the right-continuous generalized inverse function of 1ÿ H, and let X, with cdf
H, and T, uniformly distributed on �0; 1�, be independent. Then

Y�t� � Y�0� if 0 � r�t�5T

Y�0�Vc�T� if T � r�t�
�

is a one-jump process with rate function r.

Proof: If r�t� � t V�1ÿ H�0�� then Y is the process constructed in Theorem 3.2. This

process is unique up to time scale. The rate function r determines the time scale. &

Any extremal process Y0 : �0;?�?�0;?� has a decomposition Y0 � W0VZ0 where W0

is stochastically continuous and Z0 has only ®xed discontinuities:

Z0�t� � C�t�V supfUrjr [R; r � tg:

Here R is the set of ®xed discontinuities of Y0 and Ur is the max-increment in r. The

variables Ur are independent and the family �Ur� is independent of Y0. See BP (1996,
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Section 7). By expanding the max-increment in each ®xed discontinuity point into a one-

jump process we obtain an approximation to Y0 which is stochastically continuous.

Theorem 3.5 (Convergence): Any univariate extremal process is the limit in d��0;?��
of a sequence of stochastically continuous extremal processes.

Proof: Let Y0 : �0;?�?�0;?� be an extremal process with lower curve C0. Let R be the

set of ®xed discontinuities of the process Y0. With each r [R associate a closed interval Jr

of length dr40 with
P

dr5?. For t40 set

s�t� � t�
X
fdrjtr � tg:

Take Jr � �ar; br� � �s�r ÿ 0�; s�r�� and let Ur be the max-increment of Y0 in the point

r, i.e. Y0�r� � Y0�r ÿ 0�VUr. Using Theorem 3.1 we construct for each r [R a

stochastically continuous one-jump extremal process Xr : Jr?�0;?� such that

Xr�ar� � 0 Xr�br� � Ur:

The sample functions of Xr are motionless on either side of the jump. Take the processes

Xr; r [R, independent and independent of the stochastically continuous part of Y0.

De®ne the extremal process Y by setting

Y�s�t�� � Y0�t� t � 0: �3:3�

For t [ Jr set Y�t� � Y0�ar�VXr�t�. This de®nition agrees with (3.3) for t � ar and for

t � br. The new process Y is stochastically continuous in each time point t40 since

PfY�tÿ 0� � Y�t�g � 1 for all t4 0.

Now de®ne time changes tn with slope t0n � 1=n on the intervals Jr and t0n � 1

elsewhere on �0, ?� and let Yn � Y � sn where sn � tÿ1
n . Then Yn is a stochastically

continuous extremal process since the functions tn are strictly increasing and continuous

and Yn ) Y0 in d��0;?�� since this convergence holds for all sample functions:

Let j � Y�o� be a sample function of Y. Then j0�t� � j�s�t�� � jn�tn�s�t��� is the

corresponding sample function of Y0. Convergence of
P

dr ensures that tn � s?id

uniformly on bounded intervals �0; t�. For r [R there is a unique time point r0 [ Jr so that

j�r0+0� � j0�r+0�. Take rn � tn�r0� and we ®nd that rn?r and jn�rn+0� �
j0�r+0�. &

In BP (1996, Theorem 6.1) it was shown that convergence Yn ) Y0 with respect to the

topology of weak convergence for increasing functions implies Yn�t� ) Y0�t� in a dense

set of time points t, and hence implies weak convergence of the weights. The

corresponding statement for convergence in d��0;?�� is false:

Proposition 3.6: There exist extremal processes which converge in d��0;?�� but whose
weights do not converge in d��0;?��.
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Proof: Take a sequence of stochastically continuous processes which converge to a

process with a ®xed discontinuity. &

4. Total dependence

Recall that the lower endpoint of a random vector X � �X1; . . . ;Xd� [Rd is the point

q � �q1; . . . ; qd� [ �ÿ?;?�d where qi is the lower endpoint of the cdf of Xi. Thus q is the

largest point so that PfX � qg � 1. (Inequalities in Rd are interpreted coordinatewise, in

particular the inequality a5b means that strict inequality ai5bi holds for each of the d
coordinates.) Our vectors all have non-negative components. This may be achieved by a

coordinatewise exponential transformation.

A multivariate extremal process Y : �0;?�?�0;?�d then is de®ned as in the univariate

case. The lower curve C�t� [ �0;?�d; t � 0, is de®ned coordinatewise: Ci�t� is the lower

endpoint of the univariate marginal cdf Fi�t� of Yi�t�. The weight y�t� is the sum of the

weights of the d marginals. The max-increment Ut of the extremal process Y in the ®xed

discontinuity t need not be unique even if C�t�:0 since the multivariate cdf of Y�0� may

vanish on a neighborhood of the origin.

