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A FUNCTIONAL EXTREMAL CRITERION*
P. K. Jordanova (Shumen, Bulgaria) and E. I. Pancheva (Sofia, Bulgaria) UDC 519.2

1. Introduction

In this paper, we are concerned with the following model:
(A) Let N'= {(tx, Xx): k > 1} be a point process with time space [0, c0) and state space [0, c0)?, where {t;} are distinct
nonrandom time points. We assume them ordered and increasing to oo, i.e., ] < ta < ... . So, the point process N is
simple in time; { X} are independent and identically distributed (i.i.d.) random vectors (r.v.’s) on a given probability
space with values in [0, 00)¢ and with common distribution function (d.f.) F nondefective at +oo.

Assume that almost all realizations of A" are Radon measures on S := [0, 00) x E, where E := [0, 0o]?\{0}, i.e.,

N(A) <oo as. V compact sets A € B(S). (1)
We consider two random processes associated with A, namely, the extremal process
X(t) ={VvXp: tp <t}

and the process Z with additive increments

Z(t) = {Zxk: te < t}.

Because of (1), the sum and the maximum are a.s. finite for every fixed ¢ > 0. Both processes are right continuous
with increasing sample paths. Here and further on we use the notion increasing in the sense of nondecreasing.

We denote by M the set of all increasing, right-continuous functions y: (0, 00) — [0, 00)%. Then the set P of all
probability measures on M is compact. Let {P,} be a sequence of probability measures on M. We say {P,} is weakly
convergent to P € P, briefly P, = P, if [¢@dP, — [ ¢dP for bounded ¢: M — R which are continuous in the weak
topology of M. Now denote by P, and P, the subsets of P corresponding to an extremal process (with independent
max-increments) and to a sum process (with independent additive increments), respectively. In [1, Theorem 6.4] it is
shown that the space P. with the topology of weak convergence is closed in P. The same is also true for P,. So, the
weak convergence of extremal processes Y,, = Y and of sum processes S,, = S is equivalent to the convergences in

distribution Y, (?) N Y (t) and S, (¢) 45 (t) for each continuity point ¢ of the limit process.
Further, for normalizing we use an unboundedly increasing in n sequence of mappings

<n(t7 33) = (Tn(t)7 U’n(w))7
continuous and strictly increasing in each coordinate. We call them time-space changes. Suppose {(,} is regular in
the sense that there exists a pointwise limit of ¢, ! o (ns) for n — oo and s > 0 which is again continuous and strictly
increasing (cf. [6]). We assume the weak convergence

Y, (t) = {Vu, " (Xp): tp <1 ()} = Y (t), n — oo, (2)

to a nondegenerate extremal process Y with initial value Y (0) 2 0.
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We also form the associated processes with additive increments

S, (t) == {Zu;l(Xk):tk < Tn(t)}.

Note that the space changes {u,} preserve the max-operation, i.e., u,'(VXy) = Vu, (Xy), but do not preserve (in
general) the summing operation. Hence, Y, (t) = u, ' o X o7, (t) but S, () # u,, ' 0 Z o 7,(t) in general. If u,, preserves
both operations V and Y, then u,, is just a scale change and the convergence S,, = u,,! 0 Z o 7, = S implies that S is
a self-similar process (cf. [4]).

Our main result, proved in Sec. 2, concerns the convergence S,, = S, if given (2). We call it a functional extremal
criterion (for the convergence S,, = S), having in mind the extremal criterion in [5, §22.4.c|.

THEOREM 1. Let N = {(tx, Xx), k > 1} be the point process described in (A) and let (,(t,x) = (75, (1), un(z))
be a regular norming sequence of time-space changes of (0,00)%*! such that the sequence of the associated extremal
processes Y, (t) = {Vu, 1 (Xg):tx < 7o(t)} is weakly convergent to a nondegenerate extremal process Y (t). Assume
that the d.f. G of Y (1) satisfies the condition.

I = / 2] d(log G(z)) < oo.

