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RANDOM TIME-CHANGED EXTREMAL PROCESSES∗

E. I. PANCHEVA† , E. T. KOLKOVSKA‡ , AND P. K. JORDANOVA§

Abstract. The point process N = {(Tk, Xk) : k ≥ 1} we deal with here is an assumed Bernoulli
point process with independent random vectors Xk in [0,∞)d and with random time points Tk

in [0,∞), independent of X. For normalizing we use a regular sequence ξn(t, x) = (τn(t), un(x))
of time-space changes of [0,∞)1+d. We consider the sequence of the associated extremal processes,

Ỹn(t) = {
∨

u−1
n (Xk) : Tk ≤ τn(t)}, where the max-operation “∨” is defined in Rd componentwise.

We assume further that there exist a stochastically continuous time process θ = {θ(t) : t ≥ 0},
strictly increasing and independent of {Xk}, and an integer-valued deterministic counting function k
on [0,∞), so that the counting process N of N has the form N(s) = k(θ(s)) a.s. In this framework we
prove a functional transfer theorem which claims in general that if τ−1

n ◦θ◦τn ⇒ Λ, where Λ is strictly

increasing and stochastically continuous, and if
∨k(τn(·))

k=1 u−1
n (Xk) ⇒ Y (·), then Ỹn → Ỹ = Y ◦ Λ,

where Y is a self-similar extremal process. We call such limit processes random time-changed,
or compound. They are stochastically continuous and self-similar with respect to the same one-
parameter norming group as Y . We show that the compound process is an extremal process (i.e., a
process with independent max-increments) if and only if Λ has independent increments and Y has
homogeneous max-increments. We apply random time-changed extremal processes to find a lower
bound for the ruin probability in an insurance model associated with N . We give also an upper
bound using an α-stable Lévy motion.
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1. Introduction. In this section we recall some definitions and basic facts used
in the paper.

Time-space Bernoulli point processes N = {(Tk, Xk) : k ≥ 1} were introduced in
[2, section 7]. They are point processes defined on a locally compact metric space S
and satisfying the following conditions:

(i) Their mean measure μ is a Radon measure on S (i.e., finite on compact subsets
of S);

(ii) they are simple in time: Tk �= Tj a.s. for k �= j;
(iii) restrictions of N to slices over disjoint time intervals are independent.
Such point processes are important in extreme value theory; in fact, any ex-

tremal process Y : [0,∞) → [0,∞)d is generated by an increasing right-continuous
curve C, the lower curve of Y (see [2] for details), and a Bernoulli point process N
on S = [0, C]c:

(1.1) Y (t) = C(t) ∨ {
∨
Xk : Tk ≤ t}.

Here {Tk} are distinct random time points and {Xk} are independent random vectors
in [0,∞)d. The operation maximum ∨ as well as equalities and inequalities in Rd are
understood componentwise, and Ac denotes the complement of the set A in [0,∞)d+1.

An extremal process Y is infinitely divisible with respect to the operation maxi-
mum (max-id) if for every n ≥ 1 there exist independent and identically distributed
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646 E. I. PANCHEVA, E. T. KOLKOVSKA, AND P. K. JORDANOVA

(i.i.d.) extremal processes Y1n, . . . , Ynn such that Y
fdd
= Y1n ∨ · · · ∨ Ynn. The max-

infinite divisibility of random vectors in Rd was first investigated in [1]. In [2] Balkema
and Pancheva prove that an extremal process Y : [0,∞) → [0,∞)d is max-id if and
only if the associated Bernoulli point process is Poisson. In this case there is a simple
connection between the distribution function f of Y , where f(t, x) = P{Y (t) < x},
and the mean measure μ of N , where μ(A) = EN (A), A ⊂ S, namely,

f(t, x) = exp
{
− μ([0, t] ×Ac

x)
}
, x > C(t), t > 0,

with Ax = {y ∈ [0,∞)d : y < x}. Note that μ(A) < ∞ for all A of the form [0, t]×Ac
x

as long as x > C(t), whereas [0, C] is the explosion area of μ. Let M∗([0,∞)) be
the space of all right-continuous increasing functions y : [0,∞) → [0,∞)d, y(t) < ∞,
y(t) → �∞ for t → ∞, �∞ = (∞, . . . ,∞). So, the sample paths of any extremal process
belong to M∗ a.s. Given a sequence of extremal processes {Yn}, Yn : [0,∞) → [0,∞)d,
we denote the distribution function of Yn and the probability distribution of Yn on M∗

by fn and πn, respectively. For fixed t > 0, let Fn,t(·) := fn(t, ·). We say the
sequence {Yn} is weakly convergent to an extremal process Y : [0,∞) → [0,∞)d with
distribution function f and probability distribution π, and write Yn ⇒ Y , if one of
the following equivalent statements is met [2, Theorem 6.1]:

(1) fn → f at all continuity points of f ;
(2) Fn,t → Ft := f(t, ·) weakly for each t in a dense subset of (0,∞);
(3)
∫
φdπn →

∫
φdπ for bounded φ : M∗([0,∞)) → R which are continuous in

the weak topology of M∗.
Recall that the univariate marginals of an extremal process determine its finite

dimensional distributions. If additionally to Yn
fdd−→ Y we assume that the limit

extremal process Y is stochastically continuous, then Yn ⇒ Y also in the Skorokhod
topology of M∗ (see, e.g., [3, Theorem 3]).

A mapping ξ(t, x) = (τ(t), u(x)), t ∈ [0,∞), x ∈ [0,∞)d, strictly increasing
and continuous in each coordinate, is called a time-space change of [0,∞)1+d. An
increasing in n sequence of time-space changes {ξn} is referred to as regular if for any
s > 0 there exists a time-space change ηs(t, x) = (σs(t), Us(x)) so that

τ−1
n ◦ τ[ns](t) → σs(t), u−1

n ◦ u[ns](x) → Us(x)

pointwise and the correspondence s ↔ ηs is one-to-one. Then the family L = {ηs :
s > 0} forms a continuous one-parameter group with respect to composition (cf. [10]
and also [11] for details).