The concept of decomposition in the theory of sums of independent rv's is well known

and has been discussed in Zolotarev (1998). Stability of decomposition is also valid for

maxima provided the lower endpoint is kept constant for all components. See Pancheva

(1994). In this paper we are interested in one-jump decomposability.

De®nition 4.1: A vector U � 0 is one-jump decomposable if there exist independent
non-negative vectors U1 and U2 so that

1. U1VU2 is distributed like U;

2. the events fU1 6� 0g and fU1VU2 6� U1g are disjoint and have positive probability.

If U is one-jump decomposable then �0;U1;U1VU2� is a one-jump triple starting in the

origin, see (1.2).

Lemma 4.2: Let X and Y be independent vectors such that X � Y a.s. Then the upper
endpoint of X lies below the lower endpoint of Y.

Proof: This holds for the univariate marginals. &

Assume U � U1VU2 is a one-jump decomposition. Then U2 � U1 on the event

E � fU1 6� 0g. By Lemma 4.2 this implies that U1 � q on E where q is the upper endpoint

of U2. So there is a vector q � 0 so that

P�fU � qg [ fU � qg� � 1; PfU � qgPfU � qg40: �4:1�

Such a point will be called a pivot for U.

Now suppose U has a pivot q 6� 0. Choose an event E so that fU � qg � E � fU � qg
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and 05PE51. Some variation is possible if q is an atom. Let U1 � U1E and let U2 � U
on Ec. This determines the conditional distribution of U2 given Ec. Now take U2 to be

independent of the s-®eld generated by U1 and E. Then �U1;U2� is a one-jump

decomposition of U.

These observations yield an analytic criterium for one-jump decomposability:

Proposition 4.3: The vector U � 0 is one-jump decomposable if and only if there is a
pivot a 6� 0 for U, see (4.1).

Example 4.4: The vector a� U may be one-jump decomposable while U is not. Let U
have a strictly positive density on �0;?�d except for an atom of size 1/2 in the origin, and

let a [ �0;?�d. Then a is a pivot for a� U, and a� U is one-jump decomposable only

if a 6� 0. &

One-jump decomposability implies that the support S of U can be covered by two blocks

�0; a� and �a;?� with a 6� 0. An extreme form occurs if the support is contained in the

image of an increasing continuous function t ° a�t� [ �0;?�d. The vector U then is totally

dependent.

De®nition 4.5: Let X be a random vector with cdf H with univariate marginals Hi. The
relation

~H�x1; . . . ; xd� � H1�x1�6 . . .6Hd�xd� �4:2�

de®nes a multivariate distribution which is called totally dependent.

Totally dependent vectors turn up in various parts of probability theory. They have a

simple representation:

~X � �c1�U�; . . . ;cd�U�� �4:3�

where U is a random variable which is uniformly distributed on �0; 1� and ci is the

generalised inverse function of 1ÿ Hi. The cdf ~H is the maximal multivariate cdf with the

given univariate marginals. See FreÂchet (1951) and Gutman et al. (1991). Relation (4.2)

implies that totally dependent vectors are max-id (since univariate cdf's are max-id).

ZempleÂni (1987) characterises the totally dependent distributions for d � 2 as the max-

antiireducible elements in the semigroup (under the max operation) of probability

distributions on �0;?�2 with lower endpoint in the origin. For max-stable totally

dependent vectors there is a simple characterization due to Takahashi (1988). See Huesler

(1989) for the non-max-stable case.

The proof of the next two theorems is similar to the univariate case, and omitted.

Theorem 4.6: Let X be a random vector in �0;?�d. There exists a stochastically
continuous extremal process Y: �0; 1�?�0;?�d with the boundary conditions
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Y�0� � 0; Y�1� � X and lower curve C which vanishes on �0; 1� so that every sample path
has at most one jump if and only if X is totally dependent.

The construction is obvious from the representation (4.3). The process Y becomes

unique under the additional assumption that the weight has the special form

y�t� � q t; 0 � t � 1 where q � E�eÿX1 � � � � � eÿXd�.

Theorem 4.7: Let Y: �0;?�?�0;?�d be a multivariate extremal process. Suppose for
each ®xed discontinuity point t40 one can choose the max-increment to be totally
dependent. Then there exists a sequence of stochastically continuous extremal processes
which converge to Y in d��0;?��.

5. One-jump processes

So far our one-jump processes started in the origin. In the univariate setting this is an

innocuous assumption. The multivariate case is different.

