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Abstract

This note discusses limit theorems for a sequence of ex-
tremal processes associated with a Bernoulli point process
with random time and space points, and a regular norming
sequence of time-space changes.
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The framework of our study is set by a given Bernoulli point
process (Bpp) N = {(Tk, Xk) : k ≥ 1} on the time-state space
S = (0,∞) × (0,∞). By definition (cf. [1]) N is simple in time
(Tk 6=Tj a.s. for k 6= j), its mean measure is finite on compact
subsets of S and all restrictions of N to slices over disjoint time
intervals are independent. We assume that:
a) the sequences {Tk} and {Xk} are independent and defined on
the same probability space;
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b) the state points {Xk} are independent and identically distributed
random variables (iid rv’s), on (0,∞) with common distribution
function (df) F which is asymptotically continuous at infinity;
c) the time points {Tk} are increasing to infinity, i.e. 0 < T1 <
T2 < ..., Tk →∞ a.s.

The main problem in the Extreme Value Theory is the asymp-

totic of the extremal process {∨
k

Xk : Tk ≤ t} =
N(t)
∨

k=1
Xk, associated

with N , for t → ∞. Here the maximum operation is denoted by
” ∨ ” and N(t) := max{k : Tk ≤ t} is the counting process of N .
The method usually used is to choose proper time-space changes
ζn = (τn(t), un(x)) of S, strictly increasing and continuous in both
components, such that for n →∞ and t > 0 the weak convergence

Ỹn(t) := {∨
k

u−1
n (Xk) : τ−1

n (Tk) ≤ t} =⇒ Ỹ (t) (1)

to a non-degenerate extremal process holds. (For weak convergence
of extremal processes consult e.g. [1], th 7.)

In fact, the classical Extreme Value Theory deals with Bpp’s
{(tk, Xk) : k ≥ 1} with deterministic time points tk, 0 < t1 <
t2 < ..., tk → ∞. One investigates the weak convergence to a
non-degenerate extremal process

Yn(t) := {∨
k

u−1
n (Xk) : tk ≤ τn(t)} =⇒ Y (t) (2)

under the assumption that the norming sequence {ζn} is regular.
The later means that for all s > 0 and for n → ∞ there exist
pointwise

lim
n→∞

u−1
n ◦ u[ns](x) = Us(x)

lim
n→∞

τ−1
n ◦ τ[ns](t) = σs(t)

2



and the time-space change (σs(t),Us(x)) is strictly increasing and
continuous in t, x and s. As usual ” ◦ ” means the composition and
[s] the integer part of s.

Let us denote the (deterministic) counting function k(t) =
max{k : tk ≤ t}, and put kn(t) := k(τn(t)), kn := kn(1). The
df of the limit extremal process in (2) we denote by g(t, x) :=
P(Y (t) < x), and set G(x) := g(1, x). Then necessary and sufficient
conditions for convergence (2) are the following
1. F kn(un(x))

w−→G(x), n →∞
2. kn(t)

kn
−→ λ(t), n →∞, t > 0.

The regularity of the norming sequence {ζn} has some impor-
tant consequences (cf. [2]):

0.
k[ns]

kn
−→ sa, n →∞, for some a > 0 and all s > 0;

1’. the limit df G is max-stable in the sense that

Gs(x) = G(L−1
s (x)) ∀s > 0, Ls := U a√s; (3)

2’. the intensity function λ(t) is continuous.
Thus, under conditions 1. and 2. and the regularity of the

norming sequence, the limit extremal process Y (t) is stochastically
continuous with df g(t, x) = Gλ(t)(x) and the process Y ◦ λ−1(t) is
max-stable in the sense of (3).

Let us come back to the point process N with the random
time points Tk. The Functional Transfer Theorem (FTT) in this
framework gives conditions on N for the weak convergence (1) and
determines the explicit form of the limit df f(t, x) := P(Ỹ (t) < x).
In other words, the weak convergence (2) in the framework with
non-random time points can be transfer to the framework of N if
some additional conditions on the point process N are met. In our
case these are conditions d) and 3. below.