Consider the following model (A): Let X : [0,∞) → [0,∞)d be an extremal pro-
cess with lower curve C and associated Bernoulli point process N = {(tk, Xk) : k ≥ 1},
tk distinct and nonrandom, and Xk independent with a distribution function which
does not have a defect at +∞. We assume that there is a regular norming sequence
ξn(t, x) = (τn(t), un(x)) of time-space changes of [0,∞)1+d so that the sequence of
extremal processes

Yn(t) := u−1
n ◦X ◦ τn(t) = Cn(t) ∨

{∨
u−1
n (Xk) : tk ≤ τn(t)

}
is weakly convergent to a nondegenerate extremal process Y with distribution func-
tion f and Y (0) = 0 a.s. Then the limit extremal process is stochastically continuous
for all t ≥ 0 and self-similar with respect to L, i.e., Y satisfies

(1.2) Us ◦ Y (t)
d
= Y ◦ σs(t) ∀ s > 0,

D
ow

nl
oa

de
d 

10
/1

6/
12

 to
 1

30
.2

37
.2

22
.5

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANDOM TIME-CHANGED EXTREMAL PROCESSES 647

or equivalently,

f(t, x) = f
(
σs(t), Us(x)

)
∀ s > 0.

The paper [10] is devoted to studying the properties of self-similar extremal pro-
cesses. One of them is the fact that the univariate marginals of Y are max-self-
decomposable. If additionally the initial extremal process X has homogeneous max-
increments, then the limit process Y is max-stable. Another important property of a
self-similar extremal process is that its lower curve is continuous.

As known, the self-similar extremal processes form a special subclass of the semi-
self-similar extremal processes studied in [11]. The latter processes satisfy character-
istic equation (1.2) for only one fixed s0 ∈ (0,∞) rather than for all s > 0.

In the present paper we change the previous model (A) to the model (B), where

we assume that the time points Tk of a given Bernoulli point process Ñ = {(Tk, Xk):
k ≥ 1} are random variables in [0,∞) and the space points Xk are i.i.d. random vectors

in [0,∞)d. Note that since Xk are i.i.d., the lower curve C(t) of the associated with Ñ
extremal process

X(t) = C(t) ∨ {
∨
Xk : Tk ≤ t}

is constant. Hence we may and do assume C(t) ≡ 0. Consequently, for all n ≥ 1 the

lower curve Cn of Ỹn(t) = u−1
n ◦X ◦ τn(t) is zero too. In section 2 we are concerned

with the following questions.
1. Under which conditions on the Bernoulli point process Ñ is the sequence of

the associated extremal processes

Ỹn(t) =
{∨

u−1
n (Xk) : Tk ≤ τn(t)

}
weakly convergent to a nondegenerate process Ỹ ?

2. To which class does Ỹ belong?
We assume further that there exists a stochastically continuous time process θ(t),

t ≥ 0, independent of {Xk}, such that the counting process N of Ñ , N(t) =∑
k I[0,t](Tk), is of the form k(θ(t)). Here IA is the indicator of the set A and k(t) is a

deterministic counting function. In this framework our main result in section 2 is the
functional transfer theorem. It claims in general that if Yn ⇒ Y and τ−1

n ◦ θ ◦ τn ⇒ Λ

in M([0,∞)), then the limit process Ỹ is of the form Ỹ = Y ◦ Λ. Here Y is a self-
similar extremal process and Λ: [0,∞) → [0,∞) is a stochastically continuous time
process independent of Y and with a.s. strictly increasing sample paths. We call such
processes Ỹ random time-changed or compound self-similar extremal processes. The
main contribution of our paper are their properties, studied in section 3. In section 4
we use the compound extremal process to find a lower bound for the ruin probability
in a particular insurance model. Furthermore, using a technique similar to that in [4],
we find an upper bound too.

Other aspects of random time-changed extremal processes can be found in [13].

2. Compound extremal process as limiting. Let us denote by M([0,∞))
the set of all strictly increasing right-continuous functions τ : [0,∞) → [0,∞), τ(0) = 0,
τ(u) → ∞ as u → ∞.

In this section we consider the following model (B): The point process Ñ =
{(Tk, Xk) : k ≥ 1} we deal with is assumed to be Bernoulli with i.i.d. random vari-
ables Xk in [0,∞)d and with random time points Tk in [0,∞), independent of X.
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648 E. I. PANCHEVA, E. T. KOLKOVSKA, AND P. K. JORDANOVA

We suppose the latter to be ordered, T1 < T2 < · · · , Tk → ∞ a.s., and defined on
the same probability space [Ω,A,P] as X. Denote by N(t) the counting function

of Ñ . We assume further that there exist a stochastically continuous time process
θ : [0,∞) → [0,∞) with sample paths in M([0,∞)) and a deterministic counting
function k on [0,∞) such that for s > 0 and almost all (a.a.) ω ∈ Ω it holds that

(2.1) N(ω, s) = k(θ(ω, s)).

Let {tk : k ≥ 1}, t1 < t2 < · · · , be the nonrandom time point process whose
counting function k(t) =

∑
k I[0,t](tk) coincides with the function k(·) of (2.1). Then

N(t) =
∑
k

I[0,t](Tk)
a.s.
=
∑
k

I[0,θ(t)](tk) = k(θ(t)),(2.2)

P
{
N(t) ≥ k

}
= P{Tk ≤ t} = P

{
tk ≤ θ(t)

}
.

Example 1. Assume that {Tk} is a simple Poisson point process on [0,∞) with
mean measure EN(t) = λt, λ > 0. One can interpret Tk as the arrival time of the kth
claim Xk in a certain insurance model. Assume further that there is a deterministic
counting process k(t) such that the accumulated claim process S(t) =

∑k(t)
k=1 Xk,

properly normalized, has a nondegenerate weak limit. Let {t0 = 0, t1, t2, . . .}, tk → ∞,
be the point process associated with k(t). We show that there exists a stochastically
continuous time process θ(t) with sample paths in M such that N(t) = k(θ(t)). Let
us denote Qt(s) = P{θ(t) < s}.

Indeed, since for every t > 0,

P{k(θ(t)) = n} =

∞∑
k=0

P
{
k(θ(t)) = n, tk ≤ θ(t) < tk+1

}
= P{tn ≤ θ(t) < tn+1} = Qt(tn+1) −Qt(tn),

we obtain the values of Qt(s) for s ∈ {t0, t1, t2, . . .} by the iteration formula

Qt(tn+1) −Qt(tn) =
(λt)n

n!
e−λt.