Example 5.1: Let X and U be independent random vectors in �0;?�3, U uniformly

distributed on the cube �0; 1�3 and X uniformly distributed on the half of the cube �0; 4�3
above the plane H : x1 � x2 � x3 � 6. Set X0 � XVU. Although the unit cube lies below

the plane H the event fX0 6� Xg has positive probability. The vector U is not totally

dependent, not even one-jump-decomposable. Yet there exists a one-jump process with

initial value Y�0� � X and ®nal value Y�1� � X0.

Proof: Write U � U1VU2VU3 where Ui is uniformly distributed along the unit interval

on the ith axis and the Ui are independent. Since each vector Ui is totally dependent there is

a three-jump process Z : �0; 3�?�0;?�3 so that Z�0� � 0 and Z�3� � U. Now set

Y�t� � XVZ�3t�. Since any value x of the vector X has at most one component in �0; 1�
only one of the three jumps of Z will be visible as a jump for Y. (Let x lie in the support of

X. Suppose x151 and x251. Then the inequality x1 � x2 � x3 � 6 implies x344.

Contradiction.) &

Example 5.1 shows that one-jump processes Y : �0; 1�?�0;?�d with a non-constant

initial vector Y�0� � X may have an unexpected structure. In particular they need not be

unique up to a time change. Clearly one may alter the distribution of the initial vector X in

the example as long as it remains concentrated on the upper half of the large cube. Less

trivial is the fact that one may replace the uniform distribution of the max-increment U by

any probability measure which lives on the unit cube.

Say that two vectors X and X0 can be connected if there exists a one-jump process Y so

that Y�0� � X and Y�1� � X0. Given the initial vector X what conditions should the cdf of

U satisfy, with U independent of X, in order that X and XVU can be connected?

Theorem 5.2: Let X and U be independent vectors in �0;?�d with cdf's F and H. Then X
and XVU can be connected if and only if FH � F ~H, with ~H totally dependent, see (4.2).
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Necessity of the condition is obvious. Suf®ciency follows from the technical

Proposition 5.3 below. We shall use the notation of Theorem 5.2. In addition let D
denote the closure in �0;?�d of fF40g. The set D is increasing in the sense that it is the

union of sets �x;?�; x [D. Let the vector ~U with df ~H be independent of X.

Proposition 5.3: The following are equivalent:

1. X and XVU can be connected;

2. x and xVU can be connected for each x [D;

3. xVU is totally dependent for each x [D;

4. xVU is distributed like xV ~U for each x [D;

5. XVU�d XV ~U.

Proof: First note that 2, 3 and 4 are equivalent for any x � 0. The equivalence of 2 and 3

follows from Proposition 4.3; that of 3 and 4 holds since H1�x;?� and ~H1�x;?� have the same

univariate marginals.

If 3 holds for x it holds for any y � x. If it holds for all x in a set it holds for all x in the

closure of that set since by (4.2) the class of totally dependent distributions is closed under

weak convergence.

By conditioning 1 implies 2 for X-almost every x, and hence by the arguments above for

all x [D. Conversely 2 implies 1 since D contains the support of X. A similar argument

shows that 4 and 5 are equivalent. &

The condition FH � F ~H may be hard to check for d42. So it is convenient to know that

it suf®ces to check it for the bivariate marginals. First note:

Lemma 5.4: The point a is a pivot for the random vector U in Rd if

PfUi5ai;Uj4ajg � 0 i 6� j; 1 � i; j � d:

Theorem 5.5: If the bivariate marginals of H are totally dependent then H is totally
dependent.

Proof: Each point in the support is a pivot. &

We need a stronger form of this result.

Theorem 5.6: Let X and U be independent non-negative random vectors with cdf's F
and H. The vectors X and X0 � XVU can be connected if and only if the bivariate
marginals of H satisfy: Hij�xi; xj� � Hi�xi�6Hj�xj� whenever Fij�xi; xj�40.

Proof: We have to show that H � ~H on W � intfF40g when this relation holds for the

two dimensional marginals: Hij � ~Hij on Wij � intfFij40g. Here ~H is de®ned in (4.2).

It suf®ces to prove that dHI � d ~HI on WI for all I � D � f1; . . . ; dg. Here for any cdf G
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on Rd we let GI denote the marginal distribution on RI and WI the image of W under the

projection from Rd to RI. For simplicity of notation we shall prove this only for I � D.

The support ~S of ~H is linearly ordered. Set a � sup�~SnW� and b � �~S \W�. Then a � b
and ~S � �0; a� [ �b;?� and ~S � �0; a� [W. We claim that these inclusions also hold for S.