Ag,v

Then there exists a time-space change ((t,z) = (7(t), ho(x)) such that the sequence of the associated sum processes
Sn(t) == {Du, ' (Xy):ty < 7o(t)} is weakly convergent to an infinitely divisible process S(t) whose characteristic
function is given by

Eei{:S®) — eXp{T(t) /{ei<9,h;1(gc)> — 1} dH(w)},
E

where II(dx) is the Lévy measure of Proposition 2, (iii).

2. Stepwise Proof of the Functional Extremal Criterion

We put tnr = 7, 1(tr), Xnk = u,, ' (Xg), and consider the point process N, := {(tnk, Xnk: k > 1)} associated with
S, and Y,,.
Step 1. Denote by k,(t) the nonrandom counting function of N,, i.e.,

kn(t) = max{k:t; < 7, (t)} = Zl[‘“] (tnk)-
k

Here 14(e) is the indicator of the set A. By (2), we have the weak convergence
P(Y,(t) <) = FF®(u,(z)) % g(t,z), n— oo, (3)

where g is the d.f. of the limit process Y. Thus, for fixed ¢ > 0 F belongs to the partial max-DA of g.(z) := g(¢, ).
Hence Y (respectively, g) is max-ID.

Moreover, by Propositions 2.1 and 2.3 in [6], Y (respectively, g) is self-similar (briefly Y € SS) and stochastically
continuous. The condition Y'(0) %2 0 guarantees that G(z) := g1(z) does not have a defect at +oc. In our case, where
{X}} are i.i.d., one can determine more precisely the subclass of SS which g belongs to.

LEMMA 1. The regularity of the time-space changes (, implies the regularity of the sequence k,, := k,(1).

Proof. For t = 1, (3) reads as

Fro(u, (z)) -5 G(x), n — oco. (4)

Now we take s > 0 and observe the convergence in distribution for n — oo

u;loXOT[ns] zuglou[ns] ou[:li] 0 X 0 Tpg] N UgoY,

where Uy () := lim, o0 u,, ! 0 upps) (@), Yz € {G > 0}. Hence,
P(u 1 0 X 0 709(1) < ) = FHol (un(@) -2 PY(1) < U 2 (2) = G(UL 2 (2))
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On the other hand, F¥inl(uy,(z)) = [F*(up(z))]*ms/*». So there exists limy o0 (Kjns]/kn) = k(s) € (0,00). As is
known, the last convergence is uniformly in s and k(s) is a power function of s. Say s°.

The next examples show the consequences of the regularity of &, for the time process {tx}.

Example 1. Let t; = €*, k € {1,2,...}, and take a time change 7,(t) = (tn)?; then t,;, = 7, ' (tx) = (1/n)e*/?
and ky, = >} Tjo,1)(tnr) = 2logn is not a regular sequence (but is slowly varying).

Example 2. Let ¢, = (n(n + 1))/2 and 7,(t) be the same as in Example 1. Now the sequence {t,} is regular,
tar = (1/n)\/k(k +1)/2, and k,, ~ 2n is regular, too.

Let us come back to (4) and observe that the limit d.f. G(x) satisfies G*(*)(z) = G(U;(z)) for all s > 0, where
k(s) = sP.

Denote Li(+) := U gs(-). Now from G*(z) = G(L;*(x)) Vt > 0 one can conclude that G is max-stable with respect
to the continuous one-parameter group £ = {L;: t > 0}. Note that £ bears the regularity of both sequences {k,} and

Analogously one can see that there exists lim, oo kn(t)/kn =: 7(t) and, finally, we get
g(t,z) = G ().
The mapping t — 7(t) is continuous and increasing (since Y € SS), hence it is a time change and we can write

g(r7H (1), x) = G'(z) = G(L;* (2)) = g(1, Ly ' ().