For s /∈ {t0, t1, t2, . . .} one can interpolate Qt(s) by preserving the properties required
above.

Let us use a regular sequence ξn(t, x) = (τn(t), un(x)) of time-space changes

of [0,∞)1+d for normalizing, so that the sequence of the associated with Ñ extremal
processes

(2.3) Ỹn(t) =
{∨

u−1
n (Xk) : Tk ≤ τn(t)

}
is weakly convergent to a nondegenerate increasing process Ỹ . We ask here, to which
class does Ỹ belong?

Consider the point process N = {(tk, Xk) : k ≥ 1} associated with Ñ by (2.1).
Using the same norming sequence as in (2.3), we form the sequence of point processes

Nn =
{
(τ−1

n (tk), u
−1
n (Xk)) : k ≥ 1

}
,
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with counting function

kn(t) =
∑
k

I[0,t](τ
−1
n (tk)),

and

Ñn =
{
(τ−1

n (Tk), u
−1
n (Xk)) : k ≥ 1

}
with a random counting function

Nn(t) =
∑
k

I[0,t](τ
−1
n (Tk)).

Since P{τ−1
n (Tk) ≤ t} = P{τ−1

n (tk) ≤ τ−1
n ◦ θ ◦ τn(t)} we see that Nn(t)

d
= kn(θn(t))

with θn(t) = τ−1
n ◦ θ ◦ τn(t).

The extremal process

(2.4) Yn(t) =

{∨
k

u−1
n (Xk) : τ−1

n (tk) ≤ t

}

associated with Nn and the extremal process Ỹn associated with Ñn, are connected

by the relation Ỹn(t)
d
= Yn(θn(t)). In this way we have reduced the convergence

problem of Ỹn to both the convergence of Yn, considered in the previous section, and
the convergence of θn. To solve it we use the continuity of the composition in the
weak topology in D([0,∞)). (See Theorem 3 in [14] and the comments following the
theorem; also consult [15].)

Proposition 2.1. Let {Yn, n ≥ 1} be a sequence of extremal processes weakly
convergent to a stochastically continuous extremal process Y . Let {θn, n ≥ 1} and
let Λ be processes with sample paths in M([0,∞)) such that θn ⇒ Λ. Assume that Yn

is independent of θn for all n. Then

Yn ◦ θn ⇒ Y ◦ Λ.

Proof. For y ∈ M([0,∞)) let D(y) := {t ≥ 0: y(t − 0) �= y(t)}. Since Λ is
strictly increasing and Y is stochastically continuous, D(Y ) ∩D(Λ) = ∅ a.s. Hence
by Theorem 3 in [14],{

Ỹn(t) = Yn(θn(t)) : t > 0
}

=⇒
{
Ỹ (t) = Y (Λ(t)) : t > 0

}
.

Proposition 2.1 is proved.
At the end of this section we consider the i.i.d. case and give a functional trans-

fer theorem (FTT) in analogy to the famous Gnedenko–Fakhim transfer theorem
(cf. [6], [5]). But let us first see the meaning of weak convergence θn = τ−1

n ◦θ◦τn ⇒ Λ
by considering three examples.

Example 2. Let τn(t) = nt and θ(t) = cta, 0 < a < 1. Then θn = cta/n1−a → 0,
n → ∞.

Example 3. Let τn(t) = nt and θ(t) = et. Then θn(t) = ent/n → ∞, n → ∞.
Example 4. Let θ possess the scaling property: for all t > 0 there exists a

subsequence mn = [nt] such that for n → ∞

(2.5) θ ◦ τn(t) ∼ τ[nt] ◦ θ(1).
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Then, using the regularity of {τn} (i.e., τ−1
n ◦ τ[nt] converges pointwise to a con-

tinuous strictly increasing mapping σt : [0,∞) → [0,∞)) we get

(2.6) τ−1
n ◦ θ ◦ τn(t) ∼ τ−1

n ◦ τ[nt] ◦ θ(1) =⇒ σt ◦ θ(1) = Λ(t).

Obviously in this case Λ(t) is continuous and increasing in t but does not have
independent increments.

Thus, we see that τn and θ must have “comparable” behavior at infinity in order
for Λ to be finite and nondegenerate.

Theorem 2.1 (FTT). Let Ñ = {(Tk, Xk)} and N = {(tk, Xk)} be Bernoulli
point processes with counting functions N(t) and k(t), respectively. Let {Xk} be i.i.d.
random variables and ξn(t, x) = (τn(t), un(x)) a regular norming sequence. Suppose
there is a stochastically continuous time process θ in M([0,∞)) independent of {Xk},
satisfying (2.5), and such that N(t) = k(θ(t)). Denote the distribution function of θ(1)
by Q, and set N(τn(t)) = Nn(t) and k(τn(t)) = kn(t). Assume further the weak
convergence as n → ∞,

P

{
kn(t)∨
k=1

u−1
n (Xk) < x

}
−→ f(t, x) := P{Y (t) < x}.

Then

Ỹn(t) =

Nn(t)∨
k=1

u−1
n (Xk) =⇒ Ỹ (t) = Y (Λ(t))

and there exists a time change τ(s) such that

P
{
Ỹ (t) < x

}
=

∫ ∞

0

fτ(s)(1, x) dQ(σ−1
t (s)) = E[f(1, x)]τ◦Λ(t).

Here σt is the time change from (2.6).
Proof. Let Yn be the extremal process associated with

Nn =
{
(τ−1

n (tk), u
−1
n (Xk)) : k ≥ 1

}
,

and let F be the distribution function of X1. By assumption,

fn(t, x) := P{Yn(t) < x} = P

{
kn(t)∨
k=1

Xk < un(x)

}
= F kn(t)(un(x)) −→ f(t, x).

On the other hand, since

fn(t, x) =
[
F kn(1)

(
un(x)

)]kn(t)/kn(1)

and since f(1, x) ∈ (0, 1), we conclude that for all t > 0 there exists (perhaps up to a
subsequence)

(2.7) lim
n

kn(t)

kn(1)
=: τ(t),
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and hence f(t, x) = fτ(t)(1, x). The limit extremal process Y is stochastically contin-
uous. Note that the weak convergence of the univariate marginals entails Yn ⇒ Y , in
view of Theorem 6.1 in [2]. Now let us express the partial maxima Ỹn as

Ỹn(t) =

Nn(t)∨
k=1

u−1
n (Xk) =

kn(θn(t))∨
k=1

u−1
n (Xk) = Yn ◦ θn(t).