Consider the bivariate marginals. Claim: dHij � d ~Hij off the rectangle R � �0; ai�6
�0; aj�. Let dm be the restriction of d ~Hij to the complement of R. Then m lives on Wij since
~Sij � R [Wij. By assumption dHij � d ~Hij � dm on WijnR. Since H and ~H have the same

univariate marginals the measures dHij and dm agree on the half planes fxi4aig and

fxj4ajg. So dHij � dm � d ~Hij off R. In particular dHij lives on the union of R and

�bi;?�6fbj;?�.
This holds for all bivariate marginals. So a is a pivot for H by Lemma 5.4 and so is b.

The vectors aVU and aV ~U have the same distribution since aVU is totally dependent by

Theorem 5.5. Since dH and d ~H both live on �0; a� [ �b;?� it follows that dH � d ~H off

�0; a�, hence on W. &

Corollary 5.7: Suppose the cdf's Hi of Ui have upper endpoint qi5?. If the bivariate
cdf's Fij vanish on the rectangles �0; qi�6�0; qj� then X and XVU can be connected.

In Example 5.1 the bivariate cdf's Fij vanish on fxi � xj52g and hence on the square

�0; 1�2 on which �Ui;Uj� lives. The Corollary applies.

We now come to the main result of this section.

Theorem 5.8: The distribution of a multivariate one-jump process is determined by the
distribution of the initial vector and the distributions of the univariate marginal processes.

Proof: This follows from the more speci®c result in Theorem 5.9 below. &

In the univariate case a one-jump process is characterized by �F;H; r� Here F is the

initial distribution, FH the ®nal distribution, and r the rate function of the jump. See (3.1)

and Theorem 3.4. Since the marginals of one-jump processes are one-jump processes we

may associate with the multivariate one-jump process X the distribution F of X�0� and the

rate functions ri and distributions Hi of the univariate marginal processes Xi. Then

�F; r1; . . . ;Hd� are characteristics of the process X. We shall now show that these

characteristics determine the distribution of the one-jump process X.

Theorem 5.9: Let X : �0; 1�?�0;?�d be a one-jump process. Let F be the cdf of X�0�
and Fi Hi the cdf of Xi�1� for i � 1; . . . ; d. Let ri be the rate function of the marginal
process Xi : �0; 1�?�0;?�. Then the cdf of X�t� is

Ft � F ~Ht Hit�u� � Hi�u�V�1ÿ ri�t�� i � 1; . . . ; d; t [ �0; 1�; u � 0; �5:1�

where ~Ht is the totally dependent cdf with marginals Hit, see (4.2).

Proof: The relation for ~Hi
t�u� holds for univariate one-jump processes by (3.2). Then

Ft � F ~Ht by Proposition 5.3 since X�0� and X�t� can be connected. &
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The structure of a multivariate one-jump process in terms of point processes may be

quite complicated. We shall not pursue this topic here.

6. Convergence of ®xed discontinuities

Total dependence is an extreme form of one-jump decomposability. Total dependence

means that each point of the support of the random vector is a pivot.

Convergence of the ®xed discontinuities in a sequence of extremal processes as in (1.1)

may already fail if the max-increment U in the time point t0 of the limit process is one-

jump decomposable. Choose Yn to have ®xed discontinuities in t0n5t00n both converging to

t0. Then (1.1) fails. However if each sample function of Yn has a jump in at most one of

these two time points then convergence in d��0;?�� is not violated.

Can one impose conditions on the limit process Y0 which ensure that the ®xed

discontinuities converge in the sense of (1.1)?

We introduce some notation which will be used throughout this section.

1. Y0; Y1; . . . are extremal processes in �0;?�d and Yn ) Y0 in d��0;?��;
2. t0 is a ®xed discontinuity point of Y0, U a max-increment of Y0 at time t0;

3. F0 is the cdf of Y0�t0�, F the cdf of Y0�t0 ÿ 0� and H the cdf of U;

4. C0 is the lower curve of Y0; c0 the lower endpoint of F0, c the lower endpoint of F:

C0�t0 ÿ 0� � c � c0 � C0�t0� H � H1�c0;?� F0 � FH: �6:1�

We start with a simple result.

Proposition 6.1: The notation above is used. Suppose d41 and C0 : 0. The conditions

a. F is strictly positive on �0;?�d and U is not one-jump decomposable;

b. U has a density which is strictly positive on �0;?�d;

each imply (1.1) for a sequence of time points tn?t0. If (a) holds then Un ) U where Un is
a max-increment of Yn at time tn.

Proof: The proof will follow from more general results established below. &

We now ®rst give an example to illustrate the inequalities in (6.1).

Example 6.2: Let the bivariate process Y0 be generated by a Poisson point process on the

diagonal in �0;?�3 with mean measure m, and a max-increment U at time t � 1. Suppose m
projected on the time axis has density 1=�1ÿ t� on �0; 1� and vanishes on �1;?�. Let U
have density eÿxÿy on �r;?�2 and an atom of mass 1ÿ eÿ2r in the point �r; r�. We assume
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r � 1. Then C0�1ÿ 0� � �0; 0�; c � �1; 1� since Y0�1ÿ 0�:�1; 1� and c0 � �r; r�. Only

r � 1 ensures convergence of ®xed discontinuities.