This means that Y o 771(¢t) L Lo Y (1), Vt > 0. Thus the process ¥ o 77! has homogeneous max-increments. Note

that Ly =id, 7(1) =1, 7(¢) = 0, t = 0, 7(t) = o0, t — 0.
Step 2. Choose a = (a1, ...,aq) with 0 < a; < 1 (later below we discuss this choice). Let ®*(z1,...,24) be the
d.f. on [0, 00)¢ with Frechet univariate marginals

Q) (r)=e ", i=1,...,d,

[e%

whose dependence (copula) function is the same as that of the limit d.f. G(z). We determine the mapping

ha(w) = (hozl (w1)7 SRR had(wd))

for all z in the support of G (briefly Supp G) by G(h_'(z)) = ®(z) and use it to define the r.v. Y*(1) := hy o Y (1).
It is distributed by ®*. Note that the mapping h,: Supp G — (0,00)? is continuous and strictly increasing in each
component.

Now the limit relation (4) implies that the d.f. F'(z) := F o h;'(x) belongs to the max-DA(®}), i.e.,

[F'(Ty ()] = @5(z), n— oo, (5)
with norming sequence T},(-) = hg, 0 Uy, o h ' (+), which is regular at occ.
Step 3. Combine Step 1 and Step 2. So, we started with the limit extremal process Y (¢) distributed by g(¢, z)

and came to the time-space changed extremal process Y*(t) := ho oY o771(t), t > 0, with d.f. (®})!. It is self-similar
with respect to the continuous one-parameter group

Uy = {U(z) = ( Vi1, ..., Vizg):t > 0} (6)

More precisely, the extremal process Y*(t) = U; 0 Y™*(1) is stochastically continuous, has homogeneous max-increments,
and Y*(0) 2 0. Thus it is a Lévy process in the max-framework.
In what follows, we denote the vector ( ¥/sz1,..., *¢/sz4) simply by §/sz. Then we can write

Y*(t) = VtY*(1).

ProposiTION 1. Let (5) hold, i.e., F' € max-DA(®}) with respect to a regular norming sequence {T,,} of space
changes and a regular subsequence {k,} of {n}. Then there exists a space change T such that

[F' o T(/knz)* = & (z), n— . (7a)
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Proof. For T,,(z) = (Tin(x1), ..., Tin(z4)) and a = (aq, ..., aq)

1 — F/(Tin(2:)) ~ = n — 0o,

or equivalently,

1 —
Tow) ~ (1=5) (nal)

(F* means the left inverse of F'). In fact, the assumption that {7} is regularly varying in n — oo is the same as
[1 — F'] is regularly varying in z — co. Put

. 1 <
E@Q:(Tjﬁ>(@ﬂ,i:L“”d
K3

These mappings are positive, increasing, and asymptotically continuous. The latter means

Ti(z+0) — Ti(z — 0)
T(x)

— 0, x—o00, i=1,...,d.

Thus, there exists (cf. [2, Lemma 2]) a continuous and strictly increasing mapping 7' (space change) such that

T(x) ~ (Ti(x1), ..., Ta(zq)), x— 0.

Now we can see that T,,(z) ~ T( Vkn x).
Statement (7a) of Proposition 1 is equivalent to (cf. [8, Proposition 5.17]):
1 — F' o T is regularly varying at oo, i.e., for AS :=[0,00]%\[0,z) and e = (1,...,1) € R4

1—F'oT(sx) va(AS)

— =A — 7b
T FoT(e)  wa(ag) ~ @ 87 (7b)

where v, is the exponent measure of ®}, satisfying
s (A7) = va(A%5,)- (8)

Let us summarize what we have achieved within the three steps: we have transformed continuously our initial model

(A) to a model (B), where the sequence of extremal processes needs scale normalization to converge. And scale

normalizations preserve both the V and ) operations. In the next step, we pursue convergence of the associated

processes with additive increments.