One can see that the conditions of Proposition 2.1 are satisfied. Applying Proposi-
tion 2.1 and (2.5) we have

Yn ◦ θn =⇒ Y ◦ Λ =: Ỹ ,

and furthermore,

P
{
Y (Λ(t)) < x

}
=

∫ ∞

0

f(s, x) dP
{
Λ(t) < s

}
=

∫ ∞

0

fτ(s)(1, x) dQ
(
σ−1
t (s)

)
.

Theorem 2.1 is proved.
Remark 1. Note that (2.7) is a consequence of the weak convergence Yn ⇒ Y .

If we do suppose (2.7), then we need only assume Yn(1)
d−→ Y (1) instead of Yn ⇒ Y

in order to get Ỹn ⇒ Ỹ .
Remark 2. From the proof one can see that FTT remains true if condition (2.5)

is replaced by the more general convergence condition θn ⇒ Λ of Proposition 2.1. In
this case,

(2.8) P

{
Nn(t)∨
k=1

u−1
n (Xk) < x

}
−→
∫ ∞

0

fτ(s)(1, x) dQt(s),

where Qt(s) := P{Λ(t) < s}.
Remark 3. One can see also that the FTT remains true if Xk are assumed

independent but not identically distributed. Then

P

{
Nn(t)∨
k=1

u−1
n (Xk) < x

}
−→
∫ ∞

0

f(s, x) dQt(s) = Ef
(
Λ(t), x

)
.

Corollary 1. Let τ−1
n ◦ θ ◦ τn ⇒ Λ. Then the time process Λ satisfies σs ◦ Λ ◦

σ−1
s (t)

d
= Λ(t) for all s > 0; hence Λ is stochastically continuous.

Proof. Let us assume that there is a t0 > 0 such that Λ(t0 − 0) < Λ(t0). We can
choose s > 0 so that σ−1

s (t0) is a continuity point of Λ. Hence

Λ(t0)
d
= σs ◦ Λ ◦ σ−1

s (t0)
a.s.
= σs ◦ Λ ◦ σ−1

s (t0 − 0)
d
= Λ(t0 − 0),

which contradicts the above assumption.
Corollary 2. The limit process Ỹ in (2.8) has the following properties:
(i) It is stochastically continuous;
(ii) it is self-similar with respect to L = {(σs, Us) : s > 0};
(iii) it does not have stationary increments;
(iv) it is not max-stable.

Proof. (i) Ỹ is a composition of two stochastically continuous processes.
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(ii) We have to show that Ỹ (σs(t))
d
= Us ◦ Ỹ (t) for all s > 0. For a fixed s > 0,

we have N[ns](t) = N(τ[ns](t)) = Nn(τ−1
n ◦ τ[ns](t)), and by the FTT and continuity

of the composition we conclude the weak convergence

N[ns](t)∨
k=1

u−1
n (Xk) =⇒ Ỹ (σs(t)).

On the other hand,

N[ns](t)∨
k=1

u−1
n (Xk) = u−1

n ◦ u[ns]

(N[ns](t)∨
k=1

u−1
[ns](Xk)

)
=⇒ Us ◦ Ỹ (t),

which entails the self-similarity of Ỹ .
(iii) and (iv) are easily seen from the right-hand side of (2.8). Corollary 2 is

proved.
In [10, Propositions 2.1 and 2.3], it is shown that the limit extremal process Y

(respectively, distribution function f) is self-similar. So we refer to the process

Ỹ (t) = Y (Λ(t)) as a random time-changed or compound self-similar extremal pro-
cess. In the next section we study its properties.

3. Properties of a compound extremal process. In this section we con-
sider the composition Ỹ = Y ◦ Λ, Ỹ : [0,∞) → [0,∞)d of an extremal process
Y : [0,∞) → [0,∞)d, Y (0) = C(0) = 0 a.s., and a stochastically continuous time
process Λ: [0,∞) → [0,∞) independent of Y and with a.a. sample paths in the
functional space M([0,∞)).

In general, the compound extremal process Y ◦ Λ may have dependent max-
increments; cf. Example 4 of the previous section.

Property 3.1. Let Y be self-similar extremal process with respect to the norm-
ing group {ηs(t, x) = (σs(t), Us(x)) : s > 0}, i.e., Ls ◦ Y (t) = Y ◦ σs(t), and let the
random time change be of the form Λ(t) = σt(θ), where θ is a positive random vari-
able. Then the compound extremal process is self-similar with respect to the group
{η∗s (t, x) = (ts, Us(x)) : s > 0}.

Proof. Indeed,

Us ◦ Ỹ (t) = Us ◦ Y (Λ(t)) = Y ◦ σs(Λ(t)) = Y ◦ σs(σt(θ))

= Y ◦ σst(θ) = Y ◦ Λ(st) = Ỹ (st).

The first question naturally arising in our framework is, under what conditions
on Λ and Y is the composition Y ◦ Λ an extremal process in the sense of (1.1)?

Denote by

N0 =
{
(Γk, Zk) : k ≥ 1

}
the Bernoulli point process associated with Y . Let UY (s, t] (respectively, UỸ (s, t]) be

the max-increment of Y (respectively, of Ỹ ) over a time interval (s, t]. Then

UỸ (0, s] =
{∨

Zk : 0 < Γk ≤ Λ(s)
}
,

UỸ (s, t] =
{∨

Zk : Λ(s) < Γk ≤ Λ(t)
}
.
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The intervals (0,Λ(s)] and (Λ(s),Λ(t)] are a.s. disjoint since the time process Λ has
a.s. strictly increasing sample paths.

Theorem 3.1. Assume that Y is an extremal process and Λ is a time process
independent of Y and with a.a. sample paths in M([0,∞)). In this framework the
compound process Y ◦ Λ is an extremal process if and only if

(i) Λ has independent additive increments,

(ii) Y has homogeneous max-increments.