Denote by M([0,∞)) the space of all strictly increasing, cad-
lac functions y : [0,∞) → [0,∞), y(0) = 0, y(t) → ∞ as t → ∞.
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We assume additionally to a) - c) the following condition
d) there exists a stochastically continuous time process θ(t) with
sample paths inM([0,∞)) such that N(t) = k(θ(t)) a.s., where k(t)
is a deterministic counting function with k(0) = 0 and k(t) ↑ ∞ for
t ↑ ∞.

In the most cases the random counting function N is deter-
mined by the model we have to work in and the deterministic count-
ing function k is known from the classical limit theory for extremes.

Proposition: Let {(Tk, Xk) : k ≥ 1} and {(tk, Xk) : k ≥ 1}
be Bpp’s with counting functions N(t) and k(t), respectively. Then
there always exists a time process θ which satisfies d).

Proof: Denote by Qt(s) := P(θ(t) < s). Then for n =
0, 1, 2, ... and t0 = 0

P(N(t) = n) =
∞∑

k=0
P(k(θ(t)) = n, tk ≤ θ(t) < tk+1) =

= P(tn ≤ θ(t) < tn+1) = Qt(tn+1)−Qt(tn).

By this iteration formula we obtain the values of Qt(s) for s ∈ Γ =
{t0, t1, t2, ...}. For s 6∈ Γ we can interpolate Qt(s) by preserving the
properties required in d), e.g. linearly.

Now we are ready to state a general FTT for maxima of iid
rv’s on (0,∞). We set Nn(t) := N(τn(t)).

Theorem 1 (FTT): Let N = {(Tk, Xk) : k ≥ 1} be a Bpp
described by conditions a) - d). Assume further that there is a regu-
lar norming sequence ζn(t, x) = (τn(t), un(x)) of time-space changes
of S such that for n →∞ and t > 0 conditions 1., 2. and
3. θn := τ−1

n ◦ θ ◦ τn =⇒ Λ, in M([0,∞))
hold. Then

i) P(
Nn(t)
∨

k=1
u−1

n (Xk) < x)
w−→E[G(x)]λ◦Λ(t)

ii) Nn(t)
kn

d−→λ ◦ Λ(t)
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Proof: i) One can express the partial maxima Ỹn(t) as

Ỹn(t) =
Nn(t)
∨

k=1
u−1

n (Xk) =
kn(θn(t))
∨

k=1
u−1

n (Xk) = Yn ◦ θn(t).

Since Yn converges weakly to a stochastically continuous extremal
process Y and since θn and Λ are time processes with sample paths
in M([0,∞)), the composition Yn ◦θn is continuous under the weak
convergence (cf. [3] th 3). Thus Yn ◦ θn =⇒ Y ◦ Λ and

P(
Nn(t)
∨

k=1
u−1

n (Xk) < x) −→ f(t, x) = P(Y ◦ Λ(t) < x) =

∞∫
0

[g(1, x)]λ(s)dQt(s) = E[G(x)]λ◦Λ(t)

Note, (3) implies the stochastic continuity of Λ.

ii) P(θn(t) < s) = P(kn(θn(t))
kn

≤ kn(s)
kn

) =

= P(
Nn(t)

kn

≤ λ(s) + [
kn(s)

kn

− λ(s)])
w−→P(Λ(t) < s).

Since λ is continuous, convergence 2. is uniform and we conclude
for n →∞ and λ(s) = u that

P(
Nn(t)

kn

≤ u)
w−→P(λ ◦ Λ(t) ≤ u).

As a by-product one notices the following
Corollary: The convergences 2. and 3. imply ii).
Below we give some special cases of FTT. For α > 0 we denote

the Frechet df by Φα(x) = e−x−α
for x > 0, and = 0 otherwise. Set

Xnk := xk

Bn
with Bn ∼ α

√
nL(n). Here L(n) is a slowly varying
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function. We note that the norming sequences τn(t) = nt and
un(x) = Bnx, proper in the case when F ∈ max − DA(Φα), are
regular. Just analogously to Theorem 1 one obtain the next two
statements.