Step 4. Model (B): Denote t; = 7(tx), 0, (t) = T 07, 0 7 (t), and

X;=T'oho(Xy), k=12,...,

with common d.f. F* := F’ oT. In this model, we use the point process N* = {(t;,X;):k € {1,2,...}} and the

norming sequence 7, (t,z) = (o, (t), ¥knx) to generate the asymptotically homogeneous point process

* * _ " 1 .
Nn:{(tnkzanl(tk), nk:WXk: kZl}.
n

Consider now the process with additive increments

a0 = {3 X e <t} =

and the extremal process
1 k7 (t)
V() = {vXo th <ty = —= \/ Xi
Fon k=1
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associated with the same point process N and with the same counting function
kn(t) =Y Tog(thi) ~ knt.
k

The last asymptotic relation is a consequence of k7 (t) = k,(771(t)) and k,(t) ~ k,7(t) established in the first step.
Further, by (7a),
Y =YY"

In model (B), a lot of results are well known. We gather them in the next proposition. Let B(E) denote the Borel
o-algebra of subsets of E.

ProposiTioN 2. The following statements are equivalent:
(1) Y. = Y™ and the limit process is max-stable with respect to the multiplicative group U, defined in (6);
(ii) N} = 7 and the limit point process 7 is a homogeneous Poisson point process whose structural measure p does
not charge instant spaces and p([0,t] x A) =tv,(A) for A € B(E);
(iii) Sf = S* and the limit process is a-stable. Its Lévy measure II satisfies

T(A) = va(4), AeB(E), T({0})=0.

Proof. The equivalence (i) < (ii) is a special case of Proposition 3.21 in [8]. Recall that every max-ID extremal
process (with d.f. g) is associated with a Poisson point process (with structural measure p) and the connection between
them is given by

g(t,z) = e (0842

(cf. [1]). Let (Ty,Yy), k =1,2,..., be the points of 7. Then

o Y*(t) = {VY;: T); <t} is max-ID < 7 is Poisson;

e Y*(¢) is stochastically continuous < u does not charge instant spaces, i.e., u({t} x A) =0, A € B(E);
e Y*(t) has homogeneous max-increments <

u([s,t] x A) = (t — s)ve(4), 0<s<t < 0.

Note that v, is a Radon measure on FE, i.e., finite on compact subsets far away from zero.

On (i) = (iii). The process
S*(t) = {ZY,:: Ty < t}

is associated with the time-homogeneous Poisson point process m on S, whose structural measure does not charge
instants. Hence it is stochastically continuous. Further it has nonnegative independent increments. Thus for § € (0, c0)?
its characteristic function ¢;(0) := Ee(?>S" (1) has the form

i) =esp{t [ (02~ 1y . 9)

where the o-finite Lévy measure II has the properties

[ el tiaz) < oo, (0} = 0.

Ae
Further, II is determined by the limit relation
kn[l — F*(V/knz)] — T(AS), Vo >0, n— oo
By (7a) and since B(FE) is generated by sets of the form AS, z > 0,
II(A) = vo(A), VA€ B(E).
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The last limit relation together with the regularity of the tail (1 — F*), expressed in (7b), is equivalent to the weak
convergence

k

1 n
S;(1)~W§ X; -4 5%(1), n— oo, (10)

noa

where S*(1) is a one-sided a-stable r.v. (see, e.g., [9]) with a; € (0,1), ¢ = 1,...,d. From here and the asymptotic
kX (t) ~ knt we get

SE(t) -Ls S (1), VE>0, n— oo (11)

So S*(t), t > 0, is one-sided a-stable process with «; € (0,1) and S*(0) = 0 a.s. In fact,
S (t) L /2.5%(1).

The inverse implication (iii) = (i) is obvious.

Remarks. 1. Now the choice of a with a; € (0, 1) is plausible: in this case VX and ) X; need the same scale
normalization k..

2. It is no surprise that the spectral measure II of S*(1) and the exponent measure v, of Y*(1) coincide on B(E).
By construction, Y*(1) is the largest jump of S* in [0, 1] and TI(AS) is just the expected value of the number of jumps
in [0, 1] larger than x (cf. [5, XI]). More interesting is that the dependence structure of the process S*(¢) for all ¢ > 0 is
determined by the dependence structure of the maximal jump of S* in [0, 1]. Indeed, in the integral expression of the

exponent measure
Qg
8
(1) = [ s (%) Qs
== K3

Sq
the dependence structure of the r.v. Y*(1) = (Yy,...,Yy) is borne by Q. Here S is the intersection of E and
the unit sphere in R% and @Q is a finite Borel measure on S (cf., e.g., [8]). In the case of full dependence, i.e., if
P(Y; =--- =Y/) =1, v, is concentrated on the orbit { {/se:s > 0}, respectively, Q is concentrated at the point

e/llell. Hence II(A7) = va(A3) = v;'i:1 x; “". In the case of independent marginals,
d
P(}/'l* < xy,.. 7Yd* < xd) = exp{_ sz—ou}
i=1