Proof. 1. Sufficiency. In view of (1.1) we have to check that

(a) Ỹ has right-continuous increasing sample paths,

(b) for arbitrary s > 0, t > s, the random vectors UỸ (0, s] and UỸ (s, t] are
independent.

In our framework, condition (a) is obviously satisfied. Recall that the lower
curve of an extremal process with homogeneous increments is constant. Thus we may
assume for the lower curve C of Y that C(t) ≡ 0.

Let us consider in detail the probability P{UỸ (0, s] < x, UỸ (s, t] < y} for 0 <
s < t and arbitrary x, y ∈ [0,∞)d. Using step by step the assumptions that Y and Λ
are independent, Y has independent max-increments, Λ has independent increments,
and Y has homogeneous increments, we get

P
{
UỸ (0, s] < x, UỸ (s, t] < y

}
=

∫∫
{(p,q) : 0<p<q}

P
{
UY

(
0, Λ(s)

]
< x, UY

(
Λ(s), Λ(t)

]
< y | Λ(s) = p,

Λ(t) = q
}
dP
{
Λ(s) < p, Λ(t) < q

}
=

∫∫
{(p,q) : 0<p<q}

P
{
UY (0, p] < x

}
×P
{
UY (p, q] < y

}
dP
{
Λ(s) < p, Λ(t) < q

}
=

∫ ∞

0

∫ ∞

0

P
{
UY (0, p] < x

}
×P
{
UY (p, p + h] < y

}
dP
{
Λ(s) < p

}
dP
{
Λ(t) − Λ(s) < h

}
=

∫ ∞

0

P
{
UY (0, p] < x

}
dP
{
Λ(s) < p

}
×
∫ ∞

0

P
{
UY (0, h] < y

}
dP
{
Λ(t) − Λ(s) < h

}
= P
{
UỸ (0, s] < x

}
P
{
UY (0,Λ(t) − Λ(s)] < y

}
= P
{
UỸ (0, s] < x

}
P
{
UY (Λ(s),Λ(t)] < y

}
= P
{
UỸ (0, s] < x

}
P
{
UỸ (s, t] < y

}
.

2. Necessity. Now we assume that the composition Ỹ = Y ◦ Λ is an extremal
process. Then, necessarily, Λ has independent increments, i.e., Λ(s) ⊥ Λ(t) − Λ(s)
for all 0 ≤ s < t. We have to show only that Y has homogeneous increments, or
equivalently that the counting measure N of the associated Bernoulli point process N0

is homogeneous.
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Indeed, the independence UỸ (0, s] ⊥ UỸ (s, t] implies

N(Λ(s))∨
0

Zk ⊥
N(Λ(t))∨

N(Λ(s))+1

Zk,

which implies

N
(
0,Λ(s)

]
⊥ N
(
Λ(s),Λ(s) −

(
Λ(t) − Λ(s)

)]
.

This is possible only if N(Λ(s),Λ(t)] does not depend on Λ(s) but only on Λ(t) − Λ(s).
For the counting measure N this means that N is homogeneous in the sense that

N(s, t]
d
= N(0, t− s]. Theorem 3.1 is proved.

Let us now simplify the model and assume additionally that Y is a self-similar
extremal process with homogeneous max-increments. Then the univariate marginal
distribution function ft(x) = P{Y (t) < x} is max-stable and satisfies

ft(x) = f t
1(x) = f1

(
U−1
t (x)

)
∀ t > 0

(cf. [10]). Without loss of generality we may and do assume that f1(x) has Fréchet

marginals, i.e., f1(xi) = e−x−α
i , α > 0, i = 1, . . . , d. So ft(x) = exp{−tνα(Ac

x)}.
Here να is the exponent measure of Y (1) and Ac

x = {y ∈ Rd
+ : y < x}c. The exponent

measure να bears the dependence structure of Y (1); see, e.g., [9]. Now observe that

sHY (t) = Y (st) ∀ t > 0, s > 0, H =
1

α
,

i.e., Y (t) is self-similar with respect to the multiplicative group {ηs(t, x) = (st, sHx) :
s > 0}.

Property 3.2. Denote the Laplace transform of the time process Λ(t) by lt(r) =
E exp{−Λ(t) r}, r > 0, and its distribution function by P{Λ(t) < s} = Gt(s). The

compound extremal process is then distributed by P{Ỹ (t) < x} = lt(να(Ac
x)).

Indeed,

P
{
Ỹ (t) < x

}
=

∫ ∞

0

P
{
Y (s) < x | Λ(t) = s

}
dGt(s) =

∫ ∞

0

fs
1 (x) dGt(s)

= E exp
{
− Λ(t) να(Ac

x)
}

= lt
(
να(Ac

x)
)
.

Property 3.3. Assume Λ(t) has independent increments. Then the compound

process Ỹ is max-id with mean measure

μ̃
(
[0, t] ×Ac

x

)
=

∫ ∞

0

(
1 − e−uνα(Ac

x)
)
dLt(u), x > 0,

where Lt is the Lévy measure of Λ(t).
Proof. As a stochastically continuous process with independent increments, the

time process Λ is infinitely divisible. Since Λ(t) is positive and increasing, its charac-
teristic function φt has the form

φt(s) = exp

{∫ ∞

0

(eisu − 1) dLt(u)

}
.
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By Property 3.2, and since lt(s) = φt(is), we can further write

− log P
{
Ỹ (t) < x

}
= − log lt

(
να(Ac

x)
)

= − log φt

(
− i log f1(x)

)
=

∫ ∞

0

(
1 − e−uνα(Ac

x)
)
dLt(u).

The measure μ̃ defined by

μ̃([0, t] ×Ac
x) :=

∫ ∞

0

(
1 − e−uνα(Ac

x)
)
dLt(u)

has all the properties of an exponent measure on [0,∞)1+d (cf. [1], [9]). Since

P{Ỹ (t) < x} = exp{−μ̃([0, t] × Ac
x)}, the compound extremal process is max-id.

Property 3.3 is proved.
In the case when Λ has homogeneous increments, i.e.,

μ̃
(
[0, t] ×Ac

x

)
= t

∫ ∞

0

(
1 − e−uνα(Ac

x)
)
dL1(u),

one gets the following asymptotic for t → 0 and for x far away from 0 as a by-product
of the proof:

lim
t→0

1

t
P
{
Ỹ (t) ∈ Ac

x

}
∼
∫ ∞

0

(
1 − e−uνα(Ac

x)
)
dL1(u), x → ∞.