Theorem 2: (cf.[4], th 1) Let N = {(Tk, Xk) : k ≥ 1} be a
Bpp described by conditions a) - c). We assume

1.
n
∨

k=1
Xnk

d−→Yα(1) with df Φα;

2. kn(t) ∼ nt (i.e. λ(t) = t);

3. Nn(t)
n

=⇒ λt, λ > 0 (i.e. Λ(t) = λt).

Then Ỹn(t) =
Nn(t)
∨

k=1
Xnk =⇒ Ỹ (t) = Yα(λt) and Yα(λt)

d
= λ1\αYα(t).

Theorem 3: Let N = {(Tk, Xk) : k ≥ 1} be a Bpp described
by conditions a) - d). Assume further that

1.
n
∨

k=1
Xnk

d−→ Yα(1) with df Φα;

2. kn(t) ∼ ntβ (i.e. λ(t) = tβ);
3. θn =⇒ Λ, in M([0,∞)).

Then: i) Nn(t)
n

=⇒ Λβ(t)

ii)
Nn(t)
∨

k=1
Xnk =⇒ Ỹ (t) = Yα ◦ Λβ(t) and Ỹ (st)

d
= sβ\αỸ (t) ∀s > 0.

Let us below denote the one-sided α-stable Levy motion by
Sα(t). We recall from the classical fluctuations theory for sums
and maxima of iid rv’s on [0,∞) that the following statements are
equivalent (cf. e.g. [5]):
”1−F is regularly varying with index −α, α > 0 (i.e. F̄ ∈ RV−α)”;

”
[nt]
∨

k=1
Xnk =⇒ Yα(t) with df Φt

α (i.e. F ∈ max−DA(Φα))”;

”
[nt]∑
k=1

Xnk =⇒ Sα(t) (i.e. F ∈ DA(L(Sα))), where L(Sα) denotes

the law of Sα(1)”.
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The following result is due to P. Jordanova (2003). Assume
that Bn ∼ α

√
nL1(n), bn = b(n) ∼ β

√
nL2(n), α, β ∈ (0, 1) and

determine b̃n = b̃(n) by the asymptotic relation b(b̃(n)) ∼ n.
Theorem 4: Let

1. F̄ ∈ RV−α, i.e. Yn(t) :=
[nt]
∨

k=1

Xk

Bn
=⇒ Yα(t);

2. Tn =
n∑

k=1
Jk where {Jk} are iid rv’s on (0,∞) which df G ∈

DA(L(Sβ)), i.e. for n →∞
[nt]∑
k=1

Jk

bn
=⇒ Sβ(t).

Then
i) N(nt)

b̃(n)
−→ E(t) := inf{s : Sβ(s) > t} the hitting time process of

Sβ(t);

ii)
N(nt)
∨

k=1

Xk

Cn
=⇒ Ỹ (t) = Yα(E(t)) where Cn ∼ B(b̃n) and

Ỹ (st)
d
= sβ\αỸ (t) s > 0. (4)

Proof: Statement i) is proved by Meerschaert M.M. and
Scheffler P.H. (2002) in Limit Theorems For Continuous Time Ran-
dom Walks (submitted). For ii) we observe that

N(nt)
∨

k=1

Xk

Cn

=

N(nt)

b̃(n)
b̃(n)

∨
k=1

Xk

Cn

= Yb̃(n)(
N(nt)

b̃(n)
)

Since the sample paths of neither E(t) nor N(nt)

b̃(n)
are in M([0,∞))

one can not at once use the continuity property of the composition.
But the processes Sβ(t) and Yα(t) have a.s. no simultaneous jumps
(because of their stochastic continuity and independence). In this
case one is allowed to apply again the continuity of composition (cf.
e.g. [3], th. 3) and thus

Yb̃(n)(
N(nt)

b̃(n)
) =⇒ Yα ◦ E(t).
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The β
α

- selfsimilarity property (4) is a direct consequence of 1
α

-
selfsimilarity of Yα and β - selfsimilarity of the hitting time process
E(t).

Limit theorems for maxima of random number of rv’s appear
in many theoretical and applied works. The first Transfer Theorem
for extremes seems to be the one in Gnedenko B.V. and Gnedenko
D.B. [6]. The recent one we like to mention is the paper [7] studying
the infinite divisibility of a random time-changed process.
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