Theorem 6.3: The notation above (6.1) is used. Let F be strictly positive on
�c0;?� � Rd . If U ÿ c is not one-jump decomposable then (1.1) holds for a sequence
tn? t0. Moreover UnVc0 ) U where Un is a max-increment of Yn in tn.

Proof: By assumption the weight functions converge weakly. Suppose (1.1) does not

hold. Then there is a sequence (or a subsequence if necessary) tn?t0 so that the weight

functions yn satisfy

yn�tn�?y[ �b; a� a � y0�t0 ÿ 0�; b � y0�t0�:

We claim that this makes the vector U ÿ c one-jump-decomposable. For simplicity assume

c � 0. This may be achieved by replacing Yn by �Yn ÿ c�V0.

Choose t0n5tn5t00n continuity points of yn converging to t0 so that yn�t 0n�?a and

yn�t 00n�?b. Let Un be a max-increment of Yn over the interval �t0n; t00n�. Then Un � VnVWn

where Vn is a max-increment of Yn over �t0n; tn� and Wn a max-increment over �tn; t
00
n�, and

Vn and Wn are independent, and independent of max-increments over intervals disjoint

from these two.

Since Yn�t00n� converges in distribution by tightness one can ®nd a subsequence �kn� so

that

�Xkn
;Vkn

;Wkn
� ) �X;V;W�

for independent vectors V, W. It follows that

�X;XVVVW�;�d �Y0�t0 ÿ 0�; Y0�t0��:

This implies that U is distributed like VVW � c0.

The sequence 0;V;VVW is a one-jump decomposition of the max-increment U. It is

non-trivial since the weights a, y, b of the three vectors X;XVV and XVVVW are

unequal.

Since F0 is positive on �c0;?� convergence VnVWn ) U holds for the full sequence.

This implies UnVc0 ) U. &

In Pancheva (1994) a vector with lower endpoint q is called max-decomposable if it is

the maximum of two independent vectors with the same lower endpoint q.

Corollary 6.4: If c � c0 and U ÿ c0 is max-indecomposable then (1.1) holds and
UnVc0 ) U.

Proof: One-jump decomposability implies max-decomposability. &
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Now drop the condition that F is strictly positive on �c0;?�. Blotting occurs. One can

no longer speak of `̀ the'' max-increment U and hence cannot expect convergence

Un ) U.

Example 6.5: Let Y0 have standard bivariate normal max-increments at times 1, 2, . . .
and suppose Y0�0� has a normal distribution conditioned to lie above the line x� y � 0.

This is a process with values in R2. The lower endpoint of Y0�t� is �ÿ?;ÿ?� for all
t � 0, but the cdf Ft of Y0�t� vanishes for x� y � 0. On this part of the plane the max-
increments are not uniquely determined by the distribution of the extremal process.
Suppose Yn ) Y0 in d��0;?��. Does this imply convergence of the discontinuities in the
sense of (1.1)?

In order to understand the breakdown of (1.1) insight in the structure of one-jump triples

is indispensible. An important question is: Which max-increments can not give rise to a

one-jump triple?

De®nition 6.6: Let Z0;W1;W2 be independent vectors in �0;?�d with cdf's F0;H1;H2.

The triple

�Z0; Z1; Z2� � �Z0; Z0VW1; Z1VW2�

see (1.2) is called the one-jump triple generated by F0;H1;H2 if

1. F0 has lower endpoint in the origin and
2. the events fZ1 6� Z0g and fZ2 6� Z1g are disjoint and have positive probability.

If Z0 � 0 in (1.2) then Z2 � W1VW2 is one-jump decomposable, the upper endpoint

q of W2 is a pivot, and W1 lives on f0g [ �q;?�. The general case is slightly

different.

Proposition 6.7: The vector W2 in the one-jump triple (1.2) is bounded. Let q [ �0;?�d
denote the upper endpoint of this vector W2. Then the support S of the vector W1 satis®es

S � �f0g [ �q1;?��6 � � �6�f0g [ �qd;?��:

If qi is positive then the set Si � S \ fxi � 0g is bounded.

Proof: Suppose W2 is unbounded. The two independent events

fkW2k?4mg fZ1 6� Z0; kZ1k? � mg

have positive probability for suf®ciently large m on the intersection Z0 6� Z1 6� Z2. So with

positive probability there are two jumps

Suppose f05Wi
15qig has positive probability. Then this is also true for the event
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fWi
1 [ �a; b�g for some a5b in �0; qi�. The events fZi

05ag and fWi
24bg have positive

probability. By independence there is a positive probability of two jumps.