For any Borel set B ⊂ [0,∞)d and x ∈ (0,∞)d let B/x denote the set {s ∈
[0,∞) : sx ∈ B}. Define the measure Qt on [0,∞) corresponding to the distribution
function Gt of Λ(t) by Qt(A) :=

∫∞
0

IA(s) dGt(s), A ⊂ [0,∞), and put THQt(A) :=
Qt({sH : s ∈ A}). Then the distribution function of the compound process can be
expressed as follows (cf. [7]).

Property 3.4. P{Ỹ (t) < x} = E(THQt)(Ax/Y (1)).
Proof. For x ∈ (0,∞)d we have

P
{
Ỹ (t) < x

}
= P
{
ΛH(t)Y (1) ∈ Ax

}
=

∫
P

{
ΛH(t) ∈ Ax

y

}
df1(y)

=

∫
df1(y)

∫ ∞

0

IAx/y(s
H)Gt(ds) = E

(
THQt

(
Ax

Y (1)

))
,

where the integral is taken over [0,∞)d \ {0}. Property 3.4 is proved.
Remark. By Corollary 1 in the previous section, if τ−1

n ◦ θ ◦ τn ⇒ Λ, then σs ◦Λ ◦
σ−1
s (t)

d
= Λ(t) for all s > 0. For σ−1

s (t) = st the latter equation means

(3.1) Λ(t)
d
= tΛ(1).

In this section we do not assume the above limit relation. Yet (3.1) has to hold if both

processes Ỹ and Y are assumed self-similar with respect to the same multiplicative
group L = {ηs(t, x) = (st, sHx) : s > 0}.

Property 3.5. (a) If Ỹ and Y are self-similar with respect to the multiplicative
group L, then Λ has stationary increments.

(b) If (3.1) holds and if Y is self-similar with respect to L, then Ỹ is also self-
similar with respect to the same L.
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Proof. (a) Indeed, one can check that both

Ỹ (t)
d
= Y (Λ(t))

d
= ΛH(t)Y (1) and Ỹ (t)

d
= tH Ỹ (1)

entail (3.1), or equivalently Λ(t+ h)
d
= Λ(t) + Λ(h), i.e., Λ has stationary increments.

(b) Indeed,

Ỹ (st) = Y (Λ(st))
d
= Y (sΛ(t))

d
= sH Ỹ (t).

Property 3.5 is proved.
Finally, note that the compound extremal process Ỹ considered in this section

can be decomposed into a product of two independent random processes, namely,

Ỹ (t) = Y (Λ(t)) = ΛH(t)Y (1) =
(
ΛH(t) t−H

) (
tHY (1)

)
= M(t)Y (t),

where M(t) := (Λ(t)/t)H . So, the stability character of Ỹ is governed by the self-

similar process Y (t), and the volatility of Ỹ is borne by the random time M(t).

4. Application to ruin probability. The basic Bernoulli point process N =
{(Tk, Xk) : k ≥ 1} that we are dealing with here can be interpreted as describing a
particular insurance model with

(a) claim size process: the claim sizes {Xk} are positive i.i.d. random variables
whose distribution function F has a regularly varying tail, namely, F ∈ RV−α. We
consider the “very heavy tail case” 0 < α < 1 when EX = ∞.

Activity rates with very heavy tails are studied in [8]. In fact, investigations into
the very heavy tail case are not only of a theoretical interest but they are useful in
connection with modeling catastrophic events and reinsurance problems.

(b) claim times: the claims occur at times {Tk}, where T1 < T2 < · · · , Tk → ∞
a.s., and the number of claims in the interval [0, t], N(t) =

∑
k I[0,t](Tk), satisfies

the condition (2.1), i.e., there exists a time process θ : [0,∞) → [0,∞) such that
N(t) = k(θ(t)), where k is a deterministic counting function whose asymptotic prop-
erty we specify below:

(c) both sequences {Xk} and {Tk} are independent.
With the point process N we associate three random processes:

(i) the accumulated claim process S(t) =
∑N(t)

k=1 Xk;

(ii) the extremal claim process Y (t) =
∨N(t)

k=1 Xk;
(iii) the risk process R(t) = c(t) − S(t), where u := c(0) ≥ 0 is the initial capital

and c(t) is the premium income up to time t (hence it is an increasing curve); we
assume c(t) is right-continuous.

In order to estimate the ruin probability in our framework we follow the idea of
a stable Lévy motion approximation of the risk process R(t) developed in [4]. To
this end we transform time and space properly and get a sequence of risk processes
weakly convergent to a risk process whose accumulated claim process is an α-stable
Lévy motion.

Let ξn(t, x) = (τn(t), un(x)) be a norming sequence of time-space changes and
let L(·) be a slowly varying function. We suppose that τn(t) satisfy the following
condition:

(d) kn(t)/kn → t with kn(t) = k(τn(t)) and kn := kn(1).

The choice of un(x) = k
1/α
n L(kn)x is determined by the regularly varying tail

of the claim size distribution function F . Denote τ−1
n (Tk) =: Tnk and u−1

n (Xk) =
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Xk/(k
1/α
n L(kn)) =: Xnk. Now, the sequence of point processes

Nn =
{
(Tnk, Xnk) : k ≥ 1

}
generates associated sequences of

(i) the counting functions Nn(t) = kn(θn(t)), where as before, θn = τ−1
n ◦ θ ◦ τn;

(ii) the accumulated claims
∑Nn(t)

k=1 Xnk = Sn(θn(t)); here Sn(t) is an abbreviation

for
∑kn(t)

k=1 Xnk;

(iii) the extremal claims
∨Nn(t)

k=1 Xnk = Yn(θn(t)), where Yn(t) is the extremal

process
∨ kn(t)

k=1 Xnk;
(iv) the risk process Rn(t) = c(n)(t) − Sn(θn(t)), where c(n)(t) = u−1

n ◦ c ◦ τn(t).
In our insurance model described by (a)–(d) let us assume additionally that
(e) θn ⇒ Λ, Λ in M([0,∞)).
In fact the last two assumptions are implicit conditions on the claim times pro-

cess {Tk} (through θ(·)), e.g., they imply that

k−1
n Nn(t) −→ Λ(t), n → ∞.