So II(AS) = va(AS) = Zle z; **. Consequently, @ is discrete and concentrated on e;, i = 1,...,d, where e; =
(0,...,0,1,0,...,0) with 1 in the éth coordinate.
How @ reflects the dependence structure of the associated vector in R? is in general a hard problem (cf. [3]).
Now we come back to our starting problem: to determine the limit behavior of the sum process in the initial
model (A)
kn (2)

Su(t) = uy'(Xy), n—oo.
k=1

By the multivariate Central Criterion of Convergence (CCC), this sum is convergent if and only if
(C1) kn(t)[1 — P(u, 1 (Xk) < x)] converges weakly to a nonnegative, nonincreasing, and right-continuous function;
(C2) ky(t)E(u, Y (Xg)I{u, (Xx) < v}) converges to a finite vector, say a(t,v).

Below, we shall check these conditions in our case.

The limit relation (iii) of Proposition 2 implies

kn(t) kn (71 (2)
1
P(S;(t) <a:)=P{ E " T o ho(Xy) <a:}~P{ E haou;I(Xk)<a:} L P(S*(t) <), n— oo
k=1 " k=1

Here we have used the relation T'( {/k,z) ~ Tn(x) = hq o u, o hy'(z). Hence necessarily we have for t > 0 and
x > q :=inf Supp G
k(D)1 = P(u, ' (Xy) < 2)] — 7(OI(A], (), 1 — oo (12a)
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Furthermore, the sequence of the truncated by v > ¢ mean of u,!(X}) is formally convergent, i.e., for A, = {y €
E:y <o}

k(O B{uy (X0) I (' (Xi) < 0)} = k() /de(u;l(Xk) <)

A’U

—/wd{kn(t)(l —Pu, Y (Xp) <)} 5 7(t) / x dll(he(2)), Ay = Ay N{z > ¢} (12b)

Ay Aq,u

Consequently,

a(t,v) = 7(2) / 2 dT(ha(z)). (13)

Ag,v

Here we have used that P(u,}(Xx) < ) — 0 for z < ¢ and ky(t) ~ 7(t)k,. Observe that a(l,v) =: a(v) is zero if
v=gq.

Caution: With abuse of notation we denote the Lévy measure and its d.f. by the same letter II. So, II(AS) =
II(c0) — H(z) = —II(x).

At this stage we have to clarify both of the following questions:
(a) Is the measure W(A) :=II(hy(A)) a spectral measure (here hq(A) =: {ho(x): 2 € A})?
(b) Is a(v) well defined, i.e., a(v) < c0?

Note that II(4j, ,)) = —log G(z). The d.f. ¥(z) of the measure ¥ = IIo A4 is defined by W(A7) = ¥(c0) — ¥(x),
ie., ¥U(z) =logG(x). Thus, it possesses the following properties:
(1) it is nondecreasing in each component;
(2) W(o0) = 0
if, additionally,
3) / 2] d¥(z) is finite,

Ago

then W(A) is the Lévy measure of an infinitely divisible random vector whose characteristic function has the form (9).
Thus, questions (a) and (b) are positively answered if

I = / 2| d(log G (x)) < oc. (14)

Ag,v

Obviously, no max-stable d.f. G(z) satisfies condition (14). (Recall in R! each continuous and strictly increasing d.f.
is max-stable with respect to a certain one-parameter norming group (cf. [7]).)