Suppose qi40. Choose y [ (0, qi). If Si is unbounded then the independent events

fZi
05y; kZ0k? � mg fWi

1 � 0; kW1k?4mg fWi
2 � yg

have positive probability for large m, so two jumps are possible. &

De®nition 6.8: A non-constant random vector W � 0 with cdf H is prime (more
speci®cally one-jump prime) if there is no one-jump triple (1.2) so that F2 � F0H where Fi

is the cdf of Zi.

We can now formulate a condition for convergence of the ®xed discontinuities which

does not presuppose that the cdfs are strictly positive above the lower curve.

Theorem 6.9: The notation introduced above (6.1) is used. If U ÿ c is prime then (1.1)
holds for some sequence tn?t0.

Proof: The proof is as for Proposition 6.1. Assume c � 0. If the result were not true we

could ®nd a subsequence kn and time points t 0kn
5tkn

5t00kn
so that

�Ykn
�t 0kn
�; Ykn

�tkn
�; Ykn

�t00kn
�� ) �X0;X1;X2�

for a one-jump triple with X0 � Y0�t0 ÿ 0�;X2 � Y0�t0�. This contradicts the primality of

the max-increment U. &

It remains to describe the prime distributions.

7. One-jump prime distributions

This section is devoted to a characterization of primality, see De®nition 6.8. Independence

of the max-increments in a one-jump triple implies that we are dealing with products of (at

most three) distribution functions. This does not make the theory trivial.

Example 7.1: Let U1 and U2 be uniformly distributed on �0; 1� and let X1 and X2 have a

standard exponential distribution on �0;?�. Assume that these four random variables are

independent. The vectors �X1;X2�, �U1;X1;X2� and �U1;U2;X1;X2� are prime, the vectors

�U1;U2�, �U1;X1�, �U1;U2;X1� are not. See Corollary 7.12 below.

De®nition 7.2: Two distributions H and G on �0;?�d are said to be equivalent (in this
section) and we write G*H if there is a distribution F with lower endpoint in the origin so
that FG � FH.
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Remark 7.3: The relation * is re¯exive, symmetric and transitive, so it indeed is an

equivalence relation. (If F1 and F2 have positive univariate marginals then so has the

product F1F2). If two distributions are equivalent then so are their marginals (both

univariate and multivariate). So equivalent distributions have the same univariate

marginals.

Lemma 7.4: Equal mixtures of equivalent cdf's are equivalent: If Gi*Hi for
i � 1; . . . ;m then G � p1G1 � � � � � pmGm*H � p1H1 � � � � � pmHm for any probability
vector p1; . . . ; pm.

Proof: Suppose GiFi � HiFi. Then GF � HF for F � F1 . . . Fm. &

Proposition 7.5: If H is prime then so is G for any cdf G*H.

Proof: Suppose FG � FH. If F0;H1;H2 generates a one-jump triple, then so does

FF0;H1;H2. So if GF0 � H1H2F0 then HFF0 � H1H2FF0. &

Corollary 7.6: Prime vectors are unbounded.

Proof: A bounded vector is equivalent to a totally dependent vector, see Section 5. &

The next example is basic. We use the notation

x � �x0; x00� [ �0;?�dÿ16�0;?� �7:1�

for the decomposition of a vector in a horizontal part and a vertical component.

Example 7.7: Let y40 and let R � �a0; b0�6f0g be a rectangle in the horizontal plane
with 0 � a0 � b0, see (7.1). Suppose Z0;W1 and W2 are independent vectors: Z0 lives on
the union of the halfspace fx00 � yg and the orthant �b0?�6�0;?�;W1 lives on the union
of �a0;?�6�y;?� and the rectangle R, and W2 lives on the vertical line segment
fa0g6�0; y�. Then (1.2) has at most one jump: If Z1 6� Z0 then Z1 � �a0; y� � W2. (A ®gure
may be helpful here.)

If Z0 has lower endpoint in the origin, PfW1 [Rg [ �0; 1�, and PfW00140g40 we have a
one-jump triple.

Proposition 7.8: Let y40. Suppose W � 0 lives on the union of the halfspace fx00 � yg
and a compact set B. If PfW [B; 05W005yg40 then W is not prime.

Proof: Let a be the lower endpoint of the cdf H of W. We may assume that B is a box

�a; b� with b � a and b00 � y. We may also assume that W is unbounded, so

PfW [Bg � p [ �0; 1�.
Write H � pG� �1ÿ p�F where G lives on the box B and F on the halfspace fx00 � yg.
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Let �V 0;V00� have cdf G. Choose independent vectors �U0; 0� and �a0;U00� with cdf G1 and

G2 respectively so that U0 is distributed like V0 and U00 like V00. Then G*G1G2, (bounded

support and the same marginals), and FG2 � F since G2 � 1 in the lower endpoint of F.

Now let W1 and W2 be independent vectors with cdf H1 � pG1 � �1ÿ p�F and H2 � G2.

Then

H1H2 � pG1G2 � �1ÿ p�FG2 � pG1G2 � �1ÿ p�F*pG� �1ÿ p�F � H:

By Example 7.7 the cdf H1H2 is not prime. So neither is H. &

Let W have cdf H and support S � �0;?�d. De®ne the essential lower endpoint of H as

c�H� � c � sup c�n� c�n� � �Sn�0; n�d�: �7:2�

Recall that the inf and sup of a set of vectors is de®ned coordinatewise. The sequence c�n�
is increasing. One may think of the limit c [ �0;?�d as the maximal lower endpoint of H
when one is allowed to alter H on compact sets. Equivalent distributions (obviously) have

the same lower endpoint. They also have the same essential lower endpoint.

Proposition 7.9: If H*G then c�H� � c�G� with c de®ned in (7.2).

Proof: Suppose y5ci�H�. For simplicity of notation take i � 1. Then there is an integer

n so that H�y; x2; . . . ; xd� � H�y; n . . . ; n� for xi � n. Suppose FG � FH for a cdf F with

lower endpoint in the origin. Then F�y; n; . . . ; n�40 eventually. So G has the same

property as H and y � c1�G�. &

Given the essential lower endpoint primality can be expressed in terms of the one-

dimensional marginals:

Theorem 7.10: Let H be the cdf of a non-constant vector W � 0 with essential lower
endpoint c [ �0;?�d, see (7.2). The cdf H is prime if and only if

Hi�ci� � Hi�0� i � 1; . . . ; d: �7:3�

Proof: Let T denote the support of W and a � inf T the lower endpoint.

First assume the condition does not hold. There is an index j so that Hj�cj�4Hj�0�.
There are two cases. (1) If Hj�cj ÿ 0� � Hj�0� then Proposition 7.8 applies with y � cj

since T \ fxj � 0g is bounded by de®nition of c. (2) If Hj�cj ÿ 0�4Hj�0� then there is a y
[ �0;cj� so that Hj�y�4Hj�0� and Proposition 7.8 applies.

Now suppose H is not prime. Then H*H1H2 where F0;H1;H2 generates a one-jump

triple. We may and shall assume that H � H1H2 by Proposition 7.5 and 7.9. Let q denote

the upper endpoint of H2. Recall Proposition 6.7. Note that c � q since the set Si is

bounded when qi is positive. Now assume (7.3). We shall derive a contradiction.

There is a coordinate j so that qj40 and Hj
1�0�40. (Else W1 � q and Z2 � Z1 almost
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surely.) Then Hj�qj�40 and Hj�0� � Hj�cj� � Hj�qj� implies Hj
2�0� � Hj

2�qj� � 1. So

Wj
2:0 and qj � 0. Contradiction. &

Corollary 7.11: Primality depends only on the bivariate marginal distributions.

Proof: These determine the essential lower endpoint. &

Corollary 7.12: Let the components Wi be pairwise independent with lower endpoint ai.

Then H is prime if and only if Hi�ai� � H�0� for all i and if at least two components are
unbounded.

Proof: If two components or more are unbounded then c�H� � a, else c�H� �?. &

8. The weight

Realizations of extremal processes are increasing right-continuous functions from �0;?�
to �0;?�d. In this section we drop the assumption of independence of the max-increments.

This means that we consider the class of all processes Y : �0;?�?�0;?�d with right-

continuous increasing sample functions. For such functions the topology of weak

convergence is applicable. The space Jd of all increasing right-continuous functions

j : �0;?�?�0;?�d with the topology of weak convergence is a Polish space. Hence so is

the space m1�Jd� of all probability measures on Jd.

De®nition 8.1: An increasing process is a process Y : �0;?�?�0;?�d whose sample
functions are right-continuous and increasing.

For increasing processes Yn we say that

Yn ) Y0 weakly n?? �8:1�

if the probability distributions converge in the topology on m1�Jd� of weak convergence

in Jd. The theory of weak convergence of increasing processes has been treated in BP

(1996). On the set m1�Jd� we also have the Skorohod topology. We say that

Yn ) Y0 in d��0;?�� n?? �8:2�

if the probability distributions converge in the Skorohod topology. See Billingsley (1968)

or Resnick (1987). Note that (8.2) implies (8.1). For weak convergence it is convenient to

have functions de®ned on an open interval. For convergence in the Skorohod topology the

sample functions are extended to �0;?� by right continuity: j�0� :� j�0� 0� �
limt;0 j�t�.