The following examples illustrate the impact of (d) for the time change τn(t).
Example 5. For large n,

(a) k(t) = [at + b] implies τn(t) =
knt− b

a
;

(b) k(t) = [log t] implies τn(t) = eknt;

(c) k(t) = [at] implies τn(t) =
log knt

log a
.

Assume that
∑kn

k=1 Xnk converges to an α-stable random variable Zα. Using
the stable FCLT for the sum and maxima of positive i.i.d. r.v.’s, one can see that
conditions (a)–(d) imply the convergences

(4.1) Sn(t) =

kn(t)∑
k=1

Xnk =⇒ Zα(t), Zα(1) = Zα,

where Zα(t) is a one-sided α-stable Lévy motion, and

(4.2) Yn(t) =

kn(t)∨
k=1

Xnk =⇒ Yα(t),

where the univariate marginals of the limit extremal process are Fréchet distributed, i.e.,

P
{
Yα(t) < x

}
= Φt

α(x) = exp{−tx−α}, x ≥ 0, t ≥ 0.

Let us observe that the conditions of Proposition 2.1 are satisfied, and hence we
conclude

Yn ◦ θn ⇒ Yα ◦ Λ, Sn ◦ θn ⇒ Zα ◦ Λ.

By Proposition 3.21 in [9], convergence (4.2) is equivalent to the weak convergence
of the associated point processes. Denote the limit Poisson point process by N0, say,
N0 = {(Γk, Zk) : k ≥ 1}. Its mean measure is

μ0

(
[0, t] × [x,∞)

)
= t
(
− log Φα(x)

)
= tx−α.
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Moreover, since the time process Λ is independent of the space points {Zk}, Λ is
independent of Yα and Zα.

Let us come back to the sequence of the risk processes Rn(t). To reach the weak
convergence

Rn(t) = c(n)(t) − Sn(θn(t)) =⇒ c0(t) − Zα(Λ(t)) =: Rα(t),

we need also the asymptotic relation

(f) c(n) w→ c0, n → ∞, c0 increasing curve with c0(0) > 0.

Note that condition (f) plays the role of a “safety loading condition in the very
heavy tail case” since it guarantees a positive probability to survive (see (4.4) below).

Now we are ready to obtain lower and upper bounds of the ruin probability
associated with the limit risk process Rα(t). Below we make use of the self-similarity
of Zα and of the reflection principle proved in [4, Theorem 5]. Denote Qt(s) :=
P{Λ(t) < s}, Gα(y) := P{Zα(1) < y}, u0 := c0(0). Note that the constant ρ :=
P{Zα(1) > 0} from [4, Theorem 5] is equal to 1 here. We have

ψ(u0, t) = P

{
inf

0≤s≤t
Rα(s) < 0

}
= P

{
sup

0≤s≤t

{[∑
Zk : Γk ≤ Λ(s)

]
− c0(s)

}
> 0

}
≤ P

{
sup

0≤s≤t
Zα(Λ(s)) > u0

}
≤ P

{
sup

0≤s≤Λ(t)

Zα(s) > u0

}
=

∫ ∞

0

P

{
sup

0≤s≤v
Zα(s) > u0

}
dQt(v)

≤
∫ ∞

0

P
{
v1/αZα(1) > u0

}
dQt(v) = P

{
Λ1/α(t)Zα(1) > u0

}
=

∫ ∞

0

Qt

((
u0

y

)α)
dGα(y) =: ψ(u0, t).

Here Qt = 1 −Qt. On the other hand,

ψ(u0, t) ≥ P

{
sup

0≤s≤t

{[∨
Zk : Γk ≤ Λ(s)

]
− c0(s)

}
> 0

}
≥ P
{
Yα ◦ Λ(t) > c0(t)

}
= P
{
Λ1/α(t)Yα(1) > c0(t)

}
=

∫ ∞

0

P

{
Λ(t) >

(
c0(t)

x

)α}
dΦα(x)

=

∫ ∞

0

Qt

((
c0(t)

x

)α)
dΦα(x) =: ψ(u0, t).

Here we have used again the self-similarity of the extremal process Yα. Thus, we get
finally

ψ(u0, t) ≤ ψ(u0, t) ≤ ψ(u0, t).

Remember that our initial insurance model was described by the point process N
with the associated risk process R(t). Let us denote the corresponding ruin probability
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by Ψ(u, t) with u = c(0). Then

Ψ(u, t) = P

{
inf

0≤s≤t

(
c(s) −

N(s)∑
k=1

Xk

)
< 0

}

= P

{
inf

0≤s≤t

(
u−1
n ◦ c(s) −

N(s)∑
k=1

Xnk

)
< 0

}

= P

{
inf

0≤s≤τ−1
n (t)

(
u−1
n ◦ c ◦ τn(s) −

kn(θn(s))∑
k=1

Xnk

)
< 0

}
.(4.3)

Now let the initial capital u and time t increase with n → ∞ in such a way that

u/(k
1/α
n L(kn)) = u0, τ

−1
n (t) = t0. Recall c(n)(t) = u−1

n ◦ c ◦ τn(t). Observe that under
conditions (a)–(f) we may approximate

Ψ(u, t) ≈ ψ(u0, t0),

and consequently for u and t “large enough,”

(4.4) ψ(u0, t0) ≤ Ψ(u, t) ≤ ψ(u0, t0).

Example 6. Assume our insurance model is characterized by
(a) the claim size distribution function F ∈ NDA(S1/2(1, 1, 0)); this means that

Gα(x) = 2(1 − Φ(
√

1/x)) is the Lévy distribution function; here Φ is the standard
normal distribution function; hence we have to choose un(x) = n2x;

(b) the claim times process which is determined by k(t) = [t] and θ(t)
d
= t θ(1)

with θ(1) uniformly distributed in [0, 1].
Then we have to choose τn(t) = nt and consequently Qt(x) = x/t. Furthermore,

since c(n)(t) = n−2c(nt) → c0(t) we take c0(t) = u0 + t2. Then

ψ(u0, t0) =

∫ ∞

u0/t20+1

(
1 − 1

t0

√
u0 + t20

x

)
d(e−1/

√
x),(4.5)

ψ(u0, t0) =

∫ ∞

u0/t20

(
1 − 1

t0

√
u0

x

)
dGα(x).(4.6)

5. Appendix. Here we give numerical results related to the computation of (4.5)
and (4.6) in the last example. Let us consider first (4.5). For the numerical compu-
tation, it is necessary to find a sufficiently large constant K1 such that

ψ
ε
(u0, t0) =

∫ K1(ε)

u0/t20+1

(
1 − 1

t0

√
u0 + t20

x

)
d(e−1/

√
x)

and |ψ(u0, t0)−ψ
ε
(u0, t0)| < ε, where ε > 0 is arbitrarily small. We start by observing

that ∣∣ψ(u0, t0) − ψ
ε
(u0, t0)

∣∣ < ∫ ∞

K1

d(e−1/
√
x) = 1 − e−1/

√
K1 .