Example 3. G(z) = ¢ ® ° for x > 0 and a > 0 is a univariate max-stable d.f. with respect to the group
L = {Li(x) = z {/t: t > 0}, since G*(z) = G(L; '(z)), Vt > 0.
(a) Let 0 < a < 1. In this case, I¢ = a(v) = (v!7?)/(1 — a) < oo.
(b) Let > 1. Here I is infinite, so the corresponding measure W(A) is not a Lévy measure of a distribution of the
kind (9).

Now let us come back to conditions (12) with Lévy measure ¥ := Il o h, and finite a(v). They are equivalent
to the convergence S, (t) 45 (t), t > 0, n = oco. The limit process {S(¢):t > 0} has nonnegative and independent
increments and is nonhomogeneous in the general case. The characteristic function of S(t) is expressed by

Eeiw’s(t)):exp{T(t) / (e“e””)—l)dH(ha(w))}=eXp{T(t) / (e“e’h;l(’c”—l)dﬂ(w)}- (15)
2,00\ {a} E

Note the shift parameter here is zero, because the limit of the truncated means in Cs is just 7(¢) [ A, wdH o(2)).
Recall, in the general case, that the shift parameter y(t) is a(t, v) f A, d¥:(x) and does not depend on v.
From (15) one can see that the Lévy measure ¥, of S(t) admits the factorlzatlon d®:(h;t(z)) = 7(t) dll(z).
In this way, we complete the proof of our main theorem, formulated in Sec. 1.
Example 4. Consider the point process N = {(tx, Xx): k € {1,2,...}}, where ¢, = k(k +1)/2 and X}, are i.i.d.
r.v’'s with d.f. B
Flz)=e 182" zecl,00), 0<a<l.
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The distribution function F is max-stable with respect to the norming group {L;(z) = 2!/ V%:¢ > 0}. Indeed,

F'(z) = exp{—t(logz)~*} = exp{—(logz*/ %)_O‘} = F(zY %)
The sequence of the following time-space changes
Galty ) = (T (1), un (@) = (0t (x + 1) ¥7)

satisfies the conditions of the Theorem 1, namely,
(i) it is regular:

u[:li] oun(z) — (z+ DY V5 -1 =Ly(z), Vs>0, n— oo

—1

T[sn] °© Tn(t) — t5_2 = Ts(t), Vs >0, n— oo

(ii) the random variables X, = u, ' (X)) = X;/ V7 _ 1 are asymptotically negligible, i.e.,
1/ ¢n n
P(X, —1>2)=1-{YF(z+1) —0, Vx>0, n— oo;

iii) the sequence of extremal processes Y, (t) = kn () u, 1(Xx) is weakly convergent for n — oo.
n=1
Indeed, since

kn(t)=ZI{M € [O,t]}wn\/f for n — oo,
k

2n?

we have
P(Y,(t) < ) ~ F™¥(un(2)) = FYi(z + 1) == g(t, z),

F™(uy(z)) = F(z) since F € MS with respect to {u,}. Put G(z) := g(1,z). Then P(Y, (t) < z) — GV(z), n — oo,
and the limit d.f. F' is MS with respect to the one-parameter group {L;: t > 0} defined in (i), i.e., G*(z) = G(L; *(z)),

vVt > 0, Vx > 0.
Furthermore, G(z) satisfies (14), since ¥(z) = log G(z) = —(log(z + 1))~ * and

v v

/wd(logG(w)) = /wd(log(x +1))7% < 0.

0 0

One can observe that the process Y*(t) has d.f. ®¢, where
Y*(t) :=hq oY o771 (t) = log(Y (t?) + 1)
with 7(t) = v/t and ho(z) = log(z 4 1), Va > 0. Indeed,
P(Y*(t)<z)=P(Y(t?) < h ' (z)) = Fi(") =e "

Now, by Theorem 1,

kn(t)
Z P ARAD .S’(t), n — 0o
k=1
The characteristic function of S(¢) is
(o)
exp{/(ewx -1) d‘I’t(w)},
0

where

Vi(—a)dz

d¥,(z) = Vtd(ha(z)) = o 7 D)llog@ + I

z >0,

as H(Alog(a:—i-l)) [log(x + 1)]—0z
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