For many operations one prefers to work in the Skorohod topology. This will be the case
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if one wants to keep track of the largest jump, or when one integrates non-continuous

processes with respect to the increasing process.

We begin with a more general de®nition of weight for increasing processes.

Let c : �0;?�d ? �0;?� be continuous and strictly decreasing in the sense that

0 � x � y and x 6� y implies c�x�4c�y�. Then c is bounded by c�0� and c has the ability

to enforce convergence: Let x0 [ �0;?�d, and let the points xn � 0 satisfy one of the

inequalities xn � x0 or xn � x0 for each n � 1. Then

c�xn�?c�x0� ) xn?x0: �8:3�

We call t ° y�t� � Ec�Y�t�� the weight of the increasing process Y. One regains the

original de®nition on taking

c�x1; . . . ; xd� � eÿx1� � � � � eÿxd : �8:4�

Recall from Proposition 3.6 that a.s. convergence of a sequence of extremal processes in

the Skorohod topology does not imply convergence of the weights in this topology.

Proposition 8.2: Suppose Yn; n � 0, are increasing processes in �0;?�d and Yn ) Y0 in
the topology of weak convergence on �0;?�. Suppose Yn�0� ) Y0�0�. For each ®xed
discontinuity t040 of Y0 let there exists a sequence tn?t0 so that (1.1) holds. Then the
weights converge in d��0;?��.

Proof: Convergence Yn ) Y0 in the topology of weak convergence implies weak

convergence yn?y0 on �0;?� by BP (1996, Theorem 6.1). Since c is continuous and

bounded, yn�0�?y0�0�. Similarly (1.1) implies yn�tn+0�?y0�t0+0�. &

Lemma 8.3: Let Xn � 0 be random vectors for n � 0 such that for each n � 1 either
Xn � X0 a.s. or Xn � X0 a.s. Then Ec�Xn�?Ec�X0� implies Xn?X0 in probability.

Proof: Let Un � c�Xn�. Then Un � U0 a.s. or Un � U0 a.s. In either case one has that

EjUn ÿ U0j � jEUn ÿ EU0j?0. Hence Un?U0 in L1 and then also in probability. This

implies that Xn?X0 in probability. (There are events En with PEn?1 so that

�Un ÿ U0�1En
?0 a.s. By (8.3) also �Xn ÿ X0�1En

? 0 a.s.) &

Proposition 8.4: Let Yn : �0;?�?�0;?�d be increasing processes for n � 0 with
weights yn. Assume that Yn?Y0 weakly holds a.s. Let tn?t0 in �0;?�.

1. If yn�tn � 0�?y0�t0 � 0� then Yn�tn � 0�?Y0�t0 � 0� in probability;

2. If t040 and yn�tn ÿ 0�?y0�t0 ÿ 0� then Yn�tn ÿ 0�?Y0�t0 ÿ 0� in probability.
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Proof: Write Un � Yn�tn � 0�. Let s4t0 and j [ f1; . . . ; dg. Take an a.s. continuity point

t of Y0 with t05t5s. Then

lim sup Uj
n � lim Yj

n�t� � Yj
0�t� � Yj

0�s� a.s.

Since s4t0 is arbitrary we conclude that lim sup Un � U0 a.s. Set Xn � Un6U0. Then we

have just proved Un ÿ Xn?0 a.s., and the inequalities

Ec�X0� � Ec�Xn� � yn�tn�?y0�t0� � Ec�X0�

allow us to conclude by Lemma 8.2 that Xn?X0 in probability. Together with Un ÿ Xn ? 0

a.s. this implies Un?U0 in probability.

The proof of 2 is similar. Use Un � Yn�tn ÿ 0� and Xn � UnVU0. &

Theorem 8.5: Let Yn : �0;?�?�0;?�d be increasing processes for n � 0. Suppose
Yn ) Y0 weakly and the weights converge in d��0;?��. Then Yn�0� 0� ) Y0�0� 0� and
the ®xed discontinuities converge in the sense of (1.1).

Proof: One may assume almost sure convergence by using the Skorohod representation

theorem, see Resnick (1987, p. 151). Now apply Proposition 8.4. &

Let us now return to convergence in the Skorohod topology. By combining Proposition

8.2 and Theorem 8.5 we obtain

Theorem 8.6: Let Yn : �0;?�?�0;?�d be extremal processes for n � 0. Suppose
Yn ) Y0 in d��0;?��. Then the ®xed discontinuities converge in the sense of (1.1) if and
only if the weights converge in d��0;?��.
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