Hence, if K1(ε) = (1/ log(1 − ε))2, we achieve the desired accuracy. Moreover, since

∣∣ψ(u0, t0) − ψ
ε
(u0, t0)

∣∣ >
⎛⎝1 − 1

t0

√
u0 + t20
K1

⎞⎠∫ ∞

K1

d(e−1/
√
x),
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Table 1

ψε(u0, t0), ε = 10−6.

t0
2.3 2.8 3.3 4.8 5.8 6.8 7.8 8.8

1 0.3454 0.3522 0.3564 0.3623 0.3640 0.3651 0.3657 0.3662
1.61 0.3337 0.3436 0.3499 0.3590 0.3617 0.3634 0.3644 0.3652
2.84 0.3137 0.3283 0.3380 0.3527 0.3573 0.3601 0.3619 0.3631
4.06 0.2971 0.3151 0.3273 0.3468 0.3530 0.3568 0.3594 0.3612
5.29 0.2831 0.3034 0.3177 0.3411 0.3489 0.3537 0.3570 0.3592
6.52 0.2710 0.2931 0.3090 0.3358 0.3449 0.3507 0.3546 0.3573
7.74 0.2604 0.2838 0.3009 0.3307 0.3411 0.3477 0.3522 0.3554
8.97 0.2511 0.2754 0.2936 0.3259 0.3374 0.3449 0.3500 0.3536

u0 10.19 0.2427 0.2677 0.2867 0.3213 0.3339 0.3421 0.3477 0.3517
11.42 0.2352 0.2607 0.2804 0.3169 0.3304 0.3394 0.3455 0.3500
12.65 0.2284 0.2543 0.2745 0.3127 0.3271 0.3367 0.3434 0.3482
13.87 0.2222 0.2483 0.2690 0.3087 0.3239 0.3341 0.3413 0.3465
15.1 0.2164 0.2428 0.2638 0.3048 0.3208 0.3316 0.3393 0.3448
16.32 0.2112 0.2376 0.2589 0.3011 0.3178 0.3292 0.3372 0.3431
17.55 0.2063 0.2328 0.2544 0.2975 0.3148 0.3268 0.3353 0.3415
18.77 0.2017 0.2283 0.2500 0.2941 0.3120 0.3244 0.3333 0.3398
20 0.1975 0.2240 0.2459 0.2908 0.3092 0.3222 0.3314 0.3382

Table 2

ψε(u0, t0), ε = 10−6.

t0
2.3 2.8 3.3 4.8 5.8 6.8 7.8 8.8

1 0.6563 0.7156 0.7583 0.8338 0.8624 0.8827 0.8977 0.9093
1.61 0.5748 0.6425 0.6941 0.7889 0.8253 0.8510 0.8701 0.8848
2.84 0.4735 0.5440 0.6023 0.7204 0.7683 0.8023 0.8277 0.8472
4.06 0.4115 0.4796 0.5386 0.6673 0.7231 0.7635 0.7938 0.8172
5.29 0.3687 0.4335 0.4912 0.6241 0.6851 0.7304 0.7648 0.7915
6.52 0.3370 0.3985 0.4543 0.5880 0.6523 0.7014 0.7391 0.7686
7.74 0.3122 0.3707 0.4246 0.5574 0.6237 0.6755 0.7159 0.7479
8.97 0.2922 0.3480 0.4000 0.5310 0.5984 0.6521 0.6948 0.7288

u0 10.19 0.2756 0.3291 0.3792 0.5080 0.5759 0.6310 0.6754 0.7112
11.42 0.2615 0.3129 0.3613 0.4876 0.5556 0.6117 0.6574 0.6947
12.65 0.2494 0.2988 0.3458 0.4695 0.5373 0.5940 0.6408 0.6793
13.87 0.2388 0.2866 0.3321 0.4533 0.5206 0.5776 0.6253 0.6649
15.1 0.2295 0.2757 0.3198 0.4386 0.5054 0.5626 0.6108 0.6513
16.32 0.2212 0.2659 0.3089 0.4252 0.4914 0.5486 0.5973 0.6385
17.55 0.2137 0.2572 0.2990 0.4130 0.4785 0.5356 0.5846 0.6263
18.77 0.2069 0.2492 0.2900 0.4017 0.4666 0.5234 0.5726 0.6148
20 0.2008 0.2419 0.2817 0.3914 0.4555 0.5120 0.5613 0.6039

we can find upper and lower bounds of the approximation error:(
1 − 1

t0

√
u0 + t20
K1(ε)

)(
1 − e−1/

√
K1(ε)

)
<
∣∣ψ(u0, t0) − ψ

ε
(u0, t0)

∣∣
< 1 − e−1/

√
K1(ε).

Concerning (4.6), we arrive at similar results using the same reasoning and the
asymptotic behavior of the tail of the α-stable random variable X (see, e.g., [12]):

lim
λ→∞

λαP{X > λ} = Cα
1 + β

2
σα.

The lower and upper bounds of the approximation error in the particular case of
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Lévy distribution Gα are the following:(
1 − 1

t0

√
u0

K2(ε)

)(
1 −Gα(K2(ε))

)
<
∣∣ψ(u0, t0) − ψε(u0, t0)

∣∣ < 1 −Gα(K2(ε)),

where K2(ε) = (C1/2/ε)
2 and

ψε(u0, t0) =

∫ K2(ε)

u0/t20

(
1 − 1

t0

√
u0

x

)
dGα(x